|

) <

The University of Osaka
Institutional Knowledge Archive

On Cauchy problem for Llinear partial
Title differential equations with variable
coefficients

Author(s) |[Shirota, Taira

Citation |Osaka Mathematical Journal. 1957, 9(1), p. 43-59

Version Type|VoR

URL https://doi.org/10.18910/6926

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Osaka Mathematical Journal
Vol. 9, No. 1, June 1957.

On Cauchy Problem for Linear Partial Differential
Equations with Variable Coefficients

By Taira SHIROTA

1. Introduction.

This paper is concerned with Cauchy problem for the general system
of operators

o
_ 1.1
> AU, 1.1)

where A is an (m, m)-matrix of differential operators of arbitrary order
p:; independent of % such that

A:(aij)
bij At e an
aij= 2 at(]}“AN) aA—T (i, j':l, 2’ e m) . (2. 1)
A FAx =0 ox - 0N

The coefficients af}l A7) may depend on the time variable #€ R! as well
as on the space variables x=(x,, x,, -+, x5) € RY.

We shall prove in this note that this problem has a unique solution
in a certain Hilbert space under the general condition about A: the
hermitian part of A is semi-bounded in the sense of the norm induced
by other hermitian matrices B of operators. This is a generalization of
Leray’s condition [7] which is used to solve Cauchy problem for regular
hyperbolic equations. We owe our proof of this assertion in my former
paper [12] essentially to Yosida’s method on semigroup [13], but in
the present note we prove this by another direct method using the duality
of Hilbert spaces of functions defined on the product space R}xR3.
The idea originates from Nagumo, who considered more general abstract
form of our theorem [10].

In Section 2 we consider a general uniformly strongly elliptic opera-
tor and introduce Hilbert spaces used in the later sections. In Section
3 we give our main theorem which is applicable to reversible systems
which contain hyperbolic systems in the sense of Leray and to para-
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bolic systems in more general sense than Petrowsky’s [11]. Furthermore
we show that our main theorem implies the hypoellipticity of such para-
bolic systems (Section 4).

The author wishes to express his hearty thanks to professor M.
Nagumo, Mr. S. Harada, who have given valuable suggestions through
kind criticisms and discussions and also to professor H. Terasaka for
his constant encouragement during the preparation of this paper.

2. Uniformly strongly elliptic operators.

We consider first of all a smooth system of complex linear differen-
tial operators in N-Euclidean vector space RY or in N+1-Euclidean
vector space RlxRY: that is, the coefficients of operators are defined
over RY or R} xRY, where they have bounded derivatives up to suffi-
ciently large order for the purpose at hand.

Let B(x, i> =<b,-j<x, i)) (¢, j=1,2,---,m) be an (m, m)-smooth

ox ox

system of differential operators in RY. Let O(B) be the set s={s(})|¢
=1, 2, .-, m} of positive integers such that the order o(b;;) of b,; does

not exceed s(f)+s(j) and let us denote by h,.j<x, §-> the part of order
. 2 *
s(@) +s(j) of b,-]-<x, 5;)

DeriniTION 1. We call that B(x, g) is uniformly strongly elliptic,
x

if the hermitian part of H(x, i§) = (h,,(x, i€)) is uniformly positive definite
for all x€ Ry and all real vector &:|§| =1, ie. there is a positive p
such that

Eij(hij(xy i§)+hji(x; i£)) Uivj>P (1.2)
for any real vector v: |v|=(2f] |v,.|2)%=1.

Then since H(x, i)+ H(x, i€)* is hermitian, using (1.2) with —&, we
see that

iy, 16) + e, TE)) 00,2 p 3 1E170 o, 2.2)
for all complexes v, ---v,,. We write the above relation as follows:
H(x, i€)+ H(x, i£)* = pQ’°(i€) ,
where ¢'(i§)(= |£]°) =& +E3+ - +£&%,
L (1
Q,S(ZE) —_— < . )
ql(z'g)s(m)
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Now letH(x, i£) satisfy the following:
for all x € RY and all real vector £:|£]=1 and all complex v:|v|=1.
Then Hix, i§) is hermitian. Let &,;(x, &) =h;(x, &) +ih}}(x, £) where the
hij(x, €) and hfj(x, §) are real. Then the matrix

[H’ (x, %), —H'(x, if)]

H'(x,i8),  H (i) 5.2
is also hermitian positive definite, where H'(x, §) = (#};(x, §)) and H"(x, §)
=(hi}(x, £)).

