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Abstract

The Higgs field is the only scalar field in the Standard Model of particle physics.

Because the potential shape of the Standard Model Higgs is not suitable for the

inflation, the nonminimal coupling between Higgs and the Ricci scalar is necessary

to use the Higgs field as an inflaton. In this thesis, we employ two approaches on

Higgs inflation model with general nonminimal couplings. First we consider the

prescription dependence of the Higgs effective potential. It has been considered

that the prescriptions correspond to the choice of frame in which a field-independent

ultraviolet cutoff is defined. We have shown that the difference between prescriptions

comes from the choice of counterterm to cancel the logarithmic divergence in the

counterterm formalism. We also point out that the difference can be absorbed into

the choice of tree-level potential from the infinitely possibilities, including higher-

dimensional terms. Second, we assume that a low-energy effective theory is valid

below a certain energy scale and that the slow-roll inflation occurred above the cutoff

scale. We obtain the lower bound on the tensor-to-scalar ratio r even if we do

not know the theory at high-energy scales. We consider the Higgs-portal Z2 dark-

matter model as an example, and we calculate the lower bound on the tensor-to-

scalar ratio r and the upper bound on the dark-matter mass mDM. We obtain

r & 4× 10−2 and mDM . 1.1 TeV in absence of heavy right-handed neutrinos. When

there is contribution from heavy right-handed neutrinos, the most conservative bound

becomes r & 10−5 and mDM . 1.6 TeV.

∗nakanishi@het.phys.sci.osaka-u.ac.jp
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1 Introduction

The Big Bang theory is a successful model in cosmology. It can explain the universe

history after the Big Bang nucleosynthesis, however, we have still some unsolved problems:

our universe has unnaturally small curvature and homogeneous energy distribution. The

inflationary paradigm [1, 2, 3, 4] is one of approaches to solve such cosmological problems.

An epoch inflation when the universe expanded rapidly in the early time makes the spatial

curvature small. It shrinks the comoving distance, which represents the distance that two

points can interact within finite time, and also makes the homogeneous universe possible.

The inflation also dilutes the (number or energy) density of particles and structures that

existed before it, hence we may understand the nonexistence of things such as monopoles.

Then, what is the mechanism of inflation? There are many possibilities proposed from

the point of view of particle physics and gravitational theory. However, at present, we

do not know which model is the truth. In recent decades, the observations also have

been developed and we obtained some information about the inflation. Direct detection

of photons is the most reliable method in the investigation of the history of universe.

Though the direct observation of inflation is difficult, we can observe the last scattered

photons called cosmic microwave background (CMB), and its temperature perturbation

and polarization tell us many properties of the inflation. An important observable is the

tensor-to-scalar ratio r which is the ratio of amplitude of tensor and scalar perturbations.

In principle, the tensor perturbation can be observed as the primordial gravitational waves.

Recently there is a report of detecting the signal of gravitational wave from binary black

holes [5]. However, the detection of primordial gravitational wave is rather difficult and we

may only observe it indirectly via the B-mode of CMB polarization at present. The upper

bound on the tensor-to-scalar ratio obtained by Planck is r ≤ 0.09 within 2σ C.L. [6].

Another observable parameter is the spectral index ns of the power spectrum of the scalar

perturbation, and it is constrained ns = 0.968± 0.006 within 1σ C.L. [6]; we will give a

detailed review in Sec. 2.

The field which causes the inflation is called inflaton. The matter nor radiation com-

ponent in the universe cannot induce the inflation because their pressure is positive and

they always shrink the space. On the other hand, scalar fields can become candidates for

inflaton. The Standard Model (SM) of particle physics has the Higgs field as the only

scalar field which has been discovered [7, 8]. Although the pure SM Higgs cannot repro-

duce the observed values of r and ns, we can make suitable models by introducing fewer

assumptions on the SM than with other undiscovered scalar particles. In this thesis, we

concentrate on the Higgs inflation model and consider issues on it.

A simple extension is to add nonminimal couplings between the Higgs field ϕ and the

Ricci scalar R. By switching frames by conformal transformation, we obtain the suitable

shape of Higgs potential for the inflation [9, 10]. This model predicts parameters of the
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closest to the best fit point in the r-ns plane among various inflation models [11]. In

classical theory, there is no problem on such conformal transformation of metric. However,

the frame dependence (or independence) of the quantum theory has long been disputed;

see e.g. [12, 13, 14, 15, 16, 17, 18, 19].

We often consider the running of couplings in the quantum field theory. When we

analyze the nonminimal model, the corrections from the nonminimal couplings appears in

general. Under the existence of nonminimal coupling term, it has been said that there

are two different “prescriptions” to approximate the renormalized Higgs potential to the

tree-level one [20, 21, 22]. A prescription is claimed to correspond to a field-independent1

ultraviolet cutoff in a specific frame [20, 21], and the different choice of prescription comes

down to the different size of the nonminimal coupling for realistic inflation [23, 24]. How-

ever, if we start from the identical Lagrangian, it is curious that the field dependence of

the cutoff scale changes the result.

In this thesis, we show that we can guarantee the frame independence of the effective

action with proper definition of path integral measure and with renormalization condition.

We also revisit the relation between the ultraviolet cutoff and the renormalization scale,

and clarify that the different choice of the cutoff does not directly relate to the difference

prescriptions: it is related to the choice of the counterterm to cancel the logarithmic

divergence. We also explain that the difference can be absorbed into the choice of the

tree-level potential, including higher-dimensional terms.

On the other hand, the observed value of the Higgs mass 125.09± 0.24 GeV [25] indi-

cates that the Higgs potential in the SM becomes small and nearly flat by the fermion-loop

corrections when the Higgs-field value is close to the Planck-scale; see e.g. Refs. [26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. This is required by the multiple-point principle

(MPP) [39, 40, 41, 42]. The inflation model using this flatness at the high-energy scale is

called Critical Higgs Inflation [23, 43, 44, 24]. The usual Higgs inflation needs large non-

minimal coupling ∼ 104, but the Critical Higgs Inflation does not need so large nonminimal

couplings.

The nonminimal coupling reduces the range of scale where the low-energy effective

theory is valid. If the nonminimal coupling is sufficiently small, the cutoff scale2 of the

effective theory is close to the Plank scale, and the energy scale at which the inflation

occurred becomes high. In this thesis, we show that we can obtain the lower bound on the

tensor-to-scalar ratio r even if we do not know the high-energy-scale physics. We consider

a specific model of Higgs inflation and analyze the lower bound. Consequently, we find

that the lower bound on r which may be tested in the near future.

This thesis is organized as follows. In Sec. 2, we briefly review the slow-roll inflation

1In the case of Higgs inflation, the field is Higgs.
2This cutoff scale is different from the ones in the discussion of prescriptions: here it means the upper

limit of the valid range of the low-energy effective theory.
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mechanism and the nonminimal inflation model. In Sec. 3, the first topic of this thesis, the

frame (in)dependence and the prescriptions, is discussed. In Sec. 4, we turn to the case of

inflation at high-energy scale, and calculate the lower bound on the tensor-to-scalar ratio.

Finally in Sec. 5 we give a summary of this thesis.

Throughout this paper, the units of c = ~ = 1 is taken unless otherwise stated.
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2 Introduction to Inflation

Single-field models are considered as one of simple possible realization for the inflation.

Especially, slow-roll mechanism can produce small tensor-to-scalar ratio, which fits the

observations. In this section, the mechanism of single-field slow-roll model is explained.

2.1 Cosmological perturbation theory

First we review the classical cosmology. The homogeneous isotropic background metric

(Friedmann‐Lemâıtre‐Robertson-Walker metric) is

ds2 = dt2 − a2(t) dx2 (1)

where a(t) is a scale factor of the universe.3 The dynamics of a(t) is calculated from the

Einstein equation

Rµν −
1

2
Rgµν + Λcgµν = 8πTµν (2)

where Λc is the cosmological constant and Tµν is energy-momentum tensor for all compo-

nents in the universe other than the cosmological constant. From the homogeneity and

isotropicity, Tµν has only diagonal components at zeroth order of perturbation,

T µν =



−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


(3)

where ρ is the energy density and P is corresponds to pressure. From Eqs. (2) and (3), we

obtain the Friedmann equations:(
ȧ

a

)2

=
8πG

3
ρ+

Λc

3
,

ä

a
= −4πG

3
(ρ+ 3P ) +

Λc

3
. (4)

The energy components other than the one that causes the inflation can be disregarded

during the inflation. If the accelerated expansion had been induced by the cosmological

3Throughout this thesis, we ignore the spatial curvature K of the universe because it becomes small dur-

ing the inflation. We may recover it by dx2→dx2+K (x · dx)
2

1−Kx
2 . Actually the achievement of small curvature

|ΩK | < 0.005 [6] is one of the motivation of the inflation paradigm, as mensioned in the introduction.
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constant, the Einstein equation can be easily solved and we obtain a(t) ∝ exp
(√

Λc/3 t
)

.

In this case, the Hubble parameter defined as

H :=
ȧ

a
(5)

becomes a constant.

We also define the e-folding number N which stands for how large the universe has

expanded during the inflation as

N := ln
aend

astart

. (6)

The observable fluctuations of CMB corresponds to the primordial perturbations at N =

40–60 and it depends on which reheating model we take [45].

Scalar perturbation Next we consider the first-order perturbation theory. Using the

gauge-invariant comoving curvature perturbation R(t,x), the metric is written as

ds2 = dt2 − a2(t) e2Rdx2 (7)

in the comoving gauge.

The quantum variable R obeys a canonical commutation relation with an appropriate

normalization. Then the two-point function of the comoving curvature perturbation gives

its power spectrum PR as4

〈RkRk
′〉 = δ

(
k + k′

)
PR(k) . (8)

Naively, the amplitude of the scalar perturbation
〈
R2(t,x)

〉
is directly connected the tem-

perature perturbation of CMB. From Eq. (8),

〈
R2(t,x)

〉
=

∫
dk

k

k3

2π2PR(k) (9)

and the integrand

∆2
R :=

k3

2π2PR(k) (10)

is the dimensionless power spectrum. The amplitude at the horizon crossing time becomes

As := ∆2
R
∣∣
k=aH

=
1

8π2

H2

M2
P

1

ε

∣∣∣∣
k=aH

(11)

4We ignore the difference between the comoving curvature perturbation and the curvature perturbation

on uniform-density hypersurfaces because the difference disappears on superhorizon scales or under the

slow-roll approximation [45]. For the details of the calculation, see also the author’s master thesis [46].
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where ε := −Ḣ/H2 is the first Hubble flow function.5 And we define the spectral index

ns :=
d ln ∆2

R

d ln k
+ 1. (12)

If the inflation is derived by the cosmological constant, it is known that the dimensionless

power spectrum of CMB becomes Harrison-Zel’dovich spectrum [47, 48] which is scale

invariant: ns = 1.

Tensor perturbation The metric has also the vector and tensor modes of perturbations.

It is known that the vector mode decays rapidly. On the other hand, the tensor mode can

be observed as the polarization of CMB or the gravitational waves. The amplitude at the

horizon crossing time is obtained as

∆2
t

∣∣
k=aH

=
2

π2

H2

M2
P

∣∣∣∣
k=aH

. (13)

Then the tensor-to-scalar ratio r of the power spectra is defined:

r :=
∆2
t

∆2
R

∣∣∣∣
k=aH

= 16ε|k=aH . (14)

If the inflation is derived by the cosmological constant, the Hubble flow function ε = 0 and

the tensor-to-scalar ratio is also zero.

The observed values ns and r are close to the case of the cosmological constant:

ns = 0.968± 0.006 and r ≤ 0.09 [6]. However, in that case the universe cannot stop

their accelerated expansion and then any stars nor galaxies are not formed. From next sec-

tion, we will review the slow-roll mechanism which avoid the problem of the cosmological

constant model.

