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Abstract

Statistical inference with missing data has become a major issue in many empirical re-
search fields including medical science, epidemiology, econometrics and psychometrics.
If data involve missing values, conventional statistical methods cannot be directly ap-
plied. In this thesis, we study nonresponse, a typical type of missingness, which means
that some data are missing at dependent variables.

A key concept for valid analysis with missing data is response mechanism or missing-
data mechanism. When missingness depends on the missing value, the mechanism is
said to be nonignorable; most missing data are nonignorable nonresponses and this
type of missingness is most difficult to handle. Appropriate analysis of nonignorable
nonresponse data requires strong unverified assumptions such as existence of instru-
mental variables. It is hard to specify a response model in general; even though it
can be specified, identifiability of the response model often fails and indeed it is even
difficult to check the identifiability.

The first contribution of the thesis is to introduce a semiparametric approach to
estimate a response model to overcome the difficulties described above. The first semi-
parametric estimator developed in this thesis is based on the method of maximum
likelihood, which does not require other than the correct specification of the response
model. Unfortunately, the estimator is not the most efficient. Hence, we propose
two alternative semiparametric estimators which attain the semiparametric efficiency
bound.

The second contribution is to provide useful conditions for checking the model iden-
tifiability in the analysis of longitudinal data with binary outcomes. The condition can
be checked by observed data only, and do not rely on any instrumental variables. Based
on the conditions, some identifiable models are proposed to analyze binary longitudinal
data with dropouts.

Numerical experiments are conducted to show that our semiparametric estimators
outperform other existing estimators in terms of bias and variance. Real data analyses
of the Korean labor and income panel survey data and depot medroxyprogesterone

acetate data, with our new methods, are seen to give quite reasonable results.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Missing data problems are ubiquitous and require cumbersome handling techniques
in many empirical research areas including econometrics, epidemiology, clinical study,
and psychometrics. For example, due to the expansion of information on the Internet,
personal information and privacy have become more important; people often decline
to reply to personal items in a questionnaire such as income and career. In the clinical
study, subjects can easily drop out from the study in view of the human participant
protection. For such data, existing methods for complete data analysis cannot be
directly applied.

If analysts do not properly deal with missing data, the result can be distorted and
leads to incorrect conclusions. An easy way for dealing with missing data is listwise
deletion. The method makes a complete dataset artificially by deleting any observations
or units with missing values. However, this method has two drawbacks: (1) loss of
efficiency and (2) making a biased dataset. The first problem occurs because the
listwise deletion discards some data being possible to use, which yields to decrease
of the sample size. The second problem is more critical from a practical perspective.
Suppose that one is interested in income in a population. If lower-income workers are
likely to decline to answer, then the mean income calculated from the observed data
will be higher than the real income. As a result, appropriate methods for analyzing
missing data need to be developed. Assumptions required for the methods should be

as weak as possible.



1. INTRODUCTION AND PRELIMINARIES

The required assumptions are strongly related to response mechanism or missing-
data mechanism. The response mechanism is defined as the conditional distribution
of response probability given the complete data. This conditional probability is also
called propensity score in the literature of causal inference (Rosenbaum and Rubin,
1983). Rubin/ (1976) distinguished the response mechanisms into two main parts: (i)
missing at random (MAR); (ii) not missing at random (NMAR). If the mechanism does
not depend on the missing data, it is called MAR, otherwise, called NMAR. When the
mechanism is MAR (NMAR), it is also called ignorable (nonignorable). There have
been many estimators developed under the MAR mechanism, which can be analyzed
under almost the same assumptions as those with complete data. On the other hand,
when the mechanism is nonignorable or NMAR, existing estimators require unverified
assumptions. Hence, statistical analysis assuming nonignorable nonresponse has been
criticized and has been likely to be avoided. It is a deplorable situation, and new

appropriate statistical methods have to be developed.

1.2 Basic theory of the analysis of nonresponse data

Let Y be a response variable, which is subject to missingness, and let X be a fully
observed covariate vector. Let R be a response indicator of Y, i.e., it takes 1(0) if
Y is observed (missing). Letting Z = (X,Y)" and G,(Z) be observed variables in
Z for R = r, the r-th response pattern. Here we have G1(Z) = (X,Y) for R = 1
and Go(Z) = X for R = 0. The response mechanism is defined as the conditional
probability given z: 7w(z) = Pr(R = 1 | z). Denote our interesting parameter by 6
which is defined as a solution to E{U(0; Z)} = 0, where U(-;) is a known function. For
example, if population mean is of our interest, U(0; z) = 0 —y. Assume that (z;,r;) (i =
1,...,n) are independent and identically distributed with a joint distribution [z,r].
Here, [-] is generic notation for describing the distribution of the variables inside the
square bracket. Notice that [y | | denotes the conditional distribution of y given x.
Because of missingness, we observe only (G,,(z;),r;) (i = 1,...,n). By using only

observed data, Horvitz and Thompson| (1952)) proposed an estimator for E(Y') based
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on an unbiased estimating equation as follows:

s pl R
L =Bz} + o
= B(Y) + 0y(1).

An estimator defined by a solution to an unbiased estimating equation will be
consistent and asymptotic normal under some regularity conditions. However, the
response mechanism 7(z) is generally unknown and has to be estimated. Assume that
a parametric model 7(z; ¢) is specified which is known up to a value of the g-dimensional
parameter ¢. KEstimation of ¢ depends on its mechanism. When the mechanism is
MAR or ignorable, the maximum likelihood estimation can be applied to estimate ¢
because the missing data in y are unnecessary. Suppose that the mechanism is NMAR
or nonignorable. In the case, correct specification for the outcome model [y | «] and the
response model [r | z] is required. The likelihood is then complicated and sometimes the
model identification is not achieved. More seriously the model identification is hard to
check. Therefore estimation under NMAR mechanism has been not recommended due
to these strong assumptions. In this thesis, we derive three semiparametric estimators
which do not require any outcome model specification. Especially the two estimators are
constructed to improve the other one and attain the semiparametric efficiency bound,
where it is the lower bound of the asymptotic variance of an estimator when only a
response model is specified. In addition, we propose an easy-to-check identification
condition.

Assume that the response model is specified as

1
m(z;¢) = 1+ exp(dx0 + ¢ + ¢yy)’

where ¢ = (px0, Ox1, qby)T. Note that this response model is NMAR because it depends
on y. In this setup, Greenlees et al.| (1982)) constructed the fully observed likelihood as

follows:
n 1—7r;
Tin(i: ) i | 2 B))" {1 - [twv)s xi;mdy} ,
=1

where f(y | x;3) is a model for the conditional distribution of [y | ] known up to a

finite dimensional parameter 3. The term for » = 0 is integrated out with regard to
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y since y can not be observed. Thus the correct specification of the true conditional
distribution is needed, and misspecification of the distribution leads to inconsistency
of any estimator for ¢p. The question is whether we can remove the assumption of the
correct specification of f(y | z;3). We will answer to this question in Chapter
Conditions for the model identification are also to be clear. If we can observe

complete data, the identification condition is

m(y |z ) =n(y|z;¢) wp. 1
= ¢=9,

where w.p. 1 means with probability one with respect to the true distribution. When

some values in y are subject to missingness, the identification condition is changed to,

m(y |z @) fly|z:8) =7y |z fly|z:8) wp. 1
= ¢=¢ andB3=0".

However, this condition does not generally hold. For example, Miao et al.[(2016) showed
if the response models are 7(z; ¢) = expit(—log2 + y) and 7(z; ¢’) = expit(log2 — y),
and outcome models are f(y;3) = 2¢~2¥ and f(y;3') = e7Y, the identifiability does
not hold, where “expit” is the inverse function of “logit”. We will give a new necessary

and sufficient condition for the model identification.

1.3 Basic theory of semiparametric inference

In this section, we consider semiparametric estimation in the sense that response and
outcome models are parametric and nonparametric, respectively. Because the outcome
model is nonparametric, we somehow need to restrict a class of semiparametric esti-
mator to rule out super efficient estimators such as Hodges’s estimator and Stein’s
estimator to discuss the efficiency bound, which is the lower bound of the asymptotic
variance (Bickel et al., |[1998; Tsiatis, [2006). In this section, we consider a case in which
there is no missing data to illustrate the semiparametric estimation for the time being.

We introduce Hodges’s super efficient estimator as an illustration of such estimators.

Example 1.3.1. (Hodges’s super efficient estimator)
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Let Xi,...,X, be n iid. copies of N(ug,1), where pp € R is a constant. Here
X, =n"13" | X, is the maximum likelihood estimator (MLE) of i, which has the

following asymptotic normality:
V(X — o) 22 N (0, 1),

where the above convergence stands for the weak convergence under the distribution
of = pp. Let us consider the estimator defined by Hodges in 1951 (see Tsiatisl 2006,
for more details):

X, if |X,|>n"1/4

0 if [Kn| <n V4

We can easily show that when pg # 0, /n(fi, — po) Lino), N(0,1), where L0, Jenotes

convergence in law under the distribution of f(x;px). When pug = 0, it holds that
Vn(fin, — 0) 2O, (0,0). Therefore, it seems that this estimator is more efficient than
MLE, and that is why this estimator is called super-efficient estimator. However, this
nice property is gained at the expense of poor estimation in a neighborhood of u = 0.
In fact, when the distribution is assessed at g = p, = n~/3, MLE has asymptotic
normality:

\/E(Xn — Hn) M N(0,1).

However, the super-efficient estimator does not, that is, \/n(ji, — p,) — oco. We need

to rule out such estimators to discuss the efficiency. O

We introduce regularity to exclude super efficient estimators. Let &1 = (87,n")T,
where 87%! is our interest, n*! is a finite dimensional nuisance parameter (this “finite”

restriction is relaxed to “infinite” later), and p = ¢ + a.

Definition 1.3.1. (Regularity)

Assume that data z; (i = 1,...,n) are generated from &, = (6,),n,]

not)

satisfying
Vn(&, — &€*) converges to a constant. Then, an estimator of 6, is called regular if
the estimator \/ﬁ(én — 0,,) converges to a limit distribution which does not depend on
£*. O

Strictly speaking, this is the definition of local regularity. However in the litera-
ture of semiparametric estimation, it is often called just regular (see [Ibragimov and
Has minskii, 1981} for the original regularity definition). Note that this regularity
clearly rules out the Hodges’s super-efficient estimator. In addition to the regularity,

we need another condition, that is, asymptotic linearity.
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Definition 1.3.2. (Asymptotic linearity)
For an estimator 6,,, if there exists a function ¢ such that E{p(Z)} =0,

\/>(0 —00 \FZQD —|—0p )

and E{p(Z)p(Z)"} is finite and nonsingular, the estimator is called asymptotic linear.

Here the function ¢(+) is called an influence function. O

It can be shown that an asymptotic linear estimator has the unique influence func-
tion. Furthermore, the asymptotic variance of the estimator can be computed by
E{p(Z)p(Z)"}. Thus it is enough to focus on finding the best influence function,
which attains the lower bound of the estimator, and we can find such an influence
function in the class of regular and asymptotic linear (RAL) estimators. However, as a
consequence of [Héajek (1970)’s representation theorem, it can be shown that the most
efficient regular estimator is asymptotically linear(Tsiatis, 2006)). For the above rea-
sons, we construct semiparametric estimators among the class of RAL estimators in
this paper. Our first goal is to find the most efficient influence function ¢*(-).

Consider a probability space (£2,A,P), where P = {P; : £ € £}, Z C RP is the
parameter space of §, and P is the probability measure characterized by the parameter
€=(0",n")T. Suppose that p(z;€) be the density function of the distribution of Z
and define a Hilbert space H by

H={h:Q—R| B{h()} =0, ||| < cc}

with the inner product (hq, ho) = E(hIhQ) for all hy, ho € H, where this expectation

is taken with respect to the true distribution. Denote the score vector of 8 and 1 by

S@(Z) = 80 Y an )

S,(Z) :=
and the nuisance tangent space by

A = {B7"S,(Z) | for all ¢ x a matrices B}.

Then, the efficient influence function is given as follows.

Lemma 1.3.1. (Corollary 2 of Tsiatis (2006))



1.3 Basic theory of semiparametric inference

When the parameter € can be partitioned as (87,n7) ", the efficient influence func-

tion for @ can be written as

@et(Z,&0) = {E(SerSe) " HSet (Z, £0)},

where
Se(Z,&0) = So(Z, &) —11(Se(Z, &) | A)

and II(- | A) is the projection operator onto the space A.

Hence the lower bound of the asymptotic variance of 0 is given by

{E(Soeff(zv £0)‘Peff(Z7 €O)T)}_1 = [E{Seff(zv £0)Seff(za €O)T}]_1' (1'1)

This result can be extended to the models with an infinite dimensional nuisance pa-
rameter 1. To discuss the efficiency, we at first define the semiparametric efficiency
bound. Let P be a class of models of p(z; &) and Pg o be a parametric submodel of P
with a finite dimensional nuisance parameter a. Then, the semiparametric efficiency
bound is defined as
[ geff \T1—
sup [B{SG.a(S6a) 17 (1.2)
{all parametric submodels}

where Sgﬂa is the efficient score for a parametric submodel with & = (6, ). The
semiparametric lower bound (|1.2]) is larger than or equal to any parametric submodel.

Next, we shall define the infinite dimensional version of the nuisance tangent space.

Definition 1.3.3. (Nuisance tangent space with infinite dimensional parameter n)

Let p(z; 09! a®!) and the nuisance tangent space
Aq = {B9**S%*Y(Z: 0y, ag) | for all ¢ x a matrices B},

where (6y, ap) is the true value of the parameter vector, and Sy is the score vector
for the nuisance parameter a for the parametric submodel. Then the nuisance tangent
space A for a semiparametric model with the infinite dimensional nuisance parameter
1 is defined as the mean-square closure of the set of the nuisance tangent spaces for
all parametric submodels. Specifically, let the space A C 3, where A = [h9*1(Z) € H
such that ||h|| < co and there exists a sequence {B;S;(Z)};en such that

|h(Z) — BjSaj(Z)|* -0 as j— oo

for a sequence of parametric submodels indexed by j].
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Definition 1.3.4. (Semiparametric efficient score with infinite dimensional parameter

n)
The semiparametric efficient score for 6 is defined as

Seff(Z;007n0) = S@(Z;00>770) - H{Se(ZﬂO,UO) ‘ A}

Then, it can be shown that the semiparametric efficiency bound defined in (1.2)) is

given as

[E{Seff(Z) eﬁvnO)Seff(Zae(bnO)T}]il? (13)
which is the same as the finite dimensional nuisance parameter case defined in ([1.1)).

Lemma 1.3.2. (Theorem 4.1 of Tsiatis| (2006]))
The lower bound ((1.2)) is given as (|1.3]).

As a result of the lemma, once we could find the nuisance tangent space A, an
estimator which attains the semiparametric efficiency bound could be obtained. We
will find the nuisance tangent space for the semiparametric models with nonignorable

nonresponse data, and propose semiparametric adaptive estimators later.



Chapter 2

Semiparametric estimation

2.1 Introduction

Handling missing data often requires some assumptions about the response mechanism.
If an outcome variable does not affect the probability of the response, the response
mechanism is called missing at random (MAR) (Rubin, [1976)). If, on the other hand,
the response probability of the outcome variable depends on that variable directly,
the response mechanism is called not missing at random (NMAR) (Little and Rubin,
2002). Under NMAR, the response probability cannot be verified using the observed
study variables only, therefore, additional assumptions about the study variable are
often required.

Greenlees et al.| (1982) and Diggle and Kenward| (1994) proposed a fully parametric
approach to analyze nonignorable nonresponse data; their method requires two para-
metric models: (i) an outcome model, [y | x|, and (ii) a response model [r | x,y]. In
practice, it is difficult to verify models (i) and (ii) because some y are not observed. For
the fully parametric approach, model identification and model misspecification can be a
problem, and sensitivity analysis becomes necessary (Scharfstein et al.,|[1999; Rotnitzky
et al.l [2001; [Verbeke et al., |2001; Tsiatis, 2006]). |Sverchkov| (2008) and [Riddles et al.
(2016) proposed a fully parametric approach that uses different model specifications
based on (i) [y | ®,r = 1], and (ii) [r | «,y]. Their approach is attractive because one
can verify a model for [y | &, = 1] from the observed responses; however, because it is
a fully parametric approach, it is still subject to model misspecification.

Recently, some semiparametric approaches have been proposed for nonignorable
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nonresponses. Ma et al.| (2003) studied identification and parameter estimation for

binary study variables. Tang et al.| (2003)) also considered model identification using

an instrumental variable and proposed a maximum pseudo likelihood estimator that

does not require specification of the response mechanism. D’Haultfoeuille| (2010) also

used the same instrumental variable assumption and considered a regression analysis

using the nonparametric propensity score model. Zhao and Shao| (2015]) extended the

method of [Tang et al.| (2003) and relaxed the condition on the instrumental variable,

which is called nonresponse instrumental variable (Wang et al., 2014). |Fitzmaurice

et al. (2005) and |Skrondal and Rabe-Hesketh| (2014)) proposed protective estimators

that do not require a specification of the response mechanism, but the application of
this approach is limited to situations in which y is binary. In the meantime,
(2011) proposed a semiparametric method for estimating E(Y’) using a semipara-

metric response model, but a validation sample is required in order to estimate the

parameters in the response mechanism. Tang et al| (2014]) used the method of empir-

ical likelihood to extend the method of [Kim and Yu| (2011)) to estimate more general

parameters. In Zhao et al.| (2017)), the method of Qin et al.| (2002]) was used to construct
1/2

-consistent estimator without a validation sample. |Chang and Kott| (2008) and

Kott and Chang (2010) and |Wang et al| (2014]) considered a generalized method of

an

moments (GMM) estimator that uses the response model assumption only, but their

method is generally lacking in efficiency. Recently, |Shao and Wang| (2016) proposed

a semiparametric inverse propensity weighting method using the nonresponse instru-

mental variable assumption of Wang et al.| (2014). However, the above papers do not

address efficiency of their semiparametric estimation methods. Developing an optimal
semiparametric estimator is an important research gap in missing data analysis.