By Leray’s completion ([7]) of Garding’s lemma and from (2.2) we
see the following

Lemma 1. If B(x, > is uniformly strongly elliptic, then there is
x
a positive k(=Fk,) such that for any sufficiently small E>0

B(x, i) + B(x, o
ox

* )
where q(i€) =q'(1§) +1

’ q(i€)*™ J

Here B>C means that

g€y’ ™®
Qi(t€) = [ '

and where p is the same as p in (1.2).

G} _
(Bu, u) = ,2] s\Rﬁvb"I(x, —a—x> u,--ujdx )
(Bu, u) = (Cu, u)
for u=(u,, u,,

defined on RY with compact carrier.

JU) €D, e, u; is an infinitely differentiable function
From Lemma 1 we see the following

Lemma 1. If B(x,—a—
X

> is hermitian i.e. (Bu,v)=(u, Bv) for any
u, vED, and uniformly strongly elliptic (H(x, i€) satisfies (1'.2)), and if
we set

/ 8 . /!
(s ) B("’ﬁ)’ B(x )
)a—

9
’ ax
o 2
B//(x’ f—> , Bl ( ) ——
ox * ox

)



46 T. SHIROTA

9 5% 9 2724 9 ; 4 /!
where B<x, 5J‘:—>—B(x, a—x>+zB (x, a), the coefficients of B’ and B

being real. Then there are positive k and p such that
= o s/ ©
B ’ —> + ;('_—) ’
<x ax) ThEP 5
where 5@)=s@), SG+m)=s@) for i=1,2, ---,m.

For B(x, —%) associates with (3. 2).

12
Let g, be the differential operator 1—% and let B(l, x, -aa—> be a
2 x

smooth system, in R;xRZ, which does not contain —887 and which is
hermitian and uniformly strongly elliptic with the same s and p for all

te R;. This operator is simply denoted by B{® (when ¢€ R} is fixed),
B® or B. Furthermore we introduce Hilbert spaces as follows:

DerFINITION 2. For any integer #» and any set s of integers s(1),
..., s(m), we denote by H; and H7; the completions of spaces D, and
®,., with the following inner products respectively:

((w, v)),= iZm ij," qx<—%>% u;(x) v;(x) dx

. m a [ a S d d
((ze, v))ﬂ-s_tg XR}fo 4t<'2'37> qx(*a—x> u;(t, x)-v;(t, x) dtdx ,

where (for n<0 or s(?)<0) we set

qx<—aa—>$(i) f(x) = (2”)_1\,[ €xp (27tzx'§) qx(if)SU) %x(f) dfldgz di ’
X

q:(%)nfm = (27)™ X exp (27it-7) q(ir)" Fo(f)(7) d,

where .(f) and BF,(f) are Fourier transform of f with respect to x and
t respectively.
Lemma 2. Let B<t, x, ai> be an (m, m)-smooth hermitian (sym-
x
metric) system defined on R; xR} mentioned above. Then the weak

extension of B<t, x, 58—>+k is an isomorphic opearator on H7PL*® onto
x

H?L~ for any integers n and I, where [+s={l+s()|i=1, 2, --- ,m}, and
k depends only on I and n.

Proof. By Lemma 1’ we may assume that the coefficients of B and
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the Hilbert spaces H.**, H.™® are real. Then by Lemma 1 and by the
smoothness of B<t, x, —3) for any positive / there are positive k(/) and
x

p(/) independent from ¢ such that

(QUB,+k() u, ) =p()(Qi °u, w) for uewD,. 4.2)
Let
(QLUB+E() u, u) for ue?D, , be the following:

(QLB-+k(D) uy u) = SRI(Q;(B,+k(l)) u,u)dt for ueD,,.

