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1. Introduction and statement of the result

A natural application of recent results about lower bourmssiystems of pseudo-
differential operators ydo’s) with double characteristics (see, e.g., [1], [2],)[9%
the study of theC>-well posedness of the Cauchy problem for weakly hyperbolic
systems ofdifferential operators. In this paper we will be concerned with systems of
the form

1) P =—D3ly+A(x, D)

in R,]r--m = Rxo X RZ" WherEDo = (l/z)(@/@xo), D' = (D]_, ey D,l), Dj = (1/1)(8/8)@),
1< j < n, Iy denotes theV x N identity matrix andA £, D’) is an N x N matrix
of second order differential operatonsith smooth coefficients.

We will make the following strong assumption on the printipgmbol ay(x, £'),
(x, &) € Ry x (T*R"\ 0) =R, x T*R",, of A(x, D).

AssumpTioN 1. There exists a smooth conic (closed) connected subnbdnifo
2 C R, x T*RY and an integef  with X/ < N such that

,U‘l(-x’ 5/)
a(x. €) = '

:u‘l(xv 5/)
0 o6, ©)

where:

e b(x, &) is a smooth § —1) x (N —1) positive-definite Hermitian matrix (of course,
in casel < N);

e The i, 1 < j <1, are smooth non-negative symbols, vanishing exactly torsec
order onX , that is, with dist x( &'/|¢’|) denoting the distance ofc(¢'/|¢|) to T,

¢\
@ (2, €) ~ |2 disty <x, m) .
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(For definiteness, we will suppose throughout the paper That < N.)

Although Assumption 1 is very restrictive, there are neweldgss important exam-
ples where the above structure shows up, namely when tgettien Cauchy problem
for the d’Alambert operator associated with the Kohn-Laa of a CR-manifold.

Our aim is to give sufficient conditions oR  (namely, on thetfosder matrix
term of the symbol ofA ) in order for the Cauchy problem to ©e°-well posed
in the following sense (see [3]):

() For any givenu € &'(R¥™;CV) with suppu C {xo > 0} and such thatPu = 0
in {xo > 0} thenu = 0;

() For any givenf € C>(Ri"™;CV) with suppf C {xo > 0} and for any given
relatively open sef2 C {xo > 0} with compact closurethere exists: € C>(R1*™; CV)
satisfying Pu = f in N {xo > 0}.

Having well-posedness in the sense of (I) and (ll) above, lmarconsidered only as
an initial step for fully treating the Cauchy problem. Morefined results concerning
finite propagation speed of supports and of &% (polarized) wave-front set will be
(hopefully) treated elsewhere.

We decided to deal here only with sufficient conditions &t -well posedness.
In the final section we have gathered a few remarks concerfiagextent to which
our conditions are necessary.

We now make precise the geometrical setting and state the maault. The proof
of the well-posedness, that is essentially a vector-valuadant of the approach
of Hormander and Ivril (see [3], [6] and [7]), is given in&en 2.

In the first place, we fix the “hyperbolic character’ of the $ots

pi(x, &) ==&+ pi(x, &), j=1...1,
and the symplectic nature of the double-characteristicifolanof the p;
= {(n O e T'RY™; & =0, ap(x, &) =0}
Namely, we make the following
AssumpTion 2. Upon denoting by, ) the fundamental matrix op; gt € X',

Specf; p)) C iR
3)

Ker(F; (0)2) N Im(E;(p)?) = {0},

forall pe ¥/, all j =1,...,1 (note that condition (2) automatically yields Ker p) &
,x);

4) ¥’ is non-involutiveand the standard symplectic 2-form’;_, d¢; Adx;
has constant rank o&’.
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We explicitly remark that supposing the eigenvalues of thedrives F; p) to be
purely imaginary (i.e., according to the terminology of 8}d [6], that thep; bewon-
effectively hyperbolicamounts to requiring a condition that already in the scakse
necessarily imposes restrictions on the first-order tei@mndition (4) onX’ is cho-
sen for the sake of definiteness, for at the level of energynatts it involves only
Melin’s inequality for systems (see Section 2). WhEh is involutive, one has to use
Hormander’s inequality for systems.

The conditions on the lower-order terms a4f  concern the Wahg / x [ matrix:

.....

(5 ay(x, &) = (02(A),j (x, €))jjr=1..0 + IE diag((0x, 9e)pj(x, €))j=1....0-

First of all, we have a spectral condition, namely, upon tiego

(6) La(p) = diag(Tr Fj(p))j=1.... +ai(p), p€ ',
we require
(H1) Specla p)) C Ry, Vpc X,

Recall that Tf F;(p) = 2 0. irespece; p) V-

It is important to note that we do not assume the madiifp) to be self-adjoint.
However, we have to require thaf(p) is symmetrizablan a suitable sense that we
next make precise. Fix any € X, and consider thelistinct germs atp of the p;,
that we callAg, ..., N (1 < k < I). Letl,, 1 <1, <1, be the multiplicity of \,,
h=1, ... k. It follows thatthere exists a conic neighborhodt) C R,, x T*Rj., of p
and aconstant/ x [ unitary matrixe such that of"; we have

