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Chapter 1

Introduction and results

In recent years, multilinear operators in harmonic analysis have been well stud-
ied by many mathematicians. In this thesis, we consider weighted norm inequal-
ities for multilinear Fourier multiplier operators.

In this chapter, we shall describe an introduction of the thesis. The defini-
tions and notations will be given in Chapter 2.

1.1 Fourier multiplier operators in the linear set-
ting

In this section, we recall Fourier multiplier operators in the linear setting. For
m € L*°(R™), the linear Fourier multiplier operator m(D) is defined by

~

m(D)f(z) = F~* [m(©)](©)] ()

1 x-€ iy

d
T L e emT© de
for f € S(R™), where z,£ € R™. The purpose of the thesis is to study “smooth-
ness” of multipliers m which is measured by several function spaces. In partic-
ular, we are interested in a relationship with weight classes in the multilinear
setting. Let ¥ € S(R?) be such that

(1.1.1) supp¥ C {¢ e R :1/2 < |¢] < 2},
DU/ =1 (R {0}).
kEZ

For this cut-off function ¥ with d = n and m € L>*(R"), we set

m;(€) = m(27€) W (8),

where j € Z and £ € R". The Hérmander multiplier theorem [15] is very well
known as the theorem which describes the LP-boundedness of m(D) and we
recall it (see also [6, Theorem 8.3]).



Theorem A ([15]). Let 1 < p < oo and s >n/2. Then

[m(D)]| e ®n)—Le®e) S phes 2| s (my s
J

where || - || Lr®n)— Lrrn) 15 the operator norm and H*(R™) is the Sobolev space.
If m € Cl"/2+1(R™\{0}) satisfies
(1.12) 0°m(€)| < Calé] !

for all @ € Z7, || < [n/2] 4 1, then Theorem A also holds, where [n/2] is the
integer part of n/2. For example, the multiplier m of the Hilbert transform on
R, namely, m(§) = —isgn(§) satisfies (1.1.2). If m € H*(R"), s > n/2, then the
LP-boundedness of m(D) follows since F~![m] € L' and Young’s inequality. In
contrast to this fact, Theorem A says that by the smoothness of each part of
the multiplier m, namely, m; € H*(R"), the LP-boundedness of m(D) follows.

Weighted norm inequalities for Fourier multiplier operators in the linear
setting are known as the result of Kurtz-Wheeden [18] and we recall it.

Theorem B ([18, Theorem 1]). Let 1 <p < oo and n/2 < s < n. Assume
p>n/s and w € Ap/n/s)-

Then

(D) e (w)— L (w) S SUP (|10 || s (rn)
JEZ

where w is a weight, LP(w) is the LP space with the Lebesgue measure dx replaced
by wdz and A, is the Muckenhoupt class.

Theorem 1.4.1 in the thesis is a multilinear version of Theorem B. Theorem B
gives us a consideration as follows: exponent p and weight w to assure the L? (w)-
boundedness of m(D) depend on “smoothness s” of multipliers m. That is to
say if the condition on m is strong, namely, m is smooth, then the conditions on
p and w should be weak and vice versa. Theorem 1.4.3 in the thesis corresponds
to this consideration in the multilinear setting.

1.2 Fourier multiplier operators in the multilin-
ear setting

In this section, we recall Fourier multiplier operators in the multilinear setting.
Let N be a natural number, N > 2,1 < py,...,py <ocand 1/p1+---+1/py =

1/p. For m € L>(RN"™), the N-linear Fourier multiplier operator T, is defined
by

Tm(flava)(x)



= W /(Rn)N eix'(§1+"'+§N)m(€)ﬁ(€l) . fJ\v(fN) d¢

for fi,...,fn € S(R"), where x € R", ¢ = (&1,...,&n) € (RN and d¢ =
d¢; ... déy. Coifman and Meyer [5] proved that if m € CF(RV™\{0}) satisfies

|0t - g m(&r, -+ EN)| < Can o ([€n] 4 -+ 4 [&]) et

for all |a1| + -+ + |an| < L, where L is a sufficiently large natural number,
then Ty, is bounded from LP*(R™) x --- x LPN¥(R™) to L?(R™). For the cut-off
function ¥ in (1.1.1) with d = Nn and m € L>(RN"), we set

m;(€) = m(27€) ¥ (8),

where j € Z and &€ = (&,...,&n) € (R")V. The starting point of the thesis is
the Hormander multiplier theorem in the multilinear setting given by Tomita
[31] and we recall it.

Theorem C ([31, Theorem 1.1]). Let 1 < p1,...,pn,p < 00, 1/p1 + -+ +
1/pn =1/p and s > Nn/2. Then

HTm”Lpl (R™)x---x LPN (R™)— LP (R™) 5 Su}Z) HijHs(RNn),
Jje

where || - || Loy (mr)x.-.x Lp (Rn)— Le(rn) 18 the operator norm.

Grafakos-Si [13] treated the case p < 1 by using the L"-based Sobolev spaces,
1 < r < 2. As acorollary of Theorem C, we can reduce the number of derivatives
of m to assure the boundedness of T;,, ([31, Corollary 1.2]). After Theorem C,
problems to find minimal smoothness conditions on m to assure the boundedness
of T,,, were considered by Grafakos-Miyachi-Tomita [12], Miyachi-Tomita [22]
and Miyachi-Tomita [23]. Theorem 1.4.1 in the thesis is a weighted version of
Theorem C.

1.3 Weighted norm inequalities in the multilin-
ear setting

In this section, we recall weighted norm inequalities in the multilinear setting.
Let 1 < p1,...,py < o0 and 1/py + -+ 1/py = 1/p. For wy,...,wy are
weights, we set w = w’f/ P ...wﬁ,/p N. We first consider the case multiple A,

weights of direct product type, namely, A, x --- x Ap,. We define the multi
(sub) linear maximal operator M by

M(fiso ) @) = [T M i)



for f1,...,fy € L .(R") and € R™, where M is the Hardy-Littlewood maxi-
mal operator. For (w1,...,wy) € A, X -+ X A, , by Holder’s inequality, it is

easy to see that

N

[Mcs o, S TTI o
=1

Le(w) ™

Moreover, it is known that M is bounded from LP! (w1) X -+ X LPN(wy) to
LP(w) if and only if (w1, ..., wn) belongs to the class Ay, x---x Ay, (see [29]).
In [14], it was proposed to develop a more suitable class of multiple A, weights
in the multilinear setting.

We next consider the case multiple A, weights of vector type, namely,
Ap,,...,py) introduced by Lerner, Ombrosi, Pérez, Torres and Trujillo—Gonziez
in [19]. The new multi (sub) linear maximal operator M ([19]) is defined by

Dol
M(fl,---,fN)(m)—ZgI;il:[lM/@Vz’(yi”d%

for f1,..., fn € L. (R™) and € R"™. In [19, Theorem 3.7, it was proved that
M is bounded from LP* (wq) x - - - x LPN (wy) to LP (w) if and only if (wy, ..., wy)

belongs to the class A, . ,y)- It should be remarked that

M(fr, o ) @) < M(fr, . ) (@), 2 € R,

and

(1.3.1) Apy X X Apy © Ay,

=

For the strictness of the above inclusion, see [19, Remark 7.2]. By these remarks,
it can be thought that M and A, ) are more suitable in the multilinear
setting.

Let 1 < p1,...,pn < 00, I/pr+---+1/py = 1/p and n/2 < s; < n for
i=1,...,N. Assume p; > n/s; for i = 1,...N. We shall prove in Theorem
1.4.1 that if (U)l, .. .,wN) € Ap1/(n/sl) X oo X ApN/(n/sN)a then

s PN

(1.3.2) [Tl s (w1) XX LPN (wp)— LP (w) < sgg ”ijH(Sl ,,,,, SN ((Rm)N)»
J

where H (158 ((R?)N) is the Sobolev space of product type. This result can
also be obtained from another approach of [16]. See [21, 2] for the endpoint cases.
In particular, for Nn/2 < s < Nn and p; > Nn/s, i = 1,...,N, taking s; =

- = sy = 8/N, we have that if (wi,...,wn) € Ap s/ (nn) X - X Apys/(Nn)
then

(1.3.3) Tl 1o (1) XX LPN (wa )= LP (w) S Slelg 25 e rmv,.amy (Y -
J



On the other hand, Bui-Duong [4] and Li-Sun [20] proved that if (wy,...,wy) €
Aprs/(Nn).....ows/(Wm)); then

HTmHLPl(wl)meLPN (wn)—=LP(w) S Slelg 15| £re rvmy -
J

It should be remarked that
Ho ot en (RN ey oS (RMN), 51,0 sy > 0.

By this remark and (1.3.1), it is natural to consider a question whether (1.3.3)
holds under the condition (w1, ...,wn) € A@p,s/(Nn),...pxs/(Nn)), and we shall
answer this question negatively in Theorem 1.4.3. It means that both conditions
on weights and multipliers cannot be weaken at the same time. It corresponds
to the consideration which we thought in the linear setting.

In Theorem 1.4.2, we consider weighted norm inequalities for multilinear
Fourier multipliers with the L"-based Sobolev regularity, 1 < r < 2 with mixed
norm. In [27], weighted norm inequalities for multilinear Fourier multipliers
with the L"-based Sobolev regularity were obtained.

In Theorem 1.4.4, we study a critical case of Theorem 1.4.1, namely, s; =
n/2,i=1,...,N in (1.3.2) and measure the smoothness of multipliers m by
the Besov spaces. It should be remarked that

where s1,...,sy > n/2. In this sense, it can be thought that Theorem 1.4.4 is
a critical case of Theorem 1.4.1. As a Corollary of Theorem 1.4.4, we obtain
a critical case of Theorem C ([10, Corollary 1.2]). In the linear setting, Seeger
[26] considered Fourier multiplier operators with Besov regularity.

1.4 Results

In the thesis, we consider the following four results.

Theorem 1.4.1 ([7, Theorem 6.2]). Let 1 < p1,...,pn < 00,1/p1 + -+ +
1/py=1/p andn/2 < s; <n fori=1,--- ,N. Assume

pi >n/s; and w; € Ay sy for i=1,--- N.
Then

HTm”LPl(w1)><~~~><L1’N(wN)—>LP(w) S S}elIZ) ”mj”H(Slv---vSN)((R")N)a
J

wherewzwf/pl---wﬁ,/mv.