Then, since B+k(/) is symmetric, it follows from (4.2) that
(B+E(D) Qiu, ) =p()(Qi+°u, u) for ueD,,.

Setting #=@Q;'w, using a limit process the above inequality implies
that for any negative integer /

(QUB+kR(D) u, W) =p()(QL*u, u) for uecD,,.

Since (Q;(B+k(l)) a% u,a% u> —<—88—;Q;(B+ kD) u, u> = —(Q,‘,B’u,a% u)

=(QtB -2, u)—(@:B"u, w), where O(B), O(B")<s, ie, obl), o)
<s(i) +s(j), we see that
(¢:QUB+E(D) u, ) =p () (g, QL *u, u)—p’ () (QL**u, u)
_ LB —BQy-°
> [((QiB'— B'Q}) Y u, u)l
for some positive p’(/).

Thus by the smoothness of B’ in R; xR} for any integer / we see
the following:

(q:QNUB+E(1, D) u, uy=p(1, )(qQ4 'u, u) for ueD,,.
In the same way as above we see that for any #>0 and any /
(gH(QLB+k(n, 1) u, u)=p(n, 1)(g:QL" *u, u) . (5.2)
Furthermore (5.2) implies that for any #>0
(QUB+Ek(n, 1)) gou, u)=p(n, )(g:Q%+ u, u),

hence we see that (5.2) is valid for any » and /.
Finally from (5.2) it follows that for any » and /

”(B+k(n» l)) u”n,l—sz—p(n’ l)||u||n.l+s
llgz"Q “*>(B+k(n, ) i@ "ullyrrs=pn, Dltllp;-, for ueD,,.
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Accordingly we see that the duality of Hilbert space implies our asser-
tion. (See §3, the proof of Theorem 1 and also [5][6][7]). Q.E.D.

Here we remark that our extension of B<t, x, ai> is not only the
X

weak extension, but the strong one, i.e.,, Bu=—v means that there is a
sequence {#,} in 9®,, such that ,—u in H}}** and Bu,—v in H}L°,
and that Lemma 2 implies that if » is in H?!™* and # is in H?** such
that »'<n, '<! and Bu=wv, then # is in H?!**, but that the assertion
of Lemma 2 is about differentiability of global solutions, but not about
that of local solutions. (See Theorem 7).

3. Main theorem

DeriniTION 3. We say that the hermitian part of a system

A=A<t, x, %) of type (2.1) is semi-bounded in the sense of the norm

induced by a system B in §2 if the following inequality holds for any
teER}:

o 2Vear(tn 2Bt w2 )t B n 2)
B<t, X, ax>A<t, x, 8x>+A t, x, o Bl ¢, x’é} <«(t) Bl t, x, 5%

(1.3)
for some continuous positive function «(#) on R}.

For the sake of simplicity we consider only the case where «(#) is
a constant and where the coefficients of operators and functions are all
real, as in §2.

By Leray it was shown that for a regular hyperbolic system of
operators (1.1), there are B’s such that they satisfy (1.3) with
—aB<BA+ A*B. Then using the energy inequality followed from (1. 3)
and applying Cauchy-Kowalewski’'s theorem he solve Cauchy problem
for regular hyperbolic equations. Then by Friedrichs [2], Lex [6] and
Yosida [14] and others it was shown that without using Cauchy-
Kowalewski’s Theorem that problem can be solved for normal hyperbolic
equations. Recently it was shown by S. Mizohata that applying Leray’s
method to regular parabolic operators (1.1) in the sense of Petrowsky
[11] (See also S.D. Eidelman [1]), there are B’s such that for some
positive &« B/A+ A*B,<—aB,, where O(B,)=0(B,A), and that using T.
Kato’s Theorem for semigroup Cauchy problem can be solved for such
equations. We show in this section that the weaker condition (1. 3)
is sufficient to solve Cauchy problem for (1.1) when initial functions
and solutions #, are considered as elements in H.



