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Abstract

The Higgs field is the only scalar field in the Standard Model of particle physics.
Because the potential shape of the Standard Model Higgs is not suitable for the
inflation, the nonminimal coupling between Higgs and the Ricci scalar is necessary
to use the Higgs field as an inflaton. In this thesis, we employ two approaches on
Higgs inflation model with general nonminimal couplings. First we consider the
prescription dependence of the Higgs effective potential. It has been considered
that the prescriptions correspond to the choice of frame in which a field-independent
ultraviolet cutoff is defined. We have shown that the difference between prescriptions
comes from the choice of counterterm to cancel the logarithmic divergence in the
counterterm formalism. We also point out that the difference can be absorbed into
the choice of tree-level potential from the infinitely possibilities, including higher-
dimensional terms. Second, we assume that a low-energy effective theory is valid
below a certain energy scale and that the slow-roll inflation occurred above the cutoff
scale. We obtain the lower bound on the tensor-to-scalar ratio r even if we do
not know the theory at high-energy scales. We consider the Higgs-portal Z, dark-
matter model as an example, and we calculate the lower bound on the tensor-to-
scalar ratio r and the upper bound on the dark-matter mass mpy. We obtain
r=>4x 10”2 and mpy S 1.1 TeV in absence of heavy right-handed neutrinos. When
there is contribution from heavy right-handed neutrinos, the most conservative bound
becomes r > 107> and mpy; < 1.6 TeV.

*nakanishi@het.phys.sci.osaka-u.ac.jp
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1 Introduction

The Big Bang theory is a successful model in cosmology. It can explain the universe
history after the Big Bang nucleosynthesis, however, we have still some unsolved problems:
our universe has unnaturally small curvature and homogeneous energy distribution. The
inflationary paradigm [1, 2, 3, 4] is one of approaches to solve such cosmological problems.
An epoch inflation when the universe expanded rapidly in the early time makes the spatial
curvature small. It shrinks the comoving distance, which represents the distance that two
points can interact within finite time, and also makes the homogeneous universe possible.
The inflation also dilutes the (number or energy) density of particles and structures that
existed before it, hence we may understand the nonexistence of things such as monopoles.

Then, what is the mechanism of inflation? There are many possibilities proposed from
the point of view of particle physics and gravitational theory. However, at present, we
do not know which model is the truth. In recent decades, the observations also have
been developed and we obtained some information about the inflation. Direct detection
of photons is the most reliable method in the investigation of the history of universe.
Though the direct observation of inflation is difficult, we can observe the last scattered
photons called cosmic microwave background (CMB), and its temperature perturbation
and polarization tell us many properties of the inflation. An important observable is the
tensor-to-scalar ratio r which is the ratio of amplitude of tensor and scalar perturbations.
In principle, the tensor perturbation can be observed as the primordial gravitational waves.
Recently there is a report of detecting the signal of gravitational wave from binary black
holes [5]. However, the detection of primordial gravitational wave is rather difficult and we
may only observe it indirectly via the B-mode of CMB polarization at present. The upper
bound on the tensor-to-scalar ratio obtained by Planck is » < 0.09 within 20 C.L. [6].
Another observable parameter is the spectral index ng of the power spectrum of the scalar
perturbation, and it is constrained n, = 0.968 +0.006 within 1o C.L. [6]; we will give a
detailed review in Sec. 2.

The field which causes the inflation is called inflaton. The matter nor radiation com-
ponent in the universe cannot induce the inflation because their pressure is positive and
they always shrink the space. On the other hand, scalar fields can become candidates for
inflaton. The Standard Model (SM) of particle physics has the Higgs field as the only
scalar field which has been discovered [7, 8]. Although the pure SM Higgs cannot repro-
duce the observed values of r and n,, we can make suitable models by introducing fewer
assumptions on the SM than with other undiscovered scalar particles. In this thesis, we
concentrate on the Higgs inflation model and consider issues on it.

A simple extension is to add nonminimal couplings between the Higgs field ¢ and the
Ricci scalar R. By switching frames by conformal transformation, we obtain the suitable
shape of Higgs potential for the inflation [9, 10]. This model predicts parameters of the



closest to the best fit point in the r-n, plane among various inflation models [11]. In
classical theory, there is no problem on such conformal transformation of metric. However,
the frame dependence (or independence) of the quantum theory has long been disputed;
see e.g. [12, 13, 14, 15, 16, 17, 18, 19].

We often consider the running of couplings in the quantum field theory. When we
analyze the nonminimal model, the corrections from the nonminimal couplings appears in
general. Under the existence of nonminimal coupling term, it has been said that there
are two different “prescriptions” to approximate the renormalized Higgs potential to the
tree-level one [20, 21, 22]. A prescription is claimed to correspond to a field-independent’
ultraviolet cutoff in a specific frame [20, 21], and the different choice of prescription comes
down to the different size of the nonminimal coupling for realistic inflation [23, 24]. How-
ever, if we start from the identical Lagrangian, it is curious that the field dependence of
the cutoff scale changes the result.

In this thesis, we show that we can guarantee the frame independence of the effective
action with proper definition of path integral measure and with renormalization condition.
We also revisit the relation between the ultraviolet cutoff and the renormalization scale,
and clarify that the different choice of the cutoff does not directly relate to the difference
prescriptions: it is related to the choice of the counterterm to cancel the logarithmic
divergence. We also explain that the difference can be absorbed into the choice of the
tree-level potential, including higher-dimensional terms.

On the other hand, the observed value of the Higgs mass 125.09 £+ 0.24 GeV [25] indi-
cates that the Higgs potential in the SM becomes small and nearly flat by the fermion-loop
corrections when the Higgs-field value is close to the Planck-scale; see e.g. Refs. [26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. This is required by the multiple-point principle
(MPP) [39, 40, 41, 42]. The inflation model using this flatness at the high-energy scale is
called Critical Higgs Inflation [23, 43, 44, 24]. The usual Higgs inflation needs large non-
minimal coupling ~ 10*, but the Critical Higgs Inflation does not need so large nonminimal
couplings.

The nonminimal coupling reduces the range of scale where the low-energy effective
theory is valid. If the nonminimal coupling is sufficiently small, the cutoff scale® of the
effective theory is close to the Plank scale, and the energy scale at which the inflation
occurred becomes high. In this thesis, we show that we can obtain the lower bound on the
tensor-to-scalar ratio r even if we do not know the high-energy-scale physics. We consider
a specific model of Higgs inflation and analyze the lower bound. Consequently, we find
that the lower bound on r which may be tested in the near future.

This thesis is organized as follows. In Sec. 2, we briefly review the slow-roll inflation

'In the case of Higgs inflation, the field is Higgs.
2This cutoff scale is different from the ones in the discussion of prescriptions: here it means the upper
limit of the valid range of the low-energy effective theory.



mechanism and the nonminimal inflation model. In Sec. 3, the first topic of this thesis, the
frame (in)dependence and the prescriptions, is discussed. In Sec. 4, we turn to the case of
inflation at high-energy scale, and calculate the lower bound on the tensor-to-scalar ratio.
Finally in Sec. 5 we give a summary of this thesis.

Throughout this paper, the units of ¢ = A = 1 is taken unless otherwise stated.



2 Introduction to Inflation

Single-field models are considered as one of simple possible realization for the inflation.
Especially, slow-roll mechanism can produce small tensor-to-scalar ratio, which fits the
observations. In this section, the mechanism of single-field slow-roll model is explained.

2.1 Cosmological perturbation theory

First we review the classical cosmology. The homogeneous isotropic background metric
(Friedmann-Lemaitre-Robertson-Walker metric) is

ds? = dt* — a®(t) dx® (1)

where a(t) is a scale factor of the universe.” The dynamics of a(t) is calculated from the
Einstein equation

1
R[,LV - §Rguu + Acguu = 87TT;U/ (2)

where A, is the cosmological constant and T}, is energy-momentum tensor for all compo-
nents in the universe other than the cosmological constant. From the homogeneity and
isotropicity, 7}, has only diagonal components at zeroth order of perturbation,

0

v,

0 0
0 0
0 0 P O
0 0 0 P

where p is the energy density and P is corresponds to pressure. From Egs. (2) and (3), we
obtain the Friedmann equations:

. 2 .
8rG A e A

a 3 37 a 3

The energy components other than the one that causes the inflation can be disregarded
during the inflation. If the accelerated expansion had been induced by the cosmological

3Throughou‘c this thesis, we ignore the spatial curvature K of the universe because it becomes small dur-
(x- dx)2
1-Kx°
|| < 0.005 [6] is one of the motivation of the inflation paradigm, as mensioned in the introduction.

ing the inflation. We may recover it by dx”® — dx*+ K . Actually the achievement of small curvature



constant, the Einstein equation can be easily solved and we obtain a(t) o exp(VAc /3 t>.
In this case, the Hubble parameter defined as
a

H = . (5)

becomes a constant.
We also define the e-folding number N which stands for how large the universe has
expanded during the inflation as

S (6)

Qgtart

The observable fluctuations of CMB corresponds to the primordial perturbations at N =
40-60 and it depends on which reheating model we take [45].

Scalar perturbation Next we consider the first-order perturbation theory. Using the
gauge-invariant comoving curvature perturbation R(¢,x), the metric is written as

ds® = dt* — a*(t) *Rdx? (7)

in the comoving gauge.

The quantum variable R obeys a canonical commutation relation with an appropriate
normalization. Then the two-point function of the comoving curvature perturbation gives
its power spectrum Py as”

(RyRy) = 6(k + k') Pr(k). (8)

Naively, the amplitude of the scalar perturbation <R2(t, X)> is directly connected the tem-
perature perturbation of CMB. From Eq. (8),

dk &
(RP(t,x)) = ??PRU@) (9)
and the integrand
, K

2
is the dimensionless power spectrum. The amplitude at the horizon crossing time becomes
1 H*1

- 11
87T2 Ml:% €lk=aH ( )

Ay = A%‘k:aH -

“We ignore the difference between the comoving curvature perturbation and the curvature perturbation
on uniform-density hypersurfaces because the difference disappears on superhorizon scales or under the
slow-roll approximation [45]. For the details of the calculation, see also the author’s master thesis [46].



where € := —H/H? is the first Hubble flow function.” And we define the spectral index

dln A%
ng =t L (12)

If the inflation is derived by the cosmological constant, it is known that the dimensionless
power spectrum of CMB becomes Harrison-Zel’dovich spectrum [47, 48] which is scale
invariant: ng, = 1.

Tensor perturbation The metric has also the vector and tensor modes of perturbations.
It is known that the vector mode decays rapidly. On the other hand, the tensor mode can
be observed as the polarization of CMB or the gravitational waves. The amplitude at the
horizon crossing time is obtained as

2 H*
A7 = 5— : 13
t }k:aH 2 M}g ol ( )
Then the tensor-to-scalar ratio r of the power spectra is defined:
A
rTi= —5 = 16€|k:aH' (14)
A?Z k=aH

If the inflation is derived by the cosmological constant, the Hubble flow function ¢ = 0 and
the tensor-to-scalar ratio is also zero.

The observed values ng, and r are close to the case of the cosmological constant:
ny = 0.968£0.006 and » < 0.09 [6]. However, in that case the universe cannot stop
their accelerated expansion and then any stars nor galaxies are not formed. From next sec-
tion, we will review the slow-roll mechanism which avoid the problem of the cosmological
constant model.

