Title: TiO2の高圧相-高温・高圧下のX線回折-

Author(s): 遠藤, 将一

Citation: 大阪大学低温センターだより. 72 P.5-P.9

Issue Date: 1990-10

Text Version: publisher

URL: http://hdl.handle.net/11094/6911

DOI:

Rights:

Osaka University Knowledge Archive: OUKA

http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
TiO₂の高圧相

—— 高温・高圧下のX線回折 ——

極限物質研究センター 遠藤 将一（豊中6120）

はじめに

超高圧を用いる研究の大きな目的の1つは、同じ化学組成を持ちながら常圧で存在する場合とは全く結晶構造の異なる、その結果として性質も一変する状態を実現することにある。その状態が常圧に回収できたときには“新物質の創造”となる。回収できないとしても、高圧下で挙動を調べることができれば多くの情報を入手することが可能となる。手始めとする高圧相の結晶構造を明らかにする例として、すでに多くの研究によって高圧相の存在が知られながら、その構造のわかつていたかったTiO₂についての極く最近の我々の結果を紹介したい。

TiO₂の高圧相の存在

教科書に出てくる代表的な結晶構造の1つにルチル型構造とよばれるものがある。名前のとどまっているTiO₂の常圧での安定相であるルチルではTiのまわりに6個の酸素が八面体的に配位している。この構造を金属の二酸化物の代表としての結晶化学的観点からと、地球内部に大量に存在するSiO₂が高温高圧下で、石英→コーネサイト→スピネル関を有、ルチル構造をもつスピネル関がさらに超高圧下でどのような高密度構造をとるかという“ポスト・スピネル関”の問題との関連で多くの人達によって研究されてきた。1967年、McQueenらは衝撃波法により30GPa(1GPa＝10kbar＝1万気圧)から100GPaにかけて大きな体積減少の伴う相変態を見つかった。その後、我国の2組の研究者3)、4)が同様の手段により、相転移の開始圧力が単結晶中での衝撃波の伝播方位に依存して1.2～34GPaと変わることを見出ししている。衝撃加圧後に回収された試料はα－PbO₂構造（鉱物iolinite、FeNb₂O₆と原理的に同形）もしかし、ルチルからの体積減少が僅か2％程であって10％を越える衝撃波実験の結果とは一致せず、高温下では例えば菱石型のようなより稠密な構造が、圧力があれた結果準安定に現れたものとみなされてきた。高温下の結晶構造については、多くの分野で盛んに使われているダイヤモンド・アンビルにレーザー加熱を組み合わせる技術によりアメリカの2組の研究者5)、6)により、それぞれ25GPa、20GPa（いずれも～1000℃）で六方晶と斜方晶の相異なる結果が報告されている。このような状況下にある高圧相の構造について我々は独自の高温高圧発生技術を用いて、それらのいずれも異なる確実な結晶構造の決定に成功したので、方法ともども簡単に述べたい。

ダイヤモンド焼結体製多面体アンビル

静的に超高圧を発生する装置にはいろいろなタイプのものがある。より大きな体積を固体媒体を用いて、より静水圧的に加压するものとしては多面体アンビル装置が知られている。これは6個ないし8個
の同型のアンビルをそれらの配置の中心に向けて駆動して試料を加圧する。この装置の２段化が要求における多くの製造の結果であって、モデルを図１—(a)に示す。“６—８型”とよばれ、外側の６個の１段目アンビルが内側にある８個の立方体状の２段目アンビルを圧縮する。試料は中心部の八面体状媒体中に含まれる。この方式の特長は２段目アンビルが小さくても、１段目アンビルからの封圧かかることのため高い圧力に耐えられることが、その結果、コストを安くて済むため２段目アンビルの破壊を覚悟して思い切った実験を遂行できるということにある。従来のアンビルの材料は超硬合金（WC-Co）であったが、最近、我々はダイヤモンド焼結体を使用する努力をしている。図１—(b)にこれら二種類の材料を用いたときの圧力発生の違いを示す。超硬合金の場合15GPa あたりから頭打ちの傾向が現れるが、材料の塑性変形のためである。一方、ダイヤモンド焼結体の場合には少なくとも図中の圧力範囲内ではそのような傾向は認められない。

図１（a）“６—８型”２段式多面体アンビル装置の２次元模式図
（b）第２段アンビルに超硬合金とダイヤモンド焼結体を用いた場合の発生圧力の比較

このようにして加圧される八面体状の圧力媒体（無定形ポルトンをエポキシ樹脂でかめたもの）中に内熱ヒーターを組込む。例え、圧力によって相転移が誘起される場合でも、同時にその相の熱力学的に安定な領域内で高温にすることが反応を著しく速める。図２に示されるように試料の上下に円盤状の黒鉛を配置し、アンビルから電極を通してそれぞれに電流を供給して加熱し、熱電対で測温する。このような方法で高温圧下で長時間安定に、しかも正確な高温を発生できるが、これは３次元の試料空間を加圧できる多面体アンビルによって始めて可能となっている。
超高圧・高温下のX線回折実験