On Cauchy problem for lincar partial differential equations with variable coefficients 49

Throughout this section we assume that the hermitian part of A is
semi-bounded in the sense of the norm induced by a system B in §2

where B is considered as B+k for a sufficiently Iarge k. Then setting
A,=A,—BI (3>>0) we see the following.

Lemma 3. For any u€®,, (1.3) implies the following inequalities .
[ (=) ws, dt= 5[, us,at 2.3)

t, 8¢ t a

el =l 1,4 [ fler(-2-

0 2 or

—A,) 5, d} (3.3)
((, v)g,= (B, v) for u,veD,, t>>t,, §>0, B>0.

) 5, 9 ’
Proof. Since S(B, BF Uy, u,> di= —S(B,ut, B u,) dt—S(B, u,, u, dt,
where B'(4 x, £) —:Sit B(t, x, &),

where

S(B< —(4; 18)> Uy Uy) dt = — —;— S(Bt, Uy Uy) dt_‘S(BtAtutut) dt
+,6’S(B,u,, u) dt.
SinceO(B/) =0O(B,) there is a a, >0 such that

[ (B{u;, u,)| éal(Btut; uy) ,

therefore S(B,(%—/L) Uy, u;) dit > (B—% (a+ aQ)S(B,u,, u,) dt.

Furthermore

o ) ,
g_t- (Buy, uy) = < t a Uy ut> + (Btuh ?I; ut> +(B/u,, uy)
= ((Bv/I +A*Bt) uy, u)+ (B/us, uy)
+2(B<— a ) “,, u,)

<(a+a,—2B)(Bu,, ,)+2(B,<—— A)u,, u,)

Therefore let 8 be ;_;_ (x+«a) and 26=28—(a¢+«,), then we see that

d 9
& w1, exp 1= (15— A.) s, exp (0} .

Lemma 4. For any ve€ Hyi(s=O(B)), there is a uec H}} such that
(%—A) u=uv in the sense of the weak solution.
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Proof. Let ((u, v))z be the inner product such that
((u) v))B“: Soj ((ut, vt))Bt dt for U, v € gt.x .

Then there are positive numbers «¢ and B such that

((w, ) p=allull3,s 4.3)
BHu”o.s”vHa.sg I ((u) v))B| for u’ ve gt.x .

Therefore ((#, v))p define the Hilbert space which is isomorphic to HZ:.
The inequality (2.3) implies the following:

(-2 =) ulls=3llul 6.3)
||B-l(——§7—fi*) Bullz=3\ull; for ue®,,, (6.3)

where the operator B™ is considered as in Lemma 2. The B™* in (6.3)
is a mapping from 9, , into H7}i** for sufficiently large » and /. Then
from (6.3) it follows that for any v€ H?: there is a u€ H2 such that

(@, B (—5, =A%) Bo=(0, )y for fedD,..

o
Then by a limit process
_9 _ —*> _
w, o —A*) Bf) = (v, B)
Furthermore by Lemma 2, we see that
w (—o=A)N=01) for fed,..
This means that # is a weak solution. Q.E.D.

From now on we assume that the hermitian part of A is semi-
bounded in the sense of the norm induced by two smooth systems B
and B’ in § 2 such that for s=0(B) and s'=O(B’)

s'@)=s@)+p for any i=1,2 -, m
where p=maxp,; (@, j=1,2,--,m).
Theorem 1. For any ve H{;, there is a unique u€ H?: such that
2 -
<§—A> u=1 (7.3)

in the semse of the strong solution in H?:, ie., there is a sequence
{u,} €D, , such that
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Uy—>U in Hpj,
2 _

——A)u,—v in o,

(at n b,

Proof. Let v, be in ®,, such that {v,} converges to v in HZ:.
Then by Lemma 4 there are u,€ H2$ such that <—887—A> u,=v, in the

sense of distribution. Then using convolution and multiplication we see
that «, is a strong solution in H{;. Thus we can apply (5.3) to u,—u,,,
accordingly l|u,,—u,;,||0,sgb"||v”—vm||0,s, which implies that {«,} is a Cauchy
sequence in HY;. Let u be a limit element of {«,}. Then uc H:, u,
converges to # in H{; and v, converges to v in H¢:. Since u, is a
strong solution we may assume that «, belongs to &, ,, thus we see that «
is a strong solution. The uniqueness of such solutions follows from (5. 3).