2.2 Single-field slow-roll model

Almost flat potential of a scalar field acts the role of “cosmological constant” depending
on its height. The scalar field which induce the inflation is called inflaton. The action of
the single-scalar slow-roll model is

2
S = /\/—g Al (—%R + %g’“‘”ﬁusoayso - V(@)) (15)

®Under the slow-roll approximation, the first Hubble flow function is equal to the potential slow-roll
parameter €y, which we will see in Sec. 2.2.

10



where Mp := 1/v/87G ~ 2.4 x 10" GeV is the reduced Planck scale, ¢ is a scalar field®
and V() is its potential. The equation of motion (EOM) becomes

G+3Hp+V'(p) =0 (16)

where the prime denotes the argument derivative.

If we set ¢ (or equivalently V' (¢)) to a constant, we can easily reproduce the exponential
expansion which is derived the cosmological constant. Therefore we take the following two
conditions in the slow-roll approximation.

e The kinetic term is efficiently smaller than the potential height: ¢* < V().
e The acceleration term in EOM can be neglected: |@| < [3H¢|, [V'(p) |.

Usually these conditions are expressed by potential slow-roll parameters:

ME (VN L,V
=— | = 1 =Mp— < O(1). 17
€y 5 (V) <1, v PV<< (1) (17)
When €, or 1, becomes O(1), the inflation ends.

Let us approximate the tentor-to-scalar ratio r in terms of the potential slow-roll pa-

rameters. We can obtain the energy-momentum tensor for the scalar field which form is
Eq. (3) with

1. L,
p=5¢" +V(0), P =53 =V(p). (18)
Here we consider the slow-roll approximation so that the first terms Eqgs. (18) are neglected:

p~V and P~ — V. From the first equations of Egs. (4) and (18),

H 95 M2V (19)
€E = —— = — ~ — e = €
HQ H2 9 % Vs
here we use ¢ ~ — V'/3H. The tensor-to-scalar ratio is given by Eq. (14) and we get
r~ 16€y . (20)

In this thesis, we never analyze the time evolution of a(t) and we always use the potential
slow-roll parameter instead of the Hubble flow-function. We will use this result in Sec. 4.1.

®Here we do not restrict ¢ to Higgs.

11



2.3 Nonminimal coupling model
2.3.1 Conformal transformation

The slow-roll model needs a nearly-flat scalar potential. However, for example, Higgs

field which is a sole elementary scalar field in the SM has quartic potential at high-energy

scales, and it cannot satisfy the slow-roll conditions (17). The nonminimal-coupling Higgs

inflation is an idea that makes the shape of potential to be flat by coupling terms between

the Higgs field and the Ricci scalar [9, 10]. In this section, the mechanism is reviewed.
Let us consider an action for the single scalar field model,

M; 1 ,
5= [ vEaate (<2 Fuo) R+ 5Fal) 5 Bt - Vo)) (21)
where F(p) is the nonminimal couplings between the scalar and the gravity. Here we also
introduce the nonminimal couplings for kinetic term Fg(p) for preparation of discussion
later.” We assume the Z, symmetry of the action for simplicity. We also require the
nonminimal coupling terms become unity at the electroweak scale in order to the theory
match the SM. Namely they are written in the form
0 o' 0’ o'
F =1+¢é—+0 — ), F. =14+&—+0(— 22
o) =1+ a4 0( ) W =Lt 61 0( ) @

where M is a typical scale of ultraviolet theory which has mass dimension one, and £y is
the first coupling constant in the nonminimal-coupling function.®

In this system (21), we can always redefine the metric (or equivalently the scalar field)
and the manipulation is called conformal transformation. To make the action to have a
form of Einstein-Hilbert action with keeping the whole action is invariant, we define a new
metric as

G = Fr(®) g (23)

The new frame is called the Einstein frame while the un-transformed frame is called the
Jordan frame. Hereafter the superscript (or subscript) “E” denotes the Einstein frame. In
the Einstein frame, the action becomes

M3 1 , 1%
5— / Vamdia| = Mep Loy o 00,0 — Y8 (24)
2 2 FR(SO)

"In this case the pressure becomes P(¢) = $Fs(p) 9" 0,90,¢0— V() and the energy density is p(y) =
%Fq) (¢) 9" 0,90, + V(p). For more generic action we can apply the similarly argument, see e.g. the
author’s previous work [49].

® The nonminimal coupling ¢ between Higgs and Ricci scalar in the ordinary notation relates to g as
2 /2
§ = EpMp/M” [10].

12



where

o) = | 2], (Uil -

Fr(p) Fr(p)
We define the Einstein-frame potential in Eq. (24) as
Vie)
Uly) = ; (26)
Fr(p)

for convenience.

Let a term o< " be the most contributory term of the scalar potential V' (p). If the
/2 the last term of Eq. (24) closes to
a constant as ¢ becomes large [50]. Then nearly flat potential in the Einstein frame leads
to the slow-roll inflation. Note that at the electroweak scale the nonminimal couplings (22)

most contributory term of Fr(¢) is proportional to ¢

is sufficiently approximated to 1 thus F or Fg does not affect the physics today. Actually
the field ¢ is not canonically normalized in the Einstein frame, and the change of EOM
must be taken into account at high-energy scales; see next section for the details.

2.3.2 Classical dynamics in terms of Jordan-frame field

We consider the effect of the non-canonical coefficient of kinetic term (25) at the classical
level. We assume that the classical metric in the Einstein frame is the Friedmann-Lemaltre-
Robertson-Walker metric:

gEl,dx“de = —dtg® + ah(ty) dx°. (27)

The Hubble parameter in the Einstein frame is defined as

1 dCLE
ag th

B = (28)

and the universe expands with the rate Hy. It is also convenient to define the canonically
normalized scalar field x as

dy = G(p) dp. (29)

In this case the Einstein equations become the ordinary Friedmann equation:”

PE dpg
, — =-3 + Hg, 30
3 MPQ’ dty (PE pE) E ( )

2 _
=

9The second equation is derived by the combine the Friedmann equations which have the form of
Eq. (4).

13



where

=2 (2 s vy, m=t (2 . @

dtg

The Higgs-field equation becomes

d2 dy _ dUg
— + 3H, = 32
and this is rewritten in terms of the Jordan-frame field as
d*e  dy d 1 dUg
H —1
a2 TS dtg <3 R dtg ng> G2 de (33)

We see the Jordan-frame field ¢ has an extra friction term ﬁ InG compared with the
nonminimal-coupling case. This friction term changes the rolling speed of the field, but
is the same order as the slow-roll parameter under the slow-roll condition, as we will see
below.

Under the slow-roll condition, the Friedmann and Higgs-field equations become

SMEHE = Uy, (34)
dy __dUg
3H 35

We define the potential slow-roll parameters in the Einstein frame and write the slow-roll
condition in terms of them,

Mg (dUg\® M [(dUR\®
E P E P E
= = < 1, 36
VT ( dy ) 203G ( de ) .
Mp AUy Mg d (1dU
E P E P E
WU a¢ T UsGdy (9 dso) 7
In terms of the Jordan-frame field, Eq. (35) becomes
dgo 1 dUyg
3H - 38
We define the effectual potential which takes into account the effect from G as
1 dUyg
Uy = dgag a0 + const. (39)
Then Eq. (38) is written as
dp  dlUg
3H. 4
TR (40)

14



Using the potential (39), the slow-roll parameters can be rewritten as

2 2 2
s G*M3 duE)
— —E) 41
VT (d(p (41)
M2 (U, AU d
E P E E
P (ZTEL TR 7 . 42
WU (dsoz T dp “g> 2

We see that the extra friction is the same order as the slow-roll parameter from Eq. (42).
In this paper, we omit the subscript E from Uy and Uy which are always given in the
Einstein frame.

15



3 Frame (in)dependence of the theory

We can flatten the quartic potential by the conformal transformation as introduced in
Sec. 2.3. However, there appear problems when we consider the quantum loop corrections:
we do not fully understand the renormalization under the existence of nonminimal cou-
plings. In this section, we see the meaning of the field dependence of the renormalization
scale. The content in this section is published in Ref. [51].

3.1 Frames at classical level

For our purpose, we will calculate fermion loop correction to the effective action in a
simplified Higgs-Yukawa model.'” We consider only the Higgs field ¢ and the fermion field
1 for simplicity. We also assumed that the action is invariant under a chiral Z, symmetry

= =, Y — Y1) (43)
Then the action in Jordan frame becomes

M3 1 y
S = /d493\/ —g [ - 7PFR(<P) R+ §F<1>(90) g 0,00,0 = V(p)

— Fy (@) ¥y D, — Fy (o) you) |, (44)

where y is the Yukawa coupling'’ and D, =9, + 1, is the general covariant derivative on
spinor, with €2, being the spin-connection. The potential contains all the higher dimen-
sional terms in general:

n

Vie)= Y An#. (45)

n: even, n > 0

Let us neglect the Higgs mass term because it is much smaller than the quartic coupling
term at the large field values we consider. When we assume that all the higher order
terms are small at ¢ ~ M, the potential becomes quartic at large ¢ and V < M* < Mp:
This is the case of the original Higgs inflation [10] which assumes that the potential (45)
can be approximated by V(y) = M, namely A, < 1 for n # 4, at around the scale
po~M < Mp.

1OA(:tually, gauge-boson loop correction also affects the running of the Higgs self-coupling. However,
the ¢-dependent effective mass of the canonically normalized gauge boson has the same dependence in
the Einstein frame as the effective mass of fermion; see e.g. Ref. [24]. Therefore the arguments for frame
independence and for prescription dependence can be applied without modification after we include gauge-
boson loops.

" This is related to the SM top Yukawa coupling y, by y = yt/ﬁ

16



We also assume that all the nonminimal couplings Fx(¢) approach to one when we
take a weak-field limit ¢ — 0:

2 4
¥ ¥
Fx(p) = 1+£XW+O(W> (46)
for X =R, ®, Uand Y.

We obtain the Einstein-frame action by the field redefinition Eq. (23),

.y M2 1o o Vie
S = /d J}\/—gE[— TRE + Eg (QD) Jg 8#9081/90 - (FR((P )2
B 10 n DBy, — ) | = 47
(FR(QD))?’/?%WE WY (FR(SO))QySO@W]' o

Hereafter in Sec. 3, the quantities without superscript or subscript “E” are given in the
Jordan frame unless otherwise stated. We also use superscript or subscript “J” on quanti-
ties in the Jordan frames when it is preferable. Using the assumptions above, U = V//F] 2
becomes constant in the large ¢ limit:

A
¢

where we used the relation in the footnote 8.

U— 5 Mp (48)

3.2 Effect of nonminimal coupling in quantum theory

Next we consider the quantum corrections to A,,. In quantum theory, we need renormaliza-
tion to cancel the divergences in the theory. The most contributory loop correction is the
one from top quark. Thus we consider top-quark field as v hereafter, namely, we consider
only one kind of fermion field and its loop correction. However, the following arguments
does not depend on the number of fermion fields.

We write the bare Higgs potential as

VB = Z AnB# (49)

where \,p is the bare couplings. The full effective potential V' is composed by the bare
potential and the loop-correction to the potential AV, g:

V= Vs + AVl (50)

The divergences in V3 and in AV,g must be canceled by each other so that the full potential
is finite.