Theorem 1.4.2 ([8, Result 1]). Let 1 < pi,...,pny <00, 1/p1+-+-+1/py =
1/p,1<ry<ry-1<--<rg<ri<2andn/r; <s;<nfori=1,...,N.
Assume

pi >n/s; and w; € Ay, nys,y Jor i=1,...,N.

10



Then

wherew:w’f/pl'--w];\,/p]v.

Theorem 1.4.3 ([9, Theorem 1.1]). Let N > 2, 1 < p1,...,pny < 00, 1/py +
-++1/py =1/p and Nn/2 < s < Nn. Assume

p; > Nn/s for i=1,...N.

Then there exists wy = (w1,...,WN) € Awp,s/(Nn),...pns/(Nn)) Such that the
estimate

_ ,,P/P1 p/PN
does not hold, where vy, =wy""" - wy " .

Theorem 1.4.4 ([10, Theorem 1.1]). Let 2 < p1,...,py < o0 and 1/py +---+
1/pn = 1/p. Assume

wiEApi/Q for i=1,--- N.
Then

1 Tonll s (uory s xon () Lo () S Jeb il gy nm gy

wherew:wzf/pl-~wfv/mv.

11



Chapter 2

Preliminaries

In this chapter, we collect notations and lemmas which will be used later on,
and recall definitions of several functions spaces.

2.1 Notations

Let n € N be the dimension of the Euclidean space and Z" is defied by
{0,1,2,...}™ Lebesgue measure in R™ is denoted by dx (See, for example,
[24, Chapter 1, 2]). For two non-negative quantities A and B, the notation
A < B means that A < CB for some unspecified constant C' > 0 independent
of A and B, and the notation A ~ B means that A < B and B < A.

Let S(R™) and S’(R™) be the Schwartz spaces of all rapidly decreasing
smooth functions and tempered distributions, respectively (See, for example,
[6, Chapter 1, Section 7]). We define the Fourier transform Ff and the inverse
Fourier transform F~1f of f € S(R") by

F1©) = fle) = [ ey dn,

1 .
Ff(z) = / e f(€) dE.
@) = s [ @5F©
The Laplacian A is defined by
02 0?
A= — oip —
o2t T o2

We say that a function w is a weight, if w is a non-negative almost everywhere
and locally integrable function. Let 0 < p < oo and w > 0. The weighted
Lebesgue space LP(w) consists of all measurable functions f on R™ such that

1/p
Hf”LP(w) = (An ‘f($)|pU/(£L') dx) < 0.

12



The Hardy-Littlewood maximal operator M is defined by

M () = sup — 1F()] dy

r>0 T" lz—y|<r

for locally integrable functions f on R™. We say that a weight w > 0 belongs
to the Muckenhoupt class A4,, 1 < p < oo, if

o i )y )

where the supremum is taken over all balls B in R™, | B| is the Lebesgue measure
of B and p’ is the conjugate exponent of p, namely, 1/p+ 1/p’ = 1. It is well
known that M is bounded on L?(w) if and only if w € A ([6 Theorem 7.3]).
We also say that (wy,...,wy) belongs to the class A,,

1 1/p N 1 L 1/p;
R . —P;
bup (|B| / w(x) dac) };[1 <|B| /Bwl(ac) dx) < 00,

wherew:wf/pln p/pN ([19]).

For m € L>*(R"), the linear Fourier multiplier operator m(D) is defined by

o~

m(D)f(z) = F~* [m(©)](©)] (@)
B L Ny

for f € S(R™), where z,£ € R™. Let N be a natural number, N > 2, 1 <
p1,...,pn < oo and 1/p; +---+1/py = 1/p. For m € L>®(R¥"), the N-linear
Fourier multiplier operator T}, is defined by

Tm(flava)(x)

= (27:)]\]“/( . eiz<(§1+...+§N)m(§)fl(€l) . "J?J\V(EN)df

for fi,...,fn € S(R"), where z € R", ¢ = (£1,...,&y) € (RM)Y and d¢ =
déy ... d&n. We denote by [T || o1 (w) x - x LN (wn)— Le (w) the smallest constant
C satistying

N
T (F1s s I oy < CTT Nl iy > froeo s Fv € SR™).
=1

2.2 Cut-off functions

In this section, we collect cut-off functions which will be used later on. Let
U € S(R?) be such that

(2.2.1) supp¥ C {¢ e R?: 1/2 < [¢] < 2},

13



S w2 =1 (€eR*\{0}).

kEZ

For a method for the construction of such cut-off functions, see, for example, [6,
p.162]. For this cut-off function ¥ with d = Nn and m € L>(RY"), we set

(22.2) m;(€) = m(27€)W (),

where j € Z and ¢ = (£1,...,&n) € (RN,
Let ¢ be a C*°-function on [0, c0) satisfying

¢o(t) =1 on [0,1/(4N)], supp¢o C [0,1/(2N)].

We set ¢1(t) = 1 — ¢o(t). For (iy,--- ,in) € {0,1}Y, we define the function
(I)(,'h... i) Ol RNn\{O} by

(2.2.3) iy, i) (&) = Gy (I€1/1€D) -+~ din (1ENT/1ED),
where £ = (&,...,¢éy) € RMY and |¢] = /|&1]2 + -+ + [En[?. Note that
D,...,0(&) = 0.

(See [7, p.6339)]).
According to the notation of [12, p.8] or [22, p.17], we also set Ag, A;1: Ag
denotes the set of ¢ € S(R™) for which supp ¢ is compact and ¢ = 1 on some

neighborhood of the origin; A; denotes the set of w € S(R™) for which suppl/)
is a compact subset of R™\{0}.

2.3 Function spaces

In this section, we recall definitions of several function spaces. To distinguish
spaces of usual type and product type, we use RV and (R™)"V, respectively.

Definition 2.3.1 (The Sobolev space of usual type). For s € R, the Sobolev
space H*(R™) consists of all f € S'(R™) such that

1l qemy = || 1+ 1612)°72F]

L2 (Rn

Definition 2.3.2 (The Sobolev space of product type). For (s1,...,sy) €
RN, the norm of the Sobolev space of product type H1+5N) (R™)N) for F €
S'(RN™) is defined by

”F”H(*l ------ SN) ((Rm)N)

= [a+1aP 2 e R k)|

L2((R1L)N) :

14



Definition 2.3.3 (The Sobolev space of product type with mixed norm). For

(s1,---,5n) €RYN and (r1,...,7n) € (1,00)N, the norm of the Sobolev space of
product type with mized norm H((fll jg))((R")N) is defined by
(2.3.1)

IE]

[ A -

)

LN (B2,

I (]Rgl) ce

where £ = (&1,...,&n) € (R™)N and (&) = (1+(&5)Y2,i=1,...,N.
For the L? space with mixed norm, see [3].

Definition 2.3.4 (The Weighted Lebesgue space with mixed norm). For (s1,...,Sn) €
RN and (q1,...,qn) € [1,00)Y, the norm of the weighted Lebesgue space with

mized norm L(q“ ’QNg((R”) ) is defined by

(s1,..,8N

||F||L(‘11 ----- qN>((Rn)N)

LN ((zn)*N)

= HHF(ml""7xN)||qu(<$1>51) ‘

where = (x1,...,xn5) € (RMN and (z;)% = (1+ |z;]?)%/%,i=1,...,N.

We recall the definition of the Besov spaces of usual type and product type,
respectively. Let ¢ € S(R™) be as in (2.2.1) with d = n, and set

Pr(n) =¥(n/2%), k=1,
() =1->_vu(n)
k=1

where 1 € R™. Note that

supp ¥y C {n € R™: 2871 < p| < 2M1} k> 1,

supp o C {n € R™: [n] <2}, > hi(n) =

Definition 2.3.5 (The Besov space of usual type). For 1 < p,q < oo and
s € R, the Besov space By, [(R™) consists of all f € S'(R™) such that

1/q
113 ) = (Zakw A%, Rn> < oo,

where V(D) f = f_l[wkﬂ~

15



We refer to [32], [25] for details on Besov spaces. We also recall the definition
of Besov spaces of product type (See [28]). Let {tx, }7°_g; - - {¥ry o —o De as
above and set

\Ij(kl ..... kN)(f) = (wkl X ® ’(/}kN)(g)
= Pr, (§1) X - X py (EN),

where f = (gla s 7§N) € (RR)N

Definition 2.3.6 (The Besov space of product type). For 1 < p,q < oo and

(s1,...,5n) € RN the norm of the Besov space of product type B,()i}"”’sN)((R”)N)
for F € 8'(RN™) is defined by
HFHB;?,% """ "'N)((Rn)N)

1/q
o0

_ Z 2(k181+A.~+kNSN)QH\Ij(k1 ’’’’’ kN)(D)FH%P((]R")N)
k1,...,kn=0

2.4 Lemmas

In this section, we collect lemmas which will be used in the thesis.

Lemma 2.4.1 ([7, Lemma 3.1]). Let ®,,
the following are true:
(1) For (€1, ...&n) € R" x - x R"\ {(0,....,0)},

Z @(i17~~-,iN)(§1)"'7£N) =1.

(i1, nn)€{0, 1}V,
(i1,....1n ) #(0,...,0)

be the same as in (2.2.3). Then

----- iN)

(2) For (i1,...,in) € {0,1}Y and (ay,...,an) € Z x --- x Z, then there
exists a constant C((zlzz’)\’) > 0 such that

|0+ DN B, i) (O] < O3 (g | o - - o [y ) UenlttlanD

(4150-5N)

forall & =(&1,...,&n) €R" x --- x R™\ {(0,...,0)}.
(3) Ifi; =1 for some j=1,--- ,N and i =0 for allk=1,--- | N with j # k,
then supp @, ..in) C {1, €n) 2 €| < |&|/N for k # j}. Ifiy =i =1
fOT’ some jaj/ = L"'?N thhj # j/; then Suppc?l(h,...,ijv) C {(flava) :
€51/ (4N) < [&] < AN, [€x| < AN(E| for k # 5, 5"}

Lemma 2.4.2 ([6, Chapter 7]). Let 1 <p < oo and w € A,. Then
(1) w'=" € Ay (2) there exists € > 0 such that w € A, ..

