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Chapter 1

Introduction and results

In recent years, multilinear operators in harmonic analysis have been well stud-
ied by many mathematicians. In this thesis, we consider weighted norm inequal-
ities for multilinear Fourier multiplier operators.

In this chapter, we shall describe an introduction of the thesis. The defini-
tions and notations will be given in Chapter 2.

1.1 Fourier multiplier operators in the linear set-
ting

In this section, we recall Fourier multiplier operators in the linear setting. For
m ∈ L∞(Rn), the linear Fourier multiplier operator m(D) is defined by

m(D)f(x) = F−1
[
m(ξ)f̂(ξ)

]
(x)

=
1

(2π)n

∫
Rn

eix·ξm(ξ)f̂(ξ) dξ

for f ∈ S(Rn), where x, ξ ∈ Rn. The purpose of the thesis is to study “smooth-
ness” of multipliers m which is measured by several function spaces. In partic-
ular, we are interested in a relationship with weight classes in the multilinear
setting. Let Ψ ∈ S(Rd) be such that

suppΨ ⊂
{
ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2

}
,(1.1.1) ∑

k∈Z

Ψ(ξ/2k) = 1 (ξ ∈ Rd \ {0}).

For this cut-off function Ψ with d = n and m ∈ L∞(Rn), we set

mj(ξ) = m(2jξ)Ψ(ξ),

where j ∈ Z and ξ ∈ Rn. The Hörmander multiplier theorem [15] is very well
known as the theorem which describes the Lp-boundedness of m(D) and we
recall it (see also [6, Theorem 8.3]).
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Theorem A ([15]). Let 1 < p <∞ and s > n/2. Then

∥m(D)∥Lp(Rn)→Lp(Rn) ≲ sup
j∈Z

∥mj∥Hs(Rn),

where ∥ · ∥Lp(Rn)→Lp(Rn) is the operator norm and Hs(Rn) is the Sobolev space.

If m ∈ C [n/2]+1(Rn\{0}) satisfies

|∂αm(ξ)| ≤ Cα|ξ|−|α|(1.1.2)

for all α ∈ Zn
+, |α| ≤ [n/2] + 1, then Theorem A also holds, where [n/2] is the

integer part of n/2. For example, the multiplier m of the Hilbert transform on
R, namely, m(ξ) = −isgn(ξ) satisfies (1.1.2). If m ∈ Hs(Rn), s > n/2, then the
Lp-boundedness of m(D) follows since F−1[m] ∈ L1 and Young’s inequality. In
contrast to this fact, Theorem A says that by the smoothness of each part of
the multiplier m, namely, mj ∈ Hs(Rn), the Lp-boundedness of m(D) follows.

Weighted norm inequalities for Fourier multiplier operators in the linear
setting are known as the result of Kurtz-Wheeden [18] and we recall it.

Theorem B ([18, Theorem 1]). Let 1 < p <∞ and n/2 < s ≤ n. Assume

p > n/s and w ∈ Ap/(n/s).

Then

∥m(D)∥Lp(w)→Lp(w) ≲ sup
j∈Z

∥mj∥Hs(Rn),

where w is a weight, Lp(w) is the Lp space with the Lebesgue measure dx replaced
by wdx and Ap is the Muckenhoupt class.

Theorem 1.4.1 in the thesis is a multilinear version of Theorem B. Theorem B
gives us a consideration as follows: exponent p and weight w to assure the Lp(w)-
boundedness of m(D) depend on “smoothness s” of multipliers m. That is to
say if the condition on m is strong, namely, m is smooth, then the conditions on
p and w should be weak and vice versa. Theorem 1.4.3 in the thesis corresponds
to this consideration in the multilinear setting.

1.2 Fourier multiplier operators in the multilin-
ear setting

In this section, we recall Fourier multiplier operators in the multilinear setting.
Let N be a natural number, N ≥ 2, 1 < p1, . . . , pN <∞ and 1/p1+· · ·+1/pN =
1/p. For m ∈ L∞(RNn), the N -linear Fourier multiplier operator Tm is defined
by

Tm(f1, . . . , fN )(x)
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=
1

(2π)Nn

∫
(Rn)N

eix·(ξ1+···+ξN )m(ξ)f̂1(ξ1) · · · f̂N (ξN ) dξ

for f1, . . . , fN ∈ S(Rn), where x ∈ Rn, ξ = (ξ1, . . . , ξN ) ∈ (Rn)N and dξ =
dξ1 . . . dξN . Coifman and Meyer [5] proved that if m ∈ CL(RNn\{0}) satisfies

|∂α1

ξ1
· · · ∂αN

ξN
m(ξ1, · · · , ξN )| ≤ Cα1,...,αN (|ξ1|+ · · ·+ |ξN |)−(|α1|+···+|αN |)

for all |α1| + · · · + |αN | ≤ L, where L is a sufficiently large natural number,
then Tm is bounded from Lp1(Rn) × · · · × LpN (Rn) to Lp(Rn). For the cut-off
function Ψ in (1.1.1) with d = Nn and m ∈ L∞(RNn), we set

mj(ξ) = m(2jξ)Ψ(ξ),

where j ∈ Z and ξ = (ξ1, . . . , ξN ) ∈ (Rn)N . The starting point of the thesis is
the Hörmander multiplier theorem in the multilinear setting given by Tomita
[31] and we recall it.

Theorem C ([31, Theorem 1.1]). Let 1 < p1, . . . , pN , p < ∞, 1/p1 + · · · +
1/pN = 1/p and s > Nn/2. Then

∥Tm∥Lp1 (Rn)×···×LpN (Rn)→Lp(Rn) ≲ sup
j∈Z

∥mj∥Hs(RNn),

where ∥ · ∥Lp1 (Rn)×···×LpN (Rn)→Lp(Rn) is the operator norm.

Grafakos-Si [13] treated the case p ≤ 1 by using the Lr-based Sobolev spaces,
1 < r ≤ 2. As a corollary of Theorem C, we can reduce the number of derivatives
of m to assure the boundedness of Tm ([31, Corollary 1.2]). After Theorem C,
problems to find minimal smoothness conditions onm to assure the boundedness
of Tm were considered by Grafakos-Miyachi-Tomita [12], Miyachi-Tomita [22]
and Miyachi-Tomita [23]. Theorem 1.4.1 in the thesis is a weighted version of
Theorem C.

1.3 Weighted norm inequalities in the multilin-
ear setting

In this section, we recall weighted norm inequalities in the multilinear setting.
Let 1 < p1, . . . , pN < ∞ and 1/p1 + · · · + 1/pN = 1/p. For w1, . . . , wN are

weights, we set w = w
p/p1

1 . . . w
p/pN

N . We first consider the case multiple Ap

weights of direct product type, namely, Ap1 × · · · × ApN
. We define the multi

(sub) linear maximal operator M̃ by

M̃(f1, . . . , fN )(x) =
N∏
i=1

Mfi(x)
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for f1, . . . , fN ∈ L1
loc(Rn) and x ∈ Rn, where M is the Hardy-Littlewood maxi-

mal operator. For (w1, . . . , wN ) ∈ Ap1 × · · · ×ApN
, by Hölder’s inequality, it is

easy to see that

∥∥∥M̃(f1, . . . , fN )
∥∥∥
Lp(w)

≲
N∏
i=1

∥fi∥Lpi (wi)
.

Moreover, it is known that M̃ is bounded from Lp1(w1) × · · · × LpN (wN ) to
Lp(w) if and only if (w1, . . . , wN ) belongs to the class Ap1 ×· · ·×ApN

(see [29]).
In [14], it was proposed to develop a more suitable class of multiple Ap weights
in the multilinear setting.

We next consider the case multiple Ap weights of vector type, namely,

A(p1,...,pN ) introduced by Lerner, Ombrosi, Pérez, Torres and Trujillo-Gonźlez
in [19]. The new multi (sub) linear maximal operator M ([19]) is defined by

M(f1, . . . , fN )(x) = sup
Q∋x

N∏
i=1

1

|Q|

∫
Q

|fi(yi)| dyi

for f1, . . . , fN ∈ L1
loc(Rn) and x ∈ Rn. In [19, Theorem 3.7], it was proved that

M is bounded from Lp1(w1)×· · ·×LpN (wN ) to Lp(w) if and only if (w1, . . . , wN )
belongs to the class A(p1,...,pN ). It should be remarked that

M(f1, . . . , fN )(x) ≤ M̃(f1, . . . , fN )(x), x ∈ Rn,

and

Ap1 × · · · ×ApN ⊊ A(p1,...,pN ).(1.3.1)

For the strictness of the above inclusion, see [19, Remark 7.2]. By these remarks,
it can be thought that M and A(p1,...,pN ) are more suitable in the multilinear
setting.

Let 1 < p1, . . . , pN < ∞, 1/p1 + · · · + 1/pN = 1/p and n/2 < si ≤ n for
i = 1, . . . , N . Assume pi > n/si for i = 1, . . . N . We shall prove in Theorem
1.4.1 that if (w1, . . . , wN ) ∈ Ap1/(n/s1) × · · · ×ApN/(n/sN ), then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ≲ sup
j∈Z

∥mj∥H(s1,...,sN )((Rn)N ),(1.3.2)

where H(s1,...,sN )((Rn)N ) is the Sobolev space of product type. This result can
also be obtained from another approach of [16]. See [21, 2] for the endpoint cases.
In particular, for Nn/2 < s ≤ Nn and pi > Nn/s, i = 1, . . . , N , taking s1 =
· · · = sN = s/N , we have that if (w1, . . . , wN ) ∈ Ap1s/(Nn) × · · · × ApNs/(Nn),
then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ≲ sup
j∈Z

∥mj∥H(s/N,...,s/N)((Rn)N ).(1.3.3)

9



On the other hand, Bui-Duong [4] and Li-Sun [20] proved that if (w1, . . . , wN ) ∈
A(p1s/(Nn),...,pNs/(Nn)), then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ≲ sup
j∈Z

∥mj∥Hs(RNn).

It should be remarked that

Hs1+···+sN (RNn) ↪→ H(s1,...,sN )((Rn)N ), s1, . . . , sN ≥ 0.

By this remark and (1.3.1), it is natural to consider a question whether (1.3.3)
holds under the condition (w1, . . . , wN ) ∈ A(p1s/(Nn),...,pNs/(Nn)), and we shall
answer this question negatively in Theorem 1.4.3. It means that both conditions
on weights and multipliers cannot be weaken at the same time. It corresponds
to the consideration which we thought in the linear setting.

In Theorem 1.4.2, we consider weighted norm inequalities for multilinear
Fourier multipliers with the Lr-based Sobolev regularity, 1 < r ≤ 2 with mixed
norm. In [27], weighted norm inequalities for multilinear Fourier multipliers
with the Lr-based Sobolev regularity were obtained.

In Theorem 1.4.4, we study a critical case of Theorem 1.4.1, namely, si =
n/2, i = 1, . . . , N in (1.3.2) and measure the smoothness of multipliers m by
the Besov spaces. It should be remarked that

H(s1,...,sN )((Rn)N ) ↪→ B
(n/2,...,n/2)
2,1 ((Rn)N ) ↪→ L∞(RNn),

where s1, . . . , sN > n/2. In this sense, it can be thought that Theorem 1.4.4 is
a critical case of Theorem 1.4.1. As a Corollary of Theorem 1.4.4, we obtain
a critical case of Theorem C ([10, Corollary 1.2]). In the linear setting, Seeger
[26] considered Fourier multiplier operators with Besov regularity.

1.4 Results

In the thesis, we consider the following four results.

Theorem 1.4.1 ([7, Theorem 6.2]). Let 1 < p1, . . . , pN < ∞, 1/p1 + · · · +
1/pN = 1/p and n/2 < si ≤ n for i = 1, · · · , N . Assume

pi > n/si and wi ∈ Api/(n/si) for i = 1, · · · , N.

Then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ≲ sup
j∈Z

∥mj∥H(s1,...,sN )((Rn)N ),

where w = w
p/p1

1 · · ·wp/pN

N .

Theorem 1.4.2 ([8, Result 1]). Let 1 < p1, . . . , pN <∞, 1/p1 + · · ·+ 1/pN =
1/p, 1 < rN ≤ rN−1 ≤ · · · ≤ r2 ≤ r1 ≤ 2 and n/ri < si ≤ n for i = 1, . . . , N .
Assume

pi > n/si and wi ∈ Api/(n/si) for i = 1, . . . , N.
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Then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ≲ sup
j∈Z

∥mj∥H(s1,...,sN )

(r1,...,rN )
((Rn)N )

,

where w = w
p/p1

1 · · ·wp/pN

N .

Theorem 1.4.3 ([9, Theorem 1.1]). Let N ≥ 2, 1 < p1, . . . , pN < ∞, 1/p1 +
· · ·+ 1/pN = 1/p and Nn/2 < s ≤ Nn. Assume

pi > Nn/s for i = 1, . . . N.

Then there exists w⃗0 = (w1, . . . , wN ) ∈ A(p1s/(Nn),...,pNs/(Nn)) such that the
estimate

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(νw⃗0
) ≲ sup

j∈Z
∥mj∥H(s/N,...,s/N)((Rn)N )

does not hold, where νw⃗0
= w

p/p1

1 · · ·wp/pN

N .

Theorem 1.4.4 ([10, Theorem 1.1]). Let 2 < p1, . . . , pN <∞ and 1/p1 + · · ·+
1/pN = 1/p. Assume

wi ∈ Api/2 for i = 1, · · · , N.

Then

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) ≲ sup
j∈Z

∥mj∥B(n/2,...,n/2)
2,1 ((Rn)N )

,

where w = w
p/p1

1 · · ·wp/pN

N .
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Chapter 2

Preliminaries

In this chapter, we collect notations and lemmas which will be used later on,
and recall definitions of several functions spaces.

2.1 Notations

Let n ∈ N be the dimension of the Euclidean space and Zn
+ is defied by

{0, 1, 2, . . . }n. Lebesgue measure in Rn is denoted by dx (See, for example,
[24, Chapter 1, 2]). For two non-negative quantities A and B, the notation
A ≲ B means that A ≤ CB for some unspecified constant C > 0 independent
of A and B , and the notation A ≈ B means that A ≲ B and B ≲ A.

Let S(Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing
smooth functions and tempered distributions, respectively (See, for example,
[6, Chapter 1, Section 7]). We define the Fourier transform Ff and the inverse
Fourier transform F−1f of f ∈ S(Rn) by

Ff(ξ) = f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx,

F−1f(x) =
1

(2π)n

∫
Rn

eix·ξf(ξ) dξ.

The Laplacian ∆ is defined by

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
.

