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Abstract

We study non-perturbative aspects of topological string theory. The non-perturbative
effects can be obtained from two methods: one is the duality between the topological
string theory and the ABJM theory, the other is the quantization of the mirror curves
in the mirror Calabi—Yau manifolds. These non-perturbative effects are closely related
by the quantum mirror map. We call the former non-perturbative completion as the
A-model, and the latter one as the B-model. In the B-model side, the quantization of
the mirror curve is almost the same as the Hofstadter model describing a dynamics of
electrons on a lattice under a magnetic field. In this thesis, first we explain how to define
two kinds of the non-perturbative completion, and how to be related. Next, we define
the Hofstadter model, and show some known results. Then, we show that the B-model
topological string theory describes the Hofstadter model. These results show that one
can study the non-perturbative topological string theory from the well-known condensed

matter physics.
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1 Introduction

1.1 Why topological string theory ?

It has been thirty years when the topological string theory was proposed by E.Witten [1]. The
topological string theory has been studied from the point of view of physics and mathematics.
The physical motivation is to study string theory.

Our world is well described by the Standard Model. However, the Standard Model has
several problems: lack of gravity, too many input parameters, hierarchy problem, and so on.
Especially, the lack of the gravity is crucial problem; we cannot construct quantum gravity.
To overcome these problems, the superstring theory has been studied. The superstring theory
is one of the candidate to describe the quantum gravity, and defined in ten-dimensional space-
time. In order to consider the superstring theory as a model in our world, the six-dimensional
space has to be compactified on some manifold Mg whose size is too tiny to see at low energy.

To be consistent with the Standard Model, we choose Mg as a Calabi—Yau manifold.
Thus, to calculate the effects of the strings in the four-dimensional space-time, we have to
consider the dynamics of the strings propagating in Mg. In general, the actual calculation
of the effects is difficult.

Then, we can use the topological string theory to calculate some parts of the effects.
In general, in order to calculate the quantum corrections, we need to count the all maps
from the worldsheet to the target space, according to the path integral formalism. In the
topological string theory, the path integral is restricted to to the holomorphic maps by the
supersymmetry. This restriction simplifies the problem drastically, however, the topological
string still has the non-trivial information. For example, the free energy of the topological
string theory gives a certain term of the effective theory in the superstring theory compact-
ified on the Calabi—Yau manifold [2, 3]. This is the motivation of studying the topological
string theory in the physical sense.

One of the mathematical reason is to study the mirror symmetry [4, 5]. Mathemati-
cally, the mirror symmetry claims that the moduli space of the the Kéhler structure in the
Calabi—Yau manifold C'Y4 agrees with the moduli space of the complex structure in the
corresponding Calabi—Yau manifold C'Yp.

In the view point of the topological string theory, the mirror symmetry is the relationship
between the topological string theories on CY4 and C'Yp. We call the topological string the-
ories on C'Y4 and CYp as the A-mode topological string theory and the B-model topological
string theory, respectively. The relationship means that the genus-g free energy Fy cvy, (t) of
the topological string theory on CYy agrees with the free energy F; oy, (2) of the topological
string theory on CYp,

Fyovy(t) = Fy ovp(2), (1.1)



where t and z are the Kahler moduli of CY, and the complex moduli of CYp, respectively.
In order to study the mirror symmetry, we have to know the “coordinate transformation”

between the Kahler moduli ¢ and the complex moduli z,
ti = ti(2). (1.2)

This function is called as the mirror map. In section 2.1 and 2.2, we will explain how to

calculate the mirror map, and check the mirror symmetry for the genus-zero case.

1.2 Toward Non-perturbative topological string: A-model side

String theory is defined as the perturbative expansion of the string coupling constant. To
define the non-perturbative string theory, various attempts have been made: dualities point
of view, string field theories, matrix models, and so on. In recent years, there was remarkable
development in the non-perturbative definition of the topological string theory on a certain
class of the Calabi—Yau manifolds: non-compact toric Calabi—Yau manifolds. The key idea
is the correspondence between the ABJM theory and the A-model topological string theory
on the non-compact toric Calabi-Yau manifold [6, 7, 8.

The ABJM theory is the low-energy effective theory of M2-branes, and defined as the
N = 6 supersymmetric U(N) x U(N) Chern—Simons-matter theory [6]. Thanks to the
supersymmetry, we can use the localization techniques to calculate the partition function
[9].

After some calculations, the path integral reduces to the matrix integral. Furthermore, we
can show that the matrix integral reduces to the canonical ensemble for the fermions.! There-
fore, we can use some techniques of statistical mechanics. This method is called as “Fermi
gas formalism.” From this expression, we can evaluate two kinds of the non-perturbative
contributions. These differences come from where the M2-branes wrap in the gravity dual
theory predicted by the AdS/CFT correspondence [10, 11]; when the M2-branes wrap on the
M theory circle, in the weak string coupling limit the M2 branes reduce to the fundamental
strings. In this sense, the non-perturbative contributions of these M2-branes are called as
worldsheet instantons. On the other hand, when the M2-branes do not wrap on the M theory
circle, in the string theory the M2-branes reduce to the D2-branes. These contributions are
called as membrane instantons.

The duality between the A-model topological string theory and the ABJM theory claims
that the free energy of the topological string theory on local P! x P! agrees with the free
energy of the ABJM theory,? where local P! x P! is one of the non-compact toric Calabi-
Yau manifold. This duality is proven partially since the topological string theory is defined

!This is the calculation result, and we do not know why the fermion system occurs.
2This duality is mathematical fact, and it has been not known physical reason.



perturbatively. Then, if the duality is true for all contributions, we can provide the novel
contributions of the topological string theory from the ABJM theory. The remarkable point
is that the predicted contribution is given by 1/gs. These contributions are suppressed
in the perturbative expansion of the string coupling constant. In this sense we call these
contributions as the non-perturbative contributions.

This result is valid for the case of local P! x P!, however, the authors in [8] proposed the
free energy of the non-perturbative topological string theory on general non-compact toric

Calabi—Yau manifolds. We will explain above process in section 2.3.

1.3 Toward Non-perturbative topological string: B-model side

However, this is not the end of the story; there was also remarkable progress in the B-model
topological string theory [12]. In this theory, the perturbative information is encoded to the
mirror curve which is the complex one-dimensional manifold and defined as a subspace of
the Calabi—Yau manifolds [13]. More concretely, let us consider the case of the genus-one

mirror curve whose definition is given by
Wx(e*,eY,m) = €, e’,e¥ e C*. (1.3)

where £ is the true modulus, and m are the tunable parameters [14]. The important point
is that the free energy of the B-model non-perturbative topological string theory is given by

the quantization of the mirror curve [12] defined as®

x,y] =ik,  h=—, (1.4)

where we denote the operator as Sans-serif, such as x,y. In this quantum theory, the true
modulus promoted to the eigenvalue of the operator W (e*,e¥,m), and this gives the non-
perturbative contribution of the B-model topological string theory.

Then, as a naive guess based on the mirror symmetry, this eigenvalue would be related
to the A-model non-perturbative topological string theory. Indeed, this conjecture is in-
vestigated in some mirror curves [12, 15]. Note that, as we mentioned before, we have to
calculate the mirror map to investigate the mirror symmetry. We call the mirror map in the
quantum theory as the quantum mirror map (€, m, h).* By using the prescription in [16],
we can calculate the quantum mirror map order by order. We will explain how to calculate
the non-perturbative free energy in section 2.4, and how to connect the A-model with the

B-model through the quantum mirror map in 2.5.

3In [13] 7 is defined as i = gs. However, in the context of the non-perturbative topological string theory

[12], 7 is defined as h = 47%/gs. In this thesis, we adopt the latter definition.
“In contrast with the quantum mirror map, the mirror map in the classical limit t(E,m,h = 0) is called

as classical mirror map.



In summary, we propose the non-perturbative definitions of the A-model and B-model
topological string theories, and these definitions are related through the quantum mirror
map. From the definitions, the duality web is extended drastically; the non-perturbative
topological string theory is related to the relativistic Toda lattice [17], supersymmetric gauge
theories, the ABJM theories [18], and condensed matter physics [19]. The last one is the

main theme in this thesis.

1.4 Topological string-Condensed matter physics correspondence(TS-CMP

correspondence)

In this subsection, we propose the TS-CMP correspondence in accordance with [19] which
is the first paper proposed the correspondence. The starting point is a naive observation as

following: we consider the mirror curve of local P! x P! given by
Wpigpi(e¥,eY) =e*+e “+m(e’ +e7Y)=¢. (1.5)

By quantizing the mirror curve, we define the quantum theory whose “Hamiltonian” is given
by the operator Wpi,p1(eX,eY).

Next, we consider the Hofstadter model which describes a dynamics of electrons on a
lattice under a uniform magnetic field perpendicular to the lattice [20]. The authors in [19]
consider the Hofstadter model defined on the square lattice. Its Hamiltonian in the tight

binding approximation is given by
quZTa;-l-T;—l—)\(Ty—l—TJ), (1.6)

where T, , are the hopping operators of the electrons along z- and y-directions, called as the
magnetic translation operators. Since there is the magnetic flux, the operators T}, and T} do

not commute, and the commutation relation of these operators is given by
T, T, = T, T, (1.7)

where ¢ is the magnetic flux.

At this stage, we find that the quantization of local P! x P! is precisely the same as
the Hofstadter model under A = m, ¢ = —h and redefining x,y — ix,iy. Based on this
observation, the authors in [19] expect that there might be further correspondence between
two theories. Then, they find that the branch cut of the quantum mirror map describes the
energy band called as the Hofstadter butterfly, and the imaginary part of the quantum mirror
map gives the density of state. The key point of the correspondence is the S-duality in the
non-perturbative topological string theory. Let us explain it briefly. The detail explanation

will be presented in section 2.6.



The quantum theory defined by Wpipi(e*,e¥) is quantum mechanics, so that we can
consider the Bohr—-Sommerfeld quantization condition [21]. The quantization condition is

given by

j{ dzy(z, &) = 27rh<n + ;), n € Zo, (1.8)
B

where B is a one-cycle defined in the mirror curve, Wpi,p1(e”,e¥) = €. On the other hand,

this integral is related to the genus-zero free energy Fy(t) [2],

62“) - édm W@, €)= 1(E). (1.9)

By combining these facts, Fy(t) is quantized. By substituting the classical mirror map ¢(&)
to (1.9), we can solve the eigenvalue problem for the Hamiltonian Wpip1(e*,eY).

The Bohr-Sommerfeld quantization condition is the first order correction in the semi-
classical limit. Then, the natural question is how we calculate the quantum corrections.
Then, Nekrasov and Shatashvili proposed that the quantization condition including the
quantum correction is given by [22]

0Fns (t, ﬁ) _ 2ﬂ_<

1
— 1.1
o nt): (1.10)

2

where Fng(t,h) is the one-parameter deformation of the free energy called as Nekrasov—
Shatashvili free energy that we will define in section 2.3. However, this expression has a
crucial problem; for i = 27a/b, a,b € Z~g, the left hand side diverges even if the quantiza-
tion condition should be valid in arbitrary values of A. This is due to resum the quantum
corrections.

To resolve this problem, in [21], they proposed that the quantization condition is finite
for any values of A by adding the non-perturbative part as follows,

OFns(t,h)  OFws(f,h) 1 oo (2wt 4m?
5t + 5 =27 n+g ) (t,h) = Pl F (1.11)

which is called as the exact quantization condition. The first term and the second term in
(1.11) have the poles at i = 27a/b, however, these poles are precisely canceled. Therefore,
the summation is finite for arbitrary values of i. The pole cancellation phenomenon is called
as the HMO cancellation mechanism [7]. The exact quantization condition has been passed
several consistency checks.