(7) e*diag(u;(x, &) j=1.....e = Ax, &) = diag@(x, ), )n=1....x-

Notice that any two amongst the, are distinct as functions ofi;. On I'; we hence
make the following symmetrizability assumption.
(H2);: There exists anl x [ smooth, homogeneous of degree zero matrix £(),
(x,¢&') € T, such that
(o) t(x, &) =t(x, ) >0;
(ee) 1(x, &) is blockwise diagonal withk blocks of sizk x I,, h = 1, ...k,
which correspond (in position) to the blocks af ;
(o009 (e1(p)e*)ai(p) = ai(p)*(e t(p)e”), Yp € TN .

Remark 1.1. 1. Condition ¢e) in (H2); implies that
[t(x, &), A(x, €N =0, V(x,&) €Ty

2. Condition ¢ e e) in (H2); shows that the existence of such a matrix does not
depend on the rearrangement of the distinct germs ofuthe
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Although Condition H2); (ee) is very restrictive (e.g., wher # then must be
diagonal), we are unable to avoid it in our approach (of caurfsai(p) = aj(p)*, then
t may be trivially chosen to be the indentity matrx ).

We are now ready to state our result.

Theorem 1.2. Consider the differential syster(il), satisfying Assumptions 1
and 2. If (H1) and (H2);, for all p € %, hold, then the Cauchy problem i€>-well
posed

2. Proof of the theorem

The proof uses the nowadays classical approach of Carlersiimages, exactly
as in [3] (see also [6]). As usual, one has to distinguish betwmicrolocal estimates
near ¥ and microlocal estimates away fraih . In the latter cage, D’) is posi-
tive elliptic, and Carleman estimates are established bygua positive square root
of A. We therefore concentrate on the estimates near . The &iey i3 the follow-
ing lemma.

Lemma 2.1. Fix any p € ¥ and letI'; be a corresponding conic neighborhood
as in (H2);. Let x(x, D") be ascalar properly supportejl pseudodifferential operator
of order 0 with suppy C I';, and x = 1 in a neighborhood ofp. Fix any N x N
matrix Q(x, D) of the form

qo(x, D/)DoI[ + ql(x, D/)| 0

= = + Qo(x, D'),
0 |f10(xv D')Doly_; + Gai(x, D') ( )

(8) Q. D)=

where qo, go are scalardo’s of order0Q, ¢; is anl x [ matrix of first-orderydo’'s
with principal symbolvanishing onX 471 is an (N —1) x (N —[) matrix of first-order
ydo's, and Qp is an N x N matrix of Oth-order ¢»dd's (all the »do being properly
supported. Then for any fixed compack C R'*™ and any givens € R there exist
constantsC 7o > 0 such that for every € C§°(K;CV), upon defining

f = (X(xv D/)uj)jzl ..... 8 = (X(xv D/)uj)j=l+l ,,,,, N>

the following a-priori estimate holds for at > 7o:
+o0 2 2
[ e [1 G0 M2+ lstoo. I o

+ ,7_2 / eZTxo
©) i

oo

(o[

2 2
||f(x07 ')||s+l/2 + ||g(XO, ')||s+l +

2
] d)C()

2
de,

s
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where ||¢(xo, -)||, denotes the Sobolev norm of order in tkfevariables

The core of the section is the proof of the above lemma, thapestpone by first
showing how the lemma yields the proof of the theorem.

The main point consists in proving that the microlocal eaties (9) can be glued
together into local ones.

Lemma 2.2. Same hypotheses dheorem 1.2.Given any compack c R*
and anys € R there exist constant€ 7p > 0 such that

+oo

+oo

(10) / e [lu(xo, )|z dxo < C / 2™ ||(Pu)(xo, )|I? dxo.
0 0

for all u € Cg°(K;C") and all 7 > 7.

Now notice that alsaP* = —D21Iy + A(x, D')* satisfies the same Assumptions and
hypotheses fulfilled byP (simply becaudes-(p) = La(p)*, andt , &)~ satisfies
hypothesis i2); relative to P*). Hence estimates (10) hold true f@*, whence it
follows by a Hahn-Banach argument (see [4], Thm. 9.3.2, &jd Thm. 4.4.3), that
the Cauchy problem foP is well-posed.

