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Abstract

Statistical inference with missing data has become a major issue in many empirical re-

search fields including medical science, epidemiology, econometrics and psychometrics.

If data involve missing values, conventional statistical methods cannot be directly ap-

plied. In this thesis, we study nonresponse, a typical type of missingness, which means

that some data are missing at dependent variables.

A key concept for valid analysis with missing data is response mechanism or missing-

data mechanism. When missingness depends on the missing value, the mechanism is

said to be nonignorable; most missing data are nonignorable nonresponses and this

type of missingness is most difficult to handle. Appropriate analysis of nonignorable

nonresponse data requires strong unverified assumptions such as existence of instru-

mental variables. It is hard to specify a response model in general; even though it

can be specified, identifiability of the response model often fails and indeed it is even

difficult to check the identifiability.

The first contribution of the thesis is to introduce a semiparametric approach to

estimate a response model to overcome the difficulties described above. The first semi-

parametric estimator developed in this thesis is based on the method of maximum

likelihood, which does not require other than the correct specification of the response

model. Unfortunately, the estimator is not the most efficient. Hence, we propose

two alternative semiparametric estimators which attain the semiparametric efficiency

bound.

The second contribution is to provide useful conditions for checking the model iden-

tifiability in the analysis of longitudinal data with binary outcomes. The condition can

be checked by observed data only, and do not rely on any instrumental variables. Based

on the conditions, some identifiable models are proposed to analyze binary longitudinal

data with dropouts.

Numerical experiments are conducted to show that our semiparametric estimators

outperform other existing estimators in terms of bias and variance. Real data analyses

of the Korean labor and income panel survey data and depot medroxyprogesterone

acetate data, with our new methods, are seen to give quite reasonable results.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Missing data problems are ubiquitous and require cumbersome handling techniques

in many empirical research areas including econometrics, epidemiology, clinical study,

and psychometrics. For example, due to the expansion of information on the Internet,

personal information and privacy have become more important; people often decline

to reply to personal items in a questionnaire such as income and career. In the clinical

study, subjects can easily drop out from the study in view of the human participant

protection. For such data, existing methods for complete data analysis cannot be

directly applied.

If analysts do not properly deal with missing data, the result can be distorted and

leads to incorrect conclusions. An easy way for dealing with missing data is listwise

deletion. The method makes a complete dataset artificially by deleting any observations

or units with missing values. However, this method has two drawbacks: (1) loss of

efficiency and (2) making a biased dataset. The first problem occurs because the

listwise deletion discards some data being possible to use, which yields to decrease

of the sample size. The second problem is more critical from a practical perspective.

Suppose that one is interested in income in a population. If lower-income workers are

likely to decline to answer, then the mean income calculated from the observed data

will be higher than the real income. As a result, appropriate methods for analyzing

missing data need to be developed. Assumptions required for the methods should be

as weak as possible.
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1. INTRODUCTION AND PRELIMINARIES

The required assumptions are strongly related to response mechanism or missing-

data mechanism. The response mechanism is defined as the conditional distribution

of response probability given the complete data. This conditional probability is also

called propensity score in the literature of causal inference (Rosenbaum and Rubin,

1983). Rubin (1976) distinguished the response mechanisms into two main parts: (i)

missing at random (MAR); (ii) not missing at random (NMAR). If the mechanism does

not depend on the missing data, it is called MAR, otherwise, called NMAR. When the

mechanism is MAR (NMAR), it is also called ignorable (nonignorable). There have

been many estimators developed under the MAR mechanism, which can be analyzed

under almost the same assumptions as those with complete data. On the other hand,

when the mechanism is nonignorable or NMAR, existing estimators require unverified

assumptions. Hence, statistical analysis assuming nonignorable nonresponse has been

criticized and has been likely to be avoided. It is a deplorable situation, and new

appropriate statistical methods have to be developed.

1.2 Basic theory of the analysis of nonresponse data

Let Y be a response variable, which is subject to missingness, and let X be a fully

observed covariate vector. Let R be a response indicator of Y , i.e., it takes 1(0) if

Y is observed (missing). Letting Z = (X>, Y )> and Gr(Z) be observed variables in

Z for R = r, the r-th response pattern. Here we have G1(Z) = (X, Y ) for R = 1

and G0(Z) = X for R = 0. The response mechanism is defined as the conditional

probability given z: π(z) = Pr(R = 1 | z). Denote our interesting parameter by θ

which is defined as a solution to E{U(θ;Z)} = 0, where U(·; ·) is a known function. For

example, if population mean is of our interest, U(θ; z) = θ−y. Assume that (zi, ri) (i =

1, . . . , n) are independent and identically distributed with a joint distribution [z, r].

Here, [·] is generic notation for describing the distribution of the variables inside the

square bracket. Notice that [y | x] denotes the conditional distribution of y given x.

Because of missingness, we observe only (Gri(zi), ri) (i = 1, . . . , n). By using only

observed data, Horvitz and Thompson (1952) proposed an estimator for E(Y ) based

2



1.2 Basic theory of the analysis of nonresponse data

on an unbiased estimating equation as follows:

n−1
n∑
i=1

ri
π(zi)

yi = E

{
R

π(Z)
Y

}
+ op(1)

= E(Y ) + op(1).

An estimator defined by a solution to an unbiased estimating equation will be

consistent and asymptotic normal under some regularity conditions. However, the

response mechanism π(z) is generally unknown and has to be estimated. Assume that

a parametric model π(z;φ) is specified which is known up to a value of the q-dimensional

parameter φ. Estimation of φ depends on its mechanism. When the mechanism is

MAR or ignorable, the maximum likelihood estimation can be applied to estimate φ

because the missing data in y are unnecessary. Suppose that the mechanism is NMAR

or nonignorable. In the case, correct specification for the outcome model [y | x] and the

response model [r | z] is required. The likelihood is then complicated and sometimes the

model identification is not achieved. More seriously the model identification is hard to

check. Therefore estimation under NMAR mechanism has been not recommended due

to these strong assumptions. In this thesis, we derive three semiparametric estimators

which do not require any outcome model specification. Especially the two estimators are

constructed to improve the other one and attain the semiparametric efficiency bound,

where it is the lower bound of the asymptotic variance of an estimator when only a

response model is specified. In addition, we propose an easy-to-check identification

condition.

Assume that the response model is specified as

π(z;φ) =
1

1 + exp(φx0 + φx1x+ φyy)
,

where φ = (φx0, φx1, φy)>. Note that this response model is NMAR because it depends

on y. In this setup, Greenlees et al. (1982) constructed the fully observed likelihood as

follows:

n∏
i=1

{π(zi;φ)f(yi | xi;β)}ri
{

1−
∫
π(xi, y;φ)f(y | xi;β)dy

}1−ri
,

where f(y | x;β) is a model for the conditional distribution of [y | x] known up to a

finite dimensional parameter β. The term for r = 0 is integrated out with regard to

3



1. INTRODUCTION AND PRELIMINARIES

y since y can not be observed. Thus the correct specification of the true conditional

distribution is needed, and misspecification of the distribution leads to inconsistency

of any estimator for φ. The question is whether we can remove the assumption of the

correct specification of f(y | x;β). We will answer to this question in Chapter 2.

Conditions for the model identification are also to be clear. If we can observe

complete data, the identification condition is

π(y | x;φ) = π(y | x;φ′) w.p. 1

⇒ φ = φ′,

where w.p. 1 means with probability one with respect to the true distribution. When

some values in y are subject to missingness, the identification condition is changed to,

π(y | x;φ)f(y | x;β) = π(y | x;φ′)f(y | x;β′) w.p. 1

⇒ φ = φ′ and β = β′.

However, this condition does not generally hold. For example, Miao et al. (2016) showed

if the response models are π(z;φ) = expit(− log 2 + y) and π(z;φ′) = expit(log 2− y),

and outcome models are f(y;β) = 2e−2y and f(y;β′) = e−y, the identifiability does

not hold, where “expit” is the inverse function of “logit”. We will give a new necessary

and sufficient condition for the model identification.

1.3 Basic theory of semiparametric inference

In this section, we consider semiparametric estimation in the sense that response and

outcome models are parametric and nonparametric, respectively. Because the outcome

model is nonparametric, we somehow need to restrict a class of semiparametric esti-

mator to rule out super efficient estimators such as Hodges’s estimator and Stein’s

estimator to discuss the efficiency bound, which is the lower bound of the asymptotic

variance (Bickel et al., 1998; Tsiatis, 2006). In this section, we consider a case in which

there is no missing data to illustrate the semiparametric estimation for the time being.

We introduce Hodges’s super efficient estimator as an illustration of such estimators.

Example 1.3.1. (Hodges’s super efficient estimator)

4



1.3 Basic theory of semiparametric inference

Let X1, . . . , Xn be n i.i.d. copies of N(µ0, 1), where µ0 ∈ R is a constant. Here

X̄n = n−1
∑n

i=1Xi is the maximum likelihood estimator (MLE) of µ0, which has the

following asymptotic normality:

√
n(X̄n − µ0)

L(µ0)−−−→ N(0, 1),

where the above convergence stands for the weak convergence under the distribution

of µ = µ0. Let us consider the estimator defined by Hodges in 1951 (see Tsiatis, 2006,

for more details):

µ̂n =

X̄n if |X̄n| > n−1/4

0 if |X̄n| ≤ n−1/4
.

We can easily show that when µ0 6= 0,
√
n(µ̂n−µ0)

L(µ0)−−−→ N(0, 1), where
L(µ)−−−→ denotes

convergence in law under the distribution of f(x;µ). When µ0 = 0, it holds that
√
n(µ̂n− 0)

L(0)−−−→ N(0, 0). Therefore, it seems that this estimator is more efficient than

MLE, and that is why this estimator is called super-efficient estimator. However, this

nice property is gained at the expense of poor estimation in a neighborhood of µ = 0.

In fact, when the distribution is assessed at µ = µn = n−1/3, MLE has asymptotic

normality:
√
n(X̄n − µn)

L(µn)−−−−→ N(0, 1).

However, the super-efficient estimator does not, that is,
√
n(µ̂n − µn) → ∞. We need

to rule out such estimators to discuss the efficiency.

We introduce regularity to exclude super efficient estimators. Let ξp×1 = (θ>,η>)>,

where θq×1 is our interest, ηa×1 is a finite dimensional nuisance parameter (this “finite”

restriction is relaxed to “infinite” later), and p = q + a.

Definition 1.3.1. (Regularity)

Assume that data zi (i = 1, . . . , n) are generated from ξn = (θ>n ,η
>
n )> satisfying

√
n(ξn − ξ∗) converges to a constant. Then, an estimator of θ̂n is called regular if

the estimator
√
n(θ̂n − θn) converges to a limit distribution which does not depend on

ξ∗.

Strictly speaking, this is the definition of local regularity. However in the litera-

ture of semiparametric estimation, it is often called just regular (see Ibragimov and

Has’minskii, 1981, for the original regularity definition). Note that this regularity

clearly rules out the Hodges’s super-efficient estimator. In addition to the regularity,

we need another condition, that is, asymptotic linearity.

5



1. INTRODUCTION AND PRELIMINARIES

Definition 1.3.2. (Asymptotic linearity)

For an estimator θ̂n, if there exists a function ϕ such that E{ϕ(Z)} = 0,

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

ϕ(Zi) + op(1),

and E{ϕ(Z)ϕ(Z)>} is finite and nonsingular, the estimator is called asymptotic linear.

Here the function ϕ(·) is called an influence function.

It can be shown that an asymptotic linear estimator has the unique influence func-

tion. Furthermore, the asymptotic variance of the estimator can be computed by

E{ϕ(Z)ϕ(Z)>}. Thus it is enough to focus on finding the best influence function,

which attains the lower bound of the estimator, and we can find such an influence

function in the class of regular and asymptotic linear (RAL) estimators. However, as a

consequence of Hájek (1970)’s representation theorem, it can be shown that the most

efficient regular estimator is asymptotically linear(Tsiatis, 2006). For the above rea-

sons, we construct semiparametric estimators among the class of RAL estimators in

this paper. Our first goal is to find the most efficient influence function ϕ∗(·).

Consider a probability space (Ω,A,P), where P = {Pξ : ξ ∈ Ξ}, Ξ ⊂ Rp is the

parameter space of ξ, and Pξ is the probability measure characterized by the parameter

ξ = (θ>,η>)>. Suppose that p(z; ξ) be the density function of the distribution of Z

and define a Hilbert space H by

H = {h : Ω→ Rq | E{h(·)} = 0, ‖h‖ <∞}

with the inner product 〈h1,h2〉 = E(h>1 h2) for all h1,h2 ∈ H, where this expectation

is taken with respect to the true distribution. Denote the score vector of θ and η by

Sθ(Z) :=
∂ log p(Z; ξ0)

∂θ
, Sη(Z) :=

∂ log p(Z; ξ0)

∂η
,

and the nuisance tangent space by

Λ := {Bq×aSη(Z) | for all q × a matrices B}.

Then, the efficient influence function is given as follows.

Lemma 1.3.1. (Corollary 2 of Tsiatis (2006))

6



1.3 Basic theory of semiparametric inference

When the parameter ξ can be partitioned as (θ>,η>)>, the efficient influence func-

tion for θ can be written as

ϕeff(Z, ξ0) = {E(SeffS
>
eff)−1}{Seff(Z, ξ0)},

where

Seff(Z, ξ0) = Sθ(Z, ξ0)−Π(Sθ(Z, ξ0) | Λ)

and Π(· | Λ) is the projection operator onto the space Λ.

Hence the lower bound of the asymptotic variance of θ̂ is given by

{E(ϕeff(Z, ξ0)ϕeff(Z, ξ0)>)}−1 = [E{Seff(Z, ξ0)Seff(Z, ξ0)>}]−1. (1.1)

This result can be extended to the models with an infinite dimensional nuisance pa-

rameter η. To discuss the efficiency, we at first define the semiparametric efficiency

bound. Let P be a class of models of p(z; ξ0) and Pθ,α be a parametric submodel of P

with a finite dimensional nuisance parameter α. Then, the semiparametric efficiency

bound is defined as

sup
{all parametric submodels}

[E{Seff
θ,α(Seff

θ,α)>]−1, (1.2)

where Seff
θ,α is the efficient score for a parametric submodel with ξ = (θ,α). The

semiparametric lower bound (1.2) is larger than or equal to any parametric submodel.

Next, we shall define the infinite dimensional version of the nuisance tangent space.

Definition 1.3.3. (Nuisance tangent space with infinite dimensional parameter η)

Let p(z;θq×1,αa×1) and the nuisance tangent space

Λa = {Bq×aSa×1
α (Z;θ0,a0) | for all q × a matrices B},

where (θ0,α0) is the true value of the parameter vector, and Sα is the score vector

for the nuisance parameter a for the parametric submodel. Then the nuisance tangent

space Λ for a semiparametric model with the infinite dimensional nuisance parameter

η is defined as the mean-square closure of the set of the nuisance tangent spaces for

all parametric submodels. Specifically, let the space Λ ⊂ H, where Λ = [hq×1(Z) ∈ H

such that ‖h‖ <∞ and there exists a sequence {BjSαj(Z)}j∈N such that

‖h(Z)−BjSαj(Z)‖2 → 0 as j →∞

for a sequence of parametric submodels indexed by j].

7



1. INTRODUCTION AND PRELIMINARIES

Definition 1.3.4. (Semiparametric efficient score with infinite dimensional parameter

η)

The semiparametric efficient score for θ is defined as

Seff(Z;θ0,η0) = Sθ(Z;θ0,η0)−Π{Sθ(Z;θ0,η0) | Λ}.

Then, it can be shown that the semiparametric efficiency bound defined in (1.2) is

given as

[E{Seff(Z,θ0,η0)Seff(Z,θ0,η0)>}]−1, (1.3)

which is the same as the finite dimensional nuisance parameter case defined in (1.1).

Lemma 1.3.2. (Theorem 4.1 of Tsiatis (2006))

The lower bound (1.2) is given as (1.3).

As a result of the lemma, once we could find the nuisance tangent space Λ, an

estimator which attains the semiparametric efficiency bound could be obtained. We

will find the nuisance tangent space for the semiparametric models with nonignorable

nonresponse data, and propose semiparametric adaptive estimators later.

8



Chapter 2

Semiparametric estimation

2.1 Introduction

Handling missing data often requires some assumptions about the response mechanism.

If an outcome variable does not affect the probability of the response, the response

mechanism is called missing at random (MAR) (Rubin, 1976). If, on the other hand,

the response probability of the outcome variable depends on that variable directly,

the response mechanism is called not missing at random (NMAR) (Little and Rubin,

2002). Under NMAR, the response probability cannot be verified using the observed

study variables only, therefore, additional assumptions about the study variable are

often required.

Greenlees et al. (1982) and Diggle and Kenward (1994) proposed a fully parametric

approach to analyze nonignorable nonresponse data; their method requires two para-

metric models: (i) an outcome model, [y | x], and (ii) a response model [r | x, y]. In

practice, it is difficult to verify models (i) and (ii) because some y are not observed. For

the fully parametric approach, model identification and model misspecification can be a

problem, and sensitivity analysis becomes necessary (Scharfstein et al., 1999; Rotnitzky

et al., 2001; Verbeke et al., 2001; Tsiatis, 2006). Sverchkov (2008) and Riddles et al.

(2016) proposed a fully parametric approach that uses different model specifications

based on (i) [y | x, r = 1], and (ii) [r | x, y]. Their approach is attractive because one

can verify a model for [y | x, r = 1] from the observed responses; however, because it is

a fully parametric approach, it is still subject to model misspecification.

Recently, some semiparametric approaches have been proposed for nonignorable

9



2. SEMIPARAMETRIC ESTIMATION

nonresponses. Ma et al. (2003) studied identification and parameter estimation for

binary study variables. Tang et al. (2003) also considered model identification using

an instrumental variable and proposed a maximum pseudo likelihood estimator that

does not require specification of the response mechanism. D’Haultfoeuille (2010) also

used the same instrumental variable assumption and considered a regression analysis

using the nonparametric propensity score model. Zhao and Shao (2015) extended the

method of Tang et al. (2003) and relaxed the condition on the instrumental variable,

which is called nonresponse instrumental variable (Wang et al., 2014). Fitzmaurice

et al. (2005) and Skrondal and Rabe-Hesketh (2014) proposed protective estimators

that do not require a specification of the response mechanism, but the application of

this approach is limited to situations in which y is binary. In the meantime, Kim and

Yu (2011) proposed a semiparametric method for estimating E(Y ) using a semipara-

metric response model, but a validation sample is required in order to estimate the

parameters in the response mechanism. Tang et al. (2014) used the method of empir-

ical likelihood to extend the method of Kim and Yu (2011) to estimate more general

parameters. In Zhao et al. (2017), the method of Qin et al. (2002) was used to construct

a n1/2-consistent estimator without a validation sample. Chang and Kott (2008) and

Kott and Chang (2010) and Wang et al. (2014) considered a generalized method of

moments (GMM) estimator that uses the response model assumption only, but their

method is generally lacking in efficiency. Recently, Shao and Wang (2016) proposed

a semiparametric inverse propensity weighting method using the nonresponse instru-

mental variable assumption of Wang et al. (2014). However, the above papers do not

address efficiency of their semiparametric estimation methods. Developing an optimal

semiparametric estimator is an important research gap in missing data analysis.

In this section, we use a parametric model for [r | x, y] and construct optimal

estimators for parameters both related to the response mechanisms and for the pa-

rameter of interest such as population mean. Efficiency under this setup has already

been discussed by Rotnitzky and Robins (1997) and Robins et al. (1999). However,

their estimator requires many working models to achieve the semiparametric efficiency

bound. Misspecification of the working models may lead to loss of efficiency. Therefore,

we consider an alternative approach and propose two semiparametric estimators that

attain the semiparametric lower bound (Bickel et al., 1998) (1) with a working model

assumption or (2) without requiring working model assumptions. The first estimator is

10



2.2 Basic setup

an adaptive estimator similar in spirit to the generalized linear estimator proposed by

Liang and Zeger (1986) using a working model for [y | x, r = 1]. If the working model

is correct, the first estimator attains the lower bound. The second one is based on the

nonparametric regression model which does not require any additional assumptions,

but it still attains the lower bound. All technical details are given in Appendix B.

The results in this chapter are mainly owe to Morikawa and Kim (2017a) and

Morikawa, Kim, and Kano (2018).

2.2 Basic setup

Let zi = (xi, yi)
> (i = 1, . . . , n) be independently and identically distributed realiza-

tions from unknown distribution F (z). Suppose that the response model is π(z;φ) with

a q-dimensional parameter φ ∈ Φ. Let θ ∈ Θ be an one-dimensional parameter satis-

fying E{U(Z; θ)} = 0, where U is a known function of z, which does not prescribe the

distribution of [x, y]. For example, if we are interested in E(Y ), then U(z; θ) = y−θ. In

this paper, we consider semiparametric estimation of (φ, θ) from partial observations.

In particular, we seek the most efficient estimator among the RAL estimators defined

in Chapter 1 and propose two adaptive estimators.

