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Abstract

Gravitational microlensing is the only method that is capable of detecting exo-
planets with a mass down to that of the Earth, beyond the snow line of their
respective star. This region is thought to play a crucial role in planet formation
and corresponds to the region including the orbits of Jupiter, Saturn, Uranus and
Neptune in the solar system. When light is bent by a gravitational lens consisting
of two objects, we can precisely measure the mass ratio between them from the
analysis of the light curve, and thus can detect a planet. A difficulty associated
with the microlensing method is in the measurement of the physical mass of the
lens system (host star + planet). In microlensing, there are up to three observable
quantities that can be used to calculate the mass–distance relations of the lens:
the Einstein angular radius; the microlens parallax; and the lens flux. If any two
of these are measured, we can break the degeneracy between the lens mass and
the distance to the lens. However, not all of these variables are always measured.
Compared to the former two observables, the lens flux can be obtained even af-
ter the end of an event by imaging the lens and source stars with high-angular
resolution using an adaptive optics (AO) system, or observation from space. The
requirement of a high-angular resolution observation comes from the fact that our
observation field of the Galactic bulge is too dense to resolve other stars unrelated
to the microlensing event by seeing-limited observations.

In this thesis, the analysis of two planetary microlensing events, OGLE-2012-
BLG-0950 and MOA-2016-BLG-227, is presented. Each event is observed by the
Keck telescope with an AO system, and we find an excess flux at the position of
the source star in each of the images. Even with the AO observations, we need to
consider the possibility that the excess flux is not due to the lens, but due to a
companion to the source or lens star, or an unrelated star. For OGLE-2012-BLG-
0950, we conclude that, from the evaluation of the possibilities in previous studies,
a large fraction of the excess flux originates from the lens. Combining the lens flux
and the microlens parallax measured in the light curve reveals that the planet has a
mass of Mp = 35+17

−9 M⊕ and an orbit at a planet-host projected separation of r⊥ =
2.7+0.6

−0.7 AU around its host star, which has a mass of Mhost = 0.56+0.12
−0.16M⊙. This

is the first mass measurement made only from the microlens parallax and the lens
flux. The planet mass is located in a valley of the mass distribution histogram of
planets discovered to date. In contrast to the core accretion theory, which predicts
a moderate abundance of such planets outside the snow line, this is the second
planet observed through microlensing with a reliable mass measurement discovered
so far in the region. In contrast, using a Bayesian analysis, a new method was
applied to MOA-2016-BLG-227 to evaluate the probability of contamination. We



find that it is unlikely that a large fraction of the excess flux comes from the
lens, unless solar-type stars are much more likely to host planets of this mass
ratio than lower mass stars. Nevertheless, our conclusion is that the lens system
consists of either an M or K-dwarf host star with a gas-giant planet located in the
Galactic bulge, regardless of the dependency of planet hosting probability on the
host mass. Such systems are predicted to be rare by the core accretion theory of
planet formation.
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Chapter 1

Introduction

Until the first detection of an exoplanet in 1995, planet formation theories were
based on the formation of the Solar System. The standard core accretion model
(Safronov 1972, Hayashi et al. 1985, Lissauer 1993) was believed to be fairly well
established, although some problems, such as the formation of planetesimals (Wei-
denschilling & Cuzzi 1993, Dominik & Tielens 1997:e.g.), remained. According to
this theory, the solar system planets are formed by the following scenario:

1. Dust and gas with angular momenta in the molecular cloud form into a
protoplanetary disk around a protostar when the star is formed;

2. Dusts in the disk settle to the center plane and ∼km sized planetesimals are
formed by the buildups;

3. Planetesimals gradually grow through several collisions and coalescence, and
eventually become massive bodies;

4. The massive bodies gravitationally capture planetesimals and grow into pro-
toplanets. (Formation of rocky planets);

5. Some protoplanets are sufficiently massive to capture all of the gas in the
vicinity (M ≳ 10M⊕) and grow further into gas giants. (Formation of gas
giants);

6. Gas in disk are dispersed completely;

7. Planets with mass of M ≳ 10M⊕ are formed at a large distance from the
host star after the gas has dispersed. (Formation of ice giants).

In this scenario, dust is the material of protoplanets, and gas giants, such as Jupiter
or Saturn, are formed slightly outside the “snow line” where the protoplanetary
disk becomes sufficiently cold for water to condense, i.e., to become one of the
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component materials. However, this theory did not predict the discovery of “Hot
Jupiters,” which are gas giants with orbits far inside the snow line. The hot Jupiter
51 Peg b (Mayor & Queloz 1995) was the first detected exoplanet orbiting a star at
a distance closer than Mercury, but has around one Jupiter mass. Since then, over
3600 exoplanets have been detected. The five main methods of detecting planets
used today are explained below.

• Radial Velocity Method

A bound planet causes its host star to move into a Keplerian orbit around
the common center of mass. The radial velocity method detects the slight
variation of the line-of-sight velocity of the star induced by its planet, using
the Doppler shift of absorption lines (Butler et al. 2006, Bonfils et al. 2013).
About 20% of all detected planets, including the first exoplanet (Mayor &
Queloz 1995), have been detected by this method. Because only line-of-
sight velocities can be measured, only a lower limit for the mass MP sin i
can be inferred, because the orbital inclination is not a priori known. With
increasing distance from the host star, the amplitude and the period of radial
velocity variation - induced by a planet - decreases and increases, respectively.
For this reason, the radial velocity method is sensitive to close and relatively
massive planets.

• Transit Method

The transit method detects planets by observing periodic variations in the
stellar flux, caused by planetary eclipses (Borucki et al. 2011). The propor-
tion of the decrease enables us to know the planet’s diameter compared to
the star. An eclipse requires the orbital plane of the planet to be perfectly
aligned with the line of sight of the observer. The probability for this to
occur decreases with increasing distance from the host star. For this reason,
planets that have a relatively small semimajor axis are more likely to be
detected by this method, just as is the case with the radial velocity method.
Because the orbital inclination of a transit planet is i ≃ 90◦, we can know
both its mass and diameter by combining the results from radial velocity
observation.

More than 2700 planets have been detected by this method. Most of them
were detected by the Kepler space telescope, and a large fraction of them
are objects with known planetary radii from transit studies, but have an
undetermined mass. This is because a spectroscopic observation, which is
needed for the radial velocity measurement, requires more flux from a tar-
get compared to a photometric observation, which is needed for the transit
method. Therefore, only relatively bright (i.e., close) host stars detected by
transit method can also be observed by the radial velocity method.
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Figure 1.1: Mass versus host star-planet separation distribution of exoplanets which have been

detected so far. The horizontal axis is the semimajor axis normalized by the snow line, which is

assumed to depend on the host star’s mass as ∼ 2.7AU (M/M⊙) (Kennedy & Kenyon 2008).

The color of a dot corresponds to the method of its detection. A green letter indicates a solar

system planet by its initial. Note that some fraction of exoplanets that have been discovered by

the transit method is not on this plot due to a lack of their mass measurements.

• Gravitational Microlensing Method

Gravitational microlensing is a phenomenon that causes the temporal magni-
fication of a source object. It occurs when a foreground lens object happens
to pass close to our line of sight with the source object, and its gravita-
tional field bends the light from the source. The gravitational microlensing
method uses this phenomenon to detect planets (Mao & Paczynski 1991,
Gould & Loeb 1992). If the lens is a single star, the light curve of the vari-
ation in source magnification follows a symmetrical curve (Paczynski 1986).
If the lens star has a planet in a suitable location, the planet’s gravitational
field will also perturb the source’s light path, and the light curve shows
an anomaly. We can understand the planet’s nature through observing and
analyzing the anomaly, as will be discussed in Chapter 2. The gravitational
microlensing method is capable of discovering planets with a mass down to
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that of the Earth, just outside of the snow line (Bennett & Rhie 1996). The
number of planets detected through this method is about 50 by now, but
still much less compared to the radial velocity method or transit method.
However, in terms of the sensitivity region, it is very important for plan-
etary formation theory that the microlensing method is complementary to
the other methods, as is shown in Figure 1.1. Additionally, because mi-
crolensing does not rely upon any light from the host star or the planet of
the lens system for detection, it is possible to detect planets around stars
that are too faint to detect by the other methods (Bennett et al. 2008), and
even a planetary-mass object that belongs to no host star at all, a so-called
free-floating planet (Sumi et al. 2011, Mróz et al. 2017).

• Direct Imaging Method

Although the amount of information about the planet that can be obtained
by direct detection of the planet’s light is much larger than by other meth-
ods, astronomers were so far more successful with indirect methods, because
the bright host star drowns out the faint light emitted by (or reflected off)
planets. However, by using modern methods for high-contrast imaging (e.g.
ADI/LOCI, SDI, PDI) and technological developments in coronagraphy, it
has become increasingly possible to increase the contrast for these observa-
tions. Especially young stellar objects are targeted as the infrared contrast
between planets and stars is more favorable. About 50 planets have been
detected by the direct imaging so far (Marois et al. 2008).

• Astrometry Method

This method is historically the oldest method for exoplanet discovery. As of
1855, the astrometric calculation for an extrasolar planet was done by Jacob
(1855). However, although several papers have claimed the discovery of
exoplanet via the astrometry method (Pravdo & Shaklan 2009, Muterspaugh
et al. 2010), so far, the existence of these planets has been ruled out, or not
confirmed by other methods. Nevertheless, the astrometry method should
be noted as one of the main methods of detecting exoplanets because over
10000 gas giants with ∼ yr period are expected to be detected by the ongoing
ESA’s Gaia satellite mission (Perryman et al. 2014) which has observed over
a billion stars from space since 2014. This method detects the wobble of
the host star around the common center of the mass due to the motion
of a planet, while the radial velocity method uses the different component
of the star’s motion, which is along the line of sight. In contrast to the
radial velocity method, which detects the derivative of the position of the
host star, the astrometry method uses the position itself. This results in
a different sensitivity region compared to the radial velocity method, i.e.,
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planets with large orbital period produce a large amplitude wobble in the
host’s motion. In 2016, the first catalog of the Gaia mission, based on its
observations between July 2014 and September 2015, was released. This
includes the positions and magnitudes for all sources with acceptable errors,
and some other information, such as parallax and proper motion for some
part of the sources. According to the Gaia webpage1, the exoplanet list will
be included in their final release for the nominal mission planned for the end
of 2022.

The core accretion model was originally developed to explain the formation of
our Solar System, but it has not predicted planetary systems different from our
own, which are revealed through the above detection methods. It now includes
the possibility of migration (Lin et al. 1996) to explain Hot Jupiters, but it still
has difficulty explaining the entire population of exoplanets.

For example, the theoretical prediction of a paucity of the planets with masses
of 5 - 30 M⊕ in short period orbits (Ida & Lin 2004, Ida et al. 2013) is inconsistent
with the results from radial velocity studies (Howard et al. 2010). Also, a recent
statistical study on microlensing planets by Suzuki et al. (2016) found a peak or
break of the planet frequency in the mass ratio function beyond the snow line. The
peak is at qbr = 1.7×10−4 corresponding to 10 - 40 M⊕ for the host mass of 0.2 - 0.8
M⊙. Although the theoretical simulations by Ida et al. predict some population of
planets with this mass range beyond the snow line, they predict higher frequency
for lower mass planets and do not predict the detected peak. Moreover, while the
current core accretion model predicts a few gas giants orbiting a red dwarf at any
separation (Laughlin et al. 2004, Kennedy & Kenyon 2008) - and this is confirmed
by observations from the radial velocity method for massive gas giants orbiting
inside the snow line (Endl et al. 2006, Johnson et al. 2007, Cumming et al. 2008,
Johnson et al. 2010), the gravitational microlensing method has revealed several
gas-giants orbiting just outside of the snow line of their late type host stars (e.g.,
Dong et al. 2009a,b, Batista et al. 2011, Koshimoto et al. 2014). However, a
quantitative analysis of planetary frequency as a function of host star mass has
not yet been completed.

This thesis is organized as follows. Chapter 2 describes the basics of gravita-
tional microlensing. The analyses of OGLE-2012-BLG-0950 and MOA-2016-BLG-
227 are presented in Chapters 3 and 4, respectively. These two chapters were
published as Koshimoto et al. (2017a) and Koshimoto et al. (2017b), respectively.
There are some overlapping explanations throughout this thesis. However, they
were not edited as to retain the context of the discussion of each paper. Chapter 5
summarizes the results of the two works and gives further discussions. Appendix A

1https://www.cosmos.esa.int/web/gaia/release
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is an introduction of the annual parallax effect. Appendices B and C corresponds
to those of Koshimoto et al. (2017a) and Koshimoto et al. (2017b), respectively.
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Chapter 2

Gravitational Microlensing

Einstein’s general theory of relativity said that light rays bend in a gravitational
field. Due to this effect, light from a source object is bent by gravitational fields
around a lens object along its path, and its image appears separated and/or dis-
torted. In this case, the gravitational fields act just like a lens, and, therefore,
this phenomenon is called a gravitational lens effect. This can be considered as
an astronomical phenomenon because it is significant when both the source and
the lens are on the scale of celestial bodies, or more massive. In case that the
mass of a lens object is on the scale of a galaxy or a galaxy cluster, images of
the source objects can be observed separately. On the other hand, in case that a
lens object is a star or a planet, the elongation between images is too small to be
resolved. Instead, the phenomenon is identified as an instantaneous magnification
of the source object. Gravitational lens effects like this are called gravitational
microlensing effects. In this section, the basics of the gravitational microlensing
effect is described, and its application for detections of planets.

2.1 The Lens Equation and Light Curve

While optical convex lenses concentrate all parallel light passing through them into
a single focus, creating a single image, the gravitational lenses bend differently and
so create elongated, or multiple images. The total area of all separated or merged
images is larger than that of its original image without the lens. Hence, it appears
magnified. Below is the lens equation, which shows the general case of how the
gravitational field of lens objects creates images. This is then expanded on to
describe, firstly, the case where the lens is either a single point mass (single lens
event), or, secondly, where the lens is a two point mass system (binary lens event).
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source planelens plane

observer lens star(s)

source star

magnification

＝blue area/red area

→
→μrel

μrel

θE

Figure 2.1: Schematic illustration of the magnification by a single lens. When the projection

of the source star (red circle) passes an area within the angular Einstein radius, θE , from the

lens star in the lens plane, the light from the source follows the blue path and is magnified. θE

is typically θE ∼ 300-400µarcsec. This means the lens and source align along the line of sight.

Note that µrel is the lens-source relative proper motion.

2.1.1 The Lens Equation

According to the theory of general relativity, light rays passing at a distance of
rm from a point mass with mass of M will be bent by an angle (Schneider et al.
1992),

α(rm) =
4GM

rmc2
(rm ≫ 2GM

c2
). (2.1)

The planes normal to the line of sight toward both the lens star and source star,
like Figure 2.1, are referred to as a lens plane and a source plane, respectively. As
shown in Figure 2.2, the ξx, ξy axes are defined on a lens plane and the ηx, ηy axes
are defined on a source plane, where DS and DL are distances to the source and
to the lens from the observer, respectively. DLS is the distance between the lens
and the source. When a mass point of mass dM is located at ξ′ on the lens plane,
a light ray passing through ξ bends following Equation (2.1),

dα(ξ) =
4GdM

c2
ξ − ξ′

|ξ − ξ′|2
. (2.2)
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→
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→

→

→

→
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→
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DS

α

ξ

DLS

DS
DL

Figure 2.2: Geometry of a microlensing event. O and η indicate an observer and the source

object, respectively. The lens object is distributed near the lens plane. The observed images are

located at ξ on the lens plane.

When a lens object has a surface mass density projected onto a lens plane, Σ(ξ′),
the deflection angle is derived by the integration of Equation (2.2) as

α(ξ) =

∫
4GdM

c2
ξ − ξ′

|ξ − ξ′|2
(2.3)

=
4G

c2

∫
SL

(ξ − ξ′)Σ(ξ′)

|ξ − ξ′|2
d2ξ′ (2.4)

where the integral area SL is all regions of the lens plane. Here, we assume that
the spread of the lens object along the normal direction to the lens plane is much
less than DL (thin lens approximation).

The relationship between the source position η and the image positions on the
lens plane ξ are driven geometrically, as shown in Figure 2.2,

η =
DS

DL

ξ −DLSα(ξ). (2.5)

By dividing this equation by DS, the lens equation is defined as follows,

η

DS

=
ξ

DL

− DLS

DS

α(ξ). (2.6)
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2.1.2 Single Lens

The Lens Equation and Positions of The Images for Single Lens

Consider the case that the lens object is a single star. As the size of the effective
area of the gravitational field, RE, is much larger than the physical size of star,
we can approximate the lens is the point mass at the origin on the lens plane,
Σ(ξ′) = MLδ(ξ′). Therefore, the angle of refraction takes the form

α(ξ) =
4GML

c2
ξ

|ξ|2
. (2.7)

du

dx+

dx-

      
(=θE/θE)

dΩ+

dΩ-

dΩ

1

ML

dθ

Figure 2.3: Images created by single

lens. The source object with an infinitesi-

mal solid angle of dΩ are indicated in red,

and the two created images, with infinites-

imal solid angles of dΩ+ and dΩ− at x+

and x−, are indicated in blue.

By substituting this formula into the lens
equation (2.6) and dividing the both sides
by the angular Einstein radius

θE =
RE

DL

=
1

DL

√
4GMLDS

c2
ν(1 − ν),

(ν =
DL

DS

) (2.8)

the lens equation can be written as,

u = x−α(x)

= x− x

|x|2
. (x =

ξ

RE

,u = ν
η

RE

)

(2.9)

We can calculate positions of images for
a given source position, u, by solving Equa-
tion (2.9) for x. In a single lens case, x runs
parallel with u, and the lens equation (2.9)
can be rewritten in a simple quadric scalar
form as follows,

x2 − ux− 1 = 0 (2.10)

with solutions of

x± =
u±

√
u2 + 4

2
. (2.11)

15



This means that the two images are created
at x+ and x− on a straight line joining the lens object and the source object on
the surface of a celestial sphere (see Figure 2.3).

In the case of u = 0, Equation (2.9) becomes

x− x

|x|2
= 0. (2.12)

The solution of this equation is |x±| = 1, with no constraint on the direction, i.e.,
a circle image with a radius of unity. This ring image is called the Einstein ring,
which appears at the moment of u = 0, i.e., when the source and lens are exactly
aligned. Its radius on the lens plane, RE = θEDL, is called Einstein radius. The
size of Einstein radius, RE, and the angular Einstein radius, θE, are

RE ≃ 2 AU

(
ML

0.3M⊙

)1/2 (
DS

8 kpc

)1/2 {
ν

0.75

(
1 − ν

1 − 0.75

)}1/2

(2.13)

and

θE =
RE

DL

≃ 320µarcsec

(
ML

0.3M⊙

)1/2 (
DS

8 kpc

)−1/2 (
(1 − ν)/(1 − 0.75)

ν/0.75

)1/2

.

(2.14)

As seen in the next section, typical microlensing events have values of 0 < u ≲
1 ⇔ 2 < |x+ − x−| ≲

√
5. Hence, the elongation between two images expressed in

|x+ − x−| have the same order as θE of Equation (2.14), up to ∼1 marcsec. It is
too small to be resolved by any telescopes with optical or near-infrared cameras
today.

Magnification and Light Curve for Single Lens

In order to consider the magnification by single lens simply, let’s assume that the
source object has an infinitesimal solid angle of dΩ, as indicated in Figure 2.3. In
this case, the magnification A(u) is equal to the area ratio between the source and
images (see Fig 2.1), that is,

A(u) =
dΩ+

dΩ
+

dΩ−

dΩ

=
x+dθdx+

udθdu
+

x−dθdx−

udθdu

=
u2 + 2

u
√
u2 + 4

≃ 1

u
(u ≪ 1). (2.15)
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u

ML

tnu0

μrel(t-t0)θE
-

t

t0
tn=

Figure 2.4: Source trajectory on the

celestial sphere surface. The red line in-

dicates the source trajectory. The black

dot indicates the lens position. The

black circle represents the Einstein ra-

dius.

In the case of the single lens, the magnification,
A(u), monotonically decreases with respect to
u. The magnification of A = 1.34 at u = 1
is often used as the threshold to detect the mi-
crolensing event, considering the typical photo-
metric uncertainty of the ground base 1 m class
telescopes. Therefore, it is usually called a mi-
crolensing event when the source enters into
the Einstein ring of a lens object, as in Figure
2.1. The magnification diverges to infinity at
u = 0.

In general, the source, lens and observer
have some relative velocity to each other, and
the magnification varies over the time for the
galactic objects. In the simplest model, one
can approximate that a source object travels
with a uniform linear motion, with lens-source
relative proper motion, µrel, as shown in Figure 2.4. In this case, the time variation
of u(t) can be geometrically given by,

u(t) =
√
u2
0 + t2n =

√
u2
0 +

(
µrel

θE
(t− t0)

)2

=

√
u2
0 +

(
t− t0
tE

)2

(2.16)

where t0 is the time of the source’s closest approach to the lens object, and u0

is the minimum impact parameter. tE is defined as the duration of the source
crossing the Einstein radius,

tE ≡ θE
µrel

=
1

µrel

√
4GML

c2DS

1 − ν

ν
(2.17)

and is called the Einstein radius crossing time, or just an event timescale. Addi-
tionally, tn is defined as

tn =
µrel

θE
(t− t0) =

t− t0
tE

. (2.18)

By substituting Equation (2.16) into Equation (2.15), the magnification A(t) forms

A(t) =
t2n + u2

0 + 2√
t2n + u2

0

√
t2n + u2

0 + 4
. (2.19)

This light curve is symmetrical in time about t0, and its peak magnification in-
creases with the decreasing value of u0 (Figure 2.5).
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Figure 2.5: Light curves of single lens events. The light curve with u0 = 1, 0.7, 0.5, 0.3, 0.1 are

drawn from the bottom to the top, respectively.

