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On Cauchy Problem for Linear Partial Differential
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1. Introduction.

This paper is concerned with Cauchy problem for the general system
of operators

-U-AU, (1.1)
σt

where A is an (my m) -matrix of differential operators of arbitrary order

Pn independent of such that
y" y at

Σ {2Λ)

The coefficients aij1'"^ may depend on the time variable teR] as well

as on the space variables χ = (χlf x2J ,xN)£Rξ.

We shall prove in this note that this problem has a unique solution
in a certain Hubert space under the general condition about A: the
hermitian part of A is semi-bounded in the sense of the norm induced
by other hermitian matrices B of operators. This is a generalization of
Leray's condition [7] which is used to solve Cauchy problem for regular
hyperbolic equations. We owe our proof of this assertion in my former
paper [12] essentially to Yosida's method on semigroup [13], but in
the present note we prove this by another direct method using the duality
of Hubert spaces of functions defined on the product space R]xR%.
The idea originates from Nagumo, who considered more general abstract
form of our theorem [10].

In Section 2 we consider a general uniformly strongly elliptic opera-
tor and introduce Hubert spaces used in the later sections. In Section
3 we give our main theorem which is applicable to reversible systems
which contain hyperbolic systems in the sense of Leray and to para-
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bolic systems in more general sense than Petrowsky's [11]. Furthermore
we show that our main theorem implies the hypoellipticity of such para-
bolic systems (Section 4).

The author wishes to express his hearty thanks to professor M.
Nagumo, Mr. S. Harada, who have given valuable suggestions through
kind criticisms and discussions and also to professor H. Terasaka for
his constant encouragement during the preparation of this paper.

2. Uniformly strongly elliptic operators.

We consider first of all a smooth system of complex linear differen-
tial operators in iV-Euclidean vector space Rξ or in iV+1-Euclidean
vector space R)xRξ: that is, the coefficients of operators are defined
over Rξ or R)xRξ, where they have bounded derivatives up to suffi-
ciently large order for the purpose at hand.

Let B(x, -^^j — ibijlxy ——)) (/, j = l,2, ~,tn) be an (m, m)-smooth
\ dx / \ \ dx//

system of differential operators in Rj*. Let O(B) be the set s={s(ί) | ί

= 1, 2, ••• >m} of positive integers such that the order o(b{j) of b{j does

xy — ) the part of order

of b

ί r) \

DEFINITION 1. We call that B[x, — ) is uniformly strongly elliptic,
\ dx I

if the hermitian part of H{x, iξ) = (/z,7(#, iξ)) is uniformly positive definite
for all xeRξ and all real vector i : | f | = l , i.e., there is a positive p
such that

Σij(h<j(x, iξ) + hjtix, iξ)) Ofis>p (1.2)

for any real vector v: |fl| = ( Σ |^, |2)* = 1.
ί = l

Then since H(x, iξ) + H(x, iξ)* is hermitian, using (1.2) with —f, we
see that

, iξ)+hjΊ(x, iξ)) ViVj^pΣ \ξ\2SCO\vA2 (2.2)Σ
for all complexes υx ••• υm. We write the above relation as follows:

where q'{iξ){= \ξ\2)=ξ\ + ξ\+ ••

Q's(iξ) =
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Now Ieti/(ΛΓ, ίξ) satisfy the following:

f o r a l l x ^ R ξ a n d a l l r e a l v e c t o r ξ:\ξ\=l a n d a l l c o m p l e x υ:\v\=l.
Then H(xyiξ) is hermitian. Let hij{xyξ) = h'ij(xyξ)+ih//j{xyξ) where the
h'ijiXy ζ) and h! ̂ xy ξ) are real. Then the matrix

H'(xytξ), -H"(xyiξ))

H"{xyiξ)y H'(xjξ)) ( 3 ' 2 )

is also hermitian positive definite, where H'(x> ξ) = (h/

ij(xy ξ)) and H"(x, ξ)

=(hϊj(x, ξ)).