Recently, Riddles et al. (2016) proposed an efficient estimator that uses a parametric

model for [y | x, r = 1]. Using the mean score theorem (Louis, 1982), the maximum

likelihood estimator can be obtained by solving

n∑
i=1

[ris1(zi;φ) + (1− ri)E0{s0(Z;φ) | xi}] = 0, (2.1)

where sr(z;φ) is the score function of φ, that is,

sr(z;φ) =
{r − π(z;φ)}π̇(z;φ)

π(z;φ){1− π(z;φ)}
, (2.2)

π̇(z;φ) = ∂π(z;φ)/∂φ, and E0(· | x) is the conditional expectation conditional on x

and r = 0. To compute E0(· | x), under Bayes’ formula, Riddles et al. (2016) proposed

using

n∑
i=1

[
ris1(zi;φ) + (1− ri)

E1{O(Z;φ)s0(Z;φ) | xi}
E1{O(Z;φ) | xi}

]
= 0, (2.3)

11



2. SEMIPARAMETRIC ESTIMATION

where O(z;φ) = {1 − π(z;φ)}/π(z;φ), and E1(· | x) is the conditional expectation

on y given x and r = 1. The conditional expectation is computed by assuming a

parametric model f1(y | x;γ) = f(y | x, r = 1;γ). This may increase the efficiency,

however, because misspecification of the f1 model would cause the solution φ̂ to be

inconsistent. Then, the interesting parameter can be estimated as a solution to

n∑
i=1

riU(zi; θ)

π(zi;φ)
= 0. (2.4)

We consider an extension of this method to seimparametric estimation in the next

section.

Next, two existing semiparametric estimators, which do not require any outcome

model, are introduced: (i) empirical likelihood (EL) approach; (ii) moment-base ap-

proach. Without loss of generality, assume that the first m elements are observed, and

the remaining (n−m) elements are missing in yi, i.e., ri = 1 for i = 1, . . . ,m and ri = 0

for i = m + 1, . . . n. Because we cannot observe y when r = 0, the likelihood can be

written as

m∏
i=1

π(φ; zi)dF (zi)

n∏
i=m+1

∫
{1− π(φ; z)}dF (z). (2.5)

Qin et al. (2002) discretized the distribution F by wi (i = 1, . . . ,m). The discretized dis-

tribution wi can be estimated by maximizing
∏m
i=1wi under the following constraints:

wi ≥ 0,
m∑
i=1

wi = 1,
m∑
i=1

wi{π(φ; zi)−W} = 0,

W = Pr(R = 1) =
∫
π(z;φ0)dF (z), and

m∑
i=1

wi{h(xi)− h̄n} = 0, (2.6)

where h : Rd → Rp1 (p1 ≥ q−1) is an arbitrary function of x, and h̄n = n−1
∑n

i=1 h(xi).

The h(x) function helps to improve the efficiency. By introducing Lagrange multipliers,

the solution to the above optimization problem is

ŵi =
1

m[1 + λ>1 {h(xi)− h̄n}+ λ2{π(φ; zi)−W}]
. (2.7)

12



2.2 Basic setup

By profiling out the unknown F with estimated ŵi (i = 1, . . . ,m) in (2.5) and taking

logarithm, we obtain the profile pseudo-loglikelihood:

`(φ,W,λ1)

=
m∑
i=1

log π(φ; zi)−
m∑
i=1

log[1 + λ>1 {h(xi)− h̄n}+ λ2{π(φ; zi)−W}]

+ (n−m) log(1−W ),

(2.8)

where λ2 = (n/m−1)/(1−W ). Qin et al. (2002) proposed a semiparametric estimator

for φ by maximizing the profile pseudo-loglikelihood. In the optimization procedure, it

requires some computational techniques (see Chen et al., 2002), because the maximizer

of (2.8) must satisfy ŵi ≥ 0, which are defined in (2.7).

On the other hand, under the same assumptions, Chang and Kott (2008) and Kott

and Chang (2010) proposed another semiparametric estimator by solving the following

estimating equation

n∑
i=1

{
ri

π(φ; zi)
− 1

}
g(xi) = 0, (2.9)

where g : Rd → Rq is an arbitrary function of x. This equation is called “calibration”

in the literature of survey sampling. A typical choice for g when d = 1 is g(x) =

(1, x, . . . , xq−1)>. It is hard to decide the variables in the calibration condition when

d > 1. Also, when the dimension of g(x) is larger than q, say p2, the generalized method

of moments (GMM) method (Hansen, 1982) can be used to estimate φ. Because

Var

[{
R

π(Z)
− 1

}
g(X)

]
= E{O(Z)g(X)⊗2},

the GMM estimator can be constructed by

φ̂ := argmin
φ

n∑
i=1

{
ri

π(φ; zi)
− 1

}2

g(xi)
>V̂ −1g(xi), (2.10)

where B⊗2 = BB> for any matrix B, V̂ = n−1
∑n

i=1O(zi)g(xi)
⊗2, and O(z) =

{1−π(z)}/π(z). The optimization of both (2.9) and (2.10) are much simpler than that

of Qin et al. (2002) since there is no constraint in the optimization.

The two semiparametric estimation methods use the same assumptions but seem

to provide different estimation results. A natural question is “which one is better?”.

Or, “are there any real difference between the two methods?”. We will answer to these

questions in §2.5.
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2. SEMIPARAMETRIC ESTIMATION

2.3 Semiparametric maximum likelihood approach

The proposed method is different from Riddles et al. (2016) in two ways. First, instead

of assuming a parametric model for f1(y | x), we use a nonparametric regression ap-

proach to compute the conditional expectation in (2.1). Second, parameter estimation

of θ is not based on the propensity score method in (2.4). Instead, we consider an

approach using expected estimating equations (Wang and Pepe, 2000), which will lead

to more efficient parameter estimation.

To compute the conditional expectation in (2.1) nonparametrically, note that

E0{s0(φ;x, Y ) | x} =

∫
s0(φ;x, Y )O(φ;x, y)f1(y | x)dy∫

O(φ;x, y)f1(y | x)dy

=:
Cs(φ;x)

D(φ;x)
. (2.11)

Using kernel smoothing (e.g. Wasserman, 2005), we can estimateCs(·)/D(·) by Ĉs(·)/D̂(·),
where

Ĉs(φ;x) := (nhd)−1
n∑
j=1

rjKh(xj − x)O(φ;x, yj)s0(φ;x, yj),

D̂(φ;x) := (nhd)−1
n∑
j=1

rjKh(xj − x)O(φ;x, yj),

d is the dimension of x, K : Rd → R is a kernel function, Kh(x) = K(x/h), and h is an

appropriate bandwidth which satisfies certain regularity conditions. The mean score

equation (2.1) is now approximated by

Ŝ(φ) := n−1
n∑
i=1

[
ris1(φ;xi, yi) + (1− ri)

Ĉs(φ;xi)

D̂(φ;xi)

]
= 0. (2.12)

Thus, φ can be estimated without specifying any parametric distributional assumptions

on the outcome variable Y . The solution φ̂ from (2.12) can be called the semiparametric

maximum likelihood estimator of φ because we use a parametric model for [r | x, y],

but use a nonparametric model for f1(y | x).

Given the solution φ̂ from (2.12), parameter θ can be estimated as the solution to

n−1
n∑
i=1

[
riU(θ; zi) + (1− ri)E0{U(θ;xi, Y ) | xi, φ̂}

]
= 0. (2.13)
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2.3 Semiparametric maximum likelihood approach

The above estimating equation, called the expected estimating equation, leads to an

efficient estimator of θ. To compute the conditional expectation in (2.13), we use the

kernel smoothing method again; the left side of (2.13) can be approximated by

Û(θ, φ̂) := n−1
n∑
i=1

[
riU(θ; zi) + (1− ri)

ĈU (θ, φ̂;xi)

D̂(φ̂;xi)

]
, (2.14)

where

ĈU (θ,φ;x) := (nhd)−1
n∑
j=1

rjKh(xj − x)O(φ;x, yj)U(θ;x, yj).

Remark 2.3.1. Choosing an appropriate bandwidth is a challenging problem in non-

parametric estimation. In this paper, we consider the following cross-validation method

for bandwidth selection. This method is only suitable for choosing a bandwidth for

(2.12), but the bandwidth selection for (2.14) can be conducted similarly.

Step 1. For each bandwidth h ∈ H, compute φ̂h, where H is a class of candidates

for the bandwidth.

Step 2. For a bandwidth candidate h ∈ H, calculate

K(h) =
n∑
i=1

∥∥∥∥∥ri
[
Ĉs(φ̂h;xi)/f̂1(xi)− s0(φ̂h;xi)O(φ̂h; zi)

D̂(φ̂h;xi)/f̂1(xi)−O(φ̂h; zi)

]∥∥∥∥∥
2

, (2.15)

where ‖ · ‖ is the Euclidean norm and f̂1(x) = {n(h
′
)d}−1

∑n
i=1 riKh′(xi − x), where

h′ is a bandwidth of nonparametric estimator for f1(x) = f(x | r = 1) chosen by such

as the Normal reference rule and a cross-validation method (Wasserman, 2005).

Step 3. Choose an optimal bandwidth h∗ which minimizes the above K(h).

2.3.1 Asymptotic Properties

Here, asymptotic properties of the proposed estimator are presented. In Theorem

2.3.1 the consistency is established. In Theorem 2.3.2 the asymptotic normality is

established. Regularity conditions are presented in Appendix A.

Theorem 2.3.1. Under conditions (C1.1) and (C1.6)–(C1.12) in Appendix A, our

estimators φ̂ and θ̂ converge in probability to φ0 and θ0, respectively, as n→∞.

Theorem 2.3.2. Under conditions (C1.1)–(C1.12) in Appendix A, the following results

hold:

[1]
√
n
(
φ̂− φ0

)
L−→ N(0,Σφ) as n→∞,
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2. SEMIPARAMETRIC ESTIMATION

where

Σφ = I−1
11 E

{
O(φ0)s̄0(φ0)⊗2

} (
I−1
11

)>
,

B⊗2 = BB>,

I11 = −E{s̄0(φ0)π̇>(φ0)/π(φ0)},

s̄0(φ;x) = E0{s0(φ;x, Y ) | x},

π̇(φ) = ∂π(φ)/∂φ

and

[2]
√
n
(
θ̂ − θ0

)
L−→ N(0,Σθ) as n→∞,

where

Σθ = I−1
22

(
var{U(θ0)}+ E[O(φ0){U(θ0)− Ū(θ0) + κs̄0(φ0)}⊗2]

) (
I−1
22

)>
,

Ū(θ) = E0{U(θ;x, Y ) | x},

κ = I21I
−1
11 ,

I21 = E[{U(θ0)− Ū(θ0)}π̇>(φ0)/π(φ0)],

I22 = −E{∂U(θ0)/∂θ}.

Remark 2.3.2. As shown in (B.12) in Appendix B, the asymptotic variance Σφ can

be rewritten as

Σφ = I−1
11 var {r {s1(φ0; z) +G(φ0; z)}+ (1− r)s̄0(φ0;x)}

(
I−1
11

)>
,

where G(z) = O(φ; z) {s0(φ; z)− s̄0(φ;x)}. If G ≡ 0, the asymptotic variance of φ̂

becomes

Σφ = I−1
11 var {rs1(φ0; z) + (1− r)s̄0(φ0;x)}

(
I−1
11

)>
which is equivalent to the asymptotic variance when the true f1(y | x) is known in

advance. Thus, G(·) can be viewed as the additional price we pay due to estimating

f1(y | x) using nonparametric regression.

For variance estimation, we can use the linearization method of Kim and Yu (2011).

As shown in (B.12) in Appendix B, Σθ can be written as var[I−1
22 {Ûl(φ0, θ0)−I21I

−1
11 Ŝ

l
(φ0)}].

Therefore, if we could estimate I11, I21, and I22, a consistent estimator of the asymptotic

variance Σθ would be obtained by

Σ̂θ = n−1
n∑
i=1

η̂2
i −

(
n−1

n∑
i=1

η̂i

)2
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2.4 Semiparametric adaptive estimators

where η̂i = Î−1
22 {Ûl

i(φ̂, θ̂)− Î21Î
−1
11 Ŝ

l
i(φ̂)} and Î11, Î21, and Î22 are consistent estimators

of I11, I21, I22,

Ŝ
l
i(φ) =

{
1− ri

π(φ; zi)

}
s̄0(φ;xi),

and

Ûl
i(φ, θ) =

[
riU(θ; zi)

π(φ; zi)
+

{
1− ri

π(φ; zi)

}
Ū(θ;xi)

]
.

For example, I11 can be estimated by

Î11 = −n−1
n∑
i=1

ris̄0(φ̂;xi)
π̇(φ̂; zi)

>

π2(φ̂; zi)
. (2.16)

Instead of the above linearization method, a bootstrap method or the empirical likeli-

hood jackknife method of Zhong and Chen (2014) can be also used.

2.4 Semiparametric adaptive estimators

2.4.1 Efficiency bound

In this section, we provide an optimal estimator for the true parameter (φ>0 , θ0)>

that is the most efficient among all RAL estimators. If the optimal influence function

ϕeff is found, the semiparametric lower bound is given as E(ϕeffϕ
>
eff). We begin by

presenting the efficient influence function in Lemma 2.4.1. Although θ is a parameter

not prescribing the distribution of [x, y] as defined in §2.2, this limitation is just for

simplicity and can be removed. For example, Rotnitzky and Robins (1997) derived the

semiparametric efficiency bound for regression parameters, which prescribe the first

moment of the distribution of [y | x]. However, ideas used for adaptive estimators

expressed in §2.4.2 are still applicable for such parameters.

In the following discussion, we abbreviate the parameter value or random variable,

for example, π(z;φ0) = π(z) = π(φ0), unless this would lead to ambiguity.

Lemma 2.4.1. Let Seff = (S>1 ,S2)>, where S1 = S1(R,GR(Z)) and S2 = S2(R,GR(Z))

are defined as

S1(R,GR(Z);φ) =

{
1− R

π(Z;φ)

}
g?(X;φ0), (2.17)

S2(R,GR(Z);φ, θ) =
R

π(Z;φ)
U(Z; θ) +

{
1− R

π(Z;φ)

}
U?(X;φ0, θ)}, (2.18)
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2. SEMIPARAMETRIC ESTIMATION

g?(x;φ0) = E?{s0(Z;φ0) | x;φ0}, U?(x;φ0, θ) = E?{U(Z; θ) | x;φ0}, and

E?{g(Z) | x;φ0} =
E{O(Z;φ0)g(Z) | x}
E{O(Z;φ0) | x}

(2.19)

with O(z;φ0) = {1 − π(z;φ0)}/π(z;φ0). Then, the efficient influence function is

ϕeff = M−1Seff , where M = E(S⊗2
eff ) = E

{
∂Seff(φ0, θ0)/∂(φ>, θ)>

}
. Therefore, the

semiparametric efficiency bound is given by {E(S⊗2
eff )}−1. In particular, the asymptotic

variance of θ̂ is V = var{S2(φ0, θ0) − κS1(φ0)}, where κ = E{(E?(U | x;φ0) −
U)π̇(φ0)>/π(φ0)}E{g?(φ0)π̇(φ0)>/π(φ0)}−1.

This Lemma 2.4.1 implies that if we can compute E?(· | x), then estimating func-

tions (2.17) and (2.18) will yield an optimal estimator. The optimal estimator will be

the solution to

n∑
i=1

Seff,i(φ, θ) =
n∑
i=1

{S>1 (ri,Gri(zi);φ),S2(ri,Gri(zi);φ, θ)}> = 0. (2.20)

Because by the regularity conditions defined in Appendix A, we assume M is nonsin-

gular; also note that multiplying a nonsingular matrix does not affect its asymptotic

distribution.

Remark 2.4.1. The estimating equation (2.17) can be viewed as a special case of the

estimator of Chang and Kott (2008) and Kott and Chang (2010) defined in (2.9). One

might think that more information can be included with larger dimension of g because

the above two methods can handle models when q > d+ 1 by solving (2.10). However,

according to Lemma (2.4.1), there is no need to use more g functions and it is enough

to consider only g?(x,φ0) (i.e., q = d+ 1) as the calibration functions.

The equation based on S1(φ) in (2.17) gives an optimal estimator for φ, say φ̂.

Then, by using φ̂, S2(φ̂, θ) in (2.18) can provide an optimal estimator for θ. However,

the expectation E?(· | x) and the parameter φ0 are unknown and need to be estimated.

Also, to compute the conditional expectation, we may need to correctly specify the

distribution of [y | x], which is subjective and unverifiable, as is stated in §1.2. Two

adaptive estimators are proposed to work around the problem and also attain the lower

bound derived in Lemma 2.4.1.
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2.4 Semiparametric adaptive estimators

2.4.2 Adaptive Estimators and their asymptotic properties

We now propose two adaptive estimators for (φ0, θ0): (i) with a parametric working

model for f1(y | x;γ); (ii) with a nonparametric estimator for f1(y | x), where f1(y |
x) = f(y | x, r = 1).

To discuss the first method, let f1(y | x) be known up to the parameter γ ∈ Γ, and

let γ̂ be the maximizer of
∑n

i=1 ri log f1(yi | xi;γ). This can be easily implemented, and

its validity can be checked by using information criteria such as the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC). By using the similar idea

to Sverchkov (2008) and Riddles et al. (2016), we can show that, for any function g(z),

E?{g(Z) | x;φ0, γ} =
E1{π−1(Z;φ0)O(Z;φ0)g(Z) | x;γ}
E1{π−1(Z;φ0)O(Z;φ0) | x;γ}

, (2.21)

where E1(· | x) = E(· | x, r = 1). Thus, the expectation can be estimated by us-

ing the assumed model f1(y | x; γ̂) and π(z;φ0). However, φ0 is unknown, thus

we propose an estimating equation
∑n

i=1 Seff,i(φ, θ, γ̂) = 0, where Seff,i(φ, θ, γ̂) =

{S>1 (ri,Gri(zi);φ, γ̂),S2(ri,Gri(zi);φ, θ, γ̂)}> with

S1(r,Gr(z);φ; γ̂) =

{
1− r

π(z;φ)

}
g?(x;φ, γ̂),

S2(r,Gr(z);φ, θ, γ̂) =
r

π(z;φ)
U(z; θ) +

{
1− ri

π(z;φ)

}
U?(x;φ, θ, γ̂).

(2.22)

How about f1(y | x) is misspecified? One would expect the solution to the estimating

equation with (2.22) to be inconsistent as a result. However, the estimator that uses the

function on the right-hand side of (2.21) is consistent even when the assumed model for

f1(y | x) is misspecified. Also, if the model is correctly specified, the estimator attains

the lower bound. This leads us to Theorem 2.4.1.

Theorem 2.4.1. Let (φ̂>, θ̂)> be the solution to
∑n

i=1 Seff,i(φ, θ, γ̂) = 0. Under

conditions (C2.1)–(C2.6) given in Appendix A, (φ̂>, θ̂)> has consistency and asymptotic

normality with variance

E

{
∂S∗eff

∂(φ>, θ)

}−1

E(S∗⊗2
eff )E

{
∂S∗eff

∂(φ>, θ)

}−1,>
,

even if f1(y | x; γ̂) is misspecified, where γ∗ is the limit of γ̂, and S∗eff = {S1(φ0,γ
∗)>,S2(φ0, θ0,γ

∗)}>

is defined in (2.22). Also, the asymptotic variance of θ̂ is given as

V ∗ = var{S2(φ0, θ0,γ
∗)− κ∗s1(φ0,γ

∗)}/σ2
U, (2.23)
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2. SEMIPARAMETRIC ESTIMATION

where

κ∗ = κ∗1(κ∗2)−1,

κ∗1 = E[{U?(φ0, θ0,γ
∗)− U(θ0)}π̇(φ0)>/π(φ0)}],

κ∗2 = E{g?(φ0,γ
∗)π̇(φ0)>/π(φ0)},

σU = E{∂U(θ0)/∂θ}.

In addition, if the model is correctly specified, the estimator attains the semiparametric

efficiency bound.

Remark 2.4.2. There are two properties better than the estimator of Riddles et al.

(2016). First, the parametric model f1 is irrelevant to the consistency and asymptotic

normality of the estimator here. Therefore, we call f1 a working model, as in Liang

and Zeger (1986). Second, our proposed estimator can attain the semiparametric ef-

ficiency bound derived in Lemma 2.4.1. However, though equation (2.18) has a form

similar to that of the doubly robust estimator under MAR (Robins et al., 1994), unfor-

tunately, our estimator does not have the doubly robustness property. This is because

the computation for E?(· | x) relies on the correct response mechanism.

Numerical computation is needed to calculate the conditional expectation in (2.21).

The expectation-maximization (EM) algorithm considered in Riddles et al. (2016) can

be used with a minor modification. we can directly apply their method, once the

weights w∗ij defined in (15) of Riddles et al. (2016) are changed to

w∗ij =
rjπ
−1(xi, yj ;φ)O(xi, yj ;φ)f1(yj | xi;γ)/C(yj ;γ)∑n

k=1 rkπ
−1(xi, yk;φ)O(xi, yk;φ)f1(yk | xi;γ)/C(yk;γ)

,

where C(y;γ) =
∑n

l=1 rlf1(y | xl;γ). The weight w∗ij can be called fractional weights

in the context of fractional imputation (Kim, 2011). With these weights, E?{g(xi, Y ) |

xi;γ,φ} can be computed by
∑n

j=1w
∗
ijg(xi, yj).