Here we remark that in the condition (1.3) of Theorem 1 we must
take a(f) as a constant, but that in that of the following theorem «(¢)
may be considered as a continuous functions, and A and B may be con-
sidered as smooth systems defined on [—#n, n]xRY for any #.

Theorem 2. Let v be a given element in HYS and let g be a given
element in HS. Then for any t,>0 there is a unique solution u € C([0,t,], H?)
such that there exists a sequence {u,} in D, , with following properties:

i) wuw,—u in H[0, t]
.. 1) .
ii) (5;7_A> U,—>v in HZIO, 4]
i) ,0)—g in HE.
Proof. We may assume that A=A and «(f) is constant. Further-
more suppose first that v€%D,,. Now let g, be in ®, such that g,— g

in H:. Then there exists a sequence {«,} such that for sufficiently
large m’

u, €D,
u, (0)=g,
&)
o—(gp—4)w =,
v,/(0)=0.
Then setting v,/(f) =0 for ¢# <0, there is by Theorem 1 and from (3. 3)
a solution #, such that
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u) € C(R};, H}): continuous map on R! into H?
(%)

____A) ;‘/=v”/

< )"

u,0)=g,.

in the sense of the strong solution. Then from (3.3) #/(t)=0
for +<0. Therefore letting u,=u, +u,, u,€ C(R}, HS). Furthermore

(%—A) u,=v+v, in the sense of distribution where v,’(f) =0 for #>0.

Then since %, is also a strong solution, (3.3) is applicable to #,, hence
for any =0, «,(f) is a Cauchy sequence in H;, therefore there exists
a u(f) such that #(0)=g and such that «,(f) —u(f) in H:, therefore for
any t, >0 u,—u in H2I[O, ¢,].

If ve H}} there is v,€9,, such that v,—v in H:. Then by the
above consideration there is u,€ C([0, ¢,], H:) such that

5]
(a_t—A> un— i),,

in the sense of the strong solution in HI[0, ¢,] and
u,0)=g.

Therefore (3.3) is also applicable to #,—wu,,. Henceé there is # such that
u,—u in C([0, ¢,], H;). Here we can replace %, by an element of 9,,.
The uniqueness of such # follows from the inequality induced by (3. 3).
Q.E.D.

Furthermore from now on we assume that the hermitian part of A
is semi-bounded in the sense of the norm induced by three smooth
systems B, B® and B” in §2 such that for s=O0(B), s =0(B’) and
' =0(B’)

s'(@)=s(@) +p
s"@)=s@+p for any i=1,2 ---,m.

Theorem 3. Under the above assumption with constant «(t), for any
ve HoY the weak solution u in H¢: such that

9 -
(5=4) »=>,

is also the strong solution in H?3 .

Proof. By Lemma 4 there is a weak solution #» in HZ:. Then it
is a strong solution in H{j. Furthermore by the above assumption
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there is a strong solution #' € H2¢ , hence it is also a strong solution in
H{:. Then by Theorem 1 u=u' in H?:. Therefore u=u in H?Y .

Theorem 4. Let v be in C([0, o), H)NHSY and let g€ HY. Then
there exists uniquely u€ C([0, o), HY) such that

% w(t)=Ag(f) +o(t) in H:,(=0),

where %u(t) is the strong derivative in H?.