2.2 Single-field slow-roll model

Almost flat potential of a scalar field acts the role of “cosmological constant” depending

on its height. The scalar field which induce the inflation is called inflaton. The action of

the single-scalar slow-roll model is

S =

∫ √
−g d4x

(
−M

2
P

2
R +

1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
(15)

5Under the slow-roll approximation, the first Hubble flow function is equal to the potential slow-roll

parameter εV , which we will see in Sec. 2.2.
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where MP := 1/
√

8πG ' 2.4× 1018 GeV is the reduced Planck scale, ϕ is a scalar field6

and V (ϕ) is its potential. The equation of motion (EOM) becomes

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (16)

where the prime denotes the argument derivative.

If we set ϕ (or equivalently V (ϕ)) to a constant, we can easily reproduce the exponential

expansion which is derived the cosmological constant. Therefore we take the following two

conditions in the slow-roll approximation.

• The kinetic term is efficiently smaller than the potential height: ϕ̇2 � V (ϕ).

• The acceleration term in EOM can be neglected: |ϕ̈| � |3Hϕ̇|, |V ′(ϕ) |.

Usually these conditions are expressed by potential slow-roll parameters:

εV :=
M2

P

2

(
V ′

V

)2

� 1, ηV := M2
P

V ′′

V
� O(1) . (17)

When εV or ηV becomes O(1), the inflation ends.

Let us approximate the tentor-to-scalar ratio r in terms of the potential slow-roll pa-

rameters. We can obtain the energy-momentum tensor for the scalar field which form is

Eq. (3) with

ρ =
1

2
ϕ̇2 + V (ϕ) , P =

1

2
ϕ̇2 − V (ϕ) . (18)

Here we consider the slow-roll approximation so that the first terms Eqs. (18) are neglected:

ρ∼V and P ∼ − V . From the first equations of Eqs. (4) and (18),

ε := − Ḣ

H2 = −
ϕ̇dH

dϕ

H2 ∼
M2

P

2

(
V ′

V

)2

= εV , (19)

here we use ϕ̇∼ − V ′/3H. The tensor-to-scalar ratio is given by Eq. (14) and we get

r∼ 16εV . (20)

In this thesis, we never analyze the time evolution of a(t) and we always use the potential

slow-roll parameter instead of the Hubble flow-function. We will use this result in Sec. 4.1.

6Here we do not restrict ϕ to Higgs.
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2.3 Nonminimal coupling model

2.3.1 Conformal transformation

The slow-roll model needs a nearly-flat scalar potential. However, for example, Higgs

field which is a sole elementary scalar field in the SM has quartic potential at high-energy

scales, and it cannot satisfy the slow-roll conditions (17). The nonminimal-coupling Higgs

inflation is an idea that makes the shape of potential to be flat by coupling terms between

the Higgs field and the Ricci scalar [9, 10]. In this section, the mechanism is reviewed.

Let us consider an action for the single scalar field model,

S =

∫ √
−g d4x

(
−M

2
P

2
FR(ϕ)R +

1

2
FΦ(ϕ) gµν∂µϕ∂νϕ− V (ϕ)

)
(21)

where FR(ϕ) is the nonminimal couplings between the scalar and the gravity. Here we also

introduce the nonminimal couplings for kinetic term FΦ(ϕ) for preparation of discussion

later.7 We assume the Z2 symmetry of the action for simplicity. We also require the

nonminimal coupling terms become unity at the electroweak scale in order to the theory

match the SM. Namely they are written in the form

FR(ϕ) = 1 + ξR
ϕ2

M2 +O
(
ϕ4

M4

)
, FΦ(ϕ) = 1 + ξΦ

ϕ2

M2 +O
(
ϕ4

M4

)
(22)

where M is a typical scale of ultraviolet theory which has mass dimension one, and ξX is

the first coupling constant in the nonminimal-coupling function.8

In this system (21), we can always redefine the metric (or equivalently the scalar field)

and the manipulation is called conformal transformation. To make the action to have a

form of Einstein-Hilbert action with keeping the whole action is invariant, we define a new

metric as

gE
µν := FR(ϕ) gµν . (23)

The new frame is called the Einstein frame while the un-transformed frame is called the

Jordan frame. Hereafter the superscript (or subscript) “E” denotes the Einstein frame. In

the Einstein frame, the action becomes

S =

∫ √
−gE d4x

[
− M2

P

2
RE +

1

2
G2(ϕ) gµνE ∂µϕ∂µϕ−

V (ϕ)

FR(ϕ)2

]
(24)

7In this case the pressure becomes P (ϕ) = 1
2FΦ(ϕ) gµν∂µϕ∂νϕ−V (ϕ) and the energy density is ρ(ϕ) =

1
2FΦ(ϕ) gµν∂µϕ∂νϕ + V (ϕ). For more generic action we can apply the similarly argument, see e.g. the

author’s previous work [49].
8 The nonminimal coupling ξ between Higgs and Ricci scalar in the ordinary notation relates to ξR as

ξ = ξRM
2
P/M

2 [10].
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where

G(ϕ) :=

√
FΦ(ϕ)

FR(ϕ)
+

3

2

(
MPF

′
R(ϕ)

FR(ϕ)

)2

. (25)

We define the Einstein-frame potential in Eq. (24) as

U(ϕ) :=
V (ϕ)

FR(ϕ)2 (26)

for convenience.

Let a term ∝ ϕn be the most contributory term of the scalar potential V (ϕ). If the

most contributory term of FR(ϕ) is proportional to ϕn/2, the last term of Eq. (24) closes to

a constant as ϕ becomes large [50]. Then nearly flat potential in the Einstein frame leads

to the slow-roll inflation. Note that at the electroweak scale the nonminimal couplings (22)

is sufficiently approximated to 1 thus FR or FΦ does not affect the physics today. Actually

the field ϕ is not canonically normalized in the Einstein frame, and the change of EOM

must be taken into account at high-energy scales; see next section for the details.

2.3.2 Classical dynamics in terms of Jordan-frame field

We consider the effect of the non-canonical coefficient of kinetic term (25) at the classical

level. We assume that the classical metric in the Einstein frame is the Friedmann-Lemâıtre-

Robertson-Walker metric:

gE
µνdx

µdxν = −dtE
2 + a2

E(tE) dx2. (27)

The Hubble parameter in the Einstein frame is defined as

HE :=
1

aE

daE

dtE
(28)

and the universe expands with the rate HE. It is also convenient to define the canonically

normalized scalar field χ as

dχ = G(ϕ) dϕ. (29)

In this case the Einstein equations become the ordinary Friedmann equation:9

H2
E =

ρE

3M2
P

,
dρE

dtE
= −3 (ρE + pE)HE, (30)

9The second equation is derived by the combine the Friedmann equations which have the form of

Eq. (4).
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where

ρE =
1

2

(
dχ

dtE

)2

+ UE(ϕ) , pE =
1

2

(
dχ

dtE

)2

− UE(ϕ) . (31)

The Higgs-field equation becomes

d2χ

dt2E
+ 3HE

dχ

dtE
= −dUE

dχ
(32)

and this is rewritten in terms of the Jordan-frame field as

d2ϕ

dt2E
+

dϕ

dtE

(
3HE +

d

dtE
lnG

)
= − 1

G2

dUE

dϕ
. (33)

We see the Jordan-frame field ϕ has an extra friction term d
dtE

lnG compared with the

nonminimal-coupling case. This friction term changes the rolling speed of the field, but

is the same order as the slow-roll parameter under the slow-roll condition, as we will see

below.

Under the slow-roll condition, the Friedmann and Higgs-field equations become

3M2
PH

2
E = UE, (34)

3HE

dχ

dtE
= −dUE

dχ
. (35)

We define the potential slow-roll parameters in the Einstein frame and write the slow-roll

condition in terms of them,

εEV :=
M2

P

2U2
E

(
dUE

dχ

)2

=
M2

P

2U2
EG2

(
dUE

dϕ

)2

� 1, (36)

ηE
V :=

M2
P

UE

d2UE

dχ2 =
M2

P

UEG
d

dϕ

(
1

G
dUE

dϕ

)
� 1. (37)

In terms of the Jordan-frame field, Eq. (35) becomes

3HE

dϕ

dtE
= − 1

G2

dUE

dϕ
. (38)

We define the effectual potential which takes into account the effect from G as

UE :=

∫
dϕ

1

G2

dUE

dϕ
+ const. (39)

Then Eq. (38) is written as

3HE

dϕ

dtE
= −dUE

dϕ
(40)

14



Using the potential (39), the slow-roll parameters can be rewritten as

εEV =
G2M2

P

2U2
E

(
dUE

dϕ

)2

, (41)

ηE
V =

M2
P

UE

(
d2UE

dϕ2 +
dUE

dϕ

d

dϕ
lnG

)
. (42)

We see that the extra friction is the same order as the slow-roll parameter from Eq. (42).

In this paper, we omit the subscript E from UE and UE which are always given in the

Einstein frame.
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3 Frame (in)dependence of the theory

We can flatten the quartic potential by the conformal transformation as introduced in

Sec. 2.3. However, there appear problems when we consider the quantum loop corrections:

we do not fully understand the renormalization under the existence of nonminimal cou-

plings. In this section, we see the meaning of the field dependence of the renormalization

scale. The content in this section is published in Ref. [51].

3.1 Frames at classical level

For our purpose, we will calculate fermion loop correction to the effective action in a

simplified Higgs-Yukawa model.10 We consider only the Higgs field ϕ and the fermion field

ψ for simplicity. We also assumed that the action is invariant under a chiral Z2 symmetry

ϕ→ − ϕ, ψ→ γ5ψ. (43)

Then the action in Jordan frame becomes

S =

∫
d4x
√
−g

[
− M2

P

2
FR(ϕ)R +

1

2
FΦ(ϕ) gµν ∂µϕ∂νϕ− V (ϕ)

− FΨ(ϕ)ψγµDµψ − FY(ϕ) yϕψψ

]
, (44)

where y is the Yukawa coupling11 and Dµ = ∂µ + Ωµ is the general covariant derivative on

spinor, with Ωµ being the spin-connection. The potential contains all the higher dimen-

sional terms in general:

V (ϕ) =
∑

n: even, n ≥ 0

λn
ϕn

Mn−4 . (45)

Let us neglect the Higgs mass term because it is much smaller than the quartic coupling

term at the large field values we consider. When we assume that all the higher order

terms are small at ϕ∼M , the potential becomes quartic at large ϕ and V � M4 . M4
P:

This is the case of the original Higgs inflation [10] which assumes that the potential (45)

can be approximated by V (ϕ) = λ4ϕ
4, namely λn � 1 for n 6= 4, at around the scale

ϕ∼M .MP.

10Actually, gauge-boson loop correction also affects the running of the Higgs self-coupling. However,

the ϕ-dependent effective mass of the canonically normalized gauge boson has the same dependence in

the Einstein frame as the effective mass of fermion; see e.g. Ref. [24]. Therefore the arguments for frame

independence and for prescription dependence can be applied without modification after we include gauge-

boson loops.
11This is related to the SM top Yukawa coupling yt by y = yt/

√
2
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We also assume that all the nonminimal couplings FX(ϕ) approach to one when we

take a weak-field limit ϕ→ 0:

FX(ϕ) := 1 + ξX
ϕ2

M2 +O
(
ϕ4

M4

)
(46)

for X = R, Φ, Ψ and Y.

We obtain the Einstein-frame action by the field redefinition Eq. (23),

S =

∫
d4x
√
−gE

[
− M2

P

2
RE +

1

2
G2(ϕ) gµνE ∂µϕ∂νϕ−

V (ϕ)

(FR(ϕ))2

− FΨ(ϕ)

(FR(ϕ))3/2
ψγµED

E
µψ −

FY(ϕ)

(FR(ϕ))2yϕψψ

]
. (47)

Hereafter in Sec. 3, the quantities without superscript or subscript “E” are given in the

Jordan frame unless otherwise stated. We also use superscript or subscript “J” on quanti-

ties in the Jordan frames when it is preferable. Using the assumptions above, U = V/F 2
R

becomes constant in the large ϕ limit:

U→ λ4

ξ2M
4
P (48)

where we used the relation in the footnote 8.

3.2 Effect of nonminimal coupling in quantum theory

Next we consider the quantum corrections to λn. In quantum theory, we need renormaliza-

tion to cancel the divergences in the theory. The most contributory loop correction is the

one from top quark. Thus we consider top-quark field as ψ hereafter, namely, we consider

only one kind of fermion field and its loop correction. However, the following arguments

does not depend on the number of fermion fields.