In this section, we use a parametric model for [r | x,y] and construct optimal
estimators for parameters both related to the response mechanisms and for the pa-
rameter of interest such as population mean. Efficiency under this setup has already
been discussed by [Rotnitzky and Robins (1997) and Robins et al| (1999). However,

their estimator requires many working models to achieve the semiparametric efficiency

bound. Misspecification of the working models may lead to loss of efficiency. Therefore,

we consider an alternative approach and propose two semiparametric estimators that

attain the semiparametric lower bound (Bickel et al. [1998) (1) with a working model

assumption or (2) without requiring working model assumptions. The first estimator is

10



2.2 Basic setup

an adaptive estimator similar in spirit to the generalized linear estimator proposed by
Liang and Zeger| (1986]) using a working model for [y | «,r = 1]. If the working model
is correct, the first estimator attains the lower bound. The second one is based on the
nonparametric regression model which does not require any additional assumptions,
but it still attains the lower bound. All technical details are given in Appendix
The results in this chapter are mainly owe to Morikawa and Kim (2017a) and

Morikawa, Kim, and Kano (2018).

2.2 Basic setup

Let z; = (z;,%)" (i = 1,...,n) be independently and identically distributed realiza-
tions from unknown distribution F'(z). Suppose that the response model is 7(z; ¢p) with
a g-dimensional parameter ¢ € ®. Let § € © be an one-dimensional parameter satis-
fying E{U(Z;0)} = 0, where U is a known function of z, which does not prescribe the
distribution of [, y]. For example, if we are interested in E(Y'), then U(z;0) = y—6. In
this paper, we consider semiparametric estimation of (¢, #) from partial observations.
In particular, we seek the most efficient estimator among the RAL estimators defined
in Chapter [I] and propose two adaptive estimators.

Recently, |Riddles et al.|(2016) proposed an efficient estimator that uses a parametric
model for [y | &, = 1]. Using the mean score theorem (Louis, [1982), the maximum
likelihood estimator can be obtained by solving

n

> [risi(zi;¢) + (1= 1) Eo{so(Z; ¢) | z:}] =0, (2.1)

i=1
where s,.(z; @) is the score function of ¢, that is,

{r—n(z;¢)}7(2; 9)
m(z;9){1 —7(z;9)}’

7t(z; ) = On(z;¢)/0¢p, and Ey(- | x) is the conditional expectation conditional on x

sr(z; ) =

(2.2)

and r = 0. To compute Ey(- | ), under Bayes’ formula, Riddles et al. (2016)) proposed

using

E(O(Z: $)s0(Z; ) | @i} ] _
EO(Z;¢) | 2.}

Z [Tz‘sl(zi; @)+ (1—r) 0, (2.3)

11



2. SEMIPARAMETRIC ESTIMATION

where O(z;¢) = {1 — 7(z;¢)}/7(2; @), and E1(- | ®) is the conditional expectation
on y given « and r = 1. The conditional expectation is computed by assuming a
parametric model fi(y | ;) = f(y | ,r = 1;4). This may increase the efficiency,
however, because misspecification of the f; model would cause the solution (],’3 to be

inconsistent. Then, the interesting parameter can be estimated as a solution to

i riU(z:6) o _y. (2.4)
— m(zi; )
We consider an extension of this method to seimparametric estimation in the next
section.

Next, two existing semiparametric estimators, which do not require any outcome
model, are introduced: (i) empirical likelihood (EL) approach; (ii) moment-base ap-
proach. Without loss of generality, assume that the first m elements are observed, and
the remaining (n —m) elements are missing in y;, i.e., 7, = 1fori=1,...,mand r; =0
for i = m+1,...n. Because we cannot observe y when r = 0, the likelihood can be
written as

m

[[r@zare) I] [11-ne:)dre) (25)

=1 i=m+1

Qin et al.[(2002) discretized the distribution F' by w; (i = 1,...,m). The discretized dis-

tribution w; can be estimated by maximizing [[;", w; under the following constraints:
m m
wi >0, Y wi=1, Y wi{n(¢;z)-W}=0,
i=1 i=1
W =Pr(R=1) = [m(z;¢0)dF(z), and
> wi{h(x;) — hn} =0, (2.6)
i=1

where h : R? — RPt (p; > g—1) is an arbitrary function of ¢, and h,, = n=t 31| h(x;).
The h(x) function helps to improve the efficiency. By introducing Lagrange multipliers,

the solution to the above optimization problem is

by — 1
Wi = m[l + X {h(x;) — hn} + Xo{m(@; z;) — W} (2.7)

12
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By profiling out the unknown F with estimated w; (i = 1,...,m) in (2.5) and taking
logarithm, we obtain the profile pseudo-loglikelihood:

(e, W, A1)
=) logm(¢szi) — Y log[l + Al {h(zi) — hy} + dofm(gs20) =W} (2.8)
= —

+ (n—m)log(1 — W),
where Ag = (n/m—1)/(1—W). Qin et al. (2002) proposed a semiparametric estimator
for ¢ by maximizing the profile pseudo-loglikelihood. In the optimization procedure, it
requires some computational techniques (see|Chen et al., 2002)), because the maximizer
of must satisfy @w; > 0, which are defined in .
On the other hand, under the same assumptions, |Chang and Kott| (2008) and |Kott
and Chang| (2010) proposed another semiparametric estimator by solving the following

estimating equation

n

; {W(;z) - 1} g(xi) =0, (2.9)

where g : R — RY is an arbitrary function of . This equation is called “calibration”
in the literature of survey sampling. A typical choice for g when d = 1 is g(x) =
(Lzx,... ,xq_l)T. It is hard to decide the variables in the calibration condition when
d > 1. Also, when the dimension of g(x) is larger than g, say p2, the generalized method
of moments (GMM) method (Hansen, |1982) can be used to estimate ¢. Because

var [{ 5 <1} atx0)| = E(0(2)9(3)),

the GMM estimator can be constructed by

2 A~
_argman{ ¢7Zz 1} g(x;) "V lg(x), (2.10)

where B®2 = BB for any matrix B, V = n~' Y7 O(z;)g(x:)®?, and O(z) =
{1—=m(z)}/n(z). The optimization of both (2.9) and (2.10|) are much simpler than that

of Qin et al.| (2002) since there is no constraint in the optimization.

The two semiparametric estimation methods use the same assumptions but seem
to provide different estimation results. A natural question is “which one is better?”.
Or, “are there any real difference between the two methods?”. We will answer to these

questions in §2.5|
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2. SEMIPARAMETRIC ESTIMATION

2.3 Semiparametric maximum likelihood approach

The proposed method is different from Riddles et al.| (2016)) in two ways. First, instead
of assuming a parametric model for fi(y | ), we use a nonparametric regression ap-
proach to compute the conditional expectation in . Second, parameter estimation
of 0 is not based on the propensity score method in . Instead, we consider an
approach using expected estimating equations (Wang and Pepe, 2000), which will lead
to more efficient parameter estimation.

To compute the conditional expectation in ([2.1) nonparametrically, note that

_ Jso(@sz, Y)O(ds 2, 9) f1(y | )dy
JO(p;,y) f1(y | =)dy
— %((c(f;)) (2.11)

Using kernel smoothing (e.g.[Wasserman), 2005), we can estimate Cy(-)/D(-) by Cs(-)/D(-),

Eo{so(¢;z,Y) | z}

where

Cs(¢sa) := (nh) ™Y " rjKp(; — 2)O(¢s 2, y5)s0(¢s a, y5),

J=1

n
D(¢; ) := (nh") ™Y " rjKp(x; — @)0(¢s @, y;),
j=1
d is the dimension of 2, K : R? — R is a kernel function, Kj,(x) = K(x/h), and h is an
appropriate bandwidth which satisfies certain regularity conditions. The mean score
equation (2.1]) is now approximated by
n .
: - Cs(¢; i)
S(¢):=n" risi (¢ wi, yi) + (1 — i) ———=| = 0. (2.12)
; D(¢; ;)
Thus, ¢ can be estimated without specifying any parametric distributional assumptions
on the outcome variable Y. The solution (ﬁ from ([2.12]) can be called the semiparametric
maximum likelihood estimator of ¢ because we use a parametric model for [r | x,y],
but use a nonparametric model for fi(y | ).

Given the solution qg from (|2.12)), parameter € can be estimated as the solution to

n

n ! z; [TiU(Q; Zi) + (1 - TZ')EO{U(H; wi,Y) ’ T;, J)} = 0. (2'13)
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2.3 Semiparametric maximum likelihood approach

The above estimating equation, called the expected estimating equation, leads to an
efficient estimator of §. To compute the conditional expectation in (2.13]), we use the
kernel smoothing method again; the left side of (2.13]) can be approximated by

o CINC | _Cu(0, i)
U6, ) :=n ; rU(6; ) + (1 rz)iﬁ(é;mi) , (2.14)

where

n
Cu (0, ;) := (nh) ™ " rjKy(w; — )O(¢s 2, y;)U (65 , ;).
j=1

Remark 2.3.1. Choosing an appropriate bandwidth is a challenging problem in non-
parametric estimation. In this paper, we consider the following cross-validation method
for bandwidth selection. This method is only suitable for choosing a bandwidth for
, but the bandwidth selection for can be conducted similarly.

Step 1. For each bandwidth h € H, compute qgh, where H is a class of candidates
for the bandwidth.

Step 2. For a bandwidth candidate h € H, calculate

2

Ky =3 |n Cs(Pni@i)/ fr(@i) — s0(dn; 2:)O(dn; 2i) | (2.15)
i=1 D(¢h7ml>/f1(mz) - O(¢h§zi)
where || - || is the Euclidean norm and fi(x) = {n(h')4}~* Yo iy (x; — ), where

R’ is a bandwidth of nonparametric estimator for fi(x) = f(x | » = 1) chosen by such
as the Normal reference rule and a cross-validation method (Wasserman, [2005]).
Step 3. Choose an optimal bandwidth A* which minimizes the above K (h).

2.3.1 Asymptotic Properties

Here, asymptotic properties of the proposed estimator are presented. In Theorem
the consistency is established. In Theorem the asymptotic normality is
established. Regularity conditions are presented in Appendix [A]

Theorem 2.3.1. Under conditions (C1.1) and (C1.6)—(C1.12) in Appendix our

estimators qg and 6 converge in probability to ¢g and 6y, respectively, as n — oo.

Theorem 2.3.2. Under conditions (C1.1)—(C1.12) in Appendix[A] the following results
hold:

[1] \/ﬁ(gi;—¢o>i>N(0,Z¢) as n — oo,
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2. SEMIPARAMETRIC ESTIMATION

where
S = T E{0(60)50(¢0)2} (7))
B®? = BBT,
Jn = —E{50(¢0)7 " (¢o)/7(cb0)},
So(¢;x) = Eo{so(¢;z,Y) |z},
#(p) = On(9)/0¢
and
2] ﬂ(é—@o)gN(O,Eg) as n — oo,
where

N9 = I (var{U(60)} + E[O(0){U(60) — U(0) + K£50(eho) }**]) (jz_zl)T ;
U@ = Eo{U(6;z,Y) |z},

ko= Indy,
Jor = E[{U(b) — U(60)}7 " (¢0)/m(b0)],
Joo = —E{0U(6y)/00}.

Remark 2.3.2. As shown in (B.12) in Appendix [B] the asymptotic variance ¥4 can
be rewritten as

_ _ T

S = I var {r {s1(¢o; z) + G(¢o; 2)} + (1 — r)50(d0; )} (I7])
where G(z) = O(¢; z) {so(¢; 2) — 5o(¢p; ) }. If G = 0, the asymptotic variance of ¢
becomes
_ _ T
g = Jy1 var {rs1(¢o; z) + (1 — )80(¢o; &)} (I1)

which is equivalent to the asymptotic variance when the true fi(y | «) is known in
advance. Thus, G(-) can be viewed as the additional price we pay due to estimating

f1(y | ©) using nonparametric regression.

For variance estimation, we can use the linearization method of [Kim and Yu/(2011).

- Al
As shown in (B.12)) in Appendix ¥y can be written as var[Jy, {U (¢, 00) —I21971S (¢0)}]-
Therefore, if we could estimate J11, Jo1, and J99, a consistent estimator of the asymptotic

variance Y would be obtained by

n n 2
SRR ( Zm)
=1 =1
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2.4 Semiparametric adaptive estimators

where 7; = j;;{ﬁﬁ(qg, é) — jgljﬁlSi(é)} and ﬁll, ﬁ21, and Jy9 are consistent estimators
of J11, Jo1, Jo2,
N r; -
Si<¢) = {1 - 7T(¢Zz)} 30<¢§ wz‘);
b (]

and

o -[521-zg}oo].

For example, J11; can be estimated by
n « /7 T
; - <o T (P zi)
311 =N 1 T'So(d);(ll‘)%. (2.16)
; T (i)
Instead of the above linearization method, a bootstrap method or the empirical likeli-

hood jackknife method of Zhong and Chen (2014) can be also used.

2.4 Semiparametric adaptive estimators

2.4.1 Efficiency bound

In this section, we provide an optimal estimator for the true parameter (¢ ,6)"
that is the most efficient among all RAL estimators. If the optimal influence function
Pett 18 found, the semiparametric lower bound is given as E (goeggo;rﬁ). We begin by
presenting the efficient influence function in Lemma Although 6 is a parameter
not prescribing the distribution of [x,y] as defined in this limitation is just for
simplicity and can be removed. For example, Rotnitzky and Robins (1997) derived the
semiparametric efficiency bound for regression parameters, which prescribe the first
moment of the distribution of [y | |. However, ideas used for adaptive estimators
expressed in §2.4.2] are still applicable for such parameters.

In the following discussion, we abbreviate the parameter value or random variable,

for example, 7(z; o) = m(2z) = 7(¢), unless this would lead to ambiguity.

Lemma 2.4.1. Let Seg = (S, 82)", where S; = S1(R,Gr(Z)) and Sy = S2(R, Gr(Z))

are defined as

S1(R. Gr(Z): ) = {1 - W(Z)} g*(X: d0), (2.17)
Su(R.GR(Z):6,6) =~ U(Zi6) + {1 - ﬂ(f@} U(Xigo. )}, (2.18)
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2. SEMIPARAMETRIC ESTIMATION

g*(x; ¢0) = E*{s50(Z; o) | z; o}, U*(x; ¢0,0) = E*{U(Z;0) | x; ¢o}, and

E{O(Z; ¢0)g(Z) | =}
E{O(Z; ¢o) | =}

E*{g(Z) | @; po} = (2.19)

with O(z;¢0) = {1 — 7(z;¢0)}/7(z;¢0). Then, the efficient influence function is
@ot = M1Seq, where M = E(S%) = E {08e(¢o,00)/0(¢".0)"}. Therefore, the
semiparametric efficiency bound is given by {E(SS%Q)}*I. In particular, the asymptotic
variance of 0 is V = var{Sa(¢o,0) — kS1(¢)}, where k = E{(E*(U | ®; o) —
U)e(¢o) " /7 (o)} E{g* (d0)7e(¢0) " /7 (o)} "

This Lemma implies that if we can compute E*(- | x), then estimating func-
tions (2.17) and (2.18)) will yield an optimal estimator. The optimal estimator will be

the solution to
> S i(9.0) = > _{8] (ri, Gr,(2:); ¢), Sa(ri, Gr, (2:): ,0)} T = 0. (2:20)
i=1 i=1

Because by the regularity conditions defined in Appendix [A] we assume M is nonsin-
gular; also note that multiplying a nonsingular matrix does not affect its asymptotic

distribution.

Remark 2.4.1. The estimating equation can be viewed as a special case of the
estimator of (Chang and Kott| (2008) and [Kott and Chang| (2010) defined in (2.9). One
might think that more information can be included with larger dimension of g because
the above two methods can handle models when ¢ > d + 1 by solving . However,
according to Lemma , there is no need to use more g functions and it is enough
to consider only g*(x, ¢p¢) (i-e., ¢ = d+ 1) as the calibration functions.

The equation based on Si(¢) in gives an optimal estimator for ¢, say qZ)
Then, by using ?, Sg(gza, ) in can provide an optimal estimator for 6. However,
the expectation E*(- | ) and the parameter ¢y are unknown and need to be estimated.
Also, to compute the conditional expectation, we may need to correctly specify the
distribution of [y | x|, which is subjective and unverifiable, as is stated in §1.2, Two
adaptive estimators are proposed to work around the problem and also attain the lower

bound derived in Lemma 2.4.1]
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2.4 Semiparametric adaptive estimators

2.4.2 Adaptive Estimators and their asymptotic properties

We now propose two adaptive estimators for (¢yg,6p): (i) with a parametric working
model for fi(y | «;7); (ii) with a nonparametric estimator for fi(y | «), where fi(y |
2) = f(y | @ =1),

To discuss the first method, let fi(y | ) be known up to the parameter v € I'; and
let 4 be the maximizer of Y ;" | r;log fi(y; | ;7). This can be easily implemented, and
its validity can be checked by using information criteria such as the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). By using the similar idea
toSverchkov (2008) and [Riddles et al. (2016), we can show that, for any function g(z),
E{r1(Z;¢0)0(Z; $0)9(Z) | =;~}

E{r=Y(Z;¢0)0(Z; ¢o) | w37}
where Ei(- | &) = E(- | @,r = 1). Thus, the expectation can be estimated by us-

E*{g(Z) | z; o, v} = (2.21)

ing the assumed model fi(y | x;%) and 7(z;¢p). However, ¢ is unknown, thus
we propose an estimating equation Y i | Seri(®,0,5) = 0, where Seqi(¢,0,5) =
{S] (ri, Gr,(21); ,7), Sa(ri, Gy, (2i); ¢,0,)} | with

510, G207 = {1 - 5 b @0 %)
. . (2.22)
5201, Gul2):10.9) = — LU (0) + {1 L v @i00.9)

How about fi(y | «) is misspecified? One would expect the solution to the estimating
equation with to be inconsistent as a result. However, the estimator that uses the
function on the right-hand side of is consistent even when the assumed model for
fi(y | ) is misspecified. Also, if the model is correctly specified, the estimator attains
the lower bound. This leads us to Theorem 2.4.1]

Theorem 2.4.1. Let (¢',0)" be the solution to S| Seri(,6,%4) = 0. Under
conditions (C2.1)—(C2.6) given in Appendix (¢7,0)T has consistency and asymptotic

normality with variance

E 0S8 71E S92\ Sy bt
{aw,e)} (Ser ™) {aw,e)} ’

even if fi(y | @;4) is misspecified, where v* is the limit of 4, and S = {S1(¢po,¥*) ", Sa2(¢po, 00, v*)}
is defined in (2.22). Also, the asymptotic variance of g is given as

V* = var{Ss(¢o, 00,7") — K*s1(d0.v")} /o2, (2.23)
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2. SEMIPARAMETRIC ESTIMATION

where

K" = Ki(K3) 7

K} = E[{U*(¢0,00,7") — U(0)}o (o) " /7(cbo)}],
K3 = E{g*(¢0,7*)7(d0) " /7(¢b0)},
o0 = E{U(600)/90).