Proof of Lemma 2.2. Lek = x(x, D’) be a Oth-ordescalar microlocalizer near
some fixed point of2 (supported in a neighborhood on whidR)(holds). Write

(12) Pxu=xPu+Y (c;PPu+d;Pu)+junk(x, D')u,
J RE0)]
j=0

where the operator®), resp. P;), have principal symbob;, o2(P), resp.oy o2(P),
thec; and junkg, D’) are suitable operators of order 0, and the  have orderSet

1/2

Ny ) = < [ emloto. i dxo)

Then, for a suitableC > 0 independent of- andu ,
(12)
No(Pxu;7) < C | N(Pu;7) + Y [N((POu; 7) + No(ID'| 7 Pyu; 7)) + Ny (u; 7)
j=0

Since PU) and |D'|~1P;) are “admissible” perturbations of typ® x,(D ) as in
Lemma 2.1, we may use inequality (9) to obtain, for albufficiently large, and with
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new constants, all again denoted by

TN Ot )+ 7N j20c; 72+ 72 Y [NG(PUxas 1) + No(| D' 2Py 7))
(13 j=0
< CNy(Pxu; )2

Since inequality (13) holds true also wheix, £) is supported away front , using a
microlocal partition of unity neak gives

TN )2+ T2 Nys1jo(u; 7)2 + 72 ) [Ny(PDu; )% + No(|D'| 72 Pyus; 7))
Jj=0

(14) )
<c (M(Pu: 72+ [N(PYu; 7)%+ No(|D'| 71 Pgyus 7)2] + Ny(us r)z) :
j=0

Hence inequality (10) follows by choosing, once moresufficiently large. ]

We now turn to the proof of Lemma 2.1. We will actually proveduality (9) for

the system
s _ e| 01" e| 0 }
P [O|IN,] P[0|1N, ’

wheree is any fixed constant unitaiy / matrix satisfying (7). Of course, if (9) holds
for P, it then holds forP too. Hence, we hereon suppose that; gnwe already have

diag@vi(x, £, =1k = Alx, f’)| 0

(15)  o2(A)(x, &) =ax(x, &) = [

0 |b(x 1
(16) Specla p)) C Ry, Vpe ¥/,
where
(17) L (p) = diag((TF" Fu(p)) I )n=1....x + ai(p),

Fi(p) being the fundamental matrix of

gn(x, &) = =5+ Ny(x, &), h=1,...,k,

and

(18) aj(x, &) = (01(A)jr(x, €))jjr=1.... l+%diag«ax’8£>/\/1(xa€/)11/,)h:1 ..... %
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In this setting, K12), (e ® ®) reads as

(19) t(pai(p) = ai(p)*t(p), Yp e TzNE.

The crucial point in the proof of the lemma, is the choice af #ippropriate “energy
form”, and the use of Melin-type lower bounds for systemshvdbuble characteristics.
Each one of these steps requires some preparations.

2.1. The energy form. Since in general d/dxo) n(x, ') does not vanish to
second order ofE , we need to replace fgderivative by a suitable 1st-order oper-
ator. To this purpose, it is necessary to recall a few wedlvkm facts (see [3] and [6])
concerning the hyperbolic quadratic forms

(20) T,T*RY™ 3 v o(v, Fy(p)v), h=1,....k, pe X'

Lemma 2.3. Upon denotingV,(p) C T,7*R'" the hyperbolicity cone of the
qguadratic form (20) with respect to the directiorfox = 0;6¢ = ¢g = (1,0,...,0)),
we have the following equivalent assertions

0 { Spec¢i p)) C iR,
|

Ker(Fi (0)?) N Im(Fa(p)?) = {0}
(ii) Ker(Fi(p)?) N Vi(p) # 0;

(iif) There exists a non-zero vectgre Ker F, (p) N Im F,(p) for which
o(w, Fiy(p)w) > 0, Yuw € (Spar{(})”,
and

w € (Spar¢})? and o(w, Fy(p)w) =0 = w € Ker F;(p).

Observe that the set of non-zero vectdgrsatisfying (iii) of the lemma, is precisely
the set

(21) Fi (o) ([Vi(p) U (= Vi (D] N Ker (Fi(p)?)) -

Since o|s: has constant rank ang, vanishes exactly to second ordeE’ofi.e.
KerF,(p) = T,%', for all p), the family p — Ker(F,(p)?) forms a smooth vector
bundle. On the other hand, the convex comgsp) depend orp in aninner semicon-
tinuousfashion (i.e. ifC C Vj(po) is a compact set, the@ C V,,(p) for all p in a suit-
able neighborhood ofy). It follows that we can construct (microlocally) a smooth
vector-field p — z,(p) € Ker(F,(p)?) N Vi(p), homogeneous of degree 0 in the fibers.
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Hence, by virtue of (21)p — F,(p)zx(p) is a smooth vector field which satisfies (iii)
of Lemma 2.3 at any given point. We can therefore find a real symbol

(22) _fo - mh(xv 5/) = m;(x’ f)v

homogeneous of degree 1 §nm(x, &) defined inI'; and vanishingon ¥, such that,
possibly after a suitable normalization of

(23) I_Imz (P) = F/1 (P)Zh(/))

Furthermore, upon setting

(24) my, (x, €) = =& +my(x, ),

we can write (neap)

(25) qn (e, ) = =5+ Mx, &) = —my (x, Omjp(x, ) + (v, €),
with

ra(x, €)= Mnlx, &) — my(x, €)% > 0,

and vanishing exactly to second order an.
It is important to recall also the following consequencesh& above construction
(see, once more, [3] and [6]).

