<table>
<thead>
<tr>
<th>Title</th>
<th>New insight into α clustering from knockout reaction analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>吉田，数貴</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/69331</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/69331</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
論文内容の要旨

<table>
<thead>
<tr>
<th>氏名</th>
<th>吉田数貴</th>
</tr>
</thead>
</table>

論文題名

New insight into α clustering from knockout reaction analysis

(ノックアウト反応解析によるアルファクラスター現象への新たな知見)

論文内容の要旨

原子核におけるアルファクラスター現象は興味深い現象のひとつである。アルファクラスター現象とは、原子核内でアルファ粒子を構成する核子が自由に離れて存在し、分子的な構造が発現することである。特に軽い核の同位体においてアルファクラスター状態が発現することが知られているが、一方で程度重い原子核まで、また周期表以下の原子までその程度の深刻なクロスターパターンが発現し得る場合がある。また、αクラスター状態を探索するにあたり、α粒子と核の核子を持つ核とコア核内の核子の間に関与原理が働かすことによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちよりα粒子を原子核表面に存在し、α粒子と核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気をつけなければならない。したがって、新たなαクラスター構造、すなわちより核の核子を持つ核とコア核内の核子の間に関与原理が働かることによりαクラスターが形成される核の核子から変化を受けて、単純なα粒子とコア核というクラスター構造ではなくなってしまうことに気つけ
論文審査の結果の要旨及び担当者

<table>
<thead>
<tr>
<th>任名</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>主査</td>
<td>教授 保坂 淳</td>
</tr>
<tr>
<td>副査</td>
<td>教授 能町 正治</td>
</tr>
<tr>
<td>副査</td>
<td>教授 背井 考</td>
</tr>
<tr>
<td>副査</td>
<td>水教授 石井 理修</td>
</tr>
<tr>
<td>副査</td>
<td>水教授 昇井 淑</td>
</tr>
<tr>
<td>副査</td>
<td>水教授 輪方 一介</td>
</tr>
</tbody>
</table>

論文審査の結果の要旨

原子核に発現するクラスター構造は、核多体系が有する多様性を象徴するものであり、これまで数多くの研究がなされてきた。特に原子核の励起状態のうち、その固有エネルギーが部分系（部数の原子核側）に分かれる開数の近傍に位置するものについては、原子核内にその部分系の構造が発現することが広く知られている。これが、最も明確で典型的な、原子核のクラスター構造である。部分系としで最もよく現れるのがα粒子（He原子核）であり、本論文の主題ともまた、原子核のαクラスター構造の研究である。

αクラスター構造を議論する際に重要な点として、核の反対称化の影響がある。4つ以上の核から構成されるα粒子は、原子核中心付近において、物理的に明快な定義を欠く。α粒子を構成する核とそれ以外の核は本質的に区別できないからである。したがって、原子核においてα粒子の核群（＝コーナ核）が重合的に離れている場合にのみ、原子核のαクラスター構造は明快な意味を有すると考えられる。しかし、原子核内で発現するα粒子を実現することを試みた多くの研究において、原子核中心付近における“α粒子”の分布でさえもそれが反面、いわゆるα粒子のエネルギが的因子が、αクラスター構造の発現度として無視に値させるされている。

この状況に鑑み、吉田数事氏は、原子核のαクラスター構造を明快に議論するためには、コーナ核から十分離れたα粒子を選択的に観測するべきであるという指針を打ち出し、αノックアウト反応がこれ実現する最適な反応の1つであることを明確に示した。αノックアウト反応とは、入射粒子が原子核内で発達したα粒子に大きな運動量を与えていたために出する反応であり、論文では、数10 MeVの陽子が入射粒子として想定されている。このエネルギーでは、αノックアウト反応が原子核内における陽子とα粒子の弾性散乱として近似的に描くことができる。この数値に基づく反応モデルを歪曲波インパルス近似（distorted wave impulse approximation: DWIA）と呼ぶ。

吉田氏はまず、DWIAの信頼性を、スペインのグループによって開発されたtransfer to the continuum model (TC)と、3体散射反応計算であるPaddeev理論との比較を通じて確認した。その上で、DWIAを用いた反応計算によって、核外的核の表面に発達することが予想されているαクラスター構造が、ノックアウトの反応観測にどのように反映されるかを調査した。分析の結果、αノックアウト反応は、原子核の表面だけを選択的にブロードすること、したがって、αクラスター構造の明快な実現に最適な反応であることが明らかとなった。この高い表面選択性は原子核による（変数の）吸収に起因するが、吸収が相対的に弱い軽い原子核についても、αノックアウト反応の表面性が十分よく成り立つことが確かめられた。吉田氏はこれらの結果を基に、αノックアウト反応の表面性を定量的に評価する指標（masking関数）を新たに提案した。Masking関数は比較的簡単な関数で表現することができ、平均自由行程と関連するただ1つのパラメータで特徴づけられる。αノックアウト反応の観測量と原子核の構造を結ぶものとして、また、核内α粒子の観測手段としてふさわしい表面性がどの程度達成されているかを事前に判定手段として、masking関数は今後重要な役割を担うものと期待される。

論文では、従来のクラスター波動関数を取り入れた反応計算も行われており、核構造研究と反応研究のより一層の発展が本研究を端緒に今後強く期待される。本論文で打ち出された方向性は、これまでのクラスター研究に対して「実証」という新たな観点を与え、原子核のクラスター構造に対する適切で明快な理解を与える契機となるものと思われる。

以上より、本論文は博士（理学）の学位論文として十分に価値のあるものと認める。