Observables of Single Lens Event

When a single lens event is observed, we can obtain event parameters by fitting
Equation (2.19) to the light curves. The fitting parameters of Equation (2.19)
are (tE, t0, u0). Only tE includes the physical lens information, where the distance
to the lens object DL, the lens mass ML, and the relative proper motion µrel

degenerate in tE and cannot be determined uniquely. In most cases, the distance to
the source object, DS, is assumed to be ∼ 8 kpc as the probability of microlensing
event with the source stars around the galactic center is highest.

2.1.3 Binary Lens

A microlensing event caused by two lens objects is called a binary lens event. The
probability that two random, unrelated stars in the Galactic bulge and disk are
aligned to the line of sight of another star is extremely low (∼ 10−6). Thus, the
existence of two lens objects in a single event implies that these lens objects are
gravitationally bound, such as in a binary or planetary system. The most notable
feature of binary lens events is that there are a number of points on a source plane
where the magnification diverges as follows.
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The Lens Equation and Images for Binary Lens

Consider two lens objects. Put their center of mass on the origin of a lens plane of
ξ, and take their projected positions on the plane as ξL1, ξL2, aligned on ξx axis.
The total mass is defined as ML, and their fractional mass is µ1 : µ2 (µ1 +µ2 = 1).
In practice, one can safely assume the lenses are point masses, Σ(ξ′) = µ1MLδ(ξ′−
ξL1) + µ2MLδ(ξ′ − ξL2). By following the case of the single lens, we can derive
the binary lens equation as

u = x− µ1
x− xL1

|x− xL1|2
− µ2

x− xL2

|x− xL2|2
(xLi =

ξLi

RE

,u = ν
η

RE

). (2.20)

However, we can no longer follow the discussion of the case of single lens because
u and x are not parallel, and we cannot consider it in one dimension. Because
it is complicated to continue the discussion with vectors in general, below we use
an alternative method using complex scalar numbers. Replacing the source plane
(ux, uy) with the source complex plane (wx, wy) that includes a source object at
w, and the lens plane (xx, xy) with the lens complex plane (zx, zy) that includes 2
lens objects at zL1, zL2 and created images at z. The binary lens equation (2.20)
can then be rewritten as

w = z − µ1

z − zL1
− µ2

z − zL2
. (2.21)

This equation includes not only z but also z. In order to remove z, z must be
isolated using the conjugate of Equation (2.21),

w = z − µ1

z − zL1
− µ2

z − zL2
(2.22)

and substituting it into Equation (2.21), the complex lens equation for only z,

(z − w){(w − zL1)(z − zL1)(z − zL2) + µ1(z − zL2) + µ2(z − zL1)}
×{(w − zL2)(z − zL1)(z − zL2) + µ1(z − zL2) + µ2(z − zL1)}

+µ1(z − zL1)(z − zL2){(w − zL2)(z − zL1)(z − zL2) + µ1(z − zL2) + µ2(z − zL1)}
+µ2(z − zL1)(z − zL2){(w − zL1)(z − zL1)(z − zL2) + µ1(z − zL2) + µ2(z − zL1)} = 0

(2.23)

is obtained. This is a 5th-order polynomial equation for z, and shows that a binary
lens creates 5 images at max. In fact, 3 images are created outside the caustic, and
5 images are created inside the caustic (see below about the caustic.). It is difficult
to solve this equation analytically. We solve this equation numerically instead.
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Critical Curves and Caustics

The complex lens equation (2.21) represents the mapping of the source plane onto
the lens plane, i.e., the mapping of w → z. Therefore, when detJ is defined as the
Jacobian of z → w:

detJ =

∣∣∣∣∂w∂z
∣∣∣∣2 − ∣∣∣∣∂w∂z

∣∣∣∣2 (2.24)

= 1 −
∣∣∣∣ µ1

(z − zL1)2
+

µ2

(z − zL2)2

∣∣∣∣2 , (2.25)

the magnification A is the sum of the contribution from all images created,

A =
n∑

i=1

1

detJi
, (2.26)

where detJi is the value of Equation (2.25) for the ith image position zi, which
satisfies Equation (2.21) when n = 3 or 5.

We can find that the magnification diverges to infinity when detJ = 0, that
means that, from Equation (2.25),∣∣∣∣ µ1

(z − zL1)2
+

µ2

(z − zL2)2

∣∣∣∣2 = 1 (2.27)

⇒ µ1

(z − zL1)2
+

µ2

(z − zL2)2
= e−iφ, φ ∈ [0, 2π) (2.28)

This formula can be reduced to a 4th-order polynomial by clearing its fractions.
Four curves of za(φ), . . . , zd(φ) are obtained as its solutions, which are the critical
curves. By mapping the critical curves to the source plane using the lens equation
(2.21), we can obtain the corresponding four curves of wa(φ), . . . , wd(φ), which are
called caustics. The magnification diverges when the source star crosses a caustic.
While there is only one point at which the magnification diverges to infinity in the
case of single lens (u = 0), it becomes curve(s) in the case of binary lens.

Equation (2.28) can be solved analytically when µ1 = µ2 = 0.5, or q ≡ µ2/µ1 =
1 as

z(φ) = ±
√

eiφ

2
+

s2

4
± eiφ

2

√
1 + 2e−iφs2, (2.29)

where s ≡ |zL1−zL2| is the projected separation between two lenses, normalized by
RE. Hereafter, the mass ratio is referred to as q, and the separation as s, instead
of µ1 and µ2, and zL1 and zL2, respectively. The shapes and locations of caustics
and critical curves are then determined by q and s. There are two ± signs in
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Figure 2.6: Critical curves (dotted lines) and caustics (solid lines) with q = 1. (Left) s = 0.7,

(Middle) s = 1 and (Right) s = 2.1. The color codings represent each of one of the four solutions,

za(φ), . . . , zd(φ) or wa(φ), . . . , wd(φ). The two black dots indicate the positions of the two lenses.

the formula, and the four combinations of them correspond to the four curves of
za(φ), . . . , zd(φ). Figure 2.6 shows the four curves of za(φ), zb(φ), zc(φ) and zd(φ)
which are the ++, +−, −+ and −− solutions of Equation (2.29) shown in dashed
curves, respectively, and the corresponding four curves of wa(φ), wb(φ), wc(φ) and
wd(φ), shown in solid curves. These four curves are linked with each other and
produce one, two or three closed curves depending on the s value. When the
separation, s, is moderately smaller or larger than 1, the number of closed curves
is 3 or 2, respectively. All curves link together when the separation s is close to
1. This behavior of the number of critical curves and caustics is qualitatively true
for any mass ratio value of q, although the border value of s - which changes the
number of closed curves - depends on the value of q.

When q ̸= 1, Equation (2.28) can be solved numerically. While the positions
of the caustics are symmetrical with respect to the y axis (x = 0) when q = 1, as
shown in Figure 2.6, the positions of the caustics become more asymmetrical as q
gets smaller. This is particularly true when the lens system has a planetary mass
ratio (q = µ2/µ1 ≲ 0.03); one of the caustics always appears near to the primary
star, and is referred to as the central caustic. Figures 2.7-2.9 show the caustics
and critical curves for q = 0.01 with s = 0.8, s = 1.0 and s = 1.35, respectively,
and the light curves corresponding to the source trajectory are shown as blue
arrowed line in the (a) sub-plots. In Figure 2.7 (a) with s = 0.8 and Figure 2.9
(a) with s = 1.35, two and one caustics - other than the central caustic - appear
on the opposite, and same side of, the secondary lens with respect to the y axis,
respectively, which are called planetary caustics. When the separation, s, is close
to 1, planetary caustics are located near to the central caustic, and they merge
to a single curve when s ∼ 1 (Figure 2.8). The united caustic is called resonant
caustic.
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(a)

(b)

Figure 2.7: (a) Critical curves and caustics with q = 0.01, s = 0.8. The black and red closed

curves are critical curves and caustics, respectively. The black dot indicates a secondary lens

object. The magnification map is represented in gray scale, and the blue arrowed line runs along

the source trajectory. (b) The light curve corresponding to the source trajectory, (a). Red, blue

and magenta lines indicate the light curves with a finite source effect parameter, ρ ≡ θ∗/θE , as

shown in upper left, respectively. The anomaly highlighted in the bottom left panel occurs when

the source crosses the planetary caustic, and the first and second sharp peaks locate its entry

and exit, except the case of ρ = 0.01. The anomaly highlighted in the bottom right panel occurs

when the source brushes the cusp of the central caustic. The bottom insets show the light curve

residuals relative to ρ = 0.01.

22



(a)

(b)

Figure 2.8: Same as Figure 2.7, but with q = 0.01, s = 1.0. In this case, the source experiences

entry/exit of the caustic twice, and therefore the light curve has up to 4 peaks.
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(a)

(b)

Figure 2.9: Same as Figure 2.7, but with q = 0.01, s = 1.35. The source experiences entry/exit

of the caustic only once, and therefore the light curve has 2 peaks.
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In the light curves in Figures 2.7-2.9, the difference between binary lenses and
single lenses is clearest only when the source passes around the caustics, and no
difference can be observed at the other parts. We call this deviation an “anomaly”,
and observing an anomaly is only way to detect a planet via microlensing light
curves. In other words, we cannot know the existence of planet around the primary
lens star, even when the planet exists there, if we miss the anomaly, or the source
does not pass around any caustic.

Observables of Binary Lens Event

To fit a binary lens event, some parameters are added to those of the single lens
event. The three new parameters are the secondary-primary mass ratio of q,
the projected separation between two lens objects normalized by RE of s that
determines the shapes and locations of caustics, and the angle of a source trajectory
of α. Binary lens events are more sensitive to high order effects, such as the finite
source effect or the microlensing parallax effect that are described in next section,
than single lens events. The finite source effects can be especially well-detected in
most planetary events. Hence, the standard binary lens model generally includes
the finite source parameter of ρ.

2.2 High Order Effects

Figure 2.10: Magnification by a single

lens for u and a source size of ρ. When u is

relatively large, the magnification is almost

flat in a ρ, but it can dramatically vary in

the same ρ when u is small.

As already described, the distance to the
lens object DL, the lens mass ML and the
relative proper motion µrel degenerate into
a single parameter, Einstein timescale tE,
and cannot be determined uniquely. How-
ever, the degeneracy can be broken down by
detection of high order effects. Here we ex-
plain two main high-order effects: the finite
source effect, and the parallax effect.

2.2.1 Finite Source Effect

We have assumed a point source so far.
However, the finite size of the source can-
not be neglected when the spatial variation
of the magnification in the source plane is
large within the source surface, Sρ. The fi-
nite source can be introduced in the light
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curve model by adding a parameter,

ρ =
r∗/DS

RE/DL

(2.30)

=
θ∗
θE

(2.31)

where r∗ and θ∗ are the radius and the angular radius of the source star, respec-
tively. In the case of a single lens for example, the magnification is given by
Equation (2.15). As shown in Figure 2.10, when the variation of the magnification
is small in Sρ, the values at each d2u are almost equal, and it does not matter that
we consider the source as a point. Contrary to this, when the variation is large,
we cannot neglect the source size of ρ. In this case, the surface brightness density
of the source, S(u), also varies at each d2u because of limb darkening. Hence, the
magnification at u can be evaluated by integrating the point source magnification
A(u) and the surface brightness S(u)d2u over the source surface Sρ as follows,

Af (u) =

∫
Sρ

A(u′)S(u′)d2u′∫
Sρ

S(u′)d2u′
(2.32)

where u is the center of the source, Sρ is assumed to be a circle, and
∫
Sρ

S(u′)d2u′ =

FS.
It has previously been described that the magnification diverges to infinity on

the caustics in Section 2.1.3, but the observed light curve does not diverge because
of the finite source effect. Figure 2.7 and Figure 2.8 show the light curves with ρ
= 0.0001, 0.001 and 0.01. From the figures, we find that the peaks of the anomaly
become duller as ρ increases.

If the finite source effect is seen in the observed light curve, we can obtain a
new observable, ρ, from which the angular Einstein radius, θE, and lens-source
relative proper motion, µrel, can be derived by using Equation (2.31) as follows,

θE =
θ∗
ρ

(2.33)

µrel =
θE
tE

=
θ∗
tE ρ

. (2.34)

Here the source angular radius, θ∗, can be obtained by using the source color and
magnitude, as described in Section 2.3. Moreover, from Equation (2.8), we can
find the relationship between the mass, ML, and the distance, DL (mass–distance
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(a) (b)

Figure 2.11: (a) A source trajectory affected by the parallax effect and (b) the corresponding

light curve. In (b), the light curve with and without the parallax effect are shown in red and

black lines, respectively. The residual from the non-parallax model is shown in the bottom inset.

The light curve becomes asymmetric with this effect.

relation),

ML =
c2

4G
θ2E

DS ν

1 − ν
. (2.35)

If we have any constrains on DL, we could estimate ML from this formula.
While single lenses create only one caustic, i.e., the point at the center of

the lens, a binary lens creates up to three caustics which are wide-spread on the
source plane, and, therefore, binary lens events are more sensitive to the finite
source effect than single lens events.

2.2.2 Parallax Effect

Annual parallax

In the above sections, we assumed that the relative motion of the source, lens and
observers were linear. However, the observers on the Earth orbit around the Sun.
When the event timescale tE is relatively long, typically tE > 50 days, and/or
the lens object is relatively close, the light curve can be affected by the non-
linear motion of the line of sight due to the Earth’s orbital motion, which called
the microlens parallax, or annual/orbital parallax to distinguish from the space
parallax described in next section. Then, we can measure new physical quantities,
πE,N , πE,E, which are the north and east component of the relative parallax vector
between the source and the lens, πE, respectively. A more detailed introduction
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to the annual parallax effect is presented in Appendix A. Figure 2.11 shows an
example of a light curve and the source trajectory with the annual parallax effect.

The magnitude of πE is represented by the ratio between the lens-source rela-
tive parallax, πrel, and the angular Einstein radius θE,

πE =
πrel

θE
=

(DS −DL) × 1AU/DSDL

RE/DL

=
1AU

r̃E
(2.36)

where

r̃E =
REDS

DS −DL

=
RE

1 − ν
(2.37)

is the projected Einstein ring radius from the source star to the observer plane.
By squaring both sides of Equation (2.37), one can derive the relationship

between the lens’ mass, ML, and the distance, DL,

ML =
c2

4G

(
1AU

πE

)2
1 − ν

DS ν
(2.38)

which is similar, but independent to, the relation from the finite source effect.

Hence, by obtaining the microlens parallax, πE =
√
π2
E,N + π2

E,E, the finite source

effect, ρ, and the source angular radius, θ∗, the degeneracies of the lens properties
in tE can be broken entirely, i.e., one can exactly calculate the mass from Equation
(2.35) and Equation (2.38) as

ML =
c2(1AU)

4G

θE
πE

(2.39)

=
θE
κπE

(κ = 8.144 masM−1
⊙ ), (2.40)

then the distance, DL, as

DL =
1AU

πEθE − 1AU
DS

(DS ∼ 8 kpc) (2.41)

where the source star is assumed to be located in the Galactic Bulge. The relative
proper motion, µrel, can be given by Equation (2.34).

In the case of a binary lens event, the probability of detecting both the finite
source effect and the parallax effect is much higher, compared to that of a single
lens event. We can calculate the primary and secondary masses of ML1 and ML2

using the mass ratio q. Also, the projected separation of the lens system to the
lens plane is derived as

r⊥ = DL θE s. (2.42)
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Figure 2.12: The light curve of OGLE-2015-BLG-0966 as an example of space parallax. The

top panel shows the light curve, and the bottom panel shows the residual from the best-fit

planetary model. The top left inset highlights the anomaly at the peak. The blue dots and line

indicate the data and model seen from Spitzer, respectively. The figure is modified from Street

et al. (2016).

Therefore, in the case that the lens is a planetary system, we can obtain the
planetary mass, MP, and projected separation, r⊥. Assuming the inclination of
the planetary orbit and the phase of the planet is totally random, the probabil-
ity distribution of the projected separation r⊥ given by a planet with the actual
separation a is

p(r⊥) =
r⊥
a2

(
1 − r2⊥

a2

)−1/2

(2.43)

and its median value is
√

3/2 a ≃ 0.87 a (Gould & Loeb 1992). From this formula,
we can calculate the probability distribution of the actual separation a from the
derived r⊥.

Space parallax and terrestrial parallax

In addition to the parallax effect due to the Earth’s motion described above, we
can obtain the same physical quantity πE by conducting simultaneous observa-
tions from the Earth and space. This is because the geometry of a microlensing
event depends on the direction of the line of sight, which indicates that an event
can be observed with a different peak time and a different magnification at the
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peak depending on the location of the observatory. When the separation between
the Earth and the satellite is projected toward a target D⊥ is comparable to r̃E
(typically ∼ AU), the impact parameter u0,⊕ and the corresponding time t0,⊕ from
the Earth diverge from those parameters measured from the separated satellite
u0,sat and t0,sat. The microlens parallax vector is then given by

πE =
AU

D⊥

(
∆t0
tE

,∆u0

)
, (2.44)

where ∆t0 = t0,sat − t0,⊕ and ∆u0 = u0,sat − u0,⊕. Note that the observed tE can
also be different because of the difference between the transverse velocities of the
Earth and the satellite, but usually the difference is negligible compared with the
uncertainty. Over one hundred events - including single and binary lens events
- have been simultaneously observed by ground-based telescopes and the Spitzer
telescope (Yee et al. 2015, Zhu et al. 2017b). Figure 2.12 shows an example of
a light curve simultaneously observed from the Earth and the Spitzer satellite,
OGLE ‒ 2015 ‒ BLG ‒ 0966 (Street et al. 2016).

For an extremely high-magnification event, typically Amax
>∼ 1000, the peak of

the event becomes extremely sharp, and thus we can measure the u0 and t0 very
precisely if we can densely observe the peak of the light curve . In such an event,
the differences between ∆t0 and ∆u0 can be observed even among observatories
at different places on the Earth, and thus, the microlens parallax vector πE is
also measurable, which is called the terrestrial parallax effect. This effect has only
been observed in two events so far, OGLE-2007-BLG-224 (Gould et al. 2009) with
Amax ≃ 2500 and OGLE-2008-BLG-279 (Yee et al. 2009) with Amax ≃ 1600.

2.3 Observable Fluxes

In the above sections, the observable parameters from the variation of magnifi-
cation have been described. In practice, what we observe is the flux from the
target,

F (t) = A(x, t)FS + Fb, (2.45)

where A(x, t) is the model of magnification variation as a function of time, and
FS and Fb are the unmagnified source flux and the blending flux, respectively.
Therefore, FS and Fb are also the fitting parameters - in addition to x = (t0, tE, u0)
for a single lens event, or x = (t0, tE, u0, q, s, α) for a binary lens event. FS and Fb

can be easily determined by a linear fit to the observed flux F (t), once a model of
magnification variation A(x, t) is given.

If the light curve data of an event is obtained in multi-bands, the source color
information, in addition to its magnitude, can be found by the linear fitting of each
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Figure 2.13: Three mass–distance relations. The red solid, blue dashed, and black dotted

lines are from θE , πE and FL, corresponding to Equations (2.35), (2.38) and (2.46), respectively.

Here, the angular Einstein radius, microlens parallax, and the magnitude of the lens flux in the

H-band are assumed to be θE = 1.15 mas, πE = 0.24, and HL = 17.51 mag, respectively. The

source distance is fixed at DS = 8 kpc.

of the light curves in different bands. This is because the magnification A(x, t)
does not depend on the wavelength. Having magnitude and color information
about the source star roughly indicates its spectral type and the distance to the
source star, which are related to the angular radius of the source star, θ∗. In
practice, an empirical relation between the angular radius of a star and its color
and magnitude is used to estimate θ∗ (Kervella et al. 2004, Boyajian et al. 2014).
Although our interest is usually in the lens system, this information is important to
obtain the angular Einstein radius, θE, as described in the next section. Therefore,
it is desirable to observe an event through a multi-band filter.

It should be noted that the blending flux, Fb, can be informative about the
lens property, because it includes the flux from the lens. If we can determine the
lens flux, FL, it also provides a mass–distance relation of the lens, in addition to
the other two relations of Equations (2.35) from θE and (2.38) from πE. This
is because the mass-luminosity relation Lλ(M) of a star for various pass bands
of λ is well studied, both theoretically and observationally (Bressan et al. 2012,
Delfosse et al. 2000). Thus, the measured lens flux - corrected for extinction - gives
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a mass–distance relation,

FL,λ =
Lλ(ML)

4πD2
L

(2.46)

when the ML is dominated by a primary star. The three mass–distance relations of
Equations (2.35), (2.38) and (2.46) are plotted in Figure 2.13. In ∼ 70% of plane-
tary events so far, the parallax measurement is not known, and thus the lens mass
cannot be determined solely from the light curve. Therefore, the measurement of
FL is very important to calculate a mass measurement for such events, and also to
confirm the parallax and the finite source measurement for other events. However,
with limited seeing observations toward the Galactic bulge, the blending flux Fb

is usually dominated by the brightness from unrelated ambient stars, and the lens
flux FL cannot be resolved. This is because typically more than two bright bulge
main sequence stars exists per seeing disk with the full width at half maximum
(FWHM) of ∼1 arcsec. Therefore, we usually use Fb just as an upper limit of
the lens flux (Koshimoto et al. 2014). But, with high angular resolution imag-
ing by a large, ground-based telescope with adoptive optics (AO), or the Hubble
Space Telescope (HST), the contribution from ambient stars can be dramatically
reduced, and the blending flux can be used as a strong constraint on the lens prop-
erty (Batista et al. 2014, 2015, Bennett et al. 2015, Fukui et al. 2015, Koshimoto
et al. 2017a,b). The blending flux from AO or HST observations is referred to
as the “excess flux” throughout this thesis, and this is a key word of the work in
Chapters 3 and 4.