We write the bare Higgs potential as

VB :=
∑
n

λnB

ϕn

Mn−4 (49)

where λnB is the bare couplings. The full effective potential V is composed by the bare

potential and the loop-correction to the potential ∆Veff:

V := VB + ∆Veff. (50)

The divergences in VB and in ∆Veff must be canceled by each other so that the full potential

is finite.
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In the counterterm formalism, the renormalized Higgs potential V is computed as a

sum of finite functions depending on the renormalization scale µ:

V = VR(µ) + ∆VR(µ) (51)

where VR is the µ-dependent tree-level potential

VR(ϕ, µ) :=
∑
n

λnR(µ)
ϕn

Mn−4 (52)

and ∆VR is the loop correction. The running of λnR(µ) is determined by the µ-independence

of VB after we determine the counterterm. Note that V is also independent of µ and we

can choose µ arbitrarily.

In the SM, the choice µ∼ϕ minimizes ∆VR, then V can be approximated by the tree-

level potential: V ' VR|µ=ϕ. However, in the nonminimal model, the corrections from the

nonminimal couplings appears in general. For example, we may consider the nonminimal

coupling term ξϕ2R/M2
P. Under the existence of this term, it has been said that there

are two different “prescriptions” to approximate the renormalized Higgs potential to the

tree-level one [20, 21, 22]

µ∼


ϕ√

1 + ξ ϕ
2

M
2
P

(prescription I),

ϕ (prescription II).

(53)

We will review how to derive these expressions later.

A prescription is claimed to correspond to a ϕ-independent ultraviolet cutoff in a specific

frame [20, 21], as mentioned in Introduction. The prescription II is has the same ϕ-

dependence as the SM. On the other hand, it is said that the prescription I is preferred

from the point of view of exact quantum scale invariance [52, 53, 54]. However, we cannot

determine which prescription is suitable for our universe at present.

The different choice of prescription predicts the different value of observable such as

the spectral index ns [20]. It also results in the different size of the minimal coupling ξ

to realize the inflation. For example, if we consider the criticality of the SM, the suitable

values of Higgs self-coupling becomes O(10) for the prescription I and O(100) for the

prescription II [23, 24]. It is rather curious because the entire Higgs potential V should

not depend on µ, and then we consider that the current understanding of the prescriptions

is not enough.

From the next section, we revisit the relation between the ultraviolet cutoff and the

renormalization scale, and clarify that the different choice of the cutoff does not directly

relate to the difference prescriptions.
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3.3 Frame independence of effective action up to quartic diver-

gence

In this subsection we show that the effective action is frame-independent up to quartic

divergence if we properly take into account the change of the path integral measure as well

as that of the ultraviolet cutoff, using the assumptions in the Section 3.1 for simplicity.

We evaluate only the one-loop correction from the fermion loop and ignore those from

the graviton and ϕ loops. We also neglect all the corrections to other couplings y, ξX , etc.,

and hence do not distinguish the bare and renormalized couplings for them.

The metric redefinition (23) relates the short-distance cutoff lengths ` in Jordan and

Einstein frames by

`2
J = gJ

µν ∆xµ ∆xν =
gE
µν

FR(ϕ)
∆xµ ∆xν =

`2
E

FR(ϕ)
(54)

where ∆ denotes the difference. Namely, the ultraviolet cutoff scales ΛJ/E are related by

Λ2
E =

Λ2
J

FR(ϕ)
. (55)

and we can choose either ΛJ or ΛE to be independent of ϕ, but not both [20].

The frame independence of the effective potential has been verified in various ways.12

Here we revisit and confirm it. The one-loop effective action induced by the fermion loop

in the Jordan frame is given by

ei∆S
J
eff :=

∫
DgJ

ψ DgJ
ψ exp

[
i

∫
d4x
√
−gJ ψ

(
−FΨ /DgJ

− FYyϕ
)
ψ

]
. (56)

Similarly, the one-loop effective action in the Einstein frame is

ei∆S
E
eff :=

∫
DgE

ψ DgE
ψ exp

[
i

∫
d4x
√
−gE ψ

(
− FΨ

F
3/2
R

/DgE
− FY

F 2
R

yϕ

)
ψ

]
. (57)

The path integral measure Dψ has no unique definition. Here we use simply the distance

in the functional space:

‖δψ‖2
gJ

=

∫
d4x
√
−gJ δψ δψ for DgJ

ψ, (58)

‖δψ‖2
gE

=

∫
d4x
√
−gE δψ δψ for DgE

ψ. (59)

12For example, in Refs. [13, 18], the authors have obtained one-loop renormalization group equations

for the tree-level action in both the Jordan and Einstein frames, and have found they agree; see also

appendix of Ref. [17]. In Ref. [14], the authors verified that both the tree-level actions are equivalent when

written in terms of dimensionless variables. In Ref. [15], it is shown that the one-loop divergent part of

the effective potential in both frames coincide at on-shell. In Refs. [12, 16, 19], the authors have discussed

frame independence of physical observables.
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From Eqs. (23) and (58), we have

‖δψ‖2
gJ

=

∫
d4x
√
−gE F

−2
R δψ δψ. (60)

Then the functional measure satisfies

DgJ
ψ DgJ

ψ = DgE
ψ DgE

ψ

(∏
x

F−2
R

)−4

= DgE
ψ DgE

ψ exp

[
−4 Tr

gE,ΛE

lnF−2
R

]
, (61)

where TrgE,ΛE
denotes the functional trace depending on the metric gE and the cutoff ΛE,

and the extra minus sign of −4 is from the Jacobian for fermionic variables. We can see

that the functional measure DgJ
ψ DgJ

ψ produces the extra contribution factor

exp

[
−4 Tr

gE,ΛE

lnF−2
R

]
(62)

when we rewrite it in terms of Einstein-frame one. If we take the assumption that ϕ

and gµν are slowly varying backgrounds so that they can be treated as constants in the

computation of the effective action, it becomes

exp

[
−4 Tr

gE,ΛE

lnF−2
R

]
= exp

[
−4i

∫
d4x
√
−gE

〈
x
∣∣ lnF−2

R

∣∣x〉
ΛE

]
= exp

[
i

∫
d4x
√
−gE

(
− Λ4

E

8π2 lnF−2
R

)]
(63)

where we have used13

〈x |x〉ΛE
=

∫ ΛE d4p

(2π)4 =

∫ ΛE

0

2π2p3dp

(2π)4 =
Λ4

E

32π2 . (64)

To see the frame independence of the effective action, let us rewrite the action (56) into

the path integral in Einstein frame. It becomes

ei∆S
J
eff = exp

[
−4 Tr

gE,ΛE

lnF−2
R

]
×
∫
DgE

ψ DgE
ψ exp

[
i

∫
d4x
√
−gE ψ

(
− FΨ

F
3/2
R

/DgE
− FY

F 2
R

yϕ

)
ψ

]

= exp

[
−4 Tr

gE,ΛE

lnF−2
R

]
ei∆S

E
eff , (65)

13Here and hereafter, the momentum integral is taken in the Euclidean space.
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and thus the effective action is frame-independent up to quartic divergence. This quartic

divergence is absorbed into the renormalized couplings including the coefficients of higher

dimensional terms. Before we see it, we verify the equality (65) through more explicit

computations under the assumption that ϕ and gµν are slowly varying backgrounds. The

effective action induced by fermion loop (56) becomes

ei∆S
J
eff = Det

gJ,ΛJ

(
−FΨ /DgJ

− FYyϕ

µ0

)

= exp

[
Tr
gJ,ΛJ

ln

(
−FΨ /DgJ

− FYyϕ

µ0

)]

= exp

[
4i

∫
d4x
√
−gJ

∫ ΛJ d4p

(2π)4

1

2
ln

(
F 2

Ψp
2 + F 2

Y (yϕ)2

µ2
0

)]
, (66)

where µ0 is an arbitrary reference scale. We define the correction to the Jordan-frame

potential14

∆V J
eff := −4

∫ ΛJ d4p

(2π)4

1

2
ln

(
F 2

Ψp
2 + F 2

Y (yϕ)2

µ2
0

)
(67)

and it is computed as

∆V J
eff = − 1

16π2

{
Λ4

J

[
ln

(
F 2

Ψ

Λ2
J +M2

J

µ2
0

)
− 1

2

]
+ Λ2

JM2
J +M4

J ln

(
M2

J

Λ2
J +M2

J

)}
, (68)

where

MJ(ϕ) := yϕ
FY(ϕ)

FΨ(ϕ)
(69)

is the field-dependent mass for canonically normalized fermion in the Jordan frame.

On the other hand, we may rewrite formally the effective action (66) with the Einstein-

frame metric:

ei∆S
J
eff = exp

[
i

∫
d4x
√
−gJ

(
−∆V J

eff

)]
= exp

[
i

∫
d4x
√
−gE

(
−∆V J

eff

F 2
R

)]
=: exp

[
i

∫
d4x
√
−gE

(
−∆UJ

eff

)]
(70)

where we have defined the correction to the potential (26). The explicit form of ∆UJ
eff is

∆UJ
eff :=

∆V J
eff

F 2
R

= − 1

16π2F 2
R

{
Λ4

J

[
ln

(
F 2

Ψ

Λ2
J +M2

J

µ2
0

)
− 1

2

]
+ Λ2

JM2
J +M4

J ln

(
M2

J

Λ2
J +M2

J

)}
. (71)

14For more realistic top quark loop, ∆Veff is multiplied by the color degrees of freedom Nc = 3.
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Eq. (71) is the result of the transformed effective potential from Jordan frame to Einstein

frame.

Next we consider the field redefinition (23) from the Einstein frame to Jordan frame.

The Einstein-frame effective action induced by the fermion loop (57) becomes

ei∆S
E
eff = exp

 Tr
gE,ΛE

ln

− FΨ

F
3/2
R

/DgE
− FY

F
2
R

yϕ

µ0


= exp

4i

∫
d4x
√
−gE

∫ ΛE d4p

(2π)4

1

2
ln

 F
2
Ψ

F
3
R

p2 + F
2
Y

F
4
R

(yϕ)2

µ2
0

 . (72)

We define the fermion loop correction to the potential (26) obtained with the measure

DgE
ψ in the same way as Eq. (67):

∆UE
eff := −4

∫ ΛE

0

d4p

(2π)4

1

2
ln

 F
2
Ψ

F
3
R

p2 + F
2
Y

F
4
R

y2ϕ2

µ2
0


= − 1

16π2

Λ4
E

ln

F 2
Ψ

F 3
R

Λ2
E + M2

J

FR

µ2
0

− 1

2

+ Λ2
E

M2
J

FR
+
M4

J

F 2
R

ln

 M2
J

FR

Λ2
E + M2

J

FR

 . (73)

We can rewrite it in terms of the cutoff in Jordan frame by using the relation between the

ultraviolet cutoff scales (55),

∆UE
eff = − 1

16π2F 2
R

{
Λ4

J

[
ln

(
F 2

Ψ

F 4
R

Λ2
J +M2

J

µ2
0

)
− 1

2

]
+ Λ2

JM2
J +M4

J ln

(
M2

J

Λ2
J +M2

J

)}
. (74)

Comparing the results (71) and (74), we obtain that

∆UE
eff = ∆UJ

eff −
1

16π2 Λ4
E lnF−4

R . (75)

We see that Eq. (75) is equivalent to Eq. (65) by using Eq. (63) and each definition of

the effective potential. Note that the difference in (75) is quartically divergent, which will

be subtracted by the renormalization.15 In particular, this difference does not change the

running of couplings, as we will see in Sec. 3.4.