This expression is clearly invariant under the following S-transformation,

ot 4n? >

(t,h) < ( . (1.12)



called as the S-duality. This means that there is the dual theory for the Wpi p1-system,
Weispr = ¢ +e % +m(ed +e79) =&,
2 2

_2m 27 1.13
F L Y=y (1.13)

&

~ 2r
m=mh,

and the true modulus £ in the Wplxpl—system is related to the one &£ in the Wpi  p1-system

via the quantum mirror map,

Q%t(g,fn, R) = HE, m, h),
N (1.14)
-

The quantum mirror map in this case is also invariant under the following T-transformation,
t(E,m,h+27m) =t(E,m,h). (1.15)

By utilizing these transformations, and setting & = 2mwa/b, we can obtain the quantum
mirror map in a closed form. From the expression, we can see where the branch cuts are, and
calculate the imaginary part of the quantum mirror map. We remark that the S- and the T-
transformation correspond to the maps (¢, Eyy) — (412 /¢, Esy) and (¢, Esq) — (¢ %27, Fsq)

in the condensed matter physics side, where Eg is the eigenvalue of Hy, .

1.5 Motivation and Summary of our work

In the previous subsections, we explained the TS-CMP correspondence. Since the Hofstadter
model has been studied actively, we can study the non-perturbative topological string theory
through this correspondence. However, the TS-CMP correspondence is studied only in one
case. Therefore, it is worth investigating the T'S-CMP correspondence in general cases. In
this thesis, we consider the case of local Bz which is the general case of the local P! x P!,

The mirror curve is given by
Wg,(e®,e?, &) =e” +e¥ +e ¥+ mie ™ +moe ¥ +mge”™? =&, (1.16)

where mj 23 are the tunable parameters. By shifting x — x + log(m1)/2 and y — y +

log(mz)/2, and dividing y/m7 in both side, the mirror curve becomes

_ A/ 19 _ 1 o 5
e te P+ Y _Z(eY+e )+ mimamse™TV + —— 7Y = ) 1.17
Fu( ) + /mimams i T (1.17)

Then, by imposing mimoms = 1, we expect the quantum theory of local B3 to correspond

to the Hofstadter model on the triangular lattice [23, 24, 25] whose Hamiltonian is given by
Hyi. =Ty + T} + M(Ty + T)) + Xo(e 92T, T, + /2TIT}). (1.18)

7



Since the band spectrum and the density of state are known, the rest task is to calculate
the quantum mirror map. First, we check that the exact quantization condition is valid
in this case, and this system has the S-dual structure. Then, we calculate the quantum
mirror map by utilizing the S- and the T-transformations. However, the direct calculation
from the quantum mirror curve is difficult. Then, we use the knowledge of the condensed
matter physics side to calculate the quantum mirror map. Finally, we find that the TS-CMP
correspondence is valid in this case. We will explain the calculation process in section 4. We

summarize the correspondence in table 1

Topological String Condensed Matter Physics
Quantized mirror curve Wp,(e*,e¥,&) =& Hamiltonian Hyy,
Planck constant i = 27a/b Magnetic flux ¢ = 2mwa/b
complex moduli £€/,/m1 Eigenvalue of Hamiltonian F
Mass parameters m, mimoms = 1 Hopping parameters A
Branch cuts of quantum mirror map Hofstadter butterfly
t(E, m,h = 2mwa/b)
Imaginary part of quantum mirror map Density of state
0t(E, m,h = 2ma/b)/0E p(E, A, ¢ =2ma/b)

Table 1: The correspondence between the topological string theory and the condensed matter

physics.

1.6 Organization of this paper

This thesis is organized as follows. In section 2, we review some basic concepts of the
perturbative and the non-perturbative topological string theory. Here we provide some
conjectures, and check them by giving some specific examples. In section 3, we review the
Hofstadter model in the condensed matter physics. In this thesis, we consider the Hofstadter
model on the triangular lattice. In section 4, we present how to obtain the Hofstadter
butterfly and the density of state in the topological string theory on local Bs. Finally, we

summarize our results and discuss further research in section 5.



2 Topological string theory and Non-perturbative effect

In this section, we discuss the definition of the perturbative topological string theory and
how to include the non-perturbative effects. There are two types of the topological string
theory: the A-model topological string theory and the B-model topological string theory.
These theories are related via the mirror symmetry.

Even if we consider the non-perturbative effects, the relation like the mirror symmetry
exists. In the A-model side, we propose the non-perturbative effects from the ABJM theory.
In the B-model side, based on the Fermi gas formalism in the ABJM theory, the quantization
of the mirror curves give the grand partition function including both the perturbative and
the non-perturbative effects.

First we explain the perturbative definition of these theories, and how to relate. Then,

we discuss the non-perturbative effects.

2.1 Perturbative topological string theory

Here we define the topological string theory. We start with N' = (2,2) two-dimensional

supersymmetric Non-Linear Sigma Model (susy-NLSM) whose action is given by
5 / 22{G (40,61 0,87 + 20 Dol + 217 Do)
+ Ry iyl el + Gy (B = Dy 5) (B = Ty potph)}, - (2)

where ¢! are the bosonic fields, 1% are the fermionic fields, F are the non-dynamical fields,
and G is the metric of the target space. The bar “~” denotes the complex conjugate.

To consider the string theory, we have to couple susy-NLSM to the two-dimensional
gravity. However, naively we cannot consider the gravity while preserving the supersymmetry
as the following reason [26]°: the supersymmetry is defined in the worldsheet theory. When
we consider the supersymmetry on the curved space, we have to find an infinitesimal fermionic
parameter € which is satisfied with Ve = 0. However, this condition cannot be satisfied in
general metric since € varies covariantly under a parallel transport, and the requirement of
the covariantly constant for € is very special requirement.

To resolve this problem, we perform the topological twist [1]. In susy-NLSM, there are
two types of the U(1) symmetry associated with the supersymmetry; axial U(1) symmetry
and vector U(1) symmetry,

axial U(1) : ¢4 — e Tawi’ 2.2)
vector U(1) : ¢y > e %y,
where « is a parameter. Then, we can construct the Noether current associated with these

symmetries, J4 and Jy. For these symmetries, we consider the two types of interactions

5This paper is review paper, however, we think that this explanation is very clear.



between the current and the spin connection w,, so-called gauging,® which correspond to the
A-model and the B-model,

A-model: Siy = —2i/d22\/§waJZ,
(2.3)
B-model: Siy; = —2i / d*2\/9wa TS,

where /g is the determinant of the worldsheet metric g,,. These interactions change the

spins for the fermions as follows,
o A-model: ¢L:41/2 =0, ¢l1/2 = -1, ¢li41/2 = 41, $L:1/2 — -1,
o B-model: ¢f:41/2 — +1, L:-1/2 -1, ¢L:41/2 =0, ¢l-1/2 = 0.

Then, we can couple susy-NLSM to the two-dimensional gravity while preserving the
supersymmetry since we have the parameter € with spin zero. In the construction we obtain

a scalar and nilpotent charge from four supercharges @ and Q¥,
e Amodel: Q4 =Q" +Q, Q4 =0
e B-model: Qp = Q++Q, Q4 =0

Therefore, the physical observables are restricted to the ()4 p-invariant quantity. This re-
striction simplifies the theory drastically; in the path integral formalism, we count only
holomorphic maps 0:¢! = Zd)[_ = 0, in the A-model side, and only constant maps 0,¢! =
9:¢" = 0 in the B-model side. Furthermore, one can show that the resulting theory which
couples to the two-dimensional gravity is topological theory. In this sense, the theory is
called as the topological string theory. “Topological” means that the physical observables do
not depend on the two-dimensional metric. This can be seen from the fact that the action

is given by @Q-exact form,
S'P = {Q4 B, V} + (topological term), (2.4)

where V is the functional of the boson, fermion, and two-dimensional metric.

Now let us define the free energy of the topological string theory. For instance, we
consider the A-model topological string theory. Notice that the mathematical structure of
the topological string theory is precisely the same as usual bosonic string theory under the

appropriate field and charge correspondence. For example, the energy-momentum tensors in

SPrecisely speaking, we have to be care about the anomaly since we perform the gauging for the global
symmetry. However, in this thesis we consider the Calabi—Yau manifold as a target space. In this case, we

can construct the theory without the anomaly.

10



the topological string theory and the bosonic string theory are given by

{Q 2 0V }
top Av\/»égab (25)

bosonlc {QBRSTa b* }

where b® are the ghost fields, and Qgrst is the BRST charge.
Therefore we can calculate the free energy of the topological string theory of genus-g
worldsheet ¥, in the same manner as the calculation in the bosonic string theory,

d2 _
Fl(t) = / IJTI‘ [(—1)FL+FRFLFRQLOQLO] q= eQmT
M mr

= L 4.0g
F, t :/ d3g—3md3g—3m< / G~ / G >’ i ci’
g>2(t) » o fik =39 g

g9

(2.6)

where G~ and G~ are the supercurrents, 7, my, are the moduli of the worldsheet >y, Fr R are
the Fermion numbers of the left and the right moving fermions, and ¢ are the Kéhler moduli.
The integral is over the moduli space M, of 3, and the expectation value is defined in the

conformal field theory. The genus-zero free energy is determined by the Yukawa coupling
Cijk

83F0( )
D4,0t,01 = Cijk- (2.7)
The total free energy sums Fy(t) to all genera,
29—2
F(t,gs) ggo 957 " Fy( (2.8)

From now on, we call F(¢,gs) as the free energy.
The free energy can be expressed by the perturbative parts of t and the instanton sum-

mation. Here we focus on the instanton part Fing (¢, gs),
1nst t gs Zggg QZN ,d e dt ’ (29)
g>0

where N, g are the Gromov-Witten invariants which are topological invariant quantities,
and d is the integer vector which has the information which 2-cycles the strings wrap in the

Calabi—Yau manifold. We can also have the another expression by taking the resummation,

Fanst(t, 95) ZZZ (zsm[ gSDQQ_Qe—wd't, (2.10)

g>0w=1 d

d
g

tities [27, 28].

The Gopakumar—Vafa invariant can be interpreted as counting the BPS states which

where n% are the Gopakumar—Vafa invariants which are another topological invariant quan-

come from M2-branes wrapping on the Calabi—Yau manifold in the M theory. These BPS

11



states are labelled by SU(2)y x SU(2)g. The Gopakumar—Vafa invariant counts the BPS
states under the self-dual field strength of the graviphoton, ¢ = —e3. Since the self-dual
graviphoton does not couple to the right spin, nd count only the left spins. The BPS state

counting under the non-self-dual background, n? are related to the refined topological

9L.9R’
string theory as we will explain later.

e.g.) Resolved Conifold
As an example, let us consider the A-model topological string theory on the resolved coni-
fold which is one of the non-compact toric Calabi—Yau manifold. We present the definition

of the Calabi—Yau manifold in appendix B. The free energy is given by

F(t,gs) = i ;(Mn [wgs] ) 7w

w=1
_Z L wier  wigs ) e
12 240 6048
N 200 Bal 1 2.11
ggs Z 29 29 — le—2ge ’ ( ’ )

where B,, are the Bernoulli numbers. Then we find that

ng=1, ni=*=0, (2.12)
B 1
Nyg4= |Bg| (2.13)

29(2g — 2)! d3-29°

Note that the Gromov—Witten invariants are non-integer, and we cannot interpret as the

counting of the BPS states. U

2.2 Calculation method

In this subsection, we explain how to calculate the free energy. We choose the target space
to be the non-compact toric Calabi-Yau manifold. In the A-model side, we use the (refined)
topological vertex formalism. In the B-model side, we can calculate the prepotential and the

mirror map from the period integrals for the Calabi—Yau manifold.