16



Lemma 2.4.3 ([17]). Let ¢ € S(R™) be such that suppy C {n € R" : 1/r <
[nl <71} for somer >1. If1 <p< oo andw € Ay, then

1/2
> (D)2 f1? S llze,

JEL
Lr

where Y(D/)f = F [0 (/2)]].
Lemma 2.4.4 ([1]). Let 1 <p,q < oo and w € A,. Then

{Z(Mfm}l/q S {ZW}W

kez Lo (w) kEZ Lo (w)

Lemma 2.4.5 ([6, Proposition 2.7]). Let ¢ be a function which is positive, ra-
dial, decreasing (as a function on (0,00)) and integrable. Set ¢i(x) = 1/t"¢p(x/t)
fort > 0. Then

sup | = f(2)| £ M (x)

for x € R™.

Lemma 2.4.6 ([31, Lemma 3.2]). Let L € Z,. Assume that m € CERN"\
{0,...,0}) satisfies

|08 -+ FgY m(E)] < Clay, ) (x| + -+ + €[y~ UeslFtlanD

forall |oq|+---+|an| < L, §=(&,...,&n) € R? x--- xR"\ {(0,...,0)}. Let
® € S(RY™) be such that supp® # (0,...,0). Then

?EIZ) ||m(2j-)<I>(~)HHL < 00.

Lemma 2.4.7 ([3, Sectionl0, Theorem 1]). Let 1 < pq,...,py < 00, then

Fro o amlumes,) - |
17wl

< HHf(a?h...,xN)”Lm(Rgl)...’ X HHg(xl)-.-’-rN)”Ll(R;Ll)...‘

LPN (Rz,) LiRY )

Lemma 2.4.8 ([3, Sectionl12. Theorem 1]). Let1 < py <pn_1 <---<p; <2,
then

[T TR

4
LPN (R )

<[ emllmg,) - |

LN (RE )

17



Lemma 2.4.9 ([10, Lemma 2.3]). Let s > 0 and £ € Z. Then the estimates

S (RN N ”F”B;‘?“'”S)(mﬂm||G”Bii:r‘”<<R")N)’

1

N
(2) HF(QZ')HBési,.,,s)((Rn)N) S (max{1)2€s}2—€n/2) ”F”Bésl’)((R")N)

18






Chapter 3

The proof of Theorem 1.4.1

In this chapter, we consider weighted norm inequalities for multilinear Fourier
multipliers with Sobolev regularity. We first prove the following three lemmas
which will be used in the proof of Theorem 1.4.1.

3.1 Lemmas

The proof of the following lemma is based on the argument of [32, Proposition
1.3.2] or [31, Lemma 3.3].

Lemma 3.1.1 ([7, Lemma A.1]). Letr > 0, 2 < ¢; < o0 and s; > 0, i =
1,...,N. Then,

for all F € HG/ausn/an)(RMN) with supp F C {x = (21,...,2N) €
R™MN = |z < 7}, where L ™) (R™)N) and H1/3-sn/ax ) (RM)N) are

(51,--,8N)
the weighted Lebesgque space with mized norm and the Sobolev space of product
type, respectively.

Proof. Let ¢ € S(R™) be such that
$(y) =1on{yeR": |y|<r}, supp¢p C {y € R": |y[ < 2r}.

Since supp F' C {z = (z1,...,zn5) € (RN : |z5] < ri = 1,..., N}, we have
F(z1,...,zn) = ¢(x1) ... p(xn)F(z1,...,2N). Then, it follows that

FIF|(&1,-.-,8n) = ({3@@@} *13) (€1,...,EN).

For ¢ = (&1,...,&n) € (RN, we see that
q1

H €8] s ey
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= [ R laP) a

-/
-/

n
€1

31

(bo--ed)« FE[" (+1aP)yd

1
q1

1+ [&]?)*/2 d&y

60 @¢) (& — ... En — ) F(n)dy
[ CERED)

q1
< / / 1B — )l 1BEx — OBl dn | (1 + &) /2 de,
7y, \Jmy

where = (1,...,1mx) € (R*)Y and dn = dn; .. . dnx. By Minkowski’s inequal-
ity for integrals, we obtain
(3.1.1)
Fen e
H (& n) Lo ((en)on)
<

<[ L 1B -l b )
Ryt

/(R,L)N 9060 =m0l 19(&x = m)I1F ()| d

La1({€1)°1)

[ 1ote = nlIF ) an

n25 NN 1

Lat((€1)°1)
.. d?]N.

Since (£1)°* < (&1 —n1)® (m1)®*, we have

n1

:/n

&1

/Rn

€1

< /
~J
n
R51

[ 18— mliFaldn

q1

L1 ((€1)°1)

q1
B& —m)| | P dm) (L+ la[2) /2 dey

(/.

1

1 2ys1/2q1 R a1
</n mmw& —771)|(1+|771|2)51/2’“|F(n)|dn1> de,

(L,

1

q1—2+2
(14 1€ — m )™ /29 G(&; — my)|(1 + |ma [2)™/29 | F(n))| dm) dé;.

Hence, we see that

(3.1.2)

71

[ 1ote = a0l E ) dny

La1((€1)"1)
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(g1—2)/q1
= o (/ (14 16 = m[) /22 3(& — m)|(1 + m[?)* /20| F(n)] dm)
1ER™ n

2
x / (/ (1+|£1_771|2)81/2q1|($(51_771)(1+|ﬂ12)81/2q1|p\(77)|d771> de,
€1 n1

For the first term on the right hand side of (3.1.2), by Schwarz’s inequality and
a change of variables, we have

/ (L J& = m[*)™ /29 |§(&0 = m) (L + [m ) />4 [ F (n)] dm

T4 |- [2) /20 f(ny . .
LQ(R%)II( +1-1%) (o onn) e

(L [0 = )20 (e )|

= [+ /g

@+ 1 By /20 B, )|

L2(Rp) L2ry)’
where £; € R™. Thus, we obtain
(3.1.3)

sup /
&1 ER™ n

1

(91—2)/q1
(1416 = m|*)™ /20 B(& — m)|(1 + [ )"/ 22 |F ()] d771>

(1—2)/q1

L2 (]Rn

(1—2)/q1

< . S1/2q ’
< fJas i psens o

RO R A CUSS

For the second term on the right hand side of (3.1.2), by Young’s inequality, we
have

2
. </ (e = m )T B — )l + m|2>51/2mﬁ<n>|dm> 6,
€1

1

[ fasrmmmgory s (a2 fem,. ol )] d

= [ @on « {a w1 Py B e, o) } |

L2(RE))

< a1y

sl

LY(RE))
Thus, we obtain

(3.1.4)

[

€1 1

1/Q1

2
(1 [& = m[*) /29 |§(€0 = m) (L + [ )24 [ F ()] dm) &,
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~J|12/ a1 ~ 2/q1
<|la+y. Rz |+ 122 B, )| .
< asrpyrod]l, g, Jae BB el
By (3.1.2), (3.1.3) and (3.1.4), we see that
[ 1ot = a0l dn,
L1 ((&1)*1)
~(@1—2)/q1 ~ (1—2)/q1
<l C12V\81/2q1 1 C12ys1/2q1 .
<fasr g @B e e
~J|12/ax ~ 2/q
><H1+ ~“1/2q1¢‘ H1+ )20 B, ‘
(L+]-1%) ) (1+]-) [F'(-,m2, - )| )
SRR -
sk Pr Bl g,
Therefore, it follows that
/ @(&—m)Hﬁ(n))dm SHf(&,nz,-.-,nN)‘ :
n s1/a
Ry Lo ((enen) L2((&1)*1/ 1)
By the same way for £; € R™, we obtain
1) | [ ol [P )| de
% R PR
S Hﬁ 5 7§ ) yrr ’ N
H ( 1,62, 73 nN) L2(<§1>51/(11) L2(<52>52/q2)
By (3.1.1) and (3.1.5), we have
Flen o )|
HH IR PR
<\ Bty —ml ot - ml| [ 136 —m)lIFon o
(Rn)n2 ----- N :;1 Lq1(<51>51)
X dn ... d77NHqu((§2>sz)
< HEn — b — Hﬁ 2 ’
S O RN Al LG RE! .
X dnz ... dnn || pas ((g5)02)
S/ 6(En — )| - |9(& — 13)]
R™)ng. 2 o
X o6 —mo)| ||F ’ dns... d
/Rn |o(&2 772)\H (&1:7m25-- -, 1N) La(enyesan) N3 ... dnn
s L92((£)*2)
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5/ B |6(Ex =)l - 16(Es —ns)]
(

X Hﬁ(&,&ﬂ?s,mﬂm)’

dns...dny.
L2((g2)"2/2)

L2((1)"1/n)

By the same way for ¢ = 3,..., N, we have the desired estimate.

The following is a key lemma in the proof of Theorem 1.4.1.

Lemma 3.1.2 ([7, Lemma 6.1]). Letr >0, n/2 < s; and max{1,n/s;} < ¢; <
2,1=1,...,N. Then, the estimate

N
(3:16) | Tomgyzn)(frs- - SN @) S Il prconccon myny [T Ml ()

i=1

holds, for all x € R", j € Z and m € HL 58 (RM)N) with suppm C {€ =
(€1,...,&n) € (RMN €] < 7}, where HEs8) ((RM)N) s the Sobolev space
of product type.