We say that a function w is a weight, if w is a non-negative almost everywhere
and locally integrable function. Let 0 < p < ∞ and w ≥ 0. The weighted
Lebesgue space Lp(w) consists of all measurable functions f on Rn such that

∥f∥Lp(w) =

(∫
Rn

|f(x)|pw(x) dx
)1/p

<∞.
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The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

1

rn

∫
|x−y|<r

|f(y)| dy

for locally integrable functions f on Rn. We say that a weight w ≥ 0 belongs
to the Muckenhoupt class Ap, 1 < p <∞, if

sup
B

(
1

|B|

∫
B

w(x) dx

)(
1

|B|

∫
B

w(x)1−p′
dx

)p−1

<∞,

where the supremum is taken over all balls B in Rn, |B| is the Lebesgue measure
of B and p′ is the conjugate exponent of p, namely, 1/p + 1/p′ = 1. It is well
known that M is bounded on Lp(w) if and only if w ∈ Ap([6, Theorem 7.3]).
We also say that (w1, . . . , wN ) belongs to the class A(p1,...,pN ), if

sup
B

(
1

|B|

∫
B

w(x) dx

)1/p N∏
i=1

(
1

|B|

∫
B

wi(x)
1−p′

i dx

)1/p′
i

<∞,

where w = w
p/p1

1 · · ·wp/pN

N ([19]).
For m ∈ L∞(Rn), the linear Fourier multiplier operator m(D) is defined by

m(D)f(x) = F−1
[
m(ξ)f̂(ξ)

]
(x)

=
1

(2π)n

∫
Rn

eix·ξm(ξ)f̂(ξ) dξ

for f ∈ S(Rn), where x, ξ ∈ Rn. Let N be a natural number, N ≥ 2, 1 <
p1, . . . , pN <∞ and 1/p1 + · · ·+ 1/pN = 1/p. For m ∈ L∞(RNn), the N -linear
Fourier multiplier operator Tm is defined by

Tm(f1, . . . , fN )(x)

=
1

(2π)Nn

∫
(Rn)N

eix·(ξ1+···+ξN )m(ξ)f̂1(ξ1) · · · f̂N (ξN ) dξ

for f1, . . . , fN ∈ S(Rn), where x ∈ Rn, ξ = (ξ1, . . . , ξN ) ∈ (Rn)N and dξ =
dξ1 . . . dξN . We denote by ∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(w) the smallest constant
C satisfying

∥Tm(f1, . . . , fN )∥Lp(w) ≤ C

N∏
i=1

∥fi∥Lpi (wi)
, f1, . . . , fN ∈ S(Rn).

2.2 Cut-off functions

In this section, we collect cut-off functions which will be used later on. Let
Ψ ∈ S(Rd) be such that

suppΨ ⊂
{
ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2

}
,(2.2.1)
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∑
k∈Z

Ψ(ξ/2k) = 1 (ξ ∈ Rd \ {0}).

For a method for the construction of such cut-off functions, see, for example, [6,
p.162]. For this cut-off function Ψ with d = Nn and m ∈ L∞(RNn), we set

mj(ξ) = m(2jξ)Ψ(ξ),(2.2.2)

where j ∈ Z and ξ = (ξ1, . . . , ξN ) ∈ (Rn)N .
Let ϕ0 be a C∞-function on [0,∞) satisfying

ϕ0(t) = 1 on [0, 1/(4N)] , suppϕ0 ⊂ [0, 1/(2N)].

We set ϕ1(t) = 1 − ϕ0(t). For (i1, · · · , iN ) ∈ {0, 1}N , we define the function
Φ(i1,··· ,iN ) on RNn\{0} by

Φ(i1,··· ,iN )(ξ) = ϕi1(|ξ1|/|ξ|) · · ·ϕiN (|ξN |/|ξ|),(2.2.3)

where ξ = (ξ1, . . . , ξN ) ∈ (Rn)N and |ξ| =
√
|ξ1|2 + · · ·+ |ξN |2. Note that

Φ(0,...,0)(ξ) = 0.

(See [7, p.6339]).
According to the notation of [12, p.8] or [22, p.17], we also set A0, A1: A0

denotes the set of φ ∈ S(Rn) for which suppφ is compact and φ = 1 on some

neighborhood of the origin; A1 denotes the set of ψ̃ ∈ S(Rn) for which supp ψ̃
is a compact subset of Rn\{0}.

2.3 Function spaces

In this section, we recall definitions of several function spaces. To distinguish
spaces of usual type and product type, we use RNn and (Rn)N , respectively.

Definition 2.3.1 (The Sobolev space of usual type). For s ∈ R, the Sobolev
space Hs(Rn) consists of all f ∈ S ′(Rn) such that

∥f∥Hs(Rn) =
∥∥∥(1 + |ξ|2)s/2f̂

∥∥∥
L2(Rn)

<∞.

Definition 2.3.2 (The Sobolev space of product type). For (s1, . . . , sN ) ∈
RN , the norm of the Sobolev space of product type H(s1,...,sN )((Rn)N ) for F ∈
S ′(RNn) is defined by

∥F∥H(s1,...,sN )((Rn)N )

=
∥∥∥(1 + |ξ1|2)s1/2 . . . (1 + |ξN |2)sN/2F̂ (ξ1, . . . , ξN )

∥∥∥
L2((Rn)N )

.
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Definition 2.3.3 (The Sobolev space of product type with mixed norm). For
(s1, . . . , sN ) ∈ RN and (r1, . . . , rN ) ∈ (1,∞)N , the norm of the Sobolev space of

product type with mixed norm H
(s1,...,sN )
(r1,...,rN ) ((R

n)N ) is defined by

∥F∥
H

(s1,...,sN )

(r1,...,rN )
((Rn)N )

(2.3.1)

=

∥∥∥∥∥∥∥F−1
[
⟨ξ1⟩s1 . . . ⟨ξN ⟩sN

∣∣∣F̂ (ξ)∣∣∣] (x1, . . . , xN )
∥∥∥
Lr1 (Rn

x1
)
. . .

∥∥∥∥
LrN (Rn

xN
)

,

where ξ = (ξ1, . . . , ξN ) ∈ (Rn)N and ⟨ξi⟩ = (1 + |ξi|2)1/2, i = 1, . . . , N .

For the Lp space with mixed norm, see [3].

Definition 2.3.4 (The weighted Lebesgue space with mixed norm). For (s1, . . . , sN ) ∈
RN and (q1, . . . , qN ) ∈ [1,∞)N , the norm of the weighted Lebesgue space with

mixed norm L
(q1,...,qN )
(s1,...,sN )((R

n)N ) is defined by

∥F∥
L

(q1,...,qN )

(s1,...,sN )
((Rn)N )

=
∥∥∥∥F (x1, . . . , xN )∥Lq1 (⟨x1⟩s1 ) . . .

∥∥∥
LqN (⟨xN ⟩sN )

,

where x = (x1, . . . , xN ) ∈ (Rn)N and ⟨xi⟩si = (1 + |xi|2)si/2, i = 1, . . . , N .

We recall the definition of the Besov spaces of usual type and product type,
respectively. Let ψ ∈ S(Rn) be as in (2.2.1) with d = n, and set

ψk(η) = ψ(η/2k), k ≥ 1,

ψ0(η) = 1−
∞∑
k=1

ψk(η),

where η ∈ Rn. Note that

suppψk ⊂ {η ∈ Rn : 2k−1 ≤ |η| ≤ 2k+1}, k ≥ 1,

suppψ0 ⊂ {η ∈ Rn : |η| ≤ 2},
∞∑
k=0

ψk(η) = 1.

Definition 2.3.5 (The Besov space of usual type). For 1 ≤ p, q ≤ ∞ and
s ∈ R, the Besov space Bs

p,q(Rn) consists of all f ∈ S ′(Rn) such that

∥f∥Bs
p,q(Rn) =

( ∞∑
k=0

2ksq∥ψk(D)f∥qLp(Rn)

)1/q

<∞,

where ψk(D)f = F−1[ψkf̂ ].
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We refer to [32], [25] for details on Besov spaces. We also recall the definition
of Besov spaces of product type (See [28]). Let {ψk1}∞k1=0, . . . , {ψkN

}∞kN=0 be as
above and set

Ψ(k1,...,kN )(ξ) = (ψk1 ⊗ · · · ⊗ ψkN
)(ξ)

= ψk1(ξ1)× · · · × ψkN (ξN ),

where ξ = (ξ1, . . . , ξN ) ∈ (Rn)N .

Definition 2.3.6 (The Besov space of product type). For 1 ≤ p, q ≤ ∞ and

(s1, . . . , sN ) ∈ RN , the norm of the Besov space of product type B
(s1,...,sN )
p,q ((Rn)N )

for F ∈ S ′(RNn) is defined by

∥F∥
B

(s1,...,sN )
p,q ((Rn)N )

=

 ∞∑
k1,...,kN=0

2(k1s1+···+kNsN )q∥Ψ(k1,...,kN )(D)F∥q
Lp((Rn)N )

1/q

.

2.4 Lemmas

In this section, we collect lemmas which will be used in the thesis.

Lemma 2.4.1 ([7, Lemma 3.1]). Let Φ(ii,...,iN ) be the same as in (2.2.3). Then
the following are true:
(1) For (ξ1, . . . , ξN ) ∈ Rn × · · · × Rn \ {(0, . . . , 0)},∑

(i1,...,ıN )∈{0,1}N ,
(i1,...,ıN ) ̸=(0,...,0)

Φ(i1,...,iN )(ξ1, . . . , ξN ) = 1.

(2) For (i1, . . . , iN ) ∈ {0, 1}N and (α1, . . . , αN ) ∈ Zn
+ × · · · × Zn

+, then there

exists a constant C
(α1,...,αN )
(i1,...,iN ) > 0 such that

|∂α1

ξ1
· · · ∂αN

ξN
Φ(i1,...,iN )(ξ)| ≤ C

(α1,...,αN )
(i1,...,iN ) (|ξ1|+ · · ·+ |ξN |)−(|α1|+···+|αN |)

for all ξ = (ξ1, . . . , ξN ) ∈ Rn × · · · × Rn \ {(0, . . . , 0)}.
(3) If ij = 1 for some j = 1, · · · , N and ik = 0 for all k = 1, · · · , N with j ̸= k,
then suppΦ(i1,...,iN ) ⊂ {(ξ1, . . . , ξN ) : |ξk| ≤ |ξj |/N for k ̸= j}. If ij = ij′ = 1
for some j, j′ = 1, . . . , N with j ̸= j′, then suppΦ(i1,...,iN ) ⊂ {(ξ1, . . . , ξN ) :
|ξj |/(4N) ≤ |ξj′ | ≤ 4N |ξj |, |ξk| ≤ 4N |ξj | for k ̸= j, j′}.

Lemma 2.4.2 ([6, Chapter 7]). Let 1 < p <∞ and w ∈ Ap. Then

(1) w1−p′ ∈ Ap′ (2) there exists ε > 0 such that w ∈ Ap−ε.
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Lemma 2.4.3 ([17]). Let ψ ∈ S(Rn) be such that suppψ ⊂ {η ∈ Rn : 1/r ≤
|η| ≤ r} for some r > 1. If 1 < p <∞ and w ∈ Ap, then∥∥∥∥∥∥∥

∑
j∈Z

|ψ(D/2j)f |2


1/2
∥∥∥∥∥∥∥
Lp

≲ ∥f∥Lp ,

where ψ(D/2j)f = F−1[ψ(·/2j)f̂ ].

Lemma 2.4.4 ([1]). Let 1 < p, q <∞ and w ∈ Ap. Then∥∥∥∥∥∥
{∑

k∈Z

(Mfk)
q

}1/q
∥∥∥∥∥∥
Lp(w)

≲

∥∥∥∥∥∥
{∑

k∈Z

|fk|q
}1/q

∥∥∥∥∥∥
Lp(w)

Lemma 2.4.5 ([6, Proposition 2.7]). Let ϕ be a function which is positive, ra-
dial, decreasing (as a function on (0,∞)) and integrable. Set ϕt(x) = 1/tnϕ(x/t)
for t > 0. Then

sup
t>0

|ϕt ∗ f(x)| ≲Mf(x)

for x ∈ Rn.

Lemma 2.4.6 ([31, Lemma 3.2]). Let L ∈ Z+. Assume that m ∈ CL(RNn \
{0, . . . , 0}) satisfies

|∂α1

ξ1
· · · ∂αN

ξN
m(ξ)| ≤ C(α1,...,αN )(|ξ1|+ · · ·+ |ξN |)−(|α1|+···+|αN |)

for all |α1|+ · · ·+ |αN | ≤ L, ξ = (ξ1, . . . , ξN ) ∈ Rn×· · ·×Rn \ {(0, . . . , 0)}. Let
Φ ∈ S(RNn) be such that suppΦ ̸∋ (0, . . . , 0). Then

sup
j∈Z

∥∥m(2j ·)Φ(·)
∥∥
HL <∞.

Lemma 2.4.7 ([3, Section10, Theorem 1]). Let 1 ≤ p1, . . . , pN ≤ ∞, then∥∥∥∥f ∗ g(x1, . . . , xN )∥Lp1 (Rn
x1

) . . .
∥∥∥
LpN (Rn

xN
)

≤
∥∥∥∥f(x1, . . . , xN )∥Lp1 (Rn

x1
) . . .

∥∥∥
LpN (Rn

xN
)
×
∥∥∥∥g(x1, . . . , xN )∥L1(Rn

x1
) . . .

∥∥∥
L1(Rn

xN
)
.

Lemma 2.4.8 ([3, Section12. Theorem 1]). Let 1 ≤ pN ≤ pN−1 ≤ · · · ≤ p1 ≤ 2,
then ∥∥∥∥∥F [f ](ξ1, . . . , ξN )∥

Lp′1 (Rn
ξ1

)
. . .

∥∥∥∥
Lp′

N (Rn
ξN

)

≤
∥∥∥∥f(ξ1, . . . , ξN )∥Lp1 (Rn

ξ1
) . . .

∥∥∥
LpN (Rn

ξN
)
.
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Lemma 2.4.9 ([10, Lemma 2.3]). Let s > 0 and ℓ ∈ Z. Then the estimates

(1) ∥FG∥
B

(s,...,s)
2,1 ((Rn)N )

≲ ∥F∥
B

(s,...,s)
2,1 ((Rn)N )

∥G∥
B

(s,...,s)
∞,1 ((Rn)N )

,

(2) ∥F (2ℓ·)∥
B

(s,...,s)
2,1 ((Rn)N )

≲
(
max{1, 2ℓs}2−ℓn/2

)N
∥F∥

B
(s,...,s)
2,1 ((Rn)N )

holds.
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Chapter 3

The proof of Theorem 1.4.1

In this chapter, we consider weighted norm inequalities for multilinear Fourier
multipliers with Sobolev regularity. We first prove the following three lemmas
which will be used in the proof of Theorem 1.4.1.