2.2.1 Calculation in A-model

Here we introduce the topological vertex formalism [29, 30, 31, 32, 33] which is a systematic
way to calculate the partition function of the topological string theory on the non-compact
toric Calabi—Yau manifold,

Z(t,g5) = e o). (2.14)

12



The formalism is very similar with the Feynman rules in quantum field theories. Here we
just provide the rule to calculate the partition function without the derivation.

We start with the topological string theory with the toric A-branes on three-dimensional
complex space, C3. The toric A-brane is the object which the ends of the open topological
strings attach, and is labelled by the Young diagrams p, v, A as in figure 1, where we

represent C3 in the web diagram that we will explain in appendix B.

Figure 1: The web diagram description of C3 called as the topological vertex, where the

dashed lines denote the toric A-branes.

The partition function C),,(q) of the topological string theory on C? is given by”

Ku+try t
Cunn(@) =a 7 5@ ) D sxesn(@)sumla ™),
n (2.15)

k= |lul)? = |2, g =€,

where s, () is the Schur function, and ||, ||¢||, and p are defined as follows,
1 3
=Y el =30 p=12 (2.16)
J J

From this expression, we can calculate the partition function of the topological string
theory on general non-compact toric Calabi—Yau manifolds by putting the topological vertex
and the internal line called as “propagator” (see figure 2) in accordance with the following

procedure:
1 First we express the non-compact toric Calabi-Yau manifold as the web diagram.

2 We put the factor C,»(q) for each vertices, and (—e Yl for each internal lines labelled

by the Young diagrams.

3 We set the Young diagram to empty in the external leg of the web diagram. When the
toric A-branes are inserted, put the non-trivial Young diagrams on corresponding legs
like v, A\, i/, and \. The legs of two vertices gluing each other need to be inserted the

Young diagrams p and u, where “t” denotes the transpose of the Young diagram.

"Some notations, definitions, and formulae are summarized in appendix A.
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4 If the line of the counterclockwise seen from the glued leg (red line in the figure 2) is
not parallel to the one of the counterclockwise seen from the another glued leg (blue
line in the figure 2), we have to put additional factor f(q) = (—1)'“'(]_%” called as the
gluing factor. For example, when the vector made by the red line as the origin O and
blue line as the origin O’ denote v and v/, we have to put the factor f"\¥'(¢), where

the wedge product “A” is defined as

v AV = vvh —vgvy, v = (v1,v2), v\ = (v],vh) (2.17)

5 By taking the summation in all Young diagrams inserted on the internal legs, we obtain

the partition function.

(@ \v / (b) \v '

Figure 2: (a)The web diagram and (b)its decomposition into the vertices and the propagator.

Here we omit the dashed lines which denote the toric A-branes.

Note that the topological vertex has the cyclic symmetry corresponding to the symmetry of

the web diagram in the figure 1,

C;w/\(q) = C/\W(q) = CV/\;L(Q)‘ (2.18)

Let us demonstrate the above prescription.

e.g.) Resolved Conifold
Let us consider the topological string theory on the resolved conifold in figure 3. Since
v =(0,1) and v = (0,—1), the wedge product of these vectors vanishes, and we need not

put the gluing factor f(q). The partition function is given by

Zeoni.(t, 9s) = Z(_e_t> lMICM@fD (q)CMt0@<Q)
I

=Y (—e s, ()5 (q7")

= J[a-@¢™h), @=e (2.19)
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(a) (b)
Cu"@@(‘])
e~ Mt

Coo(@) /4

Figure 3: (a)The web diagram of the resolved conifold, and (b)its decomposition into the

vertices and the propagator.

The free energy is then,

1 dgs 1\ >
Fconi.(ta gs) = _log[zconi.(tu gs)] = Z E (251n|: J :| ) eidt- (220)
This result is the same as (2.11). O

We can consider the refinement of the topological vertex formalism [32]. As we mentioned
in the section 2.1, the free energy of the topological string theory can be interpreted as the
BPS state counting in the self-dual field strength of the graviphoton, €¢; = —es. Moreover,
the partition function of the topological string theory gives the Nekrasov partition functions
of N = 2 five-dimensional supersymmetric gauge theories in the self-dual omega-background
[34, 35]. Then, the natural desire is to formulate the topological string theory counting the
BPS states in €; # —eg, and giving the Nekrasov partition functions of the supersymmet-
ric gauge theories in the general omega-background. This theory is called as the refined
topological string theory.

There are several attempts to define the refined topological string theory [36, 37, 38, 39].
In this thesis, we adopt the refined topological vertex formalism [32] to define the refined

topological string theory. The topological vertex C},,» and the gluing factor f, are generalized

15



as following,®

Ut el . Inl+IA= sl

— _ .t
Cvwla,@)=aq ° ¢ ° Z,(q1,92) Z(a ’ Skf/n(fh P4 V)Su/n(% “4y"),
n

~ vi—i4l s
Zy(q1,q2) = H 1—q’ @),

(i.4)ev
o L L (2 el h 2wl
fular,@2) = (=1)"q * g5 * 7fM(Q1aQ2):(_1)u(a> @ ° g 7

(2.21)

€1 gy = €2, As a remarkable difference, there are two kinds of the gluing

where ¢ = e~
factors f,,(q1,¢q2) and fu(ql, g2) because of the preferred direction [40, 41].
In the usual topological vertex formalism, the Young diagrams A, u, and v correspond

to the slicing of a 3D partition as in figure 4. The cyclic symmetry reflects the invariance of

Figure 4: The 3D partition. The boxes enclosed by the black lines correspond to the Young

diagrams A, p, and v.

the circular permutation of the 3D partition.

However, the situation is different in the refinement case since two kinds of the string
coupling constants give two kinds of the branes called as the e;-brane and the ey-brane.
To define the refined topological vertex, we have to put the e;-brane and es-brane in the
A-direction and the p-direction, respectively. The remaining direction, v-direction, is called
as the preferred direction. The putting two kinds of the branes clearly breaks the cyclic

symimetry,

Cruw (@1, q2) # Conp(q1; g2)- (2.22)

The partition function should not depend on the preferred direction since the choice of
the preferred direction is the artificial, so that we can obtain the non-trivial formula from

the partition functions calculated in two ways as we will see in an example.

8The notation of the refined topological vertex is different from the usual one. However, in order to avoid

confusing the Kahler moduli with the refined topological string coupling, we use this notation.
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Figure 5: The refined topological vertex. There are three legs: the leg with the €;-branes,
the leg with the es-branes, and the preferred direction. The preferred direction denotes the

double red line.

In order to glue the internal legs, we have to insert the e;-branes on either of the internal
legs, and eo-branes on the remaining one, so that we need to add the following rules to the

rule 3 and 4 to calculate the partition function of the refined topological string theory,

2’ To glue the legs, we have to insert the vertex factors Cp,x(q1,q2) for either of the

vertex, and Ct,y (g2, q1) for the remaining one.

4’ If the gluing legs are the preferred direction, we use the gluing factor f,,(q1,g2). If not,
we use the gluing factor fu(ql, q2).

e.g.) Resolved Conifold
We consider the refined topological string theory on the resolved conifold. We demon-
strate two calculations; the difference is the choice of the preferred direction as in figure 6.

The partition function in the case (a) is given by

(a) (b)

Figure 6: The resolved conifold. We set the preferred direction as (a) the horizontal direction

and (b) the diagonal direction.

o0

i—%
2t a1, 32) = > (—Q)*Chup(a1, ¢2)Courn(q2, 1) = [[ 1 - Qqy 23

H 1,j=1

%)7 Q = eit‘

(2.23)
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The partition function in the case (b) is given by
Zy(tq1,42) = > _(—=Q)*Coou(a1, 92) Copper (g2, 1)
I

2
[l

1% 1
=> (QFqy * 6 ] T . (224)
J
n

Bj—t i i—j+1
@pen (1= " A —q” g"")
Since two expressions should agree, we find the following formula,
Uef)? Ul 1 a i1 i1
Z(_Q)#t 2.q 2 H ot . N :l_AIZ(]-_QtZ ij 2)

" (ien (1 — qri—ItH ’H)(l — qm—J+1t“J_Z) B =1

(2.25)
This identity is shown in [42]. O

In general, the free energy of the refined topological string theory is given by the following

expression,

291, 29r
<2Sin [w(el €2) ) (25111 [w(61+62)] >
me t 61,62 Z Z Z 9L 9R wd-t'

e
9L.9r>0w>1 d (2sm [“’5} > (281n [“’5} )

(2.26)
This free energy reproduces the free energy of the usual topological string theory by setting
€1 = —€9 and ngo = ng.

2.2.2 Calculation in B-model

In general, there is uniquely determined holomorphic 3-form Q = Q(u;, z)duy A dug A dus €
HBO(CY) in the Calabi-Yau manifold, where z are the complex moduli and HG®9(CY) is
the Dolbeault cohomology. Then, by expanding € as a basis of the cohomology a; and 7,

Q= OéiXi - Bij,

/Ciaj:/éjﬂi:5§7 /Ciﬂjz/éjaizo, (2.27)

C”th:O, éiﬂéjzo, CiﬂC‘jzéj-.
we define the coordinates of the complex moduli,

Xi=/[ Q i=12,.,1+dim(Mcy) (2.28)

C't

where C and C' are the 3-cycles in the Calabi—Yau manifold. However, there are too many
coordinates due to the ambiguity of an overall complex factor. In order to be well-defined,
we rescale the coordinates X* as following,
XJ

t(z) = X1

j=1,..,dim(Mcy). (2.29)
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The mirror symmetry claims that £(z) are the mirror maps from the B-model to the A-model.
We also define another 3-cycle integral,
F;, = / Q. (2.30)
Ci
Since F; are the functions of X; through the holomorphic 3-form €2, one can show that the

F; satisfy the integrability conditions,

OF; O0F;
= 2.31
X, 0X;’ ( )
and there is a function Fy given by
Fy= %lez (2.32)

The function Fy is called as the prepotential which is the genus-zero free energy of the
B-model topological string theory.
The rest task is how to calculate #/(z) and Fy explicitly. Let us consider the case of the

non-compact toric Calabi—Yau manifold. The algebraic definition is given by
vw— H(e*,e¥;2) =0, v,weC. (2.33)

It is known that the periods X;(z) satisfy the following differential equations called as the

Picard—Fuchs equations,

(IT o - T 0 )xite) =0,

,Q%>0 §,Q*<0
(2.34)

where Q% are the charge vectors that we will explain in appendix B. By solving these differ-

ential equations, we can obtain the mirror maps and the genus-zero free energy.

e.g.) Local P?
Let us consider local P? as a non-compact toric Calabi-Yau manifold with a complex
modulus. The charge vector is @ = (—3,1,1,1), and the complex modulus is

2= “ig“, Oy, = (—3)Miz7120,, i =1,2,3,4. (2.35)
1

Then, the Picard—Fuchs equation is
(62 + 2(30. + 2)(30, + 1)30.) X;(2) =0, 6, = 20.. (2.36)

By using the Frobenius method, we can solve the difference equation. First, we set

m(e,2) =Y an(e)z"*. (2.37)
n=0
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Substituting (2.37) to the Picard—Fuchs equation, we obtain the recursion relation,

an(€)(n+€)* + an—1(€){3(n+¢€) —1}{3(n+¢) —2}{3(n+¢) -3} =0

(3n + 3e)!
= = . 2.38
anle) {(n+ o3 (2:38)
Then we can construct the solutions as following,
o7
X;(2) = P2 o1 (2.39)
oe | .o

Therefore, the mirror map is given by

4
= log[z] + 6z 4F3 <1, 1, 3’ g; 2,2,2; 27,2)
1732 4 5
= log[z] + 62 + 4522 + 56023 + 73252 + 75675562 +0(25).  (2.40)

Its inverse function is
2=Q —6Q%+9Q> — 56Q* — 300Q° — 3942Q° — 48412Q7 + O(Q®), Q =et. (2.41)

In this method, the prepotential can be calculated as follows,
OR(:(1) _ Xala(t) _ 2

45Q%  244Q% 12333Q*  211878Q° 6
— 43 0(Q%).
ot X)) "6 Tttt t g O
(2.42)
After integrating over ¢, we obtain
t3 45Q%  244Q3  12333Q*  211878Q° 6
I _ Y an_ _ _ - . 2.4
b(z(t) = 15 3@~ —3 9 64 5 TO(@) (243)

The instanton part of this free energy agrees with the genus-zero free energy calculated in

the A-model topological string theory. O

In the non-compact toric Calabi—Yau manifold, the holomorphic 3-form €2 is
dv Adx Ady
- )

Q= (2.44)

Then, by the Cauchy’s theorem and the Stokes’ theorem, the 3-cycle integrals reduce to the

1-cycle integrals,
Xi(z) :/ Q:/ dy/\dx:ja{ dzy(zx), (2.45)

where D' is the (z,y)-plane defined by H(e®,e¥; z) = 0 called as the mirror curve,” and A°
are the 1-cycles along the mirror curve. Similarly, C; integrals reduce to another 1-cycles B’

along the mirror curve. For example, the mirror curve of local P? is given by
e +e¥ 427"V -1=0, (2.46)

and the A- and the B- cycles are defined in figure 7.