2.4 Practical Application

The two main requirements for exoplanet search via microlensing are “large field of
view (FOV)” and “high cadence” observations. This is because, firstly, microlens-
ing is an extremely rare phenomenon, one event per 106 stars, even toward a dense
field of the Galactic bulge, and secondly, because the anomaly due to a planet is
very short - typically a few days for a Jupiter-mass planet, and a few hours for an
Earth-mass planet.

2.4.1 First Generation: Survey and Follow-Up

To overcome the two requirements, Gould & Loeb (1992) proposed a strategy
two decades ago - even before the first detection of an exoplanet - consisting
of two stages. In the first stage, telescopes with a wide FOV camera monitor
millions of stars, reduce the images, and check the light curves in real time, to
find new microlensing events as soon as possible. Note that the original paper
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Figure 2.14: Light curve of a high-magnification planetary event OGLE-2005-BLG-071. The

top right inset shows the source trajectory, which passed near the central caustic. This figure is

modified from Dong et al. (2009a).

33



assumed ∼ 0.5 deg2 FOVs, which covers the entire bulge twice per night, as the
survey observation. In the second stage, follow-up groups, which have many small
telescopes in different time zones, pick good candidates from the catalogue of events
based on their criteria, and conduct intensive observations toward the selected
targets to catch the short planetary signal.

This strategy worked well and led the early stage of exoplanet search via mi-
crolensing, especially for high-magnification events (Gould et al. 2006, Gaudi et
al. 2008, Dong et al. 2009b, Gould et al. 2010). As described in Section 2.1.3, the
central caustic always appears near the primary lens for planetary events. Thus,
a high-magnification event (u0

<∼ 0.01) has a very high sensitivity to a planet if
the peak of the event is densely covered. Figure 2.14 shows the light curve of a
high-magnification planetary event OGLE-2005-BLG-071. Two follow-up groups
of the Microlensing Follow Up Network (µFUN) and RoboNet started their follow-
up observations before the peak where the anomaly occurred, because this event
was predicted to become a high-magnification event by real-time fitting using the
data of survey groups. This mode of search is classified as the first-generation
microlensing search (Gaudi et al. 2009, Gaudi 2012).

2.4.2 Second Generation: Survey with Large FOV Camera

Currently, a large fraction of planetary microlensing events have been discovered
and characterized by survey data alone (Yee et al. 2012, Shvartzvald et al. 2014,
Koshimoto et al. 2014, 2017a, Bond et al. 2017) as technology has developed, and
thus the number of telescopes equipped with very large FOV (> 1 deg2 ) cam-
eras for the microlensing survey has increased, which corresponds to the second-
generation survey mode.

The Microlensing Observations in Astrophysics (MOA; Bond et al. 2001, Sumi
et al. 2003) group first started a microlensing survey with very wide FOV cameras
in 2005. They use the 2.2 deg2 FOV MOA-cam3 (Sako et al. 2008) CCD camera
mounted on the 1.8 m MOA-II telescope at the Mt. John University Observatory
in New Zealand. Figure 2.15 shows their survey field toward the Galactic bulge.
The large FOV camera is capable of observing the entire ∼50 deg2 sky area with
a 30-min cadence, on average. They alert the community about 600 microlensing
events per year.

The Optical Gravitational Lensing Experiment group (OGLE; Udalski 2003)
has been conducting a microlensing survey with the 0.34 deg2 FOV OGLE-III dur-
ing 2001-2009, and upgraded their camera to the 1.4 deg2 FOV OGLE-IV camera
in 2010 (Udalski et al. 2015a). They now discover more than 2000 microlensing
events per year, with the camera mounted on the 1.3 m Warsaw telescope at the
Las Campanas Observatory, Chile.

In 2015, the Korean Microlensing Telescope Network (KMTNet; Kim et al.
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Figure 2.15: MOA-II observation fields toward the Galactic bulge. A mark in each field

corresponds to the cadence of the field shown on the bottom right, which is determined based

on the event rate of each field.

2016) also started their survey observations. The KMTNet has three 1.6 m tele-
scopes at the Cerro Tololo Interamerican Observatory (CTIO) in Chile, the South
African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring
Observatory (SSO) in Australia, each of which has a 4 deg2 FOV camera mounted.
Their survey, by globally distributed three telescopes with 4 deg2 FOV cameras, is
solely capable of round-the-clock monitoring of microlensing events with a 10-min
cadence through a few months in the mid-bulge season, as long as the weather is
clear.

Now, the equipment requirements for second-generation microlensing surveys
are Fulfilled, and the number of planet detections is predicted to increase over the
next few years.
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Figure 2.16: HST image of OGLE-2005-BLG-169, which is taken 6.5 years after the discovery

of the event. The lens and the source are so separated that the target is elongated. The figure

is modified from Bennett et al. (2015).

2.4.3 High Resolution Follow-Up Observation

Another kind of follow-up observation has been conducted for planetary microlens-
ing events, not to cover the planetary signal in the light curves, but to determine
the lens flux FL. As described in Section 2.3, this kind of observation requires high
angular-resolution imaging, typically with the FWHM of < 0.2 arcsec to reduce
the contamination probability, which is only achievable by using AO observation or
observation from space. The lens-source relative proper motion is typically µrel =
1 - 10 mas yr−1. Thus, the information obtained from the high angular-resolution
imaging is different depending on the time when the observation is conducted.

If we observe a planetary event when the angular separation between the lens
and the source is typically larger than ∼ 20 mas (this value depends on fluxes of
the source and the lens), we can see that the target is elongated, in addition to the
brightness information. Bennett et al. (2015) and Batista et al. (2015) observed a
planetary event OGLE-2005-BLG-109 with µrel ∼ 7.4 mas yr−1 6.5 years and 8.2
years after the discovery of the event by HST and Keck, respectively. The target
was elongated in the HST image (see Figure 2.16) and was separated (i.e., the
lens is resolved) in the Keck image. They derived the relative proper motion value
from each of the elongations, and confirmed the value from the finite source effect
in the light curve observations, as well as the lens mass measurement of ML =
0.69±0.02M⊙ (Bennett et al. 2015) and ML = 0.65±0.05M⊙ (Batista et al. 2015)
by combining the lens flux FL from their observation and the angular Einstein
radius θE from the finite source effect. In other words, the object, elongated from
the source, can be confirmed as the lens (or a lens companion) by comparing the
two independent relative proper motion measurements in this case.
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On the other hand, if the images are taken without a sufficient interval from
the magnification, the target is not elongated, and thus the information included
is only about its brightness. As described in Section 2.3, the excess flux Fexcess

is obtained in this case by subtracting the source flux FS from the target flux.
Sometimes there is no excess when the lens is too faint compared to the quadrature
sum of the source flux and the target flux uncertainties. In that case, a stronger
upper limit can be put on the lens flux than that from the blending flux Fb (Sumi
et al. 2010, 2016, Bennett et al. 2014). When there is a significant detection of
the excess flux, it - or some part of it ‒ can be used as the lens flux, after a
careful consideration of the contamination probability in the excess. A number
of previous studies have considered the probabilities that observations of excess
flux might be contaminated by excess flux due a star, or stars, other than the lens
star (Janczak et al. 2010, Batista et al. 2014, Fukui et al. 2015). The analysis of
OGLE-2012-BLG-0950 in Chapter 3 follows their method, but a different approach
is used for the analysis of MOA-2016-BLG-227 in Chapter 4. This is because the
previous approach has a problem, which is explained in Chapter 5.

2.4.4 Third Generation: Survey from Space

An final generation of the microlensing search is a survey from space. It has many
decisive advantages compared with ground-based survey, even with a 1-m telescope
(Bennett & Rhie 2002);

1. Continuous monitoring is possible without any gap due to weather or day-
time;

2. The accuracy of photometry is much better and more stable because there
is no sky background and also little blending effect, which results in its
potential to detect sub-Earth mass planets;

3. It is easy to detect the lens flux because all images correspond to high-angular
resolution imaging;

4. Concurrent observations with ground-based telescope can measure the space
parallax.

The Wide-Field InfraRed Survey Telescope (WFIRST, Spergel et al. 2015) was
selected as the top priority for a large space mission in the 2010 Astronomy and
Astrophysics Decadal Survey. The mirror size of its current design is 2.4 m, and
the observation will start in 2020s. A total 432 days (72 days × 6 bulge seasons) of
microlense surveying is currently planned, which is expected to detect about 3000
planets including ∼ 100 that are Earth-sized. Figure 2.17 shows its simulated
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Figure 2.17: Sensitivity of Kepler survey (red shaded region) and of WFIRST survey (blue

shaded region) for exoplanets (Spergel et al. 2013). Objects in the solar system, the Moon,

Ganymede and Titan as well as the eight planets, are also shown. The red points are Kepler

candidates of planets, while the blue points are simulated detections by WFIRST.

exoplanet detections (Spergel et al. 2013). WFIRST is sensitive to all the solar
planets except for Mercury. The covered region is complementary to the region
surveyed by Kepler, and together they can cover almost all area of the parameter
space shown, which will enable the study of the entire population of exoplanets
comprehensively.

Three campaigns of continuous observations by space telescopes will have been
completed before the WFIRST era. The first one is the Spitzer microlensing cam-
paign (Yee et al. 2015, Calchi Novati et al. 2015, Zhu et al. 2015, 2017b). This is
not a survey observation, but a kind of follow-up observation. Some candidates are
selected based on their criteria (Udalski et al. 2015b) from ongoing events, and are
observed by Spitzer to detect the space parallax. Over 100 events - including some
planetary events (Udalski et al. 2015b, Street et al. 2016, Shvartzvald et al. 2017b,
Ryu et al. 2017) - have been observed through this campaign, and their microlens
parallax has been detected. Recently, Shvartzvald et al. (2017b) measured the
lens mass of OGLE-2016-BLG-1195 by combining the finite source effect and the
space parallax. They revealed that the lens system consists of a Mp = 1.43+0.45

−0.32M⊕
planet orbiting a Mh = 0.078+0.016

−0.012M⊙ ultra-cool dwarf, which is the lowest-mass
microlensing planet so far. The second and third campaigns are K2 Campaign 9
(K2C9, Henderson et al. 2016) and K2 Campaign 11 (K2C11). These campaigns
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also aim to detect the space parallax using the Kepler satellite, but they are es-
pecially focused on the first mass determination of a free-floating planet (Sumi et
al. 2011, Mróz et al. 2017). However, Kepler’s huge pixel scale of 4 arcsecs/pixel
makes the photometry of microlensing events challenging, because over 20 bright
stars are blended into a pixel on average. Recently Zhu et al. (2017a) provided
the first method to extract microlensing light curves from the K2C9 data. Zhu
et al. (2017c) used the method for the K2C9 photometry of a single lens event,
MOA-2016-BLG-290, and revealed that the lens has a very low mass of 77+34

−23MJ

and is located at 6.8 ± 0.4 kpc, by combining light curves from three separated
locations - the Earth, Spitzer and Kepler. However, the first mass measurement
of a free-floating planet has not been reported yet.
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Chapter 3

OGLE-2012-BLG-0950Lb: First
Planet Mass Measurement from
Only Microlens Parallax and Lens
Flux

We report the discovery of a microlensing planet OGLE-2012-BLG-0950Lb with
the planet/host mass ratio of q ≃ 2 × 10−4. A long-term distortion detected in
both MOA and OGLE light curve can be explained by the microlens parallax due
to the Earth’s orbital motion around the Sun. Although the finite source effect is
not detected, we obtain the lens flux by the high-resolution Keck AO observation.
Combining the microlens parallax and the lens flux reveal the nature of the lens:
a planet with mass of Mp = 35+17

−9 M⊕ is orbiting around an M-dwarf with mass of
Mhost = 0.56+0.12

−0.16M⊙ with a planet-host projected separation of r⊥ = 2.7+0.6
−0.7 AU

located at DL = 3.0+0.8
−1.1 kpc from us. This is the first mass measurement from

only microlens parallax and the lens flux without the finite source effect. In the
coming space observation-era with Spitzer, K2, Euclid, and WFIRST, we expect
many such events for which we will not be able to measure any finite source effect.
This work demonstrates an ability of mass measurements in such events.

3.1 Introduction

Gravitational microlensing is a technique by which planets can be detected without
measurements of light from the host star (Mao & Paczynski 1991, Gould & Loeb
1992, Gaudi 2012). Microlensing can detect planets that are difficult to detect
by other methods such as planetary systems in the Galactic Bulge (e.g., Batista
et al. 2014), planets around late M-dwarfs or brown dwarfs (Bennett et al. 2008,
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Sumi et al. 2016), and even free-floating planets not hosted by any stars (Sumi et
al. 2011). Compared to other techniques, microlensing is sensitive to Earth mass
planets (Bennett & Rhie 1996) orbiting just outside of the snow line where the
core accretion theory (Ida & Lin 2004) predicts is the most active planet formation
region. Microlensing observations so far have revealed a population of planets
beyond the snow line (Gould et al. 2010, Sumi et al. 2010, Cassan et al. 2012,
Shvartzvald et al. 2016, Suzuki et al. 2016). Suzuki et al. (2016) finds a steeper
slope with dN/d log q ∼ q−0.9 and a break (and possible peak) in the mass ratio
function at q ∼ 1.0×10−4. We are capable of studying the distance distribution of
planets in our Galaxy via microlensing. Penny et al. (2016) suggests the possibility
of a lack of planets in the Galactic bulge. The detection of extra solar planets by
gravitational microlensing presents a number of challenges.

Firstly, gravitational microlensing is an extremely rare phenomenon with a
probability of one per one million stars and a planetary deviation lasts for only
hours or a few days. For these reasons, microlensing observations for exoplanets
are conducted toward the Galactic bulge, the most crowded field in our Galaxy.
Whereas hundreds of planets are detected by the radial velocity (RV) method
(Butler et al. 2006, Bonfils et al. 2013) and thousands of planetary candidates are
detected by the Kepler telescope (Borucki et al. 2010) to date, the microlensing
method has been used to detect about 50 exoplanets so far.

Measuring the mass of a lens ML and distance to the lens system DL is challeng-
ing. There are three observables in microlensing which can yield a mass–distance
relation of the lens system: the angular Einstein radius θE, the microlens paral-
lax πE and the lens flux. The first one and second one yield each mass–distance
relation by combining a relationship between them;

ML =
θE
κπE

(3.1)

with the definitions of πE, πE ≡ πrel/θE, where κ is a constant and πrel ≡ AU(1/DL−
1/DS). One can calculate the mass and distance of the lens system if we can mea-
sure any two of these quantities. We can measure θE in the following manner.
Included in most models explaining planetary microlensing light curve data is the
source star radius in units of θE: ρ ≡ θ∗/θE. By estimating the angular radius of
the source star, θ∗, by an analysis of the source star’s color and magnitude, and
using our modeled value of ρ, we arrive at an estimate of θE. Microlens parallax
can be observed only in relatively rare events and lens flux measurements need
follow-up observations with high resolution imaging by an 8-m class telescope.
Therefore, only half of planetary events published so far are detected with lens
mass measurements and masses of the other half planetary systems are just given
their probability distributions by a Bayesian analysis (e.g., Beaulieu et al. 2006;
Bennett et al.2014; Koshimoto et al.2014; Skowron et al 2015).
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In the microlensing planetary events published so far, there are events with
the mass measurements from the angular Einstein radius and microlens parallax
(e.g., Bennett et al. 2008; Gaudi et al. 2008; Muraki et al. 2011), from the an-
gular Einstein radius and the lens flux (e.g., Bennett et al. 2006; Batista et al.
2015; Bennett et al. 2015), and from all three relations (e.g., Dong et al. 2009a;
Bennett et al. 2010; Beaulieu et al. 2016; Bennett et al. 2016), but events with
mass measurement from only microlens parallax and the lens flux have not been
published to date. This is simply because the angular Einstein radius is observed
much commonly than microlens parallax as mentioned above. However, it has
been possible to measure precise microlens parallax by observing simultaneously
from space and ground thanks to the Spitzer microlensing campaign (Calchi No-
vati et al. 2015, Udalski et al. 2015b, Yee et al. 2015, Zhu et al. 2015). Also, K2
campaign 9 (K2C9), started in April 2016, has surveyed the Galactic bulge for
three months to date. By combining K2C9 data and ground-based survey data,
it is expected to measure microlens parallax for more than 120 events (Henderson
et al. 2016). These next generation space- and ground-based simultaneous obser-
vations for microlensing can measure microlens parallax almost regardless of the
event timescale. Microlens parallax should become a more common observable
rather than the angular Einstein radius in coming next generation, thus, the mass
measurement without the angular Einstein radius should be important (Yee 2015).

This paper reports an analysis of a microlensing planetary event OGLE-2012-
BLG-0950, which is the first event where a mass measurement is possible from only
the measurements of the microlens parallax and lens flux. The survey observations
of this event are described in Section 3.2. Section 3.3 explains our data reduction
procedure. Section 3.4 shows our modeling results. We show the constraint on the
angular Einstein radius by the source angular radius derived from the color and
light curve modeling in Section 3.5. We describe our Keck observations and the
constraints on the excess flux in Section 3.6. We also calculate the probability of
the contamination to the excess flux in the section. In Section 3.7, we derive the
lens properties by combining microlens parallax and the lens flux. Finally, Section
3.8 discusses and concludes the results of this work.

3.2 Observations

Microlensing event OGLE-2012-BLG-0950 was discovered and alerted by the OGLE
Early Warning System (EWS) on 21 June 2012 (HJD′ ≡ HJD - 2450000 ∼
6100) as a new event located at (R.A.,Dec.)J2000 = (18:08:04.62, -29:43:53.7) or
(l, b) = (1.765◦,−4.634◦). Another survey group, MOA, independently found the
event and alerted that as MOA-2012-BLG-527 on 9 August 2012. The observa-
tions by OGLE were conducted on the I-band and V -band and the observations
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Table 3.1: Data and parameters for our modeling.

Dataset Number of data k emin uλ

OGLE I 1275 1.365 0 0.5470
OGLE V 81 1.576 0 0.7086
MOA-Red 6324 0.981 0 0.5895

B&C I 382 1.017 0.00611 0.5470

by MOA were conducted by the custom MOA-Red filter which is similar to the
sum of the standard Cousins R- and I-band filters. MOA also observed the event
in the I-band using the B&C telescope, a 61 cm telescope for follow-up observation
at the same site. The observed light curve is shown in Figure 3.1.

The anomaly part of this event appeared as a small dip around HJD′ ∼ 6149
mainly in the MOA data. The MOA-II telescope observed the anomaly with the
47-min cadence as the regular survey mode. Because the anomaly was very short,
∼1 day, and started after the last OGLE observation, we could not increase the
cadence nor issue the anomaly alert in a timely manner. Nevertheless, the normal
cadence is enough to reveal the perturbation caused by planet. The OGLE data
with a cadence of once per night until the anomaly, are also very important for
the characterization of this event. In particular, the OGLE data shows us that
the dip had not started by HJD′ ≃ 6147.6, had commenced by HJD′ ≃ 6148.6 and
had almost ended by HJD′ ≃ 6149.6.

This event does not cross any caustic curves and, unfortunately, MOA could not
obtain data on HJD′ ∼ 6148, which corresponds to the start of the anomaly owing
to bad weather. Because of these factors, we have no data on a steep gradient of
magnification in this event, thus we cannot detect a significant finite source effect.
In addition, we took AO images of the target in the year following the discovery,
using the Keck telescope. We describe the details of the Keck observations and
the analysis in Section 3.6.

3.3 Data reductions

Our data-sets for the modeling below consist of 1275 OGLE I-band data points,
81 OGLE V -band data points, 6324 MOA-Red data points and 382 B&C I-band
data points.

The OGLE data were reduced by the OGLE Difference Image Analysis (DIA)
photometry pipeline (Udalski 2003). The centroid of the catalogued star near
the event, which is used for PSF photometry in the standard OGLE pipeline, is
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Figure 3.1: Light curve of OGLE-2012-BLG-0950 with the best-fitting models indicated in the

top left. The top panel shows the whole event, the bottom left and the bottom right panels

highlight the planetary anomaly and the light curve from the end of 2012 to the start of 2013,

respectively. The residuals from the Standard close model are shown in the bottom insets of the

bottom panels.

significantly different from that of actual event on the difference image. So, we
rerun the PSF photometry with the real centroid for the event manually to obtain
more accurate photometry.

The images taken by the MOA-II telescope and the B&C telescope were reduced
by the MOA DIA pipeline (Bond et al. 2001). In the crowded stellar field images
of the Galactic bulge, the precision of photometry is very sensitive to seeing. We
found a systematic photometry bias correlated with the seeing value in the MOA-
Red data. We reduced this systematic error by modeling it with a polynomial of
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seeing and airmass by using the baseline;

Fcor = a0 + a1 JD + a2 airmass + a3 airmass2 + a4 seeing + a5 seeing2

+ a6 tan z cosϕ + a7 tan z sinϕ + a8 airmass tan z cosϕ seeing

+ a9 airmass tan z sinϕ seeing + a10 airmass tan z cosϕ seeing2

+ a11 airmass tan z sinϕ seeing2 (3.2)

where z and ϕ are the elevation angle and parallactic angle of the target included
to correct the differential refraction, respectively. The Fcor is the additional flux
for the correction and the corrected flux Fnew is Fnew = Fcor + Fold, where Fold

is the original flux from the DIA pipeline. In the resulting photometry, the χ2

goodness-of-fit value for the time series of baseline is improved by ∆χ2 ∼ 0.07 per
data point.