15Here we use the result of the extra factor derived from a theory defined with a measure induced from

the distance in the Jordan frame (58). The same argument can be applied when we start from a different

theory defined with another measure induced from the distance (59). Then the Jordan-frame effective

action will receive extra contribution from the change of measure, exp

[
4 Tr
gJ,ΛJ

lnF−2
R

]
, which again is

quartic divergence and will make the difference only in the renormalization conditions.
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We summarize the results in this subsection. Once we fix the path integral measure,

DgJ
ψ or DgE

ψ, we obtain the same effective potential, ∆UJ
eff or ∆UE

eff, no matter in which

frame we compute it: When we compute it in the Jordan frame, we obtain

ei∆S
J
eff = exp

[
i

∫
d4x
√
−gJ

(
−∆V J

eff

)]
= exp

[
i

∫
d4x
√
−gE

(
−∆UJ

eff

)]
, (76)

while when we compute it in the Einstein frame,

ei∆S
J
eff = exp

[
i

∫
d4x
√
−gE

(
− Λ4

E

8π2 lnF−2
R

)]
(The extra factor (63))

× exp

[
i

∫
d4x
√
−gE

(
−
(

∆UJ
eff −

Λ4
E

16π2 lnF−4
R

))]
(The difference (74))

= exp

[
i

∫
d4x
√
−gE

(
−∆UJ

eff

)]
. (77)

The effective action changes if we take another path integral measure. However, the dif-

ference is quartic divergence and we will see that it can be absorbed by the renormalization

condition.

3.4 Prescriptions in the ordinary context

In the prescription I (II) in the original sense [20], we set ΛE (ΛJ) to be a ϕ-independent

constant. First, in this subsection, we review how the prescription I or II in Eq. (53)

appears in the ordinary context. Second, we show that the difference between two frames

can be regarded as the difference of renormalization condition.

We consider the cutoff theory containing infinite number of higher dimensional terms.

The effective potential should be a function of ϕ/M in the large cutoff limit ΛJ,ΛE→∞ and

the infinite number of bare couplings should be tuned so that the theory is renormalizable.

We work in the counterterm formalism so thatMJ and FΨ are treated as finite renormalized

quantities. We consider the theory defined by the path integral measure DgJ
ψ. This choice

of theory is a just example: The same argument can be applied even when we consider the

theory defined by the measure DgE
ψ.

3.4.1 Prescription II in ordinary context

We start the prescription II for the convenience of explanation. The effective potential

induced by the fermion loop (68) contains the quartic, quadratic, and logarithmic diver-
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gences:

∆Veff = − 1

16π2

{
Λ4

J

[
ln

(
F 2

Ψ

Λ2
J

µ2
0

)
− 1

2

]
+ 2Λ2

JM2
J +M4

J

(
ln
M2

J

Λ2
J

− 1

2

)}
+O

(
Λ−2

J

)
. (78)

The quartic and quadratic divergences in Eq. (78) can be simply subtracted by the counter

term

V c.t.
power =

1

16π2

{
Λ4

J

[
ln

(
F 2

Ψ

Λ2
J

µ2
0

)
− 1

2

]
+ 2Λ2

JM2
J

}
. (79)

On the other hand, the counter term for the logarithmic divergence in Eq. (78) should

be analytic around ϕ = 0 because we employ the analytic tree-level potential. Because

lnMJ = lnϕ + · · · breaks the analyticity around ϕ = 0, a natural choice of the counter

term that is analytic around ϕ = 0 would become

V c.t.II
log =

M4
J

16π2 ln
µ2

Λ2
J

, (80)

where µ is the renormalization scale. The resultant bare potential is obtained as

V II
B = V II

R + V c.t.
power + V c.t.II

log

= V II
R +

1

16π2

{
Λ4

J

[
ln

(
F 2

Ψ

Λ2
J

µ2
0

)
− 1

2

]
+ 2Λ2

JM2
J +M4

J ln
µ2

Λ2
J

}
, (81)

where V II
R is the µ-dependent tree-level potential in the counterterm formalism,

V II
R (ϕ, µ) :=

∑
n

λII
nR(µ)

ϕn

Mn−4 . (82)

The running of λnR(µ) is determined by the µ-independence of VB via Eq. (81). Note that

we can obtain the ordinary running of the quartic coupling

dλ4R(µ)

d lnµ
= − y4

8π2 (83)

because MJ = yϕ+O
(
ϕ3
)
.

Then we obtain the full effective potential

V (ϕ) = V II
B + ∆Veff

= V II
R (ϕ, µ) + ∆V II

R (ϕ, µ) , (84)
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where

∆V II
R (ϕ, µ) := − [MJ(ϕ)]4

16π2

(
ln

[MJ(ϕ)]2

µ2 − 1

2

)
(85)

is the one-loop correction in the counterterm formalism in the prescription II, and now both

V II
R and ∆V II

R are finite. To minimize the correction (85), we choose the renormalization

scale16

µ∼MJ. (86)

This result reproduces the prescription II in the sense of Eq. (53), µ∼ϕ, for FΨ = FY = 1.

3.4.2 Prescription I in ordinary context

We can rewrite Eq. (78) by using Eq. (55):

∆Veff = − F 2
R

16π2

{
Λ4

E

[
ln

(
F 2

Ψ

FRΛ2
E

µ2
0

)
− 1

2

]
+ 2Λ2

E

M2
J

FR
+
M4

J

F 2
R

(
ln
M2

J/FR

Λ2
E

− 1

2

)}
+O

(
Λ−2

E

)
. (87)

The quartic and quadratic divergences are canceled by the same counter term (79), but it

is more natural to cancel the logarithmic divergence by

V c.t.I
log =

M4
J

16π2 ln
µ2

Λ2
E

(88)

instead of Eq. (80). Then the bare potential becomes

V I
B = V I

R + V c.t.
power + V c.t.I

log

= V I
R +

1

16π2

{
Λ4

EF
2
R

[
ln

(
F 2

Ψ

FRΛ2
E

µ2
0

)
− 1

2

]
+ 2Λ2

EFRM2
J +M4

J ln
µ2

Λ2
E

}
, (89)

and we obtain

V (ϕ) = V I
B + ∆Veff

= V I
R(ϕ, µ) + ∆V I

R(ϕ, µ) , (90)

where

∆V I
R(ϕ, µ) := − [MJ(ϕ)]4

16π2

(
ln

[MJ(ϕ)]2 /FR

µ2 − 1

2

)
. (91)

16The constant −1/2 is scheme-dependent and does not affect our argument here.
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The running of quartic coupling is fixed by the µ-independence of V and becomes the same

as in Eq. (83): The ϕ4 term is not affected by lnFR because FR = 1 +O
(
ϕ2
)
.

To minimize Eq. (91), the renormalization scale is chosen as

µ∼ MJ√
FR

. (92)

This result reproduces the prescription I in the sense of Eq. (53) for FΨ = FY = 1.

To summarize, we have started from the measure (58), and computed the one-loop cor-

rection (68) in each frame. We have derived the renormalization scales that reproduce both

prescriptions from the same effective potential which is defined in the Jordan frame. Ac-

tually the change of path measure (61) introduces a trace anomaly in addition to Eq. (63),

but it is taken into account as a form of the logarithmic ultraviolet cutoff dependence in

Eq. (68).

3.5 The difference of the prescriptions

In this subsection, we clarify how the difference of the prescriptions in Eq. (53) arises in

the ordinary context. And then we will show that the difference can be absorbed into

the choice from infinitely many possibilities of the coefficients of higher dimensional terms

in the tree-level potential. We also use the counterterm formalism in this subsection and

assume the each finite term in potential are analytic around ϕ = 0.

To come to the point, the difference between prescriptions I and II comes from that of

the subtractions of logarithmic divergence in Eqs. (80) and (88):

V c.t.I
log − V c.t.II

log =
M4

J

16π2 ln
Λ2

J

Λ2
E

. (93)

Using Eq. (55), it becomes

V c.t.I
log − V c.t.II

log =
M4

J

16π2 lnFR =
ξRy

4

16π2

ϕ6

M2 + · · · . (94)

Note that the difference (94) is analytic around ϕ = 0 and that it has only higher order

terms with n ≥ 6. This difference corresponds to the finite renormalization of VR, as we

will see below.

Let us determine the form of renormalized potential. The renormalized potential VR in

Eq. (84) or (90),

VR(ϕ, µ) =
∑

n: even, n ≥ 0

λnR(µ)
ϕn

Mn−4 , (95)
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can take arbitrary form in theory. To reproduce the ordinary Higgs inflation [10], the

infinite number of bare couplings are tuned so that all the couplings λnR(µ) with n 6= 4

are suppressed at µ∼M as mentioned:

VR(ϕ, µ)|µ∼M ' λ4R(µ)ϕ4. (96)

Substituting Eq. (96) into Eqs. (84) and (90), we obtain the Higgs potential in the pre-

scriptions II and I in the ordinary context, respectively:

V II = λ4R(µ)ϕ4 − M
4
J

16π2

(
ln
M2

J

µ2 −
1

2

)
, (97)

V I = λ4R(µ)ϕ4 − M
4
J

16π2

(
ln
M2

J/FR

µ2 − 1

2

)
. (98)

Actually, we can obtain the potential of the form of V I in Eq. (98) even when we employ

the counter term V c.t.II
log in Eq. (80). This is the case if we choose the following form of the

tree-level potential VR in Eq. (84),

VR(ϕ, µ) = λ4R(µ)ϕ4 +
[MJ(ϕ)]4

16π2 lnFR(ϕ) , (99)

instead of the form (96). Note that the second term in the right-hand side of Eq. (99)

modifies only the higher dimensional terms of ϕn for n ≥ 6. By assuming the proper tree-

level potentials (96) or (99), we may obtain the forms (97) or (98) from the same counter

term V c.t.II
log in Eq. (80).

There are infinitely many possibilities for the tree-level potential unless we fix the

underlying ultraviolet-finite theory. Therefore there is no necessity to suppose one of the

two tree-level potential as the proper one if we consider only the low-energy effective field

theory.

In conclusion, for a given renormalized tree-level action, the difference of the prescrip-

tions (53) can be understood as that of the logarithmic counter terms (94). In other words,

the different counter terms (80) and (88) lead to the different scales (86) and (92) that

minimize the radiative corrections.

3.6 Required value of coupling for each prescription

Finally, we review the required coupling size by each case of the prescriptions. Let us

consider more realistic running of the quartic coupling in the SM:

VSM = λ4R(µ)ϕ4 + ∆VR(ϕ, µ) , (100)
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where ∆VR is the finite correction (85) or (91) in the counterterm formalism. In the SM,

the beta-function of Higgs self-coupling

β4R :=
d

d lnµ
λ4R (101)

changes its sign from negative to positive around the scale µmin∼ 1017 GeV (the SM criti-

cality). Therefore we may approximate the coupling as [23, 24]

λ4R(µ) ≈ λmin
4R + b4R

(
ln

µ

µmin

)2

, (102)

where

b4R '
0.1(

16π2
)2 ' 5× 10−6 (103)

is computed within the SM. The negative β4R for µ < µmin is dominated by top-quark loop,

while the positive β4R for µ > µmin by the U(1)Y and SU(2)L gauge-boson loops.

The contribution of top-quark loop comes from its mass MJ = yϕFY/FΨ = yϕ, where

we assume FY = FΨ = 1. In the prescription I in the sense of Eq. (53) (in other words, in

Eq. (98) with the tree-level potential (96)), we get the constant µ in the large ϕ limit,

µ∼ MJ√
FR
→MP√

ξ
, (104)

and the effective quartic coupling λ4R(µ)|
µ∼MJ/

√
FR

stops running for large ϕ [22].17 This

mechanism makes the potential even flatter. Combining with the SM criticality, it can earn

a sufficiently large e-folding number for smaller ξ∼ 10 [23, 43, 44, 24]. On the other hand,

in the prescription II needs larger coupling ξ∼ 102 [23, 24] even under the SM criticality

because λ4R(µ)|µ∼MJ
does not stop running.

3.7 Various Higgs-inflation models

As we have seen, it is artificial to limit the prescriptions to these two and there is no

reason we must choose one at the moment. Moreover even if we take the simple form of

the tree-level potential (96) in Eq. (84) or (90), we still have freedom to choose any form

of FX(ϕ)s. Actually, we have found that we may obtain the desirable potential even in

prescription II in ordinary context when there are nonminimal couplings between ϕ and

the gauge kinetic term. In this section, we show such inflation model and other possible

inflation mechanisms using nonminimal couplings.