17



In the counterterm formalism, the renormalized Higgs potential V' is computed as a
sum of finite functions depending on the renormalization scale pu:

V= Vr(p) + AVr(n) (51)

where V3 is the p-dependent tree-level potential
gpn
Ve, 1) == > Aur(i) T (52)

and AVy is the loop correction. The running of A,z () is determined by the p-independence
of V after we determine the counterterm. Note that V' is also independent of p and we
can choose p arbitrarily.

In the SM, the choice p ~ ¢ minimizes AV, then V' can be approximated by the tree-
level potential: V' ~ VR|u:so‘ However, in the nonminimal model, the corrections from the
nonminimal couplings appears in general. For example, we may consider the nonminimal
coupling term §902R/M§. Under the existence of this term, it has been said that there
are two different “prescriptions” to approximate the renormalized Higgs potential to the
tree-level one [20, 21, 22]

1 (prescription I),

4165 (53)

® (prescription IT).

We will review how to derive these expressions later.

A prescription is claimed to correspond to a p-independent ultraviolet cutoff in a specific
frame [20, 21], as mentioned in Introduction. The prescription II is has the same ¢-
dependence as the SM. On the other hand, it is said that the prescription I is preferred
from the point of view of exact quantum scale invariance [52, 53, 54]. However, we cannot
determine which prescription is suitable for our universe at present.

The different choice of prescription predicts the different value of observable such as
the spectral index n, [20]. It also results in the different size of the minimal coupling £
to realize the inflation. For example, if we consider the criticality of the SM, the suitable
values of Higgs self-coupling becomes O(10) for the prescription I and O(100) for the
prescription II [23; 24]. It is rather curious because the entire Higgs potential V' should
not depend on u, and then we consider that the current understanding of the prescriptions
is not enough.

From the next section, we revisit the relation between the ultraviolet cutoff and the
renormalization scale, and clarify that the different choice of the cutoff does not directly
relate to the difference prescriptions.
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3.3 Frame independence of effective action up to quartic diver-
gence

In this subsection we show that the effective action is frame-independent up to quartic
divergence if we properly take into account the change of the path integral measure as well
as that of the ultraviolet cutoff, using the assumptions in the Section 3.1 for simplicity.

We evaluate only the one-loop correction from the fermion loop and ignore those from
the graviton and ¢ loops. We also neglect all the corrections to other couplings y, £y, etc.,
and hence do not distinguish the bare and renormalized couplings for them.

The metric redefinition (23) relates the short-distance cutoff lengths ¢ in Jordan and
Einstein frames by

E 2
9w gE
03 =g, Azt Ax¥ = Azt Ax¥ = (54)
P Fr(y) Fr(e)
where A denotes the difference. Namely, the ultraviolet cutoff scales A;/g are related by
A2
Ap = 2. 55
. Fr(p) (58)

and we can choose either Aj or Ag to be independent of ¢, but not both [20].

The frame independence of the effective potential has been verified in various ways.
Here we revisit and confirm it. The one-loop effective action induced by the fermion loop
in the Jordan frame is given by

. J J— J—
gl . — /ngw D, 1) exp [i/d4:c\/—ng (—FyBp,, — Fyye) 14 : (56)
Similarly, the one-loop effective action in the Einstein frame is
iASE — ‘ — F, F
GA%“Z/D%¢D%¢@@P/ﬁ%¢:%¢<—g%¢%—;%w>4. (57)
R R

The path integral measure D1 has no unique definition. Here we use simply the distance
in the functional space:

o0l = [ a'ey=g;57 5 for D, 1, (58)
501, = [ atey=ge 5050 for D, v. (59)

2For example, in Refs. [13, 18], the authors have obtained one-loop renormalization group equations
for the tree-level action in both the Jordan and Einstein frames, and have found they agree; see also
appendix of Ref. [17]. In Ref. [14], the authors verified that both the tree-level actions are equivalent when
written in terms of dimensionless variables. In Ref. [15], it is shown that the one-loop divergent part of
the effective potential in both frames coincide at on-shell. In Refs. [12, 16, 19], the authors have discussed
frame independence of physical observables.

19



From Egs. (23) and (58), we have

10w]2 = / Aoy =gs F? 57 60, (60)

Then the functional measure satisfies

—4
DQJw ZDQJE = DQEw DQEE (H Fé?)

=D, ¢ D, ¥ exp { 4 Tr InFy ] , (61)

gEE

where Tr, , denotes the functional trace depending on the metric gy and the cutoff Ag,
and the extra minus sign of —4 is from the Jacobian for fermionic variables. We can see
that the functional measure Dy 1 DgJE produces the extra contribution factor

exp{ 4 Tr In F ] (62)

ge-AE

when we rewrite it in terms of Einstein-frame one. If we take the assumption that ¢
and g,, are slowly varying backgrounds so that they can be treated as constants in the
computation of the effective action, it becomes

exp[ 49T/:E In F } = exp {—4i/d4x\/—gE <x|lnFR2‘x>AE}
EHyAE
A4
= exp [i/d4x\/—gE <—8—Egln FR2)} (63)
T

13
where we have used

). - /AE d'p /AE on’p’dp AR (64)
Ae (27r)4 ) (27r)4 327

To see the frame independence of the effective action, let us rewrite the action (56) into
the path integral in Einstein frame. It becomes

ZASﬂ—exp{ 4 Tr lnFR]

Ie-AE
X /Dng Dy, exp [i/d“fvx/—gE@( 3/2% - 2y90> ¢]

:exp[ 4T lnFR} ¢iASeh (65)

9EAE

“Here and hereafter, the momentum integral is taken in the Euclidean space.
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and thus the effective action is frame-independent up to quartic divergence. This quartic
divergence is absorbed into the renormalized couplings including the coefficients of higher
dimensional terms. Before we see it, we verify the equality (65) through more explicit
computations under the assumption that ¢ and g, are slowly varying backgrounds. The
effective action induced by fermion loop (56) becomes

eiASjH — Dot (‘Fxplng - FY?JSO>
0

gJ7AJ ,LL
[ —Fylp, — F
=exp | Tr ln( \Ijmg‘] ngp)]
915 Lo
[ A gty 1 F2.2 4 p2 2
= exp /d x\/—gJ/ p —1n< b +M2Y ) : (66)
0
where i is an arbitrary reference scale. We define the correction to the Jordan-frame
potential14
Ay gty 1 F2,2 1 2 2
AV = 4 / p Ly (B I (o) (67)
(27T) 2 Ho

and it is computed as
1 A3+ M 1 M3
AVl = o {A‘j {1 (F@—J 2 J) — 5} + ASM35 + M;j 1n<—Ag " JM?) } . (68)
where

M) =R

is the field-dependent mass for canonically normalized fermion in the Jordan frame.

(69)

On the other hand, we may rewrite formally the effective action (66) with the Einstein-
frame metric:

emsgff = exp [i/d4x\/—gJ (—AV&)}

J
= exp z'/d4:v\/—gE —AV;H
Fr

where we have defined the correction to the potential (26). The explicit form of AUk is
AV
= T2

R

1 A2+ M 1 M?
NS PN g) } AZM2 1 MY (—J)} 7
16@%{ { ( ¥ g | MM e ) g (T

“For more realistic top quark loop, AV,g is multiplied by the color degrees of freedom N, = 3.

—: exp {z / d'ey/~gm (—AUjff)] (70)

AU
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Eq. (71) is the result of the transformed effective potential from Jordan frame to Einstein
frame.

Next we consider the field redefinition (23) from the Einstein frame to Jordan frame.
The Einstein-frame effective action induced by the fermion loop (57) becomes

_ Py
, 3/2125g — Jyp
GZASEH =exp | Tr In S
9r AR Ho
[ Ae gy 1 p + 5 (W)
= exp 4z/d4 \/—gE/ p —ln i (72)
,Uo

We define the fermion loop correction to the potential (26) obtained with the measure
D, 1 in the same way as Eq. (67):

2 2
Ae gty 1 Tp ‘|‘ y '
AU = —4/ P oL
0 (27T) 2 Mo
2, M M5
= - E n —3 3 —5 + EF + 2I1 5 M2 (73)
167 FR Lo R FR AE+FR1

We can rewrite it in terms of the cutoff in Jordan frame by using the relation between the
ultraviolet cutoff scales (55),

2
AU = —% {A§ {m(FW A) +2MJ> — 1} + AIM;] +M§ln(#) } . (74)
167" Fg Fr 2 Ay + Mj
Comparing the results (71) and (74), we obtain that
1
AU% = AUR — WA‘E In Fp*. (75)

We see that Eq. (75) is equivalent to Eq. (65) by using Eq. (63) and each definition of
the effective potential. Note that the difference in (75) is quartically divergent, which will
be subtracted by the renormalization.'” In particular, this difference does not change the
running of couplings, as we will see in Sec. 3.4.

""Here we use the result of the extra factor derived from a theory defined with a measure induced from
the distance in the Jordan frame (58). The same argument can be applied when we start from a different
theory defined with another measure induced from the distance (59). Then the Jordan-frame effective
action will receive extra contribution from the change of measure, exp [4 Tr InFp 2}, which again is

9305
quartic divergence and will make the difference only in the renormalization conditions.
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We summarize the results in this subsection. Once we fix the path integral measure,
D,,¢ or Dy 1), we obtain the same effective potential, AUz or AU, no matter in which
frame we compute it: When we compute it in the Jordan frame, we obtain

J

'A% — exp {i/d4x\/—_g] <—A‘/;‘11f>}
= exp {i/d%ﬁ/—gE <—AU§H>] , (76)
while when we compute it in the Einstein frame,

. A
oAS _ exp [2 / d*z/ =g (_S_EQ In F]g?)] (The extra factor (63))
m

4
X exp {z’/d"‘x\/—gE (— (AUlef — %ln FE"))} (The difference (74))
m

— exp [@ / Ao/ g5 (—AU(;]H)} . (77)

The effective action changes if we take another path integral measure. However, the dif-
ference is quartic divergence and we will see that it can be absorbed by the renormalization
condition.

3.4 Prescriptions in the ordinary context

In the prescription I (II) in the original sense [20], we set Ay (Ajy) to be a ¢-independent
constant. First, in this subsection, we review how the prescription I or II in Eq. (53)
appears in the ordinary context. Second, we show that the difference between two frames
can be regarded as the difference of renormalization condition.

We consider the cutoff theory containing infinite number of higher dimensional terms.
The effective potential should be a function of ¢ /M in the large cutoff limit Ay, Ay — oo and
the infinite number of bare couplings should be tuned so that the theory is renormalizable.
We work in the counterterm formalism so that My and Fy are treated as finite renormalized
quantities. We consider the theory defined by the path integral measure D, ¢). This choice
of theory is a just example: The same argument can be applied even when we consider the
theory defined by the measure D, 1.