The relative error of data points given by the photometry code are robust for
a given instrument. However, it is known that the absolutely value of uncertainty
are underestimated in such stellar crowded fields for various reasons in general.
Thus, we empirically normalize the errors in each data-set to estimate the proper
uncertainties of fitted model parameters. We used the formula presented in Yee
et al. (2012) for normalization, σ′

i = k
√
σ2
i + e2min where σi is the original error of

the ith data point in magnitudes, and the parameters for normalization are k and
emin. k and emin are adjusted so that the cumulative χ2 distribution as a function of
the number of data points sorted by each magnification of the preliminary best-fit
model is a straight line of slope 1. By including emin, we can correct the error bars
at high magnification, which can be affected by flat-fielding errors. But we found
unusually large emin values for the OGLE I and MOA-Red data (0.02 and 0.09
respectively) and the deviations from a straight line in cumulative χ2 distribution
mainly arose from baseline data points, i.e., not from high magnification data
points as expected. Thus, it is not reasonable to normalize errors with these values
and we adopt emin = 0 for these two data-sets. This may indicate that there is
some low-level systematics in the light curve. We apply emin = 0, k = 1.364 to
OGLE I, emin = 0, k = 1.576 to OGLE V , emin = 0, k = 0.907 to MOA-Red
and emin = 0.0061, k = 1.021 to B&C I. The normalization factors applied for the
OGLE I and V data are consistent with those given by Skowron et al. (2016a).
Note that the final best fit model parameters are consistent with the preliminary
model parameters before the error normalization. Thus, this procedure of the error
normalization does not affect our main result. The parameters of these data sets
are also shown in Table 3.1.
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3.4 Modeling

Here we present and compare the light curve modeling with a standard binary lens
and adding the effects of parallax. We fit the light curves using a Markov Chain
Monte Carlo (MCMC) approach (Verde et al. 2003), with magnification calcula-
tions from image centered ray-shooting method (Bennett & Rhie 1996, Bennett
2010).

3.4.1 Standard binary lens

In the case of a point lens, the magnification map on the source plane is circu-
lar symmetric around the lens. In the point source point lens (PSPL) case, we
can characterize the microlensing light curve with the time of the source closest
approach to the center of mass of the lens, t0, the minimum impact parameter
u0 at t0, and the Einstein radius crossing time (or timescale) tE = θE/µrel, where
u0 is in units of θE and µrel is the lens-source relative proper motion. When the
lens has a companion, its gravity distort the magnification map and create the
closed curves called as caustics where the magnification is infinite. In this case,
three parameters are added to the fitting parameters above; the mass ratio of two
lenses q and their angular separation normalized by θE, s, which determine the
shape and location of the caustics, and the source trajectory with respect to the
binary lens axis, α, which determines the direction of a one-dimensional slice of
the distorted magnification map. When a source star crosses a region with a steep
gradient near the caustics in the magnification map, we can observe the finite
source effect. Because source stars of most binary lens events cross such regions,
we include the source size ρ ≡ θ∗/θE as a fitting parameter for a binary lens model.
With the magnification variation against time, A(t,x), which is defined in terms
of the above parameters x = (t0, u0, tE, q, s, α, ρ), we can linearly fit

F (t) = fSA(t,x) + fb (3.3)

to a data set and obtain the instrumental source flux fS and the instrumental
blending flux fb for every telescope and pass-band.

We adopt a linear limb-darkening law with one parameter, uλ. According to
González Hernández & Bonifacio (2009), we estimate the effective temperature,
Teff ∼ 5500 K from the source color which is discussed in Section 3.5 and assumed
the solar metallicity. With Teff = 5500 K and assuming surface gravity log g =
4.0 cm s−2 and microturbulence parameter ξ = 1.0 km s−1, the limb-darkening
coefficients selected from Claret (2000) are uI = 0.5470 for OGLE I and B&C I,
uV = 0.7086 for OGLE V , and uMOA−Red = 0.5895 for MOA-Red which is the
average of standard I and R filters. Therefore, we used the uI for OGLE I and
B&C I, the uV for OGLE V and the mean of the uI and uR, 0.5895 for MOA-Red,
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the filter which has the range of both the standard I and R filters. Although
the best estimated value of Teff and the limb-darkening coefficients depend on the
source magnitude in each model, we keep using the fixed values. However, this
does not affect our final result because the finite source effect is very weak in the
light curve, as mentioned below. The limb-darkening coefficients we adopt are also
shown in Table 3.1.

We show the parameters of the best-fit models of our standard binary lens
modeling in Table 3.2, where the uncertainties shown are from 16th/84th percentile
values of stationary distributions given by MCMC. We find a degeneracy between
the close model of s < 1 and the wide model of s > 1 with ∆χ2 ≃ 0.7. There is
a well-known degeneracy in high magnification microlensing events between lens
systems with similar mass ratios, but separations s and 1/s. In microlensing events
suffering this degeneracy, the source star passes close to the central caustic which
has, in each of the degenerate solutions, a similar shape. However, in this event,
the close/wide degeneracy has a different nature, in terms of the caustic geometry.
A single resonant caustic is seen in the wide model with s = 1.007 while the caustic
curves are separated into central caustic and planetary caustics in the close model
with s = 0.890. As seen in Figure 3.2, it is understood that the gradients of
magnification on the source trajectories are similar in both models although the
caustic shapes are different. The mass ratios are q ≃ 2 × 10−4 in both models
indicating the companion has a planetary mass. We find that the finite source
effect is weak and the ρ value is consistent with ρ = 0 at the 1 σ level. Because
a larger ρ value reduces the dip depth in the light curve and does not explain the
data, we can place an upper limit on ρ.
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3.4.2 Parallax

In long timescale microlensing events, such as this one, the effect of Earth’s orbital
motion around the Sun may be detectable (Gould 1992, Alcock et al. 1995). This
effect is expressed by the microlens parallax vector πE = (πE,N, πE,E) = πE µrel/µrel

(Gould 2000a). Here, πE,N and πE,E are the north and east components of πE, re-
spectively, whose direction is same as lens-source relative proper motion. The
magnitude πE ≡ 1AU/r̃E, is defined by 1 AU relative to the Einstein radius pro-
jected onto the observer plane r̃E = REDS/(DS −DL).

We show our best-fit parallax models in Figure 3.1, 3.2 and Table 3.2. We found
each close and wide solutions has an additional degeneracy between u0 > 0(+) and
u0 < 0(−). These four degenerate solutions have ∆χ2 ≲ 4. The parameters of the
degenerate models are consistent with each other to within 1σ error except for s,
α and u0. The χ2 difference between the standard models and the parallax models
is significantly large, ∆χ2 > 110 for 2 dof difference.

It is known that low-level systematics in the baseline sometime mimic a high
order signal. We therefore check whether the ∆χ2 contributions come from where
we theoretically expect. The top inset in Figure 3.3 shows the cumulative distri-
bution for ∆χ2 between the standard close model and the parallax close+ model
as a function of time. Positive ∆χ2 values indicate that the parallax model is fa-
vored over the standard model. We find ∆χ2 ∼ 90 comes from the data during the
main peak of event in 2012 in both MOA and OGLE as expected, and ∆χ2 ∼ 25
comes from the data in 2013, the next year. The bottom right panel of Figure 3.1,
which is a zoom of the 2013 data, shows slight differences among the models, i.e.,
the parallax models have the magnification of ∼ 1.05 in the start of 2013 while
the standard models have ∼ 1.00. The bottom panel in Figure 3.3 shows binned
residuals in bins 25 days wide. This shows the clear long-term deviation from the
standard model. The binned data in the first half of 2013 are mostly above the
standard model in both MOA and OGLE whereas those in the other years are
not, which can be well explained by the parallax model. Because these long-term
distortion are consistent in both MOA and OGLE, we conclude that these long-
term signatures are real, and they are better explained by the parallax models
compared to the standard models. Note that adding lens orbital motion does not
improve our models. We also modeled the orbital motion of the source star due
to the companion, called xallarap effect, and conclude that the parallax scenario
is preferred over the xallarap scenario. See Tables 3.2 and 3.3 for the modeling
results, and more detail in the Appendix B. We consider only the parallax model
in the following sections.
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Figure 3.2: Caustics for the parallax models. The blue arrowed lines indicate the source

trajectories. The top left, top right, bottom left, and bottom right shows the parallax close+,

close−, wide+ and wide− models, respectively. A magnification map around the anomaly part

is shown in the inset of each panel.

50



Figure 3.3: Cumulative distribution of ∆χ2 between the Standard close model and the parallax

close+ model. Top inset shows the distribution and a positive ∆χ2 value indicates smaller χ2

value of the parallax close+ than that of the Standard close model. The second and third insets

from the top shows the light curve and the residuals from the standard model, respectively. The

bottom inset shows the residuals binned by 25 days for clarity.
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Figure 3.4: The OGLE-IV instrumental color-magnitude diagram of stars within 2′×2′ around

the source star. The source star and the mean of red clump giants are shown as the blue filled

circle and the red cross, respectively.

3.5 The Angular Einstein Radius

We can place an upper limit on ρ for the parallax models and a lower limit as
well for the xallarap models. It is possible to derive a constraint on θE = θ∗/ρ by
obtaining the angular source radius θ∗. θ∗ can be estimated from the source color,
(V − I)S, and the magnitude, IS, empirically. We used the empirical relation by
using a result of Boyajian et al. (2014) analysis,

log [2θ∗/(1mas)] = 0.5014 + 0.4197(V − I) − 0.2I. (3.4)

This relation comes from a private communication with them, which is restricted
to FGK stars with 3900 K < Teff < 7000 K and the accuracy of relation is better
than 2% (Fukui et al. 2015). We measured the source color and brightnesses (V −
I, I)S = (1.346, 19.29) ± (0.001, 0.03) with the OGLE-IV instrumental magnitude
from the light curve fitting. Note that because the source color and magnitudes are
nearly identical for all models (see Table 3.2), we adopt values of parallax close+
model in the following analysis. We correct their extinction following the standard
procedure by Yoo et al. (2004) using the red clump giants (RCG) as a standard
candle. Figure 3.4 shows a color-magnitude diagram (CMD) within the 2′ × 2′

region around the source star with the OGLE-IV instrumental magnitude. The
position of source and the measured RCG centroid (V − I, I)RC = (1.644, 15.27)±
(0.011, 0.04) are shown as blue dot and red cross, respectively. Comparing the
measured RCG centroid and the expected intrinsic position in this field (V −
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I, I)RC,0 = (1.06, 14.38) ± (0.07, 0.04) by Bensby et al. (2013) and Nataf et al.
(2013), we obtain the intrinsic source color and magnitude as (V − I, I)S,0 =
(0.76, 18.40) ± (0.07, 0.07) with the assumption that the source extinction is same
as that the RCG. Note that the original reddening and extinction values in the
standard magnitude in this field can be measured by the catalog of OGLE-III
photometry map (Szymański et al. 2011) as E(V − I) = 0.68 ± 0.07 and AI =
0.86 ± 0.06. We use these original values to obtain AH in Section 3.6. Applying
the intrinsic source color and magnitude to Equation (3.4), we obtain the angular
source radius as θ∗ = 0.69 ± 0.05 µas. From θ∗, ρ and tE, we can calculate the
angular Einstein radius θE and the lens-source relative proper motion µrel,

θE = θ∗/ρ > 0.22 mas, µrel = θE/tE > 1.2 mas/yr

for the parallax close+ model. Table 3.3 shows the derived parameters for all
degenerate models using each models’ values.
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Figure 3.5: Images of the event field observed by VVV (left) and by Keck II (right). The

indicated star is the target.

3.6 Excess Brightnesses from Keck AO Images

We have a mass–distance relation, the microlens parallax πE. If we can measure
the lens flux which gives us an additional mass–distance relation, we could measure
the mass and distance of the lens uniquely. We conducted high angular resolution
observations using adaptive optics in order to measure the lens flux excluding as
much flux from unrelated stars as possible.

3.6.1 Observations and the photometry

We observed OGLE-2012-BLG-0950 with the NIRC2 instrument on Keck II on
July 18, 2013. We used the Wide camera with a pixel scale of 0.04 arcsec. We took
15 dithered H frames with an exposure time of 30 seconds. We performed dark
and flatfield corrections in the standard way. Furthermore, OGLE-2012-BLG-0950
was observed as part of the VVV survey (Minniti et al. 2010) using the VISTA
4m telescope at ESO. We extracted 3 arcmin VVV JHK images centered on the
target. We used the suite of tools developed as part of astrOmatic (Bertin et al.
2002). We analyzed the PSF of the images using PSFEx, then we measured the
fluxes with SExtractor (Bertin & Arnouts 1996) using these PSF models. We cross
identified 2MASS stars with VVV sources, and derived an absolute calibration
of the VVV JHK images. We used the VVV images which we reprocessed as
a reference to perform an astrometric calibration of one Keck frame. We then
extracted the sources from this individual frame, and used them as a reference to
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realign all the Keck frames. We stacked the Keck frames with the SWARP tool
(Bertin et al. 2002). We then performed aperture photometry on the Keck frame
(for more details, see Batista et al. 2014). We cross identified common sources
between Keck and VVV, and finally derived the calibration constant for Keck H
band photometry.

Fig. 3.5 shows the field as observed by VVV and by Keck. First, we notice that
the source in VVV is resolved in 2 objects with Keck. Using the astrometry on
the amplified source, we are able to identify the source+lens of the microlensing as
being the star that is marked on the frame. Its coordinates are (R.A.,Dec.)J2000
= (18:08:04.620, -29:43:53.43). It has a Keck H band magnitude of

Htarget = 16.89 ± 0.02 (3.5)

in the 2MASS magnitude system. The blend to the south is at coordinates
(R.A.,Dec.)J2000 = (18:08:04.612, -29:43:53.88) and is slightly fainter at H =
16.99 ± 0.03.

3.6.2 The excess flux

Considering a full width at half maximum of the target FWHMtarget = 90 mas in
Keck image and the lens-source relative proper motion, Htarget includes the lens
flux plus the source flux. Here we derive the excess brightness by subtracting the
source system brightness, which can be used as the lens flux or its upper limit.
Hereafter we represent our derived values for only parallax close+ model as the
parallax model unless otherwise stated.

Unfortunately, we don’t have a light curve in the H-band, so we derived the
source H magnitude as HS,0 = 17.55±0.12 by converting the magnitude from (V −
I, I)S,0 with the color-color relation by Bessell & Brett (1988). Next, we applied
the E(V − I) and AI values derived in Section 3.5 and estimated the extinction
in H-band as AH = 0.25 ± 0.02 (Cardelli et al. 1989). The magnification at the
time of Keck observation of HJD′ = 6491.88 is A = 1.005 for the parallax model.
Thus, the source apparent H magnitude at the time is HS,KECK = 17.78 ± 0.12.
This value is converted to the 2MASS magnitude system from the Bessel & Brett
system using Equations (A1) - (A4) in Carpenter (2001). Subtracting this from
Htarget of Equation (3.5), we derive the excess brightness of

Hexcess = 17.52 ± 0.10. (3.6)

3.6.3 Probability of the contamination fraction f

We next consider the probability that part of the Hexcess come from stars not the
lens. To estimate the probability of the contamination fraction f , we consider
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the following three possible sources of contamination: unrelated ambient stars, a
companion to the source star and a companion to the lens star (Batista et al. 2014,
Fukui et al. 2015).

Unrelated ambient stars

First, we estimate the probability of contamination owing to unrelated ambient
stars. Counting the number of stars with H > Hexcess on the Keck image, we
estimate the number density of stars with brightnesses corresponding to 0 < f < 1
as 0.68 arcsec−2. Similarly, the number density of stars corresponding to 0.5 <
f < 1 and 0.9 < f < 1 are estimated as 0.11 arcsec−2, 0.01 arcsec−2, respectively.

We can resolve an ambient star only if it is separated from the source by
FWHM = 90 mas or more. Thus, the probability of contamination owing to
unrelated ambient stars within 90 mas around the source, Pamb, are Pamb(0 < f <
1) = 1.74%, Pamb(0.5 < f < 1) = 0.29% and Pamb(0.9 < f < 1) = 0.03%.

Companion to the source star

Second, we estimate the probability of contamination owing to a companion to
the source. Because we can detect a companion on the Keck images if the com-
panion is located far enough from the source and the light curve will be affected if
the companion is located close enough to the source, an undetectable companion
should be located between the two detection limits. We put the distant limit as 90
mas from the FWHM of the target. For the close limit, we consider aSC,low defined
in the following.

As we can find in the bottom inset in Figure 3.3, the OGLE I data in the light
curve is sensitive enough to a deviation with an amplitude of ∆A ≃ 0.1 and a
duration of hundreds of days. That means we can detect a binary source signal
when a companion to the source is magnified with an amplitude of ≳ 0.1fS and a
duration of hundreds of days. Such a small signal cannot be detected if they are
longer than 10tE ∼ 670 days. We assume that we can detect the signal caused by a
magnified companion to the source star when the time variation of the companion
flux is larger than 0.1fS within 10tE, that is, it requires

A(uC,0)fC − A
(√

52 + u2
C,0

)
fC ≤ 0.1fS (3.7)

to be ”undetected”, where 5 comes from half of ”10” tE and uC,0 and fC are the
impact parameter and the flux in I-band of the companion star, respectively.
A(uC) is the magnification when the companion is located at uC and we use
the magnification of single lens A(u) = (u2 + 2)/u

√
u2 + 4 as A(uC). Because
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A
(√

52 + u2
C,0

)
< A(5), we can express the condition more conservatively,

A(uC,0)fC − A(5)fC ≤ 0.1fS

⇔ uC,0 ≥ uC

(
1.00275 + 0.1

fS
fC

)
≡ uC,0,low. (3.8)

The uC,0,low is a lower limit of the impact parameter of the companion to be
undetected and it gives us a lower limit of the separation between the source and
the companion as sSC > sSC,low. When the time when the companion is located
at uC = uC,0 is defined as tC,0, it is possible to give the most conservative lower
limit as sSC > sSC,low ≡ |uC,0,low − |u0|| when tC,0 = t0 and the closest companion
crosses the same side as the source relative to the lens. Thus, we derive the lower
limit of the semi-major axis of the source system as aSC,low ≡ DSθEsSC,low.

To calculate uC,0,low in aSC,low, we obtain MI,C by converting MH,C = Hexcess −
2.5 log f−5 log (DS/10pc) to MI,C using PARSEC isochrones version 1.2S (Bressan
et al. 2012, Chen et al. 2014, 2015, Tang et al. 2014) with DS = 8kpc for the
calculation of fS/fC = 10−0.4(MI,S−MI,C) in Equation (3.8) where MI,S and MI,C

are absolute I magnitudes of the source and the companion.
Because aSC,low and θE vary with f , we calculate the probability of contamina-

tion owing to a companion to the source using following formula (cf. Fukui et al.
2015),

P (f1 < f < f2) = Fbinary ×
∫ f2

f1

Fac(f) × Fqc(f)df (3.9)

where Fbinary is the multiplicity of FGK-dwarfs, Fac(f) is the fraction of binaries
with a separation of aSC,low(f) < ac < 90mas × DS and Fqc(f)df is the fraction
of binaries with a mass ratio between qc(f) and qc(f + df). We derive MC(f)
from MH,C(f) using the PARSEC isochrones version 1.2S for the calculation of
qc(f). We use the distribution of parameters for FGK binaries by Raghavan et
al. (2010): Fbinary = 0.46 as the multiplicity, a log normal distribution with the
mean of logPc(days) = 5.03 and the standard deviation of σlogPc = 2.28 as the
period distribution and Figure 16 in the paper as the mass ratio distribution.
We apply the period distribution by converting ac to a period using Kepler’s 3rd
law. Then we obtain PSC(0 < f < 1) = 22.0%, PSC(0.5 < f < 1) = 3.2%,
PSC(0.9 < f < 1) = 0.7% for the parallax close+ model.

Companion to the lens star

Next, we estimate the probability for contamination owing to a companion to the
lens star. In this case, we again use Equation (3.9) to calculate the probability
because the lens mass, the distance to the lens and the companion mass values
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are dependent on the f value in addition to θE. However, the definition of Fac(f)
is different here. To place close limits on ac, we consider the shear given by a
hypothetical lens companion (Batista et al. 2014). Assuming that we can detect
the shear effect when the width of the central caustic created by the companion,
wc ≃ 4qc/s

2
c , is larger than the width of that by the planet, w, we can place a

detection limit as wc < w, where sc is the projected separation normalized by θE
between the host and a hypothetical companion of the lens. This inequality gives
us a close limit on ac.

Adopting 90 mas as the distant limit again, Fac(f) here is defined as the fraction
of binaries with a projected separation of 2

√
qc(f)/wθE(f)DL(f) < ac < 90mas×

DL(f) where w = 4q/(s−s−1)2 ≃ 0.016 ∼ 0.02 for the close models. We apply w =
0.02 to the wide model as well as the close model considering that the shear effect
by a hypothetical companion is almost equal to that for the close model because
the magnification map on the source trajectory for the wide models is almost same
as the close models. Note that uncertainties arising from any assumptions here do
not affect the results largely because they are too small compared to the range of
ac values we are considering.

We calculate qc(f) for each f value using isochrone models as well as the source
companion case. Because a primary of the lens can be either an M dwarf or FGK
dwarf depending on the f value, we use the distributions for FGK-dwarf binaries
by Raghavan et al. (2010) for Mprim(f) > 0.7 and that for KM-dwarf binaries by
Ward-Duong et al. (2015) for Mprim(f) ≤ 0.7. Ward-Duong et al. (2015) gives
Fbinary = 0.347 as the multiplicity, a log normal distribution with the mean of
log ac(AU) = 0.77 and the standard deviation of σlog ac = 1.34 as the distribution
of the projected separation and a mass ratio distribution that is flat for 0.2 < qc < 1
and 0 for qc < 0.2. Integrating Equation (3.9) with these distributions and the
detection limits, we derive PLC(0 < f < 1) = 13.7%, PLC(0.5 < f < 1) = 7.2%
and PLC(0.9 < f < 1) = 3.9% for the parallax close+ model.