We now discuss the second adaptive estimation method based on nonparametric

estimation for f1(y | x). Generally speaking, directly computing the expectation de-

fined in (2.19) with nonparametrically estimated f1(y | x) would make the computation

difficult. To avoid this problem, we consider methods of calculating the expectation

directly. When x is discrete, such as when x is a dichotomous variable, the expectation

can be computed by averaging the data conditioned by X = x and R = 1, e.g., for
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x = 0, 1,

Ê?{g(x, Y ) | x;φ} =

∑
j∈Ix rjπ

−1(x, yj ;φ)O(x, yj ;φ)g(x, yj)∑
j∈Ix rjπ

−1(x, yj ;φ)O(x, yj ;φ)
(2.24)

is a consistent estimator of (2.21), where Ix = {j ∈ {1, . . . , n} | Xj = x}.

When x is continuous, the Nadaraya-Watson estimator can be employed. That is,

for any function g(z),

Ê?{g(x, Y ) | x;φ} =

∑n
j=1Kh(x− xj)rjπ−1(x, yj ;φ)O(x, yj ;φ)g(x, yj)∑n

j=1Kh(x− xj)rjπ−1(x, yj ;φ)O(x, yj ;φ)
(2.25)

is consistent under the regularity conditions given in §S1 in the Supplementary Material.

Here,

Kh(x−w) = K

(
x−w
h

)
=

d∏
k=1

K

(
xk − wk

h

)
,

where K is a kernel function, and h is the bandwidth. We have the following result for

the adaptive estimators obtained with the Nadaraya-Watson estimation.

Theorem 2.4.2. Let (φ̂>, θ̂)> be the solution to
∑n

i=1 Ŝeff,i(φ, θ) = 0, where Ŝeff,i(φ, θ)

is defined in (2.20) with the estimated conditional expectation (2.25). Under Condi-

tions (C2.1), (C2.2), and (C2.7)–(C2.14) given in Appendix A, the estimator attains

the semiparametric efficiency bound.

The proposed estimator is attractive because it does not need any model assump-

tions on f1, but it would not work well when the dimension of x is high, as is common

in any nonparametric estimation.

Estimating variance is also a difficult problem in semiparametric estimation. When

we consider a parametric working model f1(y | x),

V̂ = n−1
n∑
i=1

{S2(ri,Gri(zi); φ̂, θ̂, γ̂)− κ̂S1(ri,Gri(zi); φ̂, γ̂)}⊗2/σ̂2
U (2.26)

converges to V ∗ in probability as defined in (2.23), where σ̂U and κ̂ are consistent

estimators for σU and κ∗ = κ∗1(κ∗2)−1, respectively, for κ∗1 and κ∗2 as defined in Theorem

2.4.1. To estimate κ∗1, we propose using the same method that we used to compute θ0,

i.e., let U(φ0, k1,γ
∗) = k1− (U?(γ∗)−U)π̇(φ0)>/π(φ0) be our new U -function and let
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the solution to E{U(φ0, k1,γ
∗)} = 0 with respect to k1 be our target parameter; solve

the following equation:

n∑
i=1

[
ri

π(zi; φ̂)
U(zi; φ̂, k1, γ̂) +

{
1− ri

π(zi; φ̂)

}
E?{U(Z; φ̂, k1, γ̂) | xi; γ̂}

]
= 0.

This is the optimal estimator for (φ0,κ
∗
1) in terms of the asymptotic variance, because

U is a known function and Theorem 2.4.1 is applicable. The best estimator for κ∗2 can be

obtained in the same way. When we use the nonparametric method stated in Theorem

2.4.2 to estimate θ0, the variance can be also estimated by using the nonparametric

method (2.24), instead of assuming a parametric model f1(y | x;γ) in (2.26).

2.5 Theoretical comparison among the semiparametric es-

timators

In this section, we show when q = p1 + 1 = p2, if we choose specific g(x) and h(x)

functions, the two estimators are exactly the same. Recall that q, p1, and p2 are the

dimension of φ, h(x), and g(x).

Theorem 2.5.1. When q = p1 + 1 = p2, both EL and GMM estimators are exactly

same if and only if g(x) = {1,h(x)}>.

Consider that we now try to estimate φ by using a method of Qin et al. (2002)

with an h(x) function. Theorem 2.5.1 implies that, when q = p1 + 1, there is no reason

to use the procedure for EL, and just use the GMM estimating equation (2.9) with

g(x) = {1,h(x)>}>, which is much simpler in terms of computation.

Furthermore, we can see that the GMM estimator including g?(x) as the constraint

also attains the semiparametric efficiency bound.

Theorem 2.5.2. When q < p1 + 1 = p2, the GMM estimator attains the semi-

parametric efficiency bound if g(x) defined in (2.10) contains g?(x), i.e., g(x) =

{k(x)>, g?(x)>}>, where k : Rd → Rκ is an arbitrary function of x, and κ ∈ R1

is a positive integer.

This estimator enjoys two properties, (i) robustness for misspecification of the re-

sponse model; (ii) semiparametric efficiency. The robustness is achieved because of

the constraints, which is proposed by Qin and Zhang (2007) and Imai and Ratkovic

(2014) for observational studies in the case of MAR. Our study can be considered as

an extension of their works to NMAR.
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Chapter 3

Identification for models with

repeated measurement data

3.1 Introduction

In clinical studies, researchers generally hope to obtain complete data but this does

not always happen. In fact, subjects are typically told that they can drop out anytime

they want, in accordance with human participant protection protocols. There are thus

many dropouts in some experiments. From a statistical perspective, missing values

complicate the data analysis, because ignoring the response mechanism can lead to

inappropriate inference.

For example, Machin et al. (1988) report results of a comparative trial of two dosages

of depot medroxyprogesterone acetate (DMPA, 100 mg and 150 mg) where over 40%

of subjects are missing at the endpoint. In the DMPA trial test, 1151 female subjects

were divided into two dosages randomly and took DMPA in every quarter, over one

year. They reported the results of DMPA as binary data: if a subject experienced

amenorrhea, i.e., absence of a menstrual period in a woman of reproductive age, it

was coded as 1; otherwise, it was coded 0. Whether a subject experienced amenorrhea

or not was based on her menstrual diary. Each subject thus generated a sequence

according to whether or not she experienced amenorrhea in the successive reference

periods. The number of women with each sequence is shown in Table 3.1, where “×”

means missingness. For example, “0 1××” means amenorrhea is absent in first period,

but present the next period, and the data were obtained for the third and fourth periods.
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3. IDENTIFICATION FOR MODELS WITH REPEATED
MEASUREMENT DATA

These data have been analyzed by several authors using various approaches; see, e.g.,

Birminghama et al. (2003); Matsuyama (2004); Wilkins and Fitzmaurice (2006). We

will analyze the same data with a new approach.

In the analysis of repeated measure data, serial correlations among response vari-

ables in Yi = (Yi1, , . . . , YiT ) may not be ignored and any statistical model for Yi has to

take the correlations into account. Serial correlation is typically incorporated into the

model either via a conditional or a marginal approach. Conditional models describe

the serial correlation by modeling Yt, which is the response at time t, given not only

covariates X but also Y1, , . . . , Yt−1, which are responses recorded earlier than time t.

The approach is intuitive and simple, and the serial correlations are obtained easily

from the conditional model (Molenberghs and Verbeke, 2005).

While the likelihoods of conditional models are often simple, only the direct effects of

covariates on the responses are easily obtained since response variables are conditioned

on the past data. Total effects require complicated calculations. Marginal models

and hybrid models easily yield total effects of covariates to the response variables,

which are often most interesting. However, the likelihoods of marginal models and

hybrid models can be unwieldy. In addition, the parameter space may be restricted by

equality constraints. For example, in Molenberghs et al. (1997), equality constraints

are made on the coefficients of the response mechanism over time. This requires that

the probability of missingness be invariant throughout the experiment, which is an

unnatural assumption since, in many cases, subjects who stay to the end are likely to

influence the response variables more than those who drop out early.

In contrast, there exist several models for analyzing categorical data with non-

ignorable missingness. For example, Fay (1986), Baker and Laird (1988), and Park and

Brown (1994) used log-linear models. Marginal models are developed to describe the se-

rial correlations by modeling various moments of Y given covariates X, e.g., E(Y1 |X),

E(Y1Y2 |X) by adopting a fully parametric approach or by modeling a limited number

of lower-order moments only, versus modeling conditionally on the responses at previ-

ous times (Fitzmaurice and Laird, 1993; Molenberghs and Lesaffre, 1994; Molenberghs

et al., 1997; Molenberghs and Verbeke, 2005). Furthermore, more elaborate models

have recently been proposed, e.g., hybrid models, which retain advantageous features

of the selection and pattern-mixture model approaches simultaneously (Wilkins and

Fitzmaurice, 2006; Yuan and Little, 2009).
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3.2 Fully parametric models

Nevertheless, model unidentifiability remains an essential issue (Fitzmaurice et al.,

1995; Matsuyama, 2004). If a model is not identifiable, then any statistical infer-

ence using the model is distorted and asymptotic properties such as consistency and

asymptotic normality may fail. Sufficient conditions have been studied for nonignor-

able nonresponse when t = 1. For example, Miao et al. (2016) explored identifiable

parameters when an outcome variable is continuous such as Gaussian, Student, or a

normal mixture. Wang et al. (2014) also found that nonresponse instrumental variables

can make a semiparametric model identifiable when the response model is parametric

and the outcome model is unspecified.

In this chapter, we mainly focus on the identification problem for models with

discrete response variables. Main results with a response and an outcome models, both

are parametric, are presented in §3.2 and §3.4. In §3.4, the results in §3.2 are extended

for semiparametric models where either of the mechanism or the outcome model is

unspecified. Some technical developments are relegated to Appendix B.

3.2 Fully parametric models

Assume that Y is binary, which is perhaps the most challenging case for identifiability

given the poor level of information in Y . We further assume throughout that the

missing pattern type is drop-out.

Let R = (R1, . . . , RT ) be a vector of indicator variables Rt taking value 1 (0) if

Yt is observed (missing). First, we consider the identification problem when both the

response and outcome models are parametric. We then extend our study to the case

where one of them is nonparametric.

Suppose that (R, Y ) has distribution g and, for each t ∈ {1, . . . , T}. Write

R = r(t) when the value 1 occurs exactly t times in this vector of indicators. De-

note the observed and missing parts of Y by Y (t) and Y (−t), respectively. Note that

Y = (Y (t)> , Y (−t)>)> always holds. We also assume Pr(R1 = 1) = 1. Note that

(Y2, , . . . , YT ) is subject to missingness and that there are no covariates. We will con-

sider the case with covariates later.

To model the relation between Y and the missing indicator R, we can introduce a

limited number of parameters because of the poor information in Y . For example, in
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3. IDENTIFICATION FOR MODELS WITH REPEATED
MEASUREMENT DATA

Table 3.1: Results of DMPA Trial

Time
Amenorrhea

sequence DMPA (mg) Time
Amenorrhea

sequence DMPA (mg)

100 150

1 0××× 76 68 4 0 0 0 0 142 119

1××× 23 31 0 0 0 1 49 36

Total 99 99 0 0 1 0 14 26

2 0 0×× 43 39 0 0 1 1 41 44

0 1×× 14 27 0 1 0 0 7 4

1 0×× 3 6 0 1 0 1 8 12

1 1×× 8 15 0 1 1 0 4 7

Total 68 87 0 1 1 1 32 48

3 0 0 0× 20 11 1 0 0 0 6 3

0 0 1× 13 10 1 0 0 1 7 6

0 1 0× 1 0 1 0 1 0 0 2

0 1 1× 5 6 1 0 1 1 10 12

1 0 0× 2 1 1 1 0 0 4 1

1 0 1× 2 1 1 1 0 1 4 3

1 1 0× 0 1 1 1 1 0 3 2

1 1 1× 5 6 1 1 1 1 30 28

Total 48 36 Total 361 353

Table 3.1, the total number of cells is 2 + 4 + 8 + 16 = 30; thus, we can use at most 29

parameters. If we let T be the endpoint of the experiment, then we can use at most

T∑
t=1

2t − 1 = 2T+1 − 3 (3.1)

parameters. Because this condition is necessary but not sufficient, there could exist

many unidentifiable models having at most (3.1) parameters.

3.2.1 Logistic AR(1) model and its identification

Suppose that a model is such that Pr(yt = 1 | vt−1) = Pr(yt = 1 | vpt−1), where, for

each t ∈ {1, . . . , T},

vpt =

{
(yt−p, . . . , yt) if t− p ≥ 1,

(y1, . . . , yt) otherwise,
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3.2 Fully parametric models

and vt = (Y1, . . . , Yt)
> = vt−1

t . In this so-called AR(p) model, it is assumed that Yt

depends on its past own values from the last p periods or less. Also let the response

model be

logit Pr(Rt = 1 | Rt−1 = 1, yt−1, yt;φt,0, φt,t−1, φt,t) = φt,0 + φt,t−1yt−1 + φt,tyt (3.2)

and the marginal distribution of Y be expressed in the form

Pr(Y1 = 1;β1) = β1, logit Pr(yt = 1 | yt−1;βt,0, βt,t−1) = βt,0 + βt,t−1yt−1, (3.3)

where βt,0 and φt,0 are each an intercept in the model, while βt,t−1, φt,t−1, and φt,t are

coefficients in the model. We call this model the Logistic AR(1) model. Note that when

φt,t−1 = φt,t = 0 for t ∈ {2, . . . , T}, the response mechanism is missing completely at

random (MCAR); when φt,t = 0 for t ∈ {2, , . . . , T} and there exists t such that φt,t−1 6=
0, the mechanism is missing at random (MAR); when there exists t ∈ {2, . . . , T} such

that φt,t 6= 0, it is not missing at random (NMAR). In the Logistic AR(1) model, there

are one parameter β1 and five parameters (ξt = (βt,0, βt,t−1, φt,0, φt,t−1, φt,t) = (βt,φt))

at each time t ∈ {2, . . . , T}. Thus, the total number of parameters is

1 + 5(T − 1) = 5T − 4. (3.4)

The relation between (3.1) and (3.4) is 2T+1−3 < 5T−4 if T = 2 and 2T+1−3 > 5T−4

when T ≥ 3. Therefore, if T = 2, then the model is not identified, and if T ≥ 3, then

the model meets the necessary condition. As we will see in a later section, however,

identifiability does not hold for every T . To see this, we must first define identifiability

precisely. In the following discussion, we use “⊗” as the direct product, e.g., {0, 1}⊗2 =

{0, 1} ⊗ {0, 1} = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}.

3.2.2 Theoretical results

Let Ξ be a parameter space, ξ∗ ∈ Ξ be a true value of the model, and Pξ∗ be a

probability measure of a probability function of complete data (R, Y ) prescribed by a

true parameter ξ∗, and denote a probability function of observed data (R, Y (t)) derived

from g by gt for each t ∈ {1, . . . , T}, which is represented as

gt(r
(t), y

(t)
i ; ξ) =

{∑
y(−t)∈{0,1}⊗(T−t) g(r(t), y

(t)
i , y(−t) ; ξ) if t ∈ {1, . . . , T − 1},

g(r(T ), yi ; ξ) if t = T.
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Then, a parametric model g is said to be identifiable if

∀t∈{1,...,T} gt(r
(t), y(t) ; ξ) = gt(r

(t), y(t) ; ξ∗) a.s. Pξ∗ ⇒ ξ = ξ∗. (3.5)

Since r(t) and y(t) are binary random vectors, the condition in (3.5) is equivalent to

∀y(t) gt(r
(t), y(t); ξ) = gt(r

(t), y(t); ξ∗) or gt(r
(t), y(t); ξ∗) = 0 ⇒ ξ = ξ∗.

Here the likelihood involving R will be called the full information maximum likeli-

hood (FIML) and written as Ln(ξ), where n is the sample size. Then, the FIML can

be written as

Ln(ξ) =

n∏
i=1

T∑
t=1

1{Ri=r(t)}gt(r
(t), y

(t)
i ; ξ).

Let L(ξ) be a function which is the limit of the log-likelihood n−1 ln{Ln(ξ)} as n→∞.

Such a function exists by the Strong Law of Large Numbers, and we have

lim
n→∞

1

n
ln{Ln(ξ)} = lim

n→∞

1

n

n∑
i=1

ln

{
T∑
t=1

1{Ri=r(t)}gt(r
(t), y

(t)
i ; ξ)

}
= Eξ∗ [ln{gt(r(t), y(t); ξ)}] (≡ L(ξ)) a.s. Pξ∗

=
T∑
t=1

∑
y∈{0, 1}⊗T

ln{gt(r(t), y(t); ξ)}g(r(t), y ; ξ∗) a.s. Pξ∗ ,

where Eξ∗ represents the expectation under the probability measure Pξ∗ . The following

important relationship is proved in the Appendix:

∀ε>0 sup
ξ∈Ξε

L(ξ) < L(ξ∗). (3.6)

It ensures the consistency of the MLE under two additional assumptions, namely com-

pactness of Ξ and continuity of L(ξ), where Ξε = {ξ ∈ Ξ : |ξ − ξ∗| ≥ ε}. For these

reasons, we focus on whether (3.5) holds or not in the following discussion.

We assume an AR(p) model for the distribution of Y . By transforming gt(r
(t), y(t); ξ)

appropriately, we can obtain the next result.

Lemma 3.2.1. For each t ∈ {1, . . . , T}, the joint probability function of (R, Y (t)) can

be expressed in the form

gt(r
(t), y(t); ξ) =


π1(y1; ξ1)

t∏
s=2

πs(vs; ξs)×

1−
∑
yt+1

πt+1(vt+1; ξt+1)

 if t ≤ T − 1,

π1(y1; ξ1)
∏T
s=2 πs(vs; ξs) if t = T,
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3.2 Fully parametric models

where ξt = (β>t ,φt
>)>, ξ = (ξ1

>, . . . , ξ>T )>, vt = vt−1
t ,

πt(vt; ξt) =

{
Pr(Y1 = y1; β1) if t = 1,

Pr (Rt = 1 | Rt−1 = 1,vt; φt)× ft (Yt = yt | vt−1; βt) if t ∈ {2, . . . , T},

and ft is the probability function of (Yt | Vt−1). In particular, for the AR(p) model,

one gets

gt(y
(t), r(t); ξ) =


π1(y1; ξ1)

t∏
s=2

πs(v
p
s ; ξs)

1−
∑
yt+1

πt+1(vpt+1; ξt+1)

 if t ≤ T − 1,

π1(y1; ξ1)
∏T
s=2 πs(v

p
s ; ξs) if t = T.

Note that this lemma holds even if the response variable is continuous, in which

case the probability function Pr(Yt = yt | vt−1;βt) in the definition of πt(vt; ξt) is just

replaced by the density function ft(yt | vt−1;βt).

Using this result, the likelihood Ln(ξ) is represented by functions of π1, . . . , πT . The

next theorem follows from Lemma 1

Theorem 3.2.1. The slightly improved identification condition in (3.5) is equivalent

to

∀t πt(vt; ξt) = πt(vt; ξ
∗
t ) a.s. Pξ∗ ⇒ ξt = ξ∗t . (3.7)

In particular, for the AR(p) model, it becomes

∀t πt(v
p
t ; ξt) = πt(v

p
t ; ξ

∗
t ) a.s. Pξ∗ ⇒ ξt = ξ∗t . (3.8)

The slightly improved condition from the original one is a simultaneous equation

for ξ, so this is still cumbersome. In contrast, for each t, the condition in (3.7) is a

simple equation in ξt and the condition can be examined for each t individually, so it

is relatively easy to check. Therefore, all we have to do is to check Condition (3.7) for

each t ∈ {2, . . . , T}. It can be also considered that the transition models are divided

into T − 1 nonresponse problems. Then πt is just a joint probability for a nonresponse

problem in which subjects are restricted to only those who are observed until at least

the tth period.

When p = 1, t = 2, the joint probability can be written as

π2(v2; ξ2) = Pr(R2 = 1 | R1 = 1, y1, y2; φ2) Pr(Y2 = y2 | y1; β2).
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This is a nonresponse problem at t = 2. The condition is equivalent to stating that

(β2,φ2) = (β∗2,φ
∗
2) when

∀(y1, y2)∈(0,1)⊗2 Pr(R2 = 1 | R1 = 1, y1, y2 ; φ2) Pr(Y2 = y2 | y1 ; β2)

= Pr(R2 = 1 | R1 = 1, y1, y2 ; φ∗2) Pr(Y2 = y2 | y1 ; β∗2). (3.9)

There are four constraints in (3.9) and if all of them were linear equations, the number

of parameters would have to be at most 4. Since we have five parameters in the Logistic

AR(1) model, this would imply that the model is not identified. In binary data analysis,

the constraints are usually non-linear, but it is worth verifying this condition, i.e.,

stating in general terms whether dim(ξt), representing the number of parameters used

at time t, is less than or equal to 2dim(vpt ), representing the number of constraints. Note

that generally we have to check all the above expressions rigorously.

3.3 Logistic AR(p) models

In the Logistic AR(1) model defined in (3.2)–(3.3), there are five parameters at each

time t ≥ 2. From the previous discussion, it seems that the Logistic AR(1) model is

not identified, and in fact, it is not.

Proposition 3.3.1. The logistic AR(1) model defined in (3.2)–(3.3) is not identified.