3.4.1 Prescription II in ordinary context

We start the prescription II for the convenience of explanation. The effective potential
induced by the fermion loop (68) contains the quartic, quadratic, and logarithmic diver-
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gences:

1 A2\ 1 M; 1
AVyg = Aj |1 FQ—‘]) ]+2AM + M; ( —J——)}
ff 167r2{ J {H< \Il,u(g) 5 3V J AJ 5
+O0(A}?). (78)

The quartic and quadratic divergences in Eq. (78) can be simply subtracted by the counter

c.t. 1 4 2 A% 1 2 2
‘/power = W AJ ln F\p? - 5 + 2AJMJ . (79)
0

On the other hand, the counter term for the logarithmic divergence in Eq. (78) should

term

be analytic around ¢ = 0 because we employ the analytic tree-level potential. Because
In Mj; =1Iny+ --- breaks the analyticity around ¢ = 0, a natural choice of the counter
term that is analytic around ¢ = 0 would become

M2
et J
o In —, 80
Y5 16n7 A2 (80)
where p is the renormalization scale. The resultant bare potential is obtained as
Vo' = Vi + Vogwer + Vi
n, 1 [ AN 1 1
167 Lo 2 A ]
where Vi is the p-dependent tree-level potential in the counterterm formalism,
Vil (i, 1) Z)\ M" i (82)

The running of A\,g (i) is determined by the p-independence of Vi via Eq. (81). Note that
we can obtain the ordinary running of the quartic coupling

dAe(p) '
=— 83
dlnp 872 (83)
because Mj = yp + O((p?’).
Then we obtain the full effective potential
V(ip) =V + AVg
= Vi (p, 1) + AVR (9, 1) , (84)
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where

AV (g, 1) = — (M) (ln [ML(290)]2 _ %) (85)

is the one-loop correction in the counterterm formalism in the prescription II, and now both
Vil and AVR' are finite. To minimize the correction (85), we choose the renormalization
scale'®

This result reproduces the prescription II in the sense of Eq. (53), pu~ ¢, for Fy, = Fy = 1.

3.4.2 Prescription I in ordinary context
We can rewrite Eq. (78) by using Eq. (55):

Fi { 4{ ( 2FRA%) 1] s M3 M%( M3/ Fg 1)}
AV = ——L AL |In( F2EE0E ) - 2] oa2 200 4 200 () .
T Sl 2 EFr | F2 O\ AL 2

+0O(A5Y). (87)

The quartic and quadratic divergences are canceled by the same counter term (79), but it
is more natural to cancel the logarithmic divergence by
4 2
ctl Mj X

el _ 2 88
8T 16r% T AL (88)

instead of Eq. (80). Then the bare potential becomes

Ve = Vi + Viower T Viog "

o 1 4 2 2 FrAR, 1 2 2 i
= Vo +—5 S ApFi |In(| Fg—= S|+ 2AgFpM + Mijln - ¢, (89)
167 Ho 2 Ak

and we obtain

Vi) = VEI: + AV
= Valo, 1) + AVi(e, ) , (90)

where

AV (o) 1= — M) <1n (My(0)) /Fn 1) |

167> 1 2

5The constant —1 /2 is scheme-dependent and does not affect our argument here.
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The running of quartic coupling is fixed by the p-independence of V' and becomes the same
as in Eq. (83): The ¢* term is not affected by In Fi because F = 1 + O(g&z).
To minimize Eq. (91), the renormalization scale is chosen as
M,
H T

This result reproduces the prescription I in the sense of Eq. (53) for Fy = Fy = 1.

(92)

To summarize, we have started from the measure (58), and computed the one-loop cor-
rection (68) in each frame. We have derived the renormalization scales that reproduce both
prescriptions from the same effective potential which is defined in the Jordan frame. Ac-
tually the change of path measure (61) introduces a trace anomaly in addition to Eq. (63),
but it is taken into account as a form of the logarithmic ultraviolet cutoff dependence in
Eq. (68).

3.5 The difference of the prescriptions

In this subsection, we clarify how the difference of the prescriptions in Eq. (53) arises in
the ordinary context. And then we will show that the difference can be absorbed into
the choice from infinitely many possibilities of the coefficients of higher dimensional terms
in the tree-level potential. We also use the counterterm formalism in this subsection and
assume the each finite term in potential are analytic around ¢ = 0.

To come to the point, the difference between prescriptions I and II comes from that of
the subtractions of logarithmic divergence in Egs. (80) and (88):

M3 A3
g Tlos T g2 A2 (93)
Using Eq. (55), it becomes
M Epyft o
g T Mlog = g2 AR T g 2 (94)

Note that the difference (94) is analytic around ¢ = 0 and that it has only higher order
terms with n > 6. This difference corresponds to the finite renormalization of Vg, as we
will see below.

Let us determine the form of renormalized potential. The renormalized potential Vg in
Eq. (84) or (90),

Velo= Y Al 1o (9)

n: even, n > 0
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can take arbitrary form in theory. To reproduce the ordinary Higgs inflation [10], the
infinite number of bare couplings are tuned so that all the couplings A,z () with n # 4
are suppressed at p~ M as mentioned:

Ve, )]y ar = Aar () ¢ (96)

Substituting Eq. (96) into Eqs. (84) and (90), we obtain the Higgs potential in the pre-
scriptions II and I in the ordinary context, respectively:

Mj M2
Vi = Ar() o' = 75 (m - 5) , (97)
@ 1%
Mj M3F, 1
V= At - 2 (m 2 2, (98)
167 i 2

Actually, we can obtain the potential of the form of V' in Eq. (98) even when we employ

M in Eq. (80). This is the case if we choose the following form of the

tree-level potential V in Eq. (84),

the counter term V

4

+ In Fr(y), (99)

Vel ) = Aan(p) o + P

167

instead of the form (96). Note that the second term in the right-hand side of Eq. (99)
modifies only the higher dimensional terms of ¢" for n > 6. By assuming the proper tree-
level potentials (96) or (99), we may obtain the forms (97) or (98) from the same counter
term Ve in Eq. (80).

There are infinitely many possibilities for the tree-level potential unless we fix the
underlying ultraviolet-finite theory. Therefore there is no necessity to suppose one of the
two tree-level potential as the proper one if we consider only the low-energy effective field
theory.

In conclusion, for a given renormalized tree-level action, the difference of the prescrip-
tions (53) can be understood as that of the logarithmic counter terms (94). In other words,
the different counter terms (80) and (88) lead to the different scales (86) and (92) that
minimize the radiative corrections.

3.6 Required value of coupling for each prescription

Finally, we review the required coupling size by each case of the prescriptions. Let us
consider more realistic running of the quartic coupling in the SM:

Vom = Mr(p) ¢ + AVr(p, 1) (100)
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where AV is the finite correction (85) or (91) in the counterterm formalism. In the SM,
the beta-function of Higgs self-coupling

d
= A
Bir din 4R

(101)

changes its sign from negative to positive around the scale p,,;, ~ 10" GeV (the SM criti-
cality). Therefore we may approximate the coupling as [23, 24|

a )2, (102)

min

Ar(p) = iR+ bag (ln

where

b4R ~

0.1
-5 = 5x107° (103)

(167°)

is computed within the SM. The negative B4y for p < i, is dominated by top-quark loop,
while the positive 8,r for v > pu;, by the U(1),. and SU(2), gauge-boson loops.

The contribution of top-quark loop comes from its mass My = ypFy/Fy = yp, where
we assume Fy = Fy = 1. In the prescription I in the sense of Eq. (53) (in other words, in
Eq. (98) with the tree-level potential (96)), we get the constant p in the large ¢ limit,

M,
My M

MR T VE

and the effective quartic coupling /\4R(/L)|HN My//Fr stops running for large ¢ [22]."" This

(104)

mechanism makes the potential even flatter. Combining with the SM criticality, it can earn
a sufficiently large e-folding number for smaller £ ~ 10 [23, 43, 44, 24]. On the other hand,
in the prescription II needs larger coupling & ~ 10 [23, 24] even under the SM criticality
because Ayr (i), o, does not stop running.

3.7 Various Higgs-inflation models

As we have seen, it is artificial to limit the prescriptions to these two and there is no
reason we must choose one at the moment. Moreover even if we take the simple form of
the tree-level potential (96) in Eq. (84) or (90), we still have freedom to choose any form
of Fx(¢)s. Actually, we have found that we may obtain the desirable potential even in
prescription II in ordinary context when there are nonminimal couplings between ¢ and
the gauge kinetic term. In this section, we show such inflation model and other possible
inflation mechanisms using nonminimal couplings.

TIf Py = 1+ &2 /M? and Fy = 1 4 £49° /M?, we obtain

M; &y v
~Y
SV - Ve T

instead of Eq. (104).
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3.7.1 Flattened Higgs potential by kinetic function

In Sec. 3.6, we have shown the mechanism that the top-quark loop contribution leads to
the flat potential. Here we show that the contribution from the gauge-boson loop can
similarly make the flat potential.

Let us consider the Lagrangian of the simplified Higgs-gauge model:

Fy(p)
4g2

M3 1 ,
L= TPFR“O) R — 5 (Ffbg“ a/ﬁpaz/(p + A,LLAI/<102) - V(QD) -

F,, F" (105)

where g is the gauge coupling and F, is the coefficient function of ¢ in front of the gauge
kinetic term. Then the contribution of the gauge-boson loop is through [24]

|F.
MENE = go ?‘I’ (106)
g

When we raise the scale beyond p > g5, in the SM, the top Yukawa coupling becomes
smaller and smaller. To the first approximation, the running at g > p,,;, is governed by
the gauge-boson loop. In the prescription II in the ordinary context (Eq. (97) with the
tree-level potential (96)), the effective potential becomes

Vot = Aan(i) 6] _pqpmse - (107)

When we assume that Fy ~ 1, we obtain in the large-p limit,

Mﬁauge: ge . N g M.
Ji+es Ve

This can be used in the prescription II in the ordinary context as an alternative mechanism

(108)

to Eq. (104) in order to stop the running of quartic coupling Asr(11)], - ganse for large .
The ¢-dependent mass (108) takes the same form as the prescription I in Eq. (53) and the
analysis becomes almost identical to those in Ref. [24] if we set {, = £z and M = Mp.

On the other hand, when the top Yukawa contribution is non-negligible in the ac-
tion (44), one may further introduce e.g.

Fu(o) = 1]142 RPN < S < 109
w(p) = TR =t At st (109)

together with Iy = 1, which stops running due to the top contribution too:

yp Yy
M; = — M.
! o V 28y
1 + 26\11 M2

(110)
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3.7.2 Ordinary Higgs inflation in prescription II

In Ref. [24], the authors have spelled out the result from prescriptions I and II in the
ordinary context. In Sec. 3.6 we mentioned that the former prescription I allows smaller
£ = £RM§/M2 ~ 10 because the coupling stops running for ¢ > M /\/Ex:

e M
TR Ver

On the other hand, though the prescription II needs € ~ 10%, it can have a chaotic inflation

(111)

since the effectual potential (39) becomes

M2
U ~ const. + O 2P o, (112)
48¢
due to
6.M,
g YoM (13)
¥

for large &p.

3.7.3 Chaotic-like inflation by large &4

When we have large &3 only, in particular with F'r = 1, we may get
®
— -—. 114
g 13 Vi (114)

We note in this case U =V = %gp‘l. Therefore the effectual potential (39) becomes
AM?
U = const. + ©°. (115)
2o

This can cause a chaotic inflation when A/ < 1 [55].
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4 Lower bound on tensor-to-scalar ratio

In this section, we consider a Higgs-inflation model that the inflation occurred at higher
energy scale than the cutoff of low-energy effective theory and calculate the lower bound
on the tensor-to-scalar ratio . To obtain the lower bound on 7, we do not need the details
of the model except for the mechanism is the slow-rolling: the nonminimal Higgs inflation
is also included in our consideration.