By Leray's completion ([7]) of Garding's lemma and from (2.2) we

see the following

Xy ——) is uniformly strongly elliptic, then there is

a positive k{=kz) such that for any sufficiently small

where q{iξ) = q'{ίξ) + 1

QSM)=

and where p is the same as p in (1.2). Here B^>C means that

(Bu, «) = Σ | _ bjx, —-) urΰjdx ,

(Buy u) ̂  {Cuy u)

for u = (uly u2y ~ yum)e^S)x i.e., u{ is an infinitely differentiable function
defined on Rζ with compact carrier.

From Lemma 1 we see the following

Lemma 1'. If B[xy — ) is hermitian i.e.y (Bu} v) = (u, Bv) for any
\ dx /

UyVe&x and uniformly strongly elliptic (H(x,iξ) satisfies (Γ.2)), and if
we set

B[x,^) =
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where B(x)—)==B/(x>—) + iB//(xy~\ the coeβcients of Br and B"
\ 3χ J \ dx / \ dx /

being real. Then there are positive k and p such that

where s (i) = s(i), 5 (i + m) = s(i) for i = 1, 2, , m.

For Bix, ——) associates with (3.2).
\ dx /

Let qt be the differential operator 1 and let Bit, x, ) be a
a/2 \ dx/

smooth system, in R)xRξy which does not contain and which is
σt

hermitian and uniformly strongly elliptic with the same 5 and p for all
teR]. This operator is simply denoted by £c

c° (when teR] is fixed),
J5CS) or B. Furthermore we introduce Hubert spaces as follows:

DEFINITION 2. For any integer n and any set 5 of integers s(l),
••• , s(m)9 we denote by Hs

x and Hn

t\
s

x the completions of spaces ®* and
S)ίιJC with the following inner products respectively:

i = ίjRx \dχ I

where (for w<0 or s(ή<0) we set

qt{~itϊf(t)=(2?rΓ1 J e x p

where S*(/) a n ( i Sί(/) are Fourier transform of / with respect to x and
t respectively.

Lemma 2. Let B[tyx> — ) be an (m, m)-smooth hermitian (syrn-
\ Bx I

metric) system defined on R)xRξ mentioned above. Then the weak
t> xy —— )+k is an isomorphic opearator on Hn

e't
ι

x

+S onto
OX I

Hn

t\lΓs for any integers n and /, where l+s= {l+s(i)\i = l> 2, •-• , m}y and

k depends only on I and n.

Proof. By Lemma V we may assume that the coefficients of B and
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the Hubert spaces Hx

+S

 y Hι

x~~s are real. Then by Lemma 1 and by the

smoothness of B( ty xy ——) for any positive / there are positive k(ί) and
\ oχl

p(l) independent from t such that

(Qι

x(Bt + k(l))uyu)^p(l)(Q^suyu) for « 6 S , . (4.2)

Let

(Qι

x{B+k(l))u,u) for ue<S)tιX be the following:

(Ql{B+k(l))u,u)=[ ΛQl{Bt + k(l))u,u)dt for ue®ttX.

Then, since B+k{l) is symmetric, it follows from (4.2) that

((B+k(l)) Qι

xuy u)^p(l)(Q^suy u) for u e ®,>Λ;.

Setting u = Q~ιwy using a limit process the above inequality implies
that for any negative integer /

(Ql(B+k(l)) uy u)^p(l)(Qx+
&uy u) for u e 3),.,.

Since ^Qi(JB+*(/))^«,^^-^-^-Qi(B+*(/)) Uy U) =

xB'^uyu^-{QxB''uyu)y where 0{B')y 0{B")^sy i.e., o(Vis), oφ'β

^s{ί)+s{j)y we see that

(qtQx(B+k(l)) uy u)^p(l)(qtQx+
suy u)-P'(l)(Qx

+suy u)

-^\{{Qι

xB'-B'Ql)^uy u)\

for some positive //(/).
Thus by the smoothness of B' in R]xRξ for any integer / we see

the following:

(qtQi(B+k(l9 /)) uy u)^P(ly l)(qtQί+suy u) for u 6 ® / i j r .