Total probability of contamination

Finally, by summing the probabilities for the three sources mentioned above,
we can calculate the following total probabilities of contamination: P (0 < f <
1) = 37.4%, P (0.5 < f < 1) = 10.7%, P (0.9 < f < 1) = 4.6% assuming
the parallax close+ model. Therefore, the probabilities of the contamination
fraction not exceeding f shown in Table 3.3 can be calculated as P (f = 0) =
1 − P (0 < f < 1) = 62.6%, P (f ≤ 0.5) = 1 − P (0.5 < f < 1) = 89.3% and
P (f ≤ 0.9) = 1 − P (0.9 < f < 1) = 95.4% for the parallax close+ model. The
probabilities for all parallax models are shown in Table 3.3.
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Figure 3.6: Mass–distance relations for the parallax close+ model. The relations from MH,L

are shown in red, blue and green for a contamination fraction of f = 0, 0.5 and 0.9, respectively.

The dashed lines indicate 1 σ error including the uncertainty of the distance to the source, the

lens age and the lens metallicity in addition to the uncertainty of our measuring. Black lines are

the mass–distance relation come from πE.

3.7 Lens Properties

In this section, we constrain the lens properties from microlens parallax and the
lens flux. All results are summarized in Table 3.3.

We have two mass–distance relations for the parallax model. One is the lens
absolute magnitude,

MH,L = HL − AH,L − 5 log
DL

10pc
, (HL = Hexcess − 2.5 log (1 − f)) (3.10)

where f is the fraction of contamination flux to excess flux and AH,L is an extinction
for the lens located at DL and we adopted AH,L = AHDL/DS following to Fukui
et al. (2015). This is converted to a relationship between the host mass Mhost and
the distance DL by using isochrone models from the PARSEC isochrones, version
1.2S (Bressan et al. 2012, Chen et al. 2014, Tang et al. 2014, Chen et al. 2015).
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The other mass–distance relation is from the microlens parallax πE:

Mhost =
1

1 + q

πrel

κπ2
E

(3.11)

where κ = 8.144 mas M−1
⊙ and πrel = AU (1/DL − 1/DS).

Figure 3.6 shows these two relations for the parallax close+ model. Black lines
are the mass–distance relation come from πE. The red, blue and green lines indicate
the relation from MH,L for the case of f=0, 0.5 and 0.9, respectively. Dashed lines
indicate 1 σ errors and they include the uncertainty of the distance to the source
of DS = 8.0 ± 1.6 kpc, the lens age of < 13 Gyr and the lens metallicity of [Fe/H]
= −0.05 ± 0.20 in addition to the uncertainty of our measurements. We adopt
the metallicity distribution of nearby M- or late K-dwarf stars (e.g., Gaidos et al.
2014) for the metallicity. Note that the dependency on age is much weaker than
that on metallicity in the region of the parallax solution.

The region overlapping these two relations corresponds to the allowed solution.
For f = 0, the host mass is Mhost = 0.57+0.06

−0.10M⊙ and the distance is DL = 2.6+0.5
−0.7

kpc, and the planet mass is Mp = 35+10
−6 M⊕, its projected separation is r⊥ = 2.6+0.3

−0.5

AU and the three-dimensional star-planet separation is statistically estimated as
a = 3.1+1.5

−0.7 AU with a circular orbit assumption (Gould & Loeb 1992). From
this solution, we can calculate the angular Einstein radius and the relative lens-
source proper motion as θE = 1.09+0.16

−0.10 mas and µrel = 5.8+0.8
−0.6 mas/yr, respectively.

The solution of Mhost = 0.50+0.05
−0.09M⊙, DL = 2.9+0.6

−0.8 kpc for f = 0.5 is consistent
with that for f = 0 within 1σ. In addition, the solution for f = 0.9 is Mhost =
0.33+0.05

−0.08M⊙, DL = 3.6+0.6
−0.8 kpc. Our estimate for these contamination probabilities

is discussed in Section 3.6.3 and summarized also in Table 3.3.
In any case, the host star is an M/K dwarf and the planet is a Neptune/sub-

Saturn mass planet. All solutions of the other degenerate parallax models are
similar to these results as shown in Table 3.3. We present the mean value of the 8
parallax solutions with f = 0 and f = 0.5 without any weight as ”Mean” in Table
3.3. Here the contributions of solutions with f > 0.5 are negligible.

3.8 Discussion and Conclusion

We analyzed the microlensing event OGLE-2012-BLG-0950. A negative pertur-
bation in the microlensing light curve consistent with a low-mass planet was de-
tected (Abe et al. 2013). All the models we analyzed have a planetary mass ratio,
q ≃ 2 × 10−4. We could not detect a significant finite source effect because the
source did not cross any caustic, but detect a parallax signal. The parallax so-
lutions indicate a Neptune/sub-Saturn mass planet with mass of Mp = 35+17

−9 M⊕
around an M/K-dwarf host with mass of Mhost = 0.56+0.12

−0.16M⊙. We measured the
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Figure 3.7: Mass versus semi-major axis normalized by the snow-line of discovered exoplanets

so far. Here the snow line is estimated by the host star mass as ∼ 2. 7AU (M/M⊙) (Kennedy

& Kenyon 2008). The black and blue dots and red circles indicate planets found by the radial

velocity, transit and microlensing, respectively. The result of this work is indicated as the purple

circle. In microlensing planets, filled circles indicates that their masses are measured and open

circles indicate that their masses are estimated by a Bayesian analysis. Green letters indicate

solar system planets.
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lens mass by combining microlens parallax and the lens flux obtained by Keck AO
observations. This is the first case in which the lens mass was measured using only
microlens parallax and the lens flux.

The planet orbits outside of the snow line of the host star and has a mass be-
tween that of Neptune and Saturn, Mp = 35+17

−9 M⊕. Planets with this mass range
(intermediate mass, hereafter) are predicted to be rare inside the snow line, but to
be common like Neptune- or Saturn- mass planets outside the snow line according
to the core accretion theory (Ida & Lin 2004, Ida et al. 2013). A paucity of in-
termediate mass planets orbiting close to their metal-poor host stars is confirmed
(Beaugé & Nesvorný 2013). On the other hand, the predicted relative abundance
outside the snow line has not been confirmed yet. Figure 3.7 shows the distribu-
tion of the exoplanets1 discovered so far. The solution of our parallax model is
indicated as the purple filled circle located just around the valley of the bimodal
mass distribution histogram on the left side of the figure. Note that this distribu-
tion is not corrected for detection efficiency. Only a few intermediate mass planets
orbiting outside the snow line have been discovered by the RV and microlensing
methods. The parallax model of this work could be the second such intermedi-
ate mass exoplanet with mass measurement, following OGLE-2012-BLG-0026Lb
(Han et al. 2013, Beaulieu et al. 2016). The masses of other intermediate-mass
planets are estimated by Bayesian analysis (Miyake et al. 2011, Poleski et al. 2014,
Skowron et al. 2016b). However, the Bayesian estimates depend on the choice of
prior (Bennett et al. 2014, Skowron et al. 2015).

In a future space-based microlensing survey by WFIRST (Spergel et al. 2015)
and Euclid (Penny et al. 2013), in the survey of Campaign 9 of the K2 Mission
(Henderson et al. 2016) conducted from April 2016 to July 2016, or Spitzer mi-
crolensing campaign from 2014 (Yee et al. 2015), it is very important and easier
to determine the lens mass for each event by combining microlens parallax and
lens flux as pointed out by Yee (2015) for the following reasons. First, space- and
ground-based simultaneous observations are expected to obtain microlens parallax
for a significant fraction of events regardless of number of the lens bodies, in con-
trast to the finite source effect which can be obtained only by observing the peak
of high-mag event or caustic crossing. Second, for low-mass and nearby lenses,
the mass–distance relations derived from flux and from θE are partially degenerate
(see Figure 2 in Yee 2015 or Figure 7 in Fukui et al. 2015) although we can obtain
θE by the measurement of astrometric microlensing effects with the precision of
WFIRST (Gould & Yee 2014). Third, the cases without detection of θE like this
event are expected to increase even for planetary events because a higher precision
and higher cadence survey can detect more subtle planetary signals including cases
without crossing caustics (Zhu et al. 2014). Finally, it is possible to measure the

1http://exoplanet.eu
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lens fluxes even after the events by follow-up observations with high angular reso-
lution, and ultimately, WFIRST and Euclid can routinely measure the lens fluxes
as part of the survey observations. Our analysis for the parallax model is the first
demonstration of the mass measurement from only microlens parallax and the lens
flux, and thus, it has particular significance for the developing era of space-based
microlensing.
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Chapter 4

MOA-2016-BLG-227Lb: A
Massive Planet Characterized by
Combining Lightcurve Analysis
and Keck AO Imaging

We report the discovery of a microlensing planet — MOA-2016-BLG-227Lb —
with a large planet/host mass ratio of q ≃ 9 × 10−3. This event was located
near the K2 Campaign 9 field that was observed by a large number of telescopes.
As a result, the event was in the microlensing survey area of a number of these
telescopes, and this enabled good coverage of the planetary light curve signal. High
angular resolution adaptive optics images from the Keck telescope reveal excess
flux at the position of the source above the flux of the source star, as indicated by
the light curve model. This excess flux could be due to the lens star, but it could
also be due to a companion to the source or lens star, or even an unrelated star. We
consider all these possibilities in a Bayesian analysis in the context of a standard
Galactic model. Our analysis indicates that it is unlikely that a large fraction of
the excess flux comes from the lens, unless solar type stars are much more likely
to host planets of this mass ratio than lower mass stars. We recommend that a
method similar to the one developed in this paper be used for other events with
high angular resolution follow-up observations when the follow-up observations are
insufficient to measure the lens-source relative proper motion.

4.1 Introduction

Gravitational microlensing is a powerful method for detecting extrasolar planets
(Mao & Paczynski 1991, Gould & Loeb 1992, Gaudi 2012). Compared to other
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detection techniques, microlensing is sensitive to low-mass planets (Bennett & Rhie
1996) orbiting beyond the snow line around relatively faint host stars like M dwarfs
or brown dwarfs (Bennett et al. 2008, Sumi et al. 2016), which is complementary
to other methods.

A difficulty with the microlensing method is the determination of the mass of
a lens ML and the distance to the lens system DL. If we have an estimate for
the angular Einstein radius θE and the microlens parallax πE, the mass is directly
determined by

ML =
θE
κπE

, (4.1)

where κ = 8.144 mas M−1
⊙ (Gould 1992, Gaudi et al. 2008, Muraki et al. 2011).

When the source distance, DS ∼ 8 kpc, is known, the distance to the lens is given
by

DL =
AU

πEθE + πS

, (4.2)

where πS ≡ AU/DS. However, the microlens parallax can be observed for a
fraction of planetary events, while the angular Einstein radius is observed for most
planetary events.

One strategy to estimate ML and DL for events in which microlens parallax
cannot be detected is to use a Bayesian analysis based on probability distributions
from a standard Galactic model (e.g., Beaulieu et al. 2006; Bennett et al. 2014;
Koshimoto et al. 2014; Shvartzvald et al. 2014). However, such an analysis
must necessarily make an assumption about the probability that stars of a given
mass and distance will host a planet. The most common assumption is that all
stellar microlens stars are equally likely to host a planet with the properties of the
microlens planet in question. It may be that the probability of hosting a planet of
the measured mass ratio and separation depends on the host mass or the distance
from the Galactic center. But, without mass and distance measurements, these
quantities are determined by our Bayesian prior assumptions. As a case in point,
Bennett et al. (2014) analyzed MOA-2011-BLG-262 and found a planetary mass
host orbited by an Earth-mass “moon” model had almost the same likelihood as a
star+planet model. But, since we have no precedent for such a rogue planet+moon
system, they selected the more conventional star+planet system as the favored
model. Also, the first discovered microlensing planet, OGLE-2003-BLG-235Lb,
was at first thought to be a giant planet orbiting an M dwarf with a mass of
M∗ ∼ 0.36M⊙ from a Bayesian analysis (Bond et al. 2004). Such a system is
predicted to be rare according to the core accretion theory of planet formation
(Laughlin et al. 2004, Kennedy & Kenyon 2008). Follow-up HST images revealed
a more massive host star with mass of M∗ = 0.63+0.07

−0.09M⊙ by detecting excess flux
in multiple passbands (Bennett et al. 2006).
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When we measure the lens flux with high angular resolution HST or adaptive
optics (AO) images (e.g., Bennett et al. 2006, 2007, 2015; Batista et al. 2015), we
can then calculate the lens mass ML using a mass-luminosity relation combined
with the mass–distance relation derived from θE measurement. High angular reso-
lution images are needed because microlensed source stars are generally located in
dense Galactic bulge fields where there are usually multiple bright main sequence
stars per ground-based seeing disk.

Because the size of the angular Einstein radius is <∼ 1 mas, and the lens-source
relative proper motion is typically µrel ∼ 6 mas/yr, it is possible that the lens and
source stars will remain unresolved even in high angular resolution images taken
within a few years of the microlensing event. In such cases, there will be excess
flux above that contributed by the source star and this excess flux must include
the lens star flux. Some studies (Batista et al. 2014, Fukui et al. 2015, Koshimoto
et al. 2017a), which detected an excess flux, have assumed that this excess flux
is dominated by the lens flux, and they have derived the lens mass under this
assumption.

With this method, it might seem that no assumptions are required regard-
ing the probability of the microlens stars to host planets, and there would be
no biases due to any inadequacies of the Galactic model used. However, Bhat-
tacharya et al. (2017) use HST imaging to show that the excess flux at the po-
sition of the MOA-2008-BLG-310 source is not due to the lens star, and Koshi-
moto et al. (2018, in preparation)have developed a Bayesian method to study the
possibility of excess flux from stars other than the lens star. Possibilities include
unrelated stars, and companions to the source and lens stars. They find that it
can be difficult to exclude all these contamination scenarios, especially for events
with small angular Einstein radii. In those cases where we cannot exclude the
contamination scenarios, we can again use a Bayesian analysis similar to the one
described above to estimate the probability distribution of the lens properties.
This means that we need to assume prior distributions for stellar binary systems
and the stellar luminosity function even when we have detected excess flux in high
angular resolution images. In cases where the lens properties are confirmed by a
measurement of the lens-source relative proper motion (Bennett et al. 2015, Batista
et al. 2015) or microlensing parallax measurements (Gaudi et al. 2008, Beaulieu
et al. 2016, Bennett et al. 2016), this contamination can be ruled out. Attempts
at lens-source relative proper motion measurements can also confirm contamina-
tion (Bhattacharya et al. 2017) in cases where the measured proper motion of the
star responsible for the excess flux does not match the microlensing light curve
prediction.

In this paper, we report the discovery of the planetary microlensing event MOA-
2016-BLG-227. Observations and data reduction are described in Sections 4.2 and
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4.3. Our modeling results are presented in Section 4.4. In Section 4.5, we model the
foreground extinction by comparing observed color magnitude diagrams (CMDs)
to different extinction laws and compare the results from the different extinction
laws. Then, we use the favored extinction law to determine the angular Einstein
radius, θE. In Section 4.6, we describe our Keck AO observations and photometry,
and we determine the excess flux at the position of the source. In Section 4.7, we
describe our Bayesian method to determine the probability that this excess flux
is due to lens star and various combinations of other “contaminating” stars. The
posterior probabilities for this MOA-2016-BLG-227 planetary microlensing event
are presented, and we consider the effect of different planet hosting probability
priors. Finally, we discuss and conclude the results of our work in Section 4.8.

4.2 Observations

The Microlensing Observations in Astrophysics (MOA; Bond et al. 2001, Sumi et
al. 2003) group conducts a high cadence survey towards the Galactic bulge using
the 2.2-deg2 FOV MOA-cam3 (Sako et al. 2008) CCD camera mounted on the
1.8 m MOA-II telescope at the University of Canterbury Mt. John Observatory
in New Zealand. The MOA group alerts about 600 microlensing events per year.
Most observations are conducted in a customized MOA-Red filter which is similar
to the sum of the standard Cousins R-and I-band filters. Observations with the
MOA V filter (Bessell V -band) are taken once every clear night in each MOA field.

The microlensing event MOA-2016-BLG-227 was discovered and announced by
the MOA alert system (Bond et al. 2001) at (R.A., Dec.)J2000 = (18:05:53.70, -
27:42:51.43) and (l, b) = (3.303◦,−3.240◦) on 5 May 2016 (HJD′ ≡ HJD - 2450000
∼ 7514). This event occurred during the microlensing Campaign 9 of the K2
Mission (K2C9; Henderson et al. 2016) and it was located close to (but not in)
the area of sky that was surveyed for the K2C9. This part of the K2 field that
was downloaded at 30-min intervals is known as the “superstamp.” Because this
event was so close to the superstamp, several other groups conducting observing
campaigns coordinated with the K2C9 observations also observed this event.

The Wise group used the Jay Baum Rich telescope, a Centurion 28 inch tele-
scope (C28) at the Wise Observatory in Israel, which is equipped with a 1 deg2

camera. The group monitored the K2C9 superstamp during the campaign with
six survey fields that were observed 3–5 times per night with the Astrodon Exo-
Planet BB (blue-blocking) filter. Although the MOA-2016-BLG-227 target was
just outside the K2C9 superstamp, it was still within the Wise survey footprint.

The event was also observed with the wide-field near infrared (NIR) camera
(WFCAM) on the UKIRT 3.8m telescope on Mauna Kea, Hawaii, as part of a
NIR microlensing survey in conjunction with the K2C9 (Shvartzvald et al. 2017a)
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Figure 4.1: The light curve data for MOA-2016-BLG-227 is plotted with the best-fit model. The

top panel shows the whole event, the bottom left and bottom right panels highlight the caustic

crossing feature and the second bump due to the cusp approach, respectively. The residuals from

the model are shown in the bottom insets of the bottom panels.
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survey. The UKIRT survey covered 6 deg2, including the entire K2C9 superstamp
and extending almost to the Galactic plane, with a cadence of 2–3 observations
per night. Observations were taken in H-band, with each epoch composed of
sixteen 5-second co-added dithered exposures (2 co-adds, 2 jitter points, and 2× 2
microsteps).

The Canada France Hawaii Telescope (CFHT), also on Mauna Kea, serendip-
itously observed the event during the CFHT-K2C9 Microlensing Survey. The
CFHT operated a multi-color survey of the K2C9 superstamp using the Megacam
Instrument (Boulade et al. 2003). The CFHT observations for the event were
conducted through the g-, r- and i-band filters.

The VLT Survey Telescope (VST) is a 2.61m telescope installed at ESO’s
Paranal Observatory, and it carried out K2C9 observations as a 99-h filler program
(Arnaboldi et al. 1998, Kuijken et al. 2002). Observations for such a filler program
could only be carried out whenever the seeing was worse than 1 arcsec or condi-
tions were non-photometric. The main objective of the microlensing program was
to monitor the K2C9 superstamp in an automatized mode to improve the event
coverage and to secure color-information in SDSS r and Johnson V passbands.
Due to weather conditions, Johnson V images were only taken in the second half
of the K2C9 survey, and therefore MOA-2016-BLG-227 is only covered by SDSS r.
The exact pointing strategy was adjusted to cover the superstamp with 6 point-
ings and to contain as many microlensing events from earlier seasons as possible.
In addition, a two-point dither was obtained to reduce the impact of bad pixels
and detector gaps. Consequently, some events, like MOA-2016-BLG-227, received
more coverage and have been observed with different CCDs.

Figure 4.1 shows the observed MOA-2016-BLG-227 light curve. MOA an-
nounced the detection of a light curve anomaly for this event on 9 May 2016
(HJD′ = HJD −2450000 ∼ 7518), and identified the anomaly as a planetary sig-
nal 4.5 h after the anomaly alert. Although MOA detected a strong planetary
caustic exit, the observing conditions were poor at the MOA observing site both
immediately before and after this strong light curve feature. Fortunately, the ad-
ditional observations from the Wise, UKIRT, CFHT and VST telescopes covered
the other important features of the light curve.

4.3 Data Reduction

Photometry of the MOA, Wise and UKIRT data were conducted using the offline
difference image analysis pipeline of Bond et al. (2017) in which stellar images
are measured using an analytical PSF model of the form used in the DoPHOT
photometry code (Schechter, Mateo, & Saha 1993).

Differential flux light curves of the CFHT data were produced from Elixir
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Table 4.1: Data and parameters for the modeling.

Dataset Number of data k emin uλ

MOA-Reda 1804 0.938 0 0.5585
MOA V 60 1.224 0 0.6822
Wise Astrodonb 44 1.267 0 0.6015b

UKIRT H 127 1.072 0.015 0.3170
CFHT i 77 1.673c 0.003 0.5360
CFHT r 77 3.028c 0 0.6257
CFHT g 78 2.105c 0 0.7565
VST-71 rd 193 1.018 0 0.6257
VST-95 rd 97 1.080 0 0.6257

Notes. Parameters k and emin are used for the error
normalization, and uλ is the limb darkening coefficient.

a Approximately Cousins R+ I.
b This filter blocks λ < 500 nm, and we use the limb darkening
coefficient uR to describe limb darkening in this filter.

c The CFHT error estimates were underestimated by a constant
factor of 1.54, resulting in larger values of the k parameters.

d These use the same SDSS r filter, but different detectors, numbers
71 and 95, respectively.

calibrated images1 using a custom difference imaging analysis pipeline based on
ISIS version 2.2 (Alard & Lupton 1998, Alard 2000) and utilizing an improved
interpolation routine2 (Siverd et al. 2012, Bertin & Arnouts 1996). Further details
of the CFHT data reduction will be presented in a future paper.

Since there is no public VST instrument pipeline, calibration images from
ESO’s archive were used and combined. Restrictive bad pixel masks were ex-
tracted to prevent inclusion of flatfield pixels with > 1 % nightly variation or with
> 10 % deviation from the average. The calibrated images were reduced with
the difference imaging package DanDIA (Bramich 2008), which uses a numeri-
cal kernel for difference imaging and the routines from the RoboNet pipeline for
photometry(Tsapras et al. 2009).