Dark matter is one of unsolved big problem in cosmology. In this thesis we do not
investigate what it is, but take a Higgs-portal Z, scalar field as one of the simplest real-
izations. We calculate the lower bound on r and the upper bound on dark-matter mass
for the model. Later we also introduce the heavy right-handed neutrinos via the seesaw
mechanism [56, 57] and perform the same analysis. These analyses is also available in the
author’s work [58].

4.1 Inflation at higher scale than cutoff

In this subsection, we show how to obtain the lower bound on r, extending the analysis in
Ref. [59].

For the slow-roll inflation, the effect of nonminimal coupling on the Higgs potential
needs to be large. Let us consider Fg(p) = 1 + £p*/Mp in Eq. (21) for example. The
Einstein-frame potential (26) can be approximated to a constant at £p®/Mp > 1. In other
words, the low-energy effective theory such as the SM is valid only below the effective
Planck scale ~ Mp/+/€.

Not limited in such case, a low-energy effective theory has some cutoff scale'® A in
general. In our analysis, we assume that at ¢ < A, there is a valid renormalizable low-
energy effective field theory which we defined later. At ¢ > A, we assume that a field
direction extrapolated from the low-energy Higgs field has led to slow-roll inflation there.
We do not make any other assumptions on the theory at ¢ > A.

We do not predict precisely the cosmological parameters such as the spectral index n,
and the tensor-to-scalar ratio r in this case because the inflaton potential above A is not
specified. However, we may still put a lower bound on r from the highest value of the
Higgs potential in the region ¢ < A, as we will describe.

In the slow-roll inflation, the observable amplitude of the scalar perturbation A, and r
are written in terms of the potential slow-roll parameter €, and the potential height Vi,
by using Egs. (4) and (18):

1 1 ‘/inf

=~ 116
2472 ey My (116)

s

" Note that this “cutoff” scale A is conceptually different from the cutoffs in Sec. 3, which denotes the
upper limit of the momentum integral.
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This can be derived from Egs. (4) and (11). Eliminating €, by using Eq. (20), we obtain
the relation between r and Vi:

2 1 ‘/;nf

(117)
This is a simple linear relation because the value of A, is fixed by the CMB observation.

A . . .
Effective Higgs potential Slow-roll

......... ———— =0 __.

Vvinf

Higgs field value

Figure 1: Schematic figure for the Higgs field as an inflaton

Now we consider the slow-roll inflation occurred by a field direction extrapolated from
the low-energy Higgs field" above a scale A; see Fig. 1. Above A, the Higgs potential
becomes flat by some mechanism such as nonminimal couplings, string theory, etc. After
the end of inflation, the slow-roll condition on the Higgs field is violated and the field
continues to roll on the potential down to the electroweak (EW) scale. In order not to
prevent the rolling down to the EW scale, the maximum value of the effective potential in

the region ¢ < A, which we define V,,.<)\, must be smaller than the potential height during
the inflation Vi

pen < Vint. (118)
From Egs. (117) and (118),
2 1 V2
T > Phound i= —5 —— ——p . 119
b d 37]'2 As Mé ( )

Thus, we obtain the lower bound on r from the value of VX% only.? This can be evaluated

from the renormalization group equations (RGEs) for the low-energy effective theory. Note
that even if there exists a local maximum with its height smaller than V, it does not
prevent the rolling down because the slow-roll condition is already violated.**

YHereafter we call the field direction “Higgs field” for simplicity.

2OWe assume that the reheating temperature is lower than Vfgx. We also assume that the decay rate
of Higgs boson to top quark (or vice versa) is sufficiently small.

25 be exact, we should consider additionally the thermal effect and the friction; see the discussion in

Sec. 5.
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Actually, this bound depends strongly on A. In our analysis we take A = 10" GeV for
the reasons below.

e The original nonminimal Higgs-inflation model requires a large nonminimal coupling
£ ~10* between the Higgs-squared®® ®'® and the Ricci scalar R to realize the ob-
served r and n, [9, 10]. However, such large coupling requires a new physics above
the scale ~ Mp /€ for perturbative unitarity [60, 61, 62, 63]. It is also reported that
the large nonminimal coupling in Higgs inflation might have problems: generation
of the higher derivative terms [64] and violation of the preheating dynamics [65].
However, the nonminimal coupling can be reduced to (9(102) if we consider the SM
criticality [23, 24]. In this case, the energy scale where the inflation occurred becomes
high. Then the effective Planck scale ~ Mp/+1/€ becomes 0(1017) GeV.

e In our analysis, we do not make any assumptions on the high-energy theory except
for the slow-roll inflation. Therefore we may consider other models instead of the
nonminimal model. For example, it is reported that the string theory may lead to
the inflation without the large nonminimal coupling [59, 66]. The typical string scale
is 0(1017) GeV, and the low-energy effective theory is valid only below it.

If we want to know the lower bound on the tensor-to-scalar ratio for another cutoff scale,
we just rescale the results we have calculated; see Sec. 4.4.2 for the details.

We cannot calculate the spectral index n, because we do not specify the mechanism of
inflation. However, if the inflation has occurred at ¢ > A, we can obtain the lower bound
on r for any inflation model.

When all the other nonminimal couplings are not particularly large as well, £y < 107,
the renormalizable low-energy effective field theory is reliable up to 10'” GeV. Hereafter,
we take A = 10" GeV.

4.2 Z, Higgs-portal scalar model

From this section, we will take a more concrete model, Higgs-portal Z, scalar model, for
the numerical calculation of the bounds. In this model, the Z, scalar singlet S is considered
as the dark matter. Below the scale A, the matter Lagrangian is

As

1 1
‘Cmatter = ‘cSM + §(aus)2 - émg‘S& - Al

St ngcIDT@. (120)

Hereafter we use ¢ = Vv 20'®. The dark-matter mass is given by

2
RU

mby = M + - (121)

*In the terms of w0, o=V 207 P.
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where v o~ 246 GeV is the Higgs vacuum expectation value (VEV).

We assume that S does not acquire a Planck scale VEV and thus does not affect the
inflation; the inflation is driven by the Higgs field, but we do not fix the details of potential
shape. We also assume that mg is small and neglect it. In our analysis we do not consider
the possibility that mpy; is as lighter as the Higgs mass. In the non-resonant region, the
relic density of the dark matter constrains k as [67, 68]

logyo % ~ —3.63 + 1.04log,, % (122)

In the region of our interest, 0.1 < k£ < 0.5, Eq. (122) becomes roughly mpy ~ k< x 3.2 TeV.

mpy 1S constrained by the spin-independent cross section for the dark-matter—nucleon
scattering [67, 68]:

2 22 2 2
K fN myMpm my,
g g
St A7 (mn + mDM) m%[mQDM
~ 6.5 x 107 (mpy)*”® cm? (123)

where fy = % + g > g=ud.s Jq~ 0-345 is the overall coupling, m,, ~940 MeV is the nucleon
mass, and my = 125.09 GeV is the Higgs mass. We use Eq. (122) in the last step. The
dependency on mpy; is small on comparison og; with the observational data. The current
constraints of dark-matter mass by the XENONIT experiment [69] for Eq. (123) are shown
in Fig. 2. The constraints from other experiments are shown in Table. 1.

Experiment | Lower bound on mpy; | Corresponding value of
LUX [71] | ~720GeV ~0.22
XENONIT [69] | ~870GeV ~0.27
PandaX-II [70] | ~1TeV ~0.31

Table 1: The lower bounds on dark-matter mass (90% C.L.).

We may employ the nonminimal coupling between Higgs and Ricci scalar to cause
the inflation at the scale above A. In our analysis, its effect on the low-energy physics is
ignored because we assume the nonminimal couplings are small: For example, a nonminimal

coupling term &p*/Mp < O(1) for &€ < (’)(102) at ¢ < A~10"" GeV.

4.3 Method of analysis

Thing to do to obtain the lower bound on r is to calculate the maximum value of the
Higgs effective potential V,,,. Then the parameters Ag and x affects the result through
the renormalization group (RG) running of the Higgs quartic coupling, while mg does not.
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Figure 2: Fig. 5(a) in Ref. [70]. The upper side of the curves is excluded for 90% C.L. We
superpose the purple line which stands for Eq. (123). The dashed vertical lines are mere
marks to see the mass constraint.

It is more practical that we estimate the top-quark mass from the observational relation
between mpy; (equivalently k) and the bound on r, than estimating mpy; by observing the
top-quark mass and 7y,,,9- Although the top-quark mass has not been precisely deter-
mined, for the numerical calculation we need to employ the pole mass of the top quark m,
as an input parameter to solve the RGEs. The most precise knowledge about the top-quark
mass is the Monte-Carlo mass m} which is obtained by Monte Carlo simulation of the

whole process [72],

my'© = 173.140.6 GeV. (124)

The pole mass of the top quark m, which is the pole position of the propagator is also
derived from the cross-section measurements [72]

m, = 173.5+ 1.1 GeV. (125)

We may not use simply the Monte-Carlo mass because it is not a parameter of theory,

and the relation between m)" ¢ and m, is still unclear.”® Hereafter we analyze in two
conservative ranges including a central value of mass:
171 GeV < m,; <176 GeV, (126)
169 GeV < m, < 178 GeV, (127)

#There remains uncertainty at least of 1 GeV; see e.g. Ref. [73] for a recent review.
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which roughly corresponds to 20 and 40 ranges, respectively.

In summary, the input parameters for RGEs are Ag, k, and the pole mass of top
quark m,. Here and hereafter the couplings are given at the scale ;1 = m, unless otherwise
stated. We analyze the two-loop RGEs and neglect the wave-function renormalization
['(y) given in Eq. (146) for numerical computation. We determine V<, from the obtained
running couplings. The largest possible deviation due to I'(¢) is also estimated by setting
@ = A. The details of calculation are summarized in Appendix A.

To investigate the most conservative lower bound on r, we exclude the parameter region
in which V<, becomes negative, namely the region that ;;X < 0 in our results. This non-
negative condition is the only condition to determine the lowest value of V25, Practically,
we take the false position method to exclude these regions.

The lower bound on r may slightly be affected when we relax the non-negative condition
on the Higgs potential; e.g. taking into account the thermal correction or replacing it with
the vacuum meta-stability. However, the bound comes from the maximum value of effective
Higgs potential, rather than the minimum. Thus the lower bound on r would be reduced
only by a factor of few even if we allow the negative value of the potential minimum of the
order of the height of the potential maximum. Of course we should make sure that finally
the electroweak vacuum is chosen in the late time in such a case.

