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0. Introduction

Let H be a real Hilbert space and  a lower
semicontinucus convex proper function from H to (-«,»].
Here the terminology "proper" means that vy #ﬁw. The
subdifferential of ¢y 1is defined as follows: For x & H, the

value Q3yx 1is the set of all z &€ H such that

Ply) - v(x)

I

(z, y-x) for every vy &€ H
where ( , ) stands for the inner product of H.

H.Brezis in [1] and [2] proposed the inital value problem

of the form

a_ u + apu > £
(0.1) dt

u(0) = a, %Eu(o) = b.

In [1] he stated that in the particuler case where ¢ = IK is
the indicator function of a closed convex set K, the solution=®
u represents, roughly speaking, the trajectory of an optcial

ray caught in K and reflecting at the boundary of K.

Then -3Yu = —BIKu may be regarded as the repulsive power at



the boundary of K. In case H 1is finite dimensional,
M.Schatzman made a deep investigation on this problem in [3]
and [5] and established a general existence theorem as well as
various results on the unigueness and non-unigueness of
solutions. By a simple example in which ¢ is the
indicator function a closed convex set‘ K she ‘showed that the
uniqueness of the solution does not hold in general and the
solution which reflects optically on the boundary of K 1is an
energy conserving solution. Moreover she obtained that
even the energy conserving solution is not necessarily unique.

In case H 1is infinite dimensional, to the author's best
knowledge, it seems to be extremely difficult to solve this
problem‘in a general situation. Hence as the first step
of the study of this problem we are concerned with the case

where the subdifferenﬁial operator 3¢ 1is expressed as

(0.2) 3y = A + 3T,

where A is a positive definite self-adjoint operator and IK
is the indicator function of a closed convex set XK with non
empty interior. M.Schatzman showed in [4] the existence of
local solutions of (0.1) in the case of (0.2) and for some
specific initial data.

Clearly if £ 1is continuous, the solution u of (0.1) in the _
case (0.2) is twice continuously differentiable so long as
u(t) lies in the interior of K since GIKu(t) = 0 then.

However, for scome reason as was illustrated in M.Schatzman

{5] in a finite dimensinal case a reflection occurs if u(t)



reaches the boundary of K, and this causes discontinuity of
%%. Thus we cannot expect the existence of a twice
continuously differnetial solution. Hence, follwing
M.Schatzman [5] we seek a function satisfying the equation

2

d”u

with 5 and aIKu considered as measures with values in
dt :

H.

In Theorem 1 we will show the existence of the solutions
of (0.1) in a slightly more general case than (0.2),namaly,the
case of -aw = 3¢ + aIK. Here ¢ 1is a lower semicontinuous
proper convex function and coercive in a denseAsubspace v
such that VC:H(:V*, and X 1is a closed convex subset which
is contained in a closed subspace L of finite codimensionr
and has‘interior points in the relative topology of L.
Assuming that the imbedding V -+ H is compact and 3¢ is
singie valued, continuous in some weak sense, we will show the
existence of global solutions of the above problem satisfying
the prescribed‘initial conditions. The solution is
obtained as a limit of a subsequence of the solutions of the
above problems with the Yosida approximations 3¢A’ aIK,l in
place of 34, BIK.

In the subsequent part of the paper it will be always.
assumed that K has interior points and the boundary of K
is so smooth that.there exists the outward unit normal vector
satisfying a uniform Lipschitz condition in each bounded
subset.

In Theorem 2 we will show the existence of an energy

conserving solution of (0.1) in the case of (0.2). To prove



this theorem we consider the following sequence of functions

o, (t) = JZ'H 3Ty yu,(s)]] ds
where ux are the solutions of the above problems with _BIK
replaced by its Yosida approximation aIK,A and apply Helly's
choice thecorem to the above sequence of functidns. This
enables us to extract a subsequence {uk‘} so that uy >

J J

u(t),” A1/2ukj > ‘AT/Zu(t), %Eukgt) > gEu(t) strongly, from
which it readily follows that wu satisfies the energy
equality since as is easily seen u, are the énergy
conserving solutions of the approximate eguations with aIK,A

in place of aIK.

Since the energy conserving solution is not necessarily
unique({see [5]), to obtain the uniqueness theorem, we are
required to consider séme specific class of energy conse:ving
solutions. Hence we introduce a class of energy conserving
solutions called herein "{ti}—energy conserving solutions".
Let {ti} bé a dense and’countable sequence in the interval
[o,T]. Roughly speaking a {ti}—energy conserving solution
is an energy conserving solution such that the integral of the
size of the replusive power from 0 to ti is minimal for
each 1 in the energy conserving solutions. It should be
admitted that this class of solutions depends also on the
order of the elements of the sequence {ti}.

In Theorem 3 we will study a linear functional assocciated

with the solution which plays an important role in the



definition of {ti}—energy conserving solution and establish a
fairly concrete integral expression of the linear functioal
playing the part of the measure aIKu.

In Theorem 4 we will show that the existence and

uniqueness theorems of {ti}—energy conserving solutions are

established.

The outline of the present paper is as follows.
In section 1 we list notations and properties of some
operators. In seétion 2 we list definitions and state the
assumptions and our main theorems. In section 3,4,5 and 6
we prove Theorem 1,2,3 and 4 respectively. Finally, section

7 contains some examples.

The author would like to express his hearty gratitude to

Professor H.Tanabe and the referee for their kind and helpful

advices.



1. Preliminaries

We first list some notations and known results which will
be used throughout this paper. Let H be a real Hilbert

, and V a real

space with inner product ( , ) and norm [+

reflexive Banach space such that V is a dense subspace of H
and the inclusion mapping V - H is continuoué.

Identifying H with its dual Space we may consider VC:HC:V*.
The paring between V and V* is also denoted by (-+,*).

The norms of V and V  are denoted by |-l y and el v
respectively.

For a normed.space X, C([0,T];X) (resp. WC([{0,T];X) denotes
the space of all strongly continuous (resp. weakly continuous)
functions from ([0,T] to X. Cj([O,T];X) is the space of
all functions from (0,T] to X whose derivatives up.to

order j all belong to C([0,T];X).

Lq(O,T;X), 1¢g<w, is the space of all measurable functions
from [0,T] to X such that ( |ul X)q is integrable on

-l «

the space of all essentially'bounded, measurable functions in

{0,7], where

is the norm of X, and L_(0,T;X) is

(0,T] with values in X. Similarly we denote by
Wg(O,T;X) the totélity of mesurable functions from [0,T] to
X such that all derivatives in the sense of distributions up

to order m belong to Lq(O,T;X).
By dist(x,S) we denote the distance between a point x of H
and a subset S of H. Let K be a closed convex subset

of H. Then for any x & H there exists a unique point



P.x of K satisfying |x - PKxH = dist(x,K). P, is
called the projection operator on X. ' If K is contained
in a closed subspace L of H, then
PLPK = PKPL = PK'
o
By K and bdy(K) we denote the interior and the boundary
L

interior and the boundary of K in the relative topology of

o .
of K 1in H respectively. K and.‘bdyL(K);are the

L respectively if XK C L.
Let A be a positive definite self adjoint linear operator

1/2

in H and A the 1/2-fractional power of A.

We here employ the complexification H of H such that

1) each =z € H 1is represented as

z = q + /=18 for some «,8 & H, and

.2) the inner product (( , )) is defined by
((a+/=18, 8+/=Ty)) = (a,8) + (B,Y)
+ /=1{(8,8) =~ (a,7)}-
We then extend the operator A to an operator A in H by
Domain (&) = { a+/-18; «a.,8 € D.(7-‘5)}:-
Alg+/-18) = Aa + /-1AB.

It is easy to see that the operator A is positive self

adjoint in H. '
— /2

— =1
Let {U(t)} be the (Cy)-group on H generated by ¢-1(A)



In the following we write

— ’1/2

D = /oT(E) /2, s(t) = 27 {u(t) - u(-t)}n 7,
clt) = 271 {u(t) + U(-t)},
for simplicity in notations. In view of th§ first property

1) of H, C(t)x is represented as
C(t)x = alt) + /-Tg(t) alt) & H, B(t) ¢ H

for each x & H, and it is easily seen from the definition of

A that the function g is a solution of the initial-value

problem
-dz
——zs(t)'+ Ag(t) = 0,
dt :
g(0) = 0, g—tB(O) = 0.
This implies g(t) = 0 because of the uniqueness of the

solution of the above problem, and hence C(t)x & H.

Similarly, S{t)x ¢ H for any x€&H.

We denote the norm of H by |||+]

Let ¢(.) Dbe a proper, convex and lower semicontinuous

function from V to (-«,«] and let 3¢ be its subdifferen-

tial operator defined by

aex = {f & v*; oly) - o(x) > (£, y-x) for any y ¢ V}.

Let IK(-) be the indicator function of X defined by



[o if x€ K
CIg(x) =9
lm if x & K.