Proof. Let g, be in D, such that g,—g in HY. Then as in the
proof of Theorem 2, there exists by Theorem 3 a sequence {,} such
that

u, € C([0, t,], HY)

0
<87*A> Un=1,

u,0)=g,.
in the sense of the strong solution in H:T0, #,] for any # >O0.
Then by a limit process we see that for (£,>¢>0)

(), .= [ LA, ).+ (@), N dr+ (&, 1),
for f59,.
Since using (3.3) we can find u(¢) € C([0, #,], HY) such that for any ¢ € [0, £,]

u,(t) >ut) in HY,
we see that

(@, .= [ LA, ).+, )1+ ),

Therefore «(f) has a derivative in the weak sense in H: with respect
to t Au@)+v(t) e C([0, t,], H). Accordingly «(¢) has a strong derivative
in H:. The uniqueness of such solutions follows from the inequality
induced by an inequality as (3.3). Q.E.D.

Furthermore we consider the relation between the condition (1.3)
and the semigroup with the infinitesimal generator A,.

Theorem 5. Let A, be the smallest closed extension of A, in HE into
itself. Then A, has the following properties:

(@) any real \>a(t) belongs to the resolvant set of A,
®) “(1—31( /T,)_lng,/ <1+2a(t) M for A>2a(t), and
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: ~\-1
(c) ( —i—A) is strongly continuous with respect to t in HZ for

A>a(l).
Proof. The conditions (a) and (b) follows from (1.3) with respect

to B’ by the same method as used in Theorem 3. Also (c) follows from

the fact that the weak solution and strong solution for <1—% ﬁ,> u=v

in H coincide in this case. Q.E.D.

By Theorem 5 and using some modification of Yosida’s method on
semigroup we also obtain Theorem 4 with »e€ C,(HY).

Here we remark that in (b) of Theorem 5 we can not in general
replace || ||z, by || ||y and we assert that our advantage is to start from
the relation (1.3) without using the relation as (4.3), so that we can
treat Cauchy problem with initial function defined on whole space RY
for differential equations of different types at the same time.

Furthermore we remark that the inequality (b) in Theorem 5 im-

plies that the hermitian part of A is semi-bounded by the norm induced
by B'.

4. Application.

In this section we give applications of Theorem in §3 First we con-
sider a generalization of Leray’s regular hyperbolic equations. (see

[3], [4] and [7]
Let a differential operator a:

o™ o > o1 o )
=m T& ty v i +am— y My T~ ‘4
o+t ) o (675 -9

be a smooth operator defined on R}!xRY such that for some odd positive
integer p=>1
i) o(a)=(E+1)p
i) o(@,—(—1)¥™? aX) <ip for any i=0,1, - ,m—1
iil) o(@a;—aa)<(i+j+1)p for any 4, 7,=0,1,--,m—1.
Furthermore let «; be the part of order (+1) p of «; and let &'(¢, x, £) be
f:)n""a I(t; X, '-{:*) 50_1+ +a;n—1(t, X, ‘f*) ’

where &=(0, &,, &, ---,&5). Then we assume that « satisfies the follow-
ing condition: the equation of A
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a,(t; X, 7\'(1) 0’ R 0)+(0’ L/} 77N))=0
has real roots v,(¢, x, #*) such that
[vi(t> X, "l*)—vj(t’ X, 77*)] 2b (2- 4)

for some positive b, for different 7, j (4, j=1, 2, --- , m), any (x, ) € R} xR}
and any #*:|y*| =1.
Now let A be the matrix;