In the same way as above we see that for any n^Q and any /

(qnΛQl(B+k(ny /)) «, u)^P(ny l)(qn

tQί+suy u) . (5.2)

Furthermore (5.2) implies that for any w:>0

(Qx(B+k(ny I)) qn

cuy u)^P(ny l)(qn

tQx

+suy u),

hence we see that (5.2) is valid for any n and /.
Finally from (5.2) it follows that for any n and /

\\(B+k(nyl))u\\nιl_s>p(nyl)\\u\\nJ+s

y I)) qn

tQlΓsu\\nJ+s-^p{ny l)\\u\\n>ι_s for u
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Accordingly we see that the duality of Hubert space implies our asser-
tion. (See §3, the proof of Theorem 1 and also [5] [6] [7]). Q.E.D.

t, xy ——) is not only the
oχ I

weak extension, but the strong one, i.e., Bu = v means that there is a
sequence {un} in 3)f>* such that un->u in Hn

e:
ι

x

+S and Bun-^v in Hn

t

a~s,
and that Lemma 2 implies that if v is in Hn

t\x~
s and u is in iff//+s such

that n'<^n, Γ<^1 and Bu = υy then u is in Hn

e'ιX
+s

y but that the assertion
of Lemma 2 is about differentiability of global solutions, but not about
that of local solutions. (See Theorem 7).

3. Main theorem

DEFINITION 3. We say that the hermitian part of a system
/ 3 \

A = A[tyxy—-) of type (2.1) is semi-bounded in the sense of the norm
\ oχ J

induced by a system B in § 2 if the following inequality holds for any
teR]:

<>•"' IT) <'• *' I T ) + A i ' ' έ ) i' *• i ) *»» <*• *• i )
(1.3)

for some continuous positive function a(t) on R).

For the sake of simplicity we consider only the case where cc(t) is
a constant and where the coefficients of operators and functions are all
real, as in §2.

By Leray it was shown that for a regular hyperbolic system of
operators (1.1), there are Rs such that they satisfy (1.3) with
— <xB<LBA + A*B. Then using the energy inequality followed from (1. 3)
and applying Cauchy-Kowalewski's theorem he solve Cauchy problem
for regular hyperbolic equations. Then by Friedrichs [2], Lex [6] and
Yosida [14] and others it was shown that without using Cauchy-
Kowalewski's Theorem that problem can be solved for normal hyperbolic
equations. Recently it was shown by S. Mizohata that applying Leray's
method to regular parabolic operators (1.1) in the sense of Petrowsky
[11] (See also S. D. Eidelman [1]), there are B's such that for some
positive a BιA + A*Bι<,-aB2y where O(£2) = OCB̂ 4), and that using T.
Kato's Theorem for semigroup Cauchy problem can be solved for such
equations. We show in this section that the weaker condition (1.3)
is sufficient to solve Cauchy problem for (1.1) when initial functions
and solutions ut are considered as elements in Hs

x.
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Throughout this section we assume that the hermitian part of A is
semi-bounded in the sense of the norm induced by a system B in § 2
where B is considered as ΰ + ^ for a sufficiently large k. Then setting
At = At—βI (β^>0) we see the following.

Lemma 3. For any «6® ί i Λ (1.3) implies the following inequalities:

Γ (4r"A)u'> ut))Btdt^sΓ ((ut, ut))Btdt (2.3)
J —CO \ (jf J J—OO

(3.3)

where ((u, v))Bt=(Btu, v) for u, ve®*, />ί 0 ) δ>0, /3>0.

Proof. Since j(# f ~- ut, u)j dt= -^(βtut, A w,) dt-\(Bt%, ut) dt,

where B'(t, x, ξ) =^~B{t, x, ξ) ,
at

{-§i~{A*~β)) U" Ut) dt = ~\ \{B/ U" Ut) dt-\^At"tUt) dt

{Btut, ut)dt.

SinceO(β/) = O(Bt) there is a α,>0 such that

\(B/ut, u^^a^BfU,, ut),

therefore j ( β ^ A _ ^ ut, ut) dt^(β-^ (a + a^(Btut, ut) dt.

Furthermore

Λ , ut) = (βt A «,, w,) + (ΰΛ, -Ĵ -«,) + (5/«,, ut)

= ((BtA,+A*Bt)ut, ut) + (B/ut, ut)

(^-AΪ)ut, ut)

(-A?jut, ut)

Therefore let β be ^ — (a + aj and 28 = 2β—(a + a1), then we see that

^-At) ut\\Btexp (δt)} .