Proof. For x € R™ and j € Z, by Fubini’s Theorem, we obtain
(3.1.7)

Tm(~/23')(f1> ceey fN)(‘r)

:/(Rn)Nf_l[m(~/2j,...,-/2j)](x—yl,...,x—yN)fl(yl)...fN(yN)dyl...dyN
= (Zj")N /(Rn)N fﬁl[m} (Zj(x — yl),...,2j(x —yN)) filyr) .. fnvlyn)dysr ... dyn
=@V [ @Rl e )
RN
X fﬁl[m] (2j(x — Y1), .,Qj(x - yN)) filyr) .- fn(yn)dyr - .. dyn
=@ [ i) ) (1 2 ) )

X (/R (1+ 27|z — 1) FLm] (Zj(:c—yl),...,2j(x—yN))

i
X (L+ 27z — i)~ fi(yr) dy1>
X dys...dyn.
By Holder’s inequality and Lemma 2.4.5 with ¢(z) = (1+ |z|)~*1%, we see that
(3.1.8)

| a2l =) F ] (2 =) 2 e = )

n
Y1
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X (1+ 27z — 1)) " fi(y1) dyn

1/ay
< {/ (14 2|z — g )5 | F ] (27 (2 = ), -, 2 (2 — yw)) | dyl}
R

n
Y1

1/Q1
N
- Y1
re (14 29[z — y[)r1 0

n
Y1

1/q}

< {/ (1+ 2|z — gy )14 |7 m] (2 (z — 1), ..., 2 (2 — yN))|q1 dyl}

Ry
x M (| f2]™) (),

where we have used the fact that s;g; > n. Thus, we have

|Tm(./21)(f1, ceey fN)(I)|
S @MNM(|fi]) (@)

X / (1 + 2|z = yn Y7V [fn(yn)] - (14 27— ys]* 7% f(ys)]
By

S UN

X </ (1+ 27|z — yo|)®
x{/R

X (14 2|z — 42]) "] falae)| dyz)

1/4}
(142 |z — g )4 [F 7 m] (27 (2 = 1), -, 2 (2 — yn)) [ dyl}

n
Y1

X dyg...dyNy

By the same way, we see that

T2y (fry -5 ) ()]

2
< @)Y [ M (A @)

i=1

[ e ) (2l ()
R™)yg,." oy

N

: { / (L+ 2|z — yol)*2%

Y2

n
Y1

a5/
x (/ (1+ 2|z —y|) |77 m] (27 (z — 1), ..., 2 (2 —yN)){q1 dy1>
1/4;
X dyg} dyg...dyN.
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By the same way, we obtain
(3.1.9)
|Tm(-/21)(f17 T afN)(‘T)|

N
S @) [T M (Al @)

i=1

x{/ (1—|—2j|x—yN|)qu5V...
R

N

) 0/
X {/ (1427 |z — g1 )9 [ FHm] (27 (x — y1),..., 2 (2 — yn)) |q1 dyl}
Ry

1/ay
X...dyN} .

By the change of variables, we see that

@) (I)l/qi.

By Lemma 3.1.1, we have the desired estimate. O

Lemma 3.1.3 ([7, Proposition A.2]). Ifs; >n/2,i=1,..., N, then Hvsn)(R™)N)
18 a multiplication algebra.

Proof. We consider only the case N = 2. Note that for all n; € R,
(ENT S & —m)® + (), i=1,2.
Hence, we obtain

(3.1.11)

||FG||H(51752)((R7L)2)
- || te=Fate &),

(£1,62)

= (e &2 (F @) (61, &)

2

(£1,62)
</ (@ o) (i w0 )
X ‘ﬁ(& — 11,82 — 772)’ ‘6(7717772)‘ dnrdns
L, e2)
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< - (61 —m)" (§2 —n2)™ ﬁ(& —11,82 — 772)‘ ’6(7717772)‘ dn1dns
e Ll e
+ /2 (E1 =)™ (m2)™ ﬁ(& — 1,82 — 772)‘ ‘é(ﬂlﬂh)’ dnydns
R
mnz L?Elvéz)
+ / ()" (§2 — m2)™ ﬁ(& — 1,62 — 772)‘ ‘@(Thﬂh)’ dnydns
]R2
e L(251$€2)
+ /2 () ()2 |F (&1 — 1, &2 — 772)’ ’é(ﬁlﬂiz)‘ dmidns
]R 2
e Liey 60

For the first term on the right hand side of (3.1.11), by Young’s inequality, we
see that

(3.1.12)

/ (€1 —m)" (§2 —n2)™
]RZ

n1-M2

F(&r — 1, & — 772)’ ‘6(7717772)‘ dnydny

2
Liey )

2

= [ e=FrE) @],
5H<§1>Sl<§2>S2ﬁ(§1,€2)HL2 Hé(fl,&)‘ .

(&1,€2) (£1,62)
SN e 1Gl g »

where we have used the fact that s; > n/2, ¢ = 1,2. For the forth term on the
right hand side of (3.1.11), by the same way, we also have

(3.1.13)

F(& —m, & — 772)‘ ‘6(771,772)‘ dmdns

()% (n2)*?
]RQ

m1,M2

= [[(F«0)2€) (€1,

2
L(§1752)

2
(€1.,€2)

o erer=éea)|

s |[Fee)| ;
(€1,€2) (€1,€2)

5 ||F||H(31v52) HG”H(SLSz) )

where we have used the fact that s; >n/2, i =1, 2.
For the second term on the right hand side of (3.1.11), by Minkowski’s
inequality for integrals and Young’s inequality, we see that

(3.1.14)

J

(€ —m)* (n2)2 |F(& —mi, € — le)‘ ’6(7717772)‘ dmdns

2
, 2
e L(§11§2)
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S HH<£1>Slﬁ(§1a§2)‘

‘H §2)* 51’52)‘

L2(&1) L' (&1)

L1 (&2) L2(&2)
For the first term on the right hand side of (3.1.14), by Schwartz’s inequality,
we obtain

(3.1.15) HH@V@(&,@)\ S IFE &) enenr

L1(&2)

where we have used the fact that so > n/2. For the second term of (3.1.14), by
Schwartz’s inequality, we also have

L2(&1)

(3116) S ||G(€17£2)||H(51x52)7

L2(&2)

where we have used the fact that s; > n/2. By (3.1.14), (3.1.15) and (3.1.16),
we have

(3.1.17)

/ (€1 —m1)" (n2)™
R

2
n1-M2

‘H<§2>82§(§17§2)’

L1 (&)

F(& —m,& — 772)‘ ’@(771,772)‘ dmdnz

2
L(El,&z)

S IF e Gl e e -

For the third term on the right hand side of (3.1.11), by the same way, we see
that

(3.1.18)

[, mre-mwe

Mm1:M2

F(& —mi & — 772)’ ’@(7717772)‘ dnidns

2
L(§11§2)

<P o)

HH &) G 51752)‘

L2(&1) L1(&1)

L1(&2) L2(&2)
For the first term on the right hand side of (3.1.18), by Schwartz’s inequality,
we obtain

(3.1.19) HH §2)° 51752)’

5 ||F(€1a€2)||H(51~52)a
L1(&2)

where we have used the fact that s; > n/2. For the second term on the right
hand side of (3.1.18), by Schwartz’s inequality, we have

L2(&1)

5 ||G(§17€2) ||H(31v52)7
L2(&2)

where we have used the fact that s > n/2. By (3.1.18), (3.1.19) and (3.1.20),
we see that

(3.1.21)

/}R2 (m)* (&2 — m2)*

n1-m2

(3.1.20) HH &)° 51752)‘

L'(&1)

F(& —mi 6o — le)‘ ’6(771,772)‘ dmdns

2
L(§11§2)
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5 ||F||H(51=S2) HG||H(51,52).

By (3.1.11), (3.1.12), (3.1.13), (3.1.17) and (3.1.21), we have the desired
estimate. 0

Now, we prove Theorem 1.4.1. Let 1 < p1,...,py < 00, 1/p1 + -+ +
1/py = 1/p and n/2 < s; < n for i = 1,...,N. Assume p; > n/s; and
w; € Ap,/(nysy) fori=1,--- N and set w = wf/pl ...wﬁ,/pN. We also assume
that m € L°(RN™) satisfies sup;ez |1l green ... sn)((Rn)N) < 00, where m; is
defined by (2.2.2). Since n/s; < min{2, p;} and w; € Ay, /(n/s,) fori=1,..., N,
by Lemma 2.4.2 (2), we can take n/s; < ¢; < min{2,p;} satisfying w; € A, /q,
fori=1,...,N. By Lemma 2.4.1 (1), we decompose m as follows:

m(€) = > Diy iy (E)m(E)

(i1,..,in)€{0,1}Y,
(i1,--,in)#(0,...,0)

= Z m(il,,”,iN)(f)'

(i1,..,in)€{0,1}7,
(1,0 ) #(0,...,0)

3.2 Estimate for m o . o) type

We first consider the case where (i1,...,in) satisfies §{j : i, = 1} = 1. Without
loss of generality, we may assume that ¢; = 1. We simply write m instead of
m(1,0,...,0)- Note that by Lemma 2.4.1 (3),

(3.2.1)  suppm C {€=(&1,...,6n) € RNV 1 || < |&]/Nyi=2,...,N}.
It is easy to see that if € = (&1,...,&n) € suppm, then |& + -+ + En| = |&]-

Proof. In this case, we shall prove the estimate

(322) ||Tm(f177fN)||LP(w)
‘ N
S <S_up m(])||H(51,A.A,SN)((R7L)N)> H ||fi||Lm(u;,3)
JEL i=1

holds, where m(?) will be defined later on. In Section 3.4, we shall complete the

proof.
Let 9 be as in (2.2.1) with d = n. Since w € An, C A ([19, p.1232]), we
can use the way of Grafakos-Si ([13, Lemma 2.4] or [7, Remark 2.6]),
1/2
(323) N Tm(frs o ) oy S|4 D 1A T (frs - ) :
JEL
Lr(w)

where Ajg = (D/2%)g.
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By Fubini’s Theorem and the Fourier inversion formula, we see that

AJTm(flaafN)(x)
G €T MO o )/

x (&) ... F(En) de.