The subdifferential operator aIK of ‘IK(-) is defined by

D(3I,) = {x¢K; there exists =z ¢ H such that

(y-%x, z) < 0 for any yeK},
aIKx = {zeH; (y-x,2z) ¢ 0 for any y e K}.
We put
I (x) = (2A)7] [x - p_x]|| 2 for any x & H
K, A K '

where A 1is a positive number. We see that IK,X(.) is a
convex, Fréchet differentiable function on H and has a
single Qalued subdifferential operator aIK,A which is
represented as

-1
BIK'Ax = A (x =~ PKX)f

For x &« bdy(K) the set ainx) is equal to the union of
the set of all exterior normal vectors at the boundary point
X and a 0O-vector's set. - In particular, if the boundary
of K holds some smoothness, we know that there exists only
one unit normal vector n(x) at the Equndary point x such

that

3Tex = { Ma(x); X &[0, }.

Let ¢(+) satisfy the coerciveness condition in V. Then

if ¢ 1is the convex from H to (-«,2] defined by



(o(x) if x €V
®(x) = 1_ |
© if x &€ H-V = {gcH; gdV},
it follows that ¢ 1is lower semicontinuous on H by the
coerciveness condition and its subdifferential operator -3¢
is defined with domain D(3%) = {x€V: 3¢x CH}. Moreover
30(x) = 3d(x) for any x & D(3d).

For every A > 0 a convex Frechet differentable function 9]

is defined by

¢, (x) = (2x) " [|x - JXX” 2 . ®(J,x) for any x &€ H
where J, = (I + A6)"' and I is the identity operator on
H. Let a@x be the Yosida approximation of 93¢, namely,

30, (x) = X—1(x - J,%) for any x & H.

Then it is known that 3¢A is the subdifferential operator of

Qk and

BQA(X) = 3¢(ka).

10



2. Assumptions and Main results

In this section we list definitions and state assumptions
and theorems. .

Let H, V, ¢ Dbe the ones stated in the previous secfion.
We assume that 293¢ 1is a single valued, everywhere defined and
bounded operator from V to V*, and fhat ¢(+) satisfies the
following coerciveness condition

(2.1) lim o)/ x|y = =
”X” V-—)- o .

Next we suppose that f(t,x) is a continuoﬁs function

from [0,T]xH to H to H satisfying

o~

£(t,x) - £(t,v)]] < h(t) |lx - v

(2.2) < for any x, vy € H and any t & [0,T]

L I[ E(e,x)|[ < h(t)(1 + ||x]| ) for any x € H
where h(e) 1is a positive integrable function of t & [0,T].
In this paper we consider the fbllowing type of equation

2

S u(t) + doult) + 3Tul(t) > £(t,ult)),
(2.3) at

With regard to this type of problem we employ the notion of

solution on [0,T] defined as follows

Definition 2.1. We say that a function wu & C([0,T];H)

11



is a solution of the problem (2.3) if the following conditions

are satisfied:
1) uew _(0,T;H) []Wwc((0,T1;V).

2) For any t & [0,T], wu(t) belongs to V[]K.

+ .
3) The right derivative %Eu(t) and the left derivative

aEu(t) exist on [0,T] both in the weak topology of H and

*
in the strong topology of V (with necessary modifications at

0 and T).

4) We have

, |
1 oaey | 2+ o(u(t)) < 27 |Ib]l 2 + o(a)
dt

t
+ f ( U(S), f(s,u(s))ds

0
for any t & [0,T](with necessary modifications at 0 and
T).
5) There exists a linear continuous functional F on
C([0,T];H) such that
F(v-u) < 0 for any v&cC([0,T];K)
and for any v & W}([O,T];H)fWC([O,T];V)
T
F(v) = j ( u(s) v(s))ds -
ds
0
T -
J (9du{s)-£f(s,u({s)), v(s))ds + (b, v(0)) - (dtu(T), v(T)).
0

12



6) " The initial condition is satisfied in the following
sense:
d+
u(0) = a and b - aEu(O) & BIKa.
Remark. Vaguely speaking, the functional F 1is a

element of the set aIKu in the dual spéce of . C([0,T);H).

We state the assumption and the existence theorem for the

solutions of (2.3) as. mentioned aboée.

Assumption A-1.

1) There exists a closed linear subspace L of H such
that the closed convex set K 1is contained in I and has

interior points in L.

2) The orthogonal complement Lt of L is of finite

dimension and is contained in V.

3) For any sequence of functions {u,} in Wl(O,T;H)fW
L_(0,T;V) such that {un} is gounded in L_(0,T;V) and
converges to someA u in the strong topology of LZ(O,T;H) as
n + =, a subsequence {uﬁ_} can be extracted so that

3 . .

*
3¢un + ddu in the weak star topology of L_(0,T;V ).
J ‘

In particular, the sequence {a¢un(-)} is bounded in

*
LCD(OIT;V )-

4) For any o & L and any u, v& V such that

13



lull ; £'R and -|lv]] ; £ R, the following inequality holds:
| (3¢u - 3¢v, a)| < S lu - v
where C1 is a constant depending only on a and R.

Theorem 1. Assume that H 1is separable,‘and that the
injection mapping of V into H is cbﬁpact. ; Let the
initial values a and b be given in V[}K and H,
respectively. Then under the assumtion A-1 there exists at

least one solution of (2.3) on [0,T].

In what follows we consider the case in which 3¢ = A is
a positive definite self adjoint linear operator in H.

In this case ¢(u) = 27 HA1/2u|12, and V = D(AT/Z) endowed
1/2

with the graph norm of A . Then the problem (2.3) is
written as

dZ

——ou(t) + Au(t) + 3Iu(t) 2 f(t,ult))
(2.4) dt - .

d
u(0) = a, agu(O) = b.

Remark. Theorem 1' Replacing in Theorem 1 the
assumption A-1 by conditions listed below and assuming

a & D(A), we have the same conclusion as in Theorem 1 for the

problem (2.4):

1) For the subspace L condition 1) of A-1 is

satisfied.

2) The orthogonal complement Ll is spaned by a infinite

14



set {pj}j:O of orthonormal eigenvectors of A.
3) The function h stated in (2.2) belongs to L_(o,T).

We employ the following notion of the energy conserving

solution of (2.4)(c.f Schatzman [5]).

Definition 2.2. We say that wu is an energy conserving

solution of (2.4) if satisfies the following requirements:

1) u is a solution of (2.4) in the sense of Definition

2) u belongs to C([0,T];V).

+ -—

: d . .
3) EEu(t) and EEu(t) are respectively right an
left-continuous on [0,T] in the strong topology of H(with

necessary modifications at 0 and T).

4) We have

+
2" H%{u<t>llz + 27V (au(t),ult)) =

.
271 |Ib]| %+ 27 (aa,a) + J (Su(s),£(s, uls)))ds

0 dt
for any t&[0,T](with necessary modifications at 0 and T).

We then state the assumption and the existence theorem for

energy conserving solutions of (2.4).
Assumption A-2.

1) The closed convex set K has interior points.

15



N

2) For any x & bdy(X), aIKx forms a closed convex set
{An(x); 220, n(x) &€ 3I,x and’ Intx)]| = 1}.

3) For any X,y € bdy(K) such that ||x|]| < R ' and

Iyl £ R
In(x) - n(y) |l < N|lx -y]l

where R is any positive number and N 1s a constant

depending only on R.

Theorem 2. Let a erTK and b & H. Under the

assumption A-2 the problem (2.4) admits at least one energy

conserving solution.

We here give a representation theorem for the linear

functionals F introduced in 5) of Definition 2.1.

Theorem 3. Suppose that assumption A-~-2 holds. Let
u Dbe a solution of (2.3) and F be the associated linear

functional as in 5) of Definition 2.1. Then functional F

is represented as
T —
F(v) = f (n(u(s)), vis))de (s)
0
for v & C((0,T];H), where
_ n(u(t)) if  u(t) € bdy(k),
n(u(t)) =
0 if u(t) % bdy(K),

and Py is a left continuous increasing function on [0,T]

such that p (0) = 0 and 0 ¢ p (t) & [[F|]| for each t &

le6



i a
[0,T]. If wu{t) Dbelongs to the interior K of K, dou = 0
in some'neighborhood at t.

Moreover the function < is uniquely determined by u.

Remark Vaguely speaking, if u(t)e bdy(K), -n(u(t))
is the direction of the repulsive power at the boundary point

u(t) and o (t+0) - o (t) 1is its size.

In order to study the uniqueness of the energy conserving
solution, we shall ihtroduce a restricted class of solutions

of (2.4) by using the increasing function p, as mentioned in

Theorem 3.

Let {ti}ic_o1 be a dense subset of [0,T], and define

Mo {V &€ C([0,T];H); v 1s the energy conserving

solution of (2.4) on [0,T1},

M, = {v e My; Min p (ty) = pv(t1)},
we M
0
My = {v& M3 Min o (t,) = p (t,)},
we M,
M, = {v e M, i Min p,(t) = pv(ti)},
WeM;

e a0

17



inductively. If Mj is empty.for some j, we regard

M, as empty sets for all k 2 Jj.

k

Definition 2.3. We call an element of [ | M,
| i=0

a {ti}— energy conserving solution of (2.4).

Theorem 4. Under assumption A-2 there'exists a
unigue {ti}-energy conserving solution of (2.4) for each pair

of initial values a¢V[|K and b €H.

18



3. Eistence of the solution

In this section we discuss the existence of the solutions

of (2.3) and give the proof of Theorem 1.

Throughout this section we assume that all of the

conditions listed in the assumption A-1 hold.