In addition, if the model is correctly specified, the estimator attains the semiparametric

efficiency bound.

Remark 2.4.2. There are two properties better than the estimator of |Riddles et al.
(2016)). First, the parametric model f; is irrelevant to the consistency and asymptotic
normality of the estimator here. Therefore, we call f; a working model, as in [Liang
and Zeger| ((1986). Second, our proposed estimator can attain the semiparametric ef-
ficiency bound derived in Lemma However, though equation has a form
similar to that of the doubly robust estimator under MAR (Robins et al., 1994]), unfor-
tunately, our estimator does not have the doubly robustness property. This is because

the computation for E*(- | ) relies on the correct response mechanism.

Numerical computation is needed to calculate the conditional expectation in (2.21)).
The expectation-maximization (EM) algorithm considered in Riddles et al.| (2016) can
be used with a minor modification. we can directly apply their method, once the
weights w;; defined in (15) of Riddles et al.| (2016)) are changed to

o (@i, 453 @) O(@i, yj3 #) [1(y; | 2657) /Cy537)

U e (@, gk )0 (@, yks @) F1(uk | 267)/C (s )

where C(y;v) = > 212 rifi(y | zi;y). The weight w}; can be called fractional weights
in the context of fractional imputation (Kim, 2011). With these weights, E*{g(x;,Y") |
xi;, ¢} can be computed by Z}l:l w;;9(i, yj).-

We now discuss the second adaptive estimation method based on nonparametric
estimation for fi(y | ). Generally speaking, directly computing the expectation de-
fined in with nonparametrically estimated f;(y | ) would make the computation
difficult. To avoid this problem, we consider methods of calculating the expectation
directly. When x is discrete, such as when @ is a dichotomous variable, the expectation

can be computed by averaging the data conditioned by X = x and R = 1, e.g., for
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2.4 Semiparametric adaptive estimators

r=0,1,

Yier, T (@, Y5 9)O(x, y5; )9, y5)
> jer, i Hw, Y5 0)O(x, y5: @)

E{g(z,Y) | 20} = (2.24)

is a consistent estimator of (2.21), where I, = {j € {1,...,n} | X; = «}.
When « is continuous, the Nadaraya-Watson estimator can be employed. That is,

for any function g(z),

Sy Kn(® — xj)rjm (@, y5; #)O(x, y;; ¢)g(, yj)
dimy En(x — xj)rjm=1(z, y;; )O(x, yj; d)

E{g(2,Y) | z; ¢} = (2.25)

is consistent under the regularity conditions given in §S1 in the Supplementary Material.

Here,

d
r—w T — Wi
Kplx —w)=K = I | K|—F——
k=1
where K is a kernel function, and h is the bandwidth. We have the following result for

the adaptive estimators obtained with the Nadaraya-Watson estimation.

Theorem 2.4.2. Let (¢7,6) 7 be the solution to Yo Seiri(¢,60) = 0, where Seg (¢, 0)
is defined in (2.20) with the estimated conditional expectation (2.25)). Under Condi-
tions (C2.1), (C2.2), and (C2.7)—(C2.14) given in Appendix |[A] the estimator attains

the semiparametric efficiency bound.

The proposed estimator is attractive because it does not need any model assump-
tions on f1, but it would not work well when the dimension of @ is high, as is common
in any nonparametric estimation.

Estimating variance is also a difficult problem in semiparametric estimation. When

we consider a parametric working model fi(y | ),
V=01 {Sa(ri,Gr,(2:); 6.0,4) — £S1(ri, Gy, (2:); $, %)} /67 (2.26)
i=1

converges to V* in probability as defined in (2.23|), where 6y and K are consistent
estimators for oy and k* = k}(k3) !, respectively, for k% and k% as defined in Theorem

m To estimate k], we propose using the same method that we used to compute 6y,
ie., let UW(o, k1,7*) = k1 — (U*(v*) = U)7 (o) " /7 (o) be our new U-function and let
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2. SEMIPARAMETRIC ESTIMATION

the solution to E{U(¢o, k1,v*)} = 0 with respect to k1 be our target parameter; solve
the following equation:
n

S| U i ¢ ke A) + {1 - r} EMW(Z; . k1,4) | 24} | = 0.

= | 7(zi:9) (25 @)
This is the optimal estimator for (¢, k}) in terms of the asymptotic variance, because
U is a known function and Theoremis applicable. The best estimator for k3 can be
obtained in the same way. When we use the nonparametric method stated in Theorem

to estimate 6y, the variance can be also estimated by using the nonparametric
method ([2.24]), instead of assuming a parametric model fi(y | x;7) in (2.26).

2.5 Theoretical comparison among the semiparametric es-

timators

In this section, we show when ¢ = p; + 1 = po, if we choose specific g(x) and h(x)
functions, the two estimators are exactly the same. Recall that ¢,p;, and py are the
dimension of ¢, h(x), and g(x).

Theorem 2.5.1. When ¢ = p; + 1 = ps, both EL and GMM estimators are exactly
same if and only if g(x) = {1,h(x)} .

Consider that we now try to estimate ¢ by using a method of (Qin et al.| (2002])
with an h(x) function. Theorem implies that, when ¢ = p1 + 1, there is no reason
to use the procedure for EL, and just use the GMM estimating equation with
g(x) = {1,h(x) "}, which is much simpler in terms of computation.

Furthermore, we can see that the GMM estimator including g* () as the constraint

also attains the semiparametric efficiency bound.
Theorem 2.5.2. When ¢ < p; + 1 = po, the GMM estimator attains the semi-
parametric efficiency bound if g(x) defined in contains g*(x), ie., g(x) =
{k(x)",g*(x)"}", where k : R? — R” is an arbitrary function of x, and x € R!
is a positive integer.

This estimator enjoys two properties, (i) robustness for misspecification of the re-
sponse model; (ii) semiparametric efficiency. The robustness is achieved because of
the constraints, which is proposed by Qin and Zhang| (2007) and Imai and Ratkovic
(2014) for observational studies in the case of MAR. Our study can be considered as

an extension of their works to NMAR.
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Chapter 3

Identification for models with

repeated measurement data

3.1 Introduction

In clinical studies, researchers generally hope to obtain complete data but this does
not always happen. In fact, subjects are typically told that they can drop out anytime
they want, in accordance with human participant protection protocols. There are thus
many dropouts in some experiments. From a statistical perspective, missing values
complicate the data analysis, because ignoring the response mechanism can lead to
inappropriate inference.

For example, Machin et al.| (1988) report results of a comparative trial of two dosages
of depot medroxyprogesterone acetate (DMPA, 100 mg and 150 mg) where over 40%
of subjects are missing at the endpoint. In the DMPA trial test, 1151 female subjects
were divided into two dosages randomly and took DMPA in every quarter, over one
year. They reported the results of DMPA as binary data: if a subject experienced
amenorrhea, i.e., absence of a menstrual period in a woman of reproductive age, it
was coded as 1; otherwise, it was coded 0. Whether a subject experienced amenorrhea
or not was based on her menstrual diary. Each subject thus generated a sequence

according to whether or not she experienced amenorrhea in the successive reference

Wy ”

periods. The number of women with each sequence is shown in Table where “x
means missingness. For example, “0 1 x x” means amenorrhea is absent in first period,

but present the next period, and the data were obtained for the third and fourth periods.
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3. IDENTIFICATION FOR MODELS WITH REPEATED
MEASUREMENT DATA

These data have been analyzed by several authors using various approaches; see, e.g.,
Birminghama et al.| (2003)); [Matsuyamal (2004)); |Wilkins and Fitzmaurice (2006). We
will analyze the same data with a new approach.

In the analysis of repeated measure data, serial correlations among response vari-
ables in Y; = (Yi1,, ..., Y;r) may not be ignored and any statistical model for Y; has to
take the correlations into account. Serial correlation is typically incorporated into the
model either via a conditional or a marginal approach. Conditional models describe
the serial correlation by modeling Y;, which is the response at time ¢, given not only
covariates X but also Y7,,...,Y;_1, which are responses recorded earlier than time t.
The approach is intuitive and simple, and the serial correlations are obtained easily
from the conditional model (Molenberghs and Verbeke, [2005)).

While the likelihoods of conditional models are often simple, only the direct effects of
covariates on the responses are easily obtained since response variables are conditioned
on the past data. Total effects require complicated calculations. Marginal models
and hybrid models easily yield total effects of covariates to the response variables,
which are often most interesting. However, the likelihoods of marginal models and
hybrid models can be unwieldy. In addition, the parameter space may be restricted by
equality constraints. For example, in [Molenberghs et al. (1997), equality constraints
are made on the coefficients of the response mechanism over time. This requires that
the probability of missingness be invariant throughout the experiment, which is an
unnatural assumption since, in many cases, subjects who stay to the end are likely to
influence the response variables more than those who drop out early.

In contrast, there exist several models for analyzing categorical data with non-
ignorable missingness. For example, Fay! (1986), [Baker and Laird| (1988)), and Park and
Brown, (1994)) used log-linear models. Marginal models are developed to describe the se-
rial correlations by modeling various moments of Y given covariates X, e.g., E(Y | X),
E(Y1Y2 | X) by adopting a fully parametric approach or by modeling a limited number
of lower-order moments only, versus modeling conditionally on the responses at previ-
ous times (Fitzmaurice and Laird, |1993; Molenberghs and Lesaffre, 1994; Molenberghs
et al., [1997; Molenberghs and Verbeke, [2005). Furthermore, more elaborate models
have recently been proposed, e.g., hybrid models, which retain advantageous features
of the selection and pattern-mixture model approaches simultaneously (Wilkins and

Fitzmaurice, 2006; [Yuan and Little], 2009).
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3.2 Fully parametric models

Nevertheless, model unidentifiability remains an essential issue (Fitzmaurice et al.,
1995; Matsuyamal, 2004). If a model is not identifiable, then any statistical infer-
ence using the model is distorted and asymptotic properties such as consistency and
asymptotic normality may fail. Sufficient conditions have been studied for nonignor-
able nonresponse when ¢t = 1. For example, Miao et al. (2016) explored identifiable
parameters when an outcome variable is continuous such as Gaussian, Student, or a
normal mixture. Wang et al.| (2014) also found that nonresponse instrumental variables
can make a semiparametric model identifiable when the response model is parametric
and the outcome model is unspecified.

In this chapter, we mainly focus on the identification problem for models with
discrete response variables. Main results with a response and an outcome models, both
are parametric, are presented in §3.2)and §3.4] In §3.4] the results in are extended
for semiparametric models where either of the mechanism or the outcome model is

unspecified. Some technical developments are relegated to Appendix [B]

3.2 Fully parametric models

Assume that Y is binary, which is perhaps the most challenging case for identifiability
given the poor level of information in Y. We further assume throughout that the
missing pattern type is drop-out.

Let R = (Ri, ..., Rr) be a vector of indicator variables R; taking value 1 (0) if
Y; is observed (missing). First, we consider the identification problem when both the
response and outcome models are parametric. We then extend our study to the case
where one of them is nonparametric.

Suppose that (R, Y) has distribution g and, for each t € {1,...,T}. Write
R = r® when the value 1 occurs exactly ¢ times in this vector of indicators. De-
note the observed and missing parts of Y by Y) and Y (=) respectively. Note that
Y = (YO, y9)T always holds. We also assume Pr(R; = 1) = 1. Note that
(Ya,,...,Yr) is subject to missingness and that there are no covariates. We will con-
sider the case with covariates later.

To model the relation between Y and the missing indicator R, we can introduce a

limited number of parameters because of the poor information in Y. For example, in
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3. IDENTIFICATION FOR MODELS WITH REPEATED
MEASUREMENT DATA

Table 3.1: Results of DMPA Trial

. Amenorrhea . Amenorrhea
Time sequence DMPA (mg) Time sequence DMPA (mg)
100 150

1 Ox x x 76 68 4 0000 142 119
1x x x 23 31 0001 49 36
Total 99 99 0010 14 26
2 0 0xx 43 39 0011 41 44
0 1xx 14 27 0100 7 4
1 0xx 3 6 0101 8 12
11xx 8 15 0110 4 7
Total 68 87 0111 32 48
3 000x 20 11 1000 6 3
00 1x 13 10 1001 7 6
010x 1 0 1010 0 2
011x ) 6 1011 10 12

100x 2 1 1100 4
101x 2 1 1101 4 3
110x 0 1 1110 3 2
111x ) 6 1111 30 28
Total 48 36 Total 361 353

Table the total number of cells is 2 +4 + 8 + 16 = 30; thus, we can use at most 29

parameters. If we let T" be the endpoint of the experiment, then we can use at most

T
Y 2t —1=2T"-3 (3.1)
t=1

parameters. Because this condition is necessary but not sufficient, there could exist

many unidentifiable models having at most (3.1)) parameters.

3.2.1 Logistic AR(1) model and its identification

Suppose that a model is such that Pr(y; = 1 | v;—1) = Pr(y, = 1 | v! ), where, for
eacht € {1,...,T},

o = J Wpre ) i t—p =1
' (Y15 ut) otherwise,
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3.2 Fully parametric models

and v; = (Y1,...,. )" = vf‘l. In this so-called AR(p) model, it is assumed that Y;
depends on its past own values from the last p periods or less. Also let the response

model be

logit Pr(Re =1 | Ri—1 =1, Yt—1,Yt; Pt.05 Pra—1, Ott) = o+ Gre—1yi—1 + deeye  (3.2)

and the marginal distribution of Y be expressed in the form

Pr(Y1 =1;61) = f1, logitPr(ye = 1| yi—1; 50, Bti—1) = Bro+ Bee—1ye—1,  (3.3)

where ;o and ¢y are each an intercept in the model, while 3;;_1, ¢¢—1, and ¢, are
coefficients in the model. We call this model the Logistic AR(1) model. Note that when
¢ri—1 = ¢y = 0 for t € {2,...,T}, the response mechanism is missing completely at
random (MCAR); when ¢y, = 0 for t € {2,,...,T} and there exists ¢ such that ¢, ;1 #
0, the mechanism is missing at random (MAR); when there exists ¢t € {2,...,T} such
that ¢4 # 0, it is not missing at random (NMAR). In the Logistic AR(1) model, there
are one parameter 3; and five parameters (& = (B0, Bt.t—1, Pr,0, Ott—1, Prt) = (Be, Dr))

at each time ¢t € {2,...,T}. Thus, the total number of parameters is
1+5(T —1) =57 — 4. (3.4)

The relation between and is 211 -3 < 5T —4if T =2 and 2771 -3 > 5T —4
when T' > 3. Therefore, if T = 2, then the model is not identified, and if T > 3, then
the model meets the necessary condition. As we will see in a later section, however,
identifiability does not hold for every T'. To see this, we must first define identifiability

precisely. In the following discussion, we use “®” as the direct product, e.g., {0,1}%2? =

{0,1} ® {0,1} = {{0,0},{0,1},{1,0},{1,1}}.

3.2.2 Theoretical results

Let Z be a parameter space, £ € = be a true value of the model, and F¢+ be a
probability measure of a probability function of complete data (R, Y') prescribed by a
true parameter £*, and denote a probability function of observed data (R, Y ) derived
from g by g, for each ¢t € {1,...,T}, which is represented as

(t) (t) . 5) _ Zy(—t)e{o’l}@)(T—t) g(r(t)7 yqj(t)7 y(_t) ; £) If te {17 R T — 1}7
’ g(r™), yi; €) ift="T.
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Then, a parametric model g is said to be identifiable if

Viep..my gr, y®; &) =g, yO; ) as. P = €£=¢.  (35)

Since r® and y(t) are binary random vectors, the condition in (3.5) is equivalent to

Voo  ger® y"; &) =gi(r®, y; €°) or g(r® y; g =0 = £=¢"
Here the likelihood involving R will be called the full information maximum likeli-
hood (FIML) and written as L,(§), where n is the sample size. Then, the FIML can
be written as

T
> Lp—rena(r®. y s €).

1t=1

n
1=

Let L(&) be a function which is the limit of the log-likelihood n~! In{L,,(¢£)} as n — co.

Such a function exists by the Strong Law of Large Numbers, and we have

nh_)rgo—ln{L }—nlgﬂonzln{zlm—m}gt ()’yl(t);g)}
= Es* In{g:(r®), y; €)}] (= L(€)) as. Per

= Z Z ln{gt( , y(t) 5)}9( , y; &) as. Pe-,

t=1ye{0,1}®7

where E¢- represents the expectation under the probability measure Pe+. The following
important relationship is proved in the Appendix:

Ves0 sup L(§) < L(&"). (3.6)

€=
It ensures the consistency of the MLE under two additional assumptions, namely com-
pactness of = and continuity of L(§), where E. = {£& € = : |€ — £€*| > ¢}. For these
reasons, we focus on whether (3.5) holds or not in the following discussion.
We assume an AR(p) model for the distribution of Y. By transforming g;(r(®), y®); &)

appropriately, we can obtain the next result.

Lemma 3.2.1. For each t € {1,...,T}, the joint probability function of (R, Y'*)) can

be expressed in the form

ylv El Ts US7 £s 1-— Tt41 ’Ut—i—lv Et+1) ift<T—1,
g (r®, 4y €)= H y%:l

(y1, El)Hs 271-5(”57 és) ift=T
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3.2 Fully parametric models

where & = (B, ¢ )T, €= (&1 ",....60) T, vy =],

Pr(Y1 =y1; B1) ift =1,

(v &) = i
Hors &) { Pr(Ry=1|Ri1=1wv; @) x i (Vi =wi[vi1; Be) ifte{2,....T}

and f; is the probability function of (Y; | V;—1). In particular, for the AR(p) model,

one gets

t
m(ys &) [[ sl €)1 =3 w1 (P15 &ig1) ift<T -1,
gi(y®, ) €) = s:Hz y; !

m(y; €1) [Ty ms(0f; &) ift="T.

Note that this lemma holds even if the response variable is continuous, in which
case the probability function Pr(Y; = y; | v4—1;3¢) in the definition of m¢(vs; &) is just
replaced by the density function fi(y; | vi—1;6:).