When we define H(e%,e?;2) = Wa(e®,e¥) — £ in the case of the genus-one mirror curve, this notation is

consistent with the mirror curve defined in the introduction.
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Figure 7: The mirror curve of local P?.

2.3 Non-perturbative effect: A-model side

Here we discuss how to include the non-perturbative contributions. These contributions are
predicted by the ABJM theory [6, 8] which describes the dynamics of the M2-branes in the
M theory. The partition function of the ABJM theory is given by the matrix integral [43],

1 d"u  d™w Z<]{2Slnh(“1 “J)}2{251nh(wgyj)}2 ik N )
(N!>2/ @m)~ @2m)" [1:,,{2cosh (2521 eXpLhr ;(’“‘ Z’

(2.47)

Zam(N, k) =

where k is the Chern—Simons level, and N is the gauge rank. By using the Cauchy’s formula,

[T {2sinh (5") }* {2sinh (5%} 3 1

U2 o VW) (2.48)

Hi,j{QCOSh( 72)} vesy i 2cosh( )

the partition function can be written as
dVx 1

Zasam(NV, k) Z 1)< / — (2.49)

' N i Ti =T (4

N oeSN (2mk) H 2cosh[7]2(:osh[72k()]
At this point, when we define the quantum density matrix p(p,q) as
1 1 1 1

(zilp(p,q)|z;) = (2.50)

1y L i— T N
2rk (2cosh[%])2 (2cosh[Z5™]) (2cosh|[F])2
the partition function reduces to the canonical partition function of the Fermi gas with N

particles [44],

N
C o, alency) (2:51)
=1

Zapm(N, k) = /dN Z

g€SN
Therefore, we can use the knowledge of statistical mechanics to calculate the partition func-
tion of the ABJM theory.

It is convenient to define the grand partition function,

(k) =1+ Z (2.52)
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and the grand potential,

T (1, ) = log[Z(y1, ). (2.53)

In [45], they calculated the grand potential numerically by utilizing the method in [46]. On

the other hand, the instanton behavior is investigated in the large N limit [10, 11]. Based on

these results, the authors in [47] proposed an analytical expression of the grand potential,
9 )

k 1 4m
J(p, k) = 37r2ku3 + <24 + 31:)“ + C(k) + > fim (1, k)exp [— <2l + k)#] ;
1,m=0,(l,m)#(0,0)

(2.54)

where the coefficients f;,, are determined by comparing the numerical result in [45], and
C(k) is the function which is independent of u.

Let us interpret the non-perturbative contributions from the point of view of the gravity
dual theory which is the M theory on AdSy x S7/Zj. The label (I,m) denotes how many
times the M2-branes wrap, and which the M2-branes wrap on M theory-circle or not. In
the language of the type IIA superstring theory, the contributions [ and m correspond to [
D2-brane instantons and m worldsheet instantons, respectively. The contributions of non-
zero values of [ and m correspond to the bound states of the D2-branes and the fundamental
strings.

The grand potential should be related to the topological string theory as following reason:
as is well known, the topological string theory on the resolved conifold is dual to the U(N)
Chern-Simons theory on $3 [48]. This duality is called as the geometric transition. The
conifold in figure 8(b) has a singularity in the two-intersection. Algebraically, the conifold is
given by

sys_ =wiw_, s+, ws € C. (2.55)

To avoid the singularity, we can take two methods; one is inserting S? structure with size
t as in figure 8(a) as we will explain in appendix B. The other is inserting the S structure

as in figure 8(c) by turning on the parameter R? € R in the right hand side of (2.55),

sys_ =wyw_ + R* < a? +ad 4+ b2 + b3 = R?
2
= > {(Re(a:)* + Re(b)?) — (Im(a;)* + Im(;)%) } = R? (2.56)

i=1
S+ = a1 iag, w4 Zi(blﬂ:ibQ), a;,b; € C,
which is called as deformed conifold.

The remarkable difference is that we cannot wrap the brane while preserving the su-

persymmetry in the manifold (a), so that the resulting theory is closed topological string
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(c)

(a) (b)
ASZHi
§3”

Figure 8: The geometric transition. The figure (a), (b), and (c) correspond to the resolved

conifold, the singular conifold, and the deformed conifold.

theory. However, we can wrap the branes on S® without breaking the supersymmetry in the
manifold (c), and the worldvolume theory on them is U(N) Chern—Simons theory [49].
Since the manifolds (a) and (c) are related via the singular manifold, the theories on
these manifolds might be related, and explicit calculations of the free energies show that the
closed topological string theory on the resolved conifold is dual to the U(N) Chern—Simons

theory on S under the following parameter correspondence,

27

t:igSN, gs = m

(2.57)

The geometric transition can apply to this situation as in figure 9. In [50], they pointed
out that the ABJM theory is related to the U(NN) Chern—Simons theory on S3/Zsy under the
analytic continuation. Furthermore, this theory is dual to the topological string theory on

local P! x P! [51] by the geometric transition.

(a) (b)

Figure 9: The another geometric transition. The topological string theory on local P! x P!
in the panel (a) is dual to the U(N) Chern—Simons theory on S2/Zs in the panel (c) via the

singular manifold in the panel (b).

Keeping this fact in mind, let us back to the free energy of the ABJM theory. In [45],
they showed that the worldsheet instanton summation in (2.58) agrees with the free energy of
the topological string theory. The D2-bane contributions are fixed numerically [45], and the
bound states contributions are fixed by imposing the finiteness for arbitrary Chern—Simons

level k; the authors in [45] found that the worldsheet and the D2-branes contributions have
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the poles for k = 2wa/b, a,b € Z. However, the partition function of the ABJM theory is
finite for arbitrary k. Therefore, to be finite in the ABJM partition function, the poles of all
contributions are precisely canceled.

The D2-brane and the bound state contributions can not find in the topological string
theory side. If the geometric transition can be applied in the non-perturbative regime, their
contributions should be given in the language of the topological string theory. Based on this
consideration, the authors in [8] proposed that the grand potential of the ABJM theory is
given by the topological string and the refined topological string theory,

T k) = TVS) (pege, k) + pre Ty (petes k) + Je(pteft, k), (2.58)

where we define several functions as following,

(W.S)) B B dwnj C[2rw]\ 22 _adu,
TV k) =3 Y (-1) 2 2sin | == ek (2.59)

920 w,d>1
K2 01 ik itk k
Jo(p, k) + Jo(p, k) = —— — | =Fns [ 20 — =, 2u + —, = 2.60
R R (2.60)
33
feft = pu+ 2(=1)"" e 4F2<1,1,2,2;2,2,2; 16(-1)%‘2“), k=2n (k:even), (2.61)
—4p 33 —4
Leff = 4+ € D) 1,1,5,5;2,2,2;—166 #, k:odd, (2.62)
and Fng is defined as
FNs(t,h) = lim EQFref.<t,€1 = h, 62), (2.63)
ea—0

called as the Nekrasov—Shatashvili free energy.
By substituting the following correspondence between the ABJM theory and the topo-
logical string theory,
4u 2

B e :
. TlT e 7. (2.64)

we can obtain the free energy of the topological string theory including the non-perturbative
effects. This duality is valid in the case of local P! x P!, howerver, the authors in [§]
generalize the above result, and propose the non-perturbative free energy of the topological

string theory on general non-compact toric Calabi—Yau manifold,

. 1 0 t 1
F(n.p')(teffa gs) =F teﬂC + ﬂlegs + =5 gsFNS iﬁa - )
271 0gs

. . (2.65)
t; + 2min; 2mi

Js 9s

et = ti + 2min; — gslla, < >7 n; € Z>o,

where B is the B-field which has a integer value, and II4, are the quantum A-periods that

we will explain in next subsection. Of course this expression is finite for arbitrary values of

gs-
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We have a comment on this non-perturbative completion. In [52], a non-perturbative

free energy of the A-model refined topological string is proposed from the M theory analysis,
t 1 ¢ ) t e .1
Fo (toer,e2) = Fret (L, €1, €2) + Frer < —, 2+ 27r1> + Fref <6, = 4+ 27, > (2.66)

Then, if the non-perturbative topological string theory is uniquely determined, Frr;g). (t,e1,—¢€1)
should agree with (2.65). However, these two expressions are slightly different. We do not

know which there are several non-perturbative definitions or not.

2.4 Non-perturbative effect: B-model side

Let us discuss the B-model side. Again we consider the ABJM theory. The partition function
of the ABJM theory, which is related to the topological string theory on local P! x P!,
can be treated as the Fermi gas. By using the Wigner transformation, we can read off the
quantum density matrix p from the expectation value of the operator and define the quantum

Hamiltonian H ,

()= —— 1 1 (2617
pp,q) = ) .
(2cosh[%])% (2cosh[§]) (QCOSh[%])%
where
[q,p] =ik, h=27k. (2.69)
In the classical limit 4 = 0, the density matrix operator is written as
1
-E
Pel. = € = Tt —q=p a—p —q+p
e2 +e 2 H4ez2 H4e 2
1
= — —, (2.70)
e e T eV fe Y
q+p q—7p
S S =1 ~. 2.71
(e= 5% v=157) (2.1)

At this point, this expression is exactly the same as the inverse of the mirror curve of local
P! x P! defined in section 1.4,

Wpiypi(e¥,e¥) =e” +e % +e¥ +e ¥ =ef (2.72)

where we set m = 1 and e = £. Then, as a naive guess we might be able to define the B-
model non-perturbative topological string theory on general non-compact toric Calabi—Yau
manifold by the quantization of the mirror curve. In order to compare with the A-model side
like the mirror symmetry, we need to define the mirror map in the quantum mirror curve.