3.1 Lemmas

The proof of the following lemma is based on the argument of [32, Proposition
1.3.2] or [31, Lemma 3.3].

Lemma 3.1.1 ([7, Lemma A.1]). Let r > 0, 2 ≤ qi < ∞ and si ≥ 0, i =
1, . . . , N . Then,

∥F̂∥
L

(q1,...,qN )

(s1,...,sN )
((Rn)N )

≲ ∥F∥H(s1/q1,...,sN/qN )((Rn)N ),

for all F ∈ H(s1/q1,...,sN/qN )((Rn)N ) with suppF ⊂ {x = (x1, . . . , xN ) ∈
(Rn)N : |x| ≤ r}, where L

(q1,...,qN )
(s1,...,sN )((R

n)N ) and H(s1/q1,...,sN/qN )((Rn)N ) are

the weighted Lebesgue space with mixed norm and the Sobolev space of product
type, respectively.

Proof. Let ϕ ∈ S(Rn) be such that

ϕ(y) = 1 on {y ∈ Rn : |y| ≤ r}, suppϕ ⊂ {y ∈ Rn : |y| ≤ 2r}.

Since suppF ⊂ {x = (x1, . . . , xN ) ∈ (Rn)N : |xi| ≤ r, i = 1, . . . , N}, we have
F (x1, . . . , xN ) = ϕ(x1) . . . ϕ(xN )F (x1, . . . , xN ). Then, it follows that

F [F ](ξ1, . . . , ξN ) =
([
ϕ̂⊗ · · · ⊗ ϕ̂

]
∗ F̂
)
(ξ1, . . . , ξN ).

For ξ = (ξ1, . . . , ξN ) ∈ (Rn)N , we see that∥∥∥F̂ (ξ1, . . . , ξN )
∥∥∥q1
Lq1 (⟨ξ1⟩s1 )
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=

∫
Rn

ξ1

|F̂ (ξ)|q1(1 + |ξ1|2)s1/2 dξ1

=

∫
Rn

ξ1

∣∣∣(ϕ̂⊗ · · · ⊗ ϕ̂
)
∗ F̂ (ξ)

∣∣∣q1 (1 + |ξ1|2)s1/2 dξ1

=

∫
Rn

ξ1

∣∣∣∣∣
∫
(Rn)N

(
ϕ̂⊗ · · · ⊗ ϕ̂

)
(ξ1 − η1, . . . ξN − ηN )F̂ (η) dη

∣∣∣∣∣
q1

(1 + |ξ1|2)s1/2 dξ1

≤
∫
Rn

ξ1

(∫
(Rn)N

|ϕ̂(ξ1 − η1)| . . . |ϕ̂(ξN − ηN )||F̂ (η)| dη

)q1

(1 + |ξ1|2)s1/2 dξ1,

where η = (η1, . . . , ηN ) ∈ (Rn)N and dη = dη1 . . . dηN . By Minkowski’s inequal-
ity for integrals, we obtain

∥∥∥F̂ (ξ1, . . . , ξN )
∥∥∥
Lq1 (⟨ξ1⟩s1 )

(3.1.1)

≤

∥∥∥∥∥
∫
(Rn)N

|ϕ̂(ξ1 − η1)| . . . |ϕ̂(ξN − ηN )||F̂ (η)| dη

∥∥∥∥∥
Lq1 (⟨ξ1⟩s1 )

≤
∫
(Rn)N−1

η2,...,ηN

|ϕ̂(ξN − ηN )| . . . |ϕ̂(ξ2 − η2)|

∥∥∥∥∥
∫
Rn

η1

|ϕ̂(ξ1 − η1)||F̂ (η)| dη1

∥∥∥∥∥
Lq1 (⟨ξ1⟩s1 )

dη2 . . . dηN .

Since ⟨ξ1⟩s1 ≲ ⟨ξ1 − η1⟩s1⟨η1⟩s1 , we have∥∥∥∥∥
∫
Rn

η1

|ϕ̂(ξ1 − η1)||F̂ (η)| dη1

∥∥∥∥∥
q1

Lq1 (⟨ξ1⟩s1 )

=

∫
Rn

ξ1

(∫
Rn

η1

∣∣∣ϕ̂(ξ1 − η1)
∣∣∣ ∣∣∣F̂ (η)∣∣∣ dη1)q1

(1 + |ξ1|2)s1/2 dξ1

=

∫
Rn

ξ1

(∫
Rn

η1

(1 + |ξ1|2)s1/2q1
(1 + |η1|2)s1/2q1

|ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)q1

dξ1

≲
∫
Rn

ξ1

(∫
Rn

η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)q1−2+2

dξ1.

Hence, we see that

∥∥∥∥∥
∫
Rn

η1

|ϕ̂(ξ1 − η1)||F̂ (η)| dη1

∥∥∥∥∥
Lq1 (⟨ξ1⟩s1 )

(3.1.2)
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≤ sup
ξ1∈Rn

(∫
Rn

η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)(q1−2)/q1

×


∫
Rn

ξ1

(∫
Rn

η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)2

dξ1


1/q1

.

For the first term on the right hand side of (3.1.2), by Schwarz’s inequality and
a change of variables, we have∫

Rn
η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

≤
∥∥∥(1 + |ξ1 − ·|2)s1/2q1 ϕ̂(ξ1 − ·)

∥∥∥
L2(Rn

η1
)
∥(1 + | · |2)s1/2q1 F̂ (·, η2, . . . , ηN )∥L2(Rn

η1
)

=
∥∥∥(1 + | · |2)s1/2q1 ϕ̂

∥∥∥
L2(Rn

η1
)

∥∥∥(1 + | · |2)s1/2q1 F̂ (·, η2, . . . , ηN )
∥∥∥
L2(Rn

η1
)
,

where ξ1 ∈ Rn. Thus, we obtain

sup
ξ1∈Rn

(∫
Rn

η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)(q1−2)/q1

(3.1.3)

≤
∥∥∥(1 + | · |2)s1/2q1 ϕ̂

∥∥∥(q1−2)/q1

L2(Rn
η1

)

∥∥∥(1 + | · |2)s1/2q1 F̂ (·, η2, . . . , ηN )
∥∥∥(q1−2)/q1

L2(Rn
η1

)
.

For the second term on the right hand side of (3.1.2), by Young’s inequality, we
have∫

Rn
ξ1

(∫
Rn

η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)2

dξ1

=

∫
Rn

ξ1

[{
(1 + | · |2)s1/2q1 |ϕ̂(·)|

}
∗
{
(1 + | · |2)s1/2q1 |F̂ (·, η2, . . . , ηN )|

}
(ξ1)

]2
dξ1

=
∥∥∥{(1 + | · |2)s1/2q1 |ϕ̂(·)|

}
∗
{
(1 + | · |2)s1/2q1 |F̂ (·, η2, . . . , ηN )|

}
(ξ1)

∥∥∥2
L2(Rn

ξ1
)

≤
∥∥∥(1 + | · |2)s1/2q1 ϕ̂

∥∥∥2
L1(Rn

ξ1
)

∥∥∥(1 + | · |2)s1/2q1 |F̂ (·, η2, . . . , ηN )|
∥∥∥2
L2(Rn

ξ1
)
.

Thus, we obtain


∫
Rn

ξ1

(∫
Rn

η1

(1 + |ξ1 − η1|2)s1/2q1 |ϕ̂(ξ1 − η1)|(1 + |η1|2)s1/2q1 |F̂ (η)| dη1

)2

dξ1


1/q1

(3.1.4)
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≤
∥∥∥(1 + | · |2)s1/2q1 ϕ̂

∥∥∥2/q1
L1(Rn

ξ1
)

∥∥∥(1 + | · |2)s1/2q1 |F̂ (·, η2, . . . , ηN )|
∥∥∥2/q1
L2(Rn

ξ1
)
.

By (3.1.2), (3.1.3) and (3.1.4), we see that∥∥∥∥∥
∫
Rn

η1

|ϕ̂(ξ1 − η1)||F̂ (η)| dη1

∥∥∥∥∥
Lq1 (⟨ξ1⟩s1 )

≤
∥∥∥(1 + | · |2)s1/2q1 ϕ̂

∥∥∥(q1−2)/q1

L2(Rn
η1

)

∥∥∥(1 + | · |2)s1/2q1 F̂ (·, η2, . . . , ηN )
∥∥∥(q1−2)/q1

L2(Rn
η1

)

×
∥∥∥(1 + | · |2)s1/2q1 ϕ̂

∥∥∥2/q1
L1(Rn

ξ1
)

∥∥∥(1 + | · |2)s1/2q1 |F̂ (·, η2, . . . , ηN )|
∥∥∥2/q1
L2(Rn

ξ1
)

≲
∥∥∥(1 + | · |2)s1/2q1 |F̂ (·, η2, . . . , ηN )|

∥∥∥
L2(Rn

ξ1
)
.

Therefore, it follows that∥∥∥∥∥
∫
Rn

η1

∣∣∣ϕ̂(ξ1 − η1)
∣∣∣ ∣∣∣F̂ (η)∣∣∣ dη1

∥∥∥∥∥
Lq1 (⟨ξ1⟩s1 )

≲
∥∥∥F̂ (ξ1, η2, . . . , ηN )

∥∥∥
L2(⟨ξ1⟩s1/q1 )

.

By the same way for ξ2 ∈ Rn, we obtain∥∥∥∥∥
∫
Rn

η2

|ϕ̂(ξ2 − η2)|
∥∥∥F̂ (ξ1, η2, . . . , ηN )

∥∥∥
L2(⟨ξ1⟩s1/q1 )

dη2

∥∥∥∥∥
Lq2 (⟨ξ2⟩s2 )

(3.1.5)

≲
∥∥∥∥∥∥∥F̂ (ξ1, ξ2, η3, . . . , ηN )

∥∥∥
L2(⟨ξ1⟩s1/q1 )

∥∥∥∥
L2(⟨ξ2⟩s2/q2 )

.

By (3.1.1) and (3.1.5), we have∥∥∥∥∥∥∥F̂ (ξ1, ξ2, . . . , ξN )
∥∥∥
Lq1 (⟨ξ1⟩s1 )

∥∥∥∥
Lq2 (⟨ξ2⟩s2 )

≤

∥∥∥∥∥∥
∫
(Rn)N−1

η2,...,ηN

|ϕ̂(ξN − ηN )| . . . |ϕ̂(ξ2 − η2)|

∥∥∥∥∥
∫
Rn

η1

|ϕ̂(ξ1 − η1)||F̂ (η)| dη1

∥∥∥∥∥
Lq1 (⟨ξ1⟩s1 )

× dη2 . . . dηN∥Lq2 (⟨ξ2⟩s2 )

≲
∥∥∥∥∥
∫
(Rn)N−1

η2,...,ηN

|ϕ̂(ξN − ηN )| . . . |ϕ̂(ξ2 − η2)|
∥∥∥F̂ (ξ1, η2, . . . , ηN )

∥∥∥
L2(⟨ξ1⟩s1/q1 )

× dη2 . . . dηN∥Lq2 (⟨ξ2⟩s2 )

≤
∫
(Rn)N−2

η3,...,ηN

|ϕ̂(ξN − ηN )| . . . |ϕ̂(ξ3 − η3)|

×

∥∥∥∥∥
∫
Rn

η2

|ϕ̂(ξ2 − η2)|
∥∥∥F̂ (ξ1, η2, . . . , ηN )

∥∥∥
L2(⟨ξ1⟩s1/q1 )

dη2

∥∥∥∥∥
Lq2 (⟨ξ2⟩s2 )

dη3 . . . dηN
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≲
∫
(Rn)N−2

η3,...,ηN

|ϕ̂(ξN − ηN )| . . . |ϕ̂(ξ3 − η3)|

×
∥∥∥∥∥∥∥F̂ (ξ1, ξ2, η3, . . . , ηN )

∥∥∥
L2(⟨ξ1⟩s1/q1 )

∥∥∥∥
L2(⟨ξ2⟩s2/q2 )

dη3 . . . dηN .

By the same way for i = 3, . . . , N , we have the desired estimate.

The following is a key lemma in the proof of Theorem 1.4.1.

Lemma 3.1.2 ([7, Lemma 6.1]). Let r > 0, n/2 < si and max{1, n/si} < qi <
2, i = 1, . . . , N . Then, the estimate

∣∣Tm(·/2j)(f1, . . . , fN )(x)
∣∣ ≲ ∥m∥H(s1,...,sN )((Rn)N )

N∏
i=1

M(|fi|qi)(x)1/qi(3.1.6)

holds, for all x ∈ Rn, j ∈ Z and m ∈ H(s1,...,sN )((Rn)N ) with suppm ⊂ {ξ =
(ξ1, . . . , ξN ) ∈ (Rn)N : |ξ| ≤ r}, where H(s1,...,sN )((Rn)N ) is the Sobolev space
of product type.

Proof. For x ∈ Rn and j ∈ Z, by Fubini’s Theorem, we obtain

Tm(·/2j)(f1, . . . , fN )(x)

(3.1.7)

=

∫
(Rn)N

F−1[m(·/2j , . . . , ·/2j)](x− y1, . . . , x− yN )f1(y1) . . . fN (yN ) dy1 . . . dyN

= (2jn)N
∫
(Rn)N

F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)
f1(y1) . . . fN (yN ) dy1 . . . dyN

= (2jn)N
∫
(Rn)N

(1 + 2j |x− y1|)s1−s1 . . . (1 + 2j |x− yN |)sN−sN

×F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)
f1(y1) . . . fN (yN ) dy1 . . . dyN

= (2jn)N
∫
(Rn)N−1

y2,...,yN

(1 + 2j |x− yN |)sN−sN fN (yN ) . . . (1 + 2j |x− y2|)s2−s2f2(y2)

×
(∫

Rn
y1

(1 + 2j |x− y1|)s1F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)

× (1 + 2j |x− y1|)−s1f1(y1) dy1

)
× dy2 . . . dyN .