17If FY = 1 + ξYϕ
2/M2 and FΨ = 1 + ξΨϕ

2/M2, we obtain

µ∼ MJ√
FR
→ ξY√

ξξΨ
MP

instead of Eq. (104).
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3.7.1 Flattened Higgs potential by kinetic function

In Sec. 3.6, we have shown the mechanism that the top-quark loop contribution leads to

the flat potential. Here we show that the contribution from the gauge-boson loop can

similarly make the flat potential.

Let us consider the Lagrangian of the simplified Higgs-gauge model:

L =
M2

P

2
FR(ϕ)R− 1

2

(
FΦg

µν∂µϕ∂νϕ+ AµAνϕ
2
)
− V (ϕ)−

Fg(ϕ)

4g2 FµνF
µν (105)

where g is the gauge coupling and Fg is the coefficient function of ϕ in front of the gauge

kinetic term. Then the contribution of the gauge-boson loop is through [24]

Mgauge
J = gϕ

√
FΦ

Fg

. (106)

When we raise the scale beyond µ > µmin in the SM, the top Yukawa coupling becomes

smaller and smaller. To the first approximation, the running at µ > µmin is governed by

the gauge-boson loop. In the prescription II in the ordinary context (Eq. (97) with the

tree-level potential (96)), the effective potential becomes

VSM = λ4R(µ)ϕ4
∣∣
µ=Mgauge

J
. (107)

When we assume that FΦ ' 1, we obtain in the large-ϕ limit,

Mgauge
J =

gϕ√
1 + ξg

ϕ
2

M
2

→ g√
ξg

M. (108)

This can be used in the prescription II in the ordinary context as an alternative mechanism

to Eq. (104) in order to stop the running of quartic coupling λ4R(µ)|µ∼Mgauge
J

for large ϕ.

The ϕ-dependent mass (108) takes the same form as the prescription I in Eq. (53) and the

analysis becomes almost identical to those in Ref. [24] if we set ξg = ξR and M = MP.

On the other hand, when the top Yukawa contribution is non-negligible in the ac-

tion (44), one may further introduce e.g.

FΨ(ϕ) =

√
1 + 2ξΨ

ϕ2

M2 = 1 + ξΨ

ϕ2

M2 −
ξ2

Ψ

2

ϕ4

M4 +
ξ3

Ψ

2

ϕ6

M6 + · · · (109)

together with FY = 1, which stops running due to the top contribution too:

MJ =
yϕ√

1 + 2ξΨ
ϕ

2

M
2

→ y√
2ξΨ

M. (110)
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3.7.2 Ordinary Higgs inflation in prescription II

In Ref. [24], the authors have spelled out the result from prescriptions I and II in the

ordinary context. In Sec. 3.6 we mentioned that the former prescription I allows smaller

ξ := ξRM
2
P/M

2∼ 10 because the coupling stops running for ϕ�M/
√
ξR:

µ∼ ϕ√
FR
→ M√

ξR
. (111)

On the other hand, though the prescription II needs ξ∼ 102, it can have a chaotic inflation

since the effectual potential (39) becomes

U ∼ const. +
βλM

2
P

48ξ2 ϕ
2, (112)

due to

G→
√

6MP

ϕ
(113)

for large ξR.

3.7.3 Chaotic-like inflation by large ξΦ

When we have large ξΦ only, in particular with FR = 1, we may get

G→
√
ξΦ

ϕ

M
. (114)

We note in this case U = V = λ
4
ϕ4. Therefore the effectual potential (39) becomes

U = const. +
λM2

2ξΦ

ϕ2. (115)

This can cause a chaotic inflation when λ/ξΦ � 1 [55].
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4 Lower bound on tensor-to-scalar ratio

In this section, we consider a Higgs-inflation model that the inflation occurred at higher

energy scale than the cutoff of low-energy effective theory and calculate the lower bound

on the tensor-to-scalar ratio r. To obtain the lower bound on r, we do not need the details

of the model except for the mechanism is the slow-rolling: the nonminimal Higgs inflation

is also included in our consideration.

Dark matter is one of unsolved big problem in cosmology. In this thesis we do not

investigate what it is, but take a Higgs-portal Z2 scalar field as one of the simplest real-

izations. We calculate the lower bound on r and the upper bound on dark-matter mass

for the model. Later we also introduce the heavy right-handed neutrinos via the seesaw

mechanism [56, 57] and perform the same analysis. These analyses is also available in the

author’s work [58].

4.1 Inflation at higher scale than cutoff

In this subsection, we show how to obtain the lower bound on r, extending the analysis in

Ref. [59].

For the slow-roll inflation, the effect of nonminimal coupling on the Higgs potential

needs to be large. Let us consider FR(ϕ) = 1 + ξϕ2/M2
P in Eq. (21) for example. The

Einstein-frame potential (26) can be approximated to a constant at ξϕ2/M2
P & 1. In other

words, the low-energy effective theory such as the SM is valid only below the effective

Planck scale ∼MP/
√
ξ.

Not limited in such case, a low-energy effective theory has some cutoff scale18 Λ in

general. In our analysis, we assume that at ϕ < Λ, there is a valid renormalizable low-

energy effective field theory which we defined later. At ϕ ≥ Λ, we assume that a field

direction extrapolated from the low-energy Higgs field has led to slow-roll inflation there.

We do not make any other assumptions on the theory at ϕ ≥ Λ.

We do not predict precisely the cosmological parameters such as the spectral index ns
and the tensor-to-scalar ratio r in this case because the inflaton potential above Λ is not

specified. However, we may still put a lower bound on r from the highest value of the

Higgs potential in the region ϕ < Λ, as we will describe.

In the slow-roll inflation, the observable amplitude of the scalar perturbation As and r

are written in terms of the potential slow-roll parameter εV and the potential height Vinf

by using Eqs. (4) and (18):

As =
1

24π2

1

εV

Vinf

M4
P

. (116)

18Note that this “cutoff” scale Λ is conceptually different from the cutoffs in Sec. 3, which denotes the

upper limit of the momentum integral.
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This can be derived from Eqs. (4) and (11). Eliminating εV by using Eq. (20), we obtain

the relation between r and Vinf:

r =
2

3π2

1

As

Vinf

M4
P

. (117)

This is a simple linear relation because the value of As is fixed by the CMB observation.

Slow-roll	

Higgs field value	

Effective Higgs potential	

'⇤

Vinf

Figure 1: Schematic figure for the Higgs field as an inflaton

Now we consider the slow-roll inflation occurred by a field direction extrapolated from

the low-energy Higgs field19 above a scale Λ; see Fig. 1. Above Λ, the Higgs potential

becomes flat by some mechanism such as nonminimal couplings, string theory, etc. After

the end of inflation, the slow-roll condition on the Higgs field is violated and the field

continues to roll on the potential down to the electroweak (EW) scale. In order not to

prevent the rolling down to the EW scale, the maximum value of the effective potential in

the region ϕ ≤ Λ, which we define V max
ϕ≤Λ, must be smaller than the potential height during

the inflation Vinf:

V max
ϕ≤Λ < Vinf. (118)

From Eqs. (117) and (118),

r > rbound :=
2

3π2

1

As

V max
ϕ≤Λ

M4
P

. (119)

Thus, we obtain the lower bound on r from the value of V max
ϕ≤Λ only.20 This can be evaluated

from the renormalization group equations (RGEs) for the low-energy effective theory. Note

that even if there exists a local maximum with its height smaller than Vinf, it does not

prevent the rolling down because the slow-roll condition is already violated.21

19Hereafter we call the field direction “Higgs field” for simplicity.
20We assume that the reheating temperature is lower than V max

ϕ≤Λ. We also assume that the decay rate

of Higgs boson to top quark (or vice versa) is sufficiently small.
21To be exact, we should consider additionally the thermal effect and the friction; see the discussion in

Sec. 5.
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Actually, this bound depends strongly on Λ. In our analysis we take Λ = 1017 GeV for

the reasons below.

• The original nonminimal Higgs-inflation model requires a large nonminimal coupling

ξ∼ 104 between the Higgs-squared22 Φ†Φ and the Ricci scalar R to realize the ob-

served r and ns [9, 10]. However, such large coupling requires a new physics above

the scale ∼MP/ξ for perturbative unitarity [60, 61, 62, 63]. It is also reported that

the large nonminimal coupling in Higgs inflation might have problems: generation

of the higher derivative terms [64] and violation of the preheating dynamics [65].

However, the nonminimal coupling can be reduced to O
(
102
)

if we consider the SM

criticality [23, 24]. In this case, the energy scale where the inflation occurred becomes

high. Then the effective Planck scale ∼MP/
√
ξ becomes O

(
1017

)
GeV.

• In our analysis, we do not make any assumptions on the high-energy theory except

for the slow-roll inflation. Therefore we may consider other models instead of the

nonminimal model. For example, it is reported that the string theory may lead to

the inflation without the large nonminimal coupling [59, 66]. The typical string scale

is O
(
1017

)
GeV, and the low-energy effective theory is valid only below it.

If we want to know the lower bound on the tensor-to-scalar ratio for another cutoff scale,

we just rescale the results we have calculated; see Sec. 4.4.2 for the details.

We cannot calculate the spectral index ns because we do not specify the mechanism of

inflation. However, if the inflation has occurred at ϕ ≥ Λ, we can obtain the lower bound

on r for any inflation model.

When all the other nonminimal couplings are not particularly large as well, ξX < 102,

the renormalizable low-energy effective field theory is reliable up to 1017 GeV. Hereafter,

we take Λ = 1017 GeV.

4.2 Z2 Higgs-portal scalar model

From this section, we will take a more concrete model, Higgs-portal Z2 scalar model, for

the numerical calculation of the bounds. In this model, the Z2 scalar singlet S is considered

as the dark matter. Below the scale Λ, the matter Lagrangian is

Lmatter = LSM +
1

2
(∂µS)2 − 1

2
m2
SS

2 − λS
4!
S4 − κ

2
S2Φ†Φ. (120)

Hereafter we use ϕ =
√

2Φ†Φ. The dark-matter mass is given by

m2
DM = m2

S +
κv2

2
, (121)

22In the terms of ϕ, ϕ =
√

2Φ†Φ.
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where v ' 246 GeV is the Higgs vacuum expectation value (VEV).

We assume that S does not acquire a Planck scale VEV and thus does not affect the

inflation; the inflation is driven by the Higgs field, but we do not fix the details of potential

shape. We also assume that mS is small and neglect it. In our analysis we do not consider

the possibility that mDM is as lighter as the Higgs mass. In the non-resonant region, the

relic density of the dark matter constrains κ as [67, 68]

log10 κ ' −3.63 + 1.04 log10

mDM

GeV
. (122)

In the region of our interest, 0.1 . κ . 0.5, Eq. (122) becomes roughly mDM ' κ× 3.2 TeV.

mDM is constrained by the spin-independent cross section for the dark-matter–nucleon

scattering [67, 68]:

σSI =
κ2f 2

N

4π

(
mnmDM

mn +mDM

)2
m2
n

m4
Hm

2
DM

' 6.5× 10−46 (mDM)0.08 cm2 (123)

where fN = 2
9

+ 7
9

∑
q=u,d,s fq∼ 0.345 is the overall coupling, mn∼ 940 MeV is the nucleon

mass, and mH = 125.09 GeV is the Higgs mass. We use Eq. (122) in the last step. The

dependency on mDM is small on comparison σSI with the observational data. The current

constraints of dark-matter mass by the XENON1T experiment [69] for Eq. (123) are shown

in Fig. 2. The constraints from other experiments are shown in Table. 1.

Experiment Lower bound on mDM Corresponding value of κ

LUX [71] ∼ 720 GeV ∼ 0.22

XENON1T [69] ∼ 870 GeV ∼ 0.27

PandaX-II [70] ∼ 1 TeV ∼ 0.31

Table 1: The lower bounds on dark-matter mass (90% C.L.).

We may employ the nonminimal coupling between Higgs and Ricci scalar to cause

the inflation at the scale above Λ. In our analysis, its effect on the low-energy physics is

ignored because we assume the nonminimal couplings are small: For example, a nonminimal

coupling term ξϕ2/M2
P . O(1) for ξ . O

(
102
)

at ϕ ≤ Λ∼ 1017 GeV.