We also exclude the parameter region in which the perturbativity of couplings is vio-
lated. For the perturbativity, we demand that all the couplings are smaller than /47 ~ 3.5
in all the region ¢ < A. This condition corresponds to the requirement for x to be x < 0.5,

equivalently

for Ag = 0.2* We shade in the region where perturbativity is violated in the result plots
which will be shown. In this paper, we restrict to the case Ag = 0 except for Fig. 3 (b) in
which we instead take Ag = 0.6 for comparison. We will see in Fig. 3 (b) that the large A\g
tends to narrower the allowed region. Therefore, it is more conservative to set Ag = 0.
From next subsection, we will show plots of allowed regions in r-mpy; plane obtained

by calculating V;X{ as a function of x for each fixed set of (Ag,m;) and converting x to

4.4 Analysis without heavy right-handed neutrinos

4.4.1 Result plots

We plot the allowed region in r-mpy plane for Ag = 0 in Fig. 3 (a). The region above
each line is only allowed. A solid and dashed lines denote the results without and with

#Gee Fig. 1 in Ref. [68] for the allowed region in the Ag—+ plane. This upper bound on & (or equivalently
mpwm) depends on the value Ag, while its dependency on A is small; see Sec. 4.4.2.
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Figure 3: (a) Allowed regions for Ag = 0. The region above each rainbow-colored line
is allowed for a given m,. Each vertical line denotes the lower bound on mpy; from the
positivity of potential: V,<, > 0. In the region mpy 2 1.6 TeV, the perturbativity is
violated. See Fig. 11 for the corresponding plot with right-handed neutrinos.

(b) Excluded regions for Ag = 0 (below black line) and Ag = 0.6 (below gray line). The
vertical black (gray) shade in mpy 2 1.6 GeV (mpy 2 1.2 TeV) is excluded by the per-
turbativity for Ag = 0 (0.6). The blue line denotes r = 0.09 and its the upper side is
excluded [6]. The dashed vertical lines denote the lower bounds on dark matter mass,
mpy = 720 GeV from LUX [71] (magenta), mpy = 870 GeV from XENONIT [69] (black)
and mpy = 1TeV from PandaX-IT [70] (red). The left-hand side of each dash line has

been excluded.
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the effects of ', respectively. The rainbow-colored lines correspond to each m, value. The
black line is the envelope of the rainbow-colored lines and gives the lower bound on r for
each mpy; when one varies m,. To understand the form of envelope, we need to know how
the Higgs potential changes its shape with parameters, see Sec. 4.6. In Fig. 3 (b), We plot
the excluded regions for all value of m; when Ag = 0 and Ag = 0.6. The larger Ag reduces
the allowed range of r and k, as mentioned.

From Fig. 3, the Planck constraint r» < 0.09 [6] puts bounds on m, and mpy:

171 GeV < m; < 175 GeV, (129)

for A¢ = 0. This bound on mpy is stricter than the perturbativity bound (128). The
lower bound on r is determined by the dark-matter mass constraint in Table. 1. If we
take the lower bound from the LUX experiment [71], mpy = 720 GeV, we obtain a lower
bound: r 2 0.0025. For the lower bound on mpy by the XENONIT experiment [69],
mpu 2 870 GeV, r 2 0.016 is obtained. If we take the strictest bound by the PandaX-II
experiment [70], mpy 2 1 TeV, we obtain the lower bound on tensor-to-scalar ratio

r > 0.040 (131)

and the bound on top-quark mass
174 GeV < m; < 175 GeV. (132)
If near-future experiments such as the POLARBEAR-2 [74], LiteBIRD [75] and CORE [76]

find new constraints or concrete value of dark-matter mass, this lower-bound on r may
be stricter, or the model breaks down because the allowed region of dark-matter mass
disappears. This model also can be tested by the search of r directly. From Fig. 3 (b) we
see that the cases of A\g = 0.6 has been excluded.

4.4.2 Dependency on the cutoff scale

From the reasons listed in Sec. 4.1, we believe that the cutoff scale is A ~ 10" GeV if it
exists, and we have taken A = 10'" GeV in our analysis. However, we show an example
result for another value of A because the analysis is sensitive to the cutoff A. Let us call
a different cutoff scale A’. Naively, the maximum value of potential for the theory with A’
is estimated as

AN
VI (K) max (133)

because V o ¢* at high-energy scales.
We show the result for the case of A’ = 5 x 10'° GeV in Fig. 4.
From Fig. 4, we find the following facts.
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Figure 4: The lower bound on the tensor-to-scalar ratio for A\g = 0, A" = 5x 10'® GeV
(black) and Ag = 0, A = 10'" GeV (gray). Here we restrict the top-quark mass range as
the 40 (Eq. (127)). The bend at mpy = 1.5 TeV is due to the upper limit m, = 178 GeV.

e The tensor-to-scalar ratio r is roughly rescaled by (up to) (A//A)4 = 1/16 as we
estimated.

e There exists the upper bound on mp,; around 1.6 TeV due to the Landau pole. Its
dependence on the cutoff is small and the bound does not exceed to 1.7 TeV (k ~ 0.53)
even if the cutoff is 5 x 10'® GeV.?

e mpy where 7 takes its lowest value does not strongly changed when we change A.

In particular, it is significant that this model is excluded without any other assumptions
if we observe mpy > 1.7 GeV.

4.5 Analysis with right-handed neutrinos
4.5.1 Seesaw mechanism

In the SM, the neutrinos are massless particle. However, the neutrino oscillation has been
experimentally discovered [77, 78] and now we consider that the neutrinos have mass.

% The usual Higgs inflation model leads to the effective cutoff scale A ~ 10'® GeV. Even in that case the
upper bound on mpy; does not move. This upper bound on mpy; hardly depends on even the right-handed
neutrino mass, as we will see in Sec. 4.5.

26 This upper limit of dark-matter mass is mainly fixed by the value that we decide as the Landau pole.
We take the threshold as v/47 in order to guarantee the perturbativity. If we take smaller threshold, the
upper bound on dark-matter mass becomes more severe.
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As the mechanism to make the SM neutrinos have their masses, we adopt the seesaw
mechanism [56, 57] and introduce the heavy right-handed neutrinos:

1 _
Ly = Ty O — 5 MyThvp - <y,,L(I>T1/R v h.c.) (134)

where we omit the indices of the generations. Because these right-handed neutrinos may
modify the shape of effective Higgs potential, we analyze their loop corrections and calculate
the lower bound on r.

After the spontaneous symmetry breaking, the Yukawa term in Eq. (134) acquire the
Dirac mass mp = 4,v/+v/2. Then the mass term becomes

0 m vy
(7 o) ’ "] e (135)
T
mp MR VR

N —

and the neutrino-mass matrix m, turns to

1
m, ~ —mDﬁmg. (136)
R

The observational constraints on the left-handed neutrino mass in the SM are following:

e The upper bound on the sum of masses. E.g. the 20 upper bound from the TT-only
analysis is ) . m; < 0.715eV, while that from the TT+lensing+ext gives > . m; <

0.234eV [6]. In this thesis, we assume roughly > . m; < 0.3eV.
e The mass-squared differences m3 — mi = (7.377074) x 107°eV? and m3 — (m3 +

m3)/2 = (2.52570930) x 10 7% eV? (both are 1o C.L.) [79].

Here we used the notation of Ref. [79] for the mass eigenstates of left-handed neutrinos m;.
Using the constraints of the mass-squared differences, we find the three typical patterns of
mass relations:

1. Normal Hierarchy (NH, m, the lightest),
2. Inverted Hierarchy (IH, ms the lightest),
3. Degenerate (all masses comparable),

where m; (i = 1,2,3) is the neutrino mass of mass eigenstate. In hierarchycal cases, the
mass pattern is most hierarchical when the lightest one is 0. In Degenerate case, any
neutrino mass do not go beyond ~0.1eV from the upper bound on the sum of neutrino
masses.
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my [eV] my [eV] ms [eV] Pattern

1. Normal Hierarchy | 0 (set) 8.6x107° 51x107% my < my < ms
2. Inverted Hierarchy | 5.0 x 1072 5.0x 1072 0 (set)  mq =~ my > ms
3. Degenerate (NO) | 0.1 (set) 1.0x107" 1.1x107" my =~ my ~ ms

3. Degenerate (I0) | 1.1x 107" 1.1x 107" 0.1 (set)  mq = my =~ my

Table 2: Neutrino masses obtained by using the absolute values of mass-squared differences
in Ref. [79].

In Table 2, we show the mass pattern by setting the lightest one to be massless for the
cases of Normal/Inverted Hierarchy, and to be 0.1eV for Degenerate. For the three cases,
we approximate the heaviest n, neutrinos as having a common mass m,, and the remaining
3 —n,, ones as being massless as shown in Table 3.2

Number of effective v Common mass m,, [eV]
1. Normal Hierarchy n, =1 51x1072
2. Inverted Hierarchy n, =2 5.0x 1072
3. Degenerate n, =3 1.1x107"

Table 3: Common neutrino mass that we use as input.

The existence of heavy right-handed neutrino adds the right-handed neutrino mass My ;
(i = 1,2,3) to the input parameters of RGEs. We assume that Mg s are identical,
Mpg,; = My, for simplicity. Then the Yukawa coupling of neutrino is given by the see-
saw mechanism:

Y, =/ 2m, Mg /v. (137)

We show the p-functions in this case in Appendix A. Although we assume the mass of the
heaviest left-handed neutrino as Table 3 in our analysis, there is no need to solve RGEs for
other value of m,, again. The reason is that m, and My have the one-to-one correspondence
(137): If the observed constraint on m, changes, we can obtain the corresponding My
constraint just rescaling the result.

2"1f we want to consider a different m,,, we may simply rescale the right-handed neutrino mass Mg in
our results, since m, oc My ! by the seesaw mechanism.
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Note that the right-handed neutrinos do not affect the dark-matter density because
they decay to the Higgs boson and the left-handed neutrinos; we consider the dark matter
consists of the Higgs-portal scalar S only. We also ignore the effect by the leptogenesis by
the right-handed neutrinos.

4.5.2 Lower bound on r for each My

Normal Hierarchy We show the results for Normal Hierarchy, n,, = 1, in Fig. 5. The
right-handed neutrino mass My is fixed in each panel: 10**, 10", 10" (~ 2.5 1014),
10" (~ 3.2 x 10"), 10" (~ 4.0 x 10"), and 10'*" (~ 5.0 x 10"*) in units of GeV. The
bold line in each panel is the envelope of the m,-fixed rainbow-colored lines, and gives the
lower bound on r for the fixed My. Note that the thick line is obtained by tuning one
parameter m, for fixed My, and its minimum corresponds to the two parameter tuning of
m,; and mpy;. The color of envelope in each panel corresponds to the color of Fig. 6, the
plots for more general values of Mpy; we will explain the details later.

From Fig. 5, for a given lower bound on m,, we see that the larger My is, the smaller
the allowed range of mpy; becomes. This is because the right-handed neutrinos and the top
quark have a similar effect on the Higgs potential: They drives the Higgs quartic coupling
smaller through the RG running towards high scales, and therefore they tend to make
the Higgs potential negative if they both are heavy. In this case, the vacuum stability is
violated before the breakdown of perturbativity.

We also see that the value of mpy; at the minimum point of the envelope becomes
larger as My becomes larger: For example, the minimum points are at mpy; ~ 600 GeV in
the case of My = 10" GeV, and mpy; ~870GeV in the case of Mz = 10" GeV, etc. In
particular, it goes beyond the perturbativity bound when My = 10**" GeV. It indicates
that we have a stringent lower bound, » > 1072, with the heavy right-handed neutrino
mass Mg > 5x 10" GeV. On the other hand, the result with My < 10" GeV is almost
the same as the case without right-handed neutrinos shown in Fig. 3 (a).