Lemma 4. For any ve H°t\
s

x(s=O(B)), there is a ueH°e

f

t

s

x suck that

( — — A ) u = υ in the sense of the weak solution.
\ot I
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Proof. Let ((u, v))B be the inner product Such that

((uy v))B= J ^ ((uty vt))Bt d t f o r u y υ e ® t ι X .

Then there are positive numbers a and β such that

((uyu))B^a\\u\\2

0,s (4.3)

β||w|Ls|MLsI> I ((uy v))B\ for uy #G® ί>Λr.

Therefore ((uy v))B define the Hubert space which is isomorphic to H°t\
s

x.
The inequality (2.3) implies the following:

(5.3)

|κ | |B for ue<S)t,xy (6.3)

where the operator B'1 is considered as in Lemma 2. The B'1 in (6.3)
is a mapping from ®/(JC into Hf>x

+S for sufficiently large n and /. Then
from (6.3) it follows that for any v£H°t:

s

x there is a ueH°e;x such that

)=((v9f))B for

Then by a limit process

Furthermore by Lemma 2, we see that

) = (υ,f) for

This means that u is a weak solution. Q.E.D.

From now on we assume that the hermitian part of A is semi-
bounded in the sense of the norm induced by two smooth systems B
and Bf in §2 such that for s=O{B) and s' = O(B')

for any / = 1, 2, •••, m

where p = maxpij (/, j = l, 2, •••, m).

Theorem 1. For ϊmy veHo

t\xy there is a unique ueH°e;z suck that

=v (7 3 )

in the sense of the strong solution in H°t\
s

xy i.e., there is a sequence
{un} e ® ί i X such that
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un->u in H£i,

n->v in if?;*.

Proof. Let vn be in ®ίiJC such that {vn} converges to v in H°e;x.

Then by Lemma 4 there are un£H°t\
sJ such that ( A)un = vn in the

sense of distribution. Then using convolution and multiplication we see
that un is a strong solution in ffj ί. Thus we can apply (5. 3) to un—umy

accordingly \\un—um\\OtS<3'\\vn—vm\\OtSy which implies that {un} is a Cauchy
sequence in H°t\

s

x. Let u be a limit element of {un}. Then u£H°t\
s

xy un

converges to u in i/?;ί and #w converges to v in JΪJ J. Since un is a
strong solution we may assume that un belongs to 3)ίfΛΓ, thus we see that u
is a strong solution. The uniqueness of such solutions follows from (5. 3).

Here we remark that in the condition (1.3) of Theorem 1 we must
take oc(t) as a constant, but that in that of the following theorem a(t)
may be considered as a continuous functions, and A and B may be con-
sidered as smooth systems defined on [—«, n\xRξ for any n.

Theorem 2. Let v be a given element in H°\s

x and let g be a given
element in H%. Then for any to^>O there is a unique solution u £ C([0, ί o l HI)
such that there exists a sequence {un} in S)ί)Λr with following properties:

i) un->u in Ho

e;
s

x[0y to~]

ii) l — -A)un^>υ in H°t;
s

x[0y tj

iii) uM(0)-+g in HI.

Proof We may assume that A = A and a(t) is constant. Further-
more suppose first that v£<£)tιX. Now let gn be in CS)X such that gn-*g
in Hs

x. Then there exists a sequence {un'} such that for sufficiently
large mf

vH'(0) = 0.

Then setting vH'(t)=O for f^O, there is by Theorem 1 and from (3.3)
a solution u'ή such that
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)y Hs

x): continuous map on R] into Hs

x

in the sense of the strong solution. Then from (3.3) ^(ί) = 0
for ί^O. Therefore letting un = un + <y uneC(R), Hs

x). Furthermore

ί—-—A) un = υ + v» in the sense of distribution where υn

f(t) = 0 for f^O.

Then since un is also a strong solution, (3.3) is applicable to uny hence
for any fi>0, un(t) is a Cauchy sequence in Hs

Xf therefore there exists
a u(t) such that u(0)=g and such that un(t)-*u(t) in Hs

xy therefore for
any / 0 >0 un-*u in H?;J[0, tj.

If veH°e:
s

x there is vHe2)t,x such that vn-*v in //?;*. Then by the
above consideration there is un € C([0, ί0], ^ί) such that

in the sense of the strong solution in Ho

t\
s

x[0, to~] and

un(0) = g.