It is known that error bars estimated by crowded field photometry codes can be
under or overestimated depending on the specific details of event. The error bars
provided by the photometry codes are sufficient to find the best fit models, but
they do not allow a proper determination of the microlensing light curve model

1http://www.cfht.hawaii.edu/Instruments/Elixir/
2http://verdis.phy.vanderbilt.edu/
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parameter uncertainties. Therefore, we empirically normalize the error bars for
each data set. We used the formula presented in Yee et al. (2012) for normalization,
σ′
i = k

√
σ2
i + e2min where σi is the original error of the ith data point in magnitudes,

and the parameters for normalization are k and emin. The parameters k and emin

are adjusted so that the cumulative χ2 distribution as a function of the number
of data points sorted by each magnification of the preliminary best-fit model is a
straight line of slope 1.

The dataset used for our analysis and the obtained normalization parameters
are summarized in Table 4.1.

4.4 Modeling

The modeling of a binary-lens event requires following parameters: the time of the
source closest approach to the lens center of mass, t0, the impact parameter, u0,
of the source trajectory with respect to the center of mass of the lens system, the
Einstein radius crossing time tE = θE/µrel, the lens mass ratio, q ≡ Mp/Mhost the
separation of the lens masses, s, the angle between the trajectory and the binary
lens axis, α, and the source size ρ ≡ θ∗/θE. The parameters u0, s, and ρ are given
in units of the Einstein radius, and Mhost and Mp are the masses of the host star
and its planetary companion. With these seven parameters, we can calculate the
magnification as a function of time A(t). In the crowded stellar fields where most
microlensing events are found, most source stars are blended with one or more
other stars, so that we cannot determine the source star brightness directly from
images where the source is not magnified. Therefore, we add another set of linear
parameters for each data set, the source and blend fluxes, fS and fb, which are
related to the observed flux by F (t) = fSA(t) + fb.

When we include the finite source effect, we must consider limb darkening
effects. We adopt a linear limb-darkening law with one parameter, uλ, for each
data set. From the intrinsic source color, discussed in Section 4.5.1, we choose the
atmospheric parameters for stars with similar intrinsic color from Bensby et al.
(2013). This yields an effective temperature of Teff ∼ 5500 K, a surface gravity
of log [g/(cm s−2)] = 4.0, a metallicity of [M/H] = 0.0, and a microturbulence
velocity of ξ = 1.0 km s−1. We select the limb-darkening coefficients from the
ATLAS model by Claret & Bloemen (2011) using these atmospheric parameters.
We have uMOA−Red = 0.5585 for MOA-Red, uV = 0.6822 for MOA-V , uR = 0.6015
for Wise Astrodon, uH = 0.3170 for UKIRT H, ui = 0.5360 for CFHT i, ur =
0.6257 for CFHT r, VST-71 r and VST-95 r, and ug = 0.7565 for CFHT g. We
used the mean of the uI and uR values for the limb-darkening coefficients for
the MOA-Red passband. Here we adopted the R-band limb-darkening coefficient
for the Wise Astrodon data. As the Wise Astrodon filter is non-standard, our
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Figure 4.2: Caustic curve for the best-fit model. The blue arrowed line indicates the source

trajectory and the tiny blue circle on the caustic entry indicates the source size.

choice is not perfect. However, we note that even if we adopt u = 0 for the limb
darkening coefficient used with the Wise data, our χ2 value changes by only 1.5.
The limb-darkening coefficients are also listed in Table 4.1.

To find the best-fit model, we conduct a global grid search using the method
of Sumi et al. (2016) where we fit the light curves using the Metropolis algorithm
(Metropolis et al. 1953), with magnification calculations from the image centered
ray-shooting method (Bennett & Rhie 1996, Bennett 2010). From this, we find
a unique model in which the source crosses the resonant caustic. We show the
model light curve in Figure 4.1, the caustic and the source trajectory in Figure
4.2 and the best-fit model parameters in Table 4.2 along with the parameter error
bars, which are calculated with a Markov Chain Monte Carlo (MCMC) (Verde et
al. 2003).

We also model the light curve including the microlensing parallax effect due to
the Earth’s orbital motion (Gould 1992, Alcock et al. 1995) although this event is
unlikely to reveal a significant microlensing parallax signal because of its relatively
short timescale. We find that the inclusion of the parallax effect improves the
fit by ∆χ2 ∼ 14. However, the parts of the light curve which contribute to this
decrease in χ2 have a scatter similar to the variability of the MOA baseline data,
and the best fit microlensing parallax parameter is abnormally large, πE = 1.3+2.1

−0.3,
yielding a very small lens mass of ML ∼ 0.02M⊙. Therefore, we conclude that
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Table 4.2: Parameters for the best-fit binary lens model.

Parameter Unit Value

t0 HJD - 2450000 7517.5078+0.007
−0.006

tE days 17.03+0.08
−0.20

u0 10−2 −8.33+0.08
−0.16

q 10−3 9.28+0.20
−0.11

s 0.9312+0.0004
−0.0009

α rad 2.509+0.003
−0.004

ρ 10−3 3.01+0.09
−0.05

χ2 2538.9
dof 2538

Notes. Superscripts and subscript indicates
the 84th and 16th percentile from the best-
fit values, respectively.

the improvement of the fit by the parallax effect is due to systematic errors in the
MOA baseline data.

4.5 Angular Einstein Radius

Because we have measured the finite source size, ρ, to a precision of ∼ 2 %, the
determination of the angular source star radius θ∗ will yield the angular Einstein
radius θE = θ∗/ρ. This, in turn, provides the mass–distance relation, (Bennett
2008, Gaudi 2012)

ML =
c2

4G
θ2E

DSDL

DS −DL

= 0.9823M⊙

(
θE

1 mas

)2(
x

1 − x

)(
DS

8 kpc

)
, (4.3)

where x = DL/DS. We can empirically derive θ∗ from the intrinsic source magni-
tude and the color (Kervella et al. 2004, Boyajian et al. 2014).

4.5.1 Calibration

Our first step is to calibrate the source magnitude to a standard photometric sys-
tem. We cross referenced stars in the event field between our DoPHOT photometry
catalog of stars in the MOA image and the OGLE-III catalog (Szymański et al.
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Table 4.3: Source and RGC magnitude and colors.

I V − I V −H I −H

RGC (measured from CMD) 15.33± 0.05 1.88± 0.02 4.03± 0.06 2.11± 0.03
RGC (intrinsic) 14.36± 0.05 1.06± 0.03 2.36± 0.09 1.30± 0.06
Source (measured from light curve) 19.54± 0.02 1.60± 0.03 3.33± 0.03 1.73± 0.02
Source (intrinsic) a 18.54± 0.09 0.78± 0.06 1.70± 0.11 0.92± 0.08

a Extinction corrected magnitudes using the Nishiyama et al. (2008) extinction model from Table
C.1

2011) to convert MOA-Red and MOA V into standard magnitudes. Following the
procedure presented in Bond et al. (2017), we find the relations

IOGLE−III −RMOA = (28.186 ± 0.006) − (0.247 ± 0.005)(V −R)MOA (4.4)

VOGLE−III − VMOA = (28.391 ± 0.004) − (0.123 ± 0.004)(V −R)MOA. (4.5)

Using these calibration formulae and the result of light curve modeling, we obtain
the source star magnitude IS = 19.536±0.019 and the color (V −I)S = 1.60±0.03.

We follow a similar procedure to cross referenced stars in our DoPHOT pho-
tometry catalog of stars in the UKIRT images to stars in the VVV (Minniti et
al. 2010) catalog which is calibrated to the Two Micron All Sky Survey (2MASS)
photometric system (Carpenter 2001), thereby obtaining the relationship between
these photometric systems. We use this same VVV catalog to plot CMDs in the
next section and for the analysis of the Keck images in Section 4.6. Using the
UKIRT H-band source magnitude obtained from the light curve model and the
calibration relation, we find HS = 17.806 ± 0.017. We also measure the colors of
the source star: (V −H)S = 3.33 ± 0.03 and (I −H)S = 1.730 ± 0.017.

4.5.2 Extinction and the angular Einstein radius

Next, we correct for extinction following the standard procedure (Yoo et al. 2004,
Bennett et al. 2010) using the centroid of red giant clump (RGC) in the CMD as
a standard candle.

RGC centroid measurement

Figure 4.3 shows the (V − I,I) and (V −H,H) CMDs for stars within 2 arcmin of
the source star. The V and I magnitudes are taken from the OGLE-III photometry
catalog (Szymański et al. 2011), and the VVV (Minniti et al. 2010) catalog to the
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Figure 4.3: Color magnitude diagrams (CMDs) of stars within 2′ of the source star. The left

panel shows V − I vs I for the stars in OGLE-III catalog (Szymański et al. 2011), and the right

panel shows V −H vs H using stars from the OGLE-III catalog to the VVV catalog, which is

calibrated to the 2MASS magnitude scale. The source star and the mean of red giant clump are

shown as the blue and red dots, respectively.

2MASS photometry scale for H-band magnitudes. To plot the V −H vs H CMD,
we cross referenced stars in the VVV catalog to stars in the OGLE-III catalog. For
this cross reference, we use only isolated stars that are cross-matched to within 1
arcsec of stars in the OGLE-III catalog to ensure one-to-one matching between the
two catalogs. We note that the 1-arcsec limits corresponds to the average seeing in
the VVV images. We find the centroids of RGC in the (V − I, I) and (V −H,H)
CMDs are Icl = 15.33± 0.05, (V − I)cl = 1.88± 0.02, (V −H)cl = 4.03± 0.06 and
(I −H)cl = 2.11 ± 0.03.

RGC intrinsic magnitude and color

We use (V − I)cl,0 = 1.06 ± 0.03 and Icl,0 = 14.36 ± 0.05 for the intrinsic V − I
color and I magnitude of the RGC (Bensby et al. 2013, Nataf et al. 2016) at the
Galactic longitude of this event. Following Nataf et al. (2016), we calculate the
intrinsic color of V − H and I − H in the photometric system we are using now
(i.e., Johnson V , Cousins I and 2MASS H) by the tool provided by Casagrande
& VandenBerg (2014) which is based on a grid of MARCS model atmospheres
(Gustafsson et al. 2008). Assuming the stellar atmospheric parameters [Fe/H] =
−0.07 ± 0.10 (Gonzalez et al. 2013), log g = 2.3 ± 0.1 and [α/Fe] = 0.20 ± 0.05
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Figure 4.4: Co-added Keck II AO image of the event field. The target is indicated.

(Hill et al. 2011, Johnson et al. 2014) for the RGC in the event field, we derive
(V − H)cl,0 = 2.36 ± 0.09 and (I − H)cl,0 = 1.30 ± 0.06 by adjusting the last
atmospheric parameter Teff so that the (V − I) value is in the range of 1.03 <
(V − I) < 1.09. We summarize the magnitude and colors for the RGC centroid
and the source in Table 4.3.

Angular Einstein radius

By subtracting the intrinsic RGC color and magnitude values from the measured
RGC positions in our CMDs, we find an extinction values of AI,obs = 0.98 ± 0.07,
and color excess values of E(V − I)obs = 0.82 ± 0.04, E(V −H)obs = 1.67 ± 0.11
and E(I − H)obs = 0.81 ± 0.07. Following the method of Bennett et al. (2010),
we fit these values to the extinction laws of Cardelli et al. (1989), Nishiyama et
al. (2009) and Nishiyama et al. (2008) separately and compared the results. We
present this analysis in Appendix C. From this comparison of models, we choose
the Nishiyama et al. (2008) extinction law, which yields an H-band extinction of
AH = 0.19 ± 0.02 and a source angular radius of θ∗ = 0.68 ± 0.02 µas. This θ∗
value implies an angular Einstein radius of θE = θ∗/ρ = 0.227+0.006

−0.009 mas and a
lens-source relative proper motion of µrel = θE/tE = 4.88+0.14

−0.17 mas/yr.
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4.6 Excess Flux from Keck AO Images

On August 13, 2016 (HJD′ = 7613.85) we observed MOA-2016-BLG-227 using
the NIRC2 camera and the laser guide star (LGS) adaptive optics (AO) system
mounted on the Keck II telescope at Mauna Kea, Hawaii. Observations were
conducted in the H-band using the wide-field camera (0.04”/pix). We took four
dithered frames with 5 sec exposures and three additional dithered frames with a
total integration time of 90 sec (6 co-adds of 15 sec exposures). The first set of
these images allows photometric calibration using unsaturated bright stars, and the
second set provides the increased photometric sensitivity to provide a high signal-
to-noise flux measurement of the target. Standard dark and flat field corrections
were applied to the images, and sky subtraction was done using a stacked image
from a nearby empty field. Each set of images was then astrometrically aligned
and stacked. Finally, we use SExtractor (Bertin & Arnouts 1996) to extract the
Keck source catalog from the stacked images.

A calibration catalog was extracted using an H-band image of the target area
taken by the VISTA Variables in the Via Lactea survey (VVV; Minniti et al. 2010)
reprocessed following the approach described in Beaulieu et al. (2016). We apply
a zero-point correction for the Keck source catalog using common VVV and Keck
sources. The estimated zero-point uncertainty is 0.05. Figure 4.4 shows the Keck
II AO image of the field. It indicates a bright star close to the target. As a result,
the dominant photometry error comes from the background flux in the wings of
the PSF of the nearby star.

We determine the source coordinates from a MOA difference image of the event
while it was highly magnified. We then identify the position of the microlensing
target (source+lens) on the Keck image (see Figure 4.4). The measured brightness
of the target is HKeck = 17.63±0.06. Due to technical problems in the AO system,
the stellar images display sparse halo around each object. Thus, the FWHM of
the Keck image is 0.184′′ (measured as the average of isolated bright stars near
the target). This sets a limit on our ability to exclude flux contribution from stars
unrelated to the source and the lens, as we discuss below.

The light curve analysis of the UKIRT data H-band data implies an (extinction
uncorrected) H-band source magnitude of HS = 17.806±0.017 (see Section 4.5.1).
Because the Keck observations were taken after the event reached its baseline
brightness (tobs,Keck − t0 = 5.7 tE), we can extract the excess flux by subtracting
the source flux from the target flux. That is, Hex,obs = HS−2.5 log(FKeck/FS−1) =
19.7 ± 0.4, where FKeck/FS = 10−0.4(HKeck−HS).
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Table 4.4: Assumptions and undetectable limits used for the prior probability
distributions

Priors of Assumption Closer limit Wider limit Used observed values

HL Galactic model − − tE, θE
Hamb Luminosity function − 0.8 FWHM FWHM, Number density
HSC Binary distribution a θE/4 0.8 FWHM FWHM, θE, HS

HLC Binary distribution a wLC
b< u0 0.8 FWHM FWHM, θE, u0, ML

c

a The binary distribution used by Koshimoto et al. (2018, in preparation), based on Duchêne &
Kraus (2013).

b The caustic size created by the hypothetical companion to the lens, wLC = 4qLC/(sLC −s−1
LC)

2.
c The ML value extracted from the prior probability distributions to calculate the HL value.

4.7 Lens Properties through Bayesian Analysis

Koshimoto et al. (2018, in preparation)present a systematic Bayesian analysis for
the identification of the star or stars producing excess flux at the position of the
source seen in high-angular resolution images. This analysis gives us the posterior
probability distributions for the lens mass and the distance by combining the
results of the light curve modeling and the measured excess flux value. The method
is summarized as follows.

1. Determine prior probability distributions for four possibilities for the origin
of the excess flux: the lens star, unrelated ambient stars, source companions
or lens companions. We denote these fluxes by FL, Famb, FSC and FLC ,
respectively.

2. Determine all combinations of the flux values for each type of star in the
prior distribution that are consistent with the observed excess flux, Fexcess =
FL + Famb + FSC + FLC .

The extracted combinations at step 2 corresponds to the posterior probability
distributions for the MOA-2016-BLG-227 event.

4.7.1 Prior probability distributions

Now, we must determine the prior probability distributions of the four types of
stars that can contribute to the excess flux at the position of the source. We use
all the information we have about this event — except for the value of excess flux
— to create our prior probability distributions. This means that we include the
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FWHM of the Keck images, but not the measured magnitude of the object at the
location of the microlensing event. Table 4.4 shows a summary of our assumptions.

Lens flux prior

For the lens flux prior distribution, we conduct a Bayesian analysis using the
observed tE and θE values and the Galactic model, which has been used in a
number of previous papers (Alcock et al. 1995, Beaulieu et al. 2006) to estimate
lens properties for events with no microlensing parallax signal. We use the Galactic
model of Han & Gould (1995) for the density and the velocity models and use
the mass function presented in the Supplementary Information section of Sumi
et al. (2011). Using this result and the mass-luminosity relation presented in
Koshimoto et al. (2018, in preparation), we obtain the prior distribution for the
lens apparent magnitude, HL. We adopt the formula for the extinction to the
lens, AH,L = (1− e−DL/hdust)/(1− e−DS/hdust) AH,S, following Bennett et al. (2015),
where hdust = (0.1 kpc)/ sin |b| is the scale length of the dust toward the Galactic
bulge, assuming a scale height of 0.1 kpc. Note that this Bayesian analysis gives us
prior distributions for ML, DL and DS, in addition to the HL prior distribution,
but based on the observed tE and θE values. These values are needed for the
calculation of the probability distributions below.

Ambient star flux prior

In order to determine the prior probability distribution for the flux of any unre-
lated ambient stars, we determine the number density of stars in Keck AO images,
centered on the target, within a magnitude range selected to have high complete-
ness and divide that number by the area of the image. Then we use the luminosity
function of Zoccali et al. (2003) to derive the number density of stars as a function
of H magnitude, normalized to this measured number density in the Keck AO
image. In this calculation, we correct for the differences in extinction and dis-
tance moduli between our field and that of Zoccali et al. (2003), using the distance
moduli from Table 3 of Nataf et al. (2013) and extinction values for both fields.

When correcting for the extinction difference, we also consider the difference
between the extinction laws used. Zoccali et al. (2003) derived an AH value us-
ing the C89 extinction law with RV = 3.1, whereas our preferred N08 extinction
law implies a significantly different AH value. To correct for this difference, we
calculate the AH value towards their field using the N08 extinction law fit to the
RGC centroid in the OGLE-III CMD and the RJKV I value from Table 3 of Nataf
et al. (2013) for their field. The AH value we derived here is AH = 0.122, which is
different from the value of AH = 0.265 used by Zoccali et al. (2003). Therefore, we
convert their extinction corrected H-band luminosity function to a luminosity func-
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tion with our preferred extinction model by adding ∆AH = 0.265 − 0.122 = 0.142
to their extinction corrected magnitudes, and then add the extinction appropriate
for our field, AH = 0.19.

We assume that stars can be resolved only if they are separated from the source
by ≥ 0.8 FWHM = 148 mas. Under this assumption, the expected number of am-
bient stars within the circle is derived by multiplying the area of this unresolvable
region by the total number density derived above. We determine the number of
stars following the Poisson distribution with the mean value of the expected num-
ber of stars. We use the corrected luminosity function to determine the magnitude
of each star.

Source and lens companion flux priors

We calculate the source and lens companion flux priors with the stellar binary
distribution described in Koshimoto et al. (2018, in preparation). The binary
distribution is based on the summary in a review paper (Duchêne & Kraus 2013),
which provides distributions of the stellar multiplicity fraction, and mass ratio and
semi-major axis distributions.

For the flux of source companions, we calculate the source mass MSC = qSCMS

and then convert that into a source companion magnitude, HSC , using a mass-
luminosity relation. The mass ratio qSC is derived from the binary distribution. We
derive the source mass, MS, from the combination of HS, DS and using the mass-
luminosity relation. Similarly, we calculate the lens companion’s magnitude, HLC ,
from MLC = qLCML, where the lens mass ML comes from the same distribution
that was used to obtain the lens flux probability distribution.

We consider companions to the lens or source located in the same unresolvable
regions in the vicinity of the source, just as in the case of ambient stars. Stellar
companions have a separation distribution that is much closer to logarithmic than
the uniform distribution expected for ambient stars. As a result, we must now
exclude companions that are too close to the source and lens as well as companions
that are so widely separated that they will be resolved. Companions that are
too close to the source could be magnified themselves, and companions that are
too close to the lens could serve as an additional lens star. Such a constraint
would have no effect on the ambient star probability, because the probability of an
ambient star very close to the source or lens is much smaller than that of a stellar
companion. Following Batista et al. (2014), we adopt θE/4 as the close limit for
source companions and wLC < u0 as the close limit for lens companions, where
wLC = 4qLC/(sLC − s−1

LC)2 (Chung et al. 2005) and qLC and sLC and are the stellar
binary lens mass ratio and separation, respectively. We take 0.8 FWHM as the
maximum unresolvable radius.

We also consider triple and quadruple systems when estimating the effect of
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companions to the source and lens, following Koshimoto et al. (2018, in prepara-
tion), but we find no significant difference from the case of only considering binary
systems. We therefore do not include triple and quadruple systems in this analysis,
for simplicity.

Excess flux prior

Figure 4.5 shows the prior probability distributions we derived following the pro-
cedure described above to calculate flux of each type of stars. In addition to the
magnitude of the four types of stars that might contribute to the excess flux, we
show the prior distributions for the total excess flux, Hexcess, the lens mass, ML,
and the distance to the lens DL. Some of the panels in this figure have total prob-
abilities Ptotal < 1. This is because many stars do not have binary companions and
there is a large probability of no measurable flux from an ambient star. The Hexcess

prior indicates a high probability at the observed magnitude of Hex,obs = 19.7±0.4.
The three panels for individual stars, HL, Hamb and HSC show similar probabilities
at the observed excess flux value. This indicates that it will be difficult to claim
that all of the excess comes from the lens itself.