0 1 0 0 0
0 0 1 0 0
a= 00l
0 0 0 1
=, —Q, ., &, s, —ay, —a,

and let A’ be the matrix obtained by replacing «; by «;/ in A. Then
from (2.4) there is a matrix B = (b/j(¢, x, £*)) such that
1) B” is positive definite and symmetric for any (¢, x) € R} xRY,
and in fact B’ >pl for &*: |&¥|=1 and for any (/, x) 2 R} x RY where
p is determined by & in (2.4) and the maximum of absolute values of
coefficients in a’(¢, x, £%), -
2)  bY(t, x, £%) is a real polynomial d/j(«t,, &/, -+, @,,_,) of &/(t, x, £*)
such that each term of b;; is of order ((m(m—1)+2—i—j) p with respect
to &% for any ¢ x.
3,) b;;‘(ao,, ally "ty a:n—l) =b;‘;’(a0,’ ali, Tty a;n—l) for any i’ .7=1’ 21 e, m,
4) B'(a), @, -, ap ) A/, ), -,
=A/t(a0/’ Tt a;n—x) B”(ao,, Tty a;n—l)
for any real vector «, ---, a,,_;.
(7+mm=D 1) p
Let bj(a), a/, -, a,_ ) =(—1)
from 2)

bl (GE¥), -+, 1 (16¥)) = ()PP (=) PP bl (EF), -+, Cpi(EF)) .

Therefore we see that

1) B =B (i@, x, iE*)) is positive definite hermitian for any
(¢, x) e R} x RY, and in fact B'>pl for &*: |&¥|=1 and for any (¢, x)
€ RIxRY,

2) bt x, iE*)=bj;(a) (¢, x, iE*)) is a real polynomial of a,/(¢, x, i€¥),

3) i (a)(t x, iE¥)) =Dl (8, x, —iE¥))

4) B'(a)) A(a))—(—i)? A (—1)P? a/) B'(a/)=0 for any complex
scalar «,(¢, x, i6*%) where &% is a real vector.

B, -, ). Then

Since 2), 3) and 4') are satisfied for arbitrary real «/ (¢, x, £*) of
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(1.4) without (2.4), 2) 3) 4) are satisfied for «; with i). Therefore in
particular 4) is satisfied for any complex vector {«/} such that
a, € ()**? R, Accordingly 4) is a trivial relation for any commutative
free algebra over real field with m generators.

Furthermore let D be the diagonal matrix whose diagonal elements

are all bil(a,.’(t, x, %)) Then since b,(a/(t, x, iE¥)) >p’, for some p’

and for any &*:|&%|=1 we see by Lemma 1 that
DB’ + B*D* +k>aQ”

where s(i)=(’”_"_g;1)+1—i>p, s’(i)=s(i)+—§—m(m—1) 5, k>0 and a>>0.

Furthermore we may assume that D= D(b/,(;))) and B’ = B’(b;(%)).
From ii), iii) and 4) and by the above remarks we see that

O(DB’A+ A*DB')<s',
accordingly
O(B’*D*A+ A*B'*D*) <s .

Therefore for some positive 8
| (DB’ + B'"*D*+Fk) A+ A*¥(DB’ +B'*D*+k)| <B(DB’+B*D+k) .

Let B=DB’ +B'*D*+k. Thus we see that the hermitian part of A
is semi-bounded in the sense of the norm induced by B. Such B is
made by the same way as above for sufficiently large O(B). Therefore

our theorems in § 3 are applicable to (—%—A) and we see the following

Theorem 6. Under the assymption 1), ii), 1i1) and (2.4) Cauchy pro-
blem for a is well posed in the following sense: for any v€ & _; ,(Dr2,)
and any g; € D2, there is a unique solution u € &._, (D2, such that

au=uv

o7 .
( .u>(0)=g,- for i=0,1,2 -, m—1.

ot

Here we remark that for p=1 our equation with condition (2.4) is

regular hyperbolic in the sense of Leray. In this case we can find a
more direct proof of the existence and unigueness theorem for Cauchy
problem using only the consideration of chapter VI in [6] and refine
his result (see also [4]). Furthermore we remark that for m=2 there
exist other reversible equations (See [127]. Ex. 3).

Next we consider systems of operators which stand against rever-
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sible systems within systems (1.1) satisfing the condition (1.3). These
are parabolic systems, which are investigated in [1] and [9]. Here we
give a more general definition of parabolic system from our abstract
point of view. Then we show that our theorems in § 3 are applicable
to such a system and furthermore that the hypoellipticity is a direct
consequence of Theorem 1.