We begin by introducing for each A > 0 the following

equation:
d2
—_u,(t) + 3d,u,{t) + 3T, u.(t) = £(t,u,(t))
(3.1) dt2 A ATA Xy, AA A
d .
u,(0) = a €v[]x and Szu,(0) = b € H.
Lemma 3.1 The equation (3.1) has aunique solution uy &
c?(10,T1;H).
Proof. ' Since the operators a@A, 3Ty N and f(t, )
4

are all Lipschitz continuous in H, this lemma is easily

shown.
Lemma 3.2 For any t&€[0,T], the following inequality
holds:
2 d 2
ey e 2o lqga, (eIl = + T, 2 (uy(8)) + &) (u,(8))

<cct o+ Jlaf 2+ |l % + ea)),

where C 1is a constant depending only on h and T.

Proof. Taking the inner products of both sides of

(3.1) with gEux(t) and integrating the resultant equality

19



over [Q,t], we have

(3.2) “~—u (6) ] 2 + T

aey g, alE) + &y luy(t))

. 5 t 4 .
= 2 o] + ék(a) + J (f(s,ul(s)), gguk(s))ds.

0
From (2.2) it follows

t

Jo(f(s’uk(S))' isuk(s))as

t
< J his)(1 + “uA(S)H ) “%Euk(s){[ds
0

& 2 2
< h(s)(1 + ][uk(s)H + “ds \(s )ds.
0
Since I, 4 u,(t) is nonnegative and ¢,(u,(t)) 2 -C, Hux(t)H
—C3 we have
Nezu 0 12 ¢ B 2 + 20,(a) + flu,(0)][ 2 + c,?
R LR la,(s)[[2 + [|S=u,(s) || $ras
3 0 A ds A

. Hence noting

- : T
ool g 20iall® vr [ g0 0 %as)

we get
2 2 . 2 ;2
oyl 2+ Diggey o) 1| 2 < constt flafl 2« |l
T 2
+ 9 (a) + 1+ Jo(h(s)+1)(1 + “uk(s)[l + H A(S)H
for t & [0,T]. Using Gronwall's lemma and the fact that

20



h 1is integrable on ({0,T] we have
2 d 2 2
lay (o)l <+ [Iggu,(e) ]l © < comst( [lall “ + [b]] 2
+ @A(a) + 1)

From the relation (3.2) and above estimates the assertion of

the lemma is ébtained.

Lemma 3.3 Let X belong to KL and R be any
positive number. Then for any x é-B(xO,R) we have
(3Iy 4%, x-%g) 2 Const ”PLBIK,le[llx - xO]],

where Const stands for a positive constant independent of x

and A: and B(XO,R) is the ball of radius R <c¢entered at %q -

Proof. Put azk'Ax = z and PLz = Z4- If z, = o,
the conclusion is clear. Hence assume z1 ¥ 0. Set
(3.3) zp =z, - (z,, x-x4) [[x - x [[-Z(X - x,)

* 0 1 17 0 0 o'~

. - _— . C
Since PLPK PK‘L Prs PL is a self adjoint operator and
(PLX - P 0

’~

gkXr Xg - PKPLX) £ it follows that

l-1(P

1

(21, X-X (x—PKx), X-X

L O)

-1 ) ‘ ,
A (PLx - PKx, PLx - XO)

-1
AT {(p.x -P,x, Prx - P P

L X x) - (P.x - P x, x, - P_P_x)}

K L K

> A []pLx - PLPKXIIZ > 0.

Since

21



(PLLz, x—xO) = A (PLL(X—PKX), x—xo)
= A—1(P L (xz-x.), x-%.) > 0
L 0’ 0 :
and z = PLz + PLLZ, we have
0 < (21, X - XO) < (z, x - xo}.

On the other hand, from (3.3) it follows that
lzy - z, Il = (2., x-%5) {|x - x []—1
0 1T 17 0 0 -

We now assume the following relation and derive a contradic-

tion:
. -1 ;
(3.4) (z,, x-x4) ¢ dist(xy, bdy; (X)) (4R) [[x - XOH —]|21” .
From the estimates mentioned above we have
|z, - 2 [|”< dist(x,, bdy (K)) (4R) Nz, |l
0 1 -0 L 1 *

Qo
If dist(xo, bdyL(K)) > R, PLx would belong to K, and so we

would have 3Ty yx =z € Lt. This contradicts z, = Pz £ 0.
’

Hence dist(xo, bdyL(K)) £ R.

From this we have

1

(3.5) llzoll 2 (1 - dist(xy, bdy  (K))(4R)7') [lz;] > 0.

Put

w = X. + dist(x

] -1
0 0 bdy, (K))z, [l z4]] 7' -

From P_w €« K it follows (P.x - P

L L Kx, P.w - P P ) < 0.

L XK L
Then

22



-1
7 = P - = -
(21, X-w) A (‘LX PL“KX’ PLx PLw)

-1
D v -~ _
A {(Prx - PLPex, Prx - PLw)

L

+ (P.x - P,P.x, P.w - P P x)}

L K'L L KL
= A7 |2 x ~ PLPKx[iz > 0.
Hence, noting that (z,, z,) “20[1'1 = “20]{, we have

0 < (zy, % =)

i

. -1
(zy, x-x5) - dist(x,, bdy (X)) (zy, z;) ||z,

(z,, x-x3) - dist(xy, bdy, (K)) Hzol].

Combining (3.4),(3.5) and the above mentioned estimates

vields

0 < (z1, x-w)

L diSt(XO: deL(K)){(4R) ”X = Xol!‘”z1,1 - HZOU}
. . -1 -1
< dist(xg, bdy, (X)) {(4R)7" |lx = % |[ 7" - 1
+ (4r)”'dist(xy, bay (X))} lz 0l = 1.

Since ||x - Xo” < R and dist(xo, bdyL(K)) < R, we get

I ¢ dist(xy, bdy (X)) Hz1ll(4'1 -1+ 47y <o,

This is impossible,and we have

(BIK,AX, x-x.) 2 (P.3I X, X-X

0 L 7K, A

o)
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. -1 '
2 dist(xg, bdyp (X)) (4R)7 |lx ~ xo || [lpor, x| .

Lemma 3.4 If the initial value b belongs to L we
have
(T
lim J |31, u,(s)] ds ¢ =.
A0 Jo 1%, 3
Proof. Let {p1,p2,---,pN} be an orthonormal base of LT
Set
j o - 4 - - - t
yk(L) = (uk(u) a, Pj) = (uk(t) PKuA(L)' Pj)

[t

)\( EIK, }\uk(t), PJ)-

By (3.1) and the condition b&L we get

a® 1.3 j
3 - S -
where
J - -
Since l©k(uk(tvl is bounded on [0,T] by Lemma 3.2, it
follows that [@(J,u,(t))| is bounded on [0,T]. On the

other hand, (2.1) implie that ”Jkuk(t)I[V is bounded on
[0,T]. Hence it follows from the assumption A-1, (2.2),

Lemma 3.2 and the above-mentioned facts that

. . t
(3.6) |93 (t) - gl(s)| & Const{(1+h(s))[t-s| + f h(£)dc}.
S
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Let e Dbelong to D(39). Then
|[(3¢,a, pj)l
< (a0, - a0,e, pj)[ + [(30,e, pj)|

e,p-)[

= [(38J,2 - 847 e,pj)[ + [(a@A 5

A A

I~

Const( ||J,a - JkeH + |lagell)
< Const( || - el + [lase]l).
Thus

Tin |g3(0) ] < .
A>0

Hence (3.6) and the above fact together imply that

(3.7)  Tim |g3(t)| is uniformly bounded on [0,TI.
A0 '

Since y& is explicitly represented as

. t
yi(t) = A J sin(X-T/z(t—s))ga(s)ds
for t > 0 and A > 0, combining (3.6) and (3.7) yields
’ 13,
[(3Ty yuy(t),ps) | = A |y2(t)| < Const

j A

where the constant on the right side is independent of .

Thus we have
(3.8) - P 13T yu,(t) ]| & Const.

Next we see from Lemma 3.2
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_ﬂuk(t) - a || ¢ T+Const fof t & [0,T].
Thus Lemma 3.3 implies that for Xy € KLf]V we have

(3.9) (aIK,Auk(t)’uk(t) - XO)

> Const ”PLazK,AuA(t)” Huk(t) - xojf.

Multiplying both sides of (3.1) by uk(t)—xo, intergrating the

resultant equality on [0,T] and applying an intergration by

parts we have

T
[o( aIK, )\uA(S),u)\(S)-xo)ds

d my .
= (b, a—xo) - (EEuA(T)’ uA(L)—AO) +

T
ind 2 - .
Io{Haguk(S)” +vfr(sn1ﬂs))—8@xlﬂs), uxhﬂ—xo)}ds-

= II.

Applying the above-mentioned estimates, Lemma 3.2, (2.2) and

the relation:

we see that II 1is bounded by a constant independent of A,

Therefore,using (3.9) and the fact that ”uk(t) - XO([ is

larger than dist(xo, bdyL(K)) provided P_3I

L K’)\uk(t) ¥ 0, we

have

T
Jd [lPLaIK,AuA(S)“ ds ¢ Const
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where the constant is independent of A. From this and

(3.8) we obtain the desired assertion of the lemma.
Lemma 3.5. The sequence {uk} constains a subsequence

3 .
function u on [0,T] with respect to the strong topology of

{uk'} such that {ux } converges uniformly to a continuous
. 5 ,

H and the sequence {%Euk } of the derivatives converges

d . .
weakly to JEe  in L2(O,T, H).