Lemma 2.4. We haveforall h=1, ...k,

7 (Hug (0), Hy (7)) = ~2(60, mi}(p) =0,

H{r/,,m;;}(p) = _2Frh (p)I_ImZ (p) = Ov
Tr" Fi(p) = Tr" F, ().

The time-slicesE, := ¥ N{xp =c} are smooth conic submanifolds fﬁf*Rf.,, such that
rank(zj:zl dg; /\dxj|zv) is constant and-,(xo = c, x’, £’) vanishes exactly to second
order on X..

We finally arrive at the following microlocal factorizatioof P near p:

P =

~M~(x, D)M*(x,D)| 0 .\
0 |—D3Iy i

+[R(x,D’)| 0 ]+[ 0 Iw(x,D’)}
0 |[B(x,D') 5(x.D)| O ’

(26)
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where:

o M*(x, D) := diag((—Do F Mu(x, D'W,),-, , = —Doli ¥ M(x, D), for 1st-
order scalar vdo’s M, (x, D') = M, (x, D')* such thatoy(M,;)(x, &) = my(x, £');

e R is anl/x! matrix of 2nd-order)do’s with o2(R)(x, £') = diag(rx(x, 5’)1,,‘),1:1 _____ o

e Bis an (N —I) x (N —[) matrix of 2nd-orderpdo’s with o,(B)(x, &) = b(x, £')
(recall thatb =b* > 0);

e v, resp.d, is anl x (N —1), resp. (Vv —[) x [, matrix of 1st-order)do’s.
Since the principal symbol oR vanishes &h  to second ordenaikes sense to con-
sider, forp € %,

(27) subR )p) := o1(R)(p) + %<8x, e )aa(R)(p)-
We claim that

(28) SubR )p) = ai(p),

wherea;(p) was defined in (18).
In fact, since

j=0

: 1 1<
01(R) = (01(A);,j+)j.j:=1,.... *+ diag ( (lf{fo, my} — - Zag,m/ﬁx,-mh) 11,,) ,
h=1....k

.....

.....

and the claim follows.

Remark 2.5. Factorization (26) above can be greatly simplified wtten funda-
mental matricesF, ), » = 1,...,k, commute for allp € X’. In fact, in this case,
since all Ker{, p)?) are equal, we may choose just osealar symbol m (, ¢'), and
hence use the operatod*(x, D) = (—Do F M (x, D"))1,.

We have now to pull hypothesisi@); into play. We hence suppose, as we may, that
there exists ar x [ matrix of Oth-orderydo’s T (x, D’) such that

(29) T(x,D')=T(x,D')" >0, andoo(T)(x, &) =1(x, &) in T
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At this point, using the same notation as in Lemma 2.1, we detfire energy form
as follows:

E (xo: B ]) (M £) (o, ). (TM* F)(xor ) + | Dog o, )|
+Re(Rf o, -), (Tf)(xo, -)) + Re((Bg )ko, -). g(xo, -)),

(30)

where (, -) denotes the usual inner-product D?(R};C’) or LZ(R;,;CN*’), accord-
ing to the needs. Following the classical approach, we vsifineate

oo 27x0 d . f
(31) —/0 e d_on (xo, [g }) dxg,

for = positive large. This will yield inequality (9) of Lemma 2.1hens = 0 and
Q(x, D) = 0. Afterwards, we will show how to obtain (9) in the gerletase.

In estimating (31) a crucial role is played, as already nozetd, by a Melin-
type lower bound for systems with double characteristice NMéw make this pre-
cise, in a form which is directly related to our situationr(fo more general setting,
see [1], [2] and [9]).

2.2. Melin’s inequality. Suppose we have dx! systemH ¢, D, )=H §, D, )
of 2nd-order (properly supported)do’s in R}, and suppose

All entries of the Hermitian matrix2(H)(y, ) vanish to second order

(32) onS

and o2(H)(y, n) is positive transversally elliptic with respect t§ that is

2
(39) (o2 H)(y. v, v)er = [P dlists (y|—z|) v, vued,

where S C 'T*R’(. is a smoothnon-involutiveconic (closed) submanifold of codimen-
sion 2 + p,

dim(7,S N T,5%) = >0, dim(,S°/(T,SNT,S7))=2v>2, Vp€ES.

We want to attach toH a suitablgymplectic invariant namely a continuous real-
valued function\y defined on the dual bundler'§ N 75°)" of TS N TS (bundle
that, in caseu = 0, is identified withS ).