By Hölder’s inequality and Lemma 2.4.5 with ϕ(x) = (1+ |x|)−s1q1 , we see that

∣∣∣∣ ∫
Rn

y1

(1 + 2j |x− y1|)s1F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)(3.1.8)
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× (1 + 2j |x− y1|)−s1f1(y1) dy1

∣∣∣∣
≤

{∫
Rn

y1

(1 + 2j |x− y1|)s1q
′
1

∣∣F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)∣∣q′1 dy1}1/q′1

×

{∫
Rn

y1

|f1(y1)|q1
(1 + 2j |x− y1|)s1q1

dy1

}1/q1

≲
{∫

Rn
y1

(1 + 2j |x− y1|)s1q
′
1

∣∣F−1[m](2j(x− y1), . . . , 2
j(x− yN ))

∣∣q′1 dy1}1/q′1

×M(|f1|q1)(x)1/q1 ,

where we have used the fact that s1q1 > n. Thus, we have∣∣Tm(·/2j)(f1, . . . , fN )(x)
∣∣

≲ (2jn)NM(|f1|q1)(x)1/q1

×
∫
(Rn)N−2

y3,...,yN

(1 + 2j |x− yN |sN−sN |fN (yN )| . . . (1 + 2j |x− y3|s3−s3 |f3(y3)|

×
(∫

Rn
y2

(1 + 2j |x− y2|)s2

×

{∫
Rn

y1

(1 + 2j |x− y1|)s1q
′
1

∣∣F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)∣∣q′1 dy1}1/q′1

× (1 + 2j |x− y2|)−s2 |f2(y2)| dy2
)

× dy3 . . . dyN .

By the same way, we see that∣∣Tm(·/2j)(f1, . . . , fN )(x)
∣∣

≲ (2jn)N
2∏

i=1

M (|fi|qi) (x)1/qi

×
∫
(Rn)N−2

y3,...,yN

(1 + 2j |x− yN |sN−sN |fN (yN )| . . . (1 + 2j |x− y3|s3−s3 |f3(y3)|

×
{∫

Rn
y2

(1 + 2j |x− y2|)s2q
′
2

×

(∫
Rn

y1

(1 + 2j |x− y|)s1q
′
1

∣∣F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)∣∣q′1 dy1)q′2/q

′
1

× dy2

}1/q′2

dy3 . . . dyN .

25



By the same way, we obtain

∣∣Tm(·/2j)(f1, . . . , fN )(x)
∣∣

(3.1.9)

≲ (2jn)N
N∏
i=1

M (|fi|qi) (x)1/qi

×
{∫

Rn
yN

(1 + 2j |x− yN |)sNq′N . . .

×

{∫
Rn

y1

(1 + 2j |x− y1|)s1q
′
1

∣∣F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)∣∣q′1 dy1}q′2/q

′
1

× . . . dyN

}1/q′N

.

By the change of variables, we see that

∣∣Tm(·/2j)(f1, . . . , fN )(x)
∣∣ ≲ ∥m̂∥

L
(q′1,...,q′

N
)

(s1q′1,...,sNq′
N

)

N∏
i=1

M (|fi|qi) (x)1/qi .(3.1.10)

By Lemma 3.1.1, we have the desired estimate.

Lemma 3.1.3 ([7, Proposition A.2]). If si > n/2, i = 1, . . . , N , then H(s1,...,sN )((Rn)N )
is a multiplication algebra.

Proof. We consider only the case N = 2. Note that for all ηi ∈ Rn,

⟨ξi⟩si ≲ ⟨ξi − ηi⟩si + ⟨ηi⟩si , i = 1, 2.

Hence, we obtain

∥FG∥H(s1,s2)((Rn)2)

(3.1.11)

=
∥∥∥⟨ξ1⟩s1⟨ξ2⟩s2 F̂G(ξ1, ξ2)∥∥∥

L2
(ξ1,ξ2)

=
∥∥∥⟨ξ1⟩s1⟨ξ2⟩s2 (F̂ ∗ Ĝ

)
(ξ1, ξ2)

∥∥∥
L2

(ξ1,ξ2)

≲
∥∥∥∥∫

R2
η1,η2

(
⟨ξ1 − η1⟩s1 + ⟨η1⟩s1

)(
⟨ξ2 − η2⟩s2 + ⟨η2⟩s2

)
×
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2∥∥∥∥
L2

(ξ1,ξ2)
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≤

∥∥∥∥∥
∫
R2

η1,η2

⟨ξ1 − η1⟩s1⟨ξ2 − η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

+

∥∥∥∥∥
∫
R2

η1,η2

⟨ξ1 − η1⟩s1⟨η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

+

∥∥∥∥∥
∫
R2

η1,η2

⟨η1⟩s1⟨ξ2 − η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

+

∥∥∥∥∥
∫
R2

η1,η2

⟨η1⟩s1⟨η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

.

For the first term on the right hand side of (3.1.11), by Young’s inequality, we
see that

∥∥∥∥∥
∫
R2

η1,η2

⟨ξ1 − η1⟩s1⟨ξ2 − η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

(3.1.12)

=
∥∥∥(⟨·⟩s1⟨·⟩s2 F̂ ∗ Ĝ

)
(ξ1, ξ2)

∥∥∥
L2

(ξ1,ξ2)

≲
∥∥∥⟨ξ1⟩s1⟨ξ2⟩s2 F̂ (ξ1, ξ2)∥∥∥

L2
(ξ1,ξ2)

∥∥∥Ĝ(ξ1, ξ2)∥∥∥
L1

(ξ1,ξ2)

≲ ∥F∥H(s1,s2) ∥G∥H(s1,s2) ,

where we have used the fact that si > n/2, i = 1, 2. For the forth term on the
right hand side of (3.1.11), by the same way, we also have∥∥∥∥∥

∫
R2

η1,η2

⟨η1⟩s1⟨η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

(3.1.13)

=
∥∥∥(F̂ ∗ ⟨·⟩s1⟨·⟩s2Ĝ

)
(ξ1, ξ2)

∥∥∥
L2

(ξ1,ξ2)

≲
∥∥∥F̂ (ξ1, ξ2)∥∥∥

L1
(ξ1,ξ2)

∥∥∥⟨ξ1⟩s1⟨ξ2⟩s2Ĝ(ξ1, ξ2)∥∥∥
L2

(ξ1,ξ2)

≲ ∥F∥H(s1,s2) ∥G∥H(s1,s2) ,

where we have used the fact that si > n/2, i = 1, 2.
For the second term on the right hand side of (3.1.11), by Minkowski’s

inequality for integrals and Young’s inequality, we see that

∥∥∥∥∥
∫
R2

η1,η2

⟨ξ1 − η1⟩s1⟨η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

(3.1.14)
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≲
∥∥∥∥∥∥∥⟨ξ1⟩s1 F̂ (ξ1, ξ2)∥∥∥

L2(ξ1)

∥∥∥∥
L1(ξ2)

∥∥∥∥∥∥∥⟨ξ2⟩s2Ĝ(ξ1, ξ2)∥∥∥
L1(ξ1)

∥∥∥∥
L2(ξ2)

.

For the first term on the right hand side of (3.1.14), by Schwartz’s inequality,
we obtain ∥∥∥∥∥∥∥⟨ξ1⟩s1 F̂ (ξ1, ξ2)∥∥∥

L2(ξ1)

∥∥∥∥
L1(ξ2)

≲ ∥F (ξ1, ξ2)∥H(s1,s2) ,(3.1.15)

where we have used the fact that s2 > n/2. For the second term of (3.1.14), by
Schwartz’s inequality, we also have∥∥∥∥∥∥∥⟨ξ2⟩s2Ĝ(ξ1, ξ2)∥∥∥L1(ξ1)

∥∥∥∥
L2(ξ2)

≲ ∥G(ξ1, ξ2)∥H(s1,s2) ,(3.1.16)

where we have used the fact that s1 > n/2. By (3.1.14), (3.1.15) and (3.1.16),
we have

∥∥∥∥∥
∫
R2

η1,η2

⟨ξ1 − η1⟩s1⟨η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

(3.1.17)

≲ ∥F∥H(s1,s2)∥G∥H(s1,s2) .

For the third term on the right hand side of (3.1.11), by the same way, we see
that

∥∥∥∥∥
∫
R2

η1,η2

⟨η1⟩s1⟨ξ2 − η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

(3.1.18)

≲
∥∥∥∥∥∥∥⟨ξ2⟩s2 F̂ (ξ1, ξ2)∥∥∥L2(ξ1)

∥∥∥∥
L1(ξ2)

∥∥∥∥∥∥∥⟨ξ1⟩s1Ĝ(ξ1, ξ2)∥∥∥L1(ξ1)

∥∥∥∥
L2(ξ2)

.

For the first term on the right hand side of (3.1.18), by Schwartz’s inequality,
we obtain ∥∥∥∥∥∥∥⟨ξ2⟩s2 F̂ (ξ1, ξ2)∥∥∥

L2(ξ1)

∥∥∥∥
L1(ξ2)

≲ ∥F (ξ1, ξ2)∥H(s1,s2) ,(3.1.19)

where we have used the fact that s1 > n/2. For the second term on the right
hand side of (3.1.18), by Schwartz’s inequality, we have∥∥∥∥∥∥∥⟨ξ1⟩s1Ĝ(ξ1, ξ2)∥∥∥

L1(ξ1)

∥∥∥∥
L2(ξ2)

≲ ∥G(ξ1, ξ2)∥H(s1,s2) ,(3.1.20)

where we have used the fact that s2 > n/2. By (3.1.18), (3.1.19) and (3.1.20),
we see that

∥∥∥∥∥
∫
R2

η1,η2

⟨η1⟩s1⟨ξ2 − η2⟩s2
∣∣∣F̂ (ξ1 − η1, ξ2 − η2)

∣∣∣ ∣∣∣Ĝ(η1, η2)∣∣∣ dη1dη2
∥∥∥∥∥
L2

(ξ1,ξ2)

(3.1.21)
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≲ ∥F∥H(s1,s2)∥G∥H(s1,s2) .

By (3.1.11), (3.1.12), (3.1.13), (3.1.17) and (3.1.21), we have the desired
estimate.

Now, we prove Theorem 1.4.1. Let 1 < p1, . . . , pN < ∞, 1/p1 + · · · +
1/pN = 1/p and n/2 < si ≤ n for i = 1, . . . , N . Assume pi > n/si and

wi ∈ Api/(n/si) for i = 1, · · · , N and set w = w
p/p1

1 . . . w
p/pN

N . We also assume
that m ∈ L∞(RNn) satisfies supj∈Z ∥mj∥H(s1,...,sN )((Rn)N ) < ∞, where mj is

defined by (2.2.2). Since n/si < min{2, pi} and wi ∈ Api/(n/si) for i = 1, . . . , N ,
by Lemma 2.4.2 (2), we can take n/si < qi < min{2, pi} satisfying wi ∈ Api/qi

for i = 1, . . . , N . By Lemma 2.4.1 (1), we decompose m as follows:

m(ξ) =
∑

(i1,...,iN )∈{0,1}N ,
(i1,...,iN ) ̸=(0,...,0)

Φ(i1,...,iN )(ξ)m(ξ)

=
∑

(i1,...,iN )∈{0,1}N ,
(i1,...,iN ) ̸=(0,...,0)

m(i1,...,iN )(ξ).

3.2 Estimate for m(1,0,...,0) type

We first consider the case where (i1, . . . , iN ) satisfies ♯{j : ij = 1} = 1. Without
loss of generality, we may assume that i1 = 1. We simply write m instead of
m(1,0,...,0). Note that by Lemma 2.4.1 (3),

suppm ⊂ {ξ = (ξ1, . . . , ξN ) ∈ (Rn)N : |ξi| ≤ |ξ1|/N, i = 2, . . . , N}.(3.2.1)

It is easy to see that if ξ = (ξ1, . . . , ξN ) ∈ suppm, then |ξ1 + · · ·+ ξN | ≈ |ξ1|.

Proof. In this case, we shall prove the estimate

∥Tm(f1, . . . , fN )∥Lp(w)(3.2.2)

≲
(
sup
j∈Z

∥m(j)∥H(s1,...,sN )((Rn)N )

) N∏
i=1

∥fi∥Lpi (wi)

holds, where m(j) will be defined later on. In Section 3.4, we shall complete the
proof.

Let ψ be as in (2.2.1) with d = n. Since w ∈ ANp ⊂ A∞ ([19, p.1232]), we
can use the way of Grafakos-Si ([13, Lemma 2.4] or [7, Remark 2.6]),

∥Tm(f1, . . . , fN )∥Lp(w) ≲

∥∥∥∥∥∥∥
∑

j∈Z
|∆jTm(f1, . . . , fN )|2


1/2
∥∥∥∥∥∥∥
Lp(w)

,(3.2.3)

where ∆jg = ψ(D/2j)g.
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By Fubini’s Theorem and the Fourier inversion formula, we see that

∆jTm(f1, . . . , fN )(x)

=
1

(2π)Nn

∫
(Rn)N

eix·(ξ1+···+ξN )m(ξ)ψ((ξ1 + · · ·+ ξN )/2j)

× f̂1(ξ1) . . . f̂N (ξN ) dξ.

We shall prove that for ξ = (ξ1, . . . , ξN ) ∈ suppm satisfying 2j−1 ≤ |ξ1 + · · ·+
ξN | ≤ 2j+1, we can find functions φ ∈ A0 and ψ̃ ∈ A1 independent of j such
that

m(ξ)ψ

(
ξ1 + · · ·+ ξN

2j

)
(3.2.4)

= m(ξ)ψ

(
ξ1 + · · ·+ ξN

2j

)
ψ̃(ξ1/2

j)2φ(ξ2/2
j) · · ·φ(ξN/2j).

Once this is proved, setting

m(j)(ξ) = m(2jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) · · ·φ(ξN ),(3.2.5)

we have

∆jTm(f1, . . . , fN )(x) = Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )(x),(3.2.6)

where ∆̃jf1 = ψ̃(D/2j)f1. Let ξ = (ξ1, . . . , ξN ) ∈ suppm satisfying 2j−1 ≤
|ξ1 + · · · + ξN | ≤ 2j+1. We can find a function ψ̃ ∈ A1 such that ψ̃(ξ1) = 1 on
{ξ1 ∈ Rn : N/2(2N − 1) ≤ |ξ1| ≤ 2N}, and we obtain

m(ξ)ψ((ξ1 + · · ·+ ξN )/2j) = m(ξ)ψ((ξ1 + · · ·+ ξN )/2j)ψ̃(ξ1/2
j)2,

where we have used the fact that by (3.2.1), in this area, N/2(2N − 1) ≤
|ξ1|/2j ≤ 2N holds. Moreover we can find a function φ ∈ A0 such that φ(ξi) = 1
on {ξi ∈ Rn : |ξi| ≤ 2}, i = 2, . . . , N , and we obtain

m(ξ)ψ((ξ1 + · · ·+ ξN )/2j)ψ̃(ξ1/2
j)2

= m(ξ)ψ((ξ1 + · · ·+ ξN )/2j)ψ̃(ξ1/2
j)2φ(ξ2/2

j) . . . φ(ξN/2
j)

where we have the fact that by (3.2.1), in this area, |ξi|/2j ≤ 2, i = 2, . . . , N
holds. Combining these, we have (3.2.4).