This mirror map is called as the quantum mirror map [16, 53, 54].
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To define the quantum mirror map, we consider the following Schrédinger equation for

the quantum mirror curve H,'0
H(e*,e';2)¥(x) =0, [x,y] =ih,

In the semi-classical limit, we can use the WKB method, and the wave function can be

expressed as

U(x) = exp [;S(m)] , (2.73)
S(z) = nf:ﬂ A (2.74)

The leading term is given by [13], _
Vreading () = exp [;_L / ' da;y(x)], (2.75)

so that the derivative of Sy(x) is determined as

0Sp(x)
ox

= y(z). (2.76)

Recall that we integrate the function y(x) over z to obtain the classical mirror map. In

order to be consistent with the classical limit, we define the quantum A- and B-period as

T4, (2, 1) = /A da 8*;(”’“), g, (2, h) = /B da agf). (2.77)

"y

For the convenience of calculating the quantum periods, we define

V(z) = W (2.78)

Then,

Frvioio= fa S 0=50
:jédxaggf)Jr%ia”;;ix)hzl

[ 9S(@)
—jédm o (2.79)

where we impose that the wave function should be single-valued in order to be well-defined.
This means that § dz 97?225 (x) has to be vanished. As a result, the quantum mirror map
is given by the residues of log[V'(z)]. Let us demonstrate the calculation of the quantum

period and the partition function.

10Tn order to discuss the quantum mirror map of genus-g mirror curve, we use this notation defined in the

section 2.2.2.
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e.g.) Local P?
We calculate the quantum A-period of local P2. By quantizing the mirror curve (2.46),

the Schrodinger equation is rewritten as
™ () + U(z — ih) + ze "2 W(z + ih) — U(z) = 0. (2.80)

By dividing the both sides by ¥(x), (2.80) becomes

1 S R ih x
X—i‘m‘i‘zq 2X V(x)—IZO, q:e,X:e. (281)
We can solve the difference equation recursively,
V(X)=> va(X)2", (2.82)
n=0
1 1
UO(X):ia Ul(X): )
1 —qgX q%X(l—qX)2(1—q2X)
14+qg—qX —¢*X
X) = 2.
w0 = X = X - X)L = P X) (259
Thus, the quantum mirror map is
—t(z, h) = log[z] + 3L a(z, h)
3
=log[z] + 3(q% + ¢ 2) + 5(2q2 +Tq+12+7¢ +2¢7 )+, (2.84)

where we multiply 3 in front of the quantum A-period. This factor is determined from the
geometries. In the genus-one mirror curve, the factor is the anti-canonical class of the del
Pezzo surface. Note that we cannot obtain the logarithmic term in this calculation since
V(x) becomes 1 in the classical limit.

Next we consider the inverse of the quantum mirror curve as is the case in the Fermi gas
formalism. The calculation is mainly based on [55]. We shift the variables x — x — log[u]

and y — y — log[u], where z = v 3. Then the quantum mirror curve is
H(ee¥;2) = + e + &Y +u=: Wpa(e*, &) + u. (2.85)
After some calculations, we obtain

pp2 = Wx (X, e) 7t = A*A,

Z,b } (2.86)

. . * 2mh
A=aia - v/ p)esp | raexp| ol

where ® is the quantum dilogarithm that we will define in appendix A, and we define some

operators and quantities as following,

27h 27h 1
x=—2p+q), y=—(p+29), [p,q] = -—,

27h? '
h: TFTb, b€R>0.
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From this expression, the density matrix operator is the trace class operator, so that the
eigenvalues of Wp2(e*,eY) are discrete. By defining the grand partition function in terms of

the density of state,!
Ep2(u, h) = det[l 4+ uppz], u=e", (2.88)

and by expanding around u = 0, we can obtain the generating function of the trace of pp2,

o

log[Ep2 (u, h)]

Tr[pk) (2.89)

By combining this result with (2.52), we can determine the partition function Zp2(N,h)

sequentially,
Z]p2(1, h) = Tr[p]pz]

Zp2(2, h) f{ (Tr[pp2])? — Tr[ppz}Q]}, (2.90)

For example, when we set h = 27, the grand partition function is

o0
Epa(u,h=27) = 14+ > Zpa(N, b = 2m)u™
N=1

1 1 1
=1+ zu+ — — e+ 2.91
9 (12\/§7r 81) (2:91)

2.5 The relation between A-model and B-model

We now propose the relation between the A-model and the B-model as the conjecture [12, 15].
Here we provide the most general expression. In the non-compact toric Calabi—Yau manifold

with genus-¢g mirror curve, the non-perturbative free energy including the perturbative part,

Cijk onB; hB;
s ) = 2yt (524 B8 ) )+ PO (0,0,

A2 g (2.92)
gs = o T log z; = ZDiij, et = y;
is related to the B-model grand partition function as following equation,
=B model (U, h) = Z o/ A-moder (- 2min,m, 1) (2.93)

nez9

1 Actually we can show that this expression is consistent with the previous definition of the grand partition
function in the case of local P* x P'. In general, when we define the trace class operator, we can define
the partition function given in terms of the Fermi gas, and the grand partition function is given by the

determinant [56, 57].
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where z and m are the complex moduli and the tunable parameters, B;, Bi, Cijk, Dij are the
constants, and A(m, k) is the function. The complex moduli z and the tunable parameters
m are related to the Kéhler parameters ¢ by the quantum mirror map t = t(z, m;h).

Notice that we take the summation over 2win. The grand partition function is the
periodic function of . However, the grand potential is lost the periodicity. In order to
restore the periodicity, we take the summation.'?
e.g.) Local P?

Let us check the conjecture in the case of local P2, Before checking, we rewrite (2.93).
By multiplying eV# and integrating p along the complex axis, we find

7 (N, h) = Z /ﬂi d,u e/ A-model (p+27in,h)—Np (2.94)
B-model ) o 27[_1 . .
nez

In the right hand side, we can extend the integration contour to go along the full imaginary
axis,

Ti+2mi
(r-h.s-) — / l " ;M JA model(ﬂ:h)fN

nez —mi+427in

—7i 3mi
< / / / > H JA model(uvh) N//'
3mi —7i 27”

:/loo d,LL JA model(“’h) . (295)

oo 27r1

Furthermore, we deform the contour to C defined in figure 10. Then, by expanding e”/A-model (1£,5)

Figure 10: The contour.

as

o0
JA model(ﬂ h) — ec;(;h) 3+B(E)M+A(h) Z ap n(h)e—rluﬂn, (296)
l,n=0

12This prescription also perform in the ABJM theory [45].
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we can express the partition function as the Airy function Ai(z),

[o@)
/ngmMS-FB(ﬁ)quA(ﬁ) Z aln(h)e_rl“_N“u"
¢ l,n=0
A(h)

S aunlh) (_£V>A<W> — Znwoaa(N ). (297

[§]

T oim),

,n=0

The leading term is (I, n) = 0 term, and the correction terms are (I,n) # (0, 0) suppressed
rapidly due to the property of the Airy function as in figure 11. Thus, even if we calculate

the leading term and few corrections, we get the highly precise result as we will show below.

Aj dAi(z)
i(x) l

Figure 11: The Airy function and its derivative. These plots show that the Airy function

and its derivative are suppressed rapidly as z grows.

The function B(h), C(h) is given in [58],

T h 9

Bhy=_— -2
(h) 2h 167’ cn) Amh

(2.98)

In order to normalize the partition function, we use the following normalized partition func-
tion,

ZA—model(N’ h)

ZA-model(N7 h) = ZA B 1(0 FL) )

(2.99)

so that we need not know the explicit form of A(h).
In the case of i = 2, the instanton part of the grand potential up to O(e~%*) is given
by

15 9 3 3 999 63 45 153
J )= [ ——— 2 - =, — = 1 )3k _ 2 _ _ 2 e b 4L
ins. (41, 27) ( ge2l' T aml T g +8>e +< 62t "1t T3z T 16 )¢ T
(2.100)
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Some coefficients a;,, are

ap,0 =1,
3 3 9 45
A0=3g~ 13 1= 75 012= g5 Ginxs = 0,
1233 9 27 27 153 27 4131 405
920 = o8 T oo T Tor2 20T Tgrd 32 "2 T g Gapzr 1287 32(?1’01)

By combining these results, we calculate the partition function numerically in some order,

Zp-model (1, 27 ) up to 1=0 = 0.111065740826220896069630438620
Zp-model (1, 27 )up to 1=1 = 0.111111111114280227656251491492. (2.102)
Za-model (1, 27 ) up to 12 = 0.111111111111111111110426936787

By including the higher corrections, this value approaches to the B-model partition function,
1
ZB-model (1, 27) = 9= 0.111111111111111111111111111111. (2.103)

O

2.6 Exact quantization condition

As a remarkable property in the B-model topological string theory, we would like to discuss
the S-duality that we will use to propose the TS-CMP correspondence. The quantum B-
period can be interpreted as the quantum corrected prepotential. These corrections are

expressed as the Nekrasov-Shatashvili free energy [22],

OFns(t, h
Mg (2, h) = N;E),
Fns(t, h) = FRS (8, h) + Frs(t, h), (2.104)
t=t(z,m;h)

On the other hand, we can impose the quantization condition in the quantum mechanics,

1
%dxp(x) = 27Th<n + 2), (2.105)
so that we obtain the following condition,
OFns(t,h) 1
— 0 = 2rh| n + 3 ) (2.106)

By using the condition, we can solve the eigenvalue problem of the quantum mirror curve.
However, there is a crucial problem for this condition. As is the case in the ABJM

theory, the left hand side of (2.106) has the poles for & = 2wa/b, a,b € Z~o. This is due

to the resummation of the quantum correction to express as the Nekrasov—Shatashvili free

energy [59].
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To resolve this problem, we add the non-perturbative contribution [12, 21] to cancel the

poles,

OFns(t,h)  OFns (f, ﬁ) _ 1
o o Mnty)

o - A4x?

—t, h= —.

h’ h

This condition is called as the exact quantization condition. Since we add the non-perturbative

(2.107)
F—

part by hand, (2.107) is conjecture. Let us check the conjecture.

e.g.)Local Bs
In our paper, we discuss the spectral problem for local Bs. To calculate the quantum mirror

map, first we write the difference equation for local Bs,

(e +e& +e Y +mie ™ +moe Y +mze)U(2) = EV(x)

1
mi ma q 2 _1 1
=>X+—4+V(X XV(X)=- 2.108
U (z —ih) i 1
ViX)=—=, X =¢6" =¢ = - 2.109
By expanding V(X)) as a series of z,
V(X)= ) wvnz", (2.110)
n=—1
we find the coefficients v,,,
1 mi + q_%XQ
v_1(X) vo(X) = — cee (2.111)

N 14+msq 2 X X(1+m3q_%X)’

Finally, by taking the residues of log[V (X)], we obtain

—t(€,m,h) =logz + (my + mg + m3)22 + (q1/2 + q_1/2)(1 + m1m2m3)23

3 _
+ §(m%+m%+m§)+(4+q4rq Y (mama + mams +mamy) | 2* + O(2%),

(2.112)
Z= . (2.113)

In the case of h = 2w and m; = mo = mg = 1, the problem is drastically simplified. The

exact quantization condition and the quantum mirror map become

o d 1
3t? — 2m? Ft— FaSt(t i) — — Fat(t i) = 4n? (n 4 < ),
ot ot 2 (2.114)

45
—t(5,17277)=10gz+322+4z3+?z4+-~ ,
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where Fé“St (t+ i) is the instanton part of the genus-zero free energy of the usual topological

string theory. This can be calculated from the topological vertex formalism,
; 21 56 405 3756 751
FénSt(t + 7T1) = —6€7t — 1672t — 3673t — 372674t — ?567515 — ?eiﬁt + e (2115)
By combining these results, we can calculate the eigenvalues £ up to some order of

Q = e !. For example, in n = 0 corresponding the ground energy, we obtain

up to O(Q?) :Ey = log & = 5.12332648396024387890839077424,
up to O(Q°) :Ey = log & = 5.12332441505781350040103701489,

(2.116)
Numerical value :Ey = log & = 5.12332441505673431832082360188,

where the numerical value is obtained by diagonalizing the Hamiltonian in the harmonic

oscillator basis [54]. This result shows the validity of the exact quantization condition.