Therefore (3.3) is also applicable to un—um. Hence there is u such that
wn->w in C([0, f0], Hs

x). Here we can replace un by an element of 3)/iJc.
The uniqueness of such u follows from the inequality induced by (3.3).
Q.E.D.

Furthermore from now on we assume that the hermitian part of A
is semi-bounded in the sense of the norm induced by three smooth
systems Bf B' and B" in §2 such that for s = O(B), s' = O(B') and
s" = O{B')

s"(i) = s'{i) +p for any / == 1, 2, , m .

Theorem 3. Under the above assumption with constant oc(t), for any
veH°t\x the weak solution u in H°\x such that

is also the strong solution in Hΐ'J.

Proof. By Lemma 4 there is a weak solution u in H°t;x . Then it
is a strong solution in H°\x. Furthermore by the above assumption
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there is a strong solution w'ei/J j ' , hence it is also a strong solution in
H°t\%. Then by Theorem 1 u = vt in H%\%. Therefore u = tt in H°t £.

Theorem 4. Let v be in C([0, oo), Hs

x)r\H°tt

sJ and let geHsJ. Then
there exists uniquely u£C([0, oo), HSJ) such that

u(0)=g,

4-u(t) = Atu(t)+v(t) in Hs

x,(t^0),
at

where — u(t) is the strong derivative in Hs

x.dt

Proof, Let gn be in S), such that gn->g in Hx . Then as in the
proof of Theorem 2, there exists by Theorem 3 a sequence {un} such
that

un{ϋ)=gn.

in the sense of the strong solution in H°t;l'[0, to~] for any

Then by a limit process we see that for (ίo;

[
Jo

for / 9 ® , .
Since using (3.3) we can find u(t) 6 C([0, ί0], //*') such that for any t G [0,

un(t)^u(t) in Hi',
we see that

o

Therefore w(ί) has a derivative in the weak sense in Hx with respect
to t Atu(t)+v(t)eC([0y ί0], Hί). Accordingly u(t) has a strong derivative
in Hx. The uniqueness of such solutions follows from the inequality
induced by an inequality as (3.3). Q.E.D.

Furthermore we consider the relation between the condition (1.3)
and the semigroup with the infinitesimal generator At.

Theorem 5. Let At be the smallest closed extension of At in Hx into
itself. Then Άt has the following properties:

{a) any real X^>a(t) belongs to the resolvant set of Aty

φ) \\(l-— ΆXl\\Bt,<l + 2a{t) λ"1 for λ>2α(ί), and
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(c) (l — —At) is strongly continuous with respect to t in HSJ for

\>a(t).

Proof. The conditions (a) and (b) follows from (1.3) with respect
to Br by the same method as used in Theorem 3. Also (c) follows from

the fact that the weak solution and strong solution for (l Άλ u = v

in HSJ coincide in this case. Q.E.D.

By Theorem 5 and using some modification of Yosida's method on
semigroup we also obtain Theorem 4 with veCt(HsJ).

Here we remark that in (b) of Theorem 5 we can not in general
replace || \\Bf, by || ||5/ and we assert that our advantage is to start from
the relation (1. 3) without using the relation as (4.3), so that we can
treat Cauchy problem with initial function defined on whole space Rξ
for differential equations of different types at the same time.

Furthermore we remark that the inequality (b) in Theorem 5 im-
plies that the hermitian part of A is semi-bounded by the norm induced
by B'.

4. Application.

In this section we give applications of Theorem in § 3 First we con-
sider a generalization of Leray's regular hyperbolic equations, (see
[3], [4] and [7])

Let a differential operator a:

w- H'' x i ) P + - + "-('• * -k) α 4)

ooth operator d
integer
be a smooth operator defined on R)xRξ such that for some odd positive

ϋ) oia^i-iy^^a^^ip for any ι = 0, 1, - , m - 1

iii) o(aμj-afiίt)^(i^rj+\)p for any /, /, = (), 1, — , m-\ .