Proof. For simplicity, we write

(a2,0, a2,1, b2,0, b2,1, b2,2) = (exp(β2,0), exp(β2,1), exp(−φ2,0), exp(−φ2,1), exp(−φ2,2)),

(a∗2,0, a
∗
2,1, b

∗
2,0, b

∗
2,1, b

∗
2,2) = (exp(β∗2,0), exp(β∗2,1), exp(−φ∗2,0), exp(−φ∗2,1), exp(−φ∗2,2)),

and prove it only for t = 2, i.e., show that for (a∗2,0, a
∗
2,1, b

∗
2,0, b

∗
2,1, b

∗
2,2), there exists

(a2,0, a2,1, b2,0, b2,1, b2,2) such that

(a2,0, a2,1, b2,0, b2,1, b2,2) 6= (a∗2,0, a
∗
2,1, b

∗
2,0, b

∗
2,1, b

∗
2,2)

and (3.9) holds. To show this, we fix a2,0 at some value (say, ã2,0) which is not a∗2,0 and

prove that (3.9) holds if and only if the rest of the parameters (a2,1, b2,0, b2,1, b2,2) can be

written as functions of (ã2,0, a
∗
2,0, a

∗
2,1, b

∗
2,0, b

∗
2,1, b

∗
2,2) only, which shows that the Logistic

30



3.3 Logistic AR(p) models

AR(1) model is not identified. In the Logistic AR(1) model, (3.9) is represented as

(1 + a2,0)(1 + b2,0) = (1 + a∗2,0)(1 + b∗2,0), (3.10)(
1 +

1

a2,0

)
(1 + b2,0b2,2) =

(
1 +

1

a∗2,0

)
(1 + b∗2,0b

∗
2,2), (3.11)

(1 + a2,0a2,1)(1 + b2,0b2,1) = (1 + a∗2,0a
∗
2,1)(1 + b∗2,0b

∗
2,1), (3.12)(

1 +
1

a2,0a2,1

)
(1 + b2,0b2,1b2,2) =

(
1 +

1

a∗2,0a
∗
2,1

)
(1 + b∗2,0b

∗
2,1b
∗
2,2), (3.13)

where a2,0 = ã2,0 and all the parameters a2,0, a2,1, b2,0, b2,1, b2,2, a
∗
2,0, a

∗
2,1, b

∗
2,0, b

∗
2,1, b

∗
2,2

are positive. From (3.10), we have

b2,0 =
(1 + a∗2,0)(1 + b∗2,0)

1 + ã2,0
− 1 (3.14)

and from (3.11), we have

b2,2 =
ã2,0(1 + a∗2,0)(1 + b∗2,0b

∗
2,2)− a∗2,2(1 + ã2,0)

a∗2,0{(1 + a∗2,0)(1 + b∗2,0)− (1 + ã2,0)}
. (3.15)

To guarantee that b2,0, b2,2 > 0, ã2,0 must satisfy

a∗2,0
1 + b∗2,0b

∗
2,2(1 + a∗2,0)

< ã2,0 < (1 + a∗2,0)(1 + b∗2,0)− 1.

We assume this condition for ã2,0. By multiplying (3.13) by ã2,0a2,1a
∗
2,0a

∗
2,1 and dividing

by (3.12), we obtain

a2,1 =
a∗2,0a

∗
2,1(1 + b∗2,0b

∗
2,1)(1 + b2,0b2,1b2,2)

ã2,0(1 + b∗2,0b
∗
2,1b
∗
2,2)(1 + b2,0b2,1)

. (3.16)

By replacing b2,0, b2,2 with (3.14), (3.15), respectively, we have

b2,1 =
b∗2,0b

∗
2,1{a∗2,0a∗2,1b∗2,2(b∗2,0b

∗
2,1 + 1) + b∗2,0b

∗
2,1b
∗
2,2 + 1}{

(a∗2,0 + 1)(b∗2,0 + 1)/(ã2,0 + 1)− 1
}

×
a∗2,0(a∗2,0 + 1)(b∗2,0 + 1)− (ã2,0 + 1)

a∗2,0a
∗
2,1(b∗2,0b

∗
2,1 + 1)[ã2,0{(a∗2,0 + 1)b∗2,0b

∗
2,2 + 1} − a∗2,0]

. (3.17)

Furthermore, by substituting (3.14), (3.15), and (3.17) into (3.16), respectively, we can

obtain a2,1 as a function of (ã2,0, a
∗
2,0, a∗2,1, b

∗
2,0, b

∗
2,1, b

∗
2,2). Therefore, all the parameters

a2,0, a2,1, b2,0, b2,1, b2,2 are represented by them.
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Usually, if smaller models, e.g., the AR(1) model, do not have identifiability, then

neither do larger models, e.g., the AR(2) model. However, this is not always true, since

the poor information at time t makes the Logistic AR(1) model unidentified, but the

use of past information may make the Logistic AR(2) model identified. Recall that

the AR(1) model defined in (3.2)–(3.3) is not identified, because the model imposes

22 = 4 constraints in (3.9) with a larger number of the parameters (5), at each time

t ≥ 2 in the model; see the graphical representation in Figure 3.1. In the figure, the

parameters enclosed by broken lines are intercepts in the model and each of the other

parameters is the regression coefficient of the nearest arrow in the model. As we have

already developed an expression for the joint distribution function of the AR(p) model

in Lemma 3.2.1, if t = 3, p = 2, one parameter is added for the Y s serial correlation;

thus, we have six parameters versus 23 = 8 (> 6) constraints. This is represented

visually in Figure 3.2. Thus, for t ≥ 3, we can claim that (3.8) holds as follows.

Y1 Y2 Y3 Y4

�2,0 �3,0 �4,0

�2,1 �3,2 �4,3

�4,3 �4,4�3,2 �3,3�2,1 �2,2

�2,0 �3,0 �4,0

R2 R3 R4

Figure 3.1: AR(1) model

Y1 Y2 Y3 Y4

�2,0 �3,0 �4,0

�2,1 �3,2 �4,3

�4,3 �4,4�3,2 �3,3�2,1 �2,2

�2,0 �3,0 �4,0

R2 R3 R4

�3,1 �4,2

Figure 3.2: AR(2) model

Proposition 3.3.2. In the Logistic AR(2) model, for t ≥ 3, the following implication

holds if and only if βt,t−2 is not zero:

∀v2t πt(v
2
t ; ξt) = πt(v

2
t ; ξ

∗
t ) ⇒ ξt = ξ∗t .

Proof. The statement that we want to prove is that (βt,φt) = (β∗t ,φ
∗
t ) if, for every

(yt−2, yt−1, yt)
> ∈ {0, 1}⊗3,

1

[1 + exp{−(φt,0 + φt,t−1yt−1 + φt,tyt)}][1 + exp{(−1)yt(βt,0 + βt,t−2yt−2 + βt,t−1yt−1)}]

=
1

[1 + exp{−(φ∗t0 + φ∗tt−1yt−1 + φ∗t,tyt)}][1 + exp{(−1)yt(β∗t0 + β∗tt−2yt−2 + β∗tt−1yt−1)}]
.

(3.18)
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We prove it here only for t = 3 since the above expression is identical for t ≥ 3. The

condition in (3.18) is equivalent to the following eight expressions:

(1 + a3,0)(1 + b3,0) = (1 + a∗3,0)(1 + b∗3,0) (3.19)

(1 + a3,0a3,1)(1 + b3,0) = (1 + a∗3,0a
∗
3,1)(1 + b∗3,0) (3.20)

(1 + a−1
3,0)(1 + b3,0b3,3) = (1 + a∗−1

3,0 )(1 + b∗3,0b
∗
3,3) (3.21)

(1 + a−1
3,0a

−1
3,1)(1 + b3,0b3,3) = (1 + a∗−1

3,0 a
∗−1
3,1 )(1 + b∗3,0b

∗
3,3) (3.22)

(1 + a3,0a3,2)(1 + b3,0b3,2) = (1 + a∗3,0a
∗
3,2)(1 + b∗3,0b

∗
3,2) (3.23)

(1 + a3,0a3,1a3,2)(1 + b3,0b3,2) = (1 + a∗3,0a
∗
3,1a

∗
3,2)(1 + b∗3,0b

∗
3,2) (3.24)

(1 + a−1
3,0a

−1
3,2)(1 + b3,0b3,2b3,3) = (1 + a∗−1

3,0 a
∗−1
3,2 )(1 + b∗3,0b

∗
3,2b
∗
3,3)

(1 + a−1
3,0a

−1
3,1a

−1
3,2)(1 + b3,0b3,2b3,3) = (1 + a∗−1

3,0 a
∗−1
3,1 a

∗−1
3,2 )(1 + b∗3,0b

∗
3,2b
∗
3,3)

where

(a3,0, a3,1, a3,2, b3,0, b3,2, b3,3)

= (exp(β3,0), exp(β3,1), exp(β3,2), exp(−φ3,0), exp(−φ3,2), exp(−φ3,3)),

(a∗3,0, a
∗
3,1, a

∗
3,2, b

∗
3,0, b

∗
3,2, b

∗
3,3)

= (exp(β∗3,0), exp(β∗3,1), exp(β∗3,2), exp(−φ∗3,0), exp(−φ∗3,2), exp(−φ∗3,3)).

By dividing (3.19) by (3.20) and (3.22) by (3.21), we have

1 + a3,0

1 + a3,0a3,1
=

1 + a∗3,0
1 + a∗3,0a

∗
3,1

, (3.25)

a3,1(1 + a3,0)

1 + a3,0a3,1
=
a∗3,1(1 + a∗3,0)

1 + a∗3,0a
∗
3,1

. (3.26)

By substituting (3.25) into (3.26), we obtain a3,1 = a∗3,1. Plugging this equation back

into (3.25), (a∗3,1 − 1)(a3,0 − a∗3,0) = 0. Thus, if a∗3,1 6= 1, a3,0 = a∗3,0, otherwise a3,0 = c,

where c is an arbitrary positive constant. Hence, when a∗3,1 = 1, the model is not

identifiable. If a∗3,1 6= 1, then dividing (3.23) by (3.24) and substituting a3,0 = a∗3,0 and

a3,1 = a∗3,1, we find (a∗3,1 − 1)(a3,2 − a∗3,2) = 0, which implies a3,2 = a∗3,2. Therefore, we

have

a∗3,1 6= 1 ⇔ (a3,0, a3,1, a3,2) = (a∗3,0, a
∗
3,1, a

∗
3,2).

From (3.19), (3.21), and (3.23), it is obvious that

(a3,0, a3,1, a3,2) = (a∗3,0, a
∗
3,1, a

∗
3,2) ⇔ (b3,0, b3,2, b3,3) = (b∗3,0, b

∗
3,2, b

∗
3,3)
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holds. Hence,

a∗3,1 6= 1 ⇔ (a3,0, a3,1, a3,2, b3,0, b3,2, b3,3) = (a∗3,0, a
∗
3,1, a

∗
3,2, b

∗
3,0, b

∗
3,2, b

∗
3,3).

Thus, we have reached the desired conclusion.

Evidently, as shown in the graphical representations in Figures 3.1–3.2, the AR(2)

model is not identified when t = 2 for the same reason as the AR(1) model. We need

additional information or restrictions on the model to achieve identifiability.

Consider the case when there are no missing values at time t = 2. In this case, we

can fix the two parameters φ2,1 = φ2,2 = 0. Hence, there are 3 (= 5 − 2) parameters

versus 4 (> 3) constraints. The model is identifiable but the proof is omitted because

it is similar to that of Proposition 2. Another case is a model with one binary covariate

which is invariant for all times and has no missing data such as the information of dose

in Machin et al. (1988). More specifically, consider the AR(1) model with a binary

covariate x as

Pr(Y1 = 1 | x;β1,0, β1) = expit(β1,0 + β1x),

∀t≥2 Pr(Yt = 1 | yt−1, x ; βt,0, βt,t−1, βt) = expit(βt,0 + yt−1βt,t−1 + βtx).

A graphical representation is shown in Figure 3.3. There are six parameters versus

eight constraints for each time t ≥ 3, the same situation as in the AR(2) model for

each t ≥ 3. At time t = 1, we can fix the two parameters to be zero, which has an

effect on the corresponding missing data indicator since there are no missing data on

the covariate. Thus, the model is identified for the same reason as when there are no

missing data at t = 2. Therefore, this model is identifiable but the proof is omitted

because it is similar to that of Proposition 3.3.2. Moreover, we can show that the AR(2)

with one covariate model graphically represented in Figure 3.4 is also identifiable. Note

that the models shown in Figures 3.3–3.4 are still identifiable even if there are direct

paths from the covariate to the response indicators.

3.4 Semiparametric models

In practice, checking model identification is very hard when both response and outcome

models are specified parametrically. The specifications tend to be subjective. It would

be preferable to specify either the outcome or the response model nonparametrically.
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Y1 Y2 Y3 Y4

X
�1

�2 �3

�4

�2,0 �3,0 �4,0

�2,1 �3,2 �4,3

�4,3 �4,4�3,2 �3,3�2,1 �2,2

�2,0 �3,0 �4,0

R2 R3 R4

Figure 3.3: AR(1) model with one

covariate

Y1 Y2 Y3 Y4

X

�2,0 �3,0 �4,0

�2,1 �3,2 �4,3

�4,3 �4,4�3,2 �3,3�2,1 �2,2

�2,0 �3,0 �4,0

R2 R3 R4

�3,1 �4,2

�1
�2 �3

�4

Figure 3.4: AR(2) model with one

covariate

Such a model can be estimated by semiparametric methods (e.g., Tang et al., 2003;

Zhao and Shao, 2015) following the literature on nonignorable nonresponse in which R

has only two patterns, i.e., 0 or 1.

Recently, the identification problem of semiparametric models in the situation of

nonignorable nonresponse has been studied by Wang et al. (2014) and Zhao and Shao

(2015). Their key assumption is the existence of a “nonresponse instrumental variable”.

Let us consider the situation of a nonresponse problem first. Suppose that a covariate

vector X is completely observed and response variables Y are subject to missingness.

In this case, R is a binary variable, which takes 1 (0) if Y is observed (missing). Roughly

speaking, their claim is that if the covariate X has two components, X = (Z>,U>)>,

such as Z ⊥ R | U and Y 6⊥ Z | U , then the semiparametric model is identifiable.

A random vector Z satisfying such conditions is called a nonresponse instrumental

variable.

In this section, we consider identification conditions for the semiparametric models

without using any nonresponse instrumental variable. We also expect our estimator to

be more efficient than other estimators because our estimator is based on maximum

likelihood. We consider two cases: (i) the outcome model is parametric; (ii) the response

model is parametric. The first case occurs when the effects of covariates on a response

variable is our main interest. In this case, the response model is a nuisance. The second

case is important when our interest is nonparametric statistics such as the mean and

quantile, defined by a solution to an estimating equation E{U(θ;X, Y )} = 0, where U
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is a known function corresponding to θ, e.g., U(θ) = y − θ, when our interest is the

mean of Y . In such a case, the outcome model is a nuisance, and we want to avoid

imposing a parametric model on it.

Because, as we have already seen, the model identification in repeated measurement

data can be considered separately in each time by Theorem 3.2.1, we consider a model

identification of π3 only.

3.4.1 Parametric outcome model

Let outcome follow the Logistic AR(2) model and the response model be nonparametric,

that is,

Pr(Y3 = 1 | y1, y2 ; β3) = expit(β3,0 + y1β3,1 + y2β3,2),

Pr(R3 = 1 | y1, y2, y3 ;φ3) = φ3,y1,y2,y3 ,

where β3 = (β3,0, β3,1, β3,2)> and φ3 = (φ3,0,0,0, . . . , φ3,1,1,1)>. This model is not iden-

tifiable, because there are 11 unknown parameters but we have only eight constraints.

This also implies that we need an assumption on the response mechanism because the

nonparametric part already has eight parameters. If we could assume an independence

R3 ⊥ Y1 | (Y2, Y3), i.e., the AR(2) property for the response model, then that would

make the model identifiable because this assumption reduces the number of parameters

from 11 to 7 (< 8).

3.4.2 Parametric response mechanism

Let the outcome model be nonparametric and the response model be a logistic model,

viz.

Pr(Y3 = 1 | y1, y2 ; β3) = β3,y1,y2 ,

Pr(R3 = 1 | y1, y2, y3 ;φ3) = expit(φ3,0 + y1φ3,1 + y2φ3,2 + y3φ3,3),

where β3 = (β3,0,0, . . . , β3,1,1)> and φ3 = (φ3,0, φ3,1, φ3,2, φ3,3)>. There are 8 unknown

parameters versus eight constraints. Therefore, this model is identifiable without using

any instrumental variable. Also, we can use the maximum likelihood to estimate β3

and ξ3. Identification at the other periods can be checked in the same way.
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3.5 Other response variables

3.5 Other response variables

So far, we have considered a case where all variables are dichotomous. What happens

when the response variable takes more than three values and continuous one? We

consider the nonresponse case in this section because we now know that it is enough to

consider only the situation from Theorem 3.2.1. Suppose that a covariate variable x is

completely observed and a response variable y is subject to missingness. In this case, r

is a binary variable, which takes 1 (0) if y is observed (missing). Then the nonresponse

instrumental variable assumption on x corresponds to assume

X ⊥ R | Y, and Y 6⊥ X. (3.27)

The identification condition proposed in §3.5.2 does not require such conditions.

3.5.1 Ternary response variables

Let x and y be ternary variables taking 0, 1, and 2, and the outcome model be

Pr(Y = 1 | x) =
exp(β1I{x=1})

exp(β0I{x=0}) + exp(β1I{x=1}) + exp(β2I{x=2})
,

Pr(Y = 2 | x) =
exp(β2I{x=2})

exp(β0I{x=0}) + exp(β1I{x=1}) + exp(β2I{x=2})
,

where IA takes 1 (0) if an event A is true (false). Thus, there are 3 parameters for

outcome and 3 parameters for the response mechanism. Therefore, the model is identi-

fiable, unlike binary variables, because there are 6 unknown parameters versus 32 = 9

constraints. Also, it is easily seen that a continuous covariate x in Figure 3.3, which

is a mixture of discrete past response variables and a continuous covariate, makes the

model identifiable.

3.5.2 Continuous response variables

However, a continuous response vector y makes the model identification problem much

more difficult. For example, Miao et al. (2016) showed that when the outcome model

y | x is normal or a normal mixture, and the response mechanism is logistic, the model is

not identifiable. However, if the response mechanism is probit or tobit, then the model

is identifiable. This result is hard to understand intuitively, and we cannot check the

model identification by just comparing the numbers of parameters and constraints.
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A sufficient condition for the continuous response variable is guaranteed by using a

nonresponse instrumental variable given in (3.27).

Although the existence of such a nonresponse instrumental variable is a sufficient

condition, it is hard to verify it from the observed data. Therefore, we propose an

alternative condition for the model identification by assuming a restriction on [y |
x, r = 1], not only on the response mechanism. Let a response model be π(z;φ) =

Pr(R = 1 | x, y;φ), a parametric model on f1(y | x) = f(y | x, r = 1) be f1(y | x;γ),

and that on f(y | x) be f(y | x;β). Also denote odds function of the response model by

O(z;φ) = 1/π(z;φ)− 1 and the expectation on any function g(z) given observed data

by E1{g(x, Y ) | x;γ} = E{g(x, Y ) | r = 1, x;γ}. Recall that the model identification

condition is

f(y | x;β)π(z;φ) = f(y | x;β′)π(z;φ′) w.p. 1,

⇒ β = β′ and φ = φ′,
(3.28)

where w.p. 1 implies with probability one with respect to the true distribution.

Theorem 3.5.1. Suppose that for each (φ,γ) ∈ Φ× Γ, E1{O(Z;φ) | x;γ} <∞ with

probability one with respect to the true distribution. Then, if

f1(y | x;γ) = f1(y | x;γ ′) and E1{O(Z;φ) | x;γ} = E1{O(Z;φ′) | x;γ ′} w.p.1,

⇒ γ = γ ′ and φ = φ′,

with probability one, implies γ = γ ′ and φ = φ′. This is a necessary and sufficient

condition of the model identification (3.28).

For example, if the response mechanism is specified as π(z;φ) = 1/{1 + exp(φx0 +

φx1x+ φyy)}, where φ = (φx0, φx1, φy)T. Then, E1{O(Z;φ) | x} is written as

E1{O(Z;φ) | x} = exp{φx0 + φx1x+Kφy(x)},

where Kφ2(x) is the cumulant-generating function of [y | x, r = 1]. Therefore, we have

only to check whether Kφy(x) is linear with respect to x or not. If f1 is a parametric

model, the model identification for φ is easy to check. For example, if [y | x, r = 1]

belongs to an exponential family with the density function

f1(y | x;φ, ψ) = exp

[
yφ(x)− b{φ(x)}

ψ
+ c(y, ψ)

]
,
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where ψ is the dispersion parameter and φ, b, c are known functions, then the cumulant-

generating function reduces to Kφy(x) = {b(φyψ + φ(x))− b(φ(x))}/ψ, from which we

can verify the model identification. For example, for model identification, b is allowed to

be any polynomial function except for the 1st- and 2nd-order function of x such as log-

function (e.g. Gamma distribution), exponential-function (e.g. Poisson distribution),

etc. However, when b is a 2nd-order polynomial function, for example, b(φ) = φ2/2,

which means f1 follows normal distribution, then Kφy(x) = φ(x)φy +φ2
yψ

2/2. Also, we

obtain

E1{O(Z;φ) | x} = exp{φx0 + φx1x+ φ(x)φy + φ2
yψ

2/2}.