O

From this expression, we can see that the condition is invariant under the S-transformation,

(t,h) = (L, ). (2.117)

We call this invariance as the S-duality. We will discuss what we can say from this duality
in the section 4.
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3 Hofstadter model

In this section, we introduce the Hofstadter model [20]. Its spectrum shows the fractal
structure called as the Hofstadter butterfly.

In [19], they discuss the correspondence between the topological string theory on P! x P!
and the Hofstadter model on the square lattice. In our paper [60], we discuss the corre-
spondence between the topological string theory on local Bs and the Hofstadter model on
the triangular lattice. Since the triangular lattice is the generalization of the square lattice

mathematically, we discuss the case of the triangular lattice shown in figure 12.

O]
$

Figure 12: The triangular lattice. We put the magnetic flux ¢ which is perpendicular to the

lattice.

3.1 Hamiltonian and Harper’s equation

The Hamiltonian in the tight binding approximation is defined by

C (3 A.
Hii, = th’,jC}Cielﬁ' Adl (3.1)
(4,3)
where A is the vector potential, ¢; ; are the hopping parameters between the nearest neigh-
bors, and cg, ¢; are the creation and the annihilation operators of the electron in the cite ¢

satisfying the following commutation relations,
{ei,cly =05, {eieib =0, {c,cl}=0. (3.2)

We assume that the hopping parameters along the vertical, horizontal, and diagonal
direction are the same,
Vit (mA1)1g,i+ml, = litlais
Lit(mA1)1y, i+ml, = titly,is (3.3)
Lit (m41)1ay, i+mlyy = litloy,is
(m e Z)
where 1, , .y are the unit vectors along the vertical, horizontal, and diagonal direction.

Then, by dividing the both side of the Hamiltonian by the hopping parameter ¢;;41,, and
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redefining the Hamiltonian to cancel the factor 1/¢; ;11,, we obtain

. rj NSRS . pdtlp+1
o i ifitle Aa i AfITY Al T if? v Adl
Hyi. = g Cjy1,Ci€ + A1 g Cjt1,Ci€ + A2 E Cit1at1,Ci€

J J J
(3.4)
where the parameters A\; o are defined as follows,
A= ity By, (3.5)
tiitra tiit1,
In the case of Ao = 0, the Hamiltonian reduces to the one on the square lattice.
The vector potential is related to the magnetic flux ¢,
A-dl = ¢, (3.6)

oS

where 05 is the boundary of the square, so that the magnetic flux which is perpendicular to

the unit cell (triangle) is ¢/2 (see figure 13). We fix the gauge as A = (0, ¢z, 0), so called

(a) (b)

Figure 13: The unit cell of the square lattice (the left panel) and the triangular lattice (the
right panel). The magnetic flux in the unit cell of the square lattice is ¢, so that the magnetic

flux in the unit cell of the triangular lattice is ¢/2.

Landau gauge. Then, the Hamiltonian becomes

. . . . ‘f
Hii =D e, e+ A ) ey, ¢ + 00D el e,
j i j (3.7)

J= <j$7jy>
Let us consider the Schrodinger equation,
Hyi [Y) = Elip), (3.8)
under the following magnetic flux,
¢ = 27r%, (3.9)

where a and b are the coprime integers. In this situation, the Hamiltonian is invariant under

the translation along the horizontal direction, j, — j. + b. Then, according to the Bloch’s
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theorem, the wave function can be written as

P(j) = elbedethinly, (ke k), ok, ky) = 0y, (ks ky),

) =3 ik, ky)cf|0), (3.10)
l

where k; and k, are the momentum in the Brillouin zone 0 < k, < 27 /b, and 0 < k, < 2,

and the Schrodinger equation becomes as following difference equations,

B;(_le—l + A + ijj+1 = Evy,
Aj = —2cos(ky + ¢j), Bj=—c"Bj, Bj= i+ e, (3.11)
(j=1,2,....,b)

called as the Harper’s equations. The spectrum of the Harper’s equation is determined by

the determinant,

det[Da/b(Ea )‘)] =0,

A—-E B 0 - 0 0 Bye ity
B Ay—FE B
1 2 2 0 0 0 (3.12)
Dyp(E,X) =
0 0 0 -+ Bf, Ay1—E By,
Byeltky 0 0 --- 0 B | Ay — E

We have two comments about the relation between the Hofstader model and the topo-
logical string theory. The Hamiltonian on the square lattice Hyq. is given by the magnetic
translation operators T , [61, 24, 25],

Hyq. = Hui |xp=0 = To + T} + M (T, + T}),

_ t it Al f 7Y A (3.13)
T, = chﬂmcje 5 , Ty = ch+1ycje Jj .
J J

Similarly, the Hamiltonian on the triangular lattice can be also expressed by the simple one,
Hus = To + T + M(Ty + T)) + da(e™ 2 T,T, + e 2 TTY). (3.14)

The commutation relations of the magnetic translation operators are given by
T.T, = e*T,T,, T,T} =TT} =1. (3.15)

This expression is the same structure as the quantum mirror curve of local B3, as we explained
in the section 1.5.
When we consider the Hofstadter model under the strong magnetic field, the tight binding

approximation might be broken. However, in [62], they pointed out that even if we consider
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the case of the strong magnetic field, we obtain almost the same Harper’s equation but the
flux is given by %. Therefore, we can study the Hofstadter model in the tight binding
Hamiltonian for any values of the magnetic flux. This property corresponds to the S-dual

structure in the topological string theory.

3.2 Spectrum and Density of state

In this subsection, we show the band spectrum, and calculate the density of state. First, we
solve the determinant (3.12) numerically in the region of the Brillouin zone, and the result is

in figure 14. The Hofstadter butterfly for Ay # 0 is not invariant under the shift ¢ — ¢ + 27

o
NN

Figure 14: The Hofstadter butterfly. The horizontal axis and the vertical axis correspond to
the magnetic flux and the energy of the electron. In the left panel we set Ay = Ay = 1. In
the right panel we set Ay = 1, Ao = 0 which corresponds to the Hofstadter butterfly on the

square lattice.

since there is the term having ¢/2 factor in the Hamiltonian.
Next, we calculate the density of state in this system. For simplicity, let us consider the

case of A; = A9 = 1. When the magnetic flux is turned off, by using the dispersion relation,
E(ky, ky) = 2cos[ks]| + 2cos[ky] + 2cos[ks + Ky, (3.16)

the density of state is given by

2w 2m
/ dk, / dk: d(2cos[ky] + 2cos[ky] + 2cos[ky + ky] — E),
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1 K(12—E2+8m>
272(3 + E)1/4 163+ E ’

2 K( 16vV3+E )
7212 - F2+8/3+E \12-E?24+8/3+E)

where K(z) is the complete elliptic integral of the first kind,

(3.18)

2 da
Kl = /0 V1= zsin?[a]

When we turn on the magnetic flux, the dispersion relation is given by

F,p(E) = 2cos|bk,] + 2cos|bk,] + 2(—1)%cos[bk, + bk,],
Fa/b(E) = ‘5a/b(E) + 2{(1 + (_1)b + (_1)(a71)b}’

B} As+FE By --- 0 0 0
_ ! 2 2 (3.19)
Dy p(E) = det : : : :
0 0 0 - B, Ay1+E By,
B, 0 0 -~ 0 B, MA+E

Aj = 2cos(¢j), Bj = —1+ e,
The density of state is almost the same as (3.17),

p(E,¢) =

[F'(E)] 12— F*(E) +8,/3+ F(E)
2m2b(3 + F(E))1/4K< 16,3+ F(E) >, -2 < F(E) <6,

2|F!(E)| K 16/3 + F(E) DU
w212~ F(E) + 83+ F(E) <12F2(E)+8\/m)’ < F(E) < -2,

F(E) = (=1)"F,;(E).

(3.20)

We plot some examples of the density of state as in figure 15. Then, we find the poles
called as the Van Hove singularity [63]. The reason that the Van Hove singularity arises is
as following: we plot the dispersion relation (3.16) for ¢ = 0 in figure 16. Then, we find that
there is a flat direction. If the region where the integrand diverges is a point, the integral
might be finite. However, the region is not a point due to the existence of the flat direction,

so that the integral diverges.
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2 o 2 4 &° -4 -2 0 2 4

Figure 15: The density of state for Ay = Ay = 1. The horizontal axis and the vertical axis
correspond to the energy and the density of state. In the left panel we set ¢ = 0, and in the
right panel we set ¢ = 47/3.

Figure 16: The dispersion relation.
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4 The TS-CMP correspondence

We now propose the TS-CMP correspondence. This claims that the branch cuts of the
quantum mirror map give the Hofstadter butterfly, and the imaginary part of the quantum

mirror map on the cuts gives the density of state.

4.1 S-duality

In this subsection, we explain how to calculate the quantum mirror map in the closed form.
In general, as we explained in the section 2.4, we need to calculate the quantum mirror map

order by order. Again we write the result in the section 2.6,
—t(€,m, h) =log z + (m1 +ma +ms)2” + (¢"/% + ¢/*)(1 + mimams)2*

3
+ §(m% +m3 +m3) + (4 +q+ ¢ V) (mima + mamsz + magmy) | 2* + O(2°),

(4.1)
From this expression, we observe that the quantum mirror map is invariant under the shift
h — h £+ 47 and the flip h — —Ah,

t(E,m,h£4r) =t(E,m,h), t(£,m,—h) =t(E,m,h). (4.2)

We call this transformation as T-transformation. By using the S- and the T-transformation,
and setting i = 2ma/b, we can calculate the quantum mirror map exactly.
The S-duality claims that the exact quantization condition is invariant under the S-

transformation (2.117). This means that there is a (h, £)-system,

e+ e +e XY e X+ mge Y + et =€,

. 2 27 - 2r

(%, y) = B RY ) =M (4.3)
- A4q?

X v = h: R —

%, Y] pt

and the quantum mirror map in the dual system ¢ can be calculated from the WKB approx-

imation,

t(E,m, i) = j’{ dz 25

2 o U (Z) = exp [%S(:ﬁ)} , (4.4)

where we omit the tilde of the dual quantum mirror map since the form of the function is
the same as the quantum mirror map. Furthermore, according to the exact quantization

condition, ¢ and ¢ are satisfied with the following relation,

t= Et. (4.5)
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By combining these facts, the dual complex modulus £ is related to the complex modulus &

through the quantum mirror map,
t(€,m, h) = ——t(E, m, h). (4.6)

Let us demonstrate what this relation is.

eg) h=m h=4r
We investigate the relation (4.6) in the case of h = m, h = 4r, and m = 1. From two

difference equations, we obtain the quantum mirror map and the dual one,

1485 ¢ 14038 4

—t(g,m:1,71:77)zlogz—|—3z2+%z4—|—5626—l— T 5 +0(21%), 4.7
—t(E,m=1,h=4n) =logZ + 332 + 433 + 42—524 + 722° 4 3402° 4 144027
+ 27;105 2+ 96§8Oz9 + +@le + 0z, (4.8)
s 1
£=-. (4.9)

Let us find the relation between the complex modulus and its dual. Since the quantum mirror
curve and its dual curve are commute, we can diagonalize two operators simultaneously. After
shifting the variable y — y — /2, we write down the difference equations for the quantum

mirror curve and the dual one,

ih ih
2cosh<;: 14 ) (x +ih) + 2cosh<x 4) U(x —ih) = (€ — 2coshz) ¥ (x),

- z 4.10
T ik T ik ~ . ( )
2cosh 5 1 U(z + 27i) + 2cosh 5 Z (x — 27i) = (€ — 2coshz) ¥ (x).
By substituting & = 7, we find
T o im im .
2008h<2 1 >\If(1: +im) + 2(305h< - 4) U(z —im) = (€ — 2coshz)¥(x), (4.11)
— 2cosh(z) U (z + 2ir) — 2cosh(z)¥(z — 2in) = (€ — 2cosh(2z))¥(z). (4.12)