Fix any po € S, and consider acanonical flatteningy of S near pg, that is
a symplectomorphism

X Tp © T'RE = C TPRE =77 (RS x R, x RE,C)
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defined in a conic neighborhodd,, of pg onto an open conic sdt, such that
(34) X(Tp N E)={(,2". 2" ¢ ¢".¢") el ; 2/ =¢ =0, ("=0}

Such ay exists, see [5], Ill, Thm. 21.2.4.
Put, forp e Ty, N S,

hp_X(CH;Z/, C/)
1
9 = ¥ al iyt (020200 (2(H) 0 X)) (x(p))¢"2'*¢" + subH )p),
le|+[B#lyl=2 70
where, recall,

SUB(H )) = ra(H)(p) + 50y )2 (H)(p)

(Remark that suti{ )] is ani x [ self-adjoint matrix because of the self-adjointness
of H.)
Next consider the Weyl-quantization

(36) Hp,x = Hp,x(C”; ) = Opw(hp,x)(cu; Z/, Dz’)v

as an unbounded operator In?(Rj;,;C’), depending on the parametgsse 'y, N S
and ¢ € R*. By virtue of (33), for allp and ¢”, the operatorH, , has a bounded-
from-below discrete spectrum, made of real eigenvalueth(fimite multiplicities), di-
verging to 4o (see, e.g., [10]). In particular, the lowest eigenvalg(p, (") de-
pends continuously op and ¢”. It turns out that using another symplectomorphigm
with the same property (34), yields an operafds .- which is unitarily equivalent
to H,, (see [5], lll, Thm. 18.5.9). This implies that the local ftieas X, (p, (") can
be glued together into a continuous functigp : (TSN TS?) — R. We finally have
the following theorem.

Theorem 2.6 (Melin’s inequality). For the operator H(y, D,) above the follow-

ing conditions are equivalent
For any given compacK C RY there existc, C > 0 such that

(M) (Hu,u) > cllu])?,, — C |lully. Vu € C5°(K;C');
(37) Mu(p,v) >0, Y(p,v) € (TSNTS?Y.

For a proof, see [1], [2] and, in the symplectic case, [9].

2.3. Proof of inequality (9) whens=0 and Q(x, D) =0. Write

E (xo; [Z;D = E1(x0) + E2(xo),
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where

E1:=||Dog|5+Re(Bg, g )
Ex=(M"f, TM"f)+Re@®Rf, Tf)

and recall that

fl_[-M M"f+Rf+~g
(38) P[g]_[ —D2g+Bg+4f }

We next computeDgE. Using the fact thatDg=-M~+M = —-M* — M, one has
DOE1:—2i|m<P|:f:|,|: 0 )
8 Dog

+iIm((B — B*)g, Dog) +iIm([Do, Blg, g) + 2i IM(4 f, Dog).

s 4]

(40) +2 IM(TM* f,vg) — (M* f,[Do, TIM* f) + 2i IM(TMM™* f, M* f)
+iIm((R*T — TR)f, M* ) +i Im(Rf, [T, M] f)
—ilm([M*, R1f, Tf) — i Im(Rf,[Do, T]f).

(39)

Hence, summation gives

(41)

me-am( [ %)

+2i Im[(0 f, Dog) + (T M" f,v8)] + ([T, M] — [Do, TI")M" f, M" f)
+iIm({[T, M]*R — [Do, TI*R — T[M*, R]} f, f) +i Im((R*T — TR) f, M* f)
+ilm((B — B")g, Dog) +iIm([Do, Blg, g)-

It is important to notice that, by virtue of our hypothesis dr, £’) and by the nature
of M, [T, M] is I x! of order 0. To simplify notation, from now on we denote By =
Ji(x, D), j =0,1 2, a generic system gf -th ordédo’s, not necessarily the same
in each appearance, whose structure does not play any spaeiaWe may therefore
rewrite (41) as follows

me=am(e[ (][ 7))

(42) + 20 Im[(6 f, Dog) + (TM™ f, 7)1+ i Im(JoM™ f, M™ f)
+iIm((JoR —T[M*,R) f, f)+ilm(R*T —TR)f, M*f)
+ilm(J1g, Dog) +ilm(Jzg, g).
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Integrating by parts

+o0 1
/ g7 <TD0E()C0)) dxg
0 1

oo 27X0 — e 27x0 ! TM+f
E(o)+2r/o ¢ E(xo)dx‘)‘z/o cim (P[g}’[—Dongxo

yields

(43) o
+ 2/ 627X0|m(5f, Dog) dxo+ 11+ 1, + I3,
0
where
+oo +oo
I = 2/ 2 Im(TM* £, vg) dxo +/ e Im(JoM™ f, M* f) dxo
(44) ° o
v [ eromig. Do)+ (g, ] di
0
+o0

(45) I = / e Im((R*T — TR) f, M* f) dxo,

0

+00
(46) I3 = / e Im((JoR — T[M*, R)) £, f) dxo.