Theorem 3.5.1 implies φ is identifiable unless the mean structure φ(x) is linear. In prac-

tice, it will be worth checking the linearity if f1(y | x) is close to normal distribution.

If φ(x) is linear we may use a nonresponse instrumental variable or consider other ap-

proaches (see §5.1 for more details). we can check identifiability for other distributions

of [y | x, r = 1] in a similar way.
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Chapter 4

Simulation study

In this chapter, we conduct two simulation studies. One is to evaluate the performance

of our proposed estimators stated in §2.4 and compare their efficiency with other meth-

ods in finite samples. The other simulation study is related to a topic discussed in §2.5.

The main aim of the simulation is (i) to confirm asymptotic behavior of EL and GMM

estimators when q < p1 + 1 = p2 and g(x) = {1,h(x)}>; (ii) to check the performance

of estimators proposed in Theorem 2.5.2 when both a response and f1(y | x) models

are misspecified.

4.1 Comparison between proposed and existing semipara-

metric estimators

We conducted a Monte Carlo simulation study with four scenarios. In each scenario,

we used a covariate X ∼ U(−1, 1), set the response mechanism to a Bernoulli dis-

tribution with logit{πy(y)} = φx0 + φyy, and generated the response outcome vari-

able from Y | (x, r = 1) ∼ N(µs(x), σ2
s). In Scenarios 1–3, µs(x) is defined as

the s-th order polynomial: µ1(x) = x − 0.121, σ2
1 = 1/3; µ2(x) = 0.8x2 − 0.3415,

σ2
2 = 1/4; µ3(x) = 2x(x − 3/4)(x + 3/4) − 0.0802, σ2

3 = 1/3. In Scenario 4, µ4(x) =

{cos(xπ) + 2 sin(2xπ)}/2 − 0.06, σ2
4 = 1/4. We generated missing data by the re-

sponse mechanism with (φy0, φy) = (1.03,−1.2), (0.91,−1), (0.9,−0.8), (0.91,−0.8)

in Scenarios 1–4 respectively, so that the response rate is about 70 % and E(Y ) = 0.

We note that x is a nonresponse instrumental variable (Wang et al., 2014); thus

the parameters are identifiable in all scenarios. We also consider the case when the
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response mechanism is over-specified as logit{πxy(x, y)} = φx0 + φx1x + φyy. In this

case, there is no instrumental variable, but all the parameters are identifiable except

for Scenario 1 by Theorem 2.4.1. However, by using Theorem 2.4.1, it is possible to

make the response model in Scenario 1 identifiable at the risk of misspecification of

response mechanism. This problem is dealt with in the next section. We estimate

the parameters for the two response mechanisms πy(y;φ) and πxy(x, y;φ), as well as

θ = E(Y ). For the response mechanisms, only φy is reported.

From each sample, we computed four estimators, as follows:

[1] MAR: A naive estimator based on the assumption that the missing data are

missing-at-random:

n∑
i=1

δi(θ − yi)/π̂i = 0, (4.1)

where π̂i is an estimated response mechanism, that is, π̂i = {1 + exp(φ̂x0 +

φ̂xxi)}−1, where (φ̂x0, φ̂x) is the maximum likelihood estimator.

[2] CK: The estimator of Chang and Kott (2008) and Kott and Chang (2010) . We

use the estimating equation (2.9), setting g as (1, x)> for πy(y) and (1, x, x2)> for

πxy(x, y); θ is estimated by using (4.1) with the estimated response mechanism.

[3] RKI: The estimator of Riddles et al. (2016). In all scenarios, we specified a

parametric model on f1 based on normal distribution with mean structure µ(x) =

β0+β1x+β2x
2+β3x

3. A best model among 24−1 candidate models was chosen by

using AIC; θ is estimated by using (4.1) with the estimated response mechanism.

We take notice of the fact that a misspecified model was used in Scenario 4.

[4] New: Proposed estimator in §2.4. As for the working model for f1, the same model

specification as in the RKI method was used. We also assume the nonparametric

estimator proposed in Theorem 2.4.2. We call the parametric method “P” and

the nonparametric method “NP” in this section.

Monte Carlo samples of size n = 500 and 2,000 were independently generated 2,000

times. We used the correct models πy(y) and πxy(x, y) for the response mechanism,

except for MAR.
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Figure 4.1: Boxplot of Monte Carlo results for φy and θ{= E(Y )} under four scenarios

when φx1 is set to be 0. The four estimators are MAR (missing at random), CK (Chang &

Kott’s estimator), RKI (Riddles’ estimator), P (our proposed estimator with parametric

f1 model) NP (our proposed estimator with nonparametric method). Numbers 1 and 2

stand for n = 500 and n = 2, 000, respectively. The broken line shows the true value.
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Figure 4.2: Boxplot of Monte Carlo results for φy and θ{= E(Y )} under four scenarios

when φx1 is estimated. The four estimators are MAR (missing at random), CK (Chang &

Kott’s estimator), RKI (Riddles’ estimator), P (our proposed estimator with parametric

f1 model) NP (our proposed estimator with nonparametric method). Numbers 1 and 2

stand for n = 500 and n = 2, 000, respectively. The broken line shows the true value.
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4.1 Comparison between proposed and existing semiparametric estimators

Figure 4.1 shows the Monte Carlo simulation results with the response mechanism

πy(y) in all scenarios; Figure 4.2 shows the results with πxy(x, y). In Figure 4.2, only

the results for Scenarios 2-4 are shown because the parameters are not identifiable in

Scenario 1; the result of MAR is not shown because it is already shown in Figure 4.1.

In the CK method with πy(y) mechanism, we encountered some numerical problems in

Scenarios 2–4 and there was no solution because the estimate of φ did not converge.

The following is the summary of the simulation results shown in Figure 4.1 and Figure

4.2:

[1] In all scenarios, the naive estimator using the MAR assumption is significantly

biased, since this assumption does not hold.

[2] The CK method with πy(y) model works well in Scenario 1, but the performance

suffers from numerical problems in the other scenarios. However, the CK method

with πxy(x, y) model works well even in Scenarios 2 and 4 (though less efficient

compared to RKI and our proposed estimators). This is because the calibration

condition on g(x) = (1, x)> falls short of estimating the parameters when the

relationship between x and y becomes more complicated.

[3] The RKI method performs quite well in Scenarios 1–3 for both response mech-

anisms, but the estimators in Scenario 4 are somewhat positively biased in RKI

due to the misspecification of the f1 model.

[4] In all scenarios, our proposed estimators perform better than any other methods.

We note that in Scenario 4, the estimator using parametric f1 is still consis-

tent despite misspecification of f1. However it is less efficient compared to the

nonparametric method because of the misspecification.

Table 1 shows the estimated coverage probability with 95% coverage confidence

interval for our proposed estimators. We applied (2.26) to estimate the variance of

our estimators both using the parametric f1 model and the nonparametric model (see

§2.4.2). My proposed variance estimator works well in all scenarios.
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4. SIMULATION STUDY

Table 4.1: The coverage probability of the confidence interval with 95% coverage rate for

our proposed estimators with sample size n = 500 and n = 2, 000 when φx1 is set to be 0

(fix) and estimated (est).

Scenario Method n
φx1

Scenario Method n
φx1

fix est fix est

1 P
500 0.939 –

3 P
500 0.958 0.950

2000 0.944 – 2000 0.953 0.946

NP
500 0.930 –

NP
500 0.964 0.940

2000 0.937 – 2000 0.943 0.944

2 P
500 0.953 0.949

4 P
500 0.948 0.953

2000 0.943 0.946 2000 0.941 0.943

NP
500 0.942 0.959

NP
500 0.943 0.942

2000 0.946 0.951 2000 0.946 0.949

P: method using a parametric working model for f1, NP: nonparametric method.

4.2 Robustness for misspecification of response mecha-

nism

In Theorem 2.5.1, we have shown that both EL and GMM estimators are exactly the

same when q = p1 + 1 = p2. However, we have not shown any relationships of the two

estimators when q < p1 + 1 = p2. Thus, we check the relationships here. As for (ii),

in Theorem 2.5.2, we have shown that any function k(x) can be taken into our GMM

constraints without loss of efficiency as long as g∗(x) is used. We check that the other

function k(x) has a potential to reduce bias when both models are misspecified.

Let a covariate X ∼ N(−1, 1), Y | X = x ∼ N(2x(x − 3/4)(x + 3/4), 1/3). We

prepare six different response mechanisms: M1(linear nonignorable): logit{π(y)} =

0.90 − 1.0y; M2(linear ignorable): logit{π(x)} = 0.90 − 1.0x; M3(quadratic nonig-

norable): logit{π(y)} = 1.3 − 0.5y − y2; M4(linear ignorable with a cross term):

logit{π(x, y)} = 0.9−0.5y−0.5xy; M5(probit nonignorable): π(y) = Φ(0.6+0.5y−y2);

M6(log-log nonignorable): π(x, y) = 1−exp{− exp(0.25+0.5x−y)}. In this simulation

study, we specify a response model by

π(y;φ) =
1

1 + exp(φ0 + φ1y)
,
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4.2 Robustness for misspecification of response mechanism

where φ = (φ0, φ1)>. Therefore all models except for M1 are misspecified.

Furthermore, we assume that f1(y | x) is normally distributed with a mean function

µ(x;β) and variance σ2. Although, strictly speaking, this f1(y | x) misspecifies the true

f1, because it is given by

f1(y | x) =
π(x, y)f(y | x)∫
π(x, y)f(y | x)dy

.

Thus, the true f1(y | x) depends on its response mechanism as well as the distribution

of outcome, and it is not normal. We consider two settings for the mean function

1. (Heavily misspecified model) µ1(x;β) = β0 + β1x;

2. (Slighly misspecified model) µ2(x;β) = β0 + β1x+ β2x
2 + β3x

3,

where, in the second model, an appropriate β = (β0, β1, β2, β3)> is chosen by AIC

(Akaike Information Criterion). The first mean function is linear with regard to x, on

the other hand, the second function is cubic. It is expected that estimators with the

second mean function is more efficient than the first one.

For EL estimators, we consider three types of h(x) function: (1) h1(x) = (x, x2)>;

(2) h2(x) = g?(x); (3) h3(x) = {x, g?(x)>}>. For GMM estimtaors, we consider

four types of g(x) function: (1) g1(x) = (1, x, x2); (2) g2(x) = g?(x); (3) g3(x) =

{1, g?(x)>}>; (4) g4(x) = {1, x, g?(x)>}>. We can check (i) asymptotic behavior of

EL and GMM estimators when q < p1 + 1 = p2 and g(x) = {1,h(x)}>, for example,

by comparing estimators using h1(x) and g1(x), because g1(x) = {1,h1(x)>}>. The

parameter φ is estimated by (2.9) when q = p1 + 1 = p2, and by (2.10) when q <

p1 + 1 = p2, for which two-step GMM estimation procedure is used (Hansen et al.,

1996). The algorithm can be easily implemented by using a package “gmm” in R

programing language.

It is meaningless to compare the estimated parameters of the response model be-

cause it is misspecified in models M2–M6, and the true parameter value is unknown.

Therefore, we assess the robustness by estimating θ = E(Y ) with the estimated re-

sponse model. It can be estimated by

θ̂ =
1

n

n∑
i=1

[
riyi

π(yi; φ̂)
+

{
1− ri

π(yi; φ̂)

}
E?(Y | xi; φ̂, β̂)

]
,
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4. SIMULATION STUDY

where

E?(Y | x;φ,β) =
E1[Y {1− π(Y ;φ)}/π(Y ;φ)2 | x]

E1[{1− π(Y ;φ)}/π(Y ;φ)2 | x]
.

This estimator attains the semiparametric efficiency bound when both π(y;φ) and

f1(y | x;β) are correctly specified; still has consistency even if f1(y | x;β) is misspecified

by Theorem 2.4.1.

Under this setup, samples are generated with 2,000 sample size and 2,000 replica-

tions. The results with response mechanisms M1– M3 are shown in Figure 4.3, and

M4–M6 in Figure 4.4. In the boxplots, samples which have not converged are removed

in advance. For estimators using g2(x) and h2(x) with µ1(x) mean function, almost

half of the samples did not converge. As for the other estimators, most of estimators

converged except for that using h1(x) in M5 and g4(x) with µ1(x) in M3 and M4. This

indicates difficulty of optimization of EL method and importance of correct specifica-

tion of f1(y | x;β) model. As for estimation, all estimators are correctly estimated in

M1, i.e., when the response model is correct. Even when the response model is misspec-

ified, estimators using µ2(x) are totally well estimated. Surprisingly, the estimators in

M2 still work well though the response mechanism is MAR.

At first, we would like to note on (i). It can be inferred from the results of estimators

using g1(x) and h1(x) under mechanisms M1–M4 that Theorem 2.5.1 does not hold

when q < p1 +1 = p2. This implies that the EL estimator does not attain the semipara-

metric efficiency bound. As for (ii), we can see that more constraints lead to less biased

estimators by comparing estimators using g2(x), g3(x), and g4(x) with µ1(x) mean,

though some estimators using the most constrained function g4(x) were not estimated

well. However, on the flip side, it follows from the results of estimators using g4(x) with

µ2(x) mean that more constraints lead to difficulty in the optimization computation or

lack of identification. Therefore, choosing an appropriate constraint function k(x) in

g(x) = {g?(x)>,k(x)>}> from observed data is important.
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Figure 4.3: Boxplots of eleven estimators for E(Y ) with M1–M3 response mechanisms.

Colors stand for without f1(y | x) model for black, with mean function µ1(x) (heavily

misspecified model) for blue, and with µ2(x) (slightly misspecified model) for pink boxplots.

The first element of the method implies the constraint used for the estimators, and the

second element “lin” and “cub”mean the linear and cubic models for the mean function of

f1(y | x).
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Figure 4.4: Boxplots of eleven estimators for E(Y ) with M4–M6 response mechanisms.

Colors stand for without f1(y | x) model for black, with mean function µ1(x) (heavily

misspecified model) for blue, and with µ2(x) (slightly misspecified model) for pink boxplots.

The first element of the method implies the constraint used for the estimators, and the

second element “lin” and “cub”mean the linear and cubic models for the mean function of

f1(y | x).
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Chapter 5

Real data analysis

Two real data sets: (i) Korea labor and income panel survey(KLIPS) data; (ii) Depot

medroxyprogesterone acetate(DMPA) data are analyzed by the methods proposed in

Chapter 2 and 3.

5.1 Korea labor and income panel survey data

In this section, our proposed estimators are applied to the KLIPS data, which have

been analyzed by many authors (Kim and Yu, 2011; Wang et al., 2014; Shao and

Wang, 2016). The data contain n = 2, 506 Korean wage earners; the response variable

y is total wage income (106 Korean Won) in year 2008. There are three fully observed

covariates: x1: total wage income in the previous year (2007); x2: gender; x3: age.

While x1 is a continuous variable, x2 has two categories 1 and 2 for male and female,

and x3 has three categories 1-3: x3 < 35, 35 ≤ x3 < 51, and x3 ≥ 51. We also

identified three data points as outliers and excluded them from further analysis.

Although the data are completely observed, we took the approach of Kim and

Yu (2011) and made eight artificial incomplete datasets by assuming the following

eight response mechanisms: M1 (linear nonignorable without (x2, x3)): logit(π) =

0.48 − 0.3x1 − 0.5y; M2 (linear nonignorable): logit(π) = −0.85 − 0.2x1 + 0.5x2 +

0.2x3− 0.4y; M3 (nonlinear nonignorable, quadratic in x1 without (x2, x3)): logit(π) =

0.33 − 0.3x1 − 0.1x2
1 − 0.3y; M4 (nonlinear nonignorable, quadratic in x1): logit(π) =

−0.89−0.4x1−0.1x2
1 +0.5x2 +0.2x3−0.4y; M5 (nonlinear nonignorable, quadratic in y

without (x2, x3)): logit(π) = 0.24−0.25x1−0.25y−0.1y2; M6 (nonlinear nonignorable,
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5. REAL DATA ANALYSIS

quadratic in y): logit(π) = −0.93 − 0.2x1 + 0.5x2 + 0.2x3 − 0.2y − 0.1y2; M7 (jump

nonignorable without x) π = 0.5I(y ≤ 1.7) + 0.9(y > 1.7); M8 (jump nonignorable)

π = 0.5I(0.5x2 + 0.2x3 + y ≤ 2.6) + 0.9(0.5x2 + 0.2x3 + y > 2.6), where I(A) is the

indicator function that takes 1(0) if an event A is true (false). Note that there are

nonresponse instrumental variables for models M2, M4, M6, and M8. For all data

sets, the response rate is about 70%. We estimated θ = E(Y ) as considered in the

simulation. The “true” average income in 2008 is θ̂n = 1.846 as calculated using the

complete data. In order to estimate the parameters, we assumed a response mechanism

logit{π(x, y;φ)} = φx0+φx1x1+φx2x2+φx3x3+φyy. Therefore M1 and M2 are correctly

specified while M3-M8 are misspecified.

We specified unknown f1 models as normal distribution Y | (x1, x2 = i, x3 = j, r =

1) ∼ N(µi,j(x1), σ2
i,j) (i = 1, 2; j = 1, 2, 3), where µi,j(x1) = γ0i,j + γ1i,jx1 + γ2i,jx

2
1 +

γ3i,jx
3
1+γ4i,jx

4
1; (γ1i,j , γ2i,j , γ3i,j , γ4i,j) is the regression parameter when (x2, x3) = (i, j).

We chose the best model by AIC among 25−1 models for each (x2, x3)’s 2×3 pattern. By

using Theorem 3.5.1, this model is identifiable as one of the 6 mean structures with µi,j

being nonlinear with respect to x1. However, in the real data, the correlation between

x1 and y is too high because wage income does not change considerably in one year;

the mean structure is almost linear even when stratified by x2 and x3. Therefore, to

obtain valid estimator of θ, we considered two different approaches: [1] find nonresponse

instrumental variables used; [2] transform x1 so that the relationship can be nonlinear.

For the first approach, we specified x2, x3, and (x2, x3) as instrumental variables in

applying our proposed method, which will lead to inconsistency for models M2 because

there is actually no instrumental variable. For the second approach, we transformed x1

to log(x1) so that the relationship between y and log(x1) is nonlinear. Although this

transformation made the model identifiable, this also changed the assumed mechanism

to logit{π(x, y;φ)} = φx0 +φx1 log(x1) +φx2x2 +φx3x3 +φyy. This may be a potential

cause of biased estimation. On the flip side, this approach uses all information of

covariates, which helps to reduce bias and gain efficiency. We show the result of this

approach under both parametric and nonparametric f1 models.

In Table 5.1, deviation of estimators from the full sample estimate θ̂n and estimated

standard errors are shown. The methods using instrumental variable encountered some

numerical problems even for correctly specified models: M3, M5, and M7. This is

because the effect of the instrumental variables on the outcome variable is not so strong;
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5.2 Depot medroxyprogesterone acetate data

Table 5.1: θ̂ − θ̂n (S.E. (θ̂)): deviation of our proposed estimator θ̂ from the full sample

estimate θ̂n = 1.846 (and estimated their standard error) for datasets M1–M8 by two

approaches: [1] using instrumental variable (IV); [2] using transformed x1 with parametric

(P) and nonparametric (NP) f1 model. NA stands for not applicable due to numerical

problems. All values are multiplied by 1,000.

Approach

[1] [2]

IV x2 x3 (x2, x3) None None

method P P P P NP

M1 -8 (24) 16 (59) 14 (35) -5 (23) -6 (23)

M2 -73 (25) -8 (23) -25 (28) -9 (23) -4 (23)

M3 -25 (38) NA (NA) NA (NA) -22 (23) -20 (22)

M4 -19 (27) 13 (27) -1 (24) -4 (23) 5 (23)

M5 41 (206) 56 (373) 54 (563) -10 (23) -9 (23)

M6 23 (158) -10 (31) -57 (25) -13 (24) 9 (23)

M7 26 (9500) 32 (7366) 36 (664) 10 (22) -9 (23)

M8 50 (3985) 183 (NA) 128 (NA) 15 (25) -18 (23)

the instrumental variable used is not useful enough. In terms of efficiency, the methods

with transformed x1 outperform by far those using instrumental variables. They are

also more robust against misspecification of the response model.