Using this result, the likelihood L,,(&) is represented by functions of 7y, ..., mp. The

next theorem follows from Lemma 1

Theorem 3.2.1. The slightly improved identification condition in (3.5 is equivalent

to
Vt 7I't(’0t; ft) = 7Tt(’Ut; 52() a.s. Pg* = St = 5: (37)

In particular, for the AR(p) model, it becomes
Vt 7Tt(’vf; £t) = Ft(vf; 5:) a.s. Pg* = £t = 5: (38)

The slightly improved condition from the original one is a simultaneous equation
for &, so this is still cumbersome. In contrast, for each ¢, the condition in is a
simple equation in &; and the condition can be examined for each t individually, so it
is relatively easy to check. Therefore, all we have to do is to check Condition for
each t € {2,...,T}. It can be also considered that the transition models are divided
into T' — 1 nonresponse problems. Then 7 is just a joint probability for a nonresponse
problem in which subjects are restricted to only those who are observed until at least
the tth period.

When p =1, t = 2, the joint probability can be written as

ma(ve; &2) =Pr(Ry =1 | R1 =1, y1,vy2; ¢2) Pr(Ya = w2 [ y1; B2).
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This is a nonresponse problem at ¢ = 2. The condition is equivalent to stating that

(B2, P2) = (B3, ¢5) when

Y, yo)e0)e2 Pr(Re=1]Ri=1,y1, y2; $2) Pr(Ya =12 | y1; B2)
=Pr(Ro=1|Ri1=1,y1, y2; ¢3) Pr(Yo =12 | y1; B5). (3.9)

There are four constraints in and if all of them were linear equations, the number
of parameters would have to be at most 4. Since we have five parameters in the Logistic
AR(1) model, this would imply that the model is not identified. In binary data analysis,
the constraints are usually non-linear, but it is worth verifying this condition, i.e.,
stating in general terms whether dim(&;), representing the number of parameters used
at time ¢, is less than or equal to 2dim(”f), representing the number of constraints. Note

that generally we have to check all the above expressions rigorously.

3.3 Logistic AR(p) models

In the Logistic AR(1) model defined in (3.2)—(3.3), there are five parameters at each
time ¢t > 2. From the previous discussion, it seems that the Logistic AR(1) model is

not identified, and in fact, it is not.

Proposition 3.3.1. The logistic AR(1) model defined in (3.2))—(3.3]) is not identified.

Proof. For simplicity, we write

(a2,0,a2,1,b2,0,b21,b22) = (exp(B2,0), exp(B2,1), exp(—¢2,0), exp(—d2,1), exp(—d2.2)),
(ag,[)v a;,b b;,Oa b§717 b;,Q) = (eXp(/B; O)) exp(ﬁ§ 1)7 eXp(_gb;,O)v exp(_d)g 1)7 eXp(_¢§ 2)

and prove it only for ¢ = 2, i.e., show that for (a3, a3,05,b54,03,), there exists
(a2,0,a2,1,b2,0,b21,b22) such that

(a2,0,a2,1,020,b2,1,b22) # (a3, a51,b30,051,b55)

and (3.9) holds. To show this, we fix az ¢ at some value (say, @z,0) which is not a3 ; and
prove that (3.9) holds if and only if the rest of the parameters (ag,1, b2,0, b2,1, b2,2) can be

written as functions of (ag,0,a3 g, a3 1,5 o, b5 1, b5 5) only, which shows that the Logistic
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AR(1) model is not identified. In the Logistic AR(1) model, (3.9) is represented as

(14 a20)(1+bao) = (1+a30)(1+05), (3.10)
1 1
(1 + > (14 boob22) = (1 + *> (1+ b§70b§,2), (3.11)
a2,0 az0
(1+a20a2,1)(1 +baoba1) = (1 +a5a31)(1 +b30b5 1), (3.12)
1 1 * * *
<1 + ) (1 4+ b2,0b2,1b2.2) = <1 + ) (1+050b51055),  (3.13)
G2,002,1 20021

where as o = a2 and all the parameters as g, a2.1, b2, b2,1, b22, a5, a5 1, b5, b5, b5 5
are positive. From (3.10]), we have
(1+a50)(1+03)

by g = —~ -1 3.14
2,0 1+ 20 (3.14)

and from (3.11]), we have

az,0(1+ a3 o) (1 +b50b55) — a3 o(1 + azp)
aso{(1+a30)(1+054) — (1 +az0)}

22 = (3.15)

To guarantee that by o, b22 > 0, a2 must satisfy

E
Qas o

1405005 (1 + a3 o)

<dgo < (1+a30)(1+b50) — 1.

We assume this condition for ag ¢. By multiplying (3.13) by az 0a2,1 a§70a§71 and dividing
by (3.12)), we obtain

- a3,0a31 (140305 1)(1 + b2,0b2,1b2,2) (316)
’ az,0(1 + 05 g3 165 5) (1 4 b2ob2,1) '

By replacing b g, ba 2 with (3.14)), (3.15), respectively, we have

byt = b5 b5 1{a3 0a3 105 5(b5 0b3 1 + 1) + b3 ob3 105 5 + 1}
| {(a30+ )30+ 1)/ (@20 +1) 1}
o a3 o(as g+ 1) (050 + 1) — (G20 + 1)
as gas 1 (03003 1 + 1)[az,0{(as o+ 1)b5 gb5 5 + 1} — aj o]

(3.17)

Furthermore, by substituting (3.14]), (3.15)), and (3.17)) into (3.16)), respectively, we can

obtain ag; as a function of (as,al, a3 1,05, 05 1,05 5). Therefore, all the parameters

a2,0,0a2,1,b20,b2,1,b2 2 are represented by them. O
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Usually, if smaller models, e.g., the AR(1) model, do not have identifiability, then
neither do larger models, e.g., the AR(2) model. However, this is not always true, since
the poor information at time ¢ makes the Logistic AR(1) model unidentified, but the
use of past information may make the Logistic AR(2) model identified. Recall that
the AR(1) model defined in (3.2)—(3.3) is not identified, because the model imposes
22 = 4 constraints in (3.9) with a larger number of the parameters (5), at each time
t > 2 in the model; see the graphical representation in Figure 3.1} In the figure, the
parameters enclosed by broken lines are intercepts in the model and each of the other
parameters is the regression coefficient of the nearest arrow in the model. As we have
already developed an expression for the joint distribution function of the AR(p) model
in Lemma if t = 3,p = 2, one parameter is added for the Y's serial correlation;
thus, we have six parameters versus 2% = 8 (> 6) constraints. This is represented
visually in Figure Thus, for t > 3, we can claim that holds as follows.

“837‘1 ﬁ4‘2
Ba [ Bso ] [ Bag ] Bao XS P!
. . 5 3 B:
Yl B2.1 Y2 B3.2 Y3 Ba3 Y4 Yl B2,1 Y2 B3,2 Yg Ba3 Y4
02,1 Q22| 32N\ P33 a3\ P14 2.1 P22| P32N\_ ¢33 P43\ P14
R2 R3 R4 RQ R3 R4
20 9301 Ry $2.0 450 L a0 ]
Figure 3.1: AR(1) model Figure 3.2: AR(2) model

Proposition 3.3.2. In the Logistic AR(2) model, for ¢ > 3, the following implication

holds if and only if 3;;_2 is not zero:

Vor m(vi; &) =mvi; &) = &=§&.

Proof. The statement that we want to prove is that (8¢, ¢r) = (8], ¢;) if, for every
(yt—Zvyt—lvyt)T € {07 1}®37

1
[1+ exp{—(d0 + Prt—1Yt—1 + Pr+ye) H[1 + exp{(—=1)¥ (Bro + Bra—2yt—2 + Bri—1Yt—1)}]
1
1+ exp{—(¢jo + Pp_1¥t—1 + ﬁb;tyt)}][l +exp{(=1)" (85 + By_oyt—2 + By_1ye-1)}

(3.18)
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We prove it here only for ¢ = 3 since the above expression is identical for t > 3. The
condition in ([3.18]) is equivalent to the following eight expressions:

(1+as0)(1+b30) = (1+a30)(1+b3,) (3.19)
(1 +aspas1)(1+bso) = (1 +a3pa3,)(1+b3,) (3.20)
(1 + aié)(l + b3,05373) = (1 + a;;;)l)(l + b§70b§73) (3.21)
(14 azga37)(1+bsobss) = (14 ajq'ai ") (1+ b5 b5 3) (3.22)
(1 +az0a32)(1 + b3 0bs2) = (1 + a3 ga3,)(1 + b3b3 ) (3.23)
(1 +aspasias2)(1+bsobs2) = (1 +a3ga3a35)(1 + 303 5) (3.24)
(1+ azpaz3)(1 + bsobsabss) = (1+ a5 al; ) (1+ b3 b3 ob5 3)
[ (14 a50a51035) (1 + baobsabsz) = (14 a5gtas  azsh) (1 4 b3 b3 203 5)
where
(a3,0,a3,1,a32,b30,b32,b33)
= (exp(B3,0),exp(F3,1), exp(B3,2), exp(—¢3,0), exp(—P32), exp(—¢33)),
(CL;,O’ ag,lv a§72, b§,0a b§,2, b§,3)
= (exp(B3),exp(B31), exp(B32), exp(—¢3 o), exp(—¢3 2), exp(—¢3 3)).
By dividing (3:19) by (3:20) and (3:22) by (3:21), we have
1 14 a%
+ azp _ h 3,(1 ’ (3.25)
1+ a3,003,1 1+ az (as |
1 at (1 + ak
az1(1+asp) _ 3,1( 3,0). (3.26)

1+ aspas 1 +a340a3,

By substituting into , we obtain ag1 = a3 . Plugging this equation back
into (3.25), (a3, —1)(aso —ajy) = 0. Thus, if a3, # 1, a3 = a3, otherwise az o = c,
where ¢ is an arbitrary positive constant. Hence, when a3; = 1, the model is not
identifiable. If a3, # 1, then dividing by and substituting az o = a3, and
az1 = ajy, we find (a3 ; —1)(as2 — a3 ,) = 0, which implies a3 2 = a3 5. Therefore, we

have

az; #1 & (asp, a3y, as2) = (a3, a3, a3)-

From (3.19)), (3.21)), and (3.23)), it is obvious that

(a3, a3;1, az2) = (a3, a3, a32) < (b3, b32, b33) = (b3, D39, 3 3)

33



3. IDENTIFICATION FOR MODELS WITH REPEATED
MEASUREMENT DATA

holds. Hence,

* * * * * >k *
az1 #1 & (asp, a3, a2, b30, b3 2, b33) = (a3, a3y, a3, b3, 039, b3 3).
Thus, we have reached the desired conclusion. ]

Evidently, as shown in the graphical representations in Figures the AR(2)
model is not identified when ¢ = 2 for the same reason as the AR(1) model. We need
additional information or restrictions on the model to achieve identifiability.

Consider the case when there are no missing values at time ¢ = 2. In this case, we
can fix the two parameters ¢21 = ¢22 = 0. Hence, there are 3 (= 5 — 2) parameters
versus 4 (> 3) constraints. The model is identifiable but the proof is omitted because
it is similar to that of Proposition 2. Another case is a model with one binary covariate
which is invariant for all times and has no missing data such as the information of dose
in Machin et al. (1988]). More specifically, consider the AR(1) model with a binary

covariate x as

Pr(Y1 = 1| x; B1,0, 51) = expit(f1,0 + S17),
Viso Pr(Yi=1]|wy—1,2; Bro, Bri—1,Bt) = expit(Beo + Yi—1Btt—1 + Brx).

A graphical representation is shown in Figure [3.3] There are six parameters versus
eight constraints for each time ¢ > 3, the same situation as in the AR(2) model for
each t > 3. At time t = 1, we can fix the two parameters to be zero, which has an
effect on the corresponding missing data indicator since there are no missing data on
the covariate. Thus, the model is identified for the same reason as when there are no
missing data at ¢t = 2. Therefore, this model is identifiable but the proof is omitted
because it is similar to that of Proposition[3.3.2] Moreover, we can show that the AR(2)
with one covariate model graphically represented in Figure is also identifiable. Note
that the models shown in Figures [3.3 are still identifiable even if there are direct

paths from the covariate to the response indicators.

3.4 Semiparametric models

In practice, checking model identification is very hard when both response and outcome
models are specified parametrically. The specifications tend to be subjective. It would

be preferable to specify either the outcome or the response model nonparametrically.
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8
o Ba B3 b ; B2 B3 i
Bd,l 54,2
B2.0 Bap ! _Big | B20 30! B!
3.
Yl Ba2,1 Y2 53,2 Y3 Ba3 }/;1 Yl Bo,1 1/2 83,2 Y3 Ba3 Y4
$2.1 P22| P3N 33| Pa3N_ P14 $2.1 P22 D32N\_ 933| P43\ P14
v v
Ro R3 Ry Ry R3 Ry
P20 930 Iy b2 | P30 | [P0 !
Figure 3.3: AR(1) model with one Figure 3.4: AR(2) model with one
covariate covariate

Such a model can be estimated by semiparametric methods (e.g., Tang et al., 2003}
Zhao and Shao, 2015) following the literature on nonignorable nonresponse in which R
has only two patterns, i.e., 0 or 1.

Recently, the identification problem of semiparametric models in the situation of
nonignorable nonresponse has been studied by |Wang et al.| (2014 and |Zhao and Shao
(2015). Their key assumption is the existence of a “nonresponse instrumental variable”.
Let us consider the situation of a nonresponse problem first. Suppose that a covariate
vector X is completely observed and response variables Y are subject to missingness.
In this case, R is a binary variable, which takes 1 (0) if Y is observed (missing). Roughly
speaking, their claim is that if the covariate X has two components, X = (ZT, U )T,
suchas Z L R| U and Y f Z | U, then the semiparametric model is identifiable.
A random vector Z satisfying such conditions is called a nonresponse instrumental
variable.

In this section, we consider identification conditions for the semiparametric models
without using any nonresponse instrumental variable. We also expect our estimator to
be more efficient than other estimators because our estimator is based on maximum
likelihood. We consider two cases: (i) the outcome model is parametric; (ii) the response
model is parametric. The first case occurs when the effects of covariates on a response
variable is our main interest. In this case, the response model is a nuisance. The second
case is important when our interest is nonparametric statistics such as the mean and

quantile, defined by a solution to an estimating equation E{U(6; X,Y)} = 0, where U

35



3. IDENTIFICATION FOR MODELS WITH REPEATED
MEASUREMENT DATA

is a known function corresponding to 6, e.g., U() = y — 0, when our interest is the
mean of Y. In such a case, the outcome model is a nuisance, and we want to avoid
imposing a parametric model on it.

Because, as we have already seen, the model identification in repeated measurement
data can be considered separately in each time by Theorem we consider a model

identification of 73 only.

3.4.1 Parametric outcome model

Let outcome follow the Logistic AR(2) model and the response model be nonparametric,

that is,

Pr(Yz =1|y1,y2; B3) = expit(B3,0 + y1683,1 + ¥233,2),

PT(RS =1 | Y1,Y2,Y3; ¢3) = ¢3,y1,y2,y3a

where B3 = (830,831, 532) " and ¢3 = (#3000, ---,%31.1.1) . This model is not iden-
tifiable, because there are 11 unknown parameters but we have only eight constraints.
This also implies that we need an assumption on the response mechanism because the
nonparametric part already has eight parameters. If we could assume an independence
Rs 1 Y7 | (Ya,Y3), ie., the AR(2) property for the response model, then that would
make the model identifiable because this assumption reduces the number of parameters

from 11 to 7 (< 8).

3.4.2 Parametric response mechanism

Let the outcome model be nonparametric and the response model be a logistic model,

viz.

Pr(Ys =11y1,92; B3) = B31,405

Pr(R3 =11y1,92,y3; ¢3) = expit(d30 + y1¢3,1 + Y2032 + y3¢33),

where B3 = (830,0,.--,331,1) and @3 = (d3,0, $3.1, P32, 3,3) . There are 8 unknown

parameters versus eight constraints. Therefore, this model is identifiable without using
any instrumental variable. Also, we can use the maximum likelihood to estimate (33

and &3. Identification at the other periods can be checked in the same way.
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3.5 Other response variables

So far, we have considered a case where all variables are dichotomous. What happens
when the response variable takes more than three values and continuous one? We
consider the nonresponse case in this section because we now know that it is enough to
consider only the situation from Theorem Suppose that a covariate variable x is
completely observed and a response variable ¥ is subject to missingness. In this case, r
is a binary variable, which takes 1 (0) if y is observed (missing). Then the nonresponse

instrumental variable assumption on z corresponds to assume
X LR|Y, and Y [/ X. (3.27)
The identification condition proposed in §3.5.2| does not require such conditions.

3.5.1 Ternary response variables

Let x and y be ternary variables taking 0,1, and 2, and the outcome model be

exp(B1liz—1)
Pr(Y =1 = ,
r =) exp(Bol{z=0y) + exp(B1l{z=1}) + exp(B2l{z—2})
exp(B2l{z—2})
Pr(Y =2 = ,
Y =2 ) = BoTiomoy) + oxp(Bilia—sy) + oxp(Balpaz))

where 14 takes 1 (0) if an event A is true (false). Thus, there are 3 parameters for
outcome and 3 parameters for the response mechanism. Therefore, the model is identi-
fiable, unlike binary variables, because there are 6 unknown parameters versus 32 = 9
constraints. Also, it is easily seen that a continuous covariate z in Figure which
is a mixture of discrete past response variables and a continuous covariate, makes the

model identifiable.

3.5.2 Continuous response variables

However, a continuous response vector y makes the model identification problem much
more difficult. For example, [Miao et al.| (2016) showed that when the outcome model
y | x is normal or a normal mixture, and the response mechanism is logistic, the model is
not identifiable. However, if the response mechanism is probit or tobit, then the model
is identifiable. This result is hard to understand intuitively, and we cannot check the

model identification by just comparing the numbers of parameters and constraints.
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A sufficient condition for the continuous response variable is guaranteed by using a
nonresponse instrumental variable given in .

Although the existence of such a nonresponse instrumental variable is a sufficient
condition, it is hard to verify it from the observed data. Therefore, we propose an
alternative condition for the model identification by assuming a restriction on [y |
x,r = 1], not only on the response mechanism. Let a response model be 7(z;¢) =
Pr(R =1 | z,y; ¢), a parametric model on fi(y | z) = f(y | ,r = 1) be fi(y | z;7),
and that on f(y | ) be f(y | z;3). Also denote odds function of the response model by
O(z;¢) = 1/7(z;¢) — 1 and the expectation on any function g(z) given observed data
by Ei{g(z,Y) | z;v} = E{g(x,Y) | r = 1,z;v}. Recall that the model identification

condition is
flylz;B8)m(z;0) = fly | ;8)7m(2;¢") wp. 1,
(3.28)
= B=0 and ¢ = ¢,

where w.p. 1 implies with probability one with respect to the true distribution.