4.3 Method of analysis

Thing to do to obtain the lower bound on r is to calculate the maximum value of the

Higgs effective potential Vϕ≤Λ. Then the parameters λS and κ affects the result through

the renormalization group (RG) running of the Higgs quartic coupling, while mS does not.
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Figure 2: Fig. 5 (a) in Ref. [70]. The upper side of the curves is excluded for 90% C.L. We

superpose the purple line which stands for Eq. (123). The dashed vertical lines are mere

marks to see the mass constraint.

It is more practical that we estimate the top-quark mass from the observational relation

between mDM (equivalently κ) and the bound on r, than estimating mDM by observing the

top-quark mass and rbound. Although the top-quark mass has not been precisely deter-

mined, for the numerical calculation we need to employ the pole mass of the top quark mt

as an input parameter to solve the RGEs. The most precise knowledge about the top-quark

mass is the Monte-Carlo mass mMC
t which is obtained by Monte Carlo simulation of the

whole process [72],

mMC
t = 173.1± 0.6 GeV. (124)

The pole mass of the top quark mt which is the pole position of the propagator is also

derived from the cross-section measurements [72]

mt = 173.5± 1.1 GeV. (125)

We may not use simply the Monte-Carlo mass because it is not a parameter of theory,

and the relation between mMC
t and mt is still unclear.23 Hereafter we analyze in two

conservative ranges including a central value of mass:

171 GeV ≤ mt ≤ 176 GeV, (126)

169 GeV ≤ mt ≤ 178 GeV, (127)

23There remains uncertainty at least of 1 GeV; see e.g. Ref. [73] for a recent review.
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which roughly corresponds to 2σ and 4σ ranges, respectively.

In summary, the input parameters for RGEs are λS, κ, and the pole mass of top

quark mt. Here and hereafter the couplings are given at the scale µ = mt unless otherwise

stated. We analyze the two-loop RGEs and neglect the wave-function renormalization

Γ(ϕ) given in Eq. (146) for numerical computation. We determine Vϕ≤Λ from the obtained

running couplings. The largest possible deviation due to Γ(ϕ) is also estimated by setting

ϕ = Λ. The details of calculation are summarized in Appendix A.

To investigate the most conservative lower bound on r, we exclude the parameter region

in which Vϕ≤Λ becomes negative, namely the region that V min
ϕ≤Λ < 0 in our results. This non-

negative condition is the only condition to determine the lowest value of V max
ϕ≤Λ. Practically,

we take the false position method to exclude these regions.

The lower bound on r may slightly be affected when we relax the non-negative condition

on the Higgs potential; e.g. taking into account the thermal correction or replacing it with

the vacuum meta-stability. However, the bound comes from the maximum value of effective

Higgs potential, rather than the minimum. Thus the lower bound on r would be reduced

only by a factor of few even if we allow the negative value of the potential minimum of the

order of the height of the potential maximum. Of course we should make sure that finally

the electroweak vacuum is chosen in the late time in such a case.

We also exclude the parameter region in which the perturbativity of couplings is vio-

lated. For the perturbativity, we demand that all the couplings are smaller than
√

4π ' 3.5

in all the region ϕ ≤ Λ. This condition corresponds to the requirement for κ to be κ . 0.5,

equivalently

mDM . 1.6 TeV, (128)

for λS = 0.24 We shade in the region where perturbativity is violated in the result plots

which will be shown. In this paper, we restrict to the case λS = 0 except for Fig. 3 (b) in

which we instead take λS = 0.6 for comparison. We will see in Fig. 3 (b) that the large λS
tends to narrower the allowed region. Therefore, it is more conservative to set λS = 0.

From next subsection, we will show plots of allowed regions in r-mDM plane obtained

by calculating V max
ϕ≤Λ as a function of κ for each fixed set of (λS,mt) and converting κ to

mDM via Eq. (122).

4.4 Analysis without heavy right-handed neutrinos

4.4.1 Result plots

We plot the allowed region in r-mDM plane for λS = 0 in Fig. 3 (a). The region above

each line is only allowed. A solid and dashed lines denote the results without and with

24See Fig. 1 in Ref. [68] for the allowed region in the λS–κ plane. This upper bound on κ (or equivalently

mDM) depends on the value λS , while its dependency on Λ is small; see Sec. 4.4.2.
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(a) (b)

Figure 3: (a) Allowed regions for λS = 0. The region above each rainbow-colored line

is allowed for a given mt. Each vertical line denotes the lower bound on mDM from the

positivity of potential: Vϕ≤Λ > 0. In the region mDM & 1.6 TeV, the perturbativity is

violated. See Fig. 11 for the corresponding plot with right-handed neutrinos.

(b) Excluded regions for λS = 0 (below black line) and λS = 0.6 (below gray line). The

vertical black (gray) shade in mDM & 1.6 GeV (mDM & 1.2 TeV) is excluded by the per-

turbativity for λS = 0 (0.6). The blue line denotes r = 0.09 and its the upper side is

excluded [6]. The dashed vertical lines denote the lower bounds on dark matter mass,

mDM = 720 GeV from LUX [71] (magenta), mDM = 870 GeV from XENON1T [69] (black)

and mDM = 1 TeV from PandaX-II [70] (red). The left-hand side of each dash line has

been excluded.
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the effects of Γ, respectively. The rainbow-colored lines correspond to each mt value. The

black line is the envelope of the rainbow-colored lines and gives the lower bound on r for

each mDM when one varies mt. To understand the form of envelope, we need to know how

the Higgs potential changes its shape with parameters, see Sec. 4.6. In Fig. 3 (b), We plot

the excluded regions for all value of mt when λS = 0 and λS = 0.6. The larger λS reduces

the allowed range of r and κ, as mentioned.

From Fig. 3, the Planck constraint r < 0.09 [6] puts bounds on mt and mDM:

171 GeV < mt < 175 GeV, (129)

mDM . 1.1 TeV, (130)

for λS = 0. This bound on mDM is stricter than the perturbativity bound (128). The

lower bound on r is determined by the dark-matter mass constraint in Table. 1. If we

take the lower bound from the LUX experiment [71], mDM & 720 GeV, we obtain a lower

bound: r & 0.0025. For the lower bound on mDM by the XENON1T experiment [69],

mDM & 870 GeV, r & 0.016 is obtained. If we take the strictest bound by the PandaX-II

experiment [70], mDM & 1 TeV, we obtain the lower bound on tensor-to-scalar ratio

r & 0.040 (131)

and the bound on top-quark mass

174 GeV < mt < 175 GeV. (132)

If near-future experiments such as the POLARBEAR-2 [74], LiteBIRD [75] and CORE [76]

find new constraints or concrete value of dark-matter mass, this lower-bound on r may

be stricter, or the model breaks down because the allowed region of dark-matter mass

disappears. This model also can be tested by the search of r directly. From Fig. 3 (b) we

see that the cases of λS = 0.6 has been excluded.

4.4.2 Dependency on the cutoff scale

From the reasons listed in Sec. 4.1, we believe that the cutoff scale is Λ∼ 1017 GeV if it

exists, and we have taken Λ = 1017 GeV in our analysis. However, we show an example

result for another value of Λ because the analysis is sensitive to the cutoff Λ. Let us call

a different cutoff scale Λ′. Naively, the maximum value of potential for the theory with Λ′

is estimated as

V max
ϕ≤Λ

′ ∼
(

Λ′

Λ

)4

V max
ϕ≤Λ (133)

because V ∝ ϕ4 at high-energy scales.

We show the result for the case of Λ′ = 5× 1016 GeV in Fig. 4.

From Fig. 4, we find the following facts.
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Figure 4: The lower bound on the tensor-to-scalar ratio for λS = 0, Λ′ = 5× 1016 GeV

(black) and λS = 0, Λ = 1017 GeV (gray). Here we restrict the top-quark mass range as

the 4σ (Eq. (127)). The bend at mDM & 1.5 TeV is due to the upper limit mt = 178 GeV.

• The tensor-to-scalar ratio r is roughly rescaled by (up to)
(
Λ′/Λ

)4
= 1/16 as we

estimated.

• There exists the upper bound on mDM around 1.6 TeV due to the Landau pole. Its

dependence on the cutoff is small and the bound does not exceed to 1.7 TeV (κ∼ 0.53)

even if the cutoff is 5× 1016 GeV.25

• mDM where r takes its lowest value does not strongly changed when we change Λ.

In particular, it is significant that this model is excluded without any other assumptions

if we observe mDM > 1.7 GeV.26

4.5 Analysis with right-handed neutrinos

4.5.1 Seesaw mechanism

In the SM, the neutrinos are massless particle. However, the neutrino oscillation has been

experimentally discovered [77, 78] and now we consider that the neutrinos have mass.

25The usual Higgs inflation model leads to the effective cutoff scale Λ∼ 1016 GeV. Even in that case the

upper bound on mDM does not move. This upper bound on mDM hardly depends on even the right-handed

neutrino mass, as we will see in Sec. 4.5.
26This upper limit of dark-matter mass is mainly fixed by the value that we decide as the Landau pole.

We take the threshold as
√

4π in order to guarantee the perturbativity. If we take smaller threshold, the

upper bound on dark-matter mass becomes more severe.
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As the mechanism to make the SM neutrinos have their masses, we adopt the seesaw

mechanism [56, 57] and introduce the heavy right-handed neutrinos:

LRH = ν̄Riγ
µ∂µνR −

1

2
MRν̄

c
RνR −

(
yνL̄Φ†νR + h.c.

)
(134)

where we omit the indices of the generations. Because these right-handed neutrinos may

modify the shape of effective Higgs potential, we analyze their loop corrections and calculate

the lower bound on r.

After the spontaneous symmetry breaking, the Yukawa term in Eq. (134) acquire the

Dirac mass mD = yνv/
√

2. Then the mass term becomes

1

2

(
ν̄L ν̄cR

) 0 mD

mT
D MR

 νcL

νR

+ h.c. (135)

and the neutrino-mass matrix m̃ν turns to

m̃ν ' −mD

1

MR

mT
D. (136)

The observational constraints on the left-handed neutrino mass in the SM are following:

• The upper bound on the sum of masses. E.g. the 2σ upper bound from the TT-only

analysis is
∑

imi < 0.715 eV, while that from the TT+lensing+ext gives
∑

imi <

0.234 eV [6]. In this thesis, we assume roughly
∑

imi . 0.3 eV.

• The mass-squared differences m2
2 − m2

1 = (7.37+0.17
−0.16)× 10−5 eV2 and m2

3 − (m2
2 +

m2
1)/2 = (2.525+0.042

−0.030)× 10−3 eV2 (both are 1σ C.L.) [79].

Here we used the notation of Ref. [79] for the mass eigenstates of left-handed neutrinos mi.

Using the constraints of the mass-squared differences, we find the three typical patterns of

mass relations:

1. Normal Hierarchy (NH, m1 the lightest),

2. Inverted Hierarchy (IH, m3 the lightest),

3. Degenerate (all masses comparable),

where mi (i = 1, 2, 3) is the neutrino mass of mass eigenstate. In hierarchycal cases, the

mass pattern is most hierarchical when the lightest one is 0. In Degenerate case, any

neutrino mass do not go beyond ∼ 0.1 eV from the upper bound on the sum of neutrino

masses.
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m1 [eV] m2 [eV] m3 [eV] Pattern

1. Normal Hierarchy 0 (set) 8.6× 10−3 5.1× 10−2 m1 � m2 < m3

2. Inverted Hierarchy 5.0× 10−2 5.0× 10−2 0 (set) m1 ' m2 � m3

3. Degenerate (NO) 0.1 (set) 1.0× 10−1 1.1× 10−1 m1 ' m2 ' m3

3. Degenerate (IO) 1.1× 10−1 1.1× 10−1 0.1 (set) m1 ' m2 ' m3

Table 2: Neutrino masses obtained by using the absolute values of mass-squared differences

in Ref. [79].