5.2 Depot medroxyprogesterone acetate data

We analyzed the DMPA data by two approaches: (i) both [Y | X] and the missing-data

mechanism [R | Y , X] are parametric; (ii) only [Y | X] is parametric. For the missing-

data mechanism, we assume an independence Rt ⊥ X | (Y1, . . . , Yt) (t = 2, . . . , T )

because it is natural to consider the dose as having no effect on the response rate. In

order to compare the results of the two approaches, we use the same parametric model

for [Y | X], where [Y | X] is the AR(2) model with one covariate as shown in Figure

3.4.
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5.2.1 Parametric approach

Parameters were estimated by maximizing the following likelihood:

L1151(ξ)

=

4∏
t=1

∏
i∈It

expit{(−1)y1i+1(β1,0 + β1xi)}

{
t∏

s=2

ζs(ys−1i, ysi, xi; ξt)

}1{t≥2}

×

1− 1{t≤T−1}

1∑
yt+1=0

ζt+1 (yti, yt+1, xi; ξt+1)

 ,

where

ζt(yt−1, yt, x; ξt) = expit{(−1)yt+1(βt,0 + βt,t−2yt−2 + βt,t−1yt−1 + βtx)}

× expit(φt,0 + φt,t−1yt−1 + φt,tyt),

It = {i : ri = r
(t)
i }, and the function 1{A} is an indicator function which takes 1 (0) if an

event A is true (false) and the sample size is N = 1,151. The MLE of ξ1, . . . , ξ4 can be

calculated independently since these parameters are separated in the above likelihood.

We used the “optim” function in the programing language R to maximize Ln(ξ).

The results of βt show that the (direct) effect of the independent variable X on

contraception is significantly different from zero at 6 and 9 months (t = 2, 3), which

means that there are significant differences in effects on the contraception between 100

mg and 150 mg at these times based on the p-values. Matsuyama (2004) found the

same results on the total effects of X. Next, the estimate of the serial correlation is

strongly positive, which means once DMPA takes effect, it is also liable to have an effect

at the next time point for both doses. Finally, φ2, φ3, φ4, which are parameters on

the missing-data mechanism, are difficult to interpret since the values of the standard

deviation (SD) are larger than those of the other parameters though this model is

theoretically identifiable. Due to this fact, all the parameters are not significantly

different from zero. Next, we construct some sub-models of the full model to choose a

best one by the likelihood test.

If data involve missing values, a naive information criterion such as AIC or BIC

cannot be applied. Here, we choose a best model heuristically: the likelihood ratio test.

First, we test the missing-data mechanism as “MCAR v.s. NMAR” and “MAR v.s.

NMAR” following Diggle and Kenward (1994). Denote the MLE under the constraints
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5.2 Depot medroxyprogesterone acetate data

Table 5.2: Results of Parameter Estimation by Parametric AR(2) Model

Parameter Estimate SD p-value

β1 0.124 0.149 0.406

β2 0.390 0.152 0.010

β3 0.440 0.160 0.006

β4 0.124 0.149 0.406

β2,1 1.851 0.215 0.000

β3,2 2.014 0.195 0.000

β4,3 1.794 0.228 0.000

β3,1 0.852 0.235 0.000

β4,2 1.382 0.233 0.000

φ2,1 -0.506 0.680 0.457

φ3,2 -0.276 0.546 0.613

φ4,3 -1.067 0.506 0.035

φ2,2 -0.079 1.544 0.959

φ3,3 -0.719 1.231 0.559

φ4,4 0.939 0.931 0.313
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φ2,1 = φ2,2 = φ3,2 = φ3,3 = φ4,3 = φ4,4 = 0 by ξ̂MCAR, under the constraints φ2,2 =

φ3,3 = φ4,4 = 0 by ξ̂MAR, and under no constraints by ξ̂NMAR, i.e., the full-model MLE.

We set the probability of type I error to 0.05 in the following two tests of the missing-

data mechanisms. With these settings, the deviance between MCAR and NMAR is

−2 ln
L1151(ξ̂MCAR)

L1151(ξ̂NMAR)
= 27.157 > χ2

6(0.05) = 12.592,

and the deviance between MAR and NMAR is

−2 ln
L1151(ξ̂MAR)

L1151(ξ̂NMAR)
= 1.204 < χ2

3(0.05) = 7.814.

Following the results, the missing-data mechanism is not MCAR and probably not

NMAR. Now, we study model selection in more detail. We consider the sub-models

with at most three parameters selected from those in (φ2,1, φ2,2, φ3,2, φ3,3, φ4,3, φ4,4):

6C1 + 6C2 + 6C3 = 41 as shown in Table 5.3 The reason why we consider only three

parameters is the deviance being not so different from that when we add more than

three. As indicated by bold sub-model numbers in Table 5.3, the sub-models with

the smallest deviance among the set of models with the same number of parameters

are Nos. 4, 9, and 29 for the sets with one, two, and three parameters, respectively.

We see that all the sub-models with one or two parameters are rejected according to

the deviance, while the deviance relatively clearly identifies accepted sub-models with

three parameters. The deviances of sub-models No. 27, 29, 33, and 35 are small and

not significantly different from each other. Therefore, we assert that these four models,

whose parameters are chosen one at each period, are preferable. We could not say

which sub-model is the best of all the four sub-models based on the analysis.

5.2.2 Semiparametric approach

We estimate the same outcome model without specifying any missing-data mechanism.

The likelihood is given by

LSP
1151(ξ)

=

4∏
t=1

∏
i∈It

expit{(−1)y1i+1(β1,0 + β1xi)}

{
t∏

s=2

ζSP
s (vsi, xi; ξt)

}1{t≥2}

×

1− 1{t≤T−1}

1∑
yt+1=0

ζSP
t+1 (vti, yt+1, xi; ξt+1)

 ,

56
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Table 5.3: Sub-model deviance

No. Parameter Deviance No. parameter deviance

1 φ2,1 18.670 22 φ2,1, φ2,2, φ3,2 7.744

2 φ2,2 19.268 23 φ2,1, φ2,2, φ3,3 7.670

3 φ3,2 16.242 24 φ2,1, φ2,2, φ4,3 12.124

4 φ3,3 16.160 25 φ2,1, φ2,2, φ4,4 14.290

5 φ4,3 20.616 26 φ2,1, φ3,2, φ3,3 7.390

6 φ4,4 22.802 27 φ2,1, φ3,2, φ4,3 1.204

7 φ2,1, φ2,2 18.666 28 φ2,1, φ3,2, φ4,4 3.392

8 φ2,1, φ3,2 7.748 29 φ2,1, φ3,3, φ4,3 1.130

9 φ2,1, φ3,3 7.672 30 φ2,1, φ3,3, φ4,4 3.316

10 φ2,1, φ4,3 12.128 31 φ2,1, φ4,3, φ4,4 11.282

11 φ2,1, φ4,4 14.314 32 φ2,2, φ3,2, φ3,3 7.988

12 φ2,2, φ3,2 8.346 33 φ2,2, φ3,2, φ4,3 1.804

13 φ2,2, φ3,3 8.272 34 φ2,2, φ3,2, φ4,4 3.990

14 φ2,2, φ4,3 12.726 35 φ2,2, φ3,3, φ4,3 1.728

15 φ2,2, φ4,4 14.912 36 φ2,2, φ3,3, φ4,4 3.916

16 φ3,2, φ3,3 15.878 37 φ2,2, φ3,3, φ4,4 11.880

17 φ3,2, φ4,3 9.692 38 φ2,2, φ4,3, φ4,4 9.336

18 φ3,2, φ4,4 11.878 39 φ3,2, φ3,3, φ4,3 11.522

19 φ3,3, φ4,3 9.618 40 φ3,2, φ3,3, φ4,4 8.846

20 φ3,3, φ4,4 11.804 41 φ3,2, φ4,3, φ4,4 8.772

21 φ4,3, φ4,4 19.770
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where vt = (y1, . . . , yt)
>,

ζSP
t (vt, x; ξt) = expit{(−1)yt+1(βt,0 + βt,1y1 + . . .+ βt,t−1yt−1 + βtx)}φt,y1...yt ,

and φt,y1...yt is the nonparametric model for Pr(Rt = 1 | y1, . . . , yt). This model is

identifiable in view of §3.4.1. The parameters can be estimated by maximizing the

likelihood LSP
1151(ξ).

Results are shown in Table 5.4. We can see that the results are not very different

from those with the parametric missing-data mechanism, but the SD is larger, especially

at the third period. This is due to the additional parameters for the missing-data

mechanism and poor information of dichotomous data. A parametric model for the

missing-data mechanism might be desirable in such a case. Also the likelihood ratio

test can be used in a similar way to as in §5.2.1, though we omitted the results of the

likelihood ratio test since they are almost the same as in §5.2.1. If we used Zhao and

Shao (2015)’s approach, the parameters could also be estimated without specifying any

missing-data mechanism. However, the likelihood ratio test could not be used because

the semiparametric approach is not based on the likelihood. Therefore, use of the

semiparametric approach is more limited than that of our approach.

Table 5.4: Results of parameter estimation by the semiparametric AR(2) model

Parameter Estimate SD p-value

β1 0.124 0.149 0.406

β2 0.402 0.148 0.007

β3 0.437 0.163 0.007

β4 -0.135 0.169 0.417

β2,1 2.454 0.187 0.000

β3,2 1.900 0.711 0.007

β4,3 1.784 0.244 0.000

β3,1 0.980 0.705 0.170

β4,2 1.126 0.275 0.000

β4,1 0.573 0.283 0.043
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Chapter 6

Discussion

We have proposed three semiparametric estimators with nonignorable nonresponse data

without assuming any parametric outcome model. The first one is a kernel-based semi-

parametric estimator, where semiparametric maximum likelihood is used to estimate

the response mechanism parameters. While the method of maximum likelihood usu-

ally produces efficient estimators, it has been found that the semiparametic estimator

does not attain the semiparametric efficiency bound. Thus we have improved the first

one to create the other two semiparametric estimators which attain the lower bound.

The relationship between the two semiparametric methods, EL and GMM approaches,

for estimation of a response model have been also investigated. We have shown that

estimators obtained with EL can be solved by using the moment based method when

q = p1 + 1 = p2, where p1 and p2 are defined in §2.2. In addition, we have pointed

out the two estimators may not be asymptotically equivalent when q < p1 + 1 = p2

through numerical study. Furthermore, we have shown a constraint function including

the best function g?(x) also attains the semiparametric efficiency bound (Rotnitzky

and Robins, 1997). This property is useful in practice because the estimated response

model is robust for model misspecification due to other constraints, and the true re-

sponse mechanism is generally unknown.

However, as shown in the simulation study, more constraints may lead to lack of

identification. Thus, it is necessary to develop a method to choose an appropriate

constraint function. Also, in this paper, we restrict that a parametric response model
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is fully specified, though some semiparametric models

π(x, y;φ) =
1

1 + exp{w(x) + φy}
,

have been already proposed, where w(x) is an arbitrary function of x. Sun et al. (in

press) derive the semparametric efficiency bound for the semiparametric model. Pro-

posal of an adaptive and robust estimator for the model will also be a topic of our future

research. Alternatively, developing an appropriate information criterion for choosing

the response mechanism will be a future research work. Instead of specifying a single

response model, one can consider multiple response models, which possesses consis-

tency property of model selection when one of the specified response models is correct.

This multiple robustness property has been investigated in the ignorable nonresponse

setup (Han, 2014; Chen and Haziza, 2017). Extension of multiple robustness to the

nonignorable nonresponse case will also be a topic of our future research.

As for the model identification for nonignorable nonresponse, we have proposed

some conditions under which a model for repeated measurement data with NMAR

missingness is identifiable. Two different situations have been distinguished: (i) both

the outcome model and the missing-data mechanism are correctly specified; (ii) either

of the two models is correctly specified and the other model is unspecified. Even if

the two models are parametric, the models may be unidentifiable (Miao et al., 2016).

We have given an example of an identifiable model, that is, the AR(p) model which

depends on the history only through the previous p responses. Then, an easy-to-check

necessary and sufficient condition on the identification of the model has been proposed.

For example, it can be proved from the derived condition that even the Logistic AR(1)

model is not identified, the model becomes identifiable when there are covariates as

in Figure 3.4 or there are no missing values at the first two periods. The estimation

confines a situation where the outcome model is correctly specified. This naturally

holds only when both response and covariates variables are discrete. Therefore, an

alternative condition depending on f1(y | x;γ) := f(y | x, r = 1;γ), but not depending

on f(y | x) have been developed. This condition is attractive because the nuisance

parameter γ can be estimated separately from φ, and the condition can be easily

checked from observed data.

Our identification condition is useful only for conditional models with repeated

measurement data. Another extension giving concise conditions to check identifiability
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for more complicated models such as marginal models and hybrid models (Molenberghs

and Verbeke, 2005; Wilkins and Fitzmaurice, 2006) need to be developed.
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Appendix A

Regularity conditions

To discuss asymptotic properties of our estimator, we assume the following regularity

conditions. Here and throughout, ‖ · ‖ denotes the Euclidean norm. For example, for a

matrix A = [aij ], ‖A‖ = (
∑

i,j a
2
ij)

1/2.

C1.1. Φ and Θ are compact.

C1.2. Let

Ŝ
l
(φ) :=

{
1− r

π(φ; z)

}
s̄0(φ;x)

and

Ûl(φ, θ) :=
r

π(φ; z)
U(θ;x) +

{
1− r

π(φ; z)

}
Ū(φ, θ;x).

Both Ŝ
l
(φ) and Ûl(φ, θ) are continuously differentiable at each (φ, θ) ∈ Φ×Θ with

probability one, and there exists a d(z, r) with ‖(Ŝl(φ)>, Ûl(φ, θ)>)>‖ ≤ d(z, r)

for all (φ, θ) ∈ Φ×Θ and E{d(Z, R)} <∞.

C1.3. The infimum infφ,θ E{Ŝ
l
(φ), Ûl(φ, θ)} = (0, 0) attains only at (φ0, θ0) ∈ Φ×Θ.

C1.4. ∂{Ŝl(φ)>, Ûl(φ, θ)>}>/∂(φ>, θ>) is continuous at (φ0, θ0) with probability one,

and there is a neighborhood ΦN ×ΘN of (φ0, θ0) such that

E

{
sup

(φ,θ)∈ΦN×ΘN

∥∥∥∥∂{Ŝl(φ)>, Ûl(φ, θ)>}>

∂(φ>, θ>)

∥∥∥∥
}
<∞.

C1.5. E[∂{Ŝl(φ)>, Ûl(φ, θ)>}>/∂(φ>, θ>)] is nonsingular at (φ0, θ0).
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C1.6. The kernel K(u) is bounded and satisfies
∫
K(u)du = 1, and has zero moments

of order ≤ m− 1 and a nonzero mth order moment.

C1.7. Let b1(z;φ) = O(z;φ), b2(z;φ) = O(z;φ)s0(z;φ), and b3(z;φ, θ) = O(z;φ)U(z; θ),

and X be a compact set that is contained in the support of x. Supposed that

E{Rbi(x, Y ;φ, θ) | x} for i = 1, 2, 3 are differentiable with respect to x up to

order m for each φ ∈ Φ and θ ∈ Θ. Also, assume that, for i = 1, 2, 3,

sup
(φ,θ)∈Φ×Θ

‖E{Rbi(x, Y ;φ; θ) | x}‖m

:= sup
(φ,θ)∈Φ×Θ

max
m1+...+md=m

sup
x∈X

∥∥∥∥∂mE{Rbi(x, Y ;φ; θ) | x}
∂xm1

1 . . . ∂xm1
d

∥∥∥∥ <∞.
C1.8. There exists a v > 2 such that, for i = 1, 2, 3, and for each φ ∈ Φ and θ ∈ Θ,

E{R‖bi(Z;φ; θ)‖v} <∞ and E{R‖bi(x, Y ;φ; θ)‖v | x} is bounded.

C1.9. The bandwidth h satisfies h → 0, n1−(2/v)hd/ lnn → ∞,
√
nhd/ lnn → ∞, and

√
nh2m → 0, where d is the dimension of x, and m are given in the condition

(C1.8), and v is given in the condition (C1.10).

C1.10. There exist |bi(z;φ, θ)| ≤ b̃i(z) for i = 1, 2, 3 such that supx∈XE{Rb̃i(Z) | x} <
∞.

C1.11. Let

G1(φ; z) :=
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

O(φ; z) {s0(φ; z)− s̄0(φ;x)}

and

H1(φ, θ; z) :=
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

O(φ; z)
{
U(θ; z)− Ū(φ, θ;x)

}
.

The condition (C1.2) holds forG1(φ; z), H1(φ, θ; z), ∂G1(φ; z)/∂φ, ∂H1(φ, θ; z)/∂φ,

and ∂H1(φ, θ; z)/∂θ instead of Ŝ
l
(φ) and Ûl(φ, θ).

C1.12. For functions, ∂b1(z;φ)/∂φ, ∂b2(z;φ)/∂φ>, ∂b3(z;φ, θ)/∂φ, and ∂b3(z;φ, θ)/∂θ,

(C1.7), (C1.8), and (C1.10) hold instead of bi(z;φ, θ).

C2.1. Φ and Θ are compact.
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C2.2. Γ is compact, Sγ(γ) = ∂ log f1(y | x;γ)/∂γ is continuously differentiable at γ ∈ Γ

with probability one, there exists e(W ) such that ‖Sγ(γ)‖ ≤ e(W ) for all γ ∈ Γ

and E{e(W )} < ∞, E{Sγ(γ)} = 0 has a unique solution γ∗ ∈ Γ, ∂Sγ(γ)/∂γ>

is continuous at γ∗ with probability one, and there is a neighborhood ΓN of γ∗

such that ‖E{supγ∈ΓN
∂Sγ(γ)/∂γ>}‖ <∞.

C2.3. The infimum infφ,θ E{Seff(φ, θ,γ∗)} = (0, 0) attains only at (φ0, θ0) ∈ Φ × Θ,

where Seff(φ, θ,γ) = (S1(φ,γ)>,S2(φ, θ,γ))> defined in (2.22).

C2.4. ∂Seff(φ, θ,γ)/∂(φ>, θ,γ>) is continuous at (φ0, θ0,γ
∗) with probability one, and

there is a neighborhood ΦN ×ΘN × ΓN of (φ0, θ0,γ
∗) such that

‖E{ sup
(φ,θ,γ∗)∈ΦN×ΘN×ΓN

∂Seff(φ, θ,γ)/∂(φ>, θ,γ>)}‖ <∞.

C2.5. Seff(φ, θ,γ) is continuously differentiable at each (φ, θ,γ) ∈ Φ × Θ × Γ with

probability one, and there exists d1(W ) such that ‖Seff(φ, θ,γ)‖ ≤ d1(W ) for all

(φ, θ,γ) ∈ Φ×Θ× Γ and E{d1(W )} <∞.

C2.6. E{∂Seff(φ, θ,γ∗)/∂(φ>, θ,γ>)} is nonsingular at (φ0, θ0,γ
∗).

C2.7. The conditions (C2.1)-(C2.6) hold for known distribution f1(y | x;γ0), i.e.,

E{Seff(φ, θ,γ0)} = 0 has a unique solution (φ0, θ0) ∈ Φ×Θ, where Seff(φ, θ) =

(S1(φ,γ0)>,S2(φ, θ,γ0))>; ∂Seff(φ, θ)/∂(φ>, θ) is continuous at (φ0, θ0) with

probability one, and there is a neighborhood ΦN ×ΘN of (φ0, θ0) such that

‖E{ sup
(φ,θ)∈ΦN×ΘN

∂Seff(φ, θ)/∂(φ>, θ)}‖ <∞;

Seff(φ, θ) is continuously differentiable at each (φ, θ) ∈ Φ × Θ with probability

one, and there exists d2(W ) such that ‖Seff(φ, θ)‖ ≤ d2(W ) for all (φ, θ) ∈ Φ×Θ

and E{d2(W )} <∞; E{∂Seff(φ, θ)/∂(φ>, θ)} is nonsingular at (φ0, θ0).

C2.8. The kernel K(u) is bounded and satisfies
∫
K(u)du = 1, and has zero moments

of order ≤ m− 1 and a nonzero mth order moment.

C2.9. Let ci(z;φ) = π−1(z;φ)bi(z;φ) for i = 1, 2, 3, and X be a compact set that is

contained in the support of x. Supposed that E{Rci(x, Y ;φ, θ) | x} for i = 1, 2, 3
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are differentiable with respect to x up to order m for each φ ∈ Φ and θ ∈ Θ.

Also, assume that, for i = 1, 2, 3 and for each θ and φ,

sup
(φ,θ)∈Φ×Θ

‖E{Rbi(x, Y ;φ; θ) | x}‖m

:= sup
(φ,θ)∈Φ×Θ

max
m1+...+md=m

sup
x∈X

∥∥∥∥∂mE{Rbi(x, Y ;φ; θ) | x}
∂xm1

1 . . . ∂xm1
d

∥∥∥∥ <∞.
C2.10. There exists a v > 2 such that, for i = 1, 2, 3, E1{‖ci(Z;φ; θ)‖v} < ∞ and

E1{‖ci(x, Y ;φ; θ)‖v | x}f1(x) is bounded.

C2.11. The bandwidth h satisfies h → 0, n1−(2/v)hd/ lnn → ∞,
√
nhd/ lnn → ∞, and

√
nh2m → 0.

C2.12. There exist |ci(z;φ, θ)| ≤ c̃i(z) for i = 1, 2, 3 such that supx∈XE{Rc̃i(Z) | x} <
∞.

C2.13. Let I(φ; zi) = I1(φ;xi)I2(φ; zi), J(θ,φ; zi) = I1(φ;xi)J2(θ,φ; zi), and

I1(φ;xi) = 1− E
{
π(φ0;Z)

π(φ;Z)

∣∣∣∣ xi} ,
I2(φ; zi) =

π−1(φ; zi)O(φ; zi){s0(φ; zi)− g?(φ;xi)}
E1{π−1(φ;Z)O(φ;Z) | xi}Pr(R = 1 | xi)

,

J2(θ,φ; zi) =
π−1(φ; zi)O(φ; zi){U(θ; zi)− U?(θ,φ;xi)}
E1{π−1(φ;Z)O(φ;Z) | xi}Pr(R = 1 | xi)

.

and

H1(φ, θ; z) :=
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

O(φ; z)
{
U(θ; z)− Ū(φ, θ;x)

}
.