We say that (%—A) is parabolic if it satisfies the following condi-
tions:

i) A=(a;,) is an (m, m)-smooth system defined over Rl % RY such
that o(a,.j(t, X, ai>)_§p(i) —p(j) +2p where p and p(i) are positive integers.

x

ii) there are (m, m)-smooth systems B, and B, ., described in §2
such that

O(B,) = {I—p(i)} for some positive integer /,> max K p@E)+p,
O(B,,+,) = {l,+p—p()}, and
B,,A+ A*B,,<—aB, ., for some positive a. (3. 4)

Now we denote H"%Bw by H(n, /). Then from (3.4) in the same
way as in the proof of Theorem 6 and Lemma 2 it follows that replac-
ing A by A—pB, for some positive 3,, (3.4) is valid for any /=1, ie,
that for any />/, there is B, such that denoting A,=A—B,]

B,A,+A¥B,<—a,B,,, . 4)
for some positive «, and for positive 8,>k, >0.

From (4.4) we see that
o
(<_——_A?e+p> Bl+pu) u).—Z'Y(BHzpu, u)

ot
for some positive ¢ and for any €%, ,.
Therefore
1 o % 2 % .
(B7i2p _*ét“_AH—p B, ,u, _—a‘t—"AHp By 1) =9 (B 2pts u) .

Setting B/ =B,.,u, by Lemma 2 the above inequality implies that
a 7 a / / /
(Bz_+12p<——a7“‘A}*+p> B/, <—§'—Ar+p) Bu )Z'}’%(Bz“ , u')
for some ¢, >0 and for any #' €%9,,,
since B,,, and B, are isomorphic transformations from H(n, /+2p) onto
Hwwv2®Y and from H(n, [) onto Hp{1*»* respectively.
Thus we see by Theorem 1 and using convolution operator that for any
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ve H(O, /) there is a weak solution # € H(0, /+2p) such that
(2 ~a)u=s.

Using the above fact by Theorem 3 and by Lax’s method ([6]) we see
the following.

Theorem 7. Any parabolic system is hypoelliptic where we assume
that coefficients. of A are infinitely differentiale.

Proof. First we show that if v € H(co, o0)(Q), u € H(O, I+2p)(Q) for
>/, and (%—A)u:v in Q, then # € H(co, o0)(Q).

For let @ be in D, , such that @(x)=1 for x € Q' (Q'C Q) and @(x)=0

for x ¢ Q”, where @ and Q" are open subsets of the open set Q of
RixR.. Then

(%_A> q)u:(pv+z)l, UIEH(O, /+1) s

Therefore u € H(O, [+2p+1)(Q) by the above consideration in particular
by Theorem 3. By repeating the above process, we see that u € H(O,

)(2’). Then since —%u:Au+v, % € H(co, 0)(Q). (See[12])
Next we assume that € HO, —/). Then

<%——A> pu—pv+1, o €HO, —I—2p+1)

Therefore for any integer s >0

<-§—t—A> QU= Q= pu+ QW+, o' € HO, —I—2p+25+1)
Thus Q;*pu e H(O, —I+2s+1), and hence u€ HO, —/+1)(Q’). Therefore
we see that u € H(0; /+2p)(Q) for /=1,

Finally we assume that u€ H(—n, —/)(Q2). Then
<%—A> ou=pv+v, v €H(—n, —I[+1-2p).
Therefore

(%_A> Q:"Qx pu=Q;"Q; v+ Q;"Q; 'V +v"

v € Hmn, —I—2p+2s). Therefore Q;"Q;'¢puc Hn+1, —I—2p+2s) and
so u€ H—n+1, —I—2p)(Q2'). Thus we see that ue€ H(0, —I—n-2p)(2).

Accordingly wusing the second step described above we see that
u € H(co, o0)(LY). Q.E.D.
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Finally we add that for such generaliged parabolic system mixed
problem of Dirichlet type can be solved but, in general, in the weak
sense,

(Received March 22, 1957)
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