By Lemma 3.1.2, we see that∑
j∈Z

∣∣∣Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )(x)
∣∣∣2

≲
(
sup
j∈Z

∥m(j)∥H(s1,...,sN )

)2
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×
∑
j∈Z

M(|∆̃jf1|q1)(x)2/q1 ×
N∏
i=2

M(|fi|qi)(x)2/qi .

By Hölder’s inequality, we have∥∥∥∥∥∥∥
∑

j∈Z

∣∣∣Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )
∣∣∣2


1/2
∥∥∥∥∥∥∥
Lp(w)

(3.2.7)

≲
(
sup
j∈Z

∥m(j)∥H(s1,...,sN )

)

×

∥∥∥∥∥∥∥
∑

j∈Z

M(|∆̃jf1|q1)2/q1


1/2
∥∥∥∥∥∥∥
Lp1 (w1)

N∏
i=2

∥∥∥M(|fi|qi)1/qi
∥∥∥
Lpi (wi)

.

For the second term on the right hand side of (3.2.7), since 1 < 2/q1, p1/q1 and
w1 ∈ Ap1/q1 , it follows from Lemmas 2.4.4 and 2.4.3 that

∥∥∥∥∥∥∥
∑

j∈Z
M(|∆̃jf1|q1)2/q1


1/2
∥∥∥∥∥∥∥
Lp1 (w1)

=

∥∥∥∥∥∥∥
∑

j∈Z
M(|∆̃jf1|q1)2/q1


q1/2

∥∥∥∥∥∥∥
1/q1

Lp1/q1 (w1)

(3.2.8)

≲

∥∥∥∥∥∥∥
∑

j∈Z
|∆̃jf1|2

q1/2
∥∥∥∥∥∥∥
1/q1

Lp1/q1 (w1)

=

∥∥∥∥∥∥∥
∑

j∈Z
|∆̃jf1|2

1/2
∥∥∥∥∥∥∥
Lp1 (w1)

≲ ∥f∥Lp1 (w1).

For the third term on the right hand side of (3.2.7), since pi > qi and wi ∈ Api/qi ,
i = 2, . . . , N , we see that

N∏
i=2

∥∥∥M (|fi|qi)1/qi
∥∥∥
Lpi (wi)

=

N∏
i=2

∥M (|fi|qi)∥1/qiLpi/qi (wi)
(3.2.9)

≲
N∏
i=2

∥|fi|qi∥1/qiLpi/qi (wi)

=

N∏
i=2

∥fi∥Lpi (wi)
,

where we have used the boundedness of M on Lpi/qi(wi), i = 2, . . . , N . By
(3.2.3), (3.2.6), (3.2.7), (3.2.8) and (3.2.9), we obtain (3.2.2).
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3.3 Estimate for m(1,1,i3,...,iN ) type

Next, we consider the case where (i1, . . . , iN ) satisfies ♯{j : ij = 1} ≥ 2. Without
loss of generality, we may assume that i1 = i2 = 1. We simply write m instead
of m(1,1,i3,...,iN ), where i3, . . . , iN ∈ {0, 1}. Note that by Lemma 2.4.1 (3),

suppm(3.3.1)

⊂ {|ξ1|/(4N) ≤ |ξ2| ≤ 4N |ξ1|, |ξi| ≤ 4N |ξ1|, i = 3, . . . , N}.

Proof. In this case, we shall prove the estimate

∥Tm(f1, . . . , fN )∥Lp(w)(3.3.2)

≲
(
sup
j∈Z

∥m(j)∥H(s1,...,sN )((Rn)N )

) N∏
i=1

∥fi∥Lpi (wi)

holds, where m(j) will be defined later on. In Section 3.4, we shall complete the
proof.

Since ψ is in (2.2.1) with d = n, we see that

Tm(f1, . . . , fN )(x)

=
∑
j∈Z

1

(2π)Nn

∫
(Rn)N

eix·(ξ1+···+ξN )m(ξ)ψ(ξ1/2
j)f̂1(ξ1) . . . f̂N (ξN ) dξ.

We shall prove that for ξ = (ξ1, . . . , ξN ) ∈ suppm and ξ1 ∈ suppψ(·/2j), we
can find functions φ ∈ A0 and ψ̃ ∈ A1 independent of j such that

m(ξ)ψ(ξ1/2
j)(3.3.3)

= m(ξ)ψ(ξ1/2
j)ψ̃(ξ1/2

j)ψ̃(ξ2/2
j)2φ(ξ3/2

j) . . . φ(ξN/2
j).

Once this is proved, setting

m(j)(ξ) = m(2jξ)ψ(ξ1)ψ̃(ξ2)φ(ξ3) . . . φ(ξN ),(3.3.4)

we have

Tm(f1, . . . , fN )(x) =
∑
j∈Z

Tm(j)(·/2j)(∆̃jf1, ∆̃jf2, f3, . . . , fN )(x),(3.3.5)

where ∆̃jfi = ψ̃(D/2j)fi, i = 1, 2. Let ξ = (ξ1, . . . , ξN ) ∈ suppm and ξ1 ∈
suppψ(·/2j). We can find a function ψ̃ ∈ A1 such that ψ̃(ξ1) = 1 on {ξ1 ∈ Rn :
1/2 ≤ |ξ1| ≤ 2}, and we obtain

m(ξ)ψ(ξ1/2
j) = m(ξ)ψ(ξ1/2

j)ψ̃(ξ1/2
j)

where we have used the fact that by ξ1 ∈ suppψ(·/2j), in this area, 1/2 ≤
|ξ1|/2j ≤ 2 holds. Moreover, we can find a function ψ̃ ∈ A1 such that ψ̃(ξ2) = 1
on {ξ2 ∈ Rn : 1/(8N) ≤ |ξ2| ≤ 8N}, and we obtain

m(ξ)ψ(ξ1/2
j)ψ̃(ξ1/2

j) = m(ξ)ψ(ξ1/2
j)ψ̃(ξ1/2

j)ψ̃(ξ2/2
j)2
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where we have used the fact that by (3.3.1), in this area, 1/(8N) ≤ |ξ2|/2j ≤
8N holds. Moreover, we can find a function φ ∈ A0 such that φ(ξi) = 1 on
{ξi ∈ Rn : |ξi| ≤ 8N}, i = 3, . . . , N , and we see that

m(ξ)ψ(ξ1/2
j)ψ̃(ξ1/2

j)ψ̃(ξ2/2
j)2

= m(ξ)ψ(ξ1/2
j)ψ̃(ξ1/2

j)ψ̃(ξ2/2
j)2φ(ξ3/2

j) . . . φ(ξN/2
j)

where we have used the fact that by (3.3.1) in this area, |ξi|/2j ≤ 8N , i =
3, . . . , N holds. Combining these, we have (3.3.3).

By (3.3.5) and Lemma 3.1.2, it follows that

|Tm(f1, . . . , fN )(x)| ≤
∑
j∈Z

∣∣∣Tm(j)

(
∆̃jf1, ∆̃jf2, f3, . . . , fN

)
(x)
∣∣∣

≲
(
sup
j∈Z

∥m(j)∥H(s1,...,sN )((Rn)N )

)

×
∑
j∈Z

2∏
i=1

M
(
|∆̃jfi|qi

)
(x)1/q1

N∏
i=3

M (|fi|qi) (x)1/qi .

By Schwarz’s inequality and Hölder’s inequality, we see that

∥Tm(f1, . . . , fN )∥Lp(w)

≲
(
sup
j∈Z

∥m(j)∥H(s1,...,sN )((Rn)N )

)

×
2∏

i=1

∥∥∥∥∥∥∥
∑

j∈Z

M
(
|∆̃jfi|qi

)
(x)2/qi


1/2
∥∥∥∥∥∥∥
Lpi (wi)

N∏
i=3

∥∥∥M (|fi|qi) (x)1/qi
∥∥∥
Lpi (wi)

.

By the same way as for m(1,0,...,0), we obtain (3.3.2).

3.4 Completion of the proof of Theorem 1.4.1

In this section, we shall prove the estimate

sup
j∈Z

∥m(j)∥H(s1,...,sN )((Rn)N ) ≲ sup
j∈Z

∥mj∥H(s1,...,sN )((Rn)N )

holds, where m(j) is defined by (3.2.5) or (3.3.4), and mj is defined by (2.2.2).

Proof. We first consider the case where m(j) is the same as in (3.2.5). Since
suppΨ(·/2ℓ) ⊂ {ξ ∈ (Rn)N : 2ℓ−1 ≤ |ξ| ≤ 2ℓ+1} and

supp ψ̃(ξ1)φ(ξ2) . . . φ(ξN ) ⊂ {ξ ∈ (Rn)N : 2−j0 ≤ |ξ| ≤ 2j0}(3.4.1)
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for some j0 ∈ N, for example, j0 = [log2 2(N + 1)], where [s] is the integer part
of s ∈ R. It follows from Lemma 3.1.3 that

∥m(j)∥H(s1,...,sN )

(3.4.2)

=
∥∥∥m(2jξ)Φ(1,0,...,0)(2

jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )
∥∥∥
H(s1,...,sN )

≲
j0∑

ℓ=−j0

∥∥m(2jξ)Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )

× ψ̃(ξ1)φ(ξ2) . . . φ(ξN )Ψ(ξ/2ℓ)
∥∥
H(s1,...,sN )

≲
j0∑

ℓ=−j0

∥m(2jξ)Ψ(ξ/2ℓ)∥H(s1,...,sN )

× ∥Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )∥H(s1,...,sN ) .

For the first term on the right hand side of (3.4.2), by a change of variables, we
have

∥m(2jξ)Ψ(ξ/2ℓ)∥H(s1,...,sN ) = ∥m
(
2j+ℓ(ξ/2ℓ)

)
Ψ(ξ/2ℓ)∥H(s1,...,sN )(3.4.3)

= ∥mj+ℓ(ξ/2
ℓ)∥H(s1,...,sN )

≲ ∥mj+ℓ∥H(s1,...,sN )

≲ sup
j∈Z

∥mj∥H(s1,...,sN ) .

For the second term on the right hand side of (3.4.2), by Lemma 2.4.1 (2),
(3.4.1) and Lemma 2.4.6, we see that

∥∥∥Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )

∥∥∥
H(s1,...,sN )

(3.4.4)

≲
∥∥∥Φ(1,0,...,0)(2

jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )
∥∥∥
Hs1+···+sN

≲
∥∥∥Φ(1,0,...,0)(2

jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )
∥∥∥
H[s1+···+sN ]+1

≤ sup
j∈Z

∥∥∥Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )

∥∥∥
H[s1+···+sN ]+1

<∞.

By (3.4.2), (3.4.3) and (3.4.4), we have the desired estimate. In the case where
m(j) is the same as in (3.3.4), the proof is similar to that of m(1,0,...,0), and we
omit it.
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Chapter 4

The proof of Theorem 1.4.2

In this chapter, we study weighted norm inequalities for multilinear Fourier
multipliers with the Lr-based Sobolev regularity, 1 < r ≤ 2. In [30], the bound-
edness of Tm under the condition

sup
j∈Z

∥mj∥B(n/r,...,n/r)
r,1 ((Rn)N )

<∞, 1 ≤ r < 2

was discussed. And weighted norm inequalities for multilinear Fourier multipli-
ers with Besov regularity will be considered in Chapter 6.

4.1 A Lemma

Lemma 4.1.1. Let r > 0 and pi ≤ qi, i = 1, . . . , N . Then, the estimate∥∥∥∥∥∥∥∥⟨ξ1⟩s1 F̂ (ξ1, . . . , ξN )
∥∥∥
Lq1 (Rn

ξ1
)
. . . ⟨ξN ⟩sN

∥∥∥∥∥
LqN (Rn

ξN
)

(4.1.1)

≲
∥∥∥∥∥∥∥∥⟨ξ1⟩s1 F̂ (ξ1, . . . , ξN )

∥∥∥
Lp1 (Rn

ξ1
)
. . . ⟨ξN ⟩sN

∥∥∥∥∥
LpN (Rn

ξN
)

holds, where suppF ⊂ {ξ = (ξ1, . . . , ξN ) ∈ (Rn)N : |ξ| ≤ r}.

Proof. By the same way in Lemma 3.1.1, we obtain the desired estimate.

Now, we prove Theorem 1.4.2. Let 1 < p1, . . . , pN < ∞, 1/p1 + · · · +
1/pN = 1/p and 1 < rN ≤ rN−1 ≤ · · · ≤ r2 ≤ r1 ≤ 2, n/ri < si ≤ n for
i = 1, . . . , N . Assume pi > n/si and wi ∈ Api/(n/si) for i = 1, · · · , N and set

w = w
p/p1

1 . . . w
p/pN

N . We also assume that m ∈ L∞(RNn) satisfies

sup
j∈Z

∥mj∥H(s1,...,sN )

(r1,...,rN )
((Rn)N )

<∞,
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where mj is defined by (2.2.2) and H
(s1,...,sN )
(r1,...,rN ) ((R

n)N ) is defined by (2.3.1).

Since n/si < min{ri, pi} and wi ∈ Api/(n/si) for i = 1, . . . , N , by Lemma 2.4.2
(2), we can take n/si < qi < ri satisfying wi ∈ Api/qi , i = 1, . . . , N . By Lemma
2.4.1 (1), we decompose m as follows:

m(ξ) =
∑

(i1,...,iN )∈{0,1}N ,
(i1,...,iN ) ̸=(0,...,0)

Φ(i1,...,iN )(ξ)m(ξ)

=
∑

(i1,...,iN )∈{0,1}N ,
(i1,...,iN ) ̸=(0,...,0)

m(i1,...,iN )(ξ).

4.2 Estimate for m(1,0,...,0) type

We first consider the case where (i1, . . . , iN ) satisfies ♯{j : ij = 1} = 1. Without
loss of generality, we may assume that i1 = 1. We simply write m instead of
m(1,0,...,0).

As in Section 3.2, we can find functions φ ∈ A0 and ψ̃ ∈ A1 independent of j
satisfying (3.2.4). SetBj(ξ) = Φ(1,0,...,0)(2

jξ)ψ(ξ1+· · ·+ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN ).
The following is a key lemma in the proof of Theorem 1.4.2.

Lemma 4.2.1. Let r > 0, rN ≤ rN−1 ≤ · · · ≤ r2 ≤ r1, n/ri < si ≤ n and
n/si < qi < ri, i = 1, . . . , N . Then, the estimate∣∣Tm(j)(·/2j)(f1, . . . , fN )(x)

∣∣(4.2.1)

≲ ∥mj∥H(s1,...,sN )

(r1,...,rN )
((Rn)N )

N∏
i=1

M(|fi|qi)(x)1/qi

holds for all x ∈ Rn, j ∈ Z and m ∈ H
(s1,...,sN )
(r1,...,rN ) ((R

n)N ) with suppm ⊂ {ξ =

(ξ1, . . . , ξN ) ∈ (Rn)N : |ξ| ≤ r}, where m(j)(ξ) = mj(ξ)Bj(ξ).