Then, the condition (C2.5) holds for I(φ; z), J(φ, θ; z), ∂I(φ; z)/∂φ, ∂J(φ, θ; z)/∂φ,

and ∂J(φ, θ; z)/∂θ for known distribution f1(y | x;γ0) instead of S1(φ), S2(φ, θ).

C2.14. For functions ∂c1(z;φ)/∂φ, ∂c2(z;φ)/∂φ>, ∂c3(z;φ, θ)/∂φ, and ∂c3(z;φ, θ)/∂θ,

(C2.9), (C2.10), and (C2.12) hold instead of ci(z;φ, θ).
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Appendix B

Proofs of the technical results

Following uniform convergence of the kernel estimators used in Chapter 2 is obtained.

Theorem B.2.1. It follows from conditions (C1.1), (C1.2) and (C1.6)–(C1.10) that

sup
φ∈Φ

sup
x∈X
‖D̂(φ;x)−D(φ;x)‖ = op(n

−1/4), (B.1)

sup
φ∈Φ

sup
x∈X
‖Ĉs(φ;x)−Cs(φ;x)‖ = op(n

−1/4),

sup
(φ,θ)∈Φ×Θ

sup
x∈X
‖ĈU (φ, θ;x)− CU (φ, θ;x)‖ = op(n

−1/4),

where

D(φ;x) = E1{O(φ;x, Y ) | x}f1(x) Pr(R = 1),

Cs(φ;x) = E1{O(φ;x, Y )s0(φ;x, Y ) | x}f1(x) Pr(R = 1),

C(φ;x) = E1{U(φ, θ;x, Y ) | x}f1(x) Pr(R = 1),

and D̂(φ;x), Ĉs(φ;x), and ĈU (φ, θ;x) are defined in §3.4.

In order to show the Theorem B.2.1, the following Lemma B.2.1 proved in Newey

(1994) is to be referred. In what follows, only (B.1) is proved. Convergence of the other

functions can be shown in a similar way.

Lemma B.2.1. For a fixed φ ∈ Φ, under conditions (C1.1) and (C1.6)–(C1.8), it holds

that

sup
x∈X
‖D̂(φ;x)− E{D̂(φ;x)}‖ = Op{(lnn)1/2(nhd)−1/2}, (B.2)

sup
x∈X
‖E{D̂(φ;x)} −D(φ;x)‖ = Op(h

m). (B.3)
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Let δn = (lnn)1/2(nhd)−1/2. Note that under the condition (C1.9), O(δn + hm) =

o(n−1/4). Thus, there is a gap between Theorem B.2.1 and Lemma B.2.1 that whether

the convergence holds for each φ ∈ Φ or uniformly in Φ. The gap is filled as follows.

Proof of Theorem B.2.1. Denote a open ball with center φ and radius e by B(φ, e).

It is enough to show both (B.2) and (B.3) hold uniformly in φ ∈ B(φ, e) because of

the continuity of D(φ;x) with respect to φ and compactness of the parameter space.

Actually, It holds that

sup
x∈X

h−d| sup
φ∈B(φ,e)

RKh(x− xi)O(x, yi;φ)− inf
φ∈B(φ,e)

RKh(x− xi)O(x, yi;φ)|

≤ sup
x∈X

2h−d| sup
φ∈B(φ,e)

RKh(x− xi)O(x, yi;φ)|

≤ sup
x∈X

2h−d|RKh(x− xi)b̃1(x, yi)|.

Here, the last equation is integrable by the condition (C1.6), (C1.7), and (C1.10) be-

cause

sup
x∈X

h−dE{RKh(x− xi)b̃1(x, yi)} = c sup
x∈X

E{Rb̃1(Z) | x} <∞,

where c = supxK(x). Therefore, for any ε > 0, we can choose e so that

h−d sup
x∈X

∥∥∥∥E
{

sup
φ∈B(φ,e)

RKh(x−X)O(x, Y ;φ)

}
−E

{
inf

φ∈B(φ,e)
RKh(x−X)O(x, Y ;φ)

}∥∥∥∥ < ε

It follows from (B.2) that

sup
x∈X

sup
φ∈B(φ,e)

‖D̂(φ;x)− E{D̂(φ;x)}‖

≤ sup
x∈X

sup
φ∈B(φ,e)

∥∥∥∥ 1

nhd

n∑
i=1

riKh(x− xi)O(x, yi;φ)− 1

hd
E {RKh(x− U)O(x, Y ;φ)}

∥∥∥∥
≤ sup
x∈X

∥∥∥∥ 1

nhd

n∑
i=1

sup
φ∈B(φ,e)

riKh(x− xi)O(x, yi;φ)− 1

hd
E

{
inf

φ∈B(φ,e)
RKh(x− U)O(x, Y ;φ)

}∥∥∥∥
= Op(δn)

+ h−d sup
x∈X

∥∥∥∥E
{

sup
φ∈B(φ,e)

RKh(x−X)O(x, Y ;φ)

}
− E

{
inf

φ∈B(φ,e)
RKh(x−X)O(x, Y ;φ)

}∥∥∥∥
= Op(δn) + ε.

Therefore, (B.2) holds uniformly in the ball B(φ, e). By using the compactness of Φ,

we can easily show that this holds uniformly in Φ.
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Let w(x;φ) = E{RO(x, Y ;φ) | x}. It follows from the Taylor’s theorem and (C1.6)

that, for some 0 < c < 1,

E{D̂(φ;x)} −D(φ;x) =

∫
K(u){w(x+ uh;φ)− w(x;φ)}du

≤ hm

m!
cm‖w(x;φ)‖m

∫
umK(u)du.

By using the condition (C1.7),

sup
φ∈Φ
‖w(φ)‖m <∞

holds, and thus, (B.3) holds uniformly in Φ. Therefore (B.1) holds uniformly in Φ.

Therefore, the desired conclusion is obtained.

Lemma B.2.2. Under conditions (C1.1)–(C1.5) and (C1.7)–(C1.10), we obtain the

following asymptotic expansion of (2.12) and (2.14): for each (φ, θ) ∈ Φ × Θ, it holds

that

Ŝ(φ) = n−1
n∑
i=1

{
1− ri

π(φ; zi)

}
s̄0(φ;xi) + n−1

n∑
i=1

riG2(φ; zi) + op(n
−1/2) (B.4)

and

Û(φ, θ) = n−1
n∑
i=1

[
riU(θ; zi)

π(φ; zi)
+

{
1− ri

π(φ; zi)

}
Ū(θ;xi)

]

+ n−1
n∑
i=1

riH2(φ; zi) + op(n
−1/2),

(B.5)

where

G2(φ; z) =

{
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

− 1

}
O(φ; z) {s0(φ; z)− s̄0(φ;x)}

H2(φ; z) =

{
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

− 1

}
O(φ; z)

{
U(θ; z)− Ū(φ, θ;x)

}
.

Proof of Lemma B.2.2. By using â/b̂−a/b = b−1{1− b̂−1(b̂−b)}{(â−a)− (a/b)(b̂−b)}
and Lemma B.2.1, we obtain for each φ ∈ Φ

sup
x∈X

∥∥∥∥Ĉs(φ;x)

D̂(φ;x)
− Cs(φ;x)

D(φ;x)
− E(φ;x)

∥∥∥∥ = op(n
−1/2), (B.6)

where

E(φ;x) := D(φ;x)−1

{
(Ĉs(φ;x)−Cs(φ;x))− Cs(φ;x)

D(φ;x)
(D̂(φ;x)−D(φ;x))

}
.
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It follows that ‖ŝ0(φ;x)− s̄0(φ;x)− E(φ;x)‖ = op(n
−1/2).

Therefore, by using (B.6), we can show, for each φ ∈ Φ,

Ŝ(φ)− n−1
n∑
i=1

{ris1(φ; zi) + (1− ri)s̄0(φ;xi)}

− n−2
∑
i 6=j

(1− ri)rjh−dKh(xi − xj)O(φ;xi, yj) {s0(φ;xi, yj)− s̄0(φ;xi)}
D(φ;xi)

= op(n
−1/2).

(B.7)

Also, the double sum in (B.7) can be written as

n−2
∑
i 6=j

(1− ri)rjh−dKh(xi − xj)O(φ;xi, yj) {s0(φ;xi, yj)− s̄0(φ;xi)}
D(φ;xi)

=

(
n

2

)−1∑
i<j

2−1 [ζij + ζji] + op(n
−1/2), (B.8)

where ζij can be expressed as

ζij :=
(1− ri)rjh−dKh(xi − xj)O(φ;xi, yj) {s0(φ;xi, yj)− s̄0(φ;xi)}

D(φ;xi)
.

Let w = (z>, r)> and h(wi,wj) := (ζij + ζji)/2. According to U-statistic theory (e.g.

van der Vaart, 1998, Ch.12), we have(
n

2

)−1∑
i<j

h(wi,wj) = 2n−1
n∑
i=1

E{h(wi,wj) | wi}+ op(n
−1/2). (B.9)

Note that,

E(ζij | wi)

=
1− ri
D(φ;xi)

E[rjh
−dKh(xi − xj)O(φ;xi, yj){s0(φ;xi, yj)− s̄0(φ;xi)} | wi]

=
1− ri
D(φ;xi)

E[h−dKh(xi − xj)E[rjO(φ;xi, yj){s0(φ;xi, yj)− s̄0(φ;xi)} | xi] | wi] = 0

and

E(ζji | wi) = ri

∫
G1(φ;xj , yi)h

−dKh(xi − xj)dxj

= riG1(φ; zi) +O(hm)

= riG1(φ; zi) + o(n−1/2),
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where

G1(φ; z) =
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

O(φ; z) {s0(φ; z)− s̄0(φ;x)} .

Therefore, by using (B.7)-(B.9), the score function Ŝ(φ) can be written as

Ŝ(φ) = n−1
n∑
i=1

[ri {s1(φ; zi) +G1(φ; zi)}+ (1− ri)s̄0(φ;xi)] + op(n
−1/2)

=: n−1
n∑
i=1

{
1− ri

π(φ; zi)

}
s̄0(φ;xi) + n−1

n∑
i=1

riG2(φ; zi) + op(n
−1/2),

where

G2(φ; z) =

{
E1{O(φ0; z) | x}
E1{O(φ; z) | x}

− 1

}
O(φ; z) {s0(φ; z)− s̄0(φ;x)} .

Therefore, (B.4) is obtained. The expansion of (B.5) is also obtained in a similar

way.

Consistency and asymptotic normality of our proposed estimator can be obtained

by using Lemma B.2.2 in conjunction with theory of an Asymptotically Unbiased Esti-

mating Equation proposed in Zhao and Lin (2012).

Proof of Theorem 2.3.1. We focus on proving (B.4) at first. Let

Ŝ1(φ) := n−1
n∑
i=1

{
1− ri

π(φ; zi)

}
s̄0(φ;xi) + n−1

n∑
i=1

riG2(φ; zi).

To obtain consistency of our proposed estimator, it is only needed to show

sup
φ∈Φ
‖Ŝ(φ)− Ŝ1(φ)‖ = op(1)

and

sup
φ∈Φ

∥∥∥∥∂Ŝ(φ)

∂φ
− ∂Ŝ1(φ)

∂φ

∥∥∥∥ = op(1) (B.10)

because the other conditions required by Theorem 5 and 6 in Zhao and Lin (2012) are

met by the regularity conditions. These are easily shown by using Theorem B.2.1. In

fact,

‖Ŝ(φ)− Ŝ1(φ)‖

=

∥∥∥∥ 1

n

n∑
i=1

(1− ri)

{
Ĉs(φ;xi)

D̂(φ;xi)
− s̄0(φ;xi)

}∥∥∥∥+

∥∥∥∥ 1

n

n∑
i=1

riG1(φ; zi)

∥∥∥∥.
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It follows from Theorem B.2.1 that the first term converges to zero uniformly by (C1.12).

The second term also converges to zero uniformly by using the uniform law of large

numbers with (C1.11). The other equation (B.10) can be shown in a similar way.

Next, we simplify the influence function of φ̂. So far, it has been shown that the

influence function of Ŝ(φ) is given by{
1− R

π(φ;Z)

}
s̄0(φ;X) +G2(φ;Z). (B.11)

Thus the asymptotic variance of φ̂ can be derived by using the usual sandwich estima-

tor. Here it follows from the facts G2(φ0) = 0 and E{∂G2(φ0)/∂φ>} = 0 that the

influence function (B.11) can be also written as{
1− R

π(φ;Z)

}
s̄0(φ;X).

Using the same argument for Û(φ, θ), we can obtain the influence function for θ by

R

π(φ;Z)
U(θ;X) +

{
1− R

π(φ;Z)

}
Ū(θ;X).

Denote the simplified influence functions by

Ŝ
l
i(φ) :=

{
1− ri

π(φ; zi)

}
s̄0(φ;xi)

and

Ûl
i(φ) :=

ri
π(φ; zi)

U(θ;xi) +

{
1− ri

π(φ; zi)

}
Ū(φ;xi).

The solution based on the estimating equations (B.4) and (B.5) is asymptotically

equivalent to that to the following estimating equations:

n∑
i=1

Ŝ
l
i(φ) = 0,

n∑
i=1

Ûl
i(φ, θ) = 0.

Hereafter, we derive the asymptotic variance of the estimator based on the above esti-

mating equations.

Lemma B.2.3. The following partial derivatives with respect to θ and φ satisfy

E
{
∂Ŝ

l
n(φ)/∂φ>

}
= E

{
s̄0(φ)π̇>(φ)/π(φ)

}
,

E
{
∂Ûl

n(φ, θ)/∂φ>
}

= E
[{
Ū(θ)− U(θ)

}
π̇>(φ)/π(φ)

]
,

E
{
∂Ûl

n(φ, θ)/∂θ
}

= E {∂U(θ)/∂θ} .
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Finally, we give a proof of Theorem 2.3.2.

Proof of Theorem 2.3.2. By using standard arguments,

n1/2

[
φ̂− φ0

θ̂ − θ0

]
= −

(
n−1

n∑
i=1

[
∂Ŝ

l
i(φ0)/∂φ> ∂Ŝ

l
i(φ0)/∂θ

∂Ûl
i(φ0, θ0)/∂φ> ∂Ûl

i(φ0, θ0)/∂θ

])−1

× n−1/2
n∑
i=1

[
Ŝ
l
i(φ0)

Ûl
i(φ0, θ0)

]
+ op(1).

Let

I := −E

[
∂Ŝ

l
i(φ0)/∂φ> ∂Ŝ

l
i(φ0)/∂θ

∂Ûl
i(φ0, θ0)/∂φ> ∂Ûl

i(φ0, θ0)/∂θ

]
=

[
I11 O
I21 I22

]
.

By conditions (C1.1)–(C1.5), and Lemma 2.4 in Newey and McFadden (1994),(
−n−1

n∑
i=1

[
∂Ŝ

l
i(φ0)/∂φ> ∂Ŝ

l
i(φ0)/∂θ

∂Ûl
i(φ0, θ0)/∂φ> ∂Ûl

i(φ0, θ0)/∂θ

])−1

converges to I−1 in probability. On the other hand, by the Central Limit Theorem,

n−1/2[{
∑n

i=1 Ŝ
l
i(φ0)}>, {

∑n
i=1 Ûl

i(φ0, θ0)}>]> has an asymptotic normal distribution

with mean 0 and variance var[{Ŝl(φ0)}>, {Ûl(φ0, θ0)}>]>. Then, by Slutzky’s Theo-

rem, n1/2[(φ̂ − φ0)>, (θ̂ − θ0)>]> has an asymptotic normal distribution with mean 0

and variance

I−1var

{
Ŝ
l
(φ0)

Ûl(φ0, θ0)

}(
I−1
)>

= var

{[
I−1
11 O

−I−1
22 I21I

−1
11 I−1

22

][
Ŝ
l
(φ0)

Ûl(φ0, θ0)

]}

= var

 I−1
11 Ŝ

l
(φ0)

I−1
22

{
Ûl(φ0, θ0)− I21I

−1
11 Ŝ

l
(φ0)

}  . (B.12)

Finally, explicit expressions of the variance of Ŝ
l
(φ0) and Ûl(φ0, θ0)− I21I

−1
11 Ŝ

l
(φ0) are

given as follows:

var{Ŝl(φ0)} = E
[
var
{
rπ−1(φ0)s̄0(φ0) | z

}]
= E{O(φ0)s̄⊗2

0 }

and

var{Ûl(φ0, θ0)− I21I
−1
11 Ŝ

l
(φ0)}

= var{U(θ0)}+ E
[
var
{
rπ−1(φ0){U(θ0)− Ū(θ0) + κs̄0(φ0)} | z

}]
= var{U(θ0)}+ E[O(φ0){U(θ0)− Ū(θ0) + κs̄0(φ0)}⊗2],
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where κ = I21I
−1
11 .

Next, we provide a proof of Lemma 2.4.1 and Theorem 2.4.1 and 2.4.2. In order

to prove Lemma 2.4.1, we will assume θ = E(Y ) for simplicity. Wespecify the joint

distribution z = (x>, y)> by f(z;η), where η is an infinite-dimensional nuisance pa-

rameter, and η0 is the true value. By “full model” we refer to the class of models in

which the data are completely observed, and by “obs model” those in which some Y

are missing; that is, a full model consists of functions h(Z) and an obs model consists

of h(R,GR(Z)). Furthermore, for each full and obs model, denote the nuisance tan-

gent space by ΛF and Λ, respectively, and its orthogonal complement by ΛF⊥ and Λ⊥,

respectively. Let Sφ be the score function with respect to φ. Consider a Hilbert space

H = {h(q+1)×1 | E(h) = 0; ‖h‖ < ∞} with inner product 〈h1,h2〉 = E(h>1 h2), where

the expectation is taken under the true model. See Bickel et al. (1998) and Tsiatis

(2006) for more details.

At first, we introduce a proposition of Rotnitzky and Robins (1997), which provides

the efficient score for (φ, θ), as follows. Let B and D be functions of (R,GR(Z)), and

let B∗ and D∗ be functions of Z. Also, let us define the following three linear operators:

g(B∗) = E(B∗ | R,GR(Z)), m(B∗) = E{g(B∗) | Z}, and u(B∗) = RB∗/π(Z). Then,

the efficient score for (φ, θ) can be derived by the following Lemma. See Proposition

A1 in Rotnitzky and Robins (1997) for the proof.

Lemma B.2.4. The efficient score for (φ, θ) can be written as

Seff = u(D∗eff)−Π[u(D∗eff) | Λ2] +A2,eff = g{m−1(D∗eff)}+A2,eff , (B.12)

where Π[h | Λ2] is the projection of h onto Λ2, Λ2 = [h(R,GR(Z)) : E(h(R,GR(Z)) |
Z) = 0], and D∗eff is a unique solution to

Π[m−1(D∗) | ΛF⊥] = (Q,SF⊥eff,θ), (B.13)

where Q = Π[m−1[E{g(SFφ ) | L}] | ΛF⊥], A2,eff = (Π[Sφ | Λ2]>, 0)> = (g(SFφ ) −
g[m−1[E{g(SFφ ) | L}]]>, 0)>, and SF⊥eff,θ is the efficient score function of θ in the full

model.

This Lemma implies that the efficient score can be represented by (B.12) with D∗eff

satisfying condition (B.13). Thus, in the nonignorable nonresponse case, ΛF⊥ needs

to be calculated, and it can be done in a way similar to that shown in Section 4.5 of

Tsiatis (2006).
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Lemma B.2.5. The nuisance tangent space ΛF and its orthogonal complement ΛF⊥

in the full model are written as follows:

ΛF = [h(Z) ∈ H such that E{Y h(Z)} = 0],

ΛF⊥ = [k(Y − θ0),where k is any q + 1 dimensional vector] .

Finally, we give an explicit formula to calculate the projection onto Λ2.

Lemma B.2.6. For h(R,GR(Z)) = Rh1(Z) + (1−R)h2(X), it holds that

Π(h | Λ2) =

{
1− R

π(Z)

}
h2(X)− E(h1(Z) |X)

E{O(Z) |X}
. (B.14)

Proof of Lemma B.2.6. Obviously, the right-hand side of (B.14) belongs to Λ2. Thus,

it remains to check that for any g,〈
h−

{
1− R

π(Z)

}
h2(X)− E{h1(Z) |X}

E{O(Z) |X}
,

{
1− R

π(Z)

}
g(X)

〉
= 0,

which can be proved easily.

We now give a proof of Lemma 2.4.1.

Proof of Lemma 2.4.1. Note that SF⊥eff,θ = Y − θ0 by Lemma B.2.5, since there exists

only one influence function, and it is the efficient one under the assumption that θ does

not require any assumptions on the distribution of Z (see Tsiatis, 2006, Chap. 5). By

the projection theorem, there exists a unique k = (k1, k
>
2 )> such that D∗eff = k(Y −θ0).