0

We have to estimate all the terms on the r.h.s. of (43) (we csgmpas we mayy > 1
throughout the sequel). It is convenient to remark that tilwing inequality holds:

+00

+oo
@n [ e (ITe e ISR d < Cr [ @£ M fdvo
0 0

for a constantCr > 1 (depending orf” and on the compdct , but independent of
and f). Using (47), we have by the Cauchy-Schwarz inequality:

oo 27x0 f TM+f
2/0 ¢ lm(P[g}’[—Dongxo
(48) 2

Cr [ f oo
< T / eZmvo P[ } dxo+ T / £%%o [(M" £, TM* )+ || Dogll5| dxo,
T Jo 8 0

0



672 C. PRENTI AND A. PARMEGGIANI
+00 +oo
L <Cr / (MY F, TM™ f)dxo + / e?™(Jog, g) dxo
0 0
+00 +oo
+CCy / (M f, TM* f)dxo + / ¢*™ || Dog|l§ dxo
0 0
+00
(49) o [ g,
0
+o0o
< C[CT/ PT(M* £, TM* f)dxo
0

+o0o +0o0
+/0 o270 ||D0g||(2) dxo +/O o2T%0 ||g||i de}

for a suitableC > 0 (here and belowC will stand for a suitable positive coristan
independent ofr, f andg, not necessarily the same in each appearance),

L < / e?™(R*T — TR)*(R*'T — TR)f, f)dxo

(50) e

+Cr / XX (M* f, TM™ f) dx.
0

Note thatR*T — T'R is anl x [ 1st-order system because(R) is blockwise scalar
and oo(T) =t is blockwise diagonalWe next have

+o0 +oo
2/ 2730 Im(3 f, Dog) dxo = 2/ Pragy) Re( f, Dog) dxo
0 0

by integration by parts

= —2Re@(0, x’, D) f(O, -), g(0, -)) — 4r / - e’ Re( f. g) dxo
0
i /0 " 0 Re [(@00) . 8) + (000 ). 8)] dxo

= —2Ref@(0)f (0), g (0))— 4r /0 - e Re(f, 6 g) dxo

+oo
— 2/ ™ Re(f, 0od)*g) dxo — 2/ e?™ 0 Im(=Dq f, 6* g) dxo
0 0

+oo
=1- 2/ e?™ Im(=Do f, 6* ) dxo
0
+oo

+0oo
=1 - 2/ 2 Im(M* f, 6* g) dxo — 2/ 2™ Im(Mf, 6* g) dxo.
0 0
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It follows, again by (47), fore > O to be picked later on,
+00
2 / €2 Im(6 f, Dog) dxo
0
1 2 2 2 oo 27 X0 2 oo 2TX0 2
(51) =C |2l /Ollo+ellgOllz| +7 ¢ [f1lg dxo+C o ll¢lly dxo

+00

+0o0
+Q/‘6”WM7TM7MM+/ ZTOMP, ) dxo
0 0

At this point, we have gotten the following inequality:

(52)
E(0) +2r / e?™ E (x0) dxo
0

a

+00 +00
+(r+ CCT)/ (M f, TM” f)dxo+ (T + C)/ 2™ || Dog||? dxo
0 0

2
C +00
< =T

eZTxo d Xo

0

T Jo

+00 +00o 1
+r? /O e £llg dxo +C /0 7 |gllf dxo + C [g OIS HOI
+oo
+/ e Im({JoR — T[M*, R+ (R*T — TR)*(R*T — TR) + M?} f, f) dxo.
0
Taking into account the definition of the energy form (30) vavd

53)
£O) - ¢ [ 1705 +< O]

+00 +00
+(r— CCr) / M f, TM* f)dxo+ (1 — C) / *™ || Dog |5 dxo
0 0

+ 27/ e [Re(Rf, Tf)— % Im({JoR — T[M*, R]+ (R*T — TR)*(R*T — TR)
0

+Mﬁﬁﬁkm

+oo

oo C .
var [ Retwe. o) 5 el axo 2 [ 2 1 g
0 T 0

+00 2
Sﬁ/ eZTxo P|:f:|
T Jo 8

de.
0
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By choosingr sufficiently large, we may get rid of some constants in (58taming

1
EQ0)-C [g £ O)f5 +< ||g(0)||ﬂ
.7 /O e [(M* £. T M 1) + | Dog 5] dxo — 7 /O 0 1R e
(54) ]

+00o +00
+ 27/ e?™(H, f, f)dxo+ 27/ 270 {Re(Bg, g)—
0 0 27

-[21]

where the operatof, = H.(x, D') is defined by

2
||g||l} dxo

C +00
<L

eZT.Xo

dxo,

T 0 0

(55) H,:=Re(R)— 2_17 IM(JoR — T[M™, R]+ (R*T — TR)*(R*T — TR) + M?),

with

+ W v —

Re(\l/):lll2 , Im(P) = >

We next use the following lemma (whose proof is exactly as3h ection 4.3).