試料としてルチル単結晶を砕いて粉末にしたもの
を図2の中の中心部の空間（1mm×0.6mm）に
めた。X線回折装置つきのプレスは、極限センタ
のものと高エネルギー研究所のMAX80の2種類を
用いた。X線源は前者は回転対陰極式のクスプステ
ン、後者はSRである。いずれもSSDを検出器に用
いたエネルギー分散方式である。図2にMAX80の
場合のX線の経路を示す。回折X線がダイヤモンド
焼結体アノビルの一部を通過して検出される。こ
のようなことは従来の超硬合金製アノビルを用いて
は不可能である。

まず、室温での圧力の増加につれての粉末X線パ
ターンの変化を図3に示す。15GPaではルチル(R)
の回折線が弱まるとともに新しい回折線(B)が現
れていて、その後、次第に強くになっている。常圧
に収じたものでは、新しい回折線は消えて、ルチル
とα-PbO2型構造のものとなっている。このよ
に室温では25GPaでもルチルが残っているためパ
ターンが複雑となり新しい高圧相(B)の構造解析

図2 八面体圧力媒体中にセットされた試料とヒーター

図3 室温で加圧されたTiO₂の回折パターンの変化
R：ルチル相 B：新相
を難しくするため、高圧下で高溫を実現し、単相の高圧相の出現に努めた。図4 (a)に20GPa において770℃に30分保持した後の室温でのパターンを示す。加熱前にはブロードだったピークが加熱後には2、3本に分裂しているのがみられ、また、ルチルの回折線はほぼ完全に消滅し、高圧相の単相となっている。

図4 (a) 20GPa の下で770℃に加熱後、室温にもどしたTiO₂のパターン
(b) baddeleyite 構造(monoclinic, P2₁/c, a = 4.64 Å, b = 4.76 Å, c = 4.81 Å, β = 99.2°, Z = 4) に対する計算結果

baddeleyite 構造の出現
図4 (a)のパターンを解析すると、とはいえても、このような粉末パターンを構造の見当をつけて解析する正しい結果にたどりつくのは極めてまれであり、ここでも本来の候補と目されていた黄鉄構造を基点にして行った。結果はZrO₂の常圧での安定相がとるbaddeleyite 構造（図5参照）①と同じものであると結論された。解析の結果を図4 (b)に示す。ただし、強度はZrO₂のものを借用している。試料の周囲のセル物質やアソビル材料などからの線を除けば良い一致といえるであろう。

図5 baddeleyite 構造 中心のTiは一見8個のOに囲まれているように見えるが、1つは遠く離れしていて、実質的には7配位とみなされている。
以下のことが明らかになった。

(i) ルチル→baddeleyite 転移に伴って体積は約9%減少し、以前の衝撃波の実験41と比較的よく一致する。
(ii) ルチルではTiの配位数が6であるのに対し、baddeleyiteでは7と増え、一般に圧力とともに配位数が増加する傾向を示している。なお、物質を問わず、ルチル構造からbaddeleyite構造への圧力による転移は初めてである。
(iii) 今回の室温の実験では反応速度の関係で現れなかったが、ルチルはまずα−PbO型になることが以前の実験よりわかっている。従って、ルチル→α−PbO型→baddeleyite型がTiO_2の変態系列となる。なお、Zrと同じく常圧下での二酸化物がbaddeleyite構造をもつHfもまたTiと同じIVa族に属しているため、この現象は“Geモデル”として理解される。これは、例えばSiO_2の高圧相スティショサイトが、同じIVb族であるGeの二酸化物GeO_2の常圧相であるルチル構造をとる現象を意味する。
(iv) TiO_2において100GPa付近に衝撃波実験により存在が報告41されている相は従って、ZrO_2で見出されている高圧相の可能性があり、今後の問題となる。

今回の図4(b)のパターンでは、以前のダイヤモンド・セルとレーザー加熱の組合わせの実験41で確認されなかった低エネルギー側の弱い2本の回折線(011)と(110)が検出できたことが、結晶構造の決定の鍵となった。ダイヤモンド焼結体の多面体アンピルを使用したことにより試料の量が増加したことと、安定で長時間の加熱が可能となって高圧相の単相が合成できた結果であることを強調しておきたい。

本実験を遂行した卒業生、佐藤弘昌君に感謝します。

参考文献
7) 梶山良一、梶山秀子：構造無機化学Ⅰ（共立出版、昭和45年）改訂版 p.138.