Then, we calculate A2,eff . The score function of φ is

Sφ = g(SFφ ) = Rs1(Z;φ) + (1−R)s̄0(X;φ),

where sr(φ) is defined in (2.2). It follows from Lemma B.2.6 with h1(z) = s1(φ)

and h2(x) = s̄0(x;φ) in (B.14) that Π(Sφ | Λ2) = −{1 − R/π(Z)}g?(X). Thus,

A2,eff = [0,−{1−R/π(Z)}g?(X)]. Again, by using Lemma S3, it follows that Π[u(D∗eff) |
Λ2] = −{1−R/π(Z)}E?(Y − θ0 |X), by which (B.12) becomes

S1 = k2

[
R(Y − θ0)

π(φ0)
+

{
1− R

π(φ0)

}
E?(Y − θ0 |X)

]
−
{

1− R

π(Z)

}
g?(X)

and

S2 = k1

[
R(Y − θ0)

π(φ0)
+

{
1− R

π(φ0)

}
E?(Y − θ0 |X)

]
.
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This Seff = (S1, S
>
2 ) can be transformed into S̃eff = (S̃1, S̃

>
2 ) = ASeff ,

S̃1 =

{
1− R

π(φ0)

}
g?(X),

S̃2 =
R(Y − θ0)

π(φ0)
+

{
1− R

π(φ0)

}
E?(Y − θ0 |X)

with a nonsingular matrix A,

A =

[
−Iq −k>2 /k1

0> k−1
1

]
,

where Iq is a q-dimensional identity matrix. The score function multiplied by a nonsin-

gular constant matrix does not have an influence on the asymptotic distribution. Thus,

we have the desired efficient score.

Proof of Theorem 2.4.1. Consistency and asymptotic normality are proved under the

assumptions (C2.1)-(C2.7) in Appendix A by using the standard argument for GMM.

Next, we give the explicit form of the asymptotic variance. Let ξ = (φ>, θ)>. Recall

that each γ̂ and ξ̂ is a solution to
∑n

i=1 ∂ log f1(yi | xi;γ)/∂γ =
∑n

i=1 Sγ,i(γ) = 0 and∑n
i=1 Seff,i(γ̂, ξ) = 0, respectively. By using standard asymptotic theory,[

γ̂ − γ∗
ξ̂ − ξ0

]
= −I−1n−1

n∑
i=1

[
Sγ,i(γ

∗)
Seff,i(γ

∗, ξ0)

]
,

where

I = E

[
∂Sγ(γ∗)/γ> ∂Sγ(γ∗)/ξ>

∂Seff(γ∗, ξ0)/γ> ∂Seff(γ∗, ξ0)/ξ>

]
= E

[
∂Sγ(γ∗)/γ> O

∂Seff(γ∗, ξ0)/γ> ∂Seff(γ∗, ξ0)/ξ>

]
.

Let the (i, j) block of I be Iij . Then,

I−1 =

[
I−1
11 O

−I−1
22 I21I

−1
2 I−1

22

]
.

Here, it follows that I21 = O because

E

[{
1− R

π(φ0)

}
∂g?(γ∗, ξ0)

∂γ>

]
= O

and

E

[{
1− R

π(φ0)

}
∂U?(γ∗, ξ0)

∂γ>

]
= 0>.

Therefore, we have,

I−1 =

[
I−1
11 O

O I−1
22

]
.
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By applying exactly the same arguments for I−1
22 used for I−1, we got the asymptotic

variance of θ̂.

Proof of Theorem 2.4.2. Consistency and asymptotic normality of my proposed es-

timator are similar to proving Lemma 2.3.1. We herein show our estimator attains

the semiparametric lower bound derived in Lemma 2.3.1. Let f1(x) be the con-

ditional distribution of [x | r = 1]. From the same arguments that were used to

prove Lemma 2.3.1, it can be shown that the estimating equation in Theorem 2.4.2,

Ŝeff(φ, θ) = {Ŝ1(φ)>, Ŝ2(φ, θ)}> is expanded as

Ŝ1(φ) = n−1
n∑
i=1

[{
1− ri

π(φ; zi)

}
g?(φ;xi) + riI(zi;φ)

]
+ op(n

−1/2)

Ŝ2(φ, θ) = n−1
n∑
i=1

[
ri

π(φ; zi)
U(θ; zi) +

{
1− ri

π(φ; zi)

}
U?(θ,φ;xi) + riJ(θ,φ; zi)

]
+ op(n

−1/2),

where I(φ; zi) = I1(φ;xi)I2(φ; zi), J(θ,φ; zi) = I1(φ;xi)J2(θ,φ; zi), and

I1(φ;xi) = 1− E
{
π(φ0;Z)

π(φ;Z)

∣∣∣∣ xi} ,
I2(φ; zi) =

π−1(φ; zi)O(φ; zi){s0(φ; zi)− g?(φ;xi)}
E1{π−1(φ;Z)O(φ;Z) | xi}Pr(R = 1 | xi)

,

J2(θ,φ; zi) =
π−1(φ; zi)O(φ; zi){U(θ; zi)− U?(θ,φ;xi)}
E1{π−1(φ;Z)O(φ;Z) | xi}Pr(R = 1 | xi)

.

Therefore, the asymptotic variance may increase due to the additional terms rG(φ)

and rH(φ), but this solution also attains the lower bound. At first, we focus on

the estimator for φ. Once we get an unbiased estimating equation
∑n

i=1 ϕ(zi;φ) =

0, the asymptotic variance can be given as Var{E(ϕ̇(φ0))−1ϕ(φ0)}, where ϕ̇(φ0) =

∂ϕ(φ0)/∂φ>. Thus, for the proving purpose, it suffices to show that I(φ0) = 0 and

E(Rİ(φ0)) = O. The former equation is trivial, so we only need to work on the latter

equation, which can be written as E(Rİ(φ0)) = E(RI1(φ0)İ2(φ0))+E(RI2(φ0)İ1(φ0)).

The first term is zero from I1(φ0) = 0. Also, the second term is E(RI2(φ0)İ1(φ0)) =

E{E(RI2(φ0) | X)İ1(φ0)} = O. Hence, the last equation holds by the definition of

g?(φ;x). Therefore, rI(φ) has no effect on the asymptotic variance and my estimator

also attains the semiparametric efficiency bound. The same conclusion can be made

when estimating θ.
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Proof of Theorem 2.5.1. According to equations (7)–(10) in Qin et al. (2002), the

estimator is a solution to the following system of equations:

n∑
i=1

ri
h(xi)− h̄n
di(λ1,W,φ)

= 0, (B.15)

n∑
i=1

ri
π(zi)−W
di(λ1,W,φ)

= 0, (B.16)

n∑
i=1

ri
∂ log π(φ; zi)

∂φ
− λ2

n∑
i=1

ri
∂π(φ; zi)/∂φ

di(λ1,W,φ)
= 0, (B.17)

λ2 =
n/m− 1

1−W
, (B.18)

where di(λ1,W,φ) = m[1 + λ>1 {h(xi) − h̄n} + λ2{π(φ; zi) −W}] and m =
∑n

i=1 ri.

Note that the parameters to be estimated are λ1,W , and φ. It follows from (B.17)

that

n∑
i=1

ri
π̇(φ; zi)

π(φ; zi)
= λ2

n∑
i=1

ri
π̇(φ; zi)

di(λ1,W,φ)
. (B.19)

Thus, if we set λ1 = 0, W = m/n, λ2 = n/m, and di(λ1,W,φ) = λ2π(zi), (B.17) (or

(B.19)) and (B.18) hold. By substituting the relevant terms in (B.15) and (B.16), we

have (2.9). Because the probability that the estimator of Qin et al. (2002) has a unique

solution goes to one almost sure as the sample size goes to infinity, this is the unique

solution.

Proof of Theorem 2.5.2. The proof can be made in a similar way to the proof of

Corollary 3 of Qin and Lawless (1994). Define a function K : R1×Rd+1 → Rp2 through

a function k : Rd → Rκ by

K(r, z) =

{
r

π(φ; z)
− 1

}
k(x).

Similarly, define K?(·, ·) through g?(x). Recall that my estimating estimation is given

as (2.10) with g(φ;x) = {g?(φ;x)>,k(x)>}>. Here we assume a working model f1(y |
x;β) is correctly specified such that g?(x) can be correctly computed. Wecompute the

asymptotic variance of φ̂ as if β0 were known, because the nuisance tangent space of

φ and β are orthogonal, which implies the estimator β̂ does not affect the efficiency of

φ̂, as long as the working model is correctly specified. By using the standard argument
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of the GMM estimator, inverse of the asymptotic variance of the GMM estimator can

be obtained by

{
E

(
∂K?

∂φ>

)
, E

(
∂K

∂φ>

)}{
E(K?K?>) E(K?K>)
E(KK?>) E(KK>)

}−1
 E

(
∂K?

∂φ

)
E
(
∂K
∂φ

) 
=

{
E

(
∂K?

∂φ>

)
,−E

(
∂K?

∂φ>

)
E(K?K?>)−1E(K?K>) + E

(
∂K

∂φ>

)}

×
{
E(K?K?>)−1 Oq×κ

Oκ×q A−1
22.1

}−1
 E

(
∂K?

∂φ

)
−E(KK?>)E(K?K?>)−1E

(
∂K?

∂φ

)
+ E

(
∂K
∂φ

)  ,

where Op×q is a p× q zero matrix, and

A22.1 = E(KK>)− E(KK?>){E(K?K?>)}−1E(K?K>).

Therefore, it remains to show

E

(
∂K

∂φ

)
− E(KK?>)E(K?K?>)−1E

(
∂K?

∂φ

)
= 0.

This follows from the facts

E

(
∂K?

∂φ

)
= −E(K?K?>), (B.20)

E

(
∂K

∂φ

)
= −E(KK?>). (B.21)

We only show (B.20) because (B.21) can be shown in a similar way. The left-hand side

of (B.20) can be calculated as

E

[{
∂

∂φ>
g?(φ0;x)

}{
R

π(φ0;Z)
− 1

}]
+ E

[
g?(φ0;x)

∂

∂φ>

{
R

π(φ0;Z)
− 1

}]
= E

[
g?(φ0;x)

∂

∂φ>

{
R

π(φ0;Z)
− 1

}]
= −E

{
g?(φ0;x)

π̇(φ0;Z)>

π(φ0;Z)

}
= −E

[
g?(φ0;x)E

{
π̇(φ0;Z)>

π(φ0;Z)

∣∣∣∣ x}]
= −E

[
g?(φ0;x)E

{
π̇(φ0;Z)>

π(φ0;Z)

∣∣∣∣ x} O(φ0;Z)

E{O(φ0;Z) | x}

]
= −E

[
O(φ0;Z){g?(φ0;x)}⊗2

]
= −E(K?K?>).
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Therefore the GMM estimator with g(φ;x) = {g?(φ;x)>,k(x)>}> also attains the

semiparametric efficiency bound.

Proof of (3.6). Assume the condition in (3.5), compactness of the parameter space Ξ,

and continuity of L(ξ) to show supξ∈Ξε
L(ξ) < L(ξ0) in (3.6), under three assumptions.

First, we show that

L(ξ) < L(ξ0) for ξ 6= ξ0. (B.22)

In fact, we have

L(ξ)− L(ξ0)

=

T∑
t=1

∑
y∈{0, 1}⊗T

ln
gt(r

(t), y(t); ξ)

gt(r(t), y(t); ξ0)
g
(
r(t), y ; ξ0

)

≤
T∑
t=1

∑
y∈{0, 1}⊗T

{
gt(r

(t), y(t); ξ)

gt(r(t), y(t); ξ0)
− 1

}
g
(
r(t), y ; ξ0

)
= 1− 1 = 0,

where equality holds if and only if gt(r
(t), y(t); ξ) = gt(r

(t), y(t); ξ0) a.s. Pξ0 , which

implies ξ = ξ0 from condition (5). Hence, we have (B.22).

Now we shall prove (6). There is a minor but important gap between the conditions

in (B.22) and (6). To fill the gap, we have to show that there are no sequences {ξn}n∈N
that tend to ξ∗ ∈ Ξ∩Ξε such that they attain L(ξ∗) = L(ξ0). Suppose that there exists

a sequence {ξn}n∈N ∈ Ξ ∩ Ξε such that L(ξn) → L(ξ0). Due to the compactness of

Ξ∩Ξε, there exists a subsequence {ξnk
}k∈N of {ξn} and ξ∗ ∈ Ξ∩Ξε such that ξnk

→ ξ∗.

By the continuity of L, L(ξnk
) → L(ξ∗) = L(ξ0), which contradicts (B.22). Thus, we

have the conclusion.

Proof of Lemma 3.2.1. We suppress the parameter ξ for simplicity in the following

proof. For t = 1, . . . , T − 1, i.e., when data are missing,

gt(y
(t), r(t))

= Pr(Rt+1 = 0, Rt = 1,Y (t) = vt)

=
∑
yt+1

Pr(Rt+1 = 0 | Rt = 1,vt+1)

×
t∏

s=2

Pr(Rs = 1 | Rs−1 = 1,vt+1) Pr(Y (t+1) = vt+1).
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By the assumption of conditional independence, we have

gt(y
(t), r(t))

= Pr(Y1 = y1)
t−1∏
s=1

Pr(Rs+1 = 1 | Rs = 1,vs) Pr(Ys+1 = ys+1 | vs)

×
∑
yt+1

Pr(Rt+1 = 0 | Rt = 1,vt+1) Pr(Yt+1 = yt+1 | vT )

= π1(y1)
t∏

s=2

ζs(vs)

1−
∑
yt+1

ζt+1(vt+1)

 .

Also, for t = T , i.e., when data are completely observed, we have

gT (y(T ), r(T )) = Pr(RT = 1,Y (T ) = v(T )) = π1(y1)

T∏
s=2

ζs(vs).

Proof of Theorem 3.2.1. We show that conditions (3.5) and (3.7) are equivalent

when Y is binary, as is considered throughout §3.2, but its extension for the continuous

case can be done analogously.

To show this, it suffices to prove that

gt

(
r(t), y(t) ; ξ

)
= gt

(
r(t), y(t) ; ξ0

)
a.s. Pξ0 ∀t

and

ζt(vt; ξt) = ζt(vt; ξ0,t) a.s. Pξ0 ∀t

are equivalent, where

π1(y1; ξ1) := Pr(Y1 = y1; ξ1),

ζt(vt; ξt) := Pr (Rt = 1 | Rt−1 = 1, yt−1, yt; ξt)

× Pr (Yt = yt | vt−1; θt)
(t = 2, . . . , T )

and gt
(
r(t), y(t)

)
is represented by the functions of π1, . . . , πT by Lemma 3.2.1. Note

that

ζt(vt; ξt) = ζt(vt; ξ0,t) a.s. Pξ0 ∀t ⇒ ξ = ξ0
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and

ζt(vt; ξt) = ζt(vt; ξ0,t) a.s. Pξ0 ⇒ ξt = ξ0,t ∀t

are equivalent since each expression of πt(vt; ξt) = πt(vt; ξ0,t) a.s. Pξ0 is in terms of

each ξt. It is obvious that (3.7) implies (3.5); thus, we only need to prove the reciprocal

statement. From the condition when t = T , we have

T∏
s=1

ζs(vs; ξ) =
T∏
s=1

ζs(vs; ξ0),

where vt = (vt−1, yt). First, we assume that ζs(vs; ξ) and ζs(vs; ξ0) are positive for

all s. It follows that ∏T−1
s=1 ζs(vs; ξ)∏T−1
s=1 ζs(vs; ξ0)

=
ζT (vT ; ξ0)

ζT (vT ; ξ)
∀yT ,

which implies ∏T−1
s=1 ζs(vs; ξ)∏T−1
s=1 ζs(vs; ξ0)

=
ζT ((vT−1 , 0); ξ0)

ζT ((vT−1 , 0); ξ)
=
ζT ((vT−1 , 1); ξ0)

ζT ((vT−1 , 1); ξ)
(B.23)

Similarly, from the condition when t = T − 1, we can obtain∏T−1
s=1 ζs(vs; ξ)∏T−1
s=1 ζs(vs; ξ0)

=
(1−

∑
y
T
ζT ((vT−1 , yT ); ξ0)

(1−
∑

y
T
ζT ((vT−1 , yT ); ξ))

. (B.24)

Thus, we have the following equalities:

ζT ((vT−1 , 0); ξ0)

ζT ((vT−1 , 0); ξ)
=
ζT ((vT−1 , 1); ξ0)

ζT ((vT−1 , 1); ξ)
=

(1−
∑

y
T
ζT ((vT−1 , yT ); ξ0)

(1−
∑

y
T
ζT ((vT−1 , yT ); ξ))

in view of (B.23) and (B.24). This yields

ζT ((vT−1 , 0); ξ0) + ζT ((vT−1 , 1); ξ0)

ζT ((vT−1 , 0); ξ) + ζT ((vT−1 , 1); ξ)
= 1,

using the fact that if a1/a2 = b1/b2 = c1/c2, then (a1 +b1)/(a2 +b2) = c1/c2. Therefore,

we obtain ∑
y
T

ζT ((vT−1 , yT ); ξ) =
∑
y
T

ζT ((vT−1 , yT ); ξ0).
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Substituting this into (B.24), we have

T−1∏
s=1

ζs(vs; ξ) =
T−1∏
s=1

ζs(vs; ξ0).

Repeating this operation, it follows that

t∏
s=1

ζs(vs; ξ) =
t∏

s=1

ζs(vs; ξ0) ∀t ∈ {1, . . . T},

which means

ζt(vt; ξ) = ζt(vt; ξ0) ∀t.

Then, we assume that there exists u such that ζu(vu; ξ) = 0 or ζu(vu; ξ0) = 0, and

define u0 as

u0 ≡ min{1 ≤ u ≤ T − 1 | ζu(vu; ξ) = 0 or ζu(vu; ξ0) = 0}.

Here, we assume ζu0(vu0 ; ξ) = 0 and ζu0(vu0 ; ξ0) > 0 without loss of generality, and

prove ζu0(vu0 ; ξ0) = 0. From the condition when t = T , the following proposition must

be true:

T∨
k=u0+1

[ζk(vk; ξ0) = 0], (B.25)

where A∨B is the logical sum of A and B, i.e., it is false if and only if both A and B are

false and
∨n
i=1Ai = A1 ∨A2 ∨ · · · ∨An. Similarly, from the condition when t > u0 + 1,

we have

t∨
k=u0+1

[ζk(vk; ξ0) = 0] ∨

∑
yt+1

ζt+1(vt+1; ξ0) = 1

 (B.26)

is true, and when t = u0 + 1,∑
yu0+1

ζu0+1(vu0+1; ξ0) = 1

 (B.27)

must hold. Considering the logical product of (B.25)–(B.27), it holds that

T∨
k=u0+1

[
[ζk(vk; ξ0) = 0] ∧

[∑
yk

ζk(vk; ξ0) = 1

]]
(B.28)
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is true. It follows from (B.28) that there exists k ≥ u0 + 1 such that ζk(vk; ξ0) = 0.

Then, it follows that ∑
yk

ζk(vk; ξ0) = 0,

which means that
∑

yk
ζk(vk; ξ0) = 1 does not hold for all k(≥ u0 + 1). Thus, (B.28)

cannot be true. Therefore, πu0(vu0 ; ξ0) = 0.

Proof of Theorem 3.5.1. Let γ be a finite dimensional parameter of f1(y | x) and the

true parameter be γ0. Denote γ = γ ′ if f1(y | x;γ) = f1(y | x; γ′) holds for almost

all z. Here, the distribution of [y | x] can be represented with (γ,φ), because by using

Bayes’ formula, we have

f(y | x; γ,φ) =
f1(y | x;γ)π−1(z;φ)∫
f1(y | x;γ)π−1(z;φ)dy

. (B.29)

We give a proof for Theorem 3.5.1 by taking two steps: (i) prove the identification

condition for f(y | x;γ,φ)π(z;φ) is equivalent to that for
∫
f1(y | x;γ)π−1(z;φ)dy

and the uniqueness of f1(y | x;γ); (ii) derive the identification condition for
∫
f1(y |

x;γ)π−1(z;φ)dy.

(i). Wefirst show

f(y | x;γ,φ)π(z;φ) = f(y | x;γ ′,φ′)π(z;φ′) (B.30)

is equivalent to

f1(y | x;γ) = f1(y | x;γ ′) (B.31)

and ∫
f1(y | x;γ)π−1(z;φ)dy =

∫
f1(y | x;γ ′)π−1(z;φ′)dy (B.32)

It follows from (B.29) that

f(y | x;γ,φ)π(z;φ) =
f1(y | x;γ)∫

f1(y | x;γ)π−1(z;φ)dy
. (B.33)

Hence, (B.31) and (B.32) imply (B.30). On the contrary, by taking integration with

respect to y in (B.30) by using (B.33), we have (B.32) and then, (B.31) follows from

(B.32) and (B.33).
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(ii). By the result of (i), f1 is unique in the sense of (B.31). It only remains

to show (B.32) with the true distribution f1(y | x;γ0). By the definition of odds

function O(z;φ): π−1(z;φ) = 1 + O(z;φ) and
∫
f1(y | x;γ)dy=1, the identification

of E1{O(Z;φ) | x;γ0} is the necessary and sufficient condition for the identification of

f(y | x;γ,φ)π(z;φ).
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