Lemma 2.7. For all 7 sufficiently large, the following estimates hold

(56) / T M M f)dxo > € [Tllf(0)||§+72 / " o ||f||§dxo};
0 0

+00

+00
X 2 2 T X 2
(57) /0 & °||Dog||odxozc[r||g(0>||o+rz /0 & °||g||odxo]

From (54) it follows, by using the above lemma and the deéinit{30) of £ (0),

(Re@R)(0) (0) f (©)) +(CT2 - %) @)
+Re(8 (0% (0) £ (0)) +7* ()5~ C= 15O

+00 +oo
+(Cr3 - 72)/ ™| 15 dxo + Crs/ ™ gllg dxo
(58) 0 0

+0o0 +00 C
+27/ e*™(H, f, f) dxo+27/ %o [Re(Bg,g)— > lgllf | dxo
0 0

+00 2
S & eZT.Xo P |:f:|
8

T Jo

de.
0
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By Garding’s inequality we have
(59) Re@ (0 (0)¢g (0)) 472 [|3(0)[l5 - C= [[2(O)]IF > O,

providede is picked sufficiently small, and for alt large enough, and

+oo

*oo c .
27/ 2o [Re(Bg,g)— > IIgIIf} dxo+C73/ ™0 ||gl3 dxo
0 T 0

+o0 +00
>c [ [l aos s [ e gl dxo] ,
0 0

again for allT large enough.

Now, the crucial point consists in showing that Melin’s inatity (M) of Theo-
rem 2.6 holds for the self-adjoint system R& xg)(x’, D’), xo being treated here as a
parameter varying in a compact interval. We have to show (@&} holds in this case.

Recall that, by [2), 7(x, &) = 0o(T)(x, ') is blockwise diagonal wittk  blocks of
sizel, x Iy, h =1, ..., k. Sinceoa(R)(x, &) = diagl, &, &)1, )n=1....k, it follows thatt
and o»(R) commute, so that

a2(Re(TR ). &) = t(x, §No2(R)(x. §') = o2(R)(x, £t (x. £).

Next, for all p € £, we have

(60)

sub(Re('R ))b) = %(t(p)sub(R )p) + subR )p)*1(p))

by (28)

(t(p)ai(p) + ai(p)*1(p))

NI =

by (19)

=t(p)ai(p) = ai(p)*t(p).

On using the notation of (35) and (36), we now prove that {Re),, (K";z/, D) is
positive as an unbounded operatorliﬁ(RZ”/;Cf) (x being a canonical flattening at’
nearp). We have

(Re(T'R))\(¢"; 2", D) = 1(p) diag(Op' (7. p.x )(C"3 2", Do)y n=1....k + (p)as(p)-

Consider any amongst the &, ,,), and choose linear symplectic coordinatesr)
in T*R" (see [5], ll, Thm. 21.5.3), in such a way that

v
_ 12, 2 ma Lt 7
Fhpx = DT+t ) |2 1T € RV, 7 € RV,
j=1
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where 0< v; and Speck,, Q) \ {0} = {xiv;; j=1,...,v}.
It trivially follows that

(OF"(rhpx ), 8) > (TF F () 0], Yo € S(RY).

o1
Hence, for any givers = | : | € S(R%;C)),

&
(Re(T'R )16, &)

(61) - - .o
> (diag((Tr" F, (0) 1)V (p) &, \/1(p) ¢) + (t(p)ai(p)¢, &)

= ([t(p) diag((TF* F,, (p))1),) + 1 (0)as(p)] 6. 6).
From Lemma 2.4 we have
diag((T" £, (0)) 11, )n=1....x +ai(p) = La(p),

La(p) being as in (17).
As a consequence of the elementary Lemma 2.8 below, we casludenthat

Spect p)La(p)) C Rs,

whence the positivity of (RE(R )), follows.

Lemma 2.8. Let A be an/ x [ complex matrixand suppose that for soniex [
matrix B = B* > 0 we haveBA = A*B. Then

SpecBA )C Ry < Spec@ )C R..

Proof of the elementary lemma. Suppose that Spect{ R.. We start by ob-
serving thatA is diagonalizable. In fact, if for some > 0 andv € C'\ {0} we
have A — )v # 0 and @ — p)?v = 0, then 0 =B @ — p)%v = (A* — p)B(A — v,
and hence(B(A — u)v, (A — p)v)e =0, which is a contradiction.

As a consequenc€’ = @, Ker(A — ;). On writing anyv € C' asv =37, vj,
vj € Ker(A — p;), we have

(BAv, v)or = Z<BAUJ, V) = Z,uj<ij, Vi)l
ok ik

Since B : Ker@d — ;) — Im(A — p;)* for all j, we conclude thatBv;, v)er = 0
if j #k, which proves the positivity oBA .
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To prove the converse, suppose Sget( C R+. Since(Bv, v)c > 0 for all non-
zerov € C!, then fromAv =pv (v # 0) we get 0< (BAv, v) = u{Bv, v)c, whence
u > 0. 0

Now, from Melin’s inequality we have

(62) Re(CR)OY (007 @)+ c7? = < ) 17 > o

for all = sufficiently large.
Moreover, by a straightforward perturbation argument, Vo &ave

+o0 +00
27'/ ™ (H, f, f)dxo + (CT°> — 72)/ o ||f||(2) dxo
0 0

(63) oo o
sl [T, an s [ idan).
0 0
for all 7 sufficiently large.
Finally, by using inequalities (59), (60), (62), (63), frof68) we obtain inequal-
ity (9) whens =0 andQ X, D )=0. U