In Fig. 6, we plot the theoretical lower bounds on r for various My when we allow
the top-quark pole mass within 171 GeV < m, < 176 GeV and 169 GeV < m, < 178 GeV.
Each colored line corresponds to the envelope denoted by the thick colored line in Fig. 5.
We also give the envelope of these lines, which gives the allowed region for varying m, and
M.

Practically, it takes high computational cost to obtain the lower bound on r (denoted
by the black line) for all parameter space. Therefore we have plotted the approximated
envelope as follows:

1. Each Mg-fixed line has a minimum. Make an interpolating function which linearly
joins all these minimum points.
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Figure 5: Allowed region for Normal Hierarchy with Ag = 0.
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Figure 6: The allowed region for Normal Hierarchy.

(a) The lower bound on r for each fixed My (colored) and their envelope (black) with
Ag = 0 and 171 GeV < m, < 176 GeV. The orange line is for My = 10"* GeV. The vertical
colored line comes from the lower end, m, > 171 GeV.

(b) The same plot for Ag = 0 and 169 GeV < m, < 178 GeV.
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2. Bach m,-fixed line®™ has a minimum. Make another interpolating function which
linearly joins all these minimum points.

3. Make a function that chooses the smaller value of these two interpolating functions
for each mpy;.

4. In large mpy; region, we replace the interpolated bound with the lower bound deter-
mined by the maximal m,.

We note that these interpolating functions may be wrong in the extrapolated regions
mpym < 600 GeV and mpy; > 1600 GeV because they evaluated only for 600 GeV < mpy <
1600 GeV. However, this is insignificant because these regions are already excluded by the
direct dark-matter search and by the perturbativity. We use this procedure hereafter to
obtain black envelopes, but the last step is not taken in Sec. 4.5.3.

We explain the envelope denoted by the black line in Fig. 6 (a):

e The allowed region expand to
r>107° (138)

from the n, = 0 case in Eq. (131). This is because the loop corrections of heavy

max

right-handed neutrinos reduce V,,<i.

e In the region near the envelope denoted by the black line, the two input parameters
m,; and My are simultaneously tuned for a given mpy to minimize the potential
height VZ%.

e The lower bound on r increases rapidly in the region mpy = 1.3TeV due to the
upper end of the parameter m, < 176 GeV.

Actually, to realize the lowest bound r ~ 107°, the three-parameter tuning for m,, My, and
mpu s necessary. Some logic demanding the fine tuning such as MPP might realize these
parameters.

In Fig. 6 (b), we plot for a wider range of the top-quark mass (127). The lower bound
on r denoted by the black line increases in the region mpy 2 1.3TeV because of the
difference of potential shapes; it will be explained in Sec. 4.6. The increasing in the region
mpm =, 1.5 TeV is due to the upper end of the parameter m, < 178 GeV.

Let us see the implications of future discoveries. We will probably discover mpy; or r
in near future earlier than the discovery of m, or My. Here, we fit My and m, from the

: 29
future observation of mpy); and r.

% The plot will be shown in Sec. 4.5.3.
291nstead7 if one narrow down the error on the top pole mass m, e.g. at the High Luminosity LHC [80],
one may use m; and mpy; as input parameters to predict Myi and r.

45



o If we discover mpy = 1TeV (k ~ 0.31) and r = 0.01, the right-handed neutrino
mass is predicted to be in the narrow range 10" GeV < My < 10"°GeV and the
top-quark mass is constrained: m, < 174 GeV.

o If we discover mpy = 1.5 TeV (k ~ 0.47) and r = 0.01, we obtain the theoretical lower
bound My 2, 10"° GeV, while the top-quark mass is less constrained: 171 GeV <

m; < 178 GeV. However, My and m, are strongly correlated in this case. Therefore
if one of them is fixed, the other is precisely predicted.

Mpwm T my MR

1TeV  0.01 m; < 174 GeV 10" GeV < My < 10M°GeV
1TeV  0.001 | 173GeV < m, < 174GeV 10" GeV < My < 102 GeV
1.5TeV 0.01 | 170GeV <m, < 178GeV  10"°GeV < My <108 GeV
1.5TeV  0.001 m, ~ 177.8 GeV My ~ 10" GeV

Table 4: Constraints possibly obtained from future observations of mpy; and r for Normal
Hierarchy.

See Table 4 for other pairs of mpy and r. Generically the heavy dark-matter mass
tends to predict the heavy top-quark mass and Mp. The smaller the r is, the tighter the
range of m,. Especially, if we discover mpy = 1.5TeV and r = 0.001, m, and My are
accurately predicted.

We can predict 4., O mpy 10 some extent by considering typical input parameters.
When we choose m; = 173 GeV and My = 10* GeV, we obtain the bound mypy ~ 860 GeV-
970 GeV for r < 0.09.

Inverted Hierarchy We show the results for the case of Inverted Hierarchy (n, = 2) in
Figs. 7 and 8.

The right-handed neutrinos lighter than ~ 10" GeV do not affect the analysis, similarly
as in the case of Normal Hierarchy. However, the upper bound on My, is slightly different:
My < 107 GeV.

Table 5 is the summary of prediction from future discoveries of the dark matter and
r. Although we cannot obtain the global narrow bounds on My and m,, they are highly
correlated as in the case of Normal Hierarchy if we discover mpy = 1.5 TeV and r = 0.01.
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Figure 7: Allowed region for Inverted Hierarchy with Ag = 0.
mMpm r my MR
13.9 < 14.5
1TeV  0.01 m; < 174 GeV 10777 GeV S My < 1077 GeV

1TeV  0.001 | 173GeV < m, < 174GeV 107 GeV < My < 102 GeV
1.5TeV  0.01 m; < 178 GeV 10" GeV < My < 10M7 GeV
1.5TeV  0.001 | 177 GeV < m; < 178 GeV  10"* GeV < My < 107 GeV

Table 5: Constraints possibly obtained from future observations of mpy; and r for Inverted
Hierarchy.
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Figure 8: The allowed region for Inverted Hierarchy.

(a) The lower bound on r for each fixed My (colored) and their envelope (black) with
Ag = 0 and 171 GeV < m, < 176 GeV. The orange line is for My = 10"* GeV. The vertical
colored line comes from the lower end, m, > 171 GeV.

(b) The same plot for Ag = 0 and 169 GeV < m, < 178 GeV.
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Figure 9: Allowed region for Degenerate case with Ag = 0.
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Figure 10: The allowed region for Degenerate case.
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(a) The lower bound on r for each fixed My (colored) and their envelope (black) with
Ag = 0 and 171 GeV < m, < 176 GeV. The orange line is for My = 10"* GeV. The vertical
colored line comes from the lower end, m, > 171 GeV.

(b) The same plot for Ag = 0 and 169 GeV < m, < 178 GeV.
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Degenerate case We show the results for Degenerated case (n, = 3) in Fig. 9.

The right-handed neutrinos lighter than ~ 10"* GeV do not affect the analysis, similarly
as other cases. On the other hand, the upper bound on Mg becomes smaller than in other
cases: My <102 GeV ~ 1.6 x 10" GeV.

We summarize implications of future discoveries mpy; and r in Table 6. The right-
handed neutrino mass tend to be lighter than hierarchical cases due to the heavy m,,.
However, the prediction of m, is similar to the other cases.

MpMm T my My

1TeV  0.01 m; < 174 GeV 1072 GeV < My < 10" GeV
1TeV  0.001 | 173GeV <m, < 174GeV  10"° GeV < My < 10"* GeV
1.5TeV  0.01 m; < 178 GeV 10" GeV < My <102 GeV
1.5TeV  0.001 | 176 GeV < m, < 178 GeV Mg ~ 10" GeV

Table 6: Constraints obtained for degenerate case.
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4.5.3 Lower bound on r for each m,

In this section, let us temporarily forgot the top-quark-mass ranges Eqs. (126) and (127).
In Fig. 11, we show the lower bound on r for each fixed m, with Mg being varied. The black
envelope lines in Fig. 11 are identical to the ones in Sec. 4.5.2 except for their right-most
boundary where they follow the m, = 176 GeV (blue) line or 178 GeV (purple) line.

As=0, n,=1 Ag=0, n,=2

m=178 GeV

\
-

S NHRARH

logyor

l m¢=169 GeV

e Excluded

- 600 800 1000 1200 1400 1600
DM Mass [GeV]

600 800 1000 1200 1400 1600
DM Mass [GeV]

As=0, n,=3

m=178 GeV

logor

l m=169 GeV

-° 600 800 1000 1200 1400 1600
DM Mass [GeV]

Figure 11: The lower bound on r for each fixed m, with Ag = 0. See the left of Fig. 3 (a)
for the corresponding plot without right-handed neutrinos.

We see that there is the upper bound on m, for a given mpy; and it hardly depends
on n,. In other words, if any lower bound on m; is given, we obtain the lower bound of
mpy Without any assumptions on the other parameters in the neutrino sector. Also we
see that there is a strong correlation between m, and mpy regardless of n, if r < 107,
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For example, if we discover r = 10™® and mpy; = 1 TeV in the future, m; must be between
173 GeV and 174 GeV.

4.6 The form of envelope by potential shape

In this section, we explain the shape of envelopes denoted by the black or colored-thick
line in the figures.

First, we start with the case without heavy right-handed neutrino (Fig. 3 (a)). In this
case, the effective Higgs potential generally has one local minimum due to the top-quark
loop correction.”® At the minimum point of envelope, the maximum value of the Higgs
potential becomes smallest compared with the one which is obtained by another set of
parameters.

Asew=0, kew=0.18, m;=171.965 GeV
1.5x10%

—

1.0x 108"

5.0x 1080

Potential Height [GeV*

0
0 2x10'%4x10"®6x10'°8x10'® 1x10""
@ [GeV]

Figure 12: The shape of Higgs potential with the values of m, and mpy; (k) that corresponds
to a point near the minimum of the envelope in Fig. 3 (a).

In Fig. 12, we show the shape of potential near this point. At this minimum point, the
height at the local maximum (at ¢ ~ 5 x 10'° GeV in the case of Fig. 12) becomes equal
to the height at ¢ = A. If the local potential minimum (at ¢ ~ 9 x 10'° GeV in the case of
Fig. 12) is moved left, the height at ¢ = A becomes larger; on the other hand if it is moved
right, the height at the local maximum becomes larger. The left curve of the minimum
point of the envelope in Fig. 3 (a) is governed by the local maximum of the potential, while
the right by the value at ¢ = A.

Second we consider the case with right-handed neutrinos. The envelope denoted by
the colored thick line in Figs. 5, 7, and 9 also have the minimal points. Actually there
is one more (hardly visible) discontinuity in each envelope®! because the Higgs potential

3Here we let the word “minimum” also stands for mere a concavity.

31They can be seen a little bit easily in Figs. 6, 8 and 10, where the envelopes are summarized in
a single panel with the same colors. The discontinuity is located, e.g. in the n, = 1 case (Fig. 6),
at (mpa,logor) ~ (1050 GeV, —1.5) for Mz = 10" GeV, (1100GeV,—1.7) for My = 10"*' GeV,
(1150 GeV, —2) for My = 10'*? GeV, and (1220 GeV, —2.6) for My = 10**® GeV.
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Figure 13: Schematic potential shapes. (a) Typical potential shape when its minimum is
at ¢ > A. (b) Typical potential shape when the minimum at larger ¢ gives lower height.
(c) Typical potential shape when the minimum at smaller ¢ gives lower height.

has the second local minimum due to the neutrino in general. The additional minimum is
located at higher scale than the one of top-quark. Thus there are the following three kinds
of potential shapes:

(i) The potential minimum at higher ¢ is located at ¢ > A (Fig. 13 (a)). This corresponds
to the left side of the minimum of each envelope.