Proof. In view of the assumption of the theorem and

Lemma 3.2 we see that {uk(t)} is a precompact set in H

d
for each t. Moreover the seagquence {uA} and {EEuA} are
uniformly bounded in H by Lemma 3.2. Hence there exists

a subsequence {uk } which converges to some element u in
J

c([o,T]; H). Since {%Euk(t)} is uniformly bounded, it is

clear that {%Eukj} converges weakly to %Eu in L2(O,T;H).
We denote the above-mentioned subsequence {ukj} by {u,}-
Lemma 3.6. For each te [0,T], u(t) € KﬂV.
Proof. By virture of Lemma 3.2 we have
IK,k(uk(t)) + @k(uX(t)) < Const.
From this and Lemma 3.5 desired assertion follows.

Lemma 3.7. If the initial wvalue b belongs to L,

then the sequence {IK A(uk )} converges. to zero in
, .
J
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L1(O,T). Therefore there exists a subsequence

{Tp 4 (uy )} such that
, Al .
J J

lim IK,kj(ukj(t)) = 0 for a.e t < (0,T].

e

Proof. By the definition of AaIK N we have
’ i

0 > IK,k(uk(t)) + (SIK,Auk(t)' u(t)—ux(t)).
On the other hand,Lemmas 3.4 and 3.5 together yield

lim fT (3L u,(t), u(t)-u,(t))dt = 0.
0 5 K, A7A _ A

Hence we have

T
1lim f I. (u,(s))ds = 0.
oo 1, Tra™a

The remaining part of the assertion of the lemma is now

obvious.

We denote the above-mentioned subsequence {uA } by {uk}.
]

We next study the convergence of {aIK,XuA}'

For a while let b belong to L. We put
t
TA(t) = jo aIK,AuA(S)dS'
Lemma 3.8 -The sequence {Tk(t)} contains a subse-

quence {Tk (t)} which converges weakly to +t(t) for any =t
]

{0,T}, and the limit function =1 is of bounded variation as a

function from [0,T] to H with T(0) = 0.

Proof. Let Q be a countable dense subset of H and
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set for each x¢Q and t € [0,T},

[R4]
{

A, X = (Tk(t)l X) .

Then it follows from Lemma 3.4 that the total variation of

1

1% on [0,T] is uniformly bounded with respect to .

P X

Since a function of bounded variation is expressed as the
difference of two nondecrasing functions, we can choose with

the aid of Helly's choice theorem a subsegquencs {EA o} .
3T

which is convergent oh [o,T]. Since Q 1s a countable
set, we apply the usual diagonal procedure to extract a

subsequence {EA x} such that
jl

lim EA.,x(t) = Ex(t)

J+e J
for x¢Q and te[0,T], and we see that = _(+) 1is a function
of bounded wvariation in ([G,T]. Moreover
(3.10) 2 (e) - Ey(t){,; Const ||x - vl

for %, vy €Q and t € [0,T], where the constant on the
right side is the constant independent of t. It then
follows from (3.10) that for each t&€[0,T], the mapping

X =~

{1y

X(t) can be extended to a continucus linear functional

on H. Therefore the Riesz theorem asserts that for each

t & [0,T] there exists an element <t(t) € H such that
= (t) = (t(t), %) for =x & H.

Since the total variations on [0,T] of («) are

X
uniformly bounded for A, it immediately follows that t(-)
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is a function of bounded variation on. [0,T] and T(0Q) = 0.

For simplicity in notation we denote the subsequence as

mentioned above by {r,}.

We then put

t

Fooyle) = | (8T yui(s), gls))as

0

for t & [0,T] and g & C([0,T];H). :
Lemma 3.9 For any g & C([0,T];H) the limit

lim F (g) = F_(9)
150 t, A t

exists and the limit functional Ft is a bounded linear
functional on C([0,T];H).

t ; 5 = 4
Proof. By the relation °IK,kuA(t) = dtr}\(t) and the

integration by parts we obtain

t
Fe 4(9) = (1,(8),9(8)) - Jo(T*(S)' L g(s))as
for g e-wl(O,T;H). Hence Lemma 3.8 implies that the limit
lim F (g) exists and
A0 trA
t a
(3.11) lim F (g) = (t(t), g(t)) - I (t(s), F=g(s))ds
10 t, A 0 ds
= F.(g).
Since
|F (g)] = lim |7, A(g){ < Conste Sup “g(s)[l,
A-0 ! Ogs<t
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Ft is extended to a linear functional on C{([0,T];H) and the

limit lim F (g) = F_{g) wexists for any g & C[0,T];H).
t, A t
: A--0
In what follows, we write F{(e) = FT(-).

For a function g &C([0,T];H) we introduce the scalar-valued
integral
1

t n—
(3.12) J (g(s), dt(s)) = lim J
O Nn=->wx k:

(glty), T(tp )-T(tp)),
1 .

where {ti} is a seguence of partions of [0,t] such that

_.n no, ... no_
0 = t1 < t2 < < ?n t
and
e n oLy
lim Max R t .| = 0.

n+o k=1,2,3,¢¢¢,n-1
It is easy to verify that the limit on the right side of

(3.12) exists and does not depend on the choice of {t]'}.

Lemma 3.10 We have
t
Ft(g) = f (g(s), dt(s))
0

for t&« [0,T] and g & C{[0,T];H).

Proof. Using Lemma 3.9, (3.12) and applying the

integration by parts, we obtain the conclution of the lemma.

Lemma 3.11 The sequence {%Eux(t)} converges weakly
in H to Sru(t) for a.e t & (0,T]. Further, the

sequence {a@ku} converges to 3du in the weak star topology
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of Lm(O,T;V ) .

Py

Proof. In view of Lemma 3.5 we see that {J,u,}
converges pointwise to u(t) with respect to the strong
topology of H.

Since HJkuX(t)” v s uniformly bounded for A and t by
Lemma 3.2, we see with the aid of the assumption A-1 that

there is a null sequence Aj - 0 for which

* .
in the weak-star topology of L_(0,T;V ).

Hereafter we denote this subsaquence by {8®Auk(t)}.
Multiplying both side of equation (3.1) by o &V,
integrating the resultant relation over [0,t], and using
Lemma 3.5, (3.11),(2.2) and then the above-mentioned fact we

infer that the limit 1lim (%Euk(t)’ @) exists for any t €&

A-+0
d d .
(0,T). On the other hand, {EEuA} converges to Jce 1in
the weak topology of LZ(O,T;H). Thus, noting that V 1is
dense in H, we conclude that {%Euk(t)} converges in H to
d

EEu(t) for a.e t & [0,T].
We put

. , . d
Xy = {t €(0,T]; t 1is a Lebesgue point of TEY

. d d
and weak-lim =zu,(t) = =Z_y(t)}.
A0 dt A dt

Lemma 3.12
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+
1)} The one-sided weak derivatives w—gvu(') and

W“EEu(') exist everywhere in the intervals [0,T), (0,7] and

are weakly right- and weakly left-continuocus in H, respec-

o

tively. Moreover W-gFl and w-%:u are respectively
[

*
right- and left- continuous in the strong topology of V

(with necessary modifications at 0 and T).

2) Let 1{(+) be the weak limit of functions TA(') as
A > 0. Then
L * t
(t£+0) = b - w~%Eu(t) - J (3du(s) - f(s,ul{s)))ds
0

for any t &[0,T](with necessary modifications at 0 and T).

Prootf. Applying Lemmas 3.5, 3.9, and 3.11 and using

the relation (3.1), we have

t

(3.13)  (x(8), () = [ (x(s), Sgs(s))as

0

for any te& X, and any gec((o,m1;v)[]ul(lo,t1;5).

Since the total variation of T is finite, the limit

lim T(s) = t(t-0)
s>t,s<t
exists for any t & [0,T]. By {(2.2) and Lemma 3.2 the
t
function t - J (£(s,u{s)), a)ds is continucus over [0,T]
0 >
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for any element o of V. ‘Since [[36u(s) | g are

uniformly bounded on [0,T] with respect to s, the function

t
t > [ (9du(s), a)ds is continuous in [0,T]. Letting
0
g(t) = a in (3.13) we see that for any t & (0,T] the limite
. d
lim (Fguls), o)

s € Xo,s+t, s<t

exists. Therefore w—%Eu(t) exists for any t & (0,T].

Neting that %Eu belongs to L _(0,T;H) and using the

relation (3.12) with g(t) = «, we get

| ( J dou(s)ds, a)| ¢ Const [l
0

for «¢&VvV and tE:XO- Since V and XO ares dense
t

respectively in H and (0,T], the integral j ddu(s)ds

0
belongs to H for any t € [0,T]. Therefore we have
a- t
T(t-0) = b - w—agu(t) + j (f(s,u(s)) - 29¢u(s))ds
0
t
for t & (0,7]. Since the function t = ( J dou({s)ds, a)
0 t
is continuous for ¢ ¢V and the function t > J dou(s)ds
. . 0
is bounded in H, f 3¢ou(s)ds 1s weakly continuous in H.
: 0
‘Since t(t-0) 1is left—continuoué in H, we see that w—%Eu
is weakly left-continuous in H on (0,T].