We shall prove that for £ = (&1,...,&n) € suppm satisfying 2071 <& + -+ +
En| < 2711 we can find functions ¢ € Ay and ¥ € A; independent of j such
that

B2a) g (S
=)y (S5 T2 P etal) - e 2

Once this is proved, setting

(3.2.5) mU (&) = m(2E)p(&r + -+ + En)P(E) (&) - p(En),
we have
(3.2.6) AT (frs- -y IN)(@) = Tt jaiy (B fr, fo o ) (@),

where A;f; = O(D/29)f1. Let € = (§15---,én) € suppm satisfying 21 <
|€1 + -+ + &n] < 271 We can find a function ¥ € A; such that 1/J(§1) =1on
{& € R" N/2(2N — 1) < |&| < 2N}, and we obtain

m(EY((Er+ - +En)/2) = m(EY((&r + -+ En)/2)P(E1/27)?,

where we have used the fact that by (3.2.1), in this area, N/2(2N — 1) <
|€1]/27 < 2N holds. Moreover we can find a function ¢ € Ag such that ¢(&;) = 1
on{§ eR™: &) <2},i=2,...,N, and we obtain

m(€) (€1 + - +En) /27 )b (&1/27)?
= m(OP((&+ - +En)/2)0(6/2)2p(62/2) ... p(En /2)
where we have the fact that by (3.2.1), in this area, [§]/27 < 2,i=2,...,N

holds. Combining these, we have (3.2.4).
By Lemma 3.1.2, we see that

Z’ (J)(/QJ Aflvaa"'va)(x)r

JEZ

2
S(sup|m Il ercsnons bN)>

JEZ

30



Qi)(z)Q/Qi'

N
x SO M(A;fi|m) ()0 x [ M fi

JEL i=2

By Holder’s inequality, we have

1/2
2
(3.2.7) Z‘ (“(/2J)Aflaf2,---7fN)’
JEZ
Lr(w)
s(supmﬂnm ...... . )
JEZL
1/2
X MA £ |70)2/ ¢ HM @) 1/q '
Z (1A, f1]) H I o
Lpl(wl)

For the second term on the right hand side of (3.2.7), since 1 < 2/q1,p1/q1 and
wy €A it follows from Lemmas 2.4.4 and 2.4.3 that

P1/q13
(3.2.8)
1/2 q1/2 Va
S MOB; e o AT
jez jet
L1 (wy) LP1/91 (wy)
a/2|| V4
S 185n0
jer Lr1/a1 (wy)
1/2
=D 1AAP
JEL
LP1(wq)

Sl o)

For the third term on the right hand side of (3.2.7), since p; > ¢; and w; € A, /4,
1=2,...,N, we see that

N
_ g 1/Qi
LPi(w;) B H HM (‘f1|q )||Lp’7/q’7(w1:)
N H II1f:
= H Hfi”LPi(wi) )
=2

where we have used the boundedness of M on LPi/%(w;), i = 2,...,N. By
(3.2.3), (3.2.6), (3.2.7), (3.2.8) and (3.2.9), we obtain (3.2.2). O

N
(3.2.9) I1 HM (1fs|7)
=2

1/qi
Lpl/ql (wy)

qi
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3.3 Estimate for m 14, ;) type

Next, we consider the case where (i1, ...,ix) satisfies #{j : ¢; = 1} > 2. Without
loss of generality, we may assume that i; = io = 1. We simply write m instead
of m11,i,,....in)» Where dz,... in € {0,1}. Note that by Lemma 2.4.1 (3),

(3.3.1) supp m
C {I&ul/(4N) < [€of < ANJG|, 6| < 4N[&|i=3,... N}

Proof. In this case, we shall prove the estimate

(332) ||Tm(f177fN)||LP(w)
N
S <Slép Hm 7 [PEzerem. SN>((]R")N)> H 1 fill Loi (i)
J i=1

holds, where m) will be defined later on. In Section 3.4, we shall complete the
proof.
Since v is in (2.2.1) with d = n, we see that

Tm(fl,,fN)(x)
_ 1 (€1t En) NF e
=3 G O MO ) - Ften) de

We shall prove that for £ = (&,...,6n) € suppm and & € supp(-/27), we
can find functions ¢ € Ay and ¥ € A; independent of j such that

(3.3.3) m(E)v(&1/27)
= m(E)(&1/2) (/27 ) (€2/27)2p(E3/27) . .. p(En/27).

Once this is proved, setting

(3.3.4) m)(€) = m(2€) (&) (&) (&) .. p(En),

we have

(3.35)  Tol(froo o IN)@) =Y Triingpoiy(Bj 1, A fo, fay o ) (@),
JEZ

where A;f; = W(D/29)fi,i = 1,2. Let £ = (51,...,§N) € suppm and & €
supp ¥(-/27). We can find a function ¢ € A; such that ¢(£,) = 1 on {& € R™ :
1/2 < |&| < 2}, and we obtain

m(E)(&1/27) = m(E)y (&1 /27 (&1 /27)

where we have used the fact that by & € suppe(-/27), in this area, 1/2 <
|€1]/27 < 2 holds. Moreover, we can find a function ¢ € A; such that (&) = 1
on {& € R":1/(8N) < |&] < 8N}, and we obtain

m(E)P(&/2)(61/27) = m(E)(€1/2) (& /2) i (62/27)?
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where we have used the fact that by (3.3.1), in this area, 1/(8N) < [&]/27 <
8N holds. Moreover, we can find a function ¢ € Ay such that ¢(&) = 1 on
{& e R™: |&]| <8N}, i=3,...,N, and we see that

m(€) (€1 /2 ) (&1 /27 ) (&2/27)?

= m(E(EL/2 W (E1/2 )&/ 2V p(&/2) . plén/2)

where we have used the fact that by (3.3.1) in this area, |;|/27 < 8N, i =
3,..., N holds. Combining these, we have (3.3.3).
By (3.3.5) and Lemma 3.1.2, it follows that

T (f1, .., fn)(@)] < Z ‘Tmm (ﬁjf175jf27f3,---7fN) (m)‘

JEZ
< <§1£ M| er.o... SN)((RH)NO
2 _ N
< ST (135507 ) @Y T (£i%) )/
JEZ i=1 1=3

By Schwarz’s inequality and Holder’s inequality, we see that
||Tm(f17 B fN)”LP(w)

S CI L Ien———y

Jer
2 N 1/2 N
< TT (3 30 0 (18, £i15) ()2 |1 RACADICORE .
i=1|| | jez i=3 F(wi)
LPi(w;)
By the same way as for m; o, o), We obtain (3.3.2). O

3.4 Completion of the proof of Theorem 1.4.1

In this section, we shall prove the estimate

(7) < .
sup ||m (s1,eems SN ((R™ S sup (|m [ sN)((RP
ez H ||H 1 N)((R™)N) ez ” JHH 1 NI ((R™)N)

holds, where m() is defined by (3.2.5) or (3.3.4), and m; is defined by (2.2.2).

Proof. We first consider the case where m{) is the same as in (3.2.5). Since
supp W(-/2%) € {€ € (R")N : 21 < |¢] < 21} amd

(3.4.1) supp(&1)p(&2) . .. p(En) C {€ € (R™)N 1 2770 < |¢| < 20}
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for some jy € N, for example, jo = [logy 2(N + 1)], where [s] is the integer part
of s € R. It follows from Lemma 3.1.3 that

(3.4.2)

Hm(j)“H(sl,_..,sN)

= [m@7O@ 0,0 @OVE + - +EnBENRAE) . wlen)|

H(s1:--5N)

Jo
N Z ||m(2jf)q)(1,o7,,,,o)(2%)1/;(51 4 4 EN)

=—jo

X (&) p(Ea) - ~-80(§N)‘I’(§/2Z)HH<51 ----- )

£=—jo
X @ 1,0,....0)(27E)(EL + - + EN)D(E)P(&) - (EN) e .iom -

For the first term on the right hand side of (3.4.2), by a change of variables, we
have

(34.3)  [Im(2EU(E/2) I greor. oy = Ilm (277H(€/2)) W(E/2) ] ron. om0

S lmvell ey
<s

up ||mj||H(517...,sN).
JEZ

For the second term on the right hand side of (3.4.2), by Lemma 2.4.1 (2),
(3.4.1) and Lemma 2.4.6, we see that

(3.4.4)
[20.0...0 @006+ + enbiee(e) ... olen)|

S [@c0..0@ O + -+ + En)dED0(E) - wlén)]
< 20,0 @0+ +en)dENelE) o olen)| L

< sup [@(1,0,...0)(FEV(E + -+ END(EDP(E) - w(En)

jez

Hsit+sn

Hls1+ - +syl+1

< Q.

By (3.4.2), (3.4.3) and (3.4.4), we have the desired estimate. In the case where
m() is the same as in (3.3.4), the proof is similar to that of m .. o), and we
omit it. 0
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Chapter 4

The proof of Theorem 1.4.2

In this chapter, we study weighted norm inequalities for multilinear Fourier
multipliers with the L"-based Sobolev regularity, 1 < r < 2. In [30], the bound-
edness of T}, under the condition

ilellz) Hmj||Bf‘,nl/h...,n/r)((Rn)N) <oo, 1<r<2

was discussed. And weighted norm inequalities for multilinear Fourier multipli-
ers with Besov regularity will be considered in Chapter 6.

4.1 A Lemma

Lemma 4.1.1. Letr >0 and p; < q;, i =1,...,N. Then, the estimate

(4.1.1) |‘H<§1>81ﬁ(517--~,&v)‘ (En)°N

e
e L (Bg,)

S

(e Pee, .. )|

)...<§N>SN

L1 (RE
' Len (R, )

holds, where supp F' C {& = (&1,...,&n) € (RPN €] < r).
Proof. By the same way in Lemma 3.1.1, we obtain the desired estimate. [

Now, we prove Theorem 1.4.2. Let 1 < p1,...,pny < 00, 1/p1 + -+ +
I/py =1/pand 1 <ry <ry_g < --- < g <1 <2, n/ry <85 < nfor
i=1,...,N. Assume p; > n/s; and w; € Ay, /(n/s,) for i = 1,--- | N and set
w= wlf/pl . .wf'v/pN. We also assume that m € L (RV"™) satisfies
SU [l yer oo gy < 20
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where m; is defined by (2.2.2) and H(Sl’ SN)((R”)N) is defined by (2.3.1).

( <TN)

Since n/s; < min{r;,p;} and w; € A, /(n/s,) for i = 1 N, by Lemma 2.4.2
(2), we can take n/s; < ¢; < r; satisfying w; € A =1,...,N. By Lemma
2.4.1 (1), we decompose m as follows:

m(€) = > Dy i) (E)m(E)
(i1,..in)€{0,1} N,
(ilnu,iN)?é(O»"'vO)

= Z m(il,,”,iN)(f)'

(i1,..,in)€{0,1}7,
(1,0 ) #(0,...,0)

Pi/qi>

4.2 Estimate for m o o) type

We first consider the case where (i1,...,in) satisfies §{j : 4, = 1} = 1. Without
loss of generality, we may assume that ¢; = 1. We simply write m instead of
m,o,...,0)-

As in Section 3.2, we can find functions ¢ € Ay and zZ € A; independent of j

satisfying (3.2.4). Set B;(§) = <I>(1707”_70)(2j§)w(£1+- . -+§N)1Z(§1)g0(§2) o p(EN)-
The following is a key lemma in the proof of Theorem 1.4.2.