Furthermore let a/ be the part of order (i + l) p of a{ and let a\t, xy ξ) be

£? + <(/, x, f*) ξZ~ι+ - +<-i(f, x, £*),

where ^* = (0, ξly ξ2 •••, ξN). Then we assume that a satisfies the follow-
ing condition: the equation of λ
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a'(t, x, λ(l, 0, ••• ,0) + (0, Vι.» VN)) =

has real roots v^t, x, η*) such that

\υt(t,x, v*)~Vj(t,x,v*)\>b (2.4)

0
0
0

0

1
0
0

0
—a 2

0
1
0

0
—a 3

: 0
o
o
o

-alt

0 ϊ
0
0

1

for some positive b> for different ί, j (i> j= 1, 2, •••, m), any (#, ί) e R]xRl,
and any ?/*: |*7*| = 1 .

Now let yl be the matrix;

A =

and let i4' be the matrix obtained by replacing oc{ by ocf in A. Then
from (2.4) there is a matrix B" = (δ£ (f, ΛΓ, I*)) such that

Γ) β7/ is positive definite and symmetric for any (t, x) eR]xR%,
and in fact B">PI for £*: |£*| = 1 and for any (t,x)3R)xRξ where
p is determined by b in (2.4) and the maximum of absolute values of
coefficients in a'(t, x, ξ*)>

20 b'/j(t, xy f*) is a real polynomial δ f t « , α/,..., am_λ) of α/(ί, x, ξ*)
such that each term of b"j is oί order ((m(m — l)+2—i—j) p with respect
to f* for any ί, jtr.

30 6<;«, < , , < - i ) = ^ « , <,-••,<-!) for any ί, i = l , 2, ,m,
40 β / 7 « , < , ... , <_,) i 4 7 « , < , .- , <_,)

for any real vector ao\

Let 6; 7 «, < • ••,
from 20

_!) = ( - D b\;«, <_,). Then

Therefore we see that
1) B/ = B/(b/

ij{ak(t, xyiξ*)) is positive definite hermitian for any
(t,x)eR)xR*} and in fact ff>pl for £*: |f*| = l and for any (ί, Λ)

2) 6;v(ί, x, iξ") = bf

ij{aι;{ty xy /!*)) is a real polynomial of tf/(f, x, iξ*)9

3) δί/«(/, Λ, 1?*)) = &;,«(*, x, -ίl*))
4) 5 ' « ) ^ ( O - ί - ^ r ^'((-l)""*- 1 ^ α/) B'{μi')=Q for any complex

scalar α,-(ί, JC, if*) where I* is a real vector.

Since 20, 30 and 40 are satisfied for arbitrary real a/(t, x> £*) of
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(1.4) without (2.4), 2) 3) 4) are satisfied for a{ with i). Therefore in
particular 4) is satisfied for any complex vector {a/} such that
ak' € (t)ck+OP R. Accordingly 4) is a trivial relation for any commutative
free algebra over real field with m generators.

Furthermore let D be the diagonal matrix whose diagonal elements

are all b/
11{a/(tJxy—-j). Then since b'n(ac/(ty xy /£*))>/, for some p'

and for any f* : | £* | = 1 we see by Lemma 1 that

where s(i) = ~hl-i)py sf(i)^=s{i)+—m{m-l)pyky>0 and α

Furthermore we may assume that D=Dφ'ιl{at)) and Bf = B'(£<v(α
From ii), iii) and 4) and by the above remarks we see that

accordingly

O(B'*D*A -f A*B'*D*) <s'.

Therefore for some positive β

I (DB' + B'*D* + k) A + A*φB'+B'*D*+k) \ ^β(DB'+ B'*D+k).

Let B = DB' + B'*D* + k. Thus we see that the hermitian part of A
is semi-bounded in the sense of the norm induced by B, Such B is
made by the same way as above for sufficiently large O(B). Therefore

—- — A) and we see the following
at /

Theorem 6. Under the assymption ΐ)y iϊ)y in) and (2. 4) Cauchy pro-
blem for a is well posed in the following sense: for any v££C-I,I:J(®L2C*))

and any gi^&L2^ there is a unique solution ue £C-I.I:Ϊ(®Z,2GO)
 such that

) = ^ for ι = 0,l,2,-. , » ι - l .

Here we remark that for p = 1 our equation with condition (2.4) is
regular hyperbolic in the sense of Leray. In this case we can find a
more direct proof of the existence and unigueness theorem for Cauchy
problem using only the consideration of chapter VI in [6] and refine
his result (see also [4]). Furthermore we remark that for m — 2 there
exist other reversible equations (See [12]. Ex. 3).