(ii) There are two potential minima and the height of the one at larger ¢ is smaller
(Fig. 13 (b)). This corresponds to the region between the minimum and the discon-
tinuity of each envelope.

(iii) There are two potential minima and the height of the one at lower ¢ is smaller
(Fig. 13 (c)). This corresponds to the right side of the discontinuity of each envelope.

From this approach, the black lines in Figs. 6, 8 and 10 are understand as the parametric
lines where the two potential minima are degenerate.

We can see the additional discontinuity from another point of view in Fig. 14. The left
end of each solid rainbow-colored line should touch the black lower-bound line for n, = 0
because there usually corresponds to My — 0 limit in usual. However, they do not touch
the black n, = 0 line for m, = 175 GeV. This is because there arises the two local minima
of the potential as in the case (iii): The minimum at lower ¢ by the top-quark contribution
is tuned to be zero, while the minimum at higher ¢ by the neutrino contribution can reduce
the maximum potential height freely. The gray line in Fig. 14 links the left ends of the
solid rainbow-colored lines for the region m, = 175 GeV, and is the same as the line joining
the discontinuities mentioned above.

Finally, we explain why the envelope in Figs. 6 (b) and 8 (b) (black, lower) is bent in
the large mpy region. At the point where the gray line touches the black envelope, the
potential height of the two degenerate minima becomes zero and the higher one is at ¢ = A.
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Figure 14: The same plot as in Fig. 11. The black n,, = 0 line in Fig. 3 is also superimposed.
The gray line show the location of the discontinuity explained in the text, and links the
left ends of the rainbow-colored lines for m, = 175 GeV.
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On its right side, the case (i) is realized, and the maximum potential height becomes much
larger than the cases (ii) and (iii) with the two minima. At this point, the electroweak
vacuum and these two vacua are all degenerate to (nearly) zero, and the vacuum with
highest ¢ is located at ¢ = A. This point may be interesting in term of the MPP, but we
do not investigate it anymore in this thesis.

4.7 Summary of results

Finally we summarize the results in this section.

We have analyzed the effective Higgs potential of the Higgs-portal Z, scalar model (120).
The current observational constraints on the tensor-to-scalar ratio and the dark-matter
mass are r < 0.09 [6] and mpy; = 1 TeV [70], respectively. We set the cutoff scale A of the
low-energy effective theory as A = 10'" GeV.

First, there is the universal upper bound on mpy; due to the Landau pole:

This bound hardly depends on A and mass of right-handed neutrino.
In the case without the heavy right-handed neutrinos, we have obtained the theoretical

bounds
r>4x 1072 (140)
174 GeV < m; < 175 GeV (142)

for the current observational constraints. The bound on mpy; is stringent than the bound
by the Landau pole, and the allowed range of m, is narrow. We may verify whether this
inflation model is realistic by future experiments.

With the heavy right-handed neutrinos, we obtain the wider allowed region in the
r-mpy plane. If we allow a three-parameter (m,, Mg, and k) tuning, we obtain

r>107°. (143)

In this case the upper bound on dark-matter mass is determined by the Landau pole.
Although the region r < 107 is hard to see for the planned near-future observations, the
region to explore may be shrunken by the combination with the accelerator experiments
because there are the strong correlations between m,, mpy; and the right-handed neutrino
mass Mp. Moreover, when we restrict mpy; 2 1.3 TeV, we obtain a stronger bound r 2
107 for a reasonable top-quark mass range.
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5 Conclusion

We have discussed the following two themes related to the Higgs inflation with nonminimal
couplings:

e What the difference of the prescription is.

e How the lower bound on r is obtained without the detailed knowledge of inflation
mechanism.

On the first theme, we have shown the frame invariance of the one-loop effective action
in the simplified Higgs-Yukawa model. Though the change of the path integral measure
causes the difference between the Jordan frame and the Einstein frame, it can be absorbed
by the counterterms because it is quartic divergent. If we properly take into account the
change of path integral measure, the effective actions are exactly the same regardless of
frame where we calculate it.

However there is still the difference of predictions between the two prescriptions I
and II. We have pointed out that the difference can be absorbed into the choice of tree-
level potential from infinitely many possibilities: The prescriptions I and II are merely
two specific choices of tree-level potential, and the difference may appears in the higher
dimensional terms. We have also proposed a mechanism to stop the running of the effective
quartic coupling in the prescription II in the ordinary context, using the gauge kinetic
function.

On the second theme, we have analyzed the Higgs-portal Z, scalar dark-matter model
and obtained the lower bound on the tensor-to-scalar ratio » and the upper bound on the
dark-matter mass mpy;. The advantage of our approach is that we can obtain the lower
bound on r without knowing any detail of the high-scale physics. Under the assumption
that the extrapolation of the Higgs-field direction plays the role of inflaton at ¢ > A, the
lower bounds on r are appeared in the region we may observe in near future in some cases.
This analysis can be applied to other inflation model and we may check the feasibility of
the model in the same way.

There are interesting topics to investigate. First, if the Higgs field is trapped at a false
vacuum, a small scale inflation may occurs depending on the initial condition at the end
of the main inflation. Second, the universe may have double or triple degenerate vacua in
specific parameter sets as mentioned in Sec. 4.6. If the tensor-to-scalar ratio and the dark-
matter mass point such a parameter set, it would be intriguing to reveal the mechanism
that the parameters are naturally selected.

In this thesis, we regard the gravity is the background field and did not consider the
renormalization of it. Of course this treatment is not enough to investigate the unified
theory. There is also the possibility that the graviton-loop effect modifies the effective
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Higgs potential and predicts different result. It would be worth to include the scalar-loop
effect, as in Ref. [15], and also the one from gauge-boson loops.
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Appendices

A Renormalization group equations

We show the RGEs and the way to calculate the lower bound on r. In this section, we

omit the argument of the couplings: They are not the values at ¢ = m, and they have the

scale dependence in this Appendix.

We have calculated the lower bound on r as follows:

1. Solve the RGEs (147)—(154) for given parameters with the initial conditions for the
SM parameters (155)—(159). (Equations will be shown in the end of this section.) The
effects from right-handed neutrino is introduced only at high energy scale ¢ > Mg:
We set n, = 0 and My = 0 in ¢ < Mg. As the boundary condition to solve the
RGEs, we have used Egs. (11)—(15) in [68] and the values in Table 7.

Value Reference
Planck mass Mp 2.4353 x 10" GeV [72]
Higgs mass mp 125.09 GeV [25]
Z boson mass My 91.1876 GeV [72]
W boson mass My, 80.384 GeV See the caption
MS strong coupling as(My) 0.1184 [33]
The expectation value of the Higgs field v | 246 GeV [72]

Table 7: Boundary condition for the RGEs. The recent value of My, from Ref. [72] is
My, = 80.385£0.015 GeV. The difference from the central value is smaller than the error
and it causes smaller contribution (< O(107°)) than the theoretical uncertainity.

2. Calculate the one-loop effective Higgs potential

V.

(2SS

29

Ae
<A = TH904 (144)



where

1 of v 3 3g5 (1 g5 5
“3yf (I -2 qor )+ 22 (ImE - Z4or
16#2{ yt(nz p )t \ " Tt

30y +93)°(, 9v+g 5
NIy T 92) (1 9r TG 2 op
16 A 6

M V2 + 422
—nytln| ==& + 2R + 23/,,90 (145)
2 MR + (2

+

is the effective Higgs-self coupling. Here we introduce the last term in the braces
which is introduced to naively take into account the effect of the neutrino loop on
the effective potential.*®* We set u = ¢ when we calculate Ag;> see [24] for the
treatment of the renormalization scale p of A.g. Here we neglect the one-loop wave-
function renormalization

» 1 /9, 3
I(p) = / — (—93 + gy — 3y — nyyﬁ) dIn g (146)
m, 167" \ 4 4

due to the calculation cost and we will estimate its error later.

3. Change the parameters using the false position method until the value of the potential
minimum becomes sufficiently close to zero.

4. Calculate the maximum value of potential and obtain ry,.,q via Eq. (119).

5. Obtain the value of I'(¢) at ¢ = A and use it to estimate the deviation at the potential
maximum: We calculate the coeffient factor exp(4I'(A)). This is most conservative
because |I'(¢)| becomes largest at ¢ = A. This estimation corresponding to the
dashed lines in the figures.

32We checked that its effect is at most few percent.
#3That is, we implicitly assume the tree-level potential is defined as Eq. (96) with the counterterm (80),
as explained in Sec. 3.5.
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Renormalization group equations We obtained the RGEs for arbitrary n, by com-
bining the n, = 1 RGEs [81] and the n, = 3 ones [82]:

dgy 1 41 g 199 , 9, 44, 17, n, ,
- - L S (o Z eyt S S ] 147
Ty 16267 T6r2)? \ 18 R R s s K (147)
dgs I 19 ;4 93 3 35 o 9 3 9 Ny o
S - 2 12¢2 — 242 — & 148
o TN + T6n7)? Q9 T % 1205 = Sy = | (148)
dgs 7T 3 9??: 11 5 9 , 2 2
S 2642 — 2 149
o /s 2% 16n7) G Ty + 59 — 2605 =25 ), (149)
dy Y 9 17 9
dlntu = 16;2 (23/? +n,yn — Eg?w — ;193 — 89:?)
yt 2 97’LV 4 9711, 1
LD S |, W R 62 120\
131 on, 225 5n,,
+ g5 (Eyf + == 2) ( yi + 2) + 3695y;
1187 23 19
%gé 59 g5 — 108g3 — 19‘/92 + 99595 + 5 93912/}, (150)

dy, Y 3 2 s 3 9 9 4
v b 32— g2 -2
dln 16%2{ (nu+ 2) Yy + OU; 49Y 492

Y, In, 3 27 27 1
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_'_2 5n,/ 93 2+852 +2 15ny+@ 2+4_52
9y 3 16 Yu 24yt 92 3 16 Yu 3 Ye

35 23, 9
ﬁgé — Zgi — 193/93} : (151)
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dA 1 /1
Tin g = = (2 + 24X% — 33 X — 95\ + dn, Ay
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Initial conditions for the SM parameters We show the relations between the SM
parameters and the pole mass of top quark at two-loop level. These relations are given in

Ref. [33].

My — 80.384 GeV
gy (my) = 0.35761 + 0.00011 ( i ) —0.00021 ( w ¢ ) (155)

GeV 0.014 GeV
go(my) = 0.64822 + 0.00004 ( (T;Ztv - 173.10) +0.00011 (MWOfOTZ‘égngeV) (156)
g(my) = 1.1666 — 0.00046 ( antv - 173.10) +0.00314 (0‘3(M5_)0(;02'1184) (157)
ye(m,) = 0.93558 + 0.00550 ( Y ) —0.00042 (0‘3(Mg.>0(;02'1184)
— 0.00042 (MW _Oi;?léilifc}ev> (158)
A(my) = 0.12711 + 0.00206 (ﬂ 125, 66) — 0.00004 ( cztv . ) (159)
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