Theorem 3.5.1. Suppose that for each (¢,v) € ® x ', E1{O(Z;¢) | x;v} < oo with
probability one with respect to the true distribution. Then, if

fily | zy) = Ay | 37') and EA{O(Z; ¢) | z;~v} = E1{O(Z; ¢') | 27"} wp.,
=y =7v"and ¢ = ¢/,

with probability one, implies v = 4’ and ¢ = ¢'. This is a necessary and sufficient
condition of the model identification ((3.28]).

For example, if the response mechanism is specified as w(z; ¢) = 1/{1 + exp(¢xo +
$x17 + ¢yy)}, where ¢ = (dx0, dx1, ¢y) L. Then, E1{O(Z; @) | z} is written as

EH{O(Z;¢) |z} = exp{dxo + daz + Ky, (2)},

where Ky, () is the cumulant-generating function of [y | #,7 = 1]. Therefore, we have
only to check whether Ky (z) is linear with respect to = or not. If f; is a parametric
model, the model identification for ¢ is easy to check. For example, if [y | z,r = 1]
belongs to an exponential family with the density function

yo(x) — b{o(x)}
(0

fl(y‘l“,gb,w):eXp +C(y,7/}) )
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3.5 Other response variables

where 1 is the dispersion parameter and ¢, b, ¢ are known functions, then the cumulant-
generating function reduces to Ky (z) = {b(¢y9) + ¢(x)) — b(¢(x))} /1, from which we
can verify the model identification. For example, for model identification, b is allowed to
be any polynomial function except for the 1st- and 2nd-order function of x such as log-
function (e.g. Gamma distribution), exponential-function (e.g. Poisson distribution),
etc. However, when b is a 2nd-order polynomial function, for example, b(¢) = ¢2/2,
which means f follows normal distribution, then Ky (z) = ¢(x)dy + ¢3¢%/2. Also, we
obtain

E{O(Z;¢) | 2} = exp{dxo + dx1z + ¢(x)dy + $20%/2}.

Theorem implies ¢ is identifiable unless the mean structure ¢(z) is linear. In prac-
tice, it will be worth checking the linearity if fi(y | ) is close to normal distribution.
If ¢(x) is linear we may use a nonresponse instrumental variable or consider other ap-
proaches (see for more details). we can check identifiability for other distributions

of [y | ,r = 1] in a similar way.
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Chapter 4

Simulation study

In this chapter, we conduct two simulation studies. One is to evaluate the performance
of our proposed estimators stated in and compare their efficiency with other meth-
ods in finite samples. The other simulation study is related to a topic discussed in
The main aim of the simulation is (i) to confirm asymptotic behavior of EL and GMM
estimators when ¢ < p; +1 = py and g(z) = {1, h(z)}"; (ii) to check the performance
of estimators proposed in Theorem when both a response and fi(y | ) models

are misspecified.

4.1 Comparison between proposed and existing semipara-

metric estimators

We conducted a Monte Carlo simulation study with four scenarios. In each scenario,
we used a covariate X ~ U(—1,1), set the response mechanism to a Bernoulli dis-
tribution with logit{my(y)} = ¢x0 + ¢yy, and generated the response outcome vari-
able from Y | (z,7 = 1) ~ N(us(r),02). In Scenarios 1-3, us(x) is defined as
the s-th order polynomial: ui(z) = z — 0.121, 02 = 1/3; pa(x) = 0.822 — 0.3415,
03 = 1/4; ps(z) = 2z(x — 3/4)(x + 3/4) — 0.0802, 02 = 1/3. In Scenario 4, juy(x) =
{cos(zm) + 2sin(2z7)}/2 — 0.06, 07 = 1/4. We generated missing data by the re-
sponse mechanism with (¢y0, ¢y) = (1.03,—-1.2), (0.91,-1), (0.9,—-0.8), (0.91,—0.8)
in Scenarios 1-4 respectively, so that the response rate is about 70 % and E(Y') = 0.

We note that = is a nonresponse instrumental variable (Wang et all 2014); thus

the parameters are identifiable in all scenarios. We also consider the case when the
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4. SIMULATION STUDY

response mechanism is over-specified as logit{myy (z,y)} = ¢x0 + dx12 + ¢yy. In this

case,

there is no instrumental variable, but all the parameters are identifiable except

for Scenario 1 by Theorem [2.4.1 However, by using Theorem [2.4.1] it is possible to

make the response model in Scenario 1 identifiable at the risk of misspecification of

response mechanism. This problem is dealt with in the next section. We estimate

the parameters for the two response mechanisms 7y (y; @) and 7y (z,y; @), as well as

6 = E(Y'). For the response mechanisms, only ¢y is reported.

From each sample, we computed four estimators, as follows:

1]

MAR: A naive estimator based on the assumption that the missing data are
missing-at-random:

n
> 60 — i) /7 =0, (4.1)
i=1

where 7; is an estimated response mechanism, that is, 7; = {1 + exp(czgxo +

dxi)} L, where (0, dx) is the maximum likelihood estimator.

CK: The estimator of (Chang and Kott| (2008) and Kott and Chang| (2010) . We
use the estimating equation (2.9)), setting g as (1, )" for my(y) and (1, z, z2) T for
Txy (2, y); 0 is estimated by using (4.1)) with the estimated response mechanism.

RKI: The estimator of Riddles et al.| (2016]). In all scenarios, we specified a
parametric model on f; based on normal distribution with mean structure u(x) =
Bo+ Bix+ Bax®+ Bax®. A best model among 2% —1 candidate models was chosen by
using AIC; 6 is estimated by using with the estimated response mechanism.

We take notice of the fact that a misspecified model was used in Scenario 4.

New: Proposed estimator in As for the working model for fi, the same model
specification as in the RKI method was used. We also assume the nonparametric
estimator proposed in Theorem We call the parametric method “P” and

the nonparametric method “NP” in this section.

Monte Carlo samples of size n = 500 and 2,000 were independently generated 2,000

times. We used the correct models 7y (y) and myy(x,y) for the response mechanism,

except for MAR.
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Figure 4.1: Boxplot of Monte Carlo results for ¢, and §{= E(Y")} under four scenarios
when ¢y is set to be 0. The four estimators are MAR (missing at random), CK (Chang &
Kott’s estimator), RKI (Riddles’ estimator), P (our proposed estimator with parametric
f1 model) NP (our proposed estimator with nonparametric method). Numbers 1 and 2
stand for n = 500 and n = 2,000, respectively. The broken line shows the true value.
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Figure 4.2: Boxplot of Monte Carlo results for ¢, and 6{= E(Y)} under four scenarios
when ¢y is estimated. The four estimators are MAR (missing at random), CK (Chang &
Kott’s estimator), RKI (Riddles’ estimator), P (our proposed estimator with parametric
f1 model) NP (our proposed estimator with nonparametric method). Numbers 1 and 2

stand for n = 500 and n = 2,000, respectively. The broken line shows the true value.
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4.1 Comparison between proposed and existing semiparametric estimators

Figure shows the Monte Carlo simulation results with the response mechanism

my(y) in all scenarios; Figure shows the results with 7y (z,y). In Figure only

the results for Scenarios 2-4 are shown because the parameters are not identifiable in

Scenario 1; the result of MAR is not shown because it is already shown in Figure

In the CK method with 7y (y) mechanism, we encountered some numerical problems in

Scenarios 2-4 and there was no solution because the estimate of ¢ did not converge.

The following is the summary of the simulation results shown in Figure and Figure

1]

In all scenarios, the naive estimator using the MAR assumption is significantly

biased, since this assumption does not hold.

The CK method with 7y (y) model works well in Scenario 1, but the performance
suffers from numerical problems in the other scenarios. However, the CK method
with 7y (2, y) model works well even in Scenarios 2 and 4 (though less efficient
compared to RKI and our proposed estimators). This is because the calibration
condition on g(z) = (1,z)" falls short of estimating the parameters when the

relationship between x and y becomes more complicated.

The RKI method performs quite well in Scenarios 1-3 for both response mech-
anisms, but the estimators in Scenario 4 are somewhat positively biased in RKI

due to the misspecification of the f; model.

In all scenarios, our proposed estimators perform better than any other methods.
We note that in Scenario 4, the estimator using parametric f; is still consis-
tent despite misspecification of fi;. However it is less efficient compared to the

nonparametric method because of the misspecification.

Table 1 shows the estimated coverage probability with 95% coverage confidence

interval for our proposed estimators. We applied (2.26]) to estimate the variance of

our estimators both using the parametric f; model and the nonparametric model (see

§2.4.2). My proposed variance estimator works well in all scenarios.
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4. SIMULATION STUDY

Table 4.1: The coverage probability of the confidence interval with 95% coverage rate for

our proposed estimators with sample size n = 500 and n = 2,000 when ¢ is set to be 0

(fix) and estimated (est).

Scenario  Method n Pxt Scenario Method n Pxd
fix est fix est
) 500 0.939 - 5 500 0.958 0.950
2000 0.944 - 2000 0.953 0.946
500 0.930 - 500 0.964 0.940
2000 0.937 - 2000 0.943 0.944
5 500 0.953 0.949 A 500 0.948 0.953
2000 0.943 0.946 2000 0.941 0.943
500 0.942 0.959 500 0.943 0.942
2000 0.946 0.951 2000 0.946 0.949

P: method using a parametric working model for f;, NP: nonparametric method.

4.2 Robustness for misspecification of response mecha-

nism

In Theorem we have shown that both EL and GMM estimators are exactly the
same when ¢ = p; + 1 = po. However, we have not shown any relationships of the two
estimators when ¢ < p; + 1 = po. Thus, we check the relationships here. As for (ii),
in Theorem we have shown that any function k(x) can be taken into our GMM
constraints without loss of efficiency as long as g*(x) is used. We check that the other
function k(x) has a potential to reduce bias when both models are misspecified.

Let a covariate X ~ N(=1,1), Y | X = 2 ~ NQ2z(z — 3/4)(x + 3/4),1/3). We
prepare six different response mechanisms: M]1(linear nonignorable): logit{w(y)} =
0.90 — 1.0y; M2(linear ignorable): logit{7(z)} = 0.90 — 1.0xz; M3(quadratic nonig-
norable): logit{m(y)} = 1.3 — 0.5y — y* M4(linear ignorable with a cross term):
logit{7(z,y)} = 0.9—0.5y — 0.5xy; M5(probit nonignorable): 7(y) = ®(0.6+0.5y —y?);
M6(log-log nonignorable): 7(x,y) = 1 —exp{— exp(0.25+ 0.5z —y)}. In this simulation

study, we specify a response model by

1
myé) =17 exp(¢o + d1y)’
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4.2 Robustness for misspecification of response mechanism

where ¢ = (¢o, 1) . Therefore all models except for M1 are misspecified.
Furthermore, we assume that fi(y | z) is normally distributed with a mean function
p(x; B) and variance 0. Although, strictly speaking, this fi(y | ) misspecifies the true

f1, because it is given by

o ow(xy)fly | @)
hlylo) = [, y)fy | )dy

Thus, the true fi(y | ) depends on its response mechanism as well as the distribution

of outcome, and it is not normal. We consider two settings for the mean function
1. (Heavily misspecified model) uq(x; 3) = Bo + B1;
2. (Slighly misspecified model) pg(x; ) = By + Biz + Box? + By,

where, in the second model, an appropriate B3 = (8o, 81,2, 83) " is chosen by AIC
(Akaike Information Criterion). The first mean function is linear with regard to x, on
the other hand, the second function is cubic. It is expected that estimators with the
second mean function is more efficient than the first one.

For EL estimators, we consider three types of h(x) function: (1) hy(z) = (z,2%)"

(2) hao(z) = g*(x); (3) h3(z) = {z,g"(z)"}". For GMM estimtaors, we consider

7

four types of g(z) function: (1) g1(x) = (1,z,22); (2) g2(x) = g*(v); (3) gs(z) =
{1,*(2)"}"; (4) ga(z) = {1,2,g*(x)T}T. We can check (i) asymptotic behavior of
EL and GMM estimators when ¢ < p; + 1 = py and g(x) = {1,h(x)} ", for example,
by comparing estimators using hi(z) and g;(z), because g1(z) = {1,hi(z)"}T. The
parameter ¢ is estimated by when ¢ = p;1 + 1 = po, and by when ¢ <
p1 + 1 = po, for which two-step GMM estimation procedure is used (Hansen et al.,
1996)). The algorithm can be easily implemented by using a package “gmm” in R
programing language.

It is meaningless to compare the estimated parameters of the response model be-
cause it is misspecified in models M2-M6, and the true parameter value is unknown.
Therefore, we assess the robustness by estimating § = E(Y') with the estimated re-

sponse model. It can be estimated by

~ 1 n 7Y T . o
b= 1" ey a6, 8|,
n;[”(%;@ { ﬂ(yi;d))} Y |z ¢ﬂ)]
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4. SIMULATION STUDY

where
E\Y{1-n(Y;9)}/n(Y;9)* | 2]
E{1 - 7n(Y;9)}/n(Y;0)? | 2]

This estimator attains the semiparametric efficiency bound when both 7(y; ¢) and

EX(Y | z:0,8) =

fi(y | =; B) are correctly specified; still has consistency even if fi(y | x; 3) is misspecified
by Theorem [2.4.1

Under this setup, samples are generated with 2,000 sample size and 2,000 replica-
tions. The results with response mechanisms M1—- M3 are shown in Figure [£.3] and
M4-M6 in Figure In the boxplots, samples which have not converged are removed
in advance. For estimators using go(x) and ho(x) with pq(x) mean function, almost
half of the samples did not converge. As for the other estimators, most of estimators
converged except for that using h;(x) in M5 and g4(x) with p;(x) in M3 and M4. This
indicates difficulty of optimization of EL. method and importance of correct specifica-
tion of fi(y | x; 8) model. As for estimation, all estimators are correctly estimated in
M1, i.e., when the response model is correct. Even when the response model is misspec-
ified, estimators using ua(z) are totally well estimated. Surprisingly, the estimators in
M2 still work well though the response mechanism is MAR.

At first, we would like to note on (i). It can be inferred from the results of estimators
using g1(x) and hj(x) under mechanisms M1-M4 that Theorem does not hold
when ¢ < p1+1 = po. This implies that the EL estimator does not attain the semipara-
metric efficiency bound. As for (ii), we can see that more constraints lead to less biased
estimators by comparing estimators using ga2(x), gs3(z), and g4(z) with p;(x) mean,
though some estimators using the most constrained function g4(x) were not estimated
well. However, on the flip side, it follows from the results of estimators using g4(x) with
p2(x) mean that more constraints lead to difficulty in the optimization computation or
lack of identification. Therefore, choosing an appropriate constraint function k(z) in

g(x) = {g*(x)", k() "} T from observed data is important.
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Figure 4.3: Boxplots of eleven estimators for E(Y) with M1-M3 response mechanisms.
Colors stand for without fi(y | ) model for black, with mean function p4(x) (heavily
misspecified model) for blue, and with ps(x) (slightly misspecified model) for pink boxplots.
The first element of the method implies the constraint used for the estimators, and the

second element “lin” and “cub”’mean the linear and cubic models for the mean function of

Ny | ).
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Figure 4.4: Boxplots of eleven estimators for E(Y) with M4-M6 response mechanisms.
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misspecified model) for blue, and with ps(2) (slightly misspecified model) for pink boxplots.
The first element of the method implies the constraint used for the estimators, and the

second element “lin” and “cub”mean the linear and cubic models for the mean function of
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Chapter 5

Real data analysis

Two real data sets: (i) Korea labor and income panel survey(KLIPS) data; (ii) Depot
medroxyprogesterone acetate(DMPA) data are analyzed by the methods proposed in
Chapter [2 and

5.1 Korea labor and income panel survey data

In this section, our proposed estimators are applied to the KLIPS data, which have
been analyzed by many authors (Kim and Yu, 2011; Wang et al., 2014; Shao and
Wang), 2016). The data contain n = 2,506 Korean wage earners; the response variable
y is total wage income (106 Korean Won) in year 2008. There are three fully observed
covariates: x1: total wage income in the previous year (2007); zo: gender; z3: age.
While z1 is a continuous variable, xo has two categories 1 and 2 for male and female,
and x3 has three categories 1-3: x3 < 35, 35 < z3 < 51, and x3 > 51. We also
identified three data points as outliers and excluded them from further analysis.
Although the data are completely observed, we took the approach of Kim and
Yu (2011) and made eight artificial incomplete datasets by assuming the following
eight response mechanisms: M1 (linear nonignorable without (ze,xz3)): logit(w) =
0.48 — 0.3z1 — 0.5y; M2 (linear nonignorable): logit(r) = —0.85 — 0.221 + 0.5z +
0.2z3 — 0.4y; M3 (nonlinear nonignorable, quadratic in x; without (x2,x3)): logit(7) =
0.33 — 0.3z1 — 0.12% — 0.3y; M4 (nonlinear nonignorable, quadratic in x1): logit(r) =
—0.89 —0.4z1 — 0.12% +0.529 +0.223 — 0.4y; M5 (nonlinear nonignorable, quadratic in y
without (z2,3)): logit(m) = 0.24 —0.2521 —0.25y — 0.1y?; M6 (nonlinear nonignorable,
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5. REAL DATA ANALYSIS

quadratic in y): logit(7) = —0.93 — 0.2z1 + 0.522 + 0.223 — 0.2y — 0.1y%; M7 (jump
nonignorable without ) m# = 0.5I(y < 1.7) + 0.9(y > 1.7); M8 (jump nonignorable)
7 = 0.51(0.5z2 + 0.2z3 + y < 2.6) + 0.9(0.5z2 + 0.2z3 + y > 2.6), where I(A) is the
indicator function that takes 1(0) if an event A is true (false). Note that there are
nonresponse instrumental variables for models M2, M4, M6, and MS8. For all data
sets, the response rate is about 70%. We estimated § = E(Y) as considered in the
simulation. The “true” average income in 2008 is 6, = 1.846 as calculated using the
complete data. In order to estimate the parameters, we assumed a response mechanism
logit{m(x,y; $)} = dx0+Px121+Px2T2+dx323+Pyy. Therefore M1 and M2 are correctly
specified while M3-M8 are misspecified.