Proof. By (3.1.10), we obtain

∣∣Tm(j)(·/2j)(f1, . . . , fN )(x)
∣∣ ≲ ∥∥∥m̂(j)

∥∥∥
L

(q′1,...,q′
N

)

(s1q′1,...,sNq′
N

)

N∏
i=1

M (|fi|qi) (x)1/qi .

We shall prove that the estimate∥∥∥m̂(j)
∥∥∥
L

(q′1,...,q′
N

)

(s1q′1,...,sNq′
N

)

≲ ∥mj∥H(s1,...,sN )

(r1,...,rN )
((Rn)N )

(4.2.2)

holds. Once this is proved, we have the desired estimate. The left hand side of
(4.2.2) is as follows:∥∥∥m̂(j)

∥∥∥
L

(q′1,...,q′
N

)

(s1q′1,...,sNq′
N

)
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=

{∫
Rn

ξN

. . .

×


∫
Rn

ξ2

(∫
Rn

ξ1

⟨ξ1⟩s1q
′
1⟨ξ2⟩s2q

′
1 . . . ⟨ξN ⟩sNq′1 |m̂(j)(ξ1, ξ2, . . . , ξN )|q

′
1 dξ1

)q′2/q
′
1

dξ2


q′3/q

′
2

× . . . dξN}1/q
′
N .

Since ⟨ξi⟩si ≲ ⟨ξi − ηi⟩si⟨ηi⟩si , i = 1, . . . , N , we have

⟨ξ1⟩s1q
′
1⟨ξ2⟩s2q

′
1 . . . ⟨ξN ⟩sNq′1 |m̂(j)(ξ1, ξ2, . . . , ξN )|q

′
1

=
∣∣∣⟨ξ1⟩s1⟨ξ2⟩s2 . . . ⟨ξN ⟩sN

[
m̂j ∗ B̂j

]
(ξ1, ξ2, . . . , ξN )

∣∣∣q′1
≤ |⟨ξ1 − η1⟩s1 . . . ⟨ξN − ηN ⟩sN ⟨η1⟩s1 . . . ⟨ηN ⟩sN

×
∫
η

m̂j(ξ1 − η1, . . . , ξN − ηN )B̂j(η1, . . . , ηN ) dη1 . . . dηN

∣∣∣∣q′1
=

∣∣∣∣∫
η

⟨ξ1 − η1⟩s1 . . . ⟨ξN − ηN ⟩sN m̂j(ξ1 − η1, . . . , ξN − ηN )

× ⟨η1⟩s1 . . . ⟨ηN ⟩sN B̂j(η1, . . . , ηN ) dη1 . . . dηN

∣∣∣q′1
=
∣∣∣{⟨ξ1⟩s1 . . . ⟨ξN ⟩sN m̂j(ξ1, . . . , ξN ) ∗ ⟨ξ1⟩s1 . . . ⟨ξN ⟩sN B̂j(ξ1, . . . , ξN )

}
(ξ1, . . . , ξN )

∣∣∣q′1 ,
where η = (η1, . . . , ηN ) ∈ (Rn)N . By Young’s inequality with mixed type
(Lemma 2.4.7), we see that∥∥∥m̂(j)

∥∥∥
L

(q′1,...,q′
N

)

(s1q′1,...,sNq′
N

)

(4.2.3)

≤
∥∥∥∥∥⟨ξ1⟩s1 . . . ⟨ξN ⟩sN m̂j(ξ1, . . . , ξN )∥

Lq′1 (Rn
ξ1

)
. . .

∥∥∥∥
Lq′

N (Rn
ξN

)

×

∥∥∥∥∥∥∥∥⟨ξ1⟩s1 . . . ⟨ξN ⟩sN B̂j(ξ1, . . . , ξN )
∥∥∥
L1(Rn

ξ1
)
. . .

∥∥∥∥∥
L1(Rn

ξN
)

.

For the first term of the right hand side of (4.2.3), by Lemma 4.1.1 and Hausdorff-
Young’s inequality with mixed type (Lemma 2.4.8), it follows that∥∥∥∥∥⟨ξ1⟩s1m̂j(ξ1, . . . , ξN )∥

Lq′1 (Rn
ξ1

)
. . . ⟨ξN ⟩sN

∥∥∥∥
Lq′

N (Rn
ξN

)

≤
∥∥∥∥∥⟨ξ1⟩s1m̂j(ξ1, . . . , ξN )∥

Lr′1 (Rn
ξ1

)
. . . ⟨ξN ⟩sN

∥∥∥∥
Lr′

N (Rn
ξN

)

≤
∥∥∥∥∥∥F−1 [⟨ξ1⟩s1 . . . ⟨ξN ⟩sN m̂j(ξ1, . . . , ξN )] (y1, . . . , yN )

∥∥
Lr1 (Rn

y1
)
. . .

∥∥∥∥
LrN (Rn

yN
)
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= ∥mj∥H(s1,...,sN )

(r1,...,rN )
((Rn)N )

.

For the second term of the right hand side of (4.2.3), by Bj is homogeneous of
degree 0, we obtain∥∥∥∥∥∥∥∥⟨ξ1⟩s1 . . . ⟨ξN ⟩sN B̂j(ξ1, . . . , ξN )

∥∥∥
L1(Rn

ξ1
)
. . .

∥∥∥∥∥
L1(Rn

ξN
)

<∞.

Therefore, we have (4.2.2).

4.3 Estimate for m(1,1,i3,...,iN ) type

In the case where (i1, . . . , iN ) satisfies ♯{j : ij = 1} ≥ 2, the proof is similar to
and we omit it.
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Chapter 5

The proof of Theorem 1.4.3

In this chapter, we consider the problem whether weighted norm inequalities
for multilinear Fourier multipliers with Sobolev regularity hold under the weak
condition on weights. We first prove the following lemmas which will be used
in the proof of Theorem 1.4.3.

5.1 Lemmas

The proof of the following lemma is based on the argument of [11, Example
9.1.7].

Lemma 5.1.1 ([9, Lemma 2.1]). Let N be a natural number and N ≥ 2,
1 < p1, . . . , pN <∞ and 1/p1 + · · ·+ 1/pN = 1/p. If α1, α2 satisfy

α1/p1 + α2/p2 > −n/p and αi < n(pi − 1) for i = 1, 2,

then the conclusion

(|x|α1 , |x|α2 , 1, . . . , 1) ∈ A(p1,p2,p3,...,pN )

holds.

Proof. Since wi = 1, i = 3, . . . , N , the desired conclusion is the following.

sup
B

(
1

|B|

∫
B

|x|(α1/p1+α2/p2)p dx

)1/p 2∏
i=1

(
1

|B|

∫
B

|x|αi(1−p′
i) dx

)1/p′
i

<∞,

where the supremum is taken over all balls B in Rn (instead of cubes). Let B
be the ball with center x0 and radius r.

We first consider the case |x0| ≥ 2r. Note that for all x ∈ B,

|x| ≤ |x0|+ |x− x0| ≤ |xo|+ r ≤ |x0|+ 1/2|x0| = 3/2|x0|,
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and

|x0| ≤ |x|+ |x− x0| ≤ |x|+ r ≤ |x|+ 1/2|x0|,

so we have |x0| ≤ 2|x|. Hence, for all x ∈ B we obtain |x| ≈ |x0|. Then(
1

|B|

∫
B

|x|(α1/p1+α2/p2)p dx

)1/p 2∏
i=1

(
1

|B|

∫
B

|x|αi(1−p′
i) dx

)1/p′
i

(5.1.1)

≲
(

1

|B|

∫
B

|x0|(α1/p1+α2/p2)p dx

)1/p 2∏
i=1

(
1

|B|

∫
B

|x0|αi(1−p′
i) dx

)1/p′
i

= |x0|α1/p1+α2/p2

2∏
i=1

|x0|αi(1−p′
i)1/p

′
i

= 1.

We next consider the case |x0| < 2r. For all x ∈ B,

|x| ≤ |x0|+ |x− x0| < 2r + r = 3r.

Hence, we have B ⊂ {x ∈ Rn : |x| < 3r}. Thus, we obtain

1

|B|

∫
B

|x|(α1/p1+α2/p2)p dx ≤ 1

|B|

∫
{x∈Rn:|x|<3r}

|x|(α1/p1+α2/p2)p dx(5.1.2)

<
1

|B|
(3r)(α1/p1+α2/p2)p

∫
{|x|<3r}

1 dx

≲ r(α1/p1+α2/p2)p.

For i = 1, 2, we see that

1

|B|

∫
B

|x|αi(1−p′
i) dx ≤ 1

|B|

∫
{x∈Rn:|x|<3r}

|x|αi(1−p′
i) dx(5.1.3)

<
1

|B|
(3r)αi(1−p′

i)

∫
{x∈Rn:|x|<3r}

1 dx

≲ rαi(1−p′
i).

By (5.1.2) and (5.1.3), we obtain(
1

|B|

∫
B

|x|(α1/p1+α2/p2)p dx

)1/p 2∏
i=1

(
1

|B|

∫
B

|x|αi(1−p′
i) dx

)1/p′
i

(5.1.4)

≲ rα1/p1+α2/p2rαi(1−p′
i)/p

′
i

= 1.

By (5.1.1) and (5.1.4), we have the desired conclusion.
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Lemma 5.1.2 ([9, Lemma 2.2]). Let r > 0 and ℓ ∈ Z+. Then there is a
function φ ∈ S(Rn) such that suppφ ⊂ {x ∈ Rn : |x| ≤ r},∫

Rn

φ(x)2 dx ̸= 0,(5.1.5)

and ∫
Rn

xβφ(x) dx = 0, β ∈ Zn
+, |β| ≤ ℓ.(5.1.6)

Proof. We can take a real-valued function ψ ∈ S(Rn)\{0} satisfying suppψ ⊂
{x ∈ Rn : |x| ≤ r}. We set

φ(x) = (−∆)ℓ+1ψ(x).

Since ψ ̸= 0, we have ψ̂ ̸= 0. Hence, we can take ξ0 ∈ Rn and r0 > 0 satisfying

ξ ∈ Rn, |ξ − ξ0| ≤ r0 =⇒ ψ̂(ξ) ̸= 0.

Since φ is a real-valued function, by Plancherel’s theorem, we obtain∫
Rn

φ(x)2 dx =

∫
Rn

(−∆)2(ℓ+1)ψ(x)2 dx

=

∫
Rn

∣∣(−∆)ℓ+1ψ(x)
∣∣2 dx

=
1

(2π)n

∫
Rn

∣∣∣|ξ|2(ℓ+1)ψ̂(ξ)
∣∣∣2 dξ

≥ 1

(2π)n

∫
|ξ−ξ0|≤r0

∣∣∣|ξ|2(ℓ+1)ψ̂(ξ)
∣∣∣2 dξ

≥ 1

(2π)n
inf

|ξ−ξ0|≤r0
|ψ̂(ξ)|2

∫
|ξ−ξ0|≤r0

|ξ|4(ℓ+1) dξ ̸= 0.

Thus, we have (5.1.5). For |β| ≤ ℓ, we see that∫
Rn

(−ix)βφ(x) dx =

∫
Rn

e−i⟨x,0⟩(−ix)βφ(x) dx(5.1.7)

= F
[
(−ix)βφ(x)

]
(0)

=
(
∂βξ F [φ](ξ)

)
(0).

By Leibniz’s formula, we obtain(
∂βξ F [φ]

)
(ξ) =

(
∂βξ F

[
(−∆)ℓ+1ψ(x)

])
(ξ)

=
(
∂βξ

{
|ξ|2(ℓ+1)ψ̂(ξ)

})
(ξ)

=
∑
α≤β

βCα∂
α(|ξ|2(ℓ+1))∂β−αψ̂(ξ).
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By |β| ≤ ℓ, we see that (
∂βξ F [φ](ξ)

)
(0) = 0.(5.1.8)

By (5.1.7) and (5.1.8), we have (5.1.6).

Lemma 5.1.3. Let φ̂ ∈ S(Rn) be a function as in Lemma 5.1.2 with supp φ̂ ⊂
{η ∈ Rn : |η| ≤ 1/(10N)} and ℓ satisfying p1(ℓ+1)+α1 > −n. For sufficiently
small ε > 0, we set

m(ε)(ξ) = φ̂

(
ξ1 − e1
ε

)
φ̂(ξ2) . . . φ̂(ξN ),

where e1 = (1, 0, . . . , 0) ∈ Rn and ξ = (ξ1, . . . , ξN ) ∈ (Rn)N . Then the estimate

sup
j∈Z

∥(m(ε))j∥H(s/N,...,s/N)((Rn)N ) ≲ ε−s/N+n/2

holds, where (m(ε))j is defined by (2.2.2) with m replaced by m(ε).

Proof. For sufficiently small α > 0, we can take Ψ ∈ S(RNn) appearing in the
definition of (m(ε))j satisfying

suppΨ ⊂
{
ξ ∈ RNn : 2−1/2−α ≤ |ξ| ≤ 21/2+α

}
,

Ψ(ξ) =1 on
{
ξ ∈ RNn : 2−1/2+α ≤ |ξ| ≤ 21/2−α

}
.

If ε > 0 is sufficiently small, then we see that

suppm(ε)

⊂
{
ξ = (ξ1, . . . , ξN ) ∈ (Rn)N : |ξ1 − e1| ≤ ε/(10N), |ξi| ≤ 1/(10N), i = 2, . . . , N

}
⊂
{
ξ = (ξ1, . . . , ξN ) ∈ (Rn)N : 2−1/2+α ≤ |ξ| ≤ 21/2−α

}
.

Hence, we have

(
m(ε)

)
j
(ξ) = m(ε)(2jξ)Ψ(ξ) =

{
m(ε)(ξ) (j = 0)

0 (j ̸= 0),

where ξ = (ξ1, . . . , ξN ) ∈ (Rn)N . Thus, we see that

sup
j∈Z

∥∥∥∥(m(ε)
)
j

∥∥∥∥
H(s/N,...,s/N)((Rn)N )

(5.1.9)

=
∥∥∥m(ε)

∥∥∥
H(s/N,...,s/N)((Rn)N )

=

∥∥∥∥φ̂(ξ1 − e1
ε

)
φ̂(ξ2) . . . φ̂(ξN )

∥∥∥∥
H(s/N,...,s/N)((Rn)N )

43



=

∥∥∥∥φ̂(ξ1 − e1
ε

)∥∥∥∥
Hs/N (Rn

ξ1
)

∥φ̂∥N−1
Hs/N (Rn) .