+

By the same argument as in the above, we conclude that w—%zu

is weakly right continuous in H on ({[0,T] and the relation
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+ t .
{t+0) = b - gtu(t) + J (f(s,u(s)) - 3éu(s))ds
0

holds for t & (0,T).

+
Moreover H3¢u(s)}lv* is uniformly bounded, and so w—%Eu
a” . . *
and w- acv are strongly right- and le-p— continuous in V ,
respectively,
Lemma 3.13. Let F be the linear functional on
C([0,T];H) stated in Definition 2.1. Then we have:
T a
1) (b, v(0)) - ( u(T), v(T)) + J ( u(S), EEV(S))dS
0
T T
- | taeuts), vis)as + [ (gts,uts0), visnas = r(v)
' 0 0

for any v & Wl (0,T;8) []C((0,T1;V).
2) F(v - u) <0 for any v &€ C([0,T];K).
2
I

3) 27 1 Stae) [ 2+ etuls)) <27 |[B][ 2 + 4(a)

T
+ f (f(s,u(s)), gsu(s)) ds for any t&([0,T]

0
(with necessary modifications et 0 and T).
Proof. Assertion 1) follows from (3.11), (3.13) and
Lemma 3.12. Since {Jkuk(t)} converges to u(t) and &(-»)

is lower semicontinuous, we have

lim ¢, (u

A u,t)) 2 d(u(t)) = o(ul(t)).
A0

Ay

Hence Assertion 3) is obtained by using (3.2), Lemma 3.11



and 1) of Lemma 3.12 and the lower semicontinuity of

Finally, Assertion 2) is obtainéd by applying Lemma

3.9 to the inequality
(s), V(s)—uA(s))ds

T
FA(V"uA) = JO(SIK,AuA
T .
£ [OIK’A(V(S))dS = 0.
Lemma 3.14 The function u satisfies the initial
condition 6) stated in Definition 2.1.
Proof. It is obvious that u(0) = a. Taking any
¢ € V and putting g(+) T ¢ in (3.13), we get
d+
- {T(0+0), a) = (b - w-3gu(0), ).
Hence
d
= b W—EU(O).

T{0+0)

(3.14)
On the other hand, in virtue of Lemma 3.8, we have

lim (rk(t), X-a)

|

|

(t(t), x-a)
A>0
. t
= ii@ . (aIK,XuA(S)' X - uk(s))ds
_ t
+ iig O(BIk'}\uk(s), uk(s) - a)ds.
for x ¢ K and t ¢ [0,T]. Hence, using the relation
- uk(s)) £ 0 and Lemma 3.4, we get

(aIK,AuA(S)’ X
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(t(t), x-a) < Const Sup [lu(s) - al .
0
From this it follows that
(1(0+0), x-a) ¢ O for any x & K.

Combining this with (3.14) we have

3=

d
b - w—aEu(O) & BIKa.

We now give- the proof of Thecrem 1.

Let b be any element of H. We put PLb = bO'
From Lemma 3.12, 3.13 and 3.14 we have a solution’ U, of
(2.3) with the initial-value b replaced by bo. We

denote by FO the linear functional associated with Uge

First we shall find a solution u of (2.3) and the associated

function F.

We put u(t) = uo(t) and define F(+) as the linear
functional FO(-) + (b—bo, 60-) where 60 is the Dirc
measure. Then

F(v) = FO(V) + (b—bo, v(Q))
= (b, v(0)) - (;u(T), v(T))
I 4 dt 7
T a a T
. Jo(a‘gu(s), dyis))as + Jo(f(s,u(s)) - souls), v(s))ds

for any v € W}(O,T;H){WC([O,T];V).

Since b—bo belongs to L , we have

F(v - u) = FO(V - u) +'(b—b0’ v(0) - u(0)) < O
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for any v & C([0,T];X). But: u = u and u

0 0
solution of (2.3); it is clear that the energy inequality of

is the

(2.3) holds for u.
Noting that b—bo, SIKa, and that BIKa is a convex cone,
we have

d+ d+ R
b - w—aEu(O) = by - W_EEuO(O) + b—bo G:UIKa.
From the above-mentioned it is concluded that the function u
is the solution of (2.3), and the proof of Theorem 1 is

complete,
We next prove the Theorem 1' stated in Rmark .

Under the conditions of Remark we get

1}\.p.

A .= 1 ALY

J

where kj is the eigenvalue of A associated with pj.

Let Yi(t) = (ux(t)-a, pj) be the function as defined in the
proof of Lemma 3.4. Then, by the method employed the prootf

of Lemma 3.4 and by the equation (3.4), we have

2 .

a3 -1 -1y _ . L

dtzyk + {X + Kj(1+lkj) }YA = (£( ,uk( )) Aka, pj)
3 - d 3] -

Y}\(O) = 0, dtj}\(O) = 0.

Using a method similar to the proof of Lemma 3.4 we get
-1.3
[+ 220 {2+ ij)} v (t) |

< [go,a), py) |+ ltett,uy(e)), B |+ [(aja, )|
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. t
d .
+ [OI(EEL(S’uA(S))’ pj)lds.

From this together with Bessel's inequality we obtain

Ty W] o llgo,a) [ 2w sue JfECuy e | 2
j=0 0LtT
. .
+ HAkaH 2, JO]|%gf(s,ux(s))][2ds.

Thus condition (2.2) and Lamma 3.2 together imply
2 5 -1.3 2 .

Loz yuy(0) )] = %:0 | AT y3(£)]° < Const.
Condition A-1, 3) is clearly satisfied in the present case and
conditions A-1 2), 4) are needed in the proof of Lemma 3.4.
Consequently, we can obtain the desired conclusion of Remark

by following each step of the proof of Theocrem 1.
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4, Energy conserving solutions.

In this section we discuss the existence of energy
conserving solutions which belong to WL(O,T;H)IWC([O,T];V){
Throughout this section we assume that all of the conditions

listed in the assumption A-2 are satisfied. . We begin by

preparing some lemmas concerning the closed set bdy(K).

Lemma 4.1 Let R be any positive number. For any

x,y & bdy(K)[WB(O,R) there exists a positive constant- NR"

depending only on R, such that

0 & (n(x), x-y) & Ny [z - v || 2
and
2
| (a0 +nly), x-v) | < N flx - v 2.
Proof. From tﬁe assumption A-2 it follows that the

function n{(x) from bdy(K)fWB(O,R) to H is Lipschitz

continuous. We denote the Lipschitz constant by NR'

From the convexity of K we see that for X,y<&bdy(K)fWB(O,R)
(4.1) (n{y), x~y) £ 0 &(n(x), x-y).
Thus

(n(x), x-y) < (n(x)-n(y), x-y),
(4.2)

(n(y), x-y) 2 (n(x)-n(y), y-x).

The first part of the lemma is then proved by combining

(4.1),(4.2) and the Lipschitz continuity of n(x). Next,
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(4.1) yields

(4.3) (n(y), x-y) ¢ (n{x)+n(y), x-y) £ (n(x), x-y).

Thus the remaining part of the lemma is easily proved by

the first. part and (4.3).

In what follows we assume NR > 1 and set

R . -1
Ky = x & KfTB(O,R); dist(x, bdy(K)) < NR+1}‘

Lemma 4.2  Let z be any point of K?. Then there 1is

one and only one point x belonging to bdy(K) such that

dist (z,bdy(K)) = [lx - z]| and x-z & J3Ipx.
Proof. Put ¢ = dist(z, bdy(K)) and x + n(x) = c(x)
for x & bdy(X). By the definition of K% there exists
’ -1
an element  x, & bdy(X) such that fleq - z|| < No.qe

Let X5 be the point of intersection of bdy(K) and the

segment connecting the point c(x1) and z. Inductively,

we denote a sequence {x }m in such a way that x is
n'n=1

n+1
the point of intersection of bdy(K) and the segment
connecting the point c(xn) and z for each n.

Then we know the following inequalitis

llx, -zl + lln(xn)l! 2 letx ) - zl]
[EXS —,zH + fletx) = = L]
> flxg,q -zl + lnx0) .
Thus e, - zl] 2 f=g,q - z|| 2 «, and we have
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lim ||x_ - z]
n
<
Put X, - Z = Bn(xn) + €
(g8 + 1)n(xn) +
Since ]}Bn(xn) + gn”

respectively to B and

lim (n(xn), €
n-w

Thus

(4.4) lim €, = 0.
N

On the other hand

. 2
[l - x|

=8 > a, lim [[c(xn) - z|l =8 +
I
. Then
n
€n = c(x ) - z.
and |[(8 + 1in(x_ ) + e || tend

(B + 1) as n » =, we get

Yy = 0.

B(n(xn)-n(xm), xn—xm)

+ (e e r® %)
for m, n sufficiently large. Since
2 A
B(n(x )-n(x_), x_-x) ¢ BN , [lx - x Il © ana 8uy .
we have
ey, - = 112 <
-1 '
(1 - ey 7 e o+ e I ll=, - =l

Hence we see (4.4) that

We put

S .
b4 h nce.,
{ n}n=0 is a Cauchy seque
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Then X -z = gn(x ). We now show that B = -

o] (o]

Assume to the contrary that 8 > a. Then we can choose §1

such that

3‘51 € bdy(X) and 1[321 - z |}« B.