We specified unknown f; models as normal distribution Y | (z1, 22 = i,23 = j,r =
1) ~ N(pij(x1),07;) (i = 1,25 j = 1,2,3), where p; j(x1) = Y0ij + 1ijT1 + Y2i o7 +
’ygi,jx“;’—&—'m,jx‘ll; (V14,55 Y2i,55 V35> V4i,j) 1S the regression parameter when (x2, 23) = (4, ).
We chose the best model by AIC among 2°—1 models for each (2, 23)’s 2x3 pattern. By
using Theorem this model is identifiable as one of the 6 mean structures with p; ;
being nonlinear with respect to x1. However, in the real data, the correlation between
r1 and y is too high because wage income does not change considerably in one year;
the mean structure is almost linear even when stratified by x2 and x3. Therefore, to
obtain valid estimator of §, we considered two different approaches: [1] find nonresponse
instrumental variables used; [2] transform x; so that the relationship can be nonlinear.
For the first approach, we specified x2, x3, and (z2,23) as instrumental variables in
applying our proposed method, which will lead to inconsistency for models M2 because
there is actually no instrumental variable. For the second approach, we transformed
to log(z1) so that the relationship between y and log(z) is nonlinear. Although this
transformation made the model identifiable, this also changed the assumed mechanism
to logit{m(x, y; #)} = ¢dx0 + ¢x110g(x1) + Pxox2 + Px323 + ¢yy. This may be a potential
cause of biased estimation. On the flip side, this approach uses all information of
covariates, which helps to reduce bias and gain efficiency. We show the result of this
approach under both parametric and nonparametric f; models.

In Table deviation of estimators from the full sample estimate 0,, and estimated
standard errors are shown. The methods using instrumental variable encountered some
numerical problems even for correctly specified models: M3, M5, and M7. This is

because the effect of the instrumental variables on the outcome variable is not so strong;
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5.2 Depot medroxyprogesterone acetate data

Table 5.1: 0 — 0, (S.E. (A)): deviation of our proposed estimator § from the full sample
estimate 6, = 1.846 (and estimated their standard error) for datasets M1-M8 by two
approaches: [1] using instrumental variable (IV); [2] using transformed z; with parametric
(P) and nonparametric (NP) f; model. NA stands for not applicable due to numerical

problems. All values are multiplied by 1,000.

Approach
1] 2]

v x2 x3 (2, x3) None None
method P P P P NP

M1 8 (24) 16 (59) 14 (35) 5(23) -6 (23)

M2 -73 (25) -8 (23) -25 (28) -9 (23) -4 (23)

M3 25 (38) NA (NA)  NA (NA)  -22(23) -20 (22)

M4 19 (27) 13 (27) -1 (24) 4(23)  5(23)

M5 41 (206) 56 (373) 54 (563) -10 (23) -9 (23)

M6 23 (158) -10 (31) 57 (25) 13 (24) 9 (23)

M7 26 (9500) 32 (7366) 36 (664) 10 (22) -9 (23)

MS 50 (3085) 183 (NA) 128 (NA) 15 (25) -18 (23)

the instrumental variable used is not useful enough. In terms of efficiency, the methods
with transformed z; outperform by far those using instrumental variables. They are

also more robust against misspecification of the response model.

5.2 Depot medroxyprogesterone acetate data

We analyzed the DMPA data by two approaches: (i) both [Y | X] and the missing-data
mechanism [R | Y, X] are parametric; (ii) only [Y | X] is parametric. For the missing-
data mechanism, we assume an independence R; L X | (Y1,...,Y:) (t = 2,...,T)
because it is natural to consider the dose as having no effect on the response rate. In
order to compare the results of the two approaches, we use the same parametric model
for [Y | X], where [Y | X] is the AR(2) model with one covariate as shown in Figure
3.4
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5. REAL DATA ANALYSIS

5.2.1 Parametric approach

Parameters were estimated by maximizing the following likelihood:

Li151(§)
4 ¢ Li>2)
= H H expit{(—l)y1i+1(ﬁl,o + 51$z)} {H Cs(ys—lia Ysir L5 gt)}
t=14el; s=2

1
X el —=1p<r 1y Z Gt (Yt Y15 i3 Eeg1) ¢
Ye+1=0

where

Gyt ye,z; &) = expit{ (=1)¥ ™ (Bro + Bri_oyt—a + Bra_1vi_1 + Bix)}
X expit(dro + Gri—1Yt—1 + de1yt),

L ={i:ri= rgt)}, and the function 1y 4y is an indicator function which takes 1 (0) if an
event A is true (false) and the sample size is N = 1,151. The MLE of &1, ..., & can be
calculated independently since these parameters are separated in the above likelihood.
We used the “optim” function in the programing language R to maximize L, (&).

The results of ; show that the (direct) effect of the independent variable X on
contraception is significantly different from zero at 6 and 9 months (¢ = 2,3), which
means that there are significant differences in effects on the contraception between 100
mg and 150 mg at these times based on the p-values. [Matsuyama| (2004) found the
same results on the total effects of X. Next, the estimate of the serial correlation is
strongly positive, which means once DMPA takes effect, it is also liable to have an effect
at the next time point for both doses. Finally, ¢2, ¢3, ¢4, which are parameters on
the missing-data mechanism, are difficult to interpret since the values of the standard
deviation (SD) are larger than those of the other parameters though this model is
theoretically identifiable. Due to this fact, all the parameters are not significantly
different from zero. Next, we construct some sub-models of the full model to choose a
best one by the likelihood test.

If data involve missing values, a naive information criterion such as AIC or BIC
cannot be applied. Here, we choose a best model heuristically: the likelihood ratio test.
First, we test the missing-data mechanism as “MCAR v.s. NMAR” and “MAR v.s.
NMAR?” following Diggle and Kenward| (1994). Denote the MLE under the constraints
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5.2 Depot medroxyprogesterone acetate data

Table 5.2: Results of Parameter Estimation by Parametric AR(2) Model

Parameter Estimate SD  p-value
b1 0.124 0.149  0.406
B 0.390 0.152  0.010
B3 0.440 0.160  0.006
B4 0.124 0.149  0.406
B2,1 1.851 0.215  0.000
B3,2 2.014 0.195  0.000
Ba3 1.794 0.228  0.000
B3,1 0.852 0.235  0.000
Ba2 1.382 0.233  0.000
$2,1 -0.506 0.680  0.457
¢3,2 -0.276  0.546  0.613
®a,3 -1.067 0.506  0.035
$2,2 -0.079 1.544  0.959
¢33 -0.719 1.231  0.559
®a,4 0.939 0.931  0.313
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5. REAL DATA ANALYSIS

G201 = bo2 = P32 = P33 = p13 = daa = 0 by Enrcar, under the constraints gz =
¢33 = ¢s4 = 0 by éMAR, and under no constraints by éNMAR, i.e., the full-model MLE.
We set the probability of type I error to 0.05 in the following two tests of the missing-
data mechanisms. With these settings, the deviance between MCAR and NMAR is

. .
ol EusuEnCAR) o7 57 x2(0.05) = 12.592,
L1151(ENMAR)
and the deviance between MAR and NMAR is
I .
o LustErar) o0, X3(0.05) = 7.814.
L1151(§NMAR)

Following the results, the missing-data mechanism is not MCAR and probably not
NMAR. Now, we study model selection in more detail. We consider the sub-models
with at most three parameters selected from those in (¢21, ¢2,2, ¢3.2, P33, P43, Pa.4):
6C1 + 6C2 + ¢C3 = 41 as shown in Table The reason why we consider only three
parameters is the deviance being not so different from that when we add more than
three. As indicated by bold sub-model numbers in Table the sub-models with
the smallest deviance among the set of models with the same number of parameters
are Nos. 4, 9, and 29 for the sets with one, two, and three parameters, respectively.
We see that all the sub-models with one or two parameters are rejected according to
the deviance, while the deviance relatively clearly identifies accepted sub-models with
three parameters. The deviances of sub-models No. 27, 29, 33, and 35 are small and
not significantly different from each other. Therefore, we assert that these four models,
whose parameters are chosen one at each period, are preferable. We could not say

which sub-model is the best of all the four sub-models based on the analysis.

5.2.2 Semiparametric approach

We estimate the same outcome model without specifying any missing-data mechanism.

The likelihood is given by

LiT51(8)
4 t 1(>0)
- H H expit{(—1)"** (810 + Bri)} {H CSF (vgi, x4 gt)}
t=1iel; s=2

1

sp
X1 =1geroyy > G (Ve yern, i €41) ¢
Yt4+1=0
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5.2 Depot medroxyprogesterone acetate data

Table 5.3: Sub-model deviance

No. Parameter Deviance | No. parameter deviance
1 2,1 18.670 | 22 ¢21, 022, P32 7.744
2 02,2 19.268 | 23 @21, 022,933 7.670
3 3,2 16.242 | 24 ¢21,¢22, P13 12.124
4 03,3 16.160 | 25  ¢21,¢22,Pa4 14.290
5 b4,3 20.616 | 26 P21, ¢32, P33 7.390
6 ba4 22.802 | 27 21,932,043 1.204
T $21,022 18.666 | 28 21, P32, Paa 3.392
8 21,032 7748 | 29 921,033,043 1.130
9 ®2,1, 93,3 7.672 | 30 @21,033,Pau 3.316
10 2,1, P43 12128 | 31 @21, ¢43, P44 11.282
11 02,1, P44 14.314 | 32 ¢22,¢32,933 7.988
12 ¢292,032 8.346 | 33 ¢22,$32,P43 1.804
13 22,033 8.272 | 34  ¢22,032, 014 3.990
14 ¢22,043 12.726 | 35 22,933, P43 1.728
15 02,2, P44 14.912 | 36  ¢22,933,Pa4 3.916
16 3.2, 93,3 15.878 | 37  ¢292,933,Pa4 11.880
17 ¢32,043 9.692 | 38 22,043, P14 9.336
18 03,2, Paa 11.878 | 39 @32, ¢33, Pa3 11.522
19 ¢33, 043 9.618 | 40  ¢32,¢33, P14 8.846
20 33, Paa 11.804 | 41 ¢392, %43, P44 8.772
21 04,3, Paa 19.770
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5. REAL DATA ANALYSIS

where v; = (y1,. .., yt)T:

G (vy, 5 &) = expit{ (=) (Bro + Brayr + - + Bri—1Yi—1 + Bi®) }bran. s

and ¢,y is the nonparametric model for Pr(R; = 1 | y1,...,¥:). This model is
identifiable in view of The parameters can be estimated by maximizing the
likelihood L3T, (€).

Results are shown in Table We can see that the results are not very different
from those with the parametric missing-data mechanism, but the SD is larger, especially
at the third period. This is due to the additional parameters for the missing-data
mechanism and poor information of dichotomous data. A parametric model for the
missing-data mechanism might be desirable in such a case. Also the likelihood ratio
test can be used in a similar way to as in though we omitted the results of the
likelihood ratio test since they are almost the same as in If we used [Zhao and
Shao (2015)’s approach, the parameters could also be estimated without specifying any
missing-data mechanism. However, the likelihood ratio test could not be used because
the semiparametric approach is not based on the likelihood. Therefore, use of the

semiparametric approach is more limited than that of our approach.

Table 5.4: Results of parameter estimation by the semiparametric AR(2) model

Parameter Estimate SD p-value
b1 0.124 0.149  0.406
B2 0.402 0.148  0.007
B3 0.437 0.163  0.007
B -0.135 0.169  0.417
B2,1 2.454 0.187  0.000
B3.2 1.900 0.711  0.007
Ba3 1.784 0.244  0.000
B3.1 0.980 0.705  0.170
Ba2 1.126  0.275  0.000
B 0.573 0.283  0.043
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Chapter 6

Discussion

We have proposed three semiparametric estimators with nonignorable nonresponse data
without assuming any parametric outcome model. The first one is a kernel-based semi-
parametric estimator, where semiparametric maximum likelihood is used to estimate
the response mechanism parameters. While the method of maximum likelihood usu-
ally produces efficient estimators, it has been found that the semiparametic estimator
does not attain the semiparametric efficiency bound. Thus we have improved the first
one to create the other two semiparametric estimators which attain the lower bound.
The relationship between the two semiparametric methods, EL and GMM approaches,
for estimation of a response model have been also investigated. We have shown that
estimators obtained with EL can be solved by using the moment based method when
q = p1 + 1 = py, where p; and po are defined in In addition, we have pointed
out the two estimators may not be asymptotically equivalent when ¢ < p; +1 = po
through numerical study. Furthermore, we have shown a constraint function including
the best function g*(x) also attains the semiparametric efficiency bound (Rotnitzky
and Robins, 1997)). This property is useful in practice because the estimated response
model is robust for model misspecification due to other constraints, and the true re-

sponse mechanism is generally unknown.

However, as shown in the simulation study, more constraints may lead to lack of
identification. Thus, it is necessary to develop a method to choose an appropriate

constraint function. Also, in this paper, we restrict that a parametric response model
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6. DISCUSSION

is fully specified, though some semiparametric models

1

m(z,y; ¢) = 1+ exp{w(x) + gby}7

have been already proposed, where w(x) is an arbitrary function of . [Sun et al.| (in
press) derive the semparametric efficiency bound for the semiparametric model. Pro-
posal of an adaptive and robust estimator for the model will also be a topic of our future
research. Alternatively, developing an appropriate information criterion for choosing
the response mechanism will be a future research work. Instead of specifying a single
response model, one can consider multiple response models, which possesses consis-
tency property of model selection when one of the specified response models is correct.
This multiple robustness property has been investigated in the ignorable nonresponse
setup (Han, 2014; |Chen and Hazizal 2017). Extension of multiple robustness to the
nonignorable nonresponse case will also be a topic of our future research.

As for the model identification for nonignorable nonresponse, we have proposed
some conditions under which a model for repeated measurement data with NMAR
missingness is identifiable. Two different situations have been distinguished: (i) both
the outcome model and the missing-data mechanism are correctly specified; (ii) either
of the two models is correctly specified and the other model is unspecified. Even if
the two models are parametric, the models may be unidentifiable (Miao et al., |2016).
We have given an example of an identifiable model, that is, the AR(p) model which
depends on the history only through the previous p responses. Then, an easy-to-check
necessary and sufficient condition on the identification of the model has been proposed.
For example, it can be proved from the derived condition that even the Logistic AR(1)
model is not identified, the model becomes identifiable when there are covariates as
in Figure [3.4] or there are no missing values at the first two periods. The estimation
confines a situation where the outcome model is correctly specified. This naturally
holds only when both response and covariates variables are discrete. Therefore, an
alternative condition depending on fi(y | ;) := f(y | ,r = 1;), but not depending
on f(y | ) have been developed. This condition is attractive because the nuisance
parameter « can be estimated separately from ¢, and the condition can be easily
checked from observed data.

Our identification condition is useful only for conditional models with repeated

measurement data. Another extension giving concise conditions to check identifiability
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for more complicated models such as marginal models and hybrid models (Molenberghs
land Verbeke|, 2005; Wilkins and Fitzmaurice, 2006) need to be developed.

61



6. DISCUSSION

62



Appendix A

Regularity conditions

To discuss asymptotic properties of our estimator, we assume the following regularity

conditions. Here and throughout, || - || denotes the Euclidean norm. For example, for a
matrix A = [ay], |A] = (3, ; a) /2.

Cl1.1.

C1.2.

C1.3.

C14.

C1.5.

4, g
® and © are compact.

Let

§'(¢) := {1 - W(;Z)} So(¢; )
and

m(¢; z)

r

m(¢; 2)

Ul(,0) := Uf;x) + {1 - } U, 0;x).

Both Sl(qb) and Ul(¢, 0) are continuously differentiable at each (¢, 0) € ®x O with
probability one, and there exists a d(z,r) with H(Ql(q’))T, Ul(,0) )| < d(z,7)
for all (¢,0) € & x © and E{d(Z,R)} < cc.

The infimum infg g E{S'(¢), U(¢,0)} = (0,0) attains only at (¢, 0) € & x O.

08" ()T, 0(ep,0)T}T /O(¢pT,07) is continuous at (¢, fy) with probability one,
and there is a neighborhood @ x Oy of (¢g, 0y) such that

E sup < 00.
(d’ve) E(DN X ®N

E[0{S'(#)T,04(¢,0)T)T /8(6,67)] is nonsingular at (¢o, o).

oS (¢)T,U'(¢,0)T}7
o(@T.07)
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A. REGULARITY CONDITIONS

C1.6. The kernel K (u) is bounded and satisfies [ K(u)du = 1, and has zero moments

of order < m — 1 and a nonzero mth order moment.

CL1.7. Let bi(2z;¢) = O(z;¢), ba(z; ) = O(z; p)so(2z; @), and b3(z; ¢, 0) = O(z; 9)U(z;0),
and X be a compact set that is contained in the support of . Supposed that
E{Rbi(x,Y;¢,0) | } for i = 1,2,3 are differentiable with respect to & up to
order m for each ¢ € ® and 0 € ©. Also, assume that, for i = 1,2, 3,

sup || E{Rb;(x,Y; ¢;0) | 2}|m

(¢,0)e®x0
OmE{Rbi(x,Y; ;0
= sup max sup { 7;1(133’ ’¢n711) |2} ‘ < o0
(¢,0)€DXx© M1 T HMa=m gy oz " ...0x)

C1.8. There exists a v > 2 such that, for ¢ = 1,2,3, and for each ¢ € ® and 0 € O,
E{R||bi(Z;¢;0)|"} < oo and E{R||b;i(x,Y; ¢;0)|" | } is bounded.

C1.9. The bandwidth A satisfies h — 0, n'~2/Y)hd/Inn — oo, \/nh?/Inn — oo, and
V/nh?™ — 0, where d is the dimension of &, and m are given in the condition

(C1.8), and v is given in the condition (C1.10).

C1.10. There exist |b;(z; ¢,0)| < bi(2) for i = 1,2,3 such that sup,ey E{Rb:(Z) | 2} <

C1.11. Let
Gi(@i2) = AP 0(6:2) (su(0:2) - s:2)
and
Hy (6,0 2) = DHOPG2) 1@} 6 (6, 2) — T(5,0:))

E{O(¢; 2) | x}
The condition (C1.2) holds for G1(¢; z), Hi(¢, 0; z), 0G1(¢; z)/0¢, OH1 (¢, 0; 2)/0¢,
and OH, (¢, 0; z)/00 instead of ' (¢) and U'(gb, 0).

C1.12. For functions, 0b;(z; ¢)/0¢, Oba(z; ¢)/0d ", Obz(2; ¢,0)/0p, and Obsz(z; ¢, 0) /08,

(C1.7), (C1.8), and (C1.10) hold instead of b;(z; ¢, 0).

C2.1. ® and © are compact.
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C2.2.

C2.3.

C2.4.

C2.5.

C2.6.