By shifting x — = £ im in (4.11), we obtain two difference equations,

2(:osh<g26 + T) U(z + 27i) + 2cosh<; + 72) U(z) = (€ + 2coshx)¥(z + 7i),  (4.13)
2(305h< - 7;1)‘1’( )+ 2cosh<x - 34m>\11(:n —27i) = (€ 4 2coshz)¥(x — 7i).  (4.14)

From (4.13) x 2cosh(z/2 + wi/4) 4 (4.14) x 2cosh(z/2 — wi/4), and using (4.11), we find

- . 3 .
2cosh<§ + m)cosh<§ + 7:)\1/(95 + 27i) + 2cosh< - 7T1)cosh(éj - 7:) U(z — 27i)
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h2(* 7i h?2 r_m
—1-2{(:05 <2+4 + cos 5~ 1 U(z)

=(E+ 2coshx)cosh<; - 7:) U(z+m7i) — (€4 2005hx)cosh<§ + 7:) U(z — i)
& —2cosh(z) ¥ (x + 2im) — 2cosh(z) ¥ (x — 2ir) = (£2 — 6 + 2coshz) ¥ (z). (4.15)
Therefore, when the wave function is non-trivial, we find
E=E2-6 (4.16)
which satisfies (4.6). O
In general, the relation is given by
Fojal,m) = Fopp(E,m), (4.17)

where F, (€, m) is the degree-b polynomial. In the case of local P! x P!, we can calculate

Fasp(€,m) from the mirror curve and its dual,

" +e "+ m(e¥+e7Y) = Epryp, (4.18)
e +e T m(e? +eY) = Epiypr. (4.19)

The calculation method in [19] is as following: by shifting © — x+ijh in (4.18) and = — 27ij

in (4.19) for the integers j € Z, these difference equations are written as the matrix forms,
v T, -1 ¥
j+1 _ J J ’ (420)
\Ifj 1 0 \I’j,1
T; T, -1 U,
A I ), (4.21)
\I/j 1 0 \I/j_l

_ Eprypr — 2coshfz +ijh]

where we define

U, =V(x +1ijh), Tj 72 , (4.22)
- . & — 2cosh[# + 472ij/h
U, = Wz + 2rij), T; = Expr= =008 2+ 47 /h) (4.23)
R2
When we set i = 27a/b, by using the periodicity,
Tjep =Tj, Tjra =Tj, (4.24)
we can rewrite the difference equations as
T,_1 —1 T, —1 o -1
Uy +0 ,=Tr|[ " b=2 7 T, (4.25)
1 0 1 0 1 0
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\i/a—l—\il_a =Tr

) )]
o)) e

The essence of the calculation is that e” and e¥ are separated in the (dual) mirror curve.

¥y (4.26)

Therefore,

=Tr

However, local Bj is not the case, and the derivation of F, (£, m) from the difference
equations is difficult. Alternatively, we use the knowledge of the condensed matter physics
to guess F, (€, m). From the result in the previous section, we can guess the explicit form

of Fu except for b =2,

Fupp(€,m) = Dy (€, ) + 2{ N} + (—1)@DPNS + (—1)°},

A+ & By 0o - 0 0 B;
Bi Ay +& By --- 0 0 0
Dayp(E',N) = det : : : : : f ;
0 0 o - B;_Q Ay 1+E By (4.28)
By 0 o - 0 B;_, Ay + &'
2 ] Tia
Aj = 2005(7:”), Bj =—A1 + Aoe
& = £
Vi’

where we identify the tunable parameters m with the hopping parameters A\,

M= 22 A= 8 (4.29)
mi mi

and impose the following condition to be Hermitian,
mimams = 1. (4.30)

Since the complex modulus & is replaced by &', we consider the (£, A)-system. Then,
(4.6) is slightly modified as follows,

- = o= = 2
7(E N F) = %t’(é”, AR, (4.31)
(€A h) = HE,m, ) — %log m

=log 2 + (14 A2+ A2)2"” +2(¢"? + ¢ V)M A2
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3
+ 5(14—)\‘114—)\%)4—(4+q+q’1)()\%+)\§+)\f)\§) 07, (4.32)

(7' = /m1z)
4.2 Explicit calculation of Quantum mirror map

We now ready to calculate the quantum mirror map from the classical one. For example,
let us consider the case of a = 2, b = 5. By using the S- and the T-transformation, the

quantum mirror map reduces to the classical one,

2 2
(&' X 2m - 2/5) = gﬂd(e’d, X 2r.5/2) = gt’d(é”d, X 2w 1/2)

2 s 5o o2 Laa s
== STE A 2r2) =2 SH(E X0), (4.33)
Foss(E,X) = F (€, M%) = Fy o (£, X)) = Foy (€', X) = &, (4.34)

where we denote “ d 7 by S-transformation. In the case of a = 3,b = 5, we find

t'(E' X\, 21 - 3/5) = %t’d(éf’d, X om.5/3) = gt’d(ed, X\, —2m-1/3)
= %t’d(s’d, A 2r.1/3) = % : %E’(é’,i, o - 3) = g - %E’(é’,i,%), (4.35)
Fay5(E,A) = F3(E %) = F_y j3(€%, %) = F_3(€',X) = Fi (€, X) = €. (4.36)

Based on these results, we find the quantum mirror map in the general values of a and b,

%5«5/,&,0) = %(log[c‘f/] —T14(E', X, 0)), for ab: even
t'(E A h=2ma/b) =
%E’(é',x, 2m) — %(log[fj’] CIA(-€,X,0)),  for ab: odd

&' =Fun(€ X), hi= . (4.37)

Therefore, by using the classical mirror map, we can obtain the quantum mirror map. Let

us demonstrate the evaluation.

eg)m=1°¢&=¢

In this case, we can easily calculate the derivative of the classical mirror map from the

definition,
1 [+ & — 2cosh
t(E,1,h=0)= 7{ dzy(z) = / dxarccosh(cosxx> for £ > 6,
A i, 4cosh3
(4.38)
& —2coshzy 1 50
dcosh™E = '
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By differentiating the classical mirror map, we find

1.h= 1 T+ 1
At(E,1,h = 0) / "

o€ Thi), >
4cosh3 (54;2%8%“) -1

1 [w+ 1
= — dw
) w2 = D) ((€ — 20) — 8w + 1))

1 /w+ 1

— dw

T Jw_ 2¢/(w? = 1)(wy — w)(w —w_)

B 2 K< 16v/3 + & >
TVE2 12183+ E \E2—12+8/3+&)

where we define the variable w as following,

E+2£2VE+3

w = coshx, w4 = coshzy = 5

and use the formula,

b dt B 2 (b—a)(c—d)
/a ViE—a)b—t)t—c)t—d) \/(a—c)(b—d)K<(a—C)(b—d))’
d<c<b<a.

By combining the above result with (4.37), we find the following formula,

0t(€,1,h = 2mwa/b)
o€

2F!(E,1) < < 161/3 + F(&,1) >
ﬂh¢f%gJ)_12+8vgijqaij F2E,1) — 12+ 8\/3+ F(E,1)

F(E,1) = (—1)PF, (€, 1).

The branch cuts of the quantum mirror map are

FAE,1) —1248y/3+ F(£,1) <0,

= —3< F(£,1) <6.

( 164/3 + F(£,1) >—1
F2(E,1) - 124+ 8\/3+ F(&,1)

In the case of a = 1,b = 4, the above condition is

—3<EY 1282 -8V26+6<6
= —2.8284 < £ < —2.3751, —1.9318 <& < —1.0352,
0<E<0.51763, 3.7893 < &€ < 3.8637.

When we consider the case of a = 1,b = 3, the branch cuts are given by

—6<E—-9E—6<3,
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(4.40)

(4.41)

>1

(4.42)

(4.43)



= —3.0000 < £ < —2.2266, —1.1847 <& <0.0000, 3.0000 < €& < 3.4114. (4.44)

In both cases, the results give the band structure of the Hofstadter model.
Finally, we calculate the density of state. In the region —3 < F(&,1) < 6, by using the

formula,

KC) = VAHK(z) +iK(1 - 2)}, (4.45)

the imaginary part of the quantum mirror map is
0t(E,1,h = 2ma/b)
m
o0&

|7 (£,1)] 12—-F2(£,1)+8/3+F(£,1)
27b(3+F(€,1))1/4 167357 (E,0)

2|7/ (£,1)] K 16/3+F(£,1) > —2< F(&,1) <6.
mby/12-F2(€,1)+8y/31 F(E,1) (12—f2(571)+8\/3+F(5,1) ’ SFED s

I

>7 —3§f(5,1)§—2,

(4.46)
By multiplying %, this result completely agrees with the density of state in the Hofstadter
model. O

In the general values of m, it is useful to rewrite the mirror curve as the Weierstrass

form by a coordinate transformation [14],
Y2 =4X3 - X — gs. (4.47)
where go and g3 are given by

1
92 = 15,4 [1—8(my + ma + m3)z” — 24(1 + mimams)z°
+ 16(m% + m% + mg — mimg — MaMms3 — m3m1)2’4],
1
93 = azlL = 12(mu + ma + mg) 2 = 36(1+ mimyms)=*

+ 24(2m2 + 2m3 + 2m3 4+ mamg + mams + mgmy )2 (4.48)

+ 144(mq1 + mg + m3)(1 + m1m2m3)25
+ 8(—8m3 — 8m3 — 8m3 + 12mimsy + 12mims + 12mim;
+ 12mym3 + 12mom3 + 12mam? 4 27 + 6mymams + 27mimam3)z5).

Then, the derivative of the classical mirror map is given by

$=—£ﬂwﬁﬁg<2_2) (1.49)
where ej, ez, and e are three roots of the curve (4.47). From this expression, we can
determine the branch cuts and the imaginary part of the quantum mirror map in various
protocols of (A1, A2) as in figure 17. The result in the right panel of the figure is consistent

with the result in [19] since this corresponds to the small value of ms.
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Figure 17: The Hofstadter butterfly. In the left panel we plot in the protocol (A1, A2) =
(2,1/2). In the right panel we plot in the protocol (A1, A2) = (1,1/8).

5 Summary and Discussion

In this thesis, we have expressed how to define the non-perturbative topological string theory.
In the A-model side, based on the duality between the ABJM theory and the topological
string theory on local P! x P!, we proposed the non-perturbative free energy on the gen-
eral non-compact toric Calabi—Yau manifold. The non-perturbative part is given by the
Nekrasov—Shatashvili free energy.

In the B-model side, based on the Fermi gas formalism in the ABJM theory, we have
considered the quantization of the mirror curve in the mirror Calabi—Yau manifold. Then,
we define the trace class operator and the grand partition function. As is the case in the
perturbative topological string theory, the non-perturbative definitions in the A- and the
B-model are related through the quantum mirror map.

In the point of view of the quantized mirror curve, this is quantum mechanics, and is
the same as the Hofstadter model in the condensed matter physics. Here we have called
this relation as the TS-CMP correspondence, and the correspondence has worked in two

cases (table 2). In this thesis, we have discussed the second correspondence. To show the

Topological String side
Local P! x P!
Local B3

Condensed Matter Theory side
Square lattice

Triangular lattice

Table 2: The TS-CMP correspondence.

TS-CMP correspondence, we need to know the explicit form of the quantum mirror map.

Compared with the first one, the direct derivation of the quantum mirror map from the
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quantum mirror curve is difficult. Alternatively, we use the knowledge of the condensed
matter physics. Then, we find that the branch cut and the imaginary part of the quantum
mirror map give the Hofstadter butterfly and the density of state. This shows that we
can study the non-perturbative topological string theory from the knowledge of well-known
condensed matter physics.