Using the same method as in the above argument we find a

boundary point E; of K such that

X -z = Eﬁ(xw) and o

i~
™
A
™
A
2

On the other hand, Since (n(§;), X, - X ) < 0, we have

(4.5) x. - x

x (=2}

= B(n(xm)—n(Eé),X -Eg)

£ (8 - B (R, x - X)) <8N ik, - % 00,

"But BNR+1 <1, and so x_ = 2;. Thus we must have B8 = 8,
which 1s a contradiction. Thus B = dist(x, bdy(XK)).
Finally, we can prove the uniqueness of the point x_ by

using the same method as in the derivation (4.5).

For any 0 ¢ 8§ < 1 we define

R _ e o ' -1
K6 = {x & B(O,S), dist(x, bdy(K)) < 6NR+1}'
Let 2z belong to K? and define
the point x as in Lemma %.2 if z e K
r{z) = '
PKz if =z % K.
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Lemma 4.3. For Zyr Z5 € KS' we have
=1
flx(zy) - r(zz)[[ < 2(1 - §) =z, —‘zzl[.
Proof. Let Zir 25 & XK.

Then r(zi) -z, = dist(zi, bdy(K))n(r(zi)) for i = 1, 2.

On the other hand

|[dist(z,, bdy(X)) - dist(z,, bdy (X)) | & [lzq - z |+

and so we have

l=¢z )

-1 ) ' ~
+ 8Ny Moo flztz) - r(zy) ||

Hence

-1
fz(z,) - r(yzZ)H £201 = 8 lzg -z,
Next let z, & K and ZZE:H—K.
Then r(zz) -z, = —dist(zz, bdy(K))n(r(zz)) and
dist(z,, bdy(X)) + dist(z,,bdy(K)) < [121 - z2{| . Hence

the application of the same method as above implies the
desired estimate.
Finally, the assertion of the lemma is clear for the case in

which both z, and zZ, belong to H-X.

We now cosider the following eguation:

é;Zuk + Au)\ + :aIK’/\uA = f(-;uk)
(4.6)

d
u, (0) = a € V[]K, 3gu,(0) = b &€ H.
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Lemma 4.4 For any X > 0 the initial value problem

(4.6) has a unique solution u such that

A

u, & cero,1;v) flc’ (to,715m) e o, T1;v7).

Moreover we have for any t & [0,T],
2 ad 2 , ’
(4.7) Hul(t)” + Hazuk(t)ll + IK,A(uA(t))

+ (Au (t),uA(t))

A

< Const {1 =+ Ha{iz + Hb{|2 + (Ra,a)};

T
(4.8) JO “aIK,AuX(S)!ldS < Const ;
and
(4.9)  1Su (0 ][ 2 + (au,(£), u,(t)) + 2T, (u,(t))

) dt™ A A D K,A"7A
2 t d
= “b[f + (Aa, a) + 2 JO (f(s,uk(s)), 35U, (s))ds.
Proof. Since D(A) 1is dence in D(A1/2) and since

D(A1/2) is dense in H, there exist sequences {aj};:1 in

D(a) and {by};%, in p(a'/?)  such that

=2

Let U, be a solution of the initial vale problem

2
g—zu + Au = 0
dt
d -
u(0) = ais EEu(O) = b1.
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We then define a sequence ﬁﬁ gio .of "approximate"
solutions in an inductive manner by

2

d
—.u. + Au. . ),
(4.10) at? 3 3 3-1

i}
d

.
~
o]

d .
[ uj(O) = aj, aEuj(O) = bjf ‘ 3 =1, 2, 3, eeo,

where E(t,x) = f(t,x)'— oX

x, X
By (2.2) and the Lipschitz continuity of aIK \ we have
. , »
f[{E(t,X) - B,y [ L (e flx - v,
(4.11)
1Sm(e, ) || <R () [x][+ D
dt ! ="
where hk(t) = h(t) + A—I Using the well-known result for

the linear hyperbolic equation repeatedly, we get solutions of

(4.10) in such a way that
u € WL(O,T;V) ﬂWi(O,T;H)

for all nonnegative integers j. Now (4.10) implies the

relations

- uj_1) + A(uj - uj_1) = E(-,uj_1) - E(.,uj_

2)
for j=1, 2, 3, .. Taking the inner product of
d

EE(uj - uj_1) and both sides of the above equality and then

intergating the resulting equation with respect to &, we have

(4.12) 27! []%E(uj(t) - uj_1(t))l|2 +

-1
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- 2\—183'- + J (E(Sluj_‘](S))_E<S'uj—2(.5))’ gg(uj(s)—uj—T(S)))ds

2 1/2 2
+ Jla (25 - aj_1)l[ .

1
where €] “bj - bj_1]L

From (4.11),(4.12) and the positivity of A it follows that

d 2
Iggtuy(8) = uy 4 en |l
. ¢ d |
Les 2 Johk(s) Huj_1(s)-uj_2(s)]l Hag(uj(s)—uj_T(s))[Lds.

Henée Gronwall's inequality ([2; p.1571) vyields

d
lizﬁ;(uj (£) = uy_4(€)) [

Cen? 4 [This) fles o (s) - ()| a
L (el -, Ma ] 5o1(s uy_o(s S.

Combining this with the estimate

Huj_1(s)-uj_2(5)ll L “aj—1 - aj-2”

S
d

we have
!l%{(uj(t)~uj_1(t))ll £ EJ [ H~—(u )—uj_z(s))“ds,
where ¢ = [ b (s)ds amd e, = e!V/Z 4 cl | I
er Sl IO s)ds and g5 = €} + Cy [aj_1 - a5 ol -

Therefore we obtain

1 5etuy )= uy_endl < % FNCONTIN

i=

. CiM(Cit)]-3((j-3)!)-1,
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where M = Max [lu (t) - u,(£)]].

0<t«T
Since €1 & Const(j-—i—z)"2 and C& & Const independing of
A we see
@ 3-3 . _
I T e @otEn’ <,
j=4 i=0 I
Then we obtain
§ HQ~(u (t) - u, . (£))]| < comst
. 'y -1 = :
J=4 _
Thus we conclude that {%Euj(t)} is uniformly convergent on
[0,T]. Moreover from the above result and 1lim a. = a it
J e

follows that {uj(t)} converges to some function ul(t) on
[0,T] and the convergence is uniform for t & [0,T]. It

thus follows from (4.12) and the above result that

1/2 1/

lim A

jre

uj(t) = A 2uk(t) uniformly on [0,T].

Since A1/2uX is continuous and V = D(A1/2), we infer that

Au, € C(10,T];v). Further, £(+,u,(+)) € C([0,T];H), and

*
so uk(-) < C2([O,T};V ). Therefore uy is the solution

of (4.6). Multiplying both sides of (4.10) by %Euj and

integrating the resultant equality over ([0,t] we have

-1 4 2 -1,
2 llaguj(t)ll + 27 (Aug(t), uylE)) + T (u(k)

t d -1 2
+ jO(EIK’Auj_1(s)— aIK,Auj(S)' aguj(s))ds = 2 “bj”

tt
-1 d
+ 2 (Aaj, aj) + IK,A(aj) + Jo(f(s,uj_T(S)). aguj(s))ds.

48



Cémbining the above results, we obtain‘(4.9) and (4.7).

Assertion (4.8) is verified in the same way as in Lemma 3.4.

We here employ the complexification H of H and the

extension A in H of A as mentioned in Section 1. Let

{c(t)} and {S(t)} be the cosine function generated by D (=
/=1 A1/2) and the associated sine function,respectively.
Recall that C(t)x as wall as S(t)x belong to H for

t >0 and x € H. Moreover, we have

12~ {u e
(4.13)

I+

ve-e)HIl < Jix].

i+

27w = v o 1273 ix]] for xem.

Now let R' be the square root of the right side of (4.7)
and put R = R'T + [lal] . Then the solution uy(t) of (4.6)

takes its values in B(0,R) for A > 0 and 0 ¢ t < T.

Suppose for the moment that the initial value a belong to
bdy(K). For §&(0,1) and A > 0, set
] Ly - R
Ty T Sﬁp { teT: uy(s) € K; for any Ogsgtl.

Then the energy estimate (4.7) ensures that there is a

positive number T, ‘such that

—1 |"1

> T SN R

T1,A 2T, 2 R+1 for any A > O.

We then consider the equation (4.7) on the interval [O,T1].

First we recall that aIK A(u)\(t)) is repesented as
. ’
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(4.14) .aIK,AuA(t) = lk(t)n(rk(t)),‘

where  r (£) = r(u,(t)) and &,(t) = HBIK’)\uk(t)H.

-~

Further, the solutions uj of (4.10), which belong to

wl(O,T;V)T]Wi(O,T;H), are expressead as

uj = C(t)aj + S(t)b

Noting that

-1
3Tx, 2y _q(s) = A Huj_1(s) - PKuj-T!!n(r(uj-1(S)))

ceonverges to ¢ (s)n(rx(s)) as J -+ «, we have

A
t
(4.15) uk(t) = a(t) + W(t,uA) - jo S(t-s)lk(s)n(rk(s))ds,
wnhere af({t) = C(t)a + S{t)b and
t
W(t,uk) = jOS(t—s)f(s,uA(s))ds.