C2.7.

C2.8.

C2.9.

I' is compact, Sy () = dlog fi(y | ;)/07 is continuously differentiable at v € T’
with probability one, there exists e(1V) such that ||S,(y)|| < e(W) for all vy € T
and E{e(W)} < oo, E{S,(v)} = 0 has a unique solution v* € T, 98, (v)/0v"
is continuous at v* with probability one, and there is a neighborhood I'y of ~*

such that || E{super, 08,(7)/0v "} < oo.

The infimum infy g E{Scg(¢,0,7*)} = (0,0) attains only at (¢, b)) € ¢ x O,
where Seff(¢7 077) = (Sl(¢77)—r7 S2(¢79a7))—r defined in '

0Set(¢,0,7)/0(",0,~") is continuous at (¢, fp, v*) with probability one, and
there is a neighborhood ®y x O x 'y of (¢, o, v*) such that

I E{ sup OSer(¢0,0,7)/0(p",0,7 ")} < 0.
((b,@,"}’*)G@NX@NXFN

Sert(,0,7) is continuously differentiable at each (¢,0,v) € ® x © x I' with
probability one, and there exists dq (W) such that ||Seg(¢,0,7v)|| < di(W) for all
(,0,7) € P x O xT' and E{d;(W)} < o0.

E{aseﬂ‘(¢,9,")’*)/8(¢T,0,’7T)} is nonsingular at (¢g, 0o, v*).

The conditions (C2.1)-(C2.6) hold for known distribution fi(y | =;v), ie.,
E{Scx(¢,0,7v0)} = 0 has a unique solution (¢g, ) € ® x O, where Sx(¢p,0) =

(S1(h,70) 7, S2(9,0,%)) "5 OSeri(,0)/0(¢",0) is continuous at (¢, o) with
probability one, and there is a neighborhood ®x x O of (¢, 8p) such that

1E{ sup  9Sa($.0)/0(¢"0)}] < oo;
(¢,0)EPNxON

Sett (¢, 0) is continuously differentiable at each (¢,0) € ® x © with probability
one, and there exists do(W) such that || Seq (¢, 0)|| < do(W) for all (¢,0) € P x ©
and E{dy(W)} < o0; E{0Scs(,0)/0(0",0)} is nonsingular at (¢, o).

The kernel K (u) is bounded and satisfies [ K(u)du = 1, and has zero moments

of order < m — 1 and a nonzero mth order moment.

Let ci(z;¢) = 771 (z;0)bi(2; ¢) for i = 1,2,3, and X be a compact set that is
contained in the support of . Supposed that E{Rc;(x,Y;¢,0) | x} fori =1,2,3
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A. REGULARITY CONDITIONS

are differentiable with respect to & up to order m for each ¢ € ® and 6 € O.
Also, assume that, for i = 1,2, 3 and for each 6 and ¢,

sup  ||E{Rbi(x,Y;$;0) | }||m
(¢,0)ePxO

O E{Rbi(x,Y; ¢;0) | x}
oz ... 0z

= sup max sup
(¢.0)€Dx© MIT T Ma=MN ey

<.

C2.10. There exists a v > 2 such that, for i = 1,2,3, Ei{||ci(Z;¢;0)]|"} < oo and
E1{||ci(z,Y;¢;0)||Y | } f1(z) is bounded.

C2.11. The bandwidth h satisfies h — 0, nl_(2/”)hd/lnn — 00, y/nh?/Inn — oo, and
Vnh?m — 0.

C2.12. There exist |¢;(z; ¢,0)| < &(z) for i = 1,2,3 such that sup ey E{RG(Z) | ¢} <

Q.

C2.13. Let I(¢; zi) = Li(¢; i) I2(; 2i), J (0, @; i) = L1(p; ;) J2 (0, @5 2;), and

I(: i) = 71 (h; 2)O(; zi){s0(9; 2i) — g* (5 i)}
AT Bi{r (¢, 2)0(¢: Z) |2} Pr(R =1 x;)’
0, i zg) = T (83200 z){U (6 ) — U0, b))
AT B {n (¢ 2)0(¢; 2) | i} Pr(R=1]x)
and
Hy(¢,0;2) i= DO NB) 6002 (1706, 2) — 5, 50}

E{O(¢; ) | }
Then, the condition (C2.5) holds for I(¢; z), J(¢,0; z), I (¢; z)/0¢p, 0J (¢, 6; z) /D¢,
and 0.J(¢, 6; z) /00 for known distribution fi(y | ;) instead of S1(¢), Sa(¢p, 0).

(2.14. For functions dc;(z; ¢)/0¢, Ocz(z; ¢) /0@, dcs(z; ¢, 0)/0¢p, and dez(z; ¢,0) /00,
(C2.9), (C2.10), and (C2.12) hold instead of ¢;(z; ¢, 0).
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Appendix B

Proofs of the technical results

Following uniform convergence of the kernel estimators used in Chapter 2 is obtained.

Theorem B.2.1. It follows from conditions (C1.1), (C1.2) and (C1.6)—(C1.10) that

sup sup || D(¢; &) — D(¢; x)|| = 0,(n~ 1), (B.1)
Ped xzcX

sup sup | Cs(¢; ) — Cs(; )| = 0, (n/4),

PeD xeX

sup  sup |[Cu(9,0;2) — Cu(e, 0;x)|| = 0p(n~ ),
(,0)edxO xeX

where
D(¢;x) = E{O(¢;2,Y) | z} f1(x) Pr(R = 1),
Cs(¢;z) = E1{O(¢;x,Y)so(¢;2,Y) [ @} fi(x) Pr(R = 1),
C(¢;x) = E1{U(¢,0;2,Y) | z} fi(z) Pr(R = 1),

and D(qb; x), C’s(¢; x), and C’U(qb, 0;x) are defined in

In order to show the Theorem the following Lemma proved in [Newey
(1994) is to be referred. In what follows, only (B.1)) is proved. Convergence of the other
functions can be shown in a similar way.

Lemma B.2.1. For a fixed ¢ € ®, under conditions (C1.1) and (C1.6)—(C1.8), it holds
that

sup [|D(¢5 @) — BAD(¢s@)} | = Op{(lnn)'/*(nh®) =12}, (B.2)
sup IE{D(¢;2)} — D(; x)|| = Op(h™). (B.3)
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B. PROOFS OF THE TECHNICAL RESULTS

Let §,, = (Inn)Y/2(nh%)~1/2. Note that under the condition (C1.9), O(6, 4+ h™) =

o(n~1/%). Thus, there is a gap between Theorem and Lemma that whether
the convergence holds for each ¢ € ® or uniformly in ®. The gap is filled as follows.

Proof of Theorem Denote a open ball with center ¢ and radius e by B(¢,e).
It is enough to show both (B.2)) and (B.3)) hold uniformly in ¢ € B(¢,e) because of

the continuity of D(¢;x) with respect to ¢ and compactness of the parameter space.
Actually, It holds that

suph™? sup REKj(z —x)0(z,y;5¢) — inf REKp(x—x;)0(x,y;; d)|
xzeX PEB(d,e) PEB(.e)
<sup2h™¥| sup REKj(z —z;)0(z,yi; d)|
xeX d<EB(p,e)
< sup 20| RKy (@ — )by (, )|
xcX

Here, the last equation is integrable by the condition (C1.6), (C1.7), and (C1.10) be-

cause

sup h™ ' E{RKp,(z — @;)bi (z, 4i)} = csup E{Rb1(Z) | @} < oo,
xzeX xzeX
where ¢ = sup,, K (x). Therefore, for any £ > 0, we can choose e so that

h~% sup
xzeX

E sup REKp(x— X)O(x,Y;0) —E{ inf RKp(x—X)O(z,Y; ¢)} H <e
PEB(¢,e) pEB(de)

It follows from (B.2)) that

sup sup ||D(¢;z) — E{D(¢;z)}||
z€X peB(p,e)

-~ 1
<sup sup — riKp(x — x;)O(x,y;; ) — —E{RKp(x —U)O(x,Y; ¢ H
wp s |5 3 i@ = @)0(@,0ii8) = o {RKw(@ ~ V)0, Yio)}
1 « 1
<su sup 1 Kp(x —x;)0(x,y;; ) — —FE inf RKp(x—U)O(x,Y;
<oup e e w00 i)~ P {, it Re - 00w v:0)] |
:Op(‘sn)
+h %sup ||E sup RKp(x— X)O(x,Y; ) —E{ inf RKh(x—X)O(x,Y;¢)} H
xeX PeB(p,e) PEB(re)
= Op(0p) +¢.

Therefore, (B.2) holds uniformly in the ball B(¢,e). By using the compactness of ®,

we can easily show that this holds uniformly in ®.
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Let w(x; ¢) = E{RO(x,Y; ¢) | «}. It follows from the Taylor’s theorem and (C1.6)
that, for some 0 < ¢ < 1,

E{D(¢;x)} — D(¢;x) = / K(u){w(@ + uh; ¢) — w(w: ¢)}du
ml

h
@ )l [ K wdu.

<
By using the condition (C1.7),

sup [[w(@)||m < o0
ded

holds, and thus, (B.3) holds uniformly in ®. Therefore (B.1) holds uniformly in ®.

Therefore, the desired conclusion is obtained.

Lemma B.2.2. Under conditions (C1.1)-(C1.5) and (C1.7)-(C1.10), we obtain the
following asymptotic expansion of (2.12)) and (2.14]): for each (¢,0) € ® x O, it holds
that

A _1 wz 7 12 op(n —-1/2 .
Z{ ¢,zz)} o Z Ga(9; zi) +op(n” /%) (B.4)

=1

and

-y [ - vee)

n

+nt Z riHa(¢; zi) + op(n~Y?),

i=1

where

o JEH{O(¢o;2) [z} ) (sl 2) — 5l
G2(¢’z)_{E1{O(¢; )|w} 1}O<¢), ){ 0(¢7 ) 0(¢7 >}

BN I NTS N DO
Hg0) = { AP L1k 0(62) (U60:2) - U600}

Proof of Lemma[B.2.2] By using a/b—a/b=b"{1—b"(b—b)}{(a—a)— (a/b)(b—b)}
and Lemma we obtain for each ¢ €

Ci(d;z) Ci(pjm)

su = ; = op(n /2

|G - SO~ pgia)| =) (B.6)
where
B(g:2) = Digia)  { (Culdia) - Culgr) - T2 (Dlgs o) - Dlgi)) |
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B. PROOFS OF THE TECHNICAL RESULTS

It follows that ||30(¢;x) — 30(¢p; ) — E(¢; )|| = 0p(n/2).
Therefore, by using , we can show, for each ¢ € ®,

S(¢) —n 1> {risi(¢; i) + (1 —ri)So(s i)}
=1

2 Z (1 —ri)rjh " Kp(®; — ;) O(¢; @i, y;) {s0(; @i, y5) — 0(P; )} (B.7)
itg D(¢; ;)
= op(nfl/z).

Also, the double sum in (B.7)) can be written as

= (1 —ri)rjh™ K (@ — :Bj)o(ﬁb(;;ia y;') {so(@;xi,y;) — S0(; i)}
D i 7

1#]
-1
B <Z> D 27 G+ Gl + op(n7 1), (B.8)
i<j
where ;; can be expressed as
(1= ri)rih™ " Kp (@ — 2;)0(¢; @i, ;) {s0(9; i, y5) — S0(; i) }
D(¢; ;)

Let w = (z",7)" and h(w;, w;) := ({ij + ¢ji)/2. According to U-statistic theory (e.g.
van der Vaart, |1998, Ch.12), we have

Gij ==

—1 n
(Z) > h(wi,wy) =207 B{h(wi,w;) | wi} + op(n” 7)., (B.9)

i<j i1

Note that,
E(Gij | wi)

1— 7 B )
— W;OE[M}L YK (2 — )0 i, y;){80(d; i, y;) — Bo(; i)} | wi

1—mr; _ )
= W;OEUL TKp (i — x;)E[rjO(¢; xi, y;){so(@; @i, y;) — So(; i)} | &) | wi] =0
and

E(Cji | wi) = Ti/Gl(Qf); z;, yi)h Ky (z; — z;)dw;
=r;G1(¢; z;)) + O(h™)
= riG1(¢; z) + o(n/?),
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where

E10(o; 2) | o) :2){so(¢; z) — 80(¢; T
El{O(q’), )| }O(¢7 ){ 0(¢7 ) 0(¢a )}

Therefore, by using - the score function S(¢) can be written as

Gi(p;z) =

S(¢) =n 1 [ri {s1(d:2:) + G1(hs z1)} + (1 — 73)50(h; )] + 0p(n~1/?)

i=1
—12{ s peleia + S Gl z) + op(nV?),
[ ad(2 i=1
where
E{O(¢o; 2) | =} } <
Gy (o, —1;0(o; 1z) — ; )
o(i2) = { HOGEEL 1] 0(6i2) (sn(0:2) - (s o)
Therefore, is obtained. The expansion of is also obtained in a similar
way. O

Consistency and asymptotic normality of our proposed estimator can be obtained
by using Lemma in conjunction with theory of an Asymptotically Unbiased Esti-
mating Equation proposed in |Zhao and Lin| (2012).

Proof of Theorem We focus on proving (B.4) at first. Let

S e LT

i=1

To obtain consistency of our proposed estimator, it is only needed to show

sup [[S(¢) — S1(#)l| = 0p(1)

Pped
and
9S(p)  9Si(d)|
e e H‘Op(” (B10)

because the other conditions required by Theorem 5 and 6 in|Zhao and Lin| (2012) are
met by the regularity conditions. These are easily shown by using Theorem [B:2.1] In
fact,

Tllzn:(l —7y) {C’s(¢,:cz) — 30(¢; mi)} H + HTIL Zn:”Gl(db; zi)||-

=1
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B. PROOFS OF THE TECHNICAL RESULTS

It follows from Theorem [B.2.1|that the first term converges to zero uniformly by (C1.12).
The second term also converges to zero uniformly by using the uniform law of large
numbers with (C1.11). The other equation can be shown in a similar way. O

Next, we simplify the influence function of (f) So far, it has been shown that the

influence function of S(¢) is given by

{1 -~ jz)}gow;m LGy 2). (B.11)

Thus the asymptotic variance of q?) can be derived by using the usual sandwich estima-
tor. Here it follows from the facts Ga(¢g) = 0 and E{0G2(¢)/0¢"} = 0 that the
influence function (B.11)) can be also written as
R
1-— S0(@; X).
{ (¢ Z) } (#:%)
Using the same argument for ﬂ(qb, 6), we can obtain the influence function for 6 by
R R _
——U(0; X +{1—}U€;X .
(¢ Z) (0:X) (¢; Z) 0%

Denote the simplified influence functions by

Si(¢) := {1 -~ 7r(q7>ﬂjzz)} 50(¢; ;)

and
T3 T3

) = —— U (0 1) + {1 - } U ).

m(¢; zi) (¢; zi)
The solution based on the estimating equations (B.4]) and (B.5) is asymptotically

equivalent to that to the following estimating equations:

3 Si(¢) =0,
=1

Enjﬂé(d), 0) =0.
=1

Hereafter, we derive the asymptotic variance of the estimator based on the above esti-

mating equations.

Lemma B.2.3. The following partial derivatives with respect to # and ¢ satisfy
E{08,(9)/06 } = E{50(4)77 (9)/7(9)}
E{00,(9,0)/0¢" } = E [{U(6) - U©O)} +" ($)/7(9)]
E {00, (6,0)/00} = E{0U(6)/06}
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Finally, we give a proof of Theorem [2.3.2
Proof of Theorem By using standard arguments,

1/2 b — ¢o _ [,
! [é—eo ]_ ( Z
xn’l/zz

9SL(¢0) /09T OSL(¢bo) /00 o
aUl ¢0,00)/8¢T U (o, 00)/06

+ 0p(1).

Ul ¢0, 6o)

Let

Ji=—

08,(60)/06T  98i(0)/00 :[Ju 0 ]
8Ul(¢>0,00)/6¢T 8Ul(¢0,60)/89 Jo1 T2 .

By conditions (C1.1)-(C1.5), and Lemma 2.4 in Newey and McFadden| (1994)),
[y
converges to J~! in probability. On the other hand, by the Central Limit Theorem,

n 20 Si((f)o)}—r, {7 Uk(eho,60)} '] has an asymptotic normal distribution
with mean 0 and variance Var[{Sl(%)}T, {U!(¢0,60)}"]". Then, by Slutzky’s Theo-

rem, n'/2[(¢ — ¢o) T, (0 —6y)T]T has an asymptotic normal distribution with mean 0
~ 1 1
- S (¢o) - T [ In o } (¢0)
I lvar{ . J = var _ _ _
{ U'(¢o, o) o) ~I5 9T Iy %0, 6o)
Al
I7'S
= var 1 (e 1 S (do) a4l . (B.12)
T { 0160, 00) — 721958 (60) |

Finally, explicit expressions of the variance of Sl(%) and U (¢, 0p) — ngjl_llsl(qbo) are

o8l(po) /0T oSkpn)o0 |\
aUl (¢0,60)/0¢p"  9UL(¢po, 0p) /00

and variance

S
Ul

given as follows:

var{S (¢0)} = E [var {TTr (¢0)50(¢0) | z}] = E{O(¢0)5§ 2}

and

var{U' (¢, 6o) — 32131_11Sl(¢0)}
=var{U(6y)} + E [var {TT(' (0){U(09) — U(@o) + k8o(¢o)} | z}}
= var{U(60)} + E[O(¢0){U(6o) — U(60) + r50(¢b0) }*?],
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B. PROOFS OF THE TECHNICAL RESULTS

where x = J91977 . O
Next, we provide a proof of Lemma and Theorem [2.4.1] and 2.4.2] In order
to prove Lemma we will assume 6 = E(Y) for simplicity. Wespecify the joint

distribution z = (x,%)" by f(z;n), where 1 is an infinite-dimensional nuisance pa-
rameter, and 19 is the true value. By “full model” we refer to the class of models in
which the data are completely observed, and by “obs model” those in which some Y
are missing; that is, a full model consists of functions h(Z) and an obs model consists
of h(R,GRr(Z)). Furthermore, for each full and obs model, denote the nuisance tan-
gent space by AF and A, respectively, and its orthogonal complement by A¥+ and A*+,
respectively. Let Sy be the score function with respect to ¢. Consider a Hilbert space
H = {hatDx1 | B(h) = 0;||h|| < oo} with inner product (hi, hs) = E(h{ hy), where
the expectation is taken under the true model. See Bickel et al. (1998) and |[Tsiatis
(2006)) for more details.