In Table 2, we show the mass pattern by setting the lightest one to be massless for the

cases of Normal/Inverted Hierarchy, and to be 0.1 eV for Degenerate. For the three cases,

we approximate the heaviest nν neutrinos as having a common mass mν and the remaining

3− nν ones as being massless as shown in Table 3.27

Number of effective ν Common mass mν [eV]

1. Normal Hierarchy nν = 1 5.1× 10−2

2. Inverted Hierarchy nν = 2 5.0× 10−2

3. Degenerate nν = 3 1.1× 10−1

Table 3: Common neutrino mass that we use as input.

The existence of heavy right-handed neutrino adds the right-handed neutrino mass MR,i

(i = 1, 2, 3) to the input parameters of RGEs. We assume that MR,is are identical,

MR,i = MR, for simplicity. Then the Yukawa coupling of neutrino is given by the see-

saw mechanism:

yν =
√

2mνMR/v. (137)

We show the β-functions in this case in Appendix A. Although we assume the mass of the

heaviest left-handed neutrino as Table 3 in our analysis, there is no need to solve RGEs for

other value of mν again. The reason is that mν and MR have the one-to-one correspondence

(137): If the observed constraint on mν changes, we can obtain the corresponding MR

constraint just rescaling the result.

27If we want to consider a different mν , we may simply rescale the right-handed neutrino mass MR in

our results, since mν ∝M
−1
R by the seesaw mechanism.
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Note that the right-handed neutrinos do not affect the dark-matter density because

they decay to the Higgs boson and the left-handed neutrinos; we consider the dark matter

consists of the Higgs-portal scalar S only. We also ignore the effect by the leptogenesis by

the right-handed neutrinos.

4.5.2 Lower bound on r for each MR

Normal Hierarchy We show the results for Normal Hierarchy, nν = 1, in Fig. 5. The

right-handed neutrino mass MR is fixed in each panel: 1013, 1014, 1014.4 (' 2.5× 1014),

1014.5 (' 3.2× 1014), 1014.6 (' 4.0× 1014), and 1014.7 (' 5.0× 1014) in units of GeV. The

bold line in each panel is the envelope of the mt-fixed rainbow-colored lines, and gives the

lower bound on r for the fixed MR. Note that the thick line is obtained by tuning one

parameter mt for fixed MR, and its minimum corresponds to the two parameter tuning of

mt and mDM. The color of envelope in each panel corresponds to the color of Fig. 6, the

plots for more general values of MR; we will explain the details later.

From Fig. 5, for a given lower bound on mt, we see that the larger MR is, the smaller

the allowed range of mDM becomes. This is because the right-handed neutrinos and the top

quark have a similar effect on the Higgs potential: They drives the Higgs quartic coupling

smaller through the RG running towards high scales, and therefore they tend to make

the Higgs potential negative if they both are heavy. In this case, the vacuum stability is

violated before the breakdown of perturbativity.

We also see that the value of mDM at the minimum point of the envelope becomes

larger as MR becomes larger: For example, the minimum points are at mDM∼ 600 GeV in

the case of MR = 1013 GeV, and mDM∼ 870 GeV in the case of MR = 1014 GeV, etc. In

particular, it goes beyond the perturbativity bound when MR = 1014.7 GeV. It indicates

that we have a stringent lower bound, r & 10−2, with the heavy right-handed neutrino

mass MR & 5× 1014 GeV. On the other hand, the result with MR . 1013 GeV is almost

the same as the case without right-handed neutrinos shown in Fig. 3 (a).

In Fig. 6, we plot the theoretical lower bounds on r for various MR when we allow

the top-quark pole mass within 171 GeV < mt < 176 GeV and 169 GeV < mt < 178 GeV.

Each colored line corresponds to the envelope denoted by the thick colored line in Fig. 5.

We also give the envelope of these lines, which gives the allowed region for varying mt and

MR.

Practically, it takes high computational cost to obtain the lower bound on r (denoted

by the black line) for all parameter space. Therefore we have plotted the approximated

envelope as follows:

1. Each MR-fixed line has a minimum. Make an interpolating function which linearly

joins all these minimum points.
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Figure 5: Allowed region for Normal Hierarchy with λS = 0.
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(a) (b)

Figure 6: The allowed region for Normal Hierarchy.

(a) The lower bound on r for each fixed MR (colored) and their envelope (black) with

λS = 0 and 171 GeV < mt < 176 GeV. The orange line is for MR = 1013 GeV. The vertical

colored line comes from the lower end, mt > 171 GeV.

(b) The same plot for λS = 0 and 169 GeV < mt < 178 GeV.
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2. Each mt-fixed line28 has a minimum. Make another interpolating function which

linearly joins all these minimum points.

3. Make a function that chooses the smaller value of these two interpolating functions

for each mDM.

4. In large mDM region, we replace the interpolated bound with the lower bound deter-

mined by the maximal mt.

We note that these interpolating functions may be wrong in the extrapolated regions

mDM < 600 GeV and mDM > 1600 GeV because they evaluated only for 600 GeV < mDM <

1600 GeV. However, this is insignificant because these regions are already excluded by the

direct dark-matter search and by the perturbativity. We use this procedure hereafter to

obtain black envelopes, but the last step is not taken in Sec. 4.5.3.

We explain the envelope denoted by the black line in Fig. 6 (a):

• The allowed region expand to

r & 10−5 (138)

from the nν = 0 case in Eq. (131). This is because the loop corrections of heavy

right-handed neutrinos reduce V max
ϕ≤Λ.

• In the region near the envelope denoted by the black line, the two input parameters

mt and MR are simultaneously tuned for a given mDM to minimize the potential

height V max
ϕ≤Λ.

• The lower bound on r increases rapidly in the region mDM & 1.3 TeV due to the

upper end of the parameter mt < 176 GeV.

Actually, to realize the lowest bound r∼ 10−5, the three-parameter tuning for mt, MR, and

mDM is necessary. Some logic demanding the fine tuning such as MPP might realize these

parameters.

In Fig. 6 (b), we plot for a wider range of the top-quark mass (127). The lower bound

on r denoted by the black line increases in the region mDM & 1.3 TeV because of the

difference of potential shapes; it will be explained in Sec. 4.6. The increasing in the region

mDM & 1.5 TeV is due to the upper end of the parameter mt < 178 GeV.

Let us see the implications of future discoveries. We will probably discover mDM or r

in near future earlier than the discovery of mt or MR. Here, we fit MR and mt from the

future observation of mDM and r.29

28The plot will be shown in Sec. 4.5.3.
29Instead, if one narrow down the error on the top pole mass mt e.g. at the High Luminosity LHC [80],

one may use mt and mDM as input parameters to predict MR and r.
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• If we discover mDM = 1 TeV (κ ' 0.31) and r = 0.01, the right-handed neutrino

mass is predicted to be in the narrow range 1014 GeV . MR . 1014.6 GeV and the

top-quark mass is constrained: mt < 174 GeV.

• If we discovermDM = 1.5 TeV (κ ' 0.47) and r = 0.01, we obtain the theoretical lower

bound MR & 1014.6 GeV, while the top-quark mass is less constrained: 171 GeV <

mt < 178 GeV. However, MR and mt are strongly correlated in this case. Therefore

if one of them is fixed, the other is precisely predicted.

mDM r mt MR

1 TeV 0.01 mt < 174 GeV 1014 GeV .MR . 1014.6 GeV

1 TeV 0.001 173 GeV < mt < 174 GeV 1014.1 GeV .MR . 1014.3 GeV

1.5 TeV 0.01 170 GeV < mt < 178 GeV 1014.6 GeV .MR . 1014.8 GeV

1.5 TeV 0.001 mt ' 177.8 GeV MR ' 1014.6 GeV

Table 4: Constraints possibly obtained from future observations of mDM and r for Normal

Hierarchy.

See Table 4 for other pairs of mDM and r. Generically the heavy dark-matter mass

tends to predict the heavy top-quark mass and MR. The smaller the r is, the tighter the

range of mt. Especially, if we discover mDM = 1.5 TeV and r = 0.001, mt and MR are

accurately predicted.

We can predict rbound or mDM to some extent by considering typical input parameters.

When we choosemt = 173 GeV andMR = 1014 GeV, we obtain the boundmDM∼ 860 GeV–

970 GeV for r < 0.09.

Inverted Hierarchy We show the results for the case of Inverted Hierarchy (nν = 2) in

Figs. 7 and 8.

The right-handed neutrinos lighter than ∼ 1013 GeV do not affect the analysis, similarly

as in the case of Normal Hierarchy. However, the upper bound on MR is slightly different:

MR . 1014.7 GeV.

Table 5 is the summary of prediction from future discoveries of the dark matter and

r. Although we cannot obtain the global narrow bounds on MR and mt, they are highly

correlated as in the case of Normal Hierarchy if we discover mDM = 1.5 TeV and r = 0.01.
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Figure 7: Allowed region for Inverted Hierarchy with λS = 0.

mDM r mt MR

1 TeV 0.01 mt < 174 GeV 1013.9 GeV .MR < 1014.5 GeV

1 TeV 0.001 173 GeV < mt < 174 GeV 1013.9 GeV < MR < 1014.2 GeV

1.5 TeV 0.01 mt < 178 GeV 1014.4 GeV < MR . 1014.7 GeV

1.5 TeV 0.001 177 GeV < mt < 178 GeV 1014.4 GeV < MR < 1014.5 GeV

Table 5: Constraints possibly obtained from future observations of mDM and r for Inverted

Hierarchy.
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(a) (b)

Figure 8: The allowed region for Inverted Hierarchy.

(a) The lower bound on r for each fixed MR (colored) and their envelope (black) with

λS = 0 and 171 GeV < mt < 176 GeV. The orange line is for MR = 1013 GeV. The vertical

colored line comes from the lower end, mt > 171 GeV.

(b) The same plot for λS = 0 and 169 GeV < mt < 178 GeV.
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Figure 9: Allowed region for Degenerate case with λS = 0.
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(a) (b)

Figure 10: The allowed region for Degenerate case.

(a) The lower bound on r for each fixed MR (colored) and their envelope (black) with

λS = 0 and 171 GeV < mt < 176 GeV. The orange line is for MR = 1013 GeV. The vertical

colored line comes from the lower end, mt > 171 GeV.

(b) The same plot for λS = 0 and 169 GeV < mt < 178 GeV.
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Degenerate case We show the results for Degenerated case (nν = 3) in Fig. 9.

The right-handed neutrinos lighter than ∼ 1013 GeV do not affect the analysis, similarly

as other cases. On the other hand, the upper bound on MR becomes smaller than in other

cases: MR . 1014.2 GeV ' 1.6× 1014 GeV.

We summarize implications of future discoveries mDM and r in Table 6. The right-

handed neutrino mass tend to be lighter than hierarchical cases due to the heavy mν .

However, the prediction of mt is similar to the other cases.

mDM r mt MR

1 TeV 0.01 mt < 174 GeV 1013.5 GeV .MR . 1014 GeV

1 TeV 0.001 173 GeV . mt < 174 GeV 1013.5 GeV < MR < 1013.8 GeV

1.5 TeV 0.01 mt < 178 GeV 1014 GeV .MR . 1014.2 GeV

1.5 TeV 0.001 176 GeV < mt < 178 GeV MR ' 1014 GeV

Table 6: Constraints obtained for degenerate case.

51



4.5.3 Lower bound on r for each mt

In this section, let us temporarily forgot the top-quark-mass ranges Eqs. (126) and (127).

In Fig. 11, we show the lower bound on r for each fixed mt with MR being varied. The black

envelope lines in Fig. 11 are identical to the ones in Sec. 4.5.2 except for their right-most

boundary where they follow the mt = 176 GeV (blue) line or 178 GeV (purple) line.

Figure 11: The lower bound on r for each fixed mt with λS = 0. See the left of Fig. 3 (a)

for the corresponding plot without right-handed neutrinos.

We see that there is the upper bound on mt for a given mDM and it hardly depends

on nν . In other words, if any lower bound on mt is given, we obtain the lower bound of

mDM without any assumptions on the other parameters in the neutrino sector. Also we

see that there is a strong correlation between mt and mDM regardless of nν if r < 10−3.
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For example, if we discover r = 10−3 and mDM = 1 TeV in the future, mt must be between

173 GeV and 174 GeV.

4.6 The form of envelope by potential shape

In this section, we explain the shape of envelopes denoted by the black or colored-thick

line in the figures.