Similarly, we obtain

d d d .
(4.16) EEux(t) = EEa(t) + EEJ(t’uA)

t
- [O C(t—s)zk(S)n(rk(S))dS

by computing the derivatives of uj and taking the limit as

j > .

Lemma 4.5 The sequence {uA}A>O contains a subsequence
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{uA } convergent uniformly in the strong topology of H to
j | .

a continuous function u({t) on [O,T1].
Proof. Put

t
Dk(t) = J lA(S)dS for t >0 and A > 0.
0 :

- Then pk(.)’ A > 0, are uniformly bounded functions on [O,T1}

by (4.8). Applying Helly's theorem, we find the
subseqguence {Dk (+)} such that

J
(4.17) lim QA.(t) = p(t) for t 6’[O,T1]—QO

Aj+0 Jj
where p(t) 1is a left-continuous, increasing function on
[O'T1] and QO is some countable set in [O,T1].
Now in view of (4.15) we get

(4.18) u, (t) - uy (t) = {W(t,u, ) - W(t,uy )}
3 k -} k

t
{ s(t-s) {n(x, (s)) - n(r, (s))}2, (s)ds
0 J IS J

t
d
- S(t-s)n(r, (s))s=(po, (s)-p, (s))ds
JO Ak ds kj Ak

= I, - I

1 - I -

2 3

By 3) of the assumption A-2 and Lemma 4.3 we have

. |
(4.19)  [IT,]| g comst [ 25 () [luy () - wy (s)][as.
0 3j 3 k

Also we infer from (2.2) that

t .
(4.20) ”I1]| < Const I his) [luy (s) - u, (s)] ds.
3 K

0
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t
I, - fo (t-s)a(z, (s))(p, (s) - o, (s))ds
o J
- | s(t-5)%n(r, (s))(p. (s) - p. (s))ds
Io CERALPY A A
= I4 + IS'

The first term I4 is estimatad as

“ H Jt l |
I £ o, {s) - p, (s} |ds,
4 - 0 }‘j A

and 3) of the assumption A-2, Lemma 4.3 and (4.7) together
imply
H n(r ))H < Const.
k

Therefore the norm of I3 is bounded by

t
w. . (t) = Const J [p, (s) - p, (s)]|as.
i,k 0 kj Ak
Combining (4.18), (4.19), (4.20) and the above estimate gives

“ukj(t) - ukk(t)H £ ooy g (8)

+ Const Jt{h s)+8, (s)} “u - u )| as.

{s
Me

Hence Gronwall's lemma yields

(4.21)  Jlu
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t £t
+ Jo wj’k(s){h(s)+2>\j(s)}exp Is{h(£)+lxj(i)}d£ds.

We now show by use of (4.21) that {ux } converges. First

(4.17) impies that

(4.22) lim w. k(t) =0 uniformly on [O,T1].
j,k-*ooj’ '

T

Since J 1{h(s)+2k (s)}ds £ Const, it follows from (4.21) and
0 3 ‘

(4.22) that

lim u,y (t) = a(t) uniformly on [O,T1]ﬂ
J e ]
In what follows we write uy and A for Uy and
J
Aj’ respectively.
Lemma 4.6 We have
u(t) € K[]v  for t € [0,T,]
and
lim n(r,(t)) = n(r(t))
A0
where 1r(t) = r(u(t)) and the convergence is uniform on
[O,T1] with respect to t.
Proof. The assertion of the lemma follows immediately

from (4.7), 3) of the assumption A-2, Lemmas 4.3 and 4.7.

Lemma 4.7 {dt X t)} converges strongly in H to
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d
aEu(t) for a.e t &[O,T1].

Proof. In view of (4.16) we write
d d d
4 — - = =T
(4.23) dtu/\(t) = dta(t) + dtW(t,u/\)

t
- j C(t-s) {n(r,(s))-n(x(s))}e,(s)ds
o B

= -g—,ga(t) + d—-;‘l(t,u

Then Lemma 4.6 yields

(4.24) lim HI1[| = 0
A0

and Lemma 4.5 ensures that

. t
(4.25) lim %EW(t,uA) - J Clt-s)f(s,uls))ds.
A0 0
Cn the other hand, V = D(A1/2) is dense in H, and so

there exists a sequence of functions {gj} in C1([O,T1];H)f]

C([O,TT];V) such that

(4.26)  sup  |lg.(t) - n(x(eN |l £ 37 .
0<t<T J
1oLty
In Qrder to estimate 12 we write
t
I, = - JO C(t—s){n(r(s))—gj(s)}zx(s)ds



Then the first term 13 is estimatsd as

(4.27) “13][ < Const/j for j =1, 2, 3,%%e.

The second term I4 is transformed to the following from by

integration by parts and DA(O) = 0;

t

I4 = - gj(t)pk(t) + f C(t—s)%gg.

. j(s)ok(s)ds

t - 2
- jo S(t-s)D gj(s)pk(s)ds.

The application of (4.17) then implies

lim IA=-—g.

(E)plt) + J C(t—s)g—g.(s)p(s)ds
A0 7 J

ds?j

t 2
- J S(t-s)D gj(s)p(s)ds

t
. f Clt-s)g. (s)dp(s).
0 J

Hence we infer from (4.26) that
t
(4.28) [l [ C(t-s)n(r(s))dp(s) + lim 14[{ < pl(t)/3
) 0 A0
for any 3 2 1.

Using (4.23), (4.24),(4.25),(4.27) and (4.28) and letting j -

® we see that the 1lim g{ux(t) exists for any t & (O,T1]—Q
A0 ‘ 0

and the assertion of the lemma is now obtained by combining

Lemma 4.5 and the above-mentioned estimates.

Lemma 4.8. We have
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for t& [O,T1] and

Sart) = Sace) + e, - Joc(t—s)n(r(s))dp(s)
for a.e t & (0,7,1
Prootf. The assertion of the lemma is readily shown by

(4.15),(4.16), Lemma 4.5, Lemma 4.7 and together with the

argument employed in the proof.

Lemma 4.9 We have
1im 220 () = a'/24(x) in  C([0,T,]:H).
A 1
10
1/2

In particular, A u belongs to C([O,T1];H).
Proof. By virtue of (4.15) we have

(4.29) al720 ey - a0 ()

o *q

t
= S'(t-s) {n(r, (s))-n(r, (s))}e, (s)ds
[, \ (5
[, d
+ (t-s)n(r, (s))==(p, (s)-p, (s))ds
0 A ds Px, A
t
, jo (t-s){f(s,u, (s))-E(s,u, (s))}ds
P q
= I1 + 12 + I3,
where  S'(t) = /-T{u(t) - u(-t)}.
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Using the same method as in the derivation of (4.19) and
(4.20), we obtain
t
iz, Il + [IT5| ¢ comst Jo{h(s)+zlp(s)} ”uAp(s)—qu(s)“ds.

Hence we infer from Lemma 4.5 that

(4.30) 1lim Nz 1+ Izl = o,
A A_>
P’ g
uniformly on [O,T1].
Next, we write
i H }
I =J S'(t-s){n(r, (s))-n(r(s))}{2, (s)-2, (s)l}ds
2 0 Aq Ap Aq

t
. d
. f 5 (t-—s)n(r(s))a—s‘{p}\p(s)—pxq(s)}dS

As to the first term I4 we see from Lemmas 3.4 and 4.6 that

(4.31)  1lim 141l = 0 uniformly in [0,T,].
A ,A 07
p’"q

The second term IS is written as

t
I5 = JOS'(t—S){n(r(S))—gj(S)}%E{QAP(S)—pAq(S)}dS

¢ _
+ JOS'(t.s)gj(s)%g{pA (s)-py (s)}ds = I, + I,
P d

where gj is the function in C1([O,T1];H)fTC([O,Ti];V)
satisfying (4.26).

For the term 16 we have
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(4.32) sSup || I

= 0 uniformly on [O,T1].

Combining this with (4.29), (4.30),(4,31) and (4.32) and
letting j 4+ », we obtain the assertion of the lemma.

t .
Lemma 4.10 The function ¢t - J Ult-s)n(r(s))do(s)
0

has both of the left and right limits on (0,T,1 and [0,T,).

Moreover this function is left continuocus on (0,T1].

Proof. We put
t
J U(t-s)n(r(s))da(s)
0

t t
JO U(t—s){n(r(s))—gj(s)}dp(s) + J

i

U(t-s)g,(s)do(s)
0 J

where gj is a function satisfying (4.26).

Since each is a contraction mapping on H, (4.26) yields

NI < plt) /3.

By integration by parts‘we have

£
I, = g.(t)plt) + J U(t-s)Dg, (s)p(s)ds
j 0 j

. d
- U(t-s)5—g. ds.
jo (t-s)3g j(s)p(s? s
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Noting that p has both the left and right limits we infer

that I, has both the left aﬁd right limits as well.

Thus the function stated in the lemma possesses the left and
right limits. Further, since p 1is left-continuous, we

see that the function is left-continuous on (0,T1].

e +

Lemma 4.11 The one-sided derivatives %Eu and gEu
are left and right continuocus on (O,T1] and [O,T1),
respectively.

Proof The derivatives g—a(-) and g——W(- u) are

. dt dt’ !

continuous, and so the assertion follows from Lemma 4.8 and

4.10.