Next we consider systems of operators which stand against rever-
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sible systems within systems (1.1) satisfing the condition (1.3). These
are parabolic systems, which are investigated in [1] and [9]. Here we
give a more general definition of parabolic system from our abstract
point of view. Then we show that our theorems in § 3 are applicable
to such a system and furthermore that the hypoellipticity is a direct
consequence of Theorem 1.

We say that (———A) is parabolic if it satisfies the following condi-
\ at J

tions:

i) A=(ah) is an (mvm)-smooth system defined over R]xRξ such

ty x, -^—))^p(i)—p(j)+2p where p andρ(i) are positive integers.

ii) there are (m, m)-smooth systems Bh and Bh+P described in § 2
such that

O(Bί) = {/—p(i)} for some positive integer lo^> max (p(i))+p,

i = 1, 2, ••• , m

O(Bl0+p)={l0+p-p(i)}, and

BloA+A*Blo<L—ocBh+p for some positive a. (3.4)
Now we denote Hn

t'°x

CB^ by H(ny /0). Then from (3.4) in the same
way as in the proof of Theorem 6 and Lemma 2 it follows that replac-
ing A by A—βt for some positive βly (3.4) is valid for any /^/ 0, i.e.,
that for any /:>/0 there is Bt such that denoting Aι = A—βj

BiAi + Aι*Bι <L—<XιBι+p (4.4)

for some positive aι and for positive β^k^O.

From (4.4) we see that

•—~~Af+p) Bι+pu> u)^>y(Bj+2pu, ύ)

for some positive 7 and for any M G ® / ) X ,

Therefore

Bι+pUy {~~lk~~Λf+p) B^Pu)^\Bι+2puy u).

Setting Btu' = Bι+pu, by Lemma 2 the above inequality implies that

, W)

for some γ i > 0 and for any w'e®,,*,

since Bι+P and Bt are isomorphic transformations from H(n, l+2p) onto
Hn,ι-ι+Paπ a n d f r o m H ^ /) o n t o Hn,<-ι+Pim respectively.

Thus we see by Theorem 1 and using convolution operator that for any
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veH(0, I) there is a weak solution ueH(0, l+2p) such that

Using the above fact by Theorem 3 and by Lax's method ([6]) we see
the following.

Theorem 7. Any parabolic system is hypoelliptic where we assume
that coefficients, of A are infinitely differentiate.

Proof. First we show that if υeH(ooy oo)(Ω), U£ H(0, l+2p)(Ω) for

/^/0 and (——A)u = υ in Γ2, then ueH{ooy oo)(Ω).
\ ot I

For let ψ be in ^ttX such that φ(x) = l for #€ί2'(ί2'CIί2) and φ(x)=0
for x£Ω,"> where Ωί and ί27/ are open subsets of the open set ί2 of
R)xRι

x. Then

^ A ) φ u φϋ + t/, υ'£H(Oy

ot I

Therefore ueH(0> l-\- 2p + l) (Ω') by the above consideration in particular
by Theorem 3. By repeating the above process, we see that u € ίf(0,

oo)(ίT). Then since -^-u = Au + v, ueH{co, oo)(ίy). (See[12])
ot

Next we assume that ueH(0, —I). Then

-A)φu = φυ + t/9 υ'eH(0, ~l-2p + l)
ot I

Therefore for any integer

, t/'eH(0, -l-2p+2s + l)

Thus Q-sφueH(0, -/+25 + 1), and hence ueH(0, -/+I)(ί27). Therefore
we see that ueH(0; l+2p){Ω') for l^l0

Finally we assume that ueH(—n, —l)(Ω). Then

9 v'£H(-n, -l+l-
ot

Therefore

v"£H(ny -l-2p+2s). Therefore QjnQ-sφueH(n + l, -l-2p+2s) and
so ueH(-n+\ -l-2p)(Ωf). Thus we see that ueH(Of -l-n-2p)(Ω').
Accordingly using the second step described above we see that

)(O'). Q.E.D.o o )
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Finally we add that for such generaliged parabolic system mixed
problem of Dirichlet type can be solved but, in general, in the weak
sense.

(Received March 22, 1957)
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