At first, we introduce a proposition of |[Rotnitzky and Robins| (1997, which provides
the efficient score for (¢,0), as follows. Let B and D be functions of (R, Gr(Z)), and
let B* and D* be functions of Z. Also, let us define the following three linear operators:
g(B*) = E(B* | R,GRr(Z)), m(B*) = E{g(B*) | Z}, and u(B*) = RB*/n(Z). Then,
the efficient score for (¢, 6) can be derived by the following Lemma. See Proposition

A1 in [Rotnitzky and Robins| (1997)) for the proof.

Lemma B.2.4. The efficient score for (¢, ) can be written as
Sur = (D) — TMu(Dlp) | As] + Aser = g{m ™' (Dl)} + Aner, (B.12)

where II[h | A2] is the projection of h onto A2, Ay = [A(R,Gr(Z)) : E(h(R,Gr(Z)) |

Z) = 0], and D is a unique solution to

M~ (D*) | A = (Q, Sko), (B.13)

€

where Q = T[m™'[E{g(S]) | L}] | AT, Aser = (T[Sy | A2]",0)" = (8(S]) —
g[m_l[E{g(Sg) | LY]T,0)T, and Sgﬁe is the efficient score function of # in the full

model.

This Lemma implies that the efficient score can be represented by (B.12) with DX
satisfying condition (B.13). Thus, in the nonignorable nonresponse case, AFL needs
to be calculated, and it can be done in a way similar to that shown in Section 4.5 of

Tsiatis| (20006)).
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Lemma B.2.5. The nuisance tangent space A’ and its orthogonal complement Af+

in the full model are written as follows:
AT = [n(Z) € H such that E{Yh(Z)} = 0],
AF = [k(Y — 6y), where k is any ¢ 4 1 dimensional vector] .
Finally, we give an explicit formula to calculate the projection onto As.
Lemma B.2.6. For h(R,Gr(Z)) = Rhi(Z) + (1 — R)ha(X), it holds that

R\ ha(X)— E((2) | X)
w<z>} E{0(Z)| X} (B.14)

(h | As) = {1

Proof of Lemma Obviously, the right-hand side of (B.14]) belongs to Ay. Thus,

it remains to check that for any g,

(v o ) R )

which can be proved easily. O

We now give a proof of Lemma [2.4.1

Proof of Lemma m Note that ng%e =Y — 0y by Lemma since there exists
only one influence function, and it is the efficient one under the assumption that 6 does
not require any assumptions on the distribution of Z (see [Tsiatis, 2006, Chap. 5). By
the projection theorem, there exists a unique k = (k1, ky )" such that Dis = k(Y —6)).

Then, we calculate Az cg. The score function of ¢ is
Sy = 8(S)) = Rs1(Z; ¢) + (1 — R)50(X; ¢),

where s,(¢) is defined in (2.2). It follows from Lemma with hi(z) = si1(¢)
and ha(x) = s0(x;¢) in that II(Sy | A2) = —{1 — R/n(Z)}¢g*(X). Thus,
Asef = [0, —{1-R/7(Z)}g*(X)]. Again, by using Lemma S3, it follows that IT[u(D};) |
Aol =—{1—-R/n(Z)}E*(Y — 6y | X), by which becomes

and
R(Y — 6o)

Sy =k [W+{17T£(J)}E*(Y90|X)].
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This Seg = (51,9, ) can be transformed into S = (5’1, S'QT) = AS.g,

3 R .
- R(Y-6) [ R
5= (o) { (o)

with a nonsingular matrix A,

be - x)

A= [_@ _k;_/lkl]
where [, is a g-dimensional identity matrix. The score function multiplied by a nonsin-
gular constant matrix does not have an influence on the asymptotic distribution. Thus,

we have the desired efficient score. O

Proof of Theorem [2.].1 Consistency and asymptotic normality are proved under the
assumptions (C2.1)-(C2.7) in Appendix |[A| by using the standard argument for GMM.
Next, we give the explicit form of the asymptotic variance. Let ¢ = (¢,6) . Recall
that each 4 and £ is a solution to oy 0log fi(yi | ®i;y) /0y = > i1 S~i(y) =0 and
>y Serri(7,€) = 0, respectively. By using standard asymptotic theory,

Y=Y - g1,
|:é_§0:|_ ! z::|: effz'7 50:|

where

08, (v")/7" O

= [3Seff(‘7*,€0)/7T OSet(v*,&0) /€T |

E[ 88, (v*) /7" 88, (v*) /€7 ]:
8561‘1"(7*3 50)/71— 656&(7*7 50)/£T

Let the (i, j) block of J be J;;. Then,
=92 721057 Uy

Here, it follows that Jo1 = O because

F Hl - wf;i@} o 50)} -9

and

B\ ) o] =0T

Therefore, we have,
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By applying exactly the same arguments for 32_21 used for J=1, we got the asymptotic

variance of 6. ]

Proof of Theorem [2.4.2] Consistency and asymptotic normality of my proposed es-
timator are similar to proving Lemma We herein show our estimator attains
the semiparametric lower bound derived in Lemma Let fi(x) be the con-
ditional distribution of [ | r = 1]. From the same arguments that were used to
prove Lemma [2.3.1] it can be shown that the estimating equation in Theorem [2.4.2]
Sur(,0) = {S1(6)T, Sa(,0)} T is expanded as

Si(#) =nY) (1o g @) e ntzia)] + o nt?

=1 7'[‘( )
& _ oy T . __ T (0. b . .
$6.0) =71 S | U0 {1 LU 0w i 0.012)
+op(n~1?),

where I(¢; z;) = I1(p; x:) I2(9; 2i), J(0, p; zi) = [1(d; %) J2(0, p; 2;), and
m(¢o; Z) ’m}

Li(grx;) =1— E{ (¢ Z)

7 (¢ 2:)O(; zi){s0(9; zi) — g*(d; i) }
E{n=¢;Z)0(¢; Z) | zi} Pr(R=1]|z;)’
7 (5 21)O(¢; 2){U (6; 2:) — U*(0, s i)}
E{n=Y¢; Z)O(¢; Z) |z} Pr(R=1|x;)

L(¢p;z;) =

J2(0, ¢; i) =

Therefore, the asymptotic variance may increase due to the additional terms rG(¢)
and rH(¢), but this solution also attains the lower bound. At first, we focus on
the estimator for ¢. Once we get an unbiased estimating equation Y . ; ©(z;; @) =
0, the asymptotic variance can be given as Var{E(¢(¢o)) L(do)}, where p(do) =
0p(p) /0. Thus, for the proving purpose, it suffices to show that I(¢y) = 0 and
E(RI(¢)) = O. The former equation is trivial, so we only need to work on the latter
equation, which can be written as E(RI (¢g)) = E(RI1(¢o)I2(¢0))+E(RI(do) 1 (o).
The first term is zero from I;(¢g) = 0. Also, the second term is E(RI>(¢po)l1(¢h)) =
E{E(RIy(¢o) | X)I1(¢o)} = O. Hence, the last equation holds by the definition of
g*(¢; ). Therefore, rI(¢) has no effect on the asymptotic variance and my estimator
also attains the semiparametric efficiency bound. The same conclusion can be made

when estimating 6.
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Proof of Theorem According to equations (7)—(10) in Qin et al.| (2002), the

estimator is a solution to the following system of equations:
h(z;) —h
anm” 5 =0, (B.15)

er -0, (B.16)

*. Ologm(¢; z) 2 Om(yz)/0¢
;T‘z 8¢) _AQZTZ dl(Al,VV,(i)) _07 (B17)
A2 = nl/n_l;[,l (B.18)

where d;(A1, W, ¢) = m[l + A {h(z;) — by} + Xa{m(¢;2:) — W} and m = >0 | 7.
Note that the parameters to be estimated are A1, W, and ¢. It follows from (B.17)
that

¢’zz _ - ) fr((b;zi)
Z” TGz GO W @) (B19)

Thus, if we set Ay = 0, W =m/n, Ao = n/m, and d;(A, W, @) = )\27T(Zi) (B.17) (or
(B.19)) and ( - ) hold. By substituting the relevant terms in and (| -7 we
have ([2.9] . Because the probability that the estimator of |(Qin et al. (2002) has a unique
solution goes to one almost sure as the sample size goes to infinity, this is the unique

solution. O

Proof of Theorem [2.5.2] The proof can be made in a similar way to the proof of
Corollary 3 of Qin and Lawless| (1994). Define a function K : R! x R4t — RP? through
a function k : R* — R* by

K(r,z) = {W(q; i 1} k(z).

Recall that my estimating estimation is given
T }T

Similarly, define K*(-,-) through g*(x
as (2.10) with g(¢s ) = {g*(d12) ",

x; 3) is correctly specified such that g*(x) can be correctly computed. Wecompute the

)-
k(x)'}'. Here we assume a working model f(y |
asymptotic variance of (f) as if By were known, because the nuisance tangent space of

¢ and B are orthogonal, which implies the estimator B does not affect the efficiency of

QAS, as long as the working model is correctly specified. By using the standard argument
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of the GMM estimator, inverse of the asymptotic variance of the GMM estimator can

be obtained by

5 (0K (9K E(K*K*") E(K*K") | | E
opT )’ iy E(KK*") E(KK") E(

_ @ o 8K* * gm*x T \—1 * T K

_{E<8¢T), E(M)E(KK LE(K*KT) +E(8¢T>

X{ E(K*K*")™' Ogxx }_1 E(ng,*
Orxg Ay ~B(KKT)E(KKT) B (%) + B (%) [

where Opxq is a p X ¢ zero matrix, and

A1 =E(KK") - E(KK*"){E(K*K* ")\ 'E(K*K").

Therefore, it remains to show

0K * T * gmx 1 \—1 OK™ _
E<8¢>—E(KK VE(K*K*T) E<a¢>_0'

This follows from the facts

E (%5:) ~E(K*K*"), (B.20)
E (g{i) = —E(KK*"). (B.21)

We only show (B.20]) because (B.21) can be shown in a similar way. The left-hand side
of (B.20]) can be calculated as

E [{azTg*(cbo;w)} {W(;:?) - 1H +E [g*((ﬁo;w)aZT {w(aff; z) 1}]
= {9*@05“3)@; {wi z) 1}]

= _E {g*(¢05 w)m}

:_E[g*(%;w)E{ q;oo w}]
_ [g (¢0; @) E { ‘Zfo’, *’”} B0l 5]

E [O(¢0; Z){g" (0; )}®2]= ~B(K*K*T).
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Therefore the GMM estimator with g(¢;z) = {g*(¢;x) ", k(x)"} T also attains the
semiparametric efficiency bound. O
Proof of . Assume the condition in , compactness of the parameter space =,
and continuity of L(£) to show supgc=. L(€) < L(&o) in (3.6)), under three assumptions.

First, we show that

L(§) < L(&o) for & # &o. (B.22)

In fact, we have

B g (r®, y®); &) ® ..
=2 2 M a(r®, y@; &7 <T Y EO)

T
g:i(r®, y®; ¢) ()
< —1 r,y
<2 or {gt(r(“, y®); &) g ( Y 50)

where equality holds if and only if g;(7®), y®; &) = g:(r®, y®); &) a.s. Pe,, which
implies &€ = & from condition (5). Hence, we have (B.22]).

Now we shall prove (6). There is a minor but important gap between the conditions
in and (6). To fill the gap, we have to show that there are no sequences {&, }nen
that tend to £* € ZNE. such that they attain L(&*) = L(&p). Suppose that there exists
a sequence {&,}neny € E N E; such that L(&,) — L(&). Due to the compactness of
ENE., there exists a subsequence {&,, }ren of {€,} and £ € ENE; such that §,, — &*.
By the continuity of L, L(&y,) — L(&*) = L(&o), which contradicts (B.22)). Thus, we
have the conclusion. O
Proof of Lemma We suppress the parameter & for simplicity in the following

proof. Fort =1,...,T — 1, i.e., when data are missing,

gt(y(t), T(t))
= PI’(Rt+1 = O,Rt = 1, Y(t) = Ut)
=) Pr(Ryy1=0| Ry =1,v141)

Yt+1
t

x [[Pr(Re =11 Re1 = 1,0041) Pr(Y ) = v ).
s=2
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By the assumption of conditional independence, we have

a(y®, r®)

t—1
=Pr(Y1 = y1) [[ Pr(Re1 = 1| Ry = 1,05) Pr(Yar1 = ysy1 | )
s=1
x 3 Pr(Reyr =0 Ry = 1,vp41) Pr(Yep1 = yera | v;)

Yt+1

=71 (y1) H Cs(vs) [ 1— Z Ce+1(ve41)
s=2

Yt+1

Also, for t =T, i.e., when data are completely observed, we have

T
gr@@'™, vy =Pr(Rr =1,YD = 0D) = my () [ ¢s(ws)-
s=2

O
Proof of Theorem We show that conditions (3.5) and (3.7) are equivalent
when Y is binary, as is considered throughout but its extension for the continuous
case can be done analogously.

To show this, it suffices to prove that
gt (r(t)7 y(t) ; £> =0t (r(t)a y(t) ; EO) a.s. PE() vt
and

Gt(ve; &) = G(ve; o)  as. Pe, Vi

are equivalent, where

m1(y1; &1) == Pr(Y1 = y1; &1),
CG(vg; &) =Pr(Ry=1|Ri—1=1, ye—1, ys; &)
x Pr(Y: =y | vi—1; 6;)

and g; (r®), y®) is represented by the functions of 1, ..., 77 by Lemma Note
that

Gt(ve; &) = G(ve; o) as. Pey Vi = € =&
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and

G(ves &) = Ci(ve; o) a.s. Pey = & = 8o Vi

are equivalent since each expression of my(vy; &) = m(ve; o) a.s. Pg, is in terms of
each &. It is obvious that (3.7)) implies (3.5]); thus, we only need to prove the reciprocal

statement. From the condition when ¢t = T', we have

T T
[T ¢@s; € =] ¢sws; &),
s=1 s=1

where v; = (v;—1,y:). First, we assume that (s(vs; &) and (s(vs; &) are positive for

all s. It follows that

1o G5 &) _ G(vgs &)
[T G(vss &) Cr(vrs €)

VYo

which implies

ng_ll s(vs; &) CT(( ) 0); &o) CT(( Vr_1) 1); &o)

B.23
T Goloss &) (0107 8 G (0,11 © (523
Similarly, from the condition when t =7 — 1, we can obtain
-1 ; 1- yYr )
Hff} G(vs; &) (=22 G ((vrysyr) 50). (B24)
Hs:1 Cs('USQ EO) (1 - EyT CT((,UT—17yT); 5))

Thus, we have the following equalities:

CT((’UT—17O); 50) CT(( Vyr_q, ); 50) (1 Z 5
G008 Gl(v, 1) € (1=3, Go((vry,y); €))

in view of (B.23) and (B.24]). This yields

CT(( Uy, ) 50)+CT(<U )7
Co((07150); &) + G (v, 1)

using the fact that if a; /as = by /ba = ¢1/ca, then (a1 +b1)/(a2+b2) = ¢1/ca. Therefore,

we obtain

ZCT( Vo1 Yr); ZCT V1 Yr); €o)-
Yr
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Substituting this into (B.24]), we have

T-1 T-1
H Cs(vs; 6) = H gs(’”s? 50)
s=1 s=1

Repeating this operation, it follows that

t
H ’USa HCS vs, €O VtE {17T},
s=1
which means

Gt(ve; &) = Ce(ve; o) V.

Then, we assume that there exists u such that {,(vy; &) = 0 or (y(vy; &) = 0, and

define ug as
ug = min{l <u<T-1 | Cu(vu; E) =0or (u('vu; 60) = O}'

Here, we assume (y,(vyy; &) = 0 and Cy, (vuy; &o) > 0 without loss of generality, and
prove Cuo(vVuy; &) = 0. From the condition when ¢t = T, the following proposition must

be true:

T

V(v &) =0], (B.25)

k=uop+1
where AV B is the logical sum of A and B, i.e., it is false if and only if both A and B are
false and \/?:1 A;=A1VAyV---V A,. Similarly, from the condition when t > ug + 1,
we have

t

\/ [Ck(vk; o) = 0] v ZQH (ve+1; &o) =1 (B.26)

k=uo+1 Yt+1

is true, and when ¢t = ug + 1,

Z Cuo+1(Vug+15 &) =1 (B.27)

Yup+1
must hold. Considering the logical product of (B.25)—(B.27)), it holds that

T

\V [[Ck("UIw &) = 0] A [Z Cr(vrs &o) = 1” (B.28)

k=ug+1
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is true. It follows from (B.28]) that there exists k > ug + 1 such that (i (vg; &) = 0.
Then, it follows that

> Grlvrs &) =0,
Uk
which means that }_ (x(vk; &) = 1 does not hold for all k(> up + 1). Thus, (B.28)

cannot be true. Therefore, m,,(vy,; &) = 0. O

Proof of Theorem Let « be a finite dimensional parameter of f1(y | ) and the
true parameter be 9. Denote v = " if fi(y | ;%) = fi(y | ;%) holds for almost
all z. Here, the distribution of [y | ] can be represented with («, ¢), because by using

Bayes’ formula, we have

oy Nyl =y (2 9)
TWIE9) = Ty T (= @y (29

We give a proof for Theorem by taking two steps: (i) prove the identification
condition for f(y | @;v, ¢)m(2; @) is equivalent to that for [ fi(y | @;v)n 1 (2; ¢)dy
and the uniqueness of fi(y | @;7); (ii) derive the identification condition for [ fi(y |
;)7 (25 ¢)dy.

(i). Wefirst show

flylzy, d)n(z0) = fly | z;v, ¢ )n (2 ¢) (B.30)
is equivalent to
fily @) = fily | @) (B.31)
and
[ htl@nr oy = [ Al | e)m @6y (B.32)

It follows from (B.29) that

e OV ) — Ny [ z5)
fylzsy, d)m(2; 9) Th @ (= 9y (B.33)

Hence, (B.31)) and (B.32) imply (B.30). On the contrary, by taking integration with
respect to y in (B.30)) by using (B.33), we have (B.32) and then, (B.31) follows from
[B32) and (B33).
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(ii). By the result of (i), fi is unique in the sense of . It only remains
to show with the true distribution fi(y | «;70). By the definition of odds
function O(z;¢): 77 1(z;¢0) = 1+ O(z;¢) and [ fi(y | @;v)dy=1, the identification
of E1{O(Z; @) | x;~0} is the necessary and sufficient condition for the identification of

fly |z, d)n(z; @). [
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