For the first term of the right hand side of (5.1.9), by a change of variables and
φ ∈ S(Rn), for sufficiently large M > 0, we obtain

∥∥∥∥φ̂(ξ1 − e1
ε

)∥∥∥∥
Hs/N (Rn

ξ1
)

(5.1.10)

=
∥∥∥εnφ(εx)(1 + |x|2)s/2N

∥∥∥
L2

=

{∫
Rn

ε2n|φ(εx)|2(1 + |x|2)s/N dx

}1/2

≤ εn
{∫

Rn

1

(1 + |εx|)2M
(1 + |x|2)s/N dx

}1/2

= εn

{∫
|x|≤1

(1 + |x|2)s/N

(1 + |εx|)2M
dx+

∫
1<|x|≤1/ε

(1 + |x|2)s/N

(1 + |εx|)2M
dx+

∫
|x|>1/ε

(1 + |x|2)s/N

(1 + |εx|)2M
dx

}1/2

≲ εn

{∫
|x|≤1

1 dx+

∫
1<|x|≤1/ε

|x|2s/N dx+

∫
|x|>1/ε

|x|2s/N 1

(ε|x|)2M
dx

}1/2

.

For the first term of the right hand side of (5.1.10), since s/N > 0, we see that∫
|x|≤1

1 dx = 1 ≤ ε−2s/N−n.(5.1.11)

For the second term of the right hand side of (5.1.10), we have∫
1<|x|≤1/ε

|x|2s/N dx ≤
∫
1<|x|≤1/ε

(
1

ε

)2s/N

dx(5.1.12)

= ε−2s/N

∫
1<|x|≤1/ε

1 dx = ε−2s/N

(
1

ε
− 1

)n

≤ ε−2s/N

(
1

ε

)n

= ε−2s/N−n.

For the third term of the right hand side of (5.1.10), by M > 0 is sufficiently
large, we see that∫

|x|>1/ε

|x|2s/N 1

(ε|x|)2M
dx = ε−2M

∫
|x|>1/ε

1

|x|2M−2s/N
dx(5.1.13)

≲ ε−2s/N−n.

By (5.1.9), (5.1.10), (5.1.11), (5.1.12) and (5.1.13), we have the desired estimate.
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5.2 The proof of Theorem 1.4.3

Now, we prove Theorem 1.4.3. Let N ≥ 2, 1 < p1, . . . , pN < ∞, 1/p1 + · · · +
1/pN = 1/p and Nn/2 < s ≤ Nn. Assume pi > Nn/s for i = 1, . . . N . We first
prove that we can take α1 < −n and α2 > −n satisfying

αi/pi < s/N − n/pi , i = 1, 2,(5.2.1)

α1/p1 + α2/p2 > −n/p,(5.2.2)

and

α1/p1 < −n/p1 − s/N + n/2.(5.2.3)

Indeed, by the inequality

−n/p+ n/p1 + s/N − n/2 < s/N − n/p2

and

s/N − n/p2 > 0,

we can take α2 ≥ 0 satisfying

−n/p+ n/p1 + s/N − n/2 < α2/p2 < s/N − n/p2.

Hence, we have (5.2.1) with i = 2. By the inequality,

−α2/p2 − n/p < −n/p1 − s/N + n/2,

we can take α1 satisfying

−α2/p2 − n/p < α1/p1 < −n/p1 − s/N + n/2.

Thus, we obtain (5.2.2) and (5.2.3). Moreover, by the inequality,

α1/p1 < −n/p1 − s/N + n/2 < −n/p1 + s/N,

we have (5.2.1) with i = 1. Therefore, we obtain (5.2.1) (5.2.2) and (5.2.3).
For α1 and α2 satisfying (5.2.1), (5.2.2) and (5.2.3), we set

w⃗0 = (w1, w2, w3, . . . , wN ) = (|x|α1 , |x|α2 , 1, . . . , 1),(5.2.4)

νw⃗0
= w

p/p1

1 . . . w
p/pN

N = |x|p(α1/p1+α2/p2).

Let (q1, . . . , qN ) = (p1s/(Nn), . . . , pNs/(Nn)) and 1/q1 + · · · + 1/qN = 1/q.
By 1/q = Nn/(sp), (5.2.1) and (5.2.2), we have α1/q1 + α2/q2 > −nq and
αi < n(qi − 1), i = 1, 2. By Lemma 5.1.1, we see that w⃗0 ∈ A(q1,...,qN ) =
A(p1s/(Nn)),...,pNs/(Nn).
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We shall prove Theorem 1.4.3 with w⃗0 defined by (5.2.4) by contradiction.
To do this, we assume that the estimate

∥Tm∥Lp1 (w1)×···×LpN (wN )→Lp(νw⃗0
) ≲ sup

j∈Z
∥mj∥H(s/N,...,s/N)((Rn)N )(5.2.5)

holds. Let φ̂ ∈ S(Rn) be a function as in Lemma 5.1.2 with supp φ̂ ⊂ {η ∈
Rn : |η| ≤ 1/(10N)} and ℓ satisfying p1(ℓ+1)+α1 > −n. For sufficiently small
ε > 0, we set

m(ε)(ξ) = φ̂

(
ξ1 − e1
ε

)
φ̂(ξ2) . . . φ̂(ξN ),(5.2.6)

where e1 = (1, 0, . . . , 0) ∈ Rn and ξ = (ξ1, . . . , ξN ) ∈ (Rn)N . By (5.2.5) and
(5.2.6) and Lemma 5.1.3, it follows that∥∥∥∥F−1

[
φ̂

(
· − e1
ε

)
f̂1

]
F−1

[
φ̂f̂2

]
. . .F−1

[
φ̂f̂N

]∥∥∥∥
Lp(|x|(α1/p1+α2/p2)p)

(5.2.7)

≲ ε−s/N+n/2
2∏

i=1

∥fi∥Lpi (|x|αi )

N∏
i=3

∥fi∥Lpi

for all f1, . . . , fN ∈ S(Rn), where F−1 is the inverse Fourier transform on Rn.

Let ψ ∈ S(Rn) be such that ψ̂ = 1 on supp φ̂ and we set

f̂1(ξ1) = εn/p1−nφ̂

(
ξ1 − e1
ε

)
, f̂i(ξi) = ψ̂(ξi), i = 2, . . . , N.(5.2.8)

Since

f1(x) = F−1

[
εn/p1−nφ̂

(
ξ1 − e1
ε

)]
(x)

= εn/p1−nF−1

[
φ̂

(
ξ1 − e1
ε

)]
(x)

= εn/p1ei⟨x,e1⟩φ(εx),

by a change of variables, we see that

∥f1∥Lp1 (|x|α1 ) = ε−α1/p1 ∥φ∥Lp1 (|x|α1 ) .(5.2.9)

We check

∥φ∥Lp1 (|x|α1 ) <∞.(5.2.10)

For β ∈ Zn
+, |β| ≤ ℓ, by Lemma 5.1.2, we obtain

∂βφ(0) =

∫
Rn

ei⟨η,0⟩ηβφ̂(η) dη =

∫
Rn

ηβφ̂(η) dη = 0.
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Combining this with Taylor’s formula, we have

|φ(x)| ≲ |x|ℓ+1.

By p1(ℓ+ 1) + α1 > −n and φ ∈ S(Rn), we see that

∥φ∥p1

Lp1 (|x|α1 ) =

∫
|x|<1

|φ(x)|p1 |x|α1 dx+

∫
|x|≥1

|φ(x)|p1 |x|α1 dx

≲
∫
|x|<1

|x|(ℓ+1)p1+α1 dx+

∫
|x|≥1

|φ(x)|p1 |x|α1 dx

<∞.

Hence, we obtain (5.2.10). By α2 > −n and ψ ∈ S(Rn),

∥f2∥p2

Lp2 (|x|α2 ) =

∫
Rn

|ψ(x)|p2 |x|α2 dx(5.2.11)

=

∫
|x|<1

|ψ(x)|p2 |x|α2 dx+

∫
|x|≥1

|ψ(x)|p2 |x|α2 dx

≲
∫
|x|<1

|x|α2 dx+

∫
|x|≥1

|ψ(x)|p2 |x|α2 dx

<∞.

By ψ ∈ S(Rn), we see that

∥fi∥Lpi = ∥ψ∥Lpi <∞, i = 3, . . . , N.(5.2.12)

We shall finish the proof. By (5.2.8) and a change of variables, we have

F−1

[
φ̂

(
· − e1
ε

)
f̂1

]
(x)F−1

[
φ̂f̂2

]
(x) . . .F−1

[
φ̂f̂N

]
(x)

= F−1

[
εn/p1−n

{
φ̂

(
· − e1
ε

)}2
]
(x)F−1 [φ̂] (x) . . .F−1 [φ̂] (x)

= εn/p1−n

{
F−1

[
φ̂

(
· − e1
ε

)]
∗ F−1

[
φ̂

(
· − e1
ε

)]}
(x)φ(x)N−1

= εn/p1ei⟨x,e1⟩(φ ∗ φ)(εx)φ(x)N−1.

By φ ̸= 0 and (α1/p1 + α2/p2)p > −n, we can take R0 > 0 satisfying

0 <

∫
|x|≤R0

|φ(x)|p(N−1)|x|(α1/p1+α2/p2)p dx <∞.

By Lemma 5.1.2, it follows that

φ ∗ φ(0) = F−1[φ̂] ∗ F−1[φ̂](0)

= F−1[φ̂φ̂](0)

47



=
1

(2π)n

∫
Rn

ei⟨0,ξ⟩φ̂(ξ)2 dξ

=
1

(2π)n

∫
Rn

φ̂(ξ)2 dξ

̸= 0,

by the continuity of φ∗φ at the origin, we can take C0 > 0 and ε0 > 0 satisfying
for all ε, 0 < ε < ε0, x, |x| ≤ R0, |φ ∗ φ(εx)| ≥ C0. Thus, we see that a∥∥∥∥F−1

[
φ̂

(
· − e1
ε

)
f̂1

]
F−1

[
φ̂f̂2

]
. . .F−1

[
φ̂f̂N

]∥∥∥∥
Lp(|x|(α1/p1+α2/p2)p)

(5.2.13)

= εn/p1

{∫
Rn

|φ ∗ φ(εx)|p|φ(x)|p(N−1)|x|(α1/p1+α2/p2)p dx

}1/p

≥ εn/p1

{∫
|x|≤R0

|φ ∗ φ(εx)|p|φ(x)|p(N−1)|x|(α1/p1+α2/p2)p dx

}1/p

≥ εn/p1C0

{∫
|x|≤R0

|φ(x)|p(N−1)|x|(α1/p1+α2/p2)p dx

}1/p

≳ εn/p1 .

By (5.2.7), (5.2.9), (5.2.11), (5.2.12) and (5.2.13), we obtain

εn/p1 ≲ ε−s/N+n/2−α1/p1∥φ∥Lp1 (|x|α1 )∥ψ∥Lp2 (|x|α2 )∥ψ∥Lp3 . . . ∥ψ∥LpN .

Therefore, we have

εn/p1 ≲ ε−s/N+n/2−α1/p1 .

for all sufficiently small ε > 0. This is a contradiction (see (5.2.3)).
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Chapter 6

The proof of Theorem 1.4.4

In this chapter, we study weighted norm inequalities for multilinear Fourier
multipliers with Besov regularity. This result can be understood as a critical
case of Theorem 1.4.1. It should be remarked that in the proof of Theorem
1.4.1, we can take qi such that n/si < qi < min{2, pi}, i = 1, . . . , N , but in this
case, namely, si = n/2, we cannot take qi like this.

We first prove the following lemma which plays an important role in the
proof of Theorem 1.4.4.

6.1 Key lemma

Lemma 6.1.1 ([10, Lemma 3.1]). Let ϕ ∈ S(Rn) be such that ϕ(ξi) = ϕ(−ξi), ϕ(ξi) =
1 on {ξi ∈ Rn : |ξi| ≤ 2}, i = 1, . . . , N . Then, the estimate

|Tm(·/2j)(f1, . . . , fN )(x)|

≲
∞∑

k1,...,kN=0

2(k1+···+kN )n/2∥Ψ(k1,...,kN )(D)m∥L2((Rn)N )

N∏
i=1

(
(|ϕ|2)(ki−j) ∗ |fi|2(x)

)1/2
holds, for all x ∈ Rn and j ∈ Z, where (|ϕ|2)(j)(x) = 2−jn|ϕ(2−jx)|2 and
Ψ(k1,...,kN )(D) is defined in the definition of the Besov space of product type.

Proof. Let {ψk1}∞k1=0, . . . , {ψkN
}∞kN=0 be functions appearing in the defini-

tion of the Besov spaces of product type. By
∑∞

k1=0 ψk1(2
j(y1 − x)) × · · · ×∑∞

kN=0 ψkN
(2j(yN − x)) = 1, we have

Tm(·/2j)(f1, . . . , fN )(x)

=

∫
(Rn)N

F−1[m(·/2j , . . . , ·/2j)](x− y1, . . . , x− yN )f1(y1) . . . fN (yN ) dy1 . . . dyN

= (2jn)N
∫
(Rn)N

F−1[m]
(
2j(x− y1), . . . , 2

j(x− yN )
)
f1(y1) . . . fN (yN ) dy1 . . . dyN
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= (2π)−Nn(2jn)N
∞∑

k1,...,kN=0

∫
(Rn)N

ψk1(2
j(y1 − x)) . . . ψkN

(2j(yN − x))

× m̂
(
2j(y1 − x), . . . , 2j(yN − x)

)
f1(y1) . . . fN (yN ) dy1 . . . dyN .

Note that

suppψki ⊂ {ξi ∈ Rn : 2ki−1 ≤ |ξi| ≤ 2ki+1}
⊂ {ξi ∈ Rn : |ξi| ≤ 2ki+1}, i = 1, · · · , N.

Thus, we obtain ψki(ξi) = ψki(ξi)ϕ(ξi/2
ki), i = 1, . . . , N . Hence, we see that∣∣Tm(·/2j)(f1, . . . , fN )(x)

∣∣
≲ (2jn)N

∞∑
k1,...,kN=0

∣∣∣∣ ∫
(Rn)N

ψk1(2
j(y1 − x))× · · · × ψkN (2j(yN − x))

× ϕ

(
2j(y1 − x)

2k1

)
. . . ϕ

(
2j(yN − x)

2kN

)
× m̂(2j(y1 − x), . . . , 2j(yN − x))f1(y1) . . . fN (yN ) dy1 . . . dyN

∣∣∣∣.
By Schwarz’s inequality, a change of variables and ϕ(−ξi) = ϕ(ξi), i = 1, · · · , N ,
we have∣∣Tm(·/2j)(f1, . . . , fN )(x)

∣∣
≤ (2jn)N

∞∑
k1...kN=0

×
∥∥ψk1(2

j(· − x)) . . . ψkN
(2j(· − x))m̂

(
2j(· − x), . . . , 2j(· − x)

)∥∥
L2((Rn)N )

×
∥∥∥∥ϕ(2j(· − x)

2k1

)
. . . ϕ

(
2j(· − x)

2kN

)
f1(·) . . . fN (·)

∥∥∥∥
L2((Rn)N )

=

∞∑
k1,··· ,kN=0

2(k1+···+kN )n/2 ∥ψk1(ξ1) · · ·ψkN (ξN )m̂(ξ1, . . . , ξN )∥L2((Rn)N )

×
N∏
i=1

(
(|ϕ|2)(ki−j) ∗ |fi|2(x)

)1/2
.