2.4. Proof of inequality (9) whens =0 and Q(x, D) # 0. We consider a per-
turbation 9 of P as given in (8). Because of the already provedjuiality (9) when

Q = 0, any term of the kindr? [ ¢?™ || Qo [g]”é dxo can be immediately reab-
sorbed (forr large) by the termr® [ ¢270 [||f||§+ ||g||§} dxo. We may hence sup-

pose Qo =0 and

Q I:f:| — [QO()C’ D/)M+f+ql(xv D/)f:|
g Go(x, D")Dog + Ga(x, D")g |’

with the ¢ and theg™ as in (8). Now, with > O to be picked sufficiently small, we
add and subtract the terav [ 2™ ||Q [/] ||(2) dxo in the Lh.s. of inequality (53).
The subtracted off contribution gives rise to a term of tharfo

70(6)/0 e [(MU’, TM*f)+||Dog|l5 + (giqrf, f) + (Girg, &) | dxo.

Since the principal symbol of;g; vanishes to second order ah , all the above terms
can be handled as before. U

2.5. Proof of inequality (9) in the general case. To prove (9) for anys € R
and Q &, D) as in (8), we denote byD’)* a properly supportedscalar ydo of
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orders with principal symbol¢’|*, and note that

(D" P {ﬂ =P(D")* [{;] +[(D")*, A(D")~*(D")* H] + Jo(x, D')(D')* {ﬂ .

Since [D")*, Al{D")~* is afirst-order ydo with principal symbol

1 [{w,A(x,g’)}|£’|—f| 0 }
i 0 €T bCx, )}

and {|¢'|*, A(x, &)} vanishes onE |, (D')*, A](D’)~* is a perturbation of the same
type as in (8). Moreover, since

(D) Q(x, D) [ﬂ = (D) Q(x, D)(D')~* (D'}’ {{;] + Jofx, D')(D')* Lf;]

and (D')*Q(x, D){D')~* is again a perturbation of the same type as in (8), esti-
mate (9) follows from the previous cases treated above. [l
This completes the proof of Theorem 1.2. U

3. Concluding remarks

First of all, we observe that wheh =1 hypothedifl) reads

im(aj(e)) = 0
(64) { Re@ ()] < Tr Fu(p) P €

where nowa;(x, ') = o1(A)1,1(x, ') + (i /2){Ox, Oc)ua(x, ). Condition (64) is exactly

the Ivril-Petkov-Hormander condition of the scalar cakels hence conceivable that

when! = 1 the necessary condition for the well posedness ofCdgchy problem is

(64) with the weaker inequalityRe@;(p))| < Tr* Fi(p) replacing the strict one.
When! > 1 andaj(p) = aj(p)*, p € X, condition H1) can be written as

(65) — diag(Tr" F;(p));=1.... < ai(p) < diag(Tr" F;(p))=1.....

in the sense of Hermitian matrices, for alle .

We conjecture that, at least in the case of commuting fundéathenatricesF; |,
the necessary condition is the weak form of (65) (whereeplaces<). For, as shown
in the proof of inequality (9), hypothesisH{) ensures that the lowest eigenvalue
of (Re(l'R)),, is positive (see inequality (61)). When the fundamental rives F;
all commute onX , hypothesidH() is readily seen to be also necessary to the posi-
tivity of the lowest eigenvalue.

Our main concern was to handle the case whg(g) is not necessarily Hermitian.
A reasonable assumption, in order to avoid the nilpotentthénfirst-order part, is to
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suppose that;(p) is (smoothly) symmetrizable, which is the content ef énd @ ee)

of hypothesis d2). Unfortunately, we have been forced to add the requirentiest
the symmetrizer X, ¢’) is blockwise diagonal, the blocks corresponding in sizd an
position to those of the principal part x,(¢’). The extent to which this “blockwise”
condition is caused by our approach through Carleman e#mar is more intrinsi-
cally linked to the nature of the problem, we do not know.

Apart from these considerations, the problem of nilpotentshe first-order term
of the system still remains to be understood. As a very singdlample, consider
(with N =1 = 2) the following system
(66) { —Djuy + pa(x, D")uy + y1a(x, D"Yug + y1o(x, Dup = f1

—Dguz + pip(x, D" uz + y22(x, D')uz = fa,

where they are first-order differential operators. When (with stanidaotation)

|m(’yv(p)) =0 a
o { |Reéj’}j(ﬂ))l <TrE) PEE T 12

the Cauchy problem associated with (66) @s°-well posed, regardless the choice
of v12. In fact, one has the following a-priori inequality

+oo
TX 2 2 TX 2 2
(68) / e [[lus 2y 2 + 2l ] dxo < € / e [|| a2 + 1| fol 5] dixo,

from which one concludes as usual.
Unfortunately, we are not yet able to cast a “triangulariéghdition ona;(p) into
an invariant framework.
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