4.7.2 Posterior probability distributions

We generate the posterior probability distributions shown in Figure 4.6 by ex-
tracting combinations of parameters which have values of Hexcess consistent with
the measured value of Hex,obs = 19.7 ± 0.4 using a Gaussian distribution in fluxes
(not magnitudes). The probability that HL ≤ 20 is almost same as the probabil-
ity for HSC ≤ 20 and slightly higher, but competitive with the probability that
Hamb ≤ 20, which results in very loose constraints on HL and ML. This result is
consistent with our expectation as discussed in Section 4.7.1.

The third to sixth columns of Table 4.5 shows the median, the 1 σ error bars,
and the 2 σ range for HL, ML and DL for both the prior and posterior distribu-
tions. This same table also shows the values of the planet mass Mp, the projected
separation a⊥ and the three-dimensional star-planet separation a3d calculated from
the probability distributions, where a3d is statistically estimated assuming a uni-
form orientation for the detected planets. In the bottom three rows, we present
the probabilities that the fraction of the excess flux due to the lens, fL is larger
than 0.1, 0.5 and 0.9, which correspond to magnitude difference between the lens
and the total flux excess of 2.5 mag, 0.75 mag and 0.11 mag, respectively.

The posterior distributions for the lens system properties are remarkably sim-
ilar to the prior distributions. When we compare the 1σ ranges of the prior and
posterior distributions, we see that the lens system is most likely to be composed
an M or K dwarf star host and a gas-giant planet. However, the prior and posterior
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Figure 4.5: Prior probability distributions using the assumptions in Table 4.4 and light curve

model constraints, as well as the seeing of the Keck AO image, but not the target flux. We assume

that the planet hosting probability does not depend on the stellar mass. The borders between

dark and light shaded regions indicate the 1σ limits and the borders between light shaded and

white regions indicate 2σ limits. The Ptotal value in each panel is the probability that the object

exists. The panels with Ptotal < 1 indicate the probability that the companion or ambient star

actually exists, and some of these do not have the borders of the 1σ/2σ limit within the plotted

region.
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Figure 4.6: Posterior probability distributions generated by extracting combinations which

have consistent excess flux values withHex,obs = 19.7±0.4 (in flux unit) from the prior probability

distributions in Figure 4.5.
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distributions differ from each other when we consider the 2σ ranges and the tails
of the distributions. The possibility of a G dwarf host star is ruled out by the
posterior distribution while the host star can be a G dwarf according to the prior
distribution. This implies that the host star is likely to be an M or K dwarf.
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4.7.3 Comparison of different planetary host priors

One assumption that we have made implicitly is that the properties of the lens
star do not depend on the fact that we have detected a planet orbiting the star.
This assumption could be false. Perhaps more massive stars are more likely to
host planets of the measured mass ratio, or perhaps disk stars are more likely to
host planets than bulge stars. The microlensing method can be used to address
these questions, but we must be careful not to assume the answer to them.

We have assumed that this detection of the planetary signal does not bias any
other property of the lens star, such as its mass or distance. If there was a strong
dependence of the planet hosting probability at the measured mass ratio of 9.3+0.2

−0.1×
10−3, then this implicit prior could lead to incorrect conclusions. Some theoretical
papers based on core-accretion (Laughlin et al. 2004, Kennedy & Kenyon 2008)
and analyses of exoplanets found by radial velocities (Johnson et al. 2010) have
argued that gas giants are less frequently orbiting low-mass stars, however, the
difference disappears when the planets are classified by their mass ratio, q, instead
of their mass. Nevertheless, since the host mass dependence of the planet hosting
probability is not well measured, we investigate how our results depend on the
choice of this prior.

We consider a series of prior distributions where the planet hosting probability
follows a power law of the form Phost ∝ Mα, and we conduct a series of Bayesian
analyses with α = 1, α = 2 and α = 3 in addition to the calculation with α =
0, presented above. Figure 4.7 shows both the prior and posterior probability
distributions for the lens mass, ML, with these different values of α. The lens
property values for each posterior distribution are shown in Table 4.5. The median
of expected lens flux approaches the measured excess flux as α increases (i.e., the
power law becomes steeper), and consequently the median of the lens mass also
increases and the parameter uncertainties decrease. Thus, larger α values imply
that more of the excess flux is likely to come from the lens. Nevertheless, our basic
conclusion that the host is a M or K-dwarf hosting a gas giant planet remains for
all of the 1 ≤ α ≤ 3 priors.

4.8 Discussion and Conclusion

We have analyzed the planetary microlensing event MOA-2016-BLG-227 which
was discovered next to the field observed by the microlensing campaign (Campaign
9) of the K2 Mission. The event and planetary signal were discovered by the
MOA collaboration and a significant portion of the planet signal was covered
by the data from the Wise, UKIRT, CFHT and VST surveys, which observed
the event as part of the K2C9 program. Analysis of these data yields a unique
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Figure 4.7: Prior (top) and posterior (bottom) probability distributions of the lens mass ML

using different priors for the planet hosting probability, which is assumed to follow a power law,

Phost ∝ Mα. The α = 0 plots are repeated from Figures 4.5 and 4.6.
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microlensing light curve solution with a relatively large planetary mass-ratio of
q = 9.28+0.20

−0.11 × 10−3. We considered several different extinction laws and decided
that the N08 (Nishiyama et al. 2008) law was the best fit to our data, although our
results would not change significantly with a different law. With this extinction
law, we derive an angular Einstein radius of θE = 0.227+0.006

−0.009 mas, which yields
the mass–distance relation given in Equation 4.3. We detected excess flux at the
location of the source in a Keck AO image, and we performed a Bayesian analysis
to estimate the relative probability of different sources of this excess flux, such
as the lens, an ambient star, or a companion to the host or source. Our analysis
excludes the possibility that the host star is a G-dwarf, leading us to a conclusion
that the planet MOA-2016-BLG-227Lb is a super-Jupiter mass planet orbiting an
M or K-dwarf star likely located in the Galactic bulge. Such systems are predicted
to be rare by the core accretion theory of planet formation. It is also thought that
such a planet orbiting a white dwarf host at a3d ∼ 2 AU is unlikely (Batista et al.
2011).

If the planet frequency does not depend on the host star mass or distance,
our Bayesian analysis indicates the system consists of a host star with mass of
ML = 0.29+0.23

−0.15M⊙ orbited by a planet with mass of Mp = 2.8+2.2
−1.5MJup with a

three-dimensional star-planet separation of a3d = 1.67+0.94
−0.35 AU. The system is

located at DL = 6.5±1.0 kpc from the Sun. We also considered different priors for
the planet hosting probability as a function of host star mass. We consider planet
hosting prior probabilities that scale as Phost ∝ Mα with α = 1, 2, 3, in addition to
the α = 0 prior that we use for our main results. As α increases, the median value
of the lens mass also increases and the probability for the lens to be responsible
for the excess H-band flux increases, as well. Johnson et al. (2010) found a linear
(i.e., α = 1) relationship between host mass and planet occurrence from 0.5 M⊙ to
2.0 M⊙ for giant planets within ∼ 2AU around host stars discovered by the radial
velocity (RV) method. However, this analysis used a fixed minimum mass instead
of a fixed mass ratio, and it does not appear that Johnson et al. (2010) did a
detailed calculation of their detection efficiencies. Another result using RV planet
data by Montet et al. (2014) gives α = 0.8+1.1

−0.9, using a sample more similar to the
microlensing planets, i.e., gas giants orbiting at 0 < a < 20 AU around M-dwarf
stars. However, our basic conclusion that the MOA-2016-BLG-227L host star is
an M or K-dwarf with a gas-giant planet located in the Galactic bulge would not
change with a different α value, as indicated in Figure 4.7 and Table 4.5.

The probability that more than 90% of the excess flux seen in the Keck AO
images comes from the lens is still 24.0% even assuming α = 0. This is significant
enough that we cannot ignore the possibility that most of the excess flux comes
from the lens star. One approach for obtaining further constraints is to get the
color of the excess flux. If the excess flux is not from the lens, the derived lens
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mass and distance with Hexcess may be inconsistent with the value derived using
the excess flux in a different pass band, if we assume that all of the excess flux
comes from the lens. However, such a measurement could also yield ambiguous
results. Another, more definitive, approach is to observe this event in the future
when we can expect to detect the lens-source separation through precise PSF
modeling with high resolution space-based data (Bennett et al. 2007, 2015) or
direct resolution with AO imaging (Batista et al. 2015). The lens-source relative
proper motion value of µrel = 4.88+0.14

−0.17 mas/yr indicates that we can expect to be
able to resolve the lens, if it provides a large fraction of the excess flux in ∼ 2022
using HST (Bhattacharya et al. 2017) and in 2026 using Keck AO (Batista et al.
2015). Observations by the James Webb Space Telescope (Gardner et al. 2006), the
Giant Magellan Telescope (Johns et al. 2012), the Thirty Meter Telescope (Nelson
& Sanders 2008) and the Extremely Large Telescope (Gilmozzi & Spyromilio 2007)
could detect the lens-source relative proper motion much sooner. If the separation
of the excess flux from the source is different from the prediction of the microlensing
model in these future high angular resolution observations, it would indicate that
the lens is not the main cause of the excess flux, implying a lower mass planetary
host star.
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Chapter 5

Summary and Discussion

In Chapters 3 and 4, the observations and analysis of two planets discovered via
the gravitational microlensing method, OGLE-2012-BLG-0950Lb and MOA-2016-
BLG-227Lb, were described. In this chapter, these two studies are summarized
from two aspects, from the revealed lens property and from the characterization
of the lens system. Further discussions are presented in addition to the summary
in each section. Particularly, the discussion about how to estimate contamination
probabilities in the detected excess flux is one of main points in this thesis, which
is not sufficiently discussed in the above sections. In the discussion, the differ-
ence between the previous and new methods, used in Chapter 3 and Chapter 4
respectively, and the need for a new method, is discussed.

5.1 Revealed Lens Properties

5.1.1 OGLE-2012-BLG-0950Lb: An intermediate mass planet
beyond the snow line, predicted to be common

In Chapter 3, OGLE-2012-BLG-0950Lb was found to have an intermediate mass
of Mp = 35+17

−9 M⊕, which is between masses of Saturn and Neptune, and an orbit
at a planet-host projected separation of r⊥ = 2.7+0.6

−0.7 AU around its host star,
which itself has a mass of Mhost = 0.56+0.12

−0.16M⊙. As shown in Figure 3.7, this is
a planet orbiting beyond the snow line, with a mass around the apparent valley
in the mass distribution histogram. According to the standard core accretion
theory (e.g., Ida & Lin 2004), planets in this mass range are predicted to be
common outside the snow line, while they are thought to be rare inside the snow
line. In contrast to the prediction, only a few planets orbiting beyond the snow
line with an intermediate mass have been discovered, even when including RV
planets. However, this kind of comparison is not fair at this stage because the
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observed distributions are highly affected by the detection efficiency. Also, some
of the plotted masses still have large uncertainties. As for the RV planets, the RV
method measures just a lower limit of planet mass because of the unknown orbital
inclination. As for the masses of the microlensing planets, about half of them
are measured (filled circles in Figure 3.7) by a combination of any two or all the
three physical values that provide mass–distance relations shown in Figure 2.13.
The other half of them are estimated by Bayesian analysis (open circles in Figure
3.7) that uses a Galactic stellar distribution as the prior probability distribution.
OGLE-2012-BLG-0950Lb is the second microlensing planet with a reliable mass
measurement found to have an intermediate mass. More observations and reliable
mass measurements are needed to conclude whether this kind of planet is common
or not.

5.1.2 MOA-2016-BLG-227Lb: A massive planet around an
M or K-dwarf, predicted to be rare

As described in Chapter 4, MOA-2016-BLG-227Lb was revealed as a super-Jupiter
mass planet around an M or K-dwarf star. In contrast to the case of OGLE-
2012-BLG-0950, gas giants around late-type stars are predicted to be rare by the
standard core accretion theory (Laughlin et al. 2004, Ida & Lin 2005, Kennedy
& Kenyon 2008). However, about one third of microlensing planets discovered so
far, including MOA-2016-BLG-227Lb, are in such systems (e.g., Gaudi et al. 2008,
Dong et al. 2009a,b, Koshimoto et al. 2014), which are indicated in the red shaded
region in Figure 5.1. Note that the detection efficiency is higher for massive planets
(the dependency is roughly ∝ q0.6) and that, again, more than half of their masses
are estimated by Bayesian analysis (open circles in Figure 5.1), that assumes that
the planetary frequency does not depend on their host’s mass. Nevertheless, it is
likely that formation processes other than the core accretion scenario, such as the
gravitational disk instability scenario (Boss 1997) and the tidal downsizing scenario
(Nayakshin 2010), contribute to the microlensing sample in the red shaded region.
This is because no planet with a mass ratio larger than q = 9× 10−3, which is the
mass ratio of MOA-2016-BLG-227Lb, forms around a host star less massive than
0.6M⊙, according to the result of the planet population synthesis model of core
accretion by Ida & Lin (2005), as shown in Figure 5.2. Boss (2006) studied the
gravitational disk instability around an M-dwarf and found that massive planets
can be formed around it, but at distances >∼ 6 AU which is beyond most of the
discovered microlensing planets’ orbit. The tidal downsizing scenario, in which
gravitational instability and the effects of migration and tidal force are combined,
may explain those microlensing planets, although this is a newly proposed kind of
scenario and not many studies have been published.
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Figure 5.1: Same as Figure 3.7, but distribution of host mass versus mass ratio plane. The

red shaded area of the parameter space indicates planets with a mass ratio larger than 10−3

around M-type host stars with < 0.55M⊙. Here 10−3 is from the mass ratio between the Sun

and Jupiter. The purple circle indicates MOA-2016-BLG-227Lb.
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Figure 5.2: Prediction of the distribution of exoplanets, by the core accretion theory, around

stars with different masses (Ida & Lin 2005). Each panel shows the distribution of exoplanets

around the host star with each mass indicated on the top left (the unit is M⊙). The red dashed

horizontal lines indicate the mass ratio close to that of MOA-2016-BLG-227, q = 9× 10−3. The

figure is modified from Ida & Lin (2005).

94



5.2 The Way to Characterize Lens Properties

5.2.1 Combination of microlens parallax and lens flux

As discussed above, more reliable mass measurements of microlensing planets are
needed to put a further constraint on the planet formation theory. In the analy-
sis of OGLE-2012-BLG-0950, the lens mass was measured by combining only the
microlens parallax and the lens flux. Although it is expected to become the most
common combination in the era of space microlensing, this is the first measure-
ment by the combination of mass–distance relations. The capability of measuring
mass was demonstrated and some advantages of this method, compared with other
methods using the angular Einstein radius as a mass–distance relation, were dis-
cussed in Section 3.8.

5.2.2 A new method to evaluate contamination probabili-
ties

In Section 3.6.3, the contamination probability in the excess flux detected from the
Keck AO image toward OGLE-2012-BLG-0950 was calculated, following previous
studies (Janczak et al. 2010, Batista et al. 2014, Fukui et al. 2015) and it was
concluded that the probability that a large part of the excess flux come from the
lens star is high; P (f = 0) = 62.6%, P (f ≤ 0.5) = 89.3% and P (f ≤ 0.9) = 95.4%
for the parallax close+ model, where f is the contamination fraction.

However, this kind of calculation has been found to be flawed because it mixes
the prior probability with the posterior probability. Take the calculation of P (f =
0) = 1−P (0 < f < 1) for example, the P (f = 0) on the left hand side indicates a
“posterior” (or conditional) probability of FL = Fex,obs, under the condition where
an excess flux is observed as Fexcess = Fex,obs, or P (FL = Fex,obs|Fexcess = Fex,obs).
On the other hand, the P (0 < f < 1) = Pamb(0 < f < 1) + PSC(0 < f <
1) + PLC(0 < f < 1) on the right hand side is just the sum of the counts of each
contaminant which have a brightness corresponding to 0 < f < 1, by assuming
each brightness distribution. This probability doesn’t depend on whether an excess
flux was observed or not, and thus it indicates the sum of “prior” probabilities
or P (0 < Famb/Fex,obs < 1) + P (0 < FSC/Fex,obs < 1) + P (0 < FLC/Fex,obs <
1). Figure 5.3 explains this calculation procedure by using the prior probability
distributions from the analysis of MOA-2016-BLG-227, or from Figure 4.5 as an
example. Therefore, the equation of P (f ≤ 0) = 1 − P (0 < f < 1) is problematic
because it claims that a posterior probability can be calculated by subtracting a
prior probability from 1. This problem is understood more easily when comparing
Figure 5.3 with the next figure Figure 5.4 that shows the correct method for the
calculation.
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Figure 5.3: Explanation of the previous method of contamination probability calculation. Each

panel is repeated from Figure 4.5. In the example case of MOA-2016-BLG-227, where we have

an observed excess flux Hex,obs = 19.7±0.4, the previous way counts stars fainter than 19.7 mag

from the prior probability distribution of each of the three contaminants, and then subtracts

the sum of them from one. It then treats the remainder as the probability of no contamination,

P (f = 0).
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Figure 5.4: Explanation of the new method of contamination probability calculation. Each

panel is repeated from Figures 4.5 and 4.6. The new method calculates the posterior probability

distributions by accepting combinations of the four brightnesses, which are consistent with the

observed excess flux value.
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To calculate the posterior contamination probability correctly, the following
method to calculate the posterior joint probability density function (PDF) is pro-
posed in Koshimoto et al. (2018, in preparation),

fpost(FL, Famb, FSC , FLC |Fexcess = Fex,obs)

=
fpri(FL, Famb, FSC , FLC)∫

FL,Famb,FSC ,FLC
fpri(FL, Famb, FSC , FLC) dFL dFamb dFSC dFLC

∣∣∣∣∣
Fi≥0,Fexcess=Fex,obs

,

(5.1)

where fpri(FL, Famb, FSC , FLC) is the prior joint PDF of FL, Famb, FSC and FLC

and Fexcess ≡ FL +Famb +FSC +FLC . In the analysis of MOA-2016-BLG-227, this
probability was calculated following the procedure briefly summarized in Section
4.7 to study the possibility of excess flux from stars other than the lens star. The
same procedure is also explained in Figure 5.4, which focuses on the difference
from the previous way in Figure 5.3.

There has been a common assumption that, until this study, the excess flux
detected at the source is likely to be largely comprised of that of the lens star.
This is partly because the previous procedure for calculating the probability of
contamination contains a flaw, explained above. This almost always gives a large
probability of the lens as the origin of any excess flux. However, the analysis in
Chapter 4 indicated that it is unlikely that a large fraction of the excess flux comes
from the lens of MOA-2016-BLG-227. In Koshimoto et al. (2018, in preparation),
this method is applied toward several planetary events previously published, in-
cluding OGLE-2012-BLG-0950. As a result, there is only a small probability that
the excess flux is due to the lens star for events with small angular Einstein radii,
in contrast to conclusions presented by the original papers. This is because a small
angular Einstein radius indicates relatively large prior probability of the lens being
too faint (HL

>∼ 20) to be detected. Nevertheless, a very similar result to the one
we presented in Chapter 3 for OGLE-2012-BLG-0950 is found, because its rela-
tively large tE value indicates that the lens is likely to be a massive (i.e, bright)
star, and this results in a large probability that the detected bright excess flux is
due to the lens. In the WFIRST mission, the excess flux is considered as one of
main tools to determine the lens mass because it is routinely obtained by its high
angular resolution survey. Therefore, the new approach is crucial for the analysis
of all microlensing events found by WFIRST, and would greatly contribute to the
science goal of the completion of the statistical census of planetary systems in our
galaxy.
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Appendix A

Annual Parallax Effect

Here I describe the parallax effect in more detail. The following explanation is
based on An et al. (2002).

A.1 Introduction of needed parameters

When the proper motions of the source and the lens from the Sun are µS,hel and
µL,hel and their positions at a reference time tc are φS,c and φL,c, respectively,
their positions at any given time t from the Earth are expressed generally by

φS(t) = φS,c + (t− tc)µS,hel + πSs(t), (A.1)

φL(t) = φL,c + (t− tc)µL,hel + πLs(t), (A.2)

where πS = 1AU/DS and πL = 1AU/DL. Here s(t) is the position vector of the
Sun from the Earth projected onto the target sky normalized by an astronomical
unit. Then, the angular separation vector of the source from the lens normalized
by θE is

u(t) = vc + (t− tc)
µrel,hel

θE
− πEs(t), (A.3)

where

vc =
φS,c −φL,c

θE
,

µrel,hel = µS,hel − µL,hel,

πE ≡ πL − πS

θE
. (A.4)

The third term of Eq. (A.3) represents the effect of the Earth’s motion, and
it is easy to understand the difference between the heliocentric and geocentric
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Figure A.1: Geometry of the introduced parameters for the annual parallax effect on the lens

plane. The lens is at the origin, and the blue solid curved line and the magenta dashed line

indicate the source trajectory with, and without the parallax effect, respectively.

reference frames from this formula. However, to treat the parallax effect, it is
useful to divide the Earth’s motion into two terms, one with linear motion and the
other with non-linear motion. The Taylor series expansion of s(t) around t = tc is

s(t) = s(tc) + ṡ(tc)(t− tc) +
s̈(tc)

2
(t− tc)

2 +

...
s (tc)

6
(t− tc)

3 + . . . , (A.5)

thus

u(t) = (vc − πEs(tc)) + (t− tc)

(
µrel,hel

θE
− πEṡ(tc)

)
− πE∆s(t)

= uc + (t− tc)
µrel,geo,c

θE
− πE∆s(t), (A.6)

where

∆s(t) ≡ s(t) − s(tc) − ṡ(tc)(t−tc) =
s̈(tc)

2
(t− tc)

2 +

...
s (tc)

6
(t− tc)

3 + . . . , (A.7)

uc ≡ vc − πEs(tc), (A.8)

µrel,geo,c ≡ µrel,hel − (πL − πS)ṡ(tc). (A.9)

If the reference time tc is taken as tc = t0, the uc vector becomes perpendicular
to the µrel,geo,c vector, and the magnitudes of two vectors become |uc| = u0 and
|µrel,geo,c| = µrel. Taking the τ axis to be along the µrel vector, and the β axis to be
perpendicular to the τ axis vector, so that the coordinate becomes right-handed
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(this is why u0 can be a negative value), the u(t) can be divided into the two
components of the new defined coordinate system of τ -β as

u(t) =

(
uτ (t)
uβ(t)

)
=

 t− t0
tE

− πE∆sτ (t)

u0 − πE∆sβ(t)

 , (A.10)

where tE = θE/µrel is used. While the τ and β components of ∆s are required to
calculate the source trajectory of u(t), the north and east components of ∆s vector,
∆sn and ∆se, can be calculated from the Earth’s motion and the target direction.
Here north and east can be defined in any celestial coordinates, although the
equatorial system is normally used. Thus, we need an additional free parameter,
ϕ, to calculate u(t), which is the angle of the τ axis measured from the north
direction on the sky toward the target. Figure A.1 shows the geometry on the lens
plane. With the coordinate angle rotation of ϕ,

u(t) =

 t− t0
tE

− πE(∆sn(t) cosϕ + ∆se(t) sinϕ)

u0 − πE(∆se(t) cosϕ− ∆sn(t) sinϕ)

 (A.11)

and if a new vector is defined

πE ≡ πE
µrel

µrel

= (πE,N , πE,E) = (πE cosϕ, πE sinϕ) (A.12)

where πE,N and πE,E are the north and the east components of πE, then

u(t) =

 t− t0
tE

− πE,N∆sn(t) − πE,E∆se(t)

u0 − πE,N∆se(t) + πE,E∆sn(t)

 (A.13)

is derived. Therefore (πE, ϕ) or (πE,N , πE,E) are needed as additional fitting
parameters to explain the annual parallax effect.