First, we start with the case without heavy right-handed neutrino (Fig. 3 (a)). In this

case, the effective Higgs potential generally has one local minimum due to the top-quark

loop correction.30 At the minimum point of envelope, the maximum value of the Higgs

potential becomes smallest compared with the one which is obtained by another set of

parameters.

Figure 12: The shape of Higgs potential with the values ofmt andmDM (κ) that corresponds

to a point near the minimum of the envelope in Fig. 3 (a).

In Fig. 12, we show the shape of potential near this point. At this minimum point, the

height at the local maximum (at ϕ ' 5× 1016 GeV in the case of Fig. 12) becomes equal

to the height at ϕ = Λ. If the local potential minimum (at ϕ ' 9× 1016 GeV in the case of

Fig. 12) is moved left, the height at ϕ = Λ becomes larger; on the other hand if it is moved

right, the height at the local maximum becomes larger. The left curve of the minimum

point of the envelope in Fig. 3 (a) is governed by the local maximum of the potential, while

the right by the value at ϕ = Λ.

Second we consider the case with right-handed neutrinos. The envelope denoted by

the colored thick line in Figs. 5, 7, and 9 also have the minimal points. Actually there

is one more (hardly visible) discontinuity in each envelope31 because the Higgs potential

30Here we let the word “minimum” also stands for mere a concavity.
31They can be seen a little bit easily in Figs. 6, 8 and 10, where the envelopes are summarized in

a single panel with the same colors. The discontinuity is located, e.g. in the nν = 1 case (Fig. 6),

at (mDM, log10 r) ∼ (1050 GeV,−1.5) for MR = 1014 GeV, (1100 GeV,−1.7) for MR = 1014.1 GeV,

(1150 GeV,−2) for MR = 1014.2 GeV, and (1220 GeV,−2.6) for MR = 1014.3 GeV.
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Figure 13: Schematic potential shapes. (a) Typical potential shape when its minimum is

at ϕ > Λ. (b) Typical potential shape when the minimum at larger ϕ gives lower height.

(c) Typical potential shape when the minimum at smaller ϕ gives lower height.

has the second local minimum due to the neutrino in general. The additional minimum is

located at higher scale than the one of top-quark. Thus there are the following three kinds

of potential shapes:

(i) The potential minimum at higher ϕ is located at ϕ > Λ (Fig. 13 (a)). This corresponds

to the left side of the minimum of each envelope.

(ii) There are two potential minima and the height of the one at larger ϕ is smaller

(Fig. 13 (b)). This corresponds to the region between the minimum and the discon-

tinuity of each envelope.

(iii) There are two potential minima and the height of the one at lower ϕ is smaller

(Fig. 13 (c)). This corresponds to the right side of the discontinuity of each envelope.

From this approach, the black lines in Figs. 6, 8 and 10 are understand as the parametric

lines where the two potential minima are degenerate.

We can see the additional discontinuity from another point of view in Fig. 14. The left

end of each solid rainbow-colored line should touch the black lower-bound line for nν = 0

because there usually corresponds to MR → 0 limit in usual. However, they do not touch

the black nν = 0 line for mt & 175 GeV. This is because there arises the two local minima

of the potential as in the case (iii): The minimum at lower ϕ by the top-quark contribution

is tuned to be zero, while the minimum at higher ϕ by the neutrino contribution can reduce

the maximum potential height freely. The gray line in Fig. 14 links the left ends of the

solid rainbow-colored lines for the region mt & 175 GeV, and is the same as the line joining

the discontinuities mentioned above.

Finally, we explain why the envelope in Figs. 6 (b) and 8 (b) (black, lower) is bent in

the large mDM region. At the point where the gray line touches the black envelope, the

potential height of the two degenerate minima becomes zero and the higher one is at ϕ = Λ.
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Figure 14: The same plot as in Fig. 11. The black nν = 0 line in Fig. 3 is also superimposed.

The gray line show the location of the discontinuity explained in the text, and links the

left ends of the rainbow-colored lines for mt & 175 GeV.
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On its right side, the case (i) is realized, and the maximum potential height becomes much

larger than the cases (ii) and (iii) with the two minima. At this point, the electroweak

vacuum and these two vacua are all degenerate to (nearly) zero, and the vacuum with

highest ϕ is located at ϕ = Λ. This point may be interesting in term of the MPP, but we

do not investigate it anymore in this thesis.

4.7 Summary of results

Finally we summarize the results in this section.

We have analyzed the effective Higgs potential of the Higgs-portal Z2 scalar model (120).

The current observational constraints on the tensor-to-scalar ratio and the dark-matter

mass are r ≤ 0.09 [6] and mDM & 1 TeV [70], respectively. We set the cutoff scale Λ of the

low-energy effective theory as Λ = 1017 GeV.

First, there is the universal upper bound on mDM due to the Landau pole:

mDM . 1.6 TeV. (139)

This bound hardly depends on Λ and mass of right-handed neutrino.

In the case without the heavy right-handed neutrinos, we have obtained the theoretical

bounds

r & 4× 10−2, (140)

mDM . 1.1 TeV, (141)

174 GeV < mt < 175 GeV (142)

for the current observational constraints. The bound on mDM is stringent than the bound

by the Landau pole, and the allowed range of mt is narrow. We may verify whether this

inflation model is realistic by future experiments.

With the heavy right-handed neutrinos, we obtain the wider allowed region in the

r-mDM plane. If we allow a three-parameter (mt, MR, and κ) tuning, we obtain

r & 10−5. (143)

In this case the upper bound on dark-matter mass is determined by the Landau pole.

Although the region r . 10−3 is hard to see for the planned near-future observations, the

region to explore may be shrunken by the combination with the accelerator experiments

because there are the strong correlations between mt, mDM and the right-handed neutrino

mass MR. Moreover, when we restrict mDM & 1.3 TeV, we obtain a stronger bound r &
10−3 for a reasonable top-quark mass range.
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5 Conclusion

We have discussed the following two themes related to the Higgs inflation with nonminimal

couplings:

• What the difference of the prescription is.

• How the lower bound on r is obtained without the detailed knowledge of inflation

mechanism.

On the first theme, we have shown the frame invariance of the one-loop effective action

in the simplified Higgs-Yukawa model. Though the change of the path integral measure

causes the difference between the Jordan frame and the Einstein frame, it can be absorbed

by the counterterms because it is quartic divergent. If we properly take into account the

change of path integral measure, the effective actions are exactly the same regardless of

frame where we calculate it.

However there is still the difference of predictions between the two prescriptions I

and II. We have pointed out that the difference can be absorbed into the choice of tree-

level potential from infinitely many possibilities: The prescriptions I and II are merely

two specific choices of tree-level potential, and the difference may appears in the higher

dimensional terms. We have also proposed a mechanism to stop the running of the effective

quartic coupling in the prescription II in the ordinary context, using the gauge kinetic

function.

On the second theme, we have analyzed the Higgs-portal Z2 scalar dark-matter model

and obtained the lower bound on the tensor-to-scalar ratio r and the upper bound on the

dark-matter mass mDM. The advantage of our approach is that we can obtain the lower

bound on r without knowing any detail of the high-scale physics. Under the assumption

that the extrapolation of the Higgs-field direction plays the role of inflaton at ϕ > Λ, the

lower bounds on r are appeared in the region we may observe in near future in some cases.

This analysis can be applied to other inflation model and we may check the feasibility of

the model in the same way.

There are interesting topics to investigate. First, if the Higgs field is trapped at a false

vacuum, a small scale inflation may occurs depending on the initial condition at the end

of the main inflation. Second, the universe may have double or triple degenerate vacua in

specific parameter sets as mentioned in Sec. 4.6. If the tensor-to-scalar ratio and the dark-

matter mass point such a parameter set, it would be intriguing to reveal the mechanism

that the parameters are naturally selected.

In this thesis, we regard the gravity is the background field and did not consider the

renormalization of it. Of course this treatment is not enough to investigate the unified

theory. There is also the possibility that the graviton-loop effect modifies the effective
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Higgs potential and predicts different result. It would be worth to include the scalar-loop

effect, as in Ref. [15], and also the one from gauge-boson loops.
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Appendices

A Renormalization group equations

We show the RGEs and the way to calculate the lower bound on r. In this section, we

omit the argument of the couplings: They are not the values at µ = mt and they have the

scale dependence in this Appendix.

We have calculated the lower bound on r as follows:

1. Solve the RGEs (147)–(154) for given parameters with the initial conditions for the

SM parameters (155)–(159). (Equations will be shown in the end of this section.) The

effects from right-handed neutrino is introduced only at high energy scale ϕ ≥ MR:

We set nν = 0 and MR = 0 in ϕ < MR. As the boundary condition to solve the

RGEs, we have used Eqs. (11)–(15) in [68] and the values in Table 7.

Value Reference

Planck mass MP 2.4353× 1018 GeV [72]

Higgs mass mH 125.09 GeV [25]

Z boson mass MZ 91.1876 GeV [72]

W boson mass MW 80.384 GeV See the caption

MS strong coupling α3(MZ) 0.1184 [33]

The expectation value of the Higgs field v 246 GeV [72]

Table 7: Boundary condition for the RGEs. The recent value of MW from Ref. [72] is

MW = 80.385± 0.015 GeV. The difference from the central value is smaller than the error

and it causes smaller contribution (≤ O
(
10−5

)
) than the theoretical uncertainity.

2. Calculate the one-loop effective Higgs potential

Vϕ≤Λ =
λeff

4
ϕ4 (144)
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where

λeff := e4Γ

[
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(145)

is the effective Higgs-self coupling. Here we introduce the last term in the braces

which is introduced to naively take into account the effect of the neutrino loop on

the effective potential.32 We set µ = ϕ when we calculate λeff;33 see [24] for the

treatment of the renormalization scale µ of λeff. Here we neglect the one-loop wave-

function renormalization

Γ(ϕ) =

∫ ϕ

mt

1

16π2

(
9

4
g2

2 +
3

4
g2
Y − 3y2

t − nνy2
ν

)
d lnµ (146)

due to the calculation cost and we will estimate its error later.

3. Change the parameters using the false position method until the value of the potential

minimum becomes sufficiently close to zero.

4. Calculate the maximum value of potential and obtain rbound via Eq. (119).

5. Obtain the value of Γ(ϕ) at ϕ = Λ and use it to estimate the deviation at the potential

maximum: We calculate the coeffient factor exp(4Γ(Λ)). This is most conservative

because |Γ(ϕ) | becomes largest at ϕ = Λ. This estimation corresponding to the

dashed lines in the figures.

32We checked that its effect is at most few percent.
33That is, we implicitly assume the tree-level potential is defined as Eq. (96) with the counterterm (80),

as explained in Sec. 3.5.
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Renormalization group equations We obtained the RGEs for arbitrary nν by com-

bining the nν = 1 RGEs [81] and the nν = 3 ones [82]:

dgY
d lnµ

=
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16π2
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dyν
d lnµ
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dκ

d lnµ
=
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Initial conditions for the SM parameters We show the relations between the SM

parameters and the pole mass of top quark at two-loop level. These relations are given in

Ref. [33].

gY (mt) = 0.35761 + 0.00011
( mt

GeV
− 173.10

)
− 0.00021

(
MW − 80.384 GeV

0.014 GeV

)
(155)

g2(mt) = 0.64822 + 0.00004
( mt

GeV
− 173.10

)
+ 0.00011

(
MW − 80.384 GeV

0.014 GeV

)
(156)

g3(mt) = 1.1666− 0.00046
( mt

GeV
− 173.10

)
+ 0.00314

(
α3(MZ)− 0.1184

0.0007

)
(157)

yt(mt) = 0.93558 + 0.00550
( mt

GeV
− 173.10

)
− 0.00042

(
α3(MZ)− 0.1184

0.0007

)
− 0.00042

(
MW − 80.384 GeV

0.014 GeV

)
(158)

λ(mt) = 0.12711 + 0.00206
( mH

GeV
− 125.66

)
− 0.00004

( mt

GeV
− 173.10

)
(159)
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