Lemma 4.2.1. Letr > 0, ry <ry_1 < - <1y <711, n/r; < s; <n and
n/s; < qi <r;y, i=1,...,N. Then, the estimate

(4.2.1) T (. p2iy (f1s -+ f) ()]

N
~ Hm]||H(*1~--->SN>((R71)N) HM |f

ql)(x)l/qi

holds for all x € R", j € Z and m € H((ill TN))((R") ) with suppm C {£ =

(1,1 Ex) € RN €] < v}, where mD)(€) = m; (€)B,(©).
Proof. By (3.1.10), we obtain

T, pai) (f1s -5 ) (@) S Hm(”” ,,,,, ) HM | fi]9) ()10
5141 ------ snay) i=1
We shall prove that the estimate
(422) Hm j) H ,,,,, qN) ~ Hm]”H((:ll:’:N))((Rn)N)

( 14111---15N‘1N)

holds. Once this is proved, we have the desired estimate. The left hand side of
(4.2.2) is as follows:
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{1,

EN

dGla ) B/%
x / ) ( / (e () (€)Y R mD (61,6, )| d&) dé»
€2 €1
] di}l/Q}\r.

Since <§ >Sl 5 <§z _ 77i>Si <,’7i>8i7 i=1,.

., N, we have
L En)|a

(&) () [+ B (60,620 n)|
< =) Sy — )TN ()T ()Y

—~

a>“qi (€)% .. (En) ¥ m) (&1,

/mg ey &N = N) By, ) din - diy .
- /n<alm>51...<sNnN>SN@<am,...,gNnN>
X ()* ()™ By () dig - dny .
= [{ter e ) ()" ) By )} (6|

where = (91,...,n5) € (R™)Y. By Young’s inequality with mixed type
(Lemma 2.4.7), we see that

(4.2.3) Hrﬁ(?)

L
(s1af,snaly)

<1 e e )t

LN (R, )

o [ TG S ||
L (Rﬁl) Ll(Rg )
N

For the first term of the right hand side of (4.2.3), by Lemma 4.1.1 and Hausdorff-
Young’s inequality with mixed type (Lemma 2.4.8), it follows that

e s, el o - o

ay (rm
LN (RE )

< [wen e, ety - 60

! n
L N(REN)

< HHfl (€)™ - (En) ™ (Ers o 68 (91, -,y

L (Rﬂ'l) .

L™N (R )
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For the second term of the right hand side of (4.2.3), by B; is homogeneous of
degree 0, we obtain

L (EN) VB (£ :
HH<§1> CRRETICIo! <o
Vo g,
Therefore, we have (4.2.2). O
4.3 Estimate for m 1 ;, i, type
In the case where (i1,...,iy) satisfies §{j : ¢; = 1} > 2, the proof is similar to

and we omit it.
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Chapter 5

The proof of Theorem 1.4.3

In this chapter, we consider the problem whether weighted norm inequalities
for multilinear Fourier multipliers with Sobolev regularity hold under the weak
condition on weights. We first prove the following lemmas which will be used
in the proof of Theorem 1.4.3.

5.1 Lemmas

The proof of the following lemma is based on the argument of [11, Example
9.1.7].

Lemma 5.1.1 ([9, Lemma 2.1]). Let N be a natural number and N > 2,
1<pi,...,py <00 and 1/py+---+1/py =1/p. If a1, satisfy

ar1/p1+as/ps > —n/p and «; <n(p;—1) for i=1,2,
then the conclusion
(|x|a1,|x|a2,1,...,l) S A(Pl,m,m _____ )

holds.

Proof. Since w; =1,i=3,..., N, the desired conclusion is the following.

1 (a1 /pr+az/p2) (A (1-p}) v
sup 7/ |/ Prraz p"‘”dx) (/ | ¥t TP dm) < 00,
w (1 [ 15/,

where the supremum is taken over all balls B in R™ (instead of cubes). Let B
be the ball with center xy and radius 7.
We first consider the case |xg| > 2r. Note that for all z € B,

2] < |zl + & — o] < [wo| + 1 < |wo| +1/2[xo| = 3/2|o,
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and
|lzo| < [z] + |2 — xo| < |z +7 < |z + 1/2]z0],

so we have |zg| < 2|z|. Hence, for all € B we obtain |z| & |z¢|. Then

1 (e /p1 4 /) 1/p 2 1 ) 1/p}
(5.1.1) </ || (1 /Prtez/p2 pdx) (/ || (1P dx>
1Bl J5 1;[1 B[ /5
1 (a1 /p1+az/p2) 1/p 2 1 " /) l/p;
S [ |wol @t/ Prrez p”’dw) (/ | (1P} dm)
(IBI/B| | 11 B B' |

=1

2
= |ao|@r/Pre2/p> H|$o

=1

;i (1-p})1/p;

=1
We next consider the case |zo| < 2r. For all z € B,
|z] < |xo| + |z — ®o| < 2r 47 = 3r.

Hence, we have B C {x € R™ : || < 3r}. Thus, we obtain

(5.1.2) L/ || (@2 /prtaz/p2)p g < 1 || (@2 /prtaz/p2)p gy
|B| B |B| {zeR™:|z|<3r}
< L(gr)(al/pﬁaz/m)p/ 1dx
|B| {||<3r}

< plar/prtas/p2)p.

For i = 1,2, we see that

1 ’ 1 /
(5.1.3) 7/ o (=) g < L ] (170 g
|B| B |B| {zeR™:|z|<3r}
1 /
< —(37")0”(1_”1')/ lda
|B| {zeR™:|z|<3r}
< T.ai(l—P;).

By (5.1.2) and (5.1.3), we obtain

(5.1.4) L/ (] (@ /piFaz/p2)p gy l/pﬁ 1 /|x
1Bl /B 1B /,

i=1

1/p;
ai(1—p}) dx>

< po1/prton/p2 i (1-py) /p;

=1

By (5.1.1) and (5.1.4), we have the desired conclusion.
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Lemma 5.1.2 (]9, Lemma 2.2]). Let r > 0 and { € Z;.
function ¢ € S(R™) such that supp C {x € R™: |z| < r},

(5.1.5) / o(x)*dx # 0,
and
(5.1.6) / Po(r)de =0, B¢ Zn, | < L.

Then there is a

Proof. We can take a real-valued function ¢ € S(R™)\ {0} satisfying supp ¢ C

{r e R" : |z| <r}. We set

p(a) = (—=0)" ().

Since ¥ # 0, we have {b\ # 0. Hence, we can take & € R™ and ry > 0 satisfying

£ €R™,|¢ — &o| < ro = P(€) # 0.

Since ¢ is a real-valued function, by Plancherel’s theorem, we obtain

| earae= [ (apeue?a

2

= [ 1= ) o
1

= oy | e ae

1
(2m)™ /|§§0|<T0 €
1

e[ de

v

i D(E) 2 4(0+1)
Z @y e, 10 /|s—go|gro €11+ de # 0.

Thus, we have (5.1.5). For |5 < ¢, we see that

(5.1.7) / n(—ix)’@go(x) dx = / e "1 @0 (i) o(x) dx

=f[( z)’p(a )} (0)

By Leibniz’s formula, we obtain
(067 11) )

OLF [(-A)*1h(@)]) (€)

= (%
(0¢ {|5|2<“1 ©})©
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By |8] < £, we see that

(5.1.8) (92 F11()) (0) = 0.
By (5.1.7) and (5.1.8), we have (5.1.6). O

Lemma 5.1.3. Let € S(R™) be a function as in Lemma 5.1.2 with supp ¢ C
{neR™:|n <1/(10N)} and ¢ satisfying p1(£ + 1) + a1 > —n. For sufficiently
small € > 0, we set

13

w6 = (S5 ) dler) .. i)

where ey = (1,0,...,0) €R" and £ = (&1,...,&n) € (RM)N. Then the estimate

516112) ||(m(6))j||H(s/N ..... s/N) ((RM)N) < g s/N+n/2
J

holds, where (m'®)); is defined by (2.2.2) with m replaced by m®).

Proof. For sufficiently small a > 0, we can take ¥ € S(R™") appearing in the
definition of (m(®)); satisfying

supp¥ C {E e RN . 9-1/2-a < €| < 21/2+a}’
() =1 on {€ RN 27124 < Jg < p1/2e ],
If € > 0 is sufficiently small, then we see that

supp m®
C{é=(&,....&n) € RMN 1 & —e1| < €/(10N),|&] < 1/(10N),i=2,...,N}
- {5 = (&,..,¢&n) € (Rn)N c9 /2t <)él < 21/2704}_

Hence, we have

. m(s) ) —
(m(a))j(é“):m(s)(?’é“)\l’(f)={0 Oz

where € = (£1,...,&n) € (R?)N. Thus, we see that
(5.1.9) sup

JEL (m(s))j

[

H(s/N.....s/N) (Rm)N)

H(s/N,..., S/N)((R'H.)N)

~ —€ ~ ~
¢ (159) ). plew)|
g H(/Nyooys/N) ((RP)N)
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~ §1 — €1 ~yN—1
L — ||<P||Hs/N(]Rn) :
e laney)

For the first term of the right hand side of (5.1.9), by a change of variables and
» € §(R™), for sufficiently large M > 0, we obtain

(5.1.10)

(o)
© ey

e"p(e)(1+ [2]?)*/2V|

L2

1/2
{ [ letcoP s ja /™ as

1 1/2
n 1 2 S/Nd
: {/ 7 a1 }

IN

_ / (1+ |z|?)/N da:+/ (1+ |z|?)/N d:c+/ (1+ |2|*)/N i
loj<1 (14 |ex|)2M 1<lzl<1/e (L4 |ex])2M z)>1/e (1+ |ex])?M

1/2
1

Se® / 1dx+/ |x|2S/Nd:v+/ |x|2S/N72de .
|| <1 1<|z|<1/e |z|>1/e (elz])

For the first term of the right hand side of (5.1.10), since s/N > 0, we see that
(5.1.11) / lde=1<e /N,
|| <1

For the second term of the right hand side of (5.1.10), we have

1 2s/N
(5.1.12) / |22/ dx S/ () dx
1<|z|<1/e 1<|z|<1/e \€

1 n
— E—QS/N/ 1dx = E—QS/N ( _ 1)
1<|z|<1/e €

< 5_28/N (1)" — 5—2s/N—n.
o 15

For the third term of the right hand side of (5.1.10), by M > 0 is sufficiently

large, we see that

1 1
(5.1.13) / 225/ dy = g2M .
lz[>1/e (e]z|)2M a|>1/e T2/

§ 6725/N7n.