There are many interesting issues that we need to study. As a naive extension, the
higher genus case would be interesting. In this thesis, we discuss the genus-one mirror curve.
However, the S-duality structure exists in the higher-genus mirror curve. Therefore we would
obtain the branch cuts drawing a fractal structure. Since the non-perturbative effects in the
higher-genus case is less known, studying the quantum mirror curve itself is worthily.

Second, we expect the quantization of the mirror curve in the presence of the branes to
have the branch cuts drawing a fractal structure. In [64], the author showed that the geo-
metric transition can be applied in the A-model non-perturbative topological string theory.
Based on this result, we would be able to see the fractal structure in the presence of the
branes from the closed topological string theory by setting the complex moduli appropriately.

The third one is about the non-Hermitian Hamiltonian. In both correspondence in table
2, the Hofstadter model is Hermitian. Correspondingly, the mirror curve is invariant under
the transformation (z,y) — (—z,—y). However, as is the case of local P2, there are some
mirror curves which are not invariant under the above transformation. We plot the branch

cuts of the local P? as a example, and the result is in figure. 18. We do not know so far
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Figure 18: The branch cut of local P? in each values of A.

which there is a corresponding condensed matter physics or not. If this problem is solved,
we can easily generalize the wide class of Calabi—Yau manifolds.

Finally, we expect the non-Hermitian Hofstadter model studied in [65] to solve the crucial
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problem about the quantization of the conifold. In the genus g > 1 mirror curve, we can
define the trace class operator, so that we can obtain the grand partition function. However,
the genus-zero mirror curve is not the case; we cannot define the trace class operator, and
cannot compare the B-model with the A-model. It might correspond to the fact that the

quantum mirror map is trivial,
t =log z, (5.1)

where z and t are the complex modulus and the Kéhler parameter in the resolved conifold,
respectively. Thus, the branch cuts have no fractal structure. However, the authors in [65]
have obtained the non-trivial band structure, even if the Hamiltonian corresponds to the
genus-zero mirror curve. If this conflict is solved, we will be able to define the quantization

of the genus-zero mirror curve.
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A Notation, Definition and Formula

Young diagram

We define the Young diagram as in figure. 19. The variables p;, ,uz», () denote the number

t
pi 1o Hig)
H1 I
H2

Hi(p)

Figure 19: The Young diagram and its parameters.

of boxes in the i-th row, the number of boxes in the j-th column, and the number of the

columns. We also define the following quantities,

W) )
lal = 6= ui. (A1)

Schur function and skew Schur function

The Schur function s,(z) is defined by a ratio of the determinant,

pi+N—i
Sp(xlf"ax]\f):%a Z:177N (AQ)
detx]-

For example, when we consider the case of N = 3 and p; = 3, p2 = 2, ug = 1, the Schur

function is

(@) = det | 2t 4} f / dot | ot b ol
vl owy by
= r1wows(z1 + 22) (22 + x3) (23 + 21). (A.3)

The skew Schur function s/, (7) is defined by
Sp /(@ ZN su(@ (A.4)

where the summation is taken over all shapes of the Young diagrams. The coefficients N/,

are called as the Littlewood—Richardson coefficients, and have following properties:
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e The product of two Schur functions can be expressed by the linear combination of

single Schur functions,

ZN” solx (A.5)

e Unless three Young diagrams u, v and 7 satisfy the relation, |u| = |v| + |n|, the

Littlewood-Richardson coefficients vanish, N, = 0.

e The Littlewood—Richardson coefficients are invariant under exchanging of p and v,
N, = N7, and the transposing all Young diagrams, N, nyt = Ng,.
To calculate the partition function of the (refined) topological string theory, we can use the
formulae about the skew Schur function,

SA/u(am) = al)\F'#'S)\/u(m)a

an/)\ n/u y) = H 1 —ziy;)” Zsu/n z)sx/m (), (A.6)

t,j=1
Z Snt/)\(:c)sn/u(y) = H (1 + xiyj) Z S#t/nt (ﬂs)s)\t/n(y).
n ,5=1 n

Quantum dilogarithm

The quantum dilogarithm ®;(z) is defined by [66]

Dy(z) = (S:b(iz);)?g;, (A7)
where, .
(@, 9)o0 = [ [ (1 = z¢"),
s (A.8)
g =i g gmv b b_l, Im(b%) > 0.

2
The quantum dilogarithm satisfies the following relation,

. mi(b2+b~2)
By () Py (—) = ™7 By(0)2, Bp(0) =™ 21—,
oy Pyl + )
Op(x 4+ ¢ +1b) = m, (A.9)
(I)b(x + Cb)
Dy(z+cp+ib7t) = =Tt
In addition, if b is real, we can use the following formula,
By() = — (A.10)
z) = . .
’ Pp(2)

ol



By combining them, one can show that [55]

- 1
Dy (p)e?™y(p) = ™9 4 2P [q p] = o (A.11)
T

This formula is useful to calculate the inverse of the quantum mirror curve.
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B Calabi—Yau manifold

B.1 General definition

In this section, we explain what the Calabi—Yau manifolds are. In general, the Calabi—
Yau manifold is defined by the complex n-dimensional Ké&hler manifolds with a Riemannian

metric g,
a 0
ii = g7 =0, -=——IlogK(z,2), B.1
g] 9; gl] 821‘ 825 og (Z Z) ( )
where K(z, Z) is a real function. In addition, the Ricci tensor has to vanish,

R~ =0. (B.2)

iy —

As a important property, the Calabi—Yau manifold has a nowhere vanishing holomorphic
n-form,

Q= f(2)dz1 A+ Adzy, (B.3)

which is uniquely determined up to an overall complex constant.

B.2 Non-compact case

Here we focus on the non-compact toric Calabi—Yau manifold. The definition of this manifold
is divided into two types: one is the manifold where the A-model topological string theory
is defined, and the other is the mirror Calabi—Yau manifold where the B-model topological

string theory is defined. Let us explain them.

B.2.1 A-model side

The non-compact toric Calabi—Yau manifold CYy in the A-model topological string theory
is expressed by a T? x R fibration on a three-dimensional space as in figure 20, called as the

toric geometry. One of the cycle in the torus, (0,1)-cycle or (1,0)-cycle, shrinks along some

(0,1)

(1,0)

(_11_1)

Figure 20: The Calabi—Yau manifold and the web diagram.
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lines, and the shrinking cycles are the line specific. The web diagram which we use to express
the topological vertex represents the degeneration lines of the torus. Let us explain how to
define the non-compact toric Calabi—Yau manifold and how to obtain the web diagram.
Any CY, can be expressed by the combination of the simplest C'Y4, C3. Then, we first
consider the C? case whose coordinates denote z1, zo and z3. To express the C3 geometry in

term of the T? x R fibration over R3, we define the following coordinates,

ra(z) = |z2f® — |2, (B.4)
ry(2) = Im(212223).
These variables define R3. We also define the Poisson bracket,

8U2i = {TU7Z7;}PB7 v =, /87 v

3
. Orq 0z;  Org 6,22-) (B.5)
{Tm ZZ}PB o 1;(62]' aZj 82]' 82]' .
They make the circle actions,
erathrs (21, 22,23) — (eiazl, eiﬁzg,e_ia_iﬁz;),), (B.6)

and (a, 3,7) define T2 x R. We call S’s made by a and 3 as the (0,1)-cycle and the
(1,0)-cycle, respectively.

When z; = z3 = 0 which corresponds to 7, = 0, the (0,1)-cycle shrinks. Similarly, (1,0)-
cycle shrinks when z; = 23 = 0 corresponding to 73 = 0. Finally, a one-cycle defined by
a + 3 shrinks when 21 = 23 = 0 corresponding to r, = 7. The condition 7, = 0, 73 = 0,
and r, = rg correspond to the vertical, horizontal, and diagonal line in the right panel of
the figure 20.

Next we define general non-compact toric Calabi-Yau manifold. Let us consider a CN*3

space defined by N + 3 coordinates z1,--- , zy+3, and define the space p4 as following,
N+1 N+3
MA:{Zla"‘azN—i—?) ZQQ\ZJ‘P:??A, ta>0, A=1--- N, ZQJ :0}7 (B.7)
j=1 J

where (@4 are the charge vectors. The conditions Z;VJF?’ Qil = 0 correspond to the Calabi—
Yau condition R;; = 0. The equations E;V:Jil Qi‘|zj|2 = t4 are invariant under a U(1)V

transformation,
Zj = eiQi‘aAZj. (B8)

By dividing pa by the symmetry, we define the non-compact toric Calabi—Yau manifold
CYA7

CYa=(\pa/TM)". (B.9)
A
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From this definition, we can express C'Y, with the web diagram.

e.g.) Resolved Conifold

The charge vector of the resolved conifold is given by
QA: (1a_17_171)7 (BlO)

so that (B.7) is
|21|* = |22f* — |23* + |za]* = ¢. (B.11)

Since the Kihler parameter ¢ is positive, either |21|? or |24|> has to be non-zero value.
Therefore, the conifold is defined by two patches: one is Uy = (21 = 0, 22, 23, 24), and the
other is Uy = (21,22,2’3,24 = 0)

In the Uys-patch, by taking the coordinates rq,rg as follows,

ra(2) = |2 = [z

) ) (B.12)
rg(z) = |z3|” — |z
we obtain the web diagram which is the same as the right panel of the figure 20.
In the Uj-patch, the coordinates are
2 2
Tal(2) = |24 — |23|7 — €,
a(2) = |za|” — [23] (B.13)

ra(2) = |aal® = |2 — t.

The web diagram consists of three degeneration loci which are defined by three vectors
(—=1,0), (0,—1), and (1,1). By combining them, we find the web diagram description of the
conifold as in figure 21. Since there is the S!-fibration over the connected line, the geometry

is topologically S2. O

(a) 01 (b)
SZ

(1,0)

(1,1
(-1,0)

Sl

(0-1)

Figure 21: (a)The web diagram expression of the conifold. (b)The sphere structure in the

conifold.
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B.2.2 B-model side

Next, we explain the mirror Calabi—Yau manifold. As we mentioned in the section 2.2.2, the

mirror Calabi—Yau manifold is defined by
vw— H(e*,eY;2) =0, wv,weC, (B.14)

and the information of the (non-perturbative) topological string theory is encoded in the
equation,
H(e",eY;z) = 0. (B.15)

For example, the mirror Calabi—Yau manifold of the conifold is defined by
e’ +e¥ + eV —u =0, (B.16)

where u is the complex modulus.

In general, H(e",eY; z) is expressed as the summation of a, ,e”**t", where m,n € Z
and a,, are the coefficients including the complex moduli. Again we express the mirror
Calabi—Yau manifold pictorially: we regard e™**"¥ as the point (m,n) in a two-dimensional
space. Then, the conifold is given by the three points as in the left panel of figure 22, called
as the toric diagram.

The toric diagram is closely related to the web diagram; by connecting the dots to divide
into triangles, and drawing the lines which are perpendicular each lines of the toric diagram,

we can obtain the web diagram of the conifold in the A-model side. Conversely, we can

(a) (b)
(0,1) I (1'1).

(0,0) (1,0)

Figure 22: (a)The toric diagram. (b)The relation between the toric diagram and the web

diagram.

obtain the toric diagram and the mirror curve from the web diagram.
The left panel of the figure 22 can be regarded as the lattice sites. In this sense, the

topological string theory on the mirror curve could have the information of the Hofstadter

o6



model on a certain lattice. This is the pictorial explanation of the T'S-CMT correspondence.
Indeed, the toric diagrams of local P! x P! and local Bs are the same as the square lattice

and the triangular lattice, respectively.
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