A.2 Timescale of parallax event

Next, the timescale of the event in which the annual parallax effect can be seen is
considered. The square of the magnitude of u(t) is

|u(t)|2 = t2n − 2πE∆sτ (t)tn + π2
E|∆s(t)|2 (A.14)

where tn = (t − t0)/tE, considering the case of u0 → 0 for simplicity. Because
the tn is tn

<∼ 1 during a typical ongoing microlensing event, the parallax effect
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of the second and the third terms is observable when πE|∆s(t)| is larger than, or
comparable to, <∼ 1 under the condition of tn

<∼ 1. Assuming the Earth’s orbit is
circular for simplicity, Equation (A.7) is rewritten as

∆s(t) = −Ω2s(t0)

2
(t− t0)

2 − Ω3(ṡ(t0)/Ω)

6
(t− t0)

3 + . . .

= −s(t0)

2
(ΩtEtn)2 − (ṡ(t0)/Ω)

6
(ΩtEtn)3 + . . . (A.15)

where Ω = 2π/1yr is the mean motion of the Earth’s orbit. Because the |s(t0)|
takes between 0.1 - 1.0 depending on the Earth’s season and πE ∼ 0.1 typically,
the parallax effect can be seen when tE is comparable to 1/Ω ≃ 58 days.
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Appendix B

Xallarap analysis for
OGLE-2012-BLG-0950

If the source star is in a binary system, the orbital motion of the source star can also
measurably affect the trajectory of the source during a microlensing event. This
effect, called xallarap, requires additional parameters which define orbital elements
of the source system whereas we know the Earth’s orbital elements for the parallax
effect. This model requires 7 additional fitting parameters to the standard binary
model, the direction toward the Earth relative to the source orbital plane, R.A.ξ
and Dec.ξ, the orbital period Pξ, the orbital eccentricity ϵ and the perihelion time
tperi in addition to ξE = (ξE,N, ξE,E) which is analogous to πE for microlens parallax.
We omitted ϵ and tperi as fitting parameters by assuming a circular orbit. Here
we describe the results of our xallarap analysis and comparison with the parallax
model, and discuss the possibility.

B.1 Constraint by the companion mass upper

limit

Kepler’s 3rd law gives us a relation of the source orbit;

ξE =
AU

DSθ∗/ρ

(
MC

M⊙

)(
M⊙

MS + MC

Pξ

1yr

)2/3

(B.1)

where MS and MC are the masses of the source and its companion, respectively.
The ξ, ρ and Pξ are fitting parameters, θ∗ is measured, and DS and MS are
reasonably constrained by the Galactic model combined with the source color and
magnitude values. Then, for a given MCMC chain, MC can be calculated from
this relation.
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In xallarap fitting with no constraints, we found that the light curve prefers a
solution with an unrealistically massive source companion with a mass of MC ∼
400 M⊙. Thus, we conducted the fitting with the following constraint. We can
place an upper limit of the companion mass MC < MC,max from Equation (3.6) of
the excess flux with an assumption that the companion is not a stellar remnant.
That corresponds to placing an upper limit of ξE as ξE < ξE,max where ξE,max is
defined as ξE of Equation (B.1) with MC = MC,max (Bennett et al. 2008, Sumi et
al. 2010). We applied the additional χ2 penalty presented by Bennett et al. (2008)
to each link of MCMC fitting;

χ2
orb = Θ(ξE − ξE,max)

(
ξE − ξE,max

σξE,max

)2

(B.2)

where Θ is the Heaviside step function and we applied 7% to σξE,max
, the uncertainty

of ξE,max, with the consideration of uncertainty on θ∗ as given in Section 3.5.
We derive DS = 8.0± 1.6 kpc by a Bayesian analysis using the Galactic model

(Han & Gould 1995) as the prior distribution constrained by the observed tE value,
MS = 1.02±0.12M⊙ and MC,max = 1.10±0.19M⊙ from the color and brightness of
the source and blending. To calculate ξE,max, we use the lower or upper limit value
for each parameter so that it makes ξE,max larger for a conservative constraint,
namely, we use DS = 6.4 kpc, MS = 0.9M⊙, MC,max = 1.2M⊙ for the calculation
of ξE,max. Note that we adopt 1.2M⊙ as MC,max considering very few population
of M > 1.2M⊙ stars in our galaxy (Gould 2000b, Bensby et al. 2013). For ρ and
Pξ, we used each link’s values to calculate the ξE,max.

The “xallarap” models in Table 3.2 are our results of xallarap fitting with a
circular orbit and the ξE,max constraint above. We find smaller χ2 values than that
from the parallax models by ∆χ2 ≳ 27. Note that including eccentricity intends to
fit systematics in the baseline and does not improve a model significantly, therefore,
we do not consider eccentric orbits according to Occam’s razor.

B.2 Constraint on ρ and lens properties

Xallarap models place a lower limit on ρ whereas the parallax models do not. This
is because the ξE,max constraint is equivalent to placing a lower limit of ρ as

ξE < ξE,max ⇔ ρ > ρmin ≡ θ∗DSξE

MC,max(MC,max + MS)−2/3P
2/3
ξ

. (B.3)

Combining it with the upper limit from the finite source effect, we can constrain
the ρ value with ∼ 30% uncertainty. This is the first case of ρ being constrained
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Figure B.1: Same as Figure 3.6 but for the xallarap close+ model. The relation from MH,L,low

(i.e., 1 σ brighter limit of MH,L ) is shown in red. The red arrow means that the red dashed line

is just an upper limit. Black lines are the mass–distance relation come from θE .

with neither a significant finite source effect nor a parallax effect. Then we can
calculate a θE value from ρ and θ∗,

θE = 0.20+0.04
−0.08 mas, µrel = 1.1+0.2

−0.4 mas/yr

for the xallarap close+ model. Table 3.3 shows these values for all degenerate
models using each models’ values.

In principle, we can determine a mass and distance of the lens star by combining
the θE and HL, the lens flux in H-band extracted from Keck AO observations
(Batista et al. 2014, Fukui et al. 2015:e.g.) because θE gives us a mass–distance
relationship;

Mhost =
1

1 + q

θ2E
κπrel

(B.4)

and we can convert the lens flux into another mass–distance relationship using a
mass-luminosity relation. However, we encounter a problem with this. As shown
in Table B.1, the uncertainty of the mass of the companion to the source star
in the xallarap models is very large and the upper limit of ∼ 1.8M⊙ is larger
than MC,max = 1.2M⊙, the maximum mass of the companion we use in the ξE,max

constraint. In other words, the lower limit of HC , the apparent H magnitude of
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Table B.1: 1 σ possible value ranges of mass and H magnitude of the source
companion for xallarap models.

Model MC HC

(M⊙) (mag)

Xallarap
close+ 0.57 - 1.71 16.3 - 20.4
close− 0.56 - 1.71 16.3 - 20.5
wide+ 0.62 - 1.81 16.1 - 20.7
wide− 0.60 - 1.76 16.2 - 20.2

Notes. The range of 1 σ error is shown
for each parameter.

the companion, is brighter than the brightness limit as HC ≃ 16.2 mag < Hexcess ≃
17.5 mag where Hexcess value comes from Equation (3.6). It means we cannot place
a fainter limit on HL, the lens brightness in the H-band.

These excesses are attributed to the uncertainties of the parameters that de-
termine ξE,max, i.e., the uncertainties of DS, MS and θ∗. Especially, it is more
sensitive to the uncertainties of θ∗ and DS rather than MS due to the relation
between MC and the other parameters, ξE ∝ (DSθ∗)

−1MC(MS + MC)−2/3. We
calculate a ξE,max value with the most conservative combination of DS and MS

in their 1 σ uncertainties, DS = 6.4 kpc and MS = 0.9M⊙, so that they make
the ξE,max largest in the 1 σ range. Then we judge a set of (ρ, Pξ, ξE) by the
conservatively large ξE,max value and accept them up to 7% larger ξE than ξE,max

considering the uncertainty on θ∗. Thus the MC value range derived from the
accepted parameters with DS = 8.0±1.6 kpc and MS = 1.02±0.12M⊙ can exceed
its limit, MC,max = 1.2M⊙.

We can obtain only brighter limit of HL by subtracting the source brightness
and the fainter limit of HC from Htarget of Equation (3.5),

HL > HL,low = 17.66. (B.5)

Then we can place a lower limit of MH,L of MH,L,low = HL,low−AH,L−5 log (DL/10pc)
by using Equation (3.10) with HL,low. Figure B.1 shows the mass–distance rela-
tion obtained from Equation (B.4) and MH,L,low. From their overlapped region,
we obtain constraints on the host mass and the distance as Mhost < 1.16M⊙ and
DL < 9.3kpc, respectively. These constraints are very weak.
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Figure B.2: ∆χ2 between a xallarap model and the parallax close+ model as a function of

orbital period. The black solid and red dashed lines indicate xallarap models with no constraint

and the χ2
orb constraint, respectively, see text.

B.3 Comparison with parallax model

Xallarap models have χ2 differences from the parallax models by ∆χ2 > 27 for 3
dof difference. Poindexter et al. (2005) analyzed 22 events where a parallax model
improves their light curve fittings compared to the standard model. According to
their analysis, there are 3 events that prefer a xallarap model to a parallax model
by ∆χ2 > 25 in all events they analyzed. They regard it as a strong indication
that the light curves of the 3 events have been distorted by xallarap. Here, we
investigate whether the xallarap signal is real or unreal by the analyses bellow.

We first plot χ2 values of the best-fit xallarap model at a fixed Pξ value within
100 ≤ Pξ(days) ≤ 1500 in Figure B.2. They are shown as ∆χ2 values compared to
the parallax close+ model. One of standard ways to exclude a xallarap scenario is
to show that just a narrow range of Pξ indicates a (small) preferences of xallarap
model to parallax model, then showing very small probability that a binary system
whose period is in such the narrow range happens to be microlensed (Bennett et
al. 2008). For this event, however, the favored Pξ region compared to the parallax
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Figure B.3: As for Figure 3.3, but showing the difference between the parallax close+ model

and the xallarap close+ model. A positive ∆χ2 value indicates a smaller χ2 of the xallarap

close+ model.

model is very broad even with χ2
orb constraint. Therefore, we cannot exclude the

xallarap scenario by this approach.
Next, we investigate where the signal comes from in the light curve. Figure B.3

shows the same one as Figure 3.3, but shows the difference between the xallarap
close+ model and the parallax close+ model. The χ2 difference comes from the
data in 2013 which is slightly magnified. However, the preference to the parallax
model comes almost exclusively from MOA data and the preference from OGLE
data is only ∆χ2 ∼ 2. The MOA data is more easily affected by systematics
especially in a low-magnification part because the average seeing on the MOA site
is worse than that on the OGLE site. In addition to this inconsistency between
MOA and OGLE, as shown in Table B.1, a significant fraction of MCMC chains
of every xallarap model indicates unphysically large mass of the companion even
with the mass constraint imposed. These two facts are strong evidence against the
xallarap model as the true model. Thus, we conclude that the xallarap models are
very likely to be the results due to low level systematics in the MOA data.
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Finally, we fit the data consisting of only anomaly part of MOA data (39
points) and entire OGLE I data (1273 points) with both parallax and xallarap
with no constraint models because the results are expected to be less affected by
systematics. Note that we use a portion of MOA data so that the best fit will not
change largely except πE or ξE. The xallarap model improves the fit by ∆χ2 = 6.5
compared to the parallax model for 3 dof difference. This indicates that the
xallarap model is preferred by only < 2σ. Moreover, we compared these two models
by the Bayesian information criterion (BIC), which is another common statistical
criterion including penalty term for the number of fitting parameters, BIC = χ2+
nparam ln(Ndata) (Burnham & Anderson 2002). The ∆BIC is BICpara−BICxalla ∼
−15 and this criterion prefers the parallax model rather than the xallarap model.

Considering these facts, we conclude that the parallax model is preferred over
the xallarap model. Thus, we dealt with only parallax scenario in the main part
of the paper.
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Appendix C

Comparison of Different
Extinction Laws for
MOA-2016-BLG-227

In Section 4.5.2, we obtained the observed extinction value, AI,obs = 0.98 ± 0.07,
and color excess values of E(V − I)obs = 0.82 ± 0.04, E(V −H)obs = 1.67 ± 0.11
and E(I − H)obs = 0.81 ± 0.07. Then, we fit these values to the extinction laws
of Cardelli et al. (1989), Nishiyama et al. (2009) and Nishiyama et al. (2008)
separately and compared the results. This was motivated by the fact that Nataf
et al. (2016) reported a clear difference of their extinction law towards the Galactic
bulge from the standard law of Cardelli et al. (1989). Hereafter, we refer to these
papers as C89, N09 and N08, respectively. Note that the four observed extinction
parameters (1 extinction and 3 color excess) are not independent. They can be
derived from the three independent extinction values: AI,obs, AV,obs and AH,obs.

The C89 law is given by equations (1) - (3b) in their paper, and AV and RV

serve as the parameters of their model.
Unlike C89, N09 does not provide a complete extinction model. They provide

only ratios of extinctions for wavelengths longer than the J-band. So, we need
additional information relating AV or AI and AJ , AH or AK in order to calculate
the values that we need for this paper: AI , AV and AH . Therefore, we used the
RJKV I ≡ E(J−Ks)/E(V −I) values from Nataf et al. (2013) in addition to the N09
extinction law. The RJKV I value at the nearest grid point to the MOA-2016-BLG-
227 event in Table 3 of Nataf et al. (2013) is 0.3089. However, the quality flag for
this value is 1, which indicates an unreliable measurement, so we use a conservative
uncertainty of RJKV I = 0.31 ± 0.03. We adjust AI and E(V − I) to minimize the
χ2 value between the observed AI,obs, E(V − I)obs, E(V −H)obs, and E(I −H)obs
values and those values derived using the ratio AH,2MASS/E(J −Ks)2MASS = 0.89
from N09, in conjunction with the RJKV I value from Nataf et al. (2013). We
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Table C.1: Comparison of the extinction and angular Einstein radius based on
different extinction laws.

Extinction law Nonea Cardelli et al. (1989) Nishiyama et al. (2009) Nishiyama et al. (2008)

Relation - Aλ

AV
= a(x) + b(x)

RV

b AH

E(J−Ks)
, RJKV I

c AJ

AV
, AH

AV
,

AKs

AV

AV 1.80± 0.08 1.87± 0.12 1.83± 0.12 1.82± 0.12
AI 0.98± 0.07 1.04± 0.10 1.01± 0.08 1.00± 0.08
AH 0.17± 0.10 0.30± 0.04 0.23± 0.04 0.19± 0.02

E(V − I) 0.82± 0.04 0.83± 0.05 0.82± 0.05 0.82± 0.05
E(V −H) 1.67± 0.11 1.57± 0.10 1.60± 0.11 1.63± 0.11
E(I −H) 0.81± 0.07 0.73± 0.06 0.78± 0.09 0.81± 0.08

χ2/dof d - 2.39/1 0.56/1 1.19/2e

θ∗,V I (µas) 0.65± 0.04 0.67± 0.06 0.66± 0.05 0.66± 0.05
θ∗,V H (µas) 0.67± 0.04 0.73± 0.02 0.70± 0.02 0.68± 0.02
θ∗,IH (µas) 0.71± 0.07 0.79± 0.06 0.74± 0.06 0.72± 0.06

SDθ∗
f 0.035 0.061 0.042 0.030

θE (mas) g - - - 0.227+0.006
−0.009

µrel (mas/yr) g - - - 4.88+0.14
−0.17

Notes. The values in boldface are used as final values.
a Result without using an extinction law. The AI , E(V − I), E(V −H) and E(I −H) values are
determined directly from the data.

b Equation (1) of C89, see the paper for the detailed model.
c The RJKV I value comes from Table 3 of Nataf et al. (2013).
d When calculating the total χ2, we multiply each of the contributions from E(V − I), E(V −H)
and E(I −H) by 2/3, because these values are not independent.

e The dof = 2 is because we used the RJKV I value from Nataf et al. (2013) as an observed data
point.

f Standard deviation of the three θ∗ values.
g Calculations conducted only for the adopted θ∗ value (θ∗,V H with N08).
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explicitly use the 2MASS subscript because N09 provides their result also in the
IRSF/SIRIUS photometric system (Nagashima et al. 1999, Nagayama et al. 2003).
Note that we calculate this AH/E(J − Ks) value using their result for the field
S+ (0◦ < l < 3◦,−1◦ < b < 0◦), which is nearest of their fields to the MOA-2016-
BLG-227 event position.

N08 also provide the ratio of extinctions towards the Galactic bulge (l ∼ 0◦, b ∼
−2◦). They find AJ/AV = 0.183 ± 0.015, AH/AV = 0.103 ± 0.008 and AKs/AV =
0.064 ± 0.005. (These values are slightly different from the original values given
by N08 because the values used in N08 were in the OGLE II and IRSF/SIRIUS
photometric systems, so we converted them into the standard systems that we use
here.) These values are well fit by a single power law, Aλ/AV ∝ λ−2. Nevertheless,
we use the ratios themselves, instead of the single power law, because N08 does
not test that their power law accurately reproduces AI/AV , which we have now.
As in the case of N09, we keep these ratios fixed, and adjust AI and E(V − I)
to minimize the χ2 between these relations and the observed AI,obs, E(V − I)obs,
E(V − H)obs, and E(I − H)obs values. Notice that N08 had V -band data and it
was not necessary to use the RJKV I as a constraint. Therefore, we used the RJKV I

value as the additional observed data instead here in addition to AI,obs, AV,obs and
AH,obs to increase number of degrees of freedom (dof).

Table C.1 shows the results of fitting our extinction measurements to these
three different extinction laws. This table also shows the angular source radius cal-
culated from the extinction–corrected source magnitudes and colors using formulae
from the analysis of Boyajian et al. (2014). We determine θ∗,IH using Equations
(1)-(2) and Table 1 of Boyajian et al. (2014), but the other relations were provided
by private communications from Boyajian with a special analysis restricted to stel-
lar colors that are relevant for the Galactic bulge sources observed in microlensing
events. We use Equation (4) of Fukui et al. (2015) to determine θ∗,V I , and we use
Equation (4) of Bennett et al. (2015) to determine θ∗,V H . Those formulae are

log [2θ∗,V I/(1mas)] = 0.5014 + 0.4197(V − I)S,0 − 0.2IS,0, (C.1)

log [2θ∗,V H/(1mas)] = 0.5367 + 0.0727(V −H)S,0 − 0.2HS,0, (C.2)

log [2θ∗,IH/(1mas)] = 0.5303 + 0.3660(I −H)S,0 − 0.2IS,0. (C.3)

If we compare the χ2 value for each model fit in Table C.1, we see that the
χ2/dof for the N09 and N08 laws are smaller than the value from the C89 extinction
law, although the C89 is not disfavored by a statistically significant amount. (The
p-value of χ2 = 2.39 for dof = 1 remains at ∼0.12.) Note that a contribution of
0.96 to the total value of χ2 = 1.19 arises from fitting the RJKV I value to the N08
extinction law. Therefore, the remaining contribution of 0.23 to χ2 arises from
fitting the N08 model to our measurements of the RGC centroids. This indicates
that the extinction law of N08 agrees with our measurement of the red clump
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centroids very well, but that well with the RJKV I value, which comes from Nataf
et al. (2013).

From the point of view of consistency among the three θ∗ values, the standard
deviation of the three values (SDθ∗ in the table) is the smallest using the N08
extinction laws. The N08 extinction law also yields the smallest error bars for AH

and θ∗,V H .
Based on this analysis, we have decided to use the results from the N08 extinc-

tion laws in our analysis. We use θ∗,V H for the final angular source radius, which
is θ∗ = 0.68 ± 0.02 µas. We show the source magnitudes and colors corrected for
extinction using the N08 extinction laws in Table 4.3.
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Delfosse, X., Forveille, T., Ségransan, D., et al. 2000, A&A, 364, 217

Dominik, C., & Tielens, A. G. G. M. 1997, ApJ, 480, 647

Dong, S., Gould, A., Udalski, A., et al. 2009a, ApJ, 695, 970

Dong, S., Bond, I. A., Gould, A., et al. 2009b, ApJ, 698, 1826
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