By (5.1.9), (5.1.10), (5.1.11), (5.1.12) and (5.1.13), we have the desired estimate.
O
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5.2 The proof of Theorem 1.4.3

Now, we prove Theorem 1.4.3. Let N > 2,1 < py,...,py <00, 1/p1 + -+
1/py =1/p and Nn/2 < s < Nn. Assume p; > Nn/s fori=1,... N. We first
prove that we can take a; < —n and @y > —n satisfying

(5.2.1) a;i/pi < $/N —n/p;, i=1,2,
(5:2.2) o1/p1+ az/p2 > —n/p,
and

(5.2.3) a1/p1 < —n/pr —s/N +n/2.

Indeed, by the inequality
—n/p+n/p1+s/N—n/2<s/N—n/ps
and
s/N —n/ps >0,
we can take as > 0 satisfying
—n/p+n/pr+s/N —n/2 < az/ps < s/N —n/ps.
Hence, we have (5.2.1) with ¢ = 2. By the inequality,
—ag/pa —n/p < —n/p1 — s/N +n/2,

we can take ay satisfying

—ag/pa —n/p < ai/p1 < —n/p1 —s/N +n/2.
Thus, we obtain (5.2.2) and (5.2.3). Moreover, by the inequality,

ar1/pr < —n/p1 —s/N +n/2 < —n/p1 + s/N,

we have (5.2.1) with ¢ = 1. Therefore, we obtain (5.2.1) (5.2.2) and (5.2.3).
For ay and ag satisfying (5.2.1), (5.2.2) and (5.2.3), we set

(5.2.4) wp = (Wi, wa, w3, ..., wy) = (||, |z|*%,1,...,1),

Vigy = wzf/pl ...wi,/pN = |g|Pler/Pitaz/p2)

Let (q1,.-.,9n) = (p18/(Nn),...,pns/(Nn)) and 1/q1 + --- + 1/gnv = 1/q.
By 1/¢ = Nn/(sp), (5.2.1) and (5.2.2), we have ay/q1 + az/q2 > —ng and
a; < n(g; — 1), i = 1,2. By Lemma 5.1.1, we see that wy € A, .. qv) =

A(prs/(Nn)),....pns/(Nn)-

45



We shall prove Theorem 1.4.3 with wy defined by (5.2.4) by contradiction.
To do this, we assume that the estimate

(5.2.5)

holds. Let @ € S(R™) be a function as in Lemma 5.1.2 with suppp C {n €
R™:|n| < 1/(10N)} and ¢ satisfying p1 (¢ + 1) + a1 > —n. For sufficiently small
e >0, we set

(5:2:6) w0 =5 (£ piea).. plen),

where e; = (1,0,...,0) € R" and ¢ = (&,...,&v) € (RM)N. By (5.2.5) and
(5.2.6) and Lemma 5.1.3, it follows that

(5.2.7) Hfl [@ < - el) fl] F {@ﬁ} LLF {@fN]

e

Lp(|x‘(01/p1+a2/132)p)
2 N
S 575/N+n/2 H ||fi||Lm(|w\ai) H HfZHLP7
i=1 1=3

for all fi,..., fv € S(R™), where F~! is the inverse Fourier transform on R".
Let ¢ € S(R™) be such that ) = 1 on supp ¢ and we set

(5.2.8) ﬁ@l):e"/“‘”@(m)’ fil&) =v(&),i=2,...,N.

€

Since

hw) =7 [ (829 | @)

oo (852

— gn/p ei<w’el>tp(€$),

by a change of variables, we see that

(5.2.9) 11l zor zjory = €727 10l pon afer)y -
We check
(5.2.10) 1l Lor (fgjery < 00

For g € Z%, |B| < ¢, by Lemma 5.1.2, we obtain

8%(()):/ e“”"))nﬁ@(n)dn:/ n°@(n) dn = 0.

n
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Combining this with Taylor’s formula, we have
lo(@)] Sl

By p1(¢+1) 4+ a1 > —n and ¢ € S(R"), we see that
s ooy = [ Ne@P el dot [ o)l ol de
Jz|<1 |z|>1

g/ ‘x|(€+1)p1+a1 dx—i—/ () [Ptz da
|z|<1 |z|>1

< Q.

Hence, we obtain (5.2.10). By as > —n and ¢ € S(R"),

(5.2.11) ||f2||§12(|x,a2)=/ [ ()" |2]** da

R n

=/ W@WM”M+/ ()P | de
|z|<1

|| =1

5/ MWM+/ ()72 |
|z|<1 |z|>1

< 00.
By ¢ € S(R™), we see that
(5.2.12) fillgns = 10ln <00, = 3,...,N.

We shall finish the proof. By (5.2.8) and a change of variables, we have

pu [@(' - 61) ﬁ] @F " [oh] (@) 7 [@l] @)

€

n/p1 i{z,e1)

=e"Pe (% @) (ex)p(x
By ¢ # 0 and (a1 /p1 + as/pa)p > —n, we can take Ry > 0 satisfying
0< / () [PV =1 || (@a/Prtez/PP g < oo,
|z|<Ro

By Lemma 5.1.2, it follows that

*p(0) = F7 (@]« F[2(0)
= F821(0)
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by the continuity of ¢ * ¢ at the origin, we can take Cy > 0 and €y > 0 satisfying
for all e, 0 < e < ey, z, |x| < Ro, |¢ * p(ex)| > Cy. Thus, we see that a

(5.2.13) Hf—l {@(' _61> fl} F [@fg} LLF [@fN}

3

Lp(|g;|(a1/P1+f¥2/p2)p)

1/p
— gn/;m {/ o * p(ex)[P|p(z) PN~V |g|(@r/Prtaz/p2)p dx}
1/p
> gn/m / o * p(ex) [P (@) PN~V |g|(@r/Prtaz/p2)p gy
|z|<Ro

1/p
> /e, / o () [PN D) g (e /1 +02/p2)p g
|z|<Ro

> en/r,
By (5.2.7), (5.2.9), (5.2.11), (5.2.12) and (5.2.13), we obtain
/P S e A2 P || oy (ajeny [l o2 (afen) [0 Lrs - |80 Lo
Therefore, we have

6”/171 5 €*S/N+n/27a1/171 )

for all sufficiently small € > 0. This is a contradiction (see (5.2.3)).
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Chapter 6

The proof of Theorem 1.4.4

In this chapter, we study weighted norm inequalities for multilinear Fourier
multipliers with Besov regularity. This result can be understood as a critical
case of Theorem 1.4.1. It should be remarked that in the proof of Theorem
1.4.1, we can take ¢; such that n/s; < ¢; < min{2,p;}, i =1,..., N, but in this
case, namely, s; = n/2, we cannot take g; like this.

We first prove the following lemma which plays an important role in the
proof of Theorem 1.4.4.

6.1 Key lemma

Lemma 6.1.1 ([10, Lemma 3.1]). Let ¢ € S(R™) be such that ¢(&;) = ¢(=&;),d(&) =
lon {& eR™:|&| <2},i=1,...,N. Then, the estimate

T y20) (s s IN) ()]

o0

N

et 1/2

S b2 g o (Dl ey [ (1017 (i) * 1£il* (@)
=1

holds, for all x € R™ and j € Z, where (|¢[*);(z) = 279" |p(2772)|* and
VU (ir,..kn) (D) is defined in the definition of the Besov space of product type.

Proof. Let {tx, }35_gs-- s {¥ky } oo Pe functions appearing in the defini-
tion of the Besov spaces of product type. By >7.°_o 4k, (2/(y1 — 2)) x -+ X

ZI(;)\/:O iy (27 (yny — 1)) = 1, we have
T 29) (f1, - - ) (@)
= /(Rn)N FAm(/27,... /2D (x =y, sz —yn) fr(y1) ... In(yn) dys - .. dyn

= (Qj")N/ FHm] (2 (z —y1), .., 2 (@ —yn)) filyr) .- fn(yn) dyr - dyn
(&)~
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—n Y S [ @ =0 (2 - o)

ki,....kn=0
xﬁ@(Zj(yl—x),...,QJ(yN—x)) fl(yl)fN(yN)dyldyN
Note that

supp ¢, C {& € R™:
c{&eR":|&| <28}, i=1,--- N.

Thus, we obtain ¢y, (&) = Vg, (£)p(&:/2F),i = 1,..., N. Hence, we see that
T2y (f1s -0 f) (@)

/ gy P (2 = @) X ey (g = @)

semY Y

E1,....kn=0

(Pl (=)

x (2 (y1 — ), .., 2 (yv — ) fr(n) - fn(yn) dys - . dyn|.