By Plancherel’s theorem, we completes the proof.

Now, we prove Theorem 1.4.4. Let 2 < p1, . . . , pN <∞, 1/p1+ · · ·+1/pN =

1/p. Assume wi ∈ Api/2 for i = 1, · · · , N and set w = w
p/p1

1 . . . w
p/pN

N . We also
assume that m ∈ L∞(RNn) satisfies supj∈Z ∥mj∥B(n/2,...,n/2)

2,1 ((Rn)N )
<∞, where

mj is defined by (2.2.2). By Lemma 2.4.1 (1), we decompose m as follows:

m(ξ) =
∑

(i1,...,iN )∈{0,1}N ,
(i1,...,iN ) ̸=(0,...,0)

Φ(i1,...,iN )(ξ)m(ξ)
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=
∑

(i1,...,iN )∈{0,1}N ,
(i1,...,iN ) ̸=(0,...,0)

m(i1,...,iN )(ξ).

6.2 Estimate for m(1,0,...,0) type

We first consider the case where (i1, . . . , iN ) satisfies ♯{j : ij = 1} = 1. Without
loss of generality, we may assume that i1 = 1. We simply write m instead of
m(1,0,...,0). Note that by Lemma 2.4.1 (3),

suppm ⊂ {ξ = (ξ1, . . . , ξN ) ∈ (Rn)N : |ξi| ≤ |ξ1|/N, i = 2, . . . , N}.(6.2.1)

It is easy to see that if ξ = (ξ1, . . . , ξN ) ∈ suppm, then |ξ1 + · · ·+ ξN | ≈ |ξ1|.

Proof. In this case, we shall prove the estimate

∥Tm(f1, . . . , fN )∥Lp(w)(6.2.2)

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

) N∏
i=1

∥fi∥Lpi (wi)

holds, where m(j) will be defined later on. In Section 6.4, we shall complete the
proof.

As in Section 3.2, we obtain (3.2.3) and we can find functions φ ∈ A0 and

ψ̃ ∈ A1 independent of j such that

m(ξ)ψ

(
ξ1 + · · ·+ ξN

2j

)
= m(ξ)ψ

(
ξ1 + · · ·+ ξN

2j

)
ψ̃(ξ1/2

j)2φ(ξ2/2
j) · · ·φ(ξN/2j).

Setting

m(j)(ξ) = m(2jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) · · ·φ(ξN ),(6.2.3)

we have

∆jTm(f1, . . . , fN )(x) = Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )(x),(6.2.4)

where ∆̃jf1 = ψ̃(D/2j)f1.
By Lemma 6.1.1 and Lemma 2.4.5, we see that∑

j∈Z

∣∣∣Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )(x)
∣∣∣2

≲
∑
j∈Z

 ∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2
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×
(
(|ϕ|2)(k1−j) ∗ |∆̃jf1|2(x)

)1/2
×

N∏
i=2

(
(|ϕ|2)(ki−j) ∗ |fi|2(x)

)1/2)2

≲
N∏
i=2

M(|fi|2)(x)

×
∑
j∈Z

 ∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

×
(
(|ϕ|2)(k1−j) ∗ |∆̃jf1|2(x)

)1/2)2

.

By Schwarz’s inequality, we have

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

(
(|ϕ|2)(k1−j) ∗ |∆̃jf1|2(x)

)1/2

≤


∞∑

k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2


1/2

×


∞∑

k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

(|ϕ|2)(k1−j) ∗ |∆̃jf1|2(x)


1/2

.

Thus, it follows that∑
j∈Z

∣∣∣Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )(x)
∣∣∣2

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

) N∏
i=2

M(|fi|2)(x)

×
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

(|ϕ|2)(k1−j) ∗ |∆̃jf1|2(x).

By Hölder’s inequality, we see that∥∥∥∥∥∥∥
∑

j∈Z

∣∣∣Tm(j)(·/2j)(∆̃jf1, f2, . . . , fN )
∣∣∣2


1/2
∥∥∥∥∥∥∥
Lp(w)

(6.2.5)

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)1/2

×

∥∥∥∥∥∥
∑

j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2
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× (|ϕ|2)(k1−j) ∗ |∆̃jf1|2
}1/2

∥∥∥∥
Lp1 (w1)

×
N∏
i=2

∥∥∥M (
|fi|2

)1/2∥∥∥
Lpi (wi)

.

For the third term on the right hand side of (6.2.5), since 2 < pi < ∞ and
wi ∈ Api/2, i = 2, . . . , N , we have

N∏
i=2

∥∥∥M (
|fi|2

)1/2∥∥∥
Lpi (wi)

≲
N∏
i=2

∥fi∥Lpi (wi)
.(6.2.6)

For the second term on the right hand side of (6.2.5), we set as follows∥∥∥∥∥∥∥
∑

j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

(|ϕ|2)(k1−j) ∗ |∆̃jf1|2


1/2
∥∥∥∥∥∥∥
Lp1 (w1)

=

∥∥∥∥∥∥
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

(|ϕ|2)(k1−j) ∗ |∆̃jf1|2
∥∥∥∥∥∥
1/2

Lp1/2(w1)

=: ∥H∥1/2
Lp1/2(w1)

.

We shall prove that

∥H∥1/2
Lp1/2(w1)

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)1/2

∥f1∥Lp1 (w1).(6.2.7)

Once this is proved, by (3.2.3), (6.2.4), (6.2.5), (6.2.6) and (6.2.7), we obtain
(6.2.2).

Let u ∈ L(p1/2)
′
(w

1−(p1/2)
′

1 ) be such that ∥u∥
L(p1/2)′ (w

1−(p1/2)′
1 )

= 1. By

Lemma 2.4.5, Hölder’s inequality, Lemma 2.4.3 with w1 ∈ Ap1/2 ⊂ Ap1 and

L(p1/2)
′
(w

1−(p1/2)
′

1 ) -boundedness of M , it follows that∣∣∣∣∣
∫
Rn

x

H(x)u(x) dx

∣∣∣∣∣
≤
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

×
∫
Rn

x

{
(|ϕ|2)(k1−j) ∗ |∆̃jf1|2

}
(x)|u(x)| dx

=
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2
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×
∫
Rn

x

|∆̃jf1(x)|2
{
(|ϕ|2)(k1−j) ∗ |u|

}
(x) dx

≲
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

∫
Rn

x

|∆̃jf1(x)|2Mu(x) dx

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)∫
Rn

x

∑
j∈Z

|∆̃jf1(x)|2Mu(x) dx

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)∥∥∥∥∥∥
∑
j∈Z

|∆̃jf1|2
∥∥∥∥∥∥
Lp1/2(w1)

∥Mu∥
L(p1/2)′ (w

1−(p1/2)′
1 )

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)
∥f1∥2Lp1 (w1)

∥u∥
L(p1/2)′ (w

1−(p1/2)′
1 )

=

(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)
∥f1∥2Lp1 (w1)

,

where we have used the fact that w
1−(p1/2)

′

1 ∈ A(p1/2)′ , by Lemma 2.4.2 (2). By
taking suprimum over all such as above u, we obtain (6.2.7). Therefore, we have
(6.2.2)

6.3 Estimate for m(1,1,i3,...,iN ) type

Next, we consider the case where (i1, . . . , iN ) satisfies ♯{j : ij = 1} ≥ 2. Without
loss of generality, we may assume that i1 = i2 = 1. We simply write m instead
of m(1,1,i3,...,iN ), where i3, . . . , iN ∈ {0, 1}. Note that by Lemma 2.4.1 (3),

suppm(6.3.1)

⊂ {|ξ1|/(4N) ≤ |ξ2| ≤ 4N |ξ1|, |ξi| ≤ 4N |ξ1|, i = 3, . . . , N}.

Proof. In this case, we shall prove the estimate

∥Tm(f1, . . . , fN )∥Lp(w)(6.3.2)

≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

) N∏
i=1

∥fi∥Lpi (wi)

holds, where m(j) will be defined later on. In Section 6.4, we shall complete the
proof.

As in Section 3.3, we can find functions φ ∈ A0 and ψ̃ ∈ A1 independent of
j such that

m(ξ)ψ(ξ1/2
j)

= m(ξ)ψ(ξ1/2
j)ψ̃(ξ1/2

j)ψ̃(ξ2/2
j)2φ(ξ3/2

j) . . . φ(ξN/2
j).
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Setting

m(j)(ξ) = m(2jξ)ψ(ξ1)ψ̃(ξ2)φ(ξ3) . . . φ(ξN ),(6.3.3)

we have

Tm(f1, . . . , fN )(x) =
∑
j∈Z

Tm(j)(·/2j)(∆̃jf1, ∆̃jf2, f3, . . . , fN )(x),(6.3.4)

where ∆̃jfi = ψ̃(D/2j)fi, i = 1, 2.
By (6.3.4), Lemma 6.1.1, Lemma 2.4.5 and Schwarz’s inequality, it follows

that

|Tm(f1, . . . , fN )(x)|

≤
∑
j∈Z

∣∣∣Tm(j)(·/2j)(∆̃jf1, ∆̃jf2, f3, . . . , fN )(x)
∣∣∣

≤
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

×
2∏

i=1

(
(|ϕ|2)(ki−j) ∗ |∆̃jfi|2(x)

)1/2
×

N∏
i=3

(
(|ϕ|2)(ki−j) ∗ |fi|2(x)

)1/2
≤

N∏
i=3

M(|fi|2)(x)1/2

×
2∏

i=1

{∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

× (|ϕ|2)(ki−j) ∗ |∆̃jfi|2(x)
}1/2

.

By Hölder’s inequality, we have

∥Tm(f1, . . . , fN )∥Lp(w)(6.3.5)

≤
2∏

i=1

∥∥∥∥∥∥
∑

j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2

× (|ϕ|2)(ki−j) ∗ |∆̃jfi|2
}1/2

∥∥∥∥
Lpi (wi)

×
N∏
i=3

∥∥∥M(|fi|2)1/2
∥∥∥
Lpi (wi)

=
2∏

i=1

∥∥∥∥∥∥
∑
j∈Z

∞∑
k1,...,kN=0

2(k1+···+kN )n/2
∥∥∥Ψ(k1,...,kN )(D)m(j)

∥∥∥
L2
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× (|ϕ|2)(ki−j) ∗ |∆̃jfi|2
∥∥∥1/2
Lpi/2(wi)

×
N∏
i=3

∥∥M(|fi|2)
∥∥1/2
Lpi/2(wi)

=:

2∏
i=1

∥Hi∥1/2Lpi/2(wi)
×

N∏
i=3

∥∥M(|fi|2)
∥∥1/2
Lpi/2(wi)

.

By the same way as for m(1,0,...,0), we see that

∥Hi∥1/2Lp1/2 ≲
(
sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

)1/2

∥fi∥Lpi (wi),(6.3.6)

where i = 1, 2. By (6.3.5) and (6.3.6), we obtain (6.3.2).

6.4 Completion of the proof of Theorem 1.4.4

In this section, we shall prove the estimate

sup
j∈Z

∥m(j)∥
B

(n/2,...,n/2)
2,1 ((Rn)N )

≲ sup
j∈Z

∥mj∥B(n/2,...,n/2)
2,1 ((Rn)N )

holds, where m(j) is defined by (6.2.3) or (6.3.3), and mj is defined by (2.2.2).

Proof. We first consider the case where m(j) is the same as in (6.2.3). Since
suppΨ(·/2ℓ) ⊂ {ξ ∈ (Rn)N : 2ℓ−1 ≤ |ξ| ≤ 2ℓ+1} and

supp ψ̃(ξ1)φ(ξ2) . . . φ(ξN ) ⊂ {ξ ∈ (Rn)N : 2−j0 ≤ |ξ| ≤ 2j0}(6.4.1)

for some j0 ∈ N, for example, j0 = [log2 2(N + 1)], where [s] is the integer part
of s ∈ R, it follows from Lemma 2.4.9 (1) that

∥m(j)∥
B

(n/2,...,n/2)
2,1

(6.4.2)

= ∥m(2jξ)Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )∥

B
(n/2,...,n/2)
2,1

≲
j0∑

ℓ=−j0

∥∥∥∥m(2jξ)Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )

× ψ̃(ξ1)φ(ξ2) . . . φ(ξN )Ψ(ξ/2ℓ)

∥∥∥∥
B

(n/2,...,n/2)
2,1

≲
j0∑

ℓ=j0

∥m(2jξ)Ψ(ξ/2ℓ)∥
B

(n/2,...,n/2)
2,1
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× ∥Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )∥

B
(n/2,...,n/2)
∞,1

.

For the first term on the right hand side of (6.4.2), by Lemma 2.4.9 (2), we have

∥m(2jξ)Ψ(ξ/2ℓ)∥
B

(n/2,...,n/2)
2,1

= ∥m
(
2j+ℓ(ξ/2ℓ)

)
Ψ(ξ/2ℓ)∥

B
(n/2,...,n/2)
2,1

= ∥mj+ℓ(ξ/2
ℓ)∥

B
(n/2,...,n/2)
2,1

≲
(
max{1, 2(−ℓ)n/2}2−(−ℓ)n/2

)N
∥mj+ℓ∥B(n/2,...,n/2)

2,1

≲ sup
j∈Z

∥mj∥B(n/2,...,n/2)
2,1

.

For the second term on the right hand side of (6.4.2), by the Leibniz’s formula,
Lemma 2.4.1 (2) and (6.4.1), we see that∣∣∣∂αξ (Φ(1,0,...,0)(2

jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )
)∣∣∣ ≤ Cα.

for all α ∈ Zn
+ and j ∈ Z. Therefore, we obtain

sup
j∈Z

∥Φ(1,0,...,0)(2
jξ)ψ(ξ1 + · · ·+ ξN )ψ̃(ξ1)φ(ξ2) . . . φ(ξN )∥

B
(n/2,...,n/2)
∞,1

<∞.

In the case where m(j) is the same as in (6.3.3), the proof is similar to that of
m(1,0,...,0), and we omit it.
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