By Schwarz’s inequality, a change of variables and ¢(—¢;) = ¢(&;),i =1,--- , N,
we have

|Tm(./2j)(f17 .. 7fN)(‘r)|

oo

< (an)N Z

ki...kn=0
oy (27 = @) iy (27 = @) (270 = @), 27 (- = ) || Loy vy

2j(~z)> (QJ(I))
o(F ) o () 00|
= Z 2(k1+”'+kN)n/2Hd’kl(ﬁl)'“?/fkw(fN)ﬁl(ﬁl,---’§N)||L2((Rn)N)
ki, k=0
N 1/2
< [T gy * [ filP ()
i=1
By Plancherel’s theorem, we completes the proof. O

Now, we prove Theorem 1.4.4. Let 2 < p1,...,py <00, 1/p1+---+1/py =

1/p. Assume w; € A, /5 fori=1,--- , N and set w = w?’P . wk/PN . We also

assume that m € L°(RN") satisfies supcy [|m; |l go/e.... n/2) (gnyny < 00 where
2,1

m; is defined by (2.2.2). By Lemma 2.4.1 (1), we decompose m as follows:

m(§) = > O, i) (E)M(E)

(i1,in)€{0,1},
(i15.-in)#(0,...,0)

ol



= E m(il,...,m)(f)-
(i1se.in)€{0,1}V,
(i1,--in)#(0,...,0)

6.2 Estimate for m o . o) type

We first consider the case where (i1, ...,in) satisfies §{j : i, = 1} = 1. Without
loss of generality, we may assume that ¢; = 1. We simply write m instead of
m(1,0,...,0)- Note that by Lemma 2.4.1 (3),

(6.2.1)  suppm C {€ = (&,...,én) € RNV 1 |&] < |&|/N,i=2,...,N}.
It is easy to see that if £ = (£1,...,&n) € suppm, then |& + -+ - + En| = |&]-

Proof. In this case, we shall prove the estimate

(6.2.2) [Ton(frs s FN) e )

holds, where m®) will be defined later on. In Section 6.4, we shall complete the
proof.
As in Section 3.2, we obtain (3.2.3) and we can find functions ¢ € Ay and

7:/; € A; independent of j such that

m(eyy (ST

= ey (S5 e 2ol 2) - plen ).
Setting
623  mO© = m@OUE + -+ ENDENRE) - PlEn),
we have
(6.2.4) AT fro- oy fN)(@) = Tt jaiy (B fr, for o ) (@),

where Ajfl = {E(D/Qj)fl
By Lemma 6.1.1 and Lemma 2.4.5, we see that
- 2
Z ‘Tm(j)(-/Qj)(Ajf17 fasooo, fN)(l"))

JEL

5 Z Z 2(k1+~~+kN)n/2 H\IJ(kl,....,kN)(D)m(j)
J€Z \ki,....kn=0
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=2

12 N 1 2
< (9P * 112 @) " 5 TL (00 * 1£2(2) ”)

N

g R(GARIEY

=2

O[S aretens H‘If(kl,...,kN)(D)m(j)‘

JEZ \k1,...,kn=0

L2
2

x ((|¢|2)(k1—j) * |Ajf1|2($>)1/2> '

By Schwarz’s inequality, we have

S ottt g (D)mY)
[y

2 A 2 1/2
(19 w1352 (@))

1/2

< 3 ptubetkn2 H‘I’m 77777 k) (D)m)
k1,...,kn=0

L2

1/2

(o]
x Z okt +kn)n/2 H\I/(k1,...7k1v)(D)m(j)‘ L (|¢|2)(k17j) % |Ajf1|2($)

k1,....,kn=0

Thus, it follows that

Z ‘Tm(j)(./m)(A]’flan, ey fN)(fE)‘2

JEZ

(oo}
3> 3 2(k1+...+kN)n/2H\Ij(kl,m’kN)(D)m(j)‘
JEZL k1,...,kn=0

(161%) s —g) * 1A; 12 ().

L2

By Holder’s inequality, we see that

1/2

y 2

(6.2.5) Z’Tm(j)(./zj)(Ajfhny-~'7fN)‘
JEL

Ll’(w)
1/2
< (J) n n/2
~ <?up ||m ||B(, /2,00, ./ )((R")N))

yeeey

GEZ k1,....kn=0
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2 A 2 /2
X (16— * 1A5 712}

N
<TT[or sy
=2

For the third term on the right hand side of (6.2.5), since 2 < p; < oo and
w; € Ay /2,1 =2,...,N, we have

LP1 (wl)

LPi (w;)

N N
(6.2.6) | ([EZACERRS Y [ Pare
i=2 ! i=2

For the second term on the right hand side of (6.2.5), we set as follows

1/2
Z Z k1t +kn)n/2 H\Ii(kl,...,kN)(D)m(j)‘ L (‘¢|2)(k1—j) « ‘Ajf1|2
JEZ ky,....kn=0
LP1 (wl)
1/2
o0
_ Z Z okt +kn)n/2 H\I'(kl,...,kzv)(D)m(j)‘ L (|¢|2)(k17j) « |Ajf1‘2
GEL K1, k=0 LP1/2(wy)
1/2
= H 2 2,

We shall prove that

1/2
1/2 i
(627) HH”L”I/z(wl) S (?lellz ”m(J) ||Bz(>7,L1/2 ..... n/?)((Rn)N)) ||f1||LP1 (wq)+

Once this is proved, by (3.2.3), (6.2.4), (6.2.5), (6.2.6) and (6.2.7), we obtain
(6.2.2).

Let u € L(pl/Q),(wi_(pl/Q)/) be such that H“||L<m/2>’(wi‘“”/”) =1 By
Lemma 2.4.5, Holder’s inequality, Lemma 2.4.3 with w; € Ap 2 C Ap, and
L(pl/z)/(wi_(plp)/) -boundedness of M, it follows that

Ri

SY S e g, D))

L2
JEZ k1,..., kn=0
< {19P) ki # AP} @) da
1y |
S 2<k1+...+kmn/2H\I,(klwkN)(D)mm‘L2

FEZ ky,....kn=0

o4



L BRI 60+l ()

<3 2(k1+~v-+kzv)n/2H\I;(khm’kN)(D)m(j)’
j€Z k1,....,kn=0

12 /]Rg |A; fi(2)?Mu(z) do

) SIa5f
S (jgg”m(] ||B§T11/2 ’’’’’ "/2)((Rn)1\1)> ‘ |Ajf1| HMUHL(pl/Z)’(U)i*(Pl/Q)/)
JEL LP1/2(wy)

\ () 2
< (59 1O . sy ) Va4l g

= (4 2
<§1elfz)”m ||Bétll/2 ,,,,, "/2)((R71,)N)> ||f1HLP1(w1)7

where we have used the fact that wif(pl/Q), € A(p, /2y, by Lemma 2.4.2 (2). By
taking suprimum over all such as above u, we obtain (6.2.7). Therefore, we have
(6.2.2)

O

6.3 Estimate for m 14, ., type

Next, we consider the case where (i1,...,iy) satisfies #{j : i; = 1} > 2. Without
loss of generality, we may assume that i; = i, = 1. We simply write m instead
of M1,1,,,....in)» Where dz,... iy € {0,1}. Note that by Lemma 2.4.1 (3),

(6.3.1) supp m
C{l&l/(4N) < |€o < 4AN|&i ] |&] < AN(&i]i=3,..., N}

Proof. In this case, we shall prove the estimate

(632) ||Tm(f1a7fN)||L”(w)

N
< (sup |mD | Lonsoinsoy o ) fill e w;
R r—— ) (e

holds, where m(?) will be defined later on. In Section 6.4, we shall complete the
proof. _

As in Section 3.3, we can find functions ¢ € Ay and ¢ € A; independent of
J such that

m(€)y(&1/27)
= m(E)P(E1/27) (€127 )b(E2/27) 2 p(€3/27) . .. p(En/27).
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Setting

(6.3.3) m9 () = m(PE(&1)V(&)e(&s) - - o(En),

we have

(634) Tm(fl,...,fN Z m () ( /21 A f17A f2af37~">fN)(x)7
JEZ

where A f; = (D/29) fi,i = 1,2.
By (6.3.4), Lemma 6.1.1, Lemma 2.4.5 and Schwarz’s inequality, it follows
that

S Z Tm(j)(./zi)(Ajf17Ajf27f37 .. afN)(‘r)‘

JEZ

<> Z 2t +kN)"/2H‘I’(k1, s (D)
J€L ka,....,kn=0

2 N

. /
< T (0P my # 1B 5P@) " x TL (0P * LAl 2
=1 =3
N
< TT M £ ()
=3
H{Z Z olk1+ JrkN)n/QH\IJ . ’kN)(D)m(J)’
=1 JEZ k..., kn=0 L

. 1/2
< (670, ¥18, @
By Holder’s inequality, we have

Tm(fla .. '7fN)||LP(’w)

2 [e%s)
SH {Z Z 2<k1+--.+kN>n/2H\I,(kh“_,kN)(D)mu)‘
=1

JEZ k..., kn=0

6.35) |

L2

2 A 2 /2
X (161 ey * 1B £}
N
% M(|f;|? 1/2‘
I sz,

2 00 -
ST 3 ot fug s (Dim?)

i=1||jEZ k1,....kn=0

LPi (wL)

L2
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< (6P * A1

Lm/?(w)

1/2
XHHM i) 2o )

2

N
H Hill 2 2y * LTS 2 s -
=3

By the same way as for m; o,... o), we see that

1/2
1/2 ;
(6.3.6) ||H ”L/Pl/? < (?16112) ||m(3)|Bg?l/z,...,n/m((R,L)N)) HszLm (w;)»
where i = 1,2. By (6.3.5) and (6.3.6), we obtain (6.3.2). O

6.4 Completion of the proof of Theorem 1.4.4

In this section, we shall prove the estimate

< .
n/2)((Rn)N) ~ ?16112 ”mj HBé?W ««««« ﬂ/2)((Rn)N)

holds, where m() is defined by (6.2.3) or (6.3.3), and m; is defined by (2.2.2).

Proof. We first consider the case where m{) is the same as in (6.2.3). Since
supp ¥(-/2°) C {€ € (RM)N : 271 < [¢] <2} and

(6.4.1) supp $(€1) (&) - p(€n) C {€ € RMN : 2790 < Jg| < 270}

for some jo € N, for example, jo = [logy 2(N + 1)], where [s] is the integer part
of s € R, it follows from Lemma 2.4.9 (1) that

(6.4.2)

||m(j) HBéT,Ii/Q ..... n/2)

= [m(27€)@(1,0,....0) (27 E)(EL + - + EN)D(E) g (52)""P(EN)||B§?{2 ----- n/2)
Jo

S

{=—jo

X Y€1) p(E2) . .. p(En)T(E/2°)

m(276)® 10,027 )V(& + -+ En)

< Z [l ( 2] 5/2€)HB<"/2 ..... n/2)

=jo

o7



X | ®1,0,...0) 27OV (& + -+ + En)Y(E1) (&) - -~<P(§N)||Bg{12a«»<,'rt/2>-

For the first term on the right hand side of (6.4.2), by Lemma 2.4.9 (2), we have

For the second term on the right hand side of (6.4.2), by the Leibniz’s formula,
Lemma 2.4.1 (2) and (6.4.1), we see that

102 (@(10,..0/(FEOV(E + -+ + En)PE)P(E) - w(EW) )| < Can
for all o € Z" and j € Z. Therefore, we obtain

sup 1@(1,0,....0)(27E)Y(& + -+ + EN)V(E) (&) - .. PEN)| gz nsz < 00
] ,

In the case where m) is the same as in (6.3.3), the proof is similar to that of
mM(1,0,...,0) and we omit it. 0
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