Lemma 4.12 The function u satisfies all conditions

stated in Definition 2.2 on [0,T1].

Proof. The proof is obtained by applying Lemma 3.7,

4.5, 4.6, 4.7, 4.9, 4.11 and (4.9).

In what follows we simply write dS(tO) = 0 when dp(+) =
0 in some neighborhood of ty-
Q
Lemma 4.13 If u(to) belongs to K, then d5(to) = 0.
Proof. Lemma 4.5 implies that there exists a positivae
constant & such that
inf dist(u{t), bdy(X))

te:[to—é,to+6]‘

> 27 aist(u(ty), bdy(K)),
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and that if § 1is sufficiently small, then uk(t) belong to

o
K for all t e[to-é,to+6]. From the definitions of RX

and in (4.14) and the proof of Lemma 4.5 we have ¢.(t) = 0

Ox A
and pk(t) = pk(to) respectively for any t & [to—é,t0+6].

Letting X tend to 0 implies that
plt) = p(to) for any t & [to—é,to+61,

which means that dp(t.) = 0.

O) -

We here recall the definitions of the mapping n and

numbers R' and R;

_ [ ntuce)), if u(t) € bdy(K),
(4.33)  n(u(t)) =
‘ 1.0 if ult) & bdy(X),

R' = { the right side of (4.7) }1/2 and

R =R'T + [la] .

Lemma 4.14 We have the relations
t —
u(t) = a(t) + W(t,u) - J S{t-s)n{u{s))dpls),
O .
a- a d t -
agg(t) = aEa(t) + aEW(t,u) - IO C{t-s)n(u(s))dp(s)
for any t€(0,T,] where T, ¢ T and T, 2 Min{éNélTR'—T,T}.

Moreover we have the energy estimates
(4.34)  Juoy | 2+ S]] 2+ auct), ue))

< const{l + [lal %+ [b][ % + (22, &)},
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(4.35) Hg%u(t)llz £ (Au(t), ult))

2 t d
= |lb]l © + (aa, a) + 2 J (£(s,uls)), Fzuls))ds

0

for t é-[O,T1](with necessary modifications at 0 and T1).

Prooi The integral repesentatioﬁé of u{t) and %El(t)

are readily obtained from Lemma 4.8, 4.13 and (4.33). The

.

energy estimates (4.34) and (4.35) follows from (4.7), (4.9),

Lemmas 4.5, 4.7, 4.9 and 4.11.

Lemma 4.15 Let the initial values a and b be given
2
respectively in VfWK and H. Then there exists a

solution u of (2.4) on some interwval [O,T{] such that

T; £ T and

t < T{, and u(T{)E_bdy(K else T! = T,

Q
u(t) & K for O 1

I~

and such that u belongs to wl(o,T;;H)fTC([o,T];V) and

conserves the energy. Moreover u and %Eu are
represented as in Lemma 4.14 with p = 0.
Proof. From the well-known result for linear hyperbolic

equations and (4.33) the proof is easily‘obtained.

Definition 4.1. We say a function u é c([0,T];V) is
a mild solution of (2.4) on [0,T] if the following

conditions are satisfied;

1) For any t € [0,T], u(t) belongs to K,
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2) u satisfies the equality 4) stated in Definition 2.2,
act

p 1is a left continucus and nondecreasing function on [0,T],

3) u and are represented as in Lemma 4.14, where

0(0) = 0, and dg(t) = 0 provided u(t) € K.

Since a mild solution is specified by a functicon p as
above, we denots a mild solution by (u,p), where p 1is a

function as mentioned in 3) of Definition 4.1.

The next lemma is readily obtained from Lemma 4.14 and

4.15.,
Lemma 4.16. Let the initial values a and b be
given respectively in Vf}K and H. Then there exists a

mild solution u of (2.4) on some interval [O,T1] where

{jT1 in Lemma 4.14 if a & bdy(x),
T, = ’
]

o]
T' in Lemma 4.15 if a € K.
Lemma 4.17. Let (u1,p1) be a mild solution of (2.4)

on [0,T,]1 satisfying u(0) = a, %Eu(O) = b, (u,,0,) amild

solution of (2.4) on [O,T2] with f(s,u) replaced by fz(s,u)

= f(s+T1,u), and suppose that u, satisfies uZ(O) = u1(T1),
d a-
dt42(0) T (T1). Set

u, (t) if 0 £t Ty

u, (£-T,) if T, £t 4T,
and

p1(t) if 0 <t ¢ T,
p5(t) =
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Then (u3,93) is also a mild solution of (2.4) on [O,T1+T2]

P d .
satisfying u3(O) = a, EEuB(O) = b. Moreover u; enjoys
the energy equality (4.35) on [O,T1+T2]. Thus this solution
U,y satisfies the energy inequality (4.34) on [O,T1+T2].

Proof. By the definition of mild solution we have

d
uz(t—T1) = C(t—T1)u1(T1) f S(t—T1)aEu1(T1)
t—T.]
+ J S(t—T1—s)f2(s,u2(s))ds
0
t—T1 _
- jo S(£-T; -s)T(uy(s))dp,(s)
for T1 ¢t ;'T1+T2. )
Using the integral representations of u, and %Eu1 and the

group property of ({U(t)}, we get

T
uz(t-T1) = C(t)a + S(t)b + J 1 S(t—s)f(s,u1(s))ds
0

T £
; [ ' S(t-s)T(u,(s))do, (s) + J S(t-s)£(s,u,(s-T,))ds
0

T

t —
- JT S(£-s)A(u,(s-T,))dp, (s-T).

1

Hence by the definitions of u and 03 “we get

3
u3(t) = a{t) + W(t,u3)
t —
- Jo S(t-s)A(uy(s))dpy(s)
for te [0,T1+T2]. Similary, we get
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.a- .y _ @ a .
EEu3(L') = a—Ea(t) + E?T(t,u:S)

t
- Jo C(t-s)A(ug(s))de,(s).

for t & [O,T1+T2]. Since u, and u, satisfy the energy
eguality it is easy to show that the eﬁefgy equalilty is wvalid
for us. Using this energy equality and applying the same

method as in Lemma 4.4, we have the inequality (4.34).

Lemma 4.18 Let acV[]Xx and bE H. Then there

exists a mild solution (u,p) of (2.4) on [0,T] satisfying

d

u(0) = a, aEu(

0) = b.

Proof. First assume that a € bdy(X). We use the
notation (u,p,a,R,g) to denote the mild solution of the
problem

2

g—zu + Au + aIKu-a g(t,u),
dt

u(0) = o, Sruto) = 8.

By Lemma 4.16 there exists a mild solution (u1,p1,a,b,f) on

[O,T1], where

. 3 ¥, "l
T, = Szp.{t < T dlst(u1(s), bdy (X)) < 6NR+1 and
“uT(s)” <R for 0 <¢s <t }.
If T, =T, then the proof is complete. Hence suppose that

1
Ty &£ T. From the difinition of R' and (4.34) we have u(t)
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B(R,0) for t & [0,T,]. Then []u1(s)[f <R for 0<s T

and dist(u,(T,), bdy(K)) = 6N7|, by the definition of T,.

-1 =1
1 2 6NR+1R .

Now Lemma 4.15 ensures that there exists a mild solution

Thus it follows from (4.34) that T

d -
(uzlpz,u1(T1),dtu1(T1),f( +Tq )) on [O’TZ] where
T, = Min{ T-Tj, Ty : T; in L;mma 4.15}.

Let Uy and P be the functions defined in Lemma 4.17.

Then Lemma 4.17 implies that (u3,p3,a,b,f) gives a mild

solution of (2.4) on [0,T1+T2]. If T1+ T2 = T, then the
proof is complete. Suppose then that T1+T2 < T. From
(4.35) and the definition of R it follows [lug(s)|| <R

, . C iy an=]
for 0 < s & T +7,. Since dist(u,(T,), bdv(X)) = &M, .
we have T, 2 5N§11R"1. Lemma 4.16 again implies that

there exists a mild sdlution

d m .m
(u4,p4,u(T1+T2),agu(T1+T2),f( +L1+12)) on [O,T3], where

T, = Sup {t < T-(T,+T,); dist(u,(s), bdy(K)) ¢ &N

£ R+1
and |lu,(s)f] <R forany 0 <¢s <t }.
We then put
ug(t) I 0 Lt LT+ T,
ug(t) = _
1u4(t-T1+T2) if T,+T, £ & & T1+T2+T3
and
) - P4 (k) if 0 Lt LT +T,
5 - : .
04(t-T1~T2) + 03(T1+T2) if T1+T2 <t < T1+T2+T3
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Then Lemma 4.17 states that (us,ps,a,b,f) is a mild solution

4 T o+T_ +T.]. £ T = t ¥
of (2.4) on [0,L1+_2+ 3] I T1+ 2+T3 T, then the proof

is complete. Suppose then that T1+T2+T3 < T. Then

T, 2 6N;11 R"T. Repeating this argument we get a sequence
of mild solutions (qu-1’ pzj_1,a,b,f). on [O,T1+T2+~-+Tj],
-1
R+1

where T, > &N Rt for 1 ¢ i < j.

1 =1

Since each T, 1is larger than &} R there must exist

» MR+
jo such that T1+T2+--+T. = T. In this case the assertion
0

is proved.
Q
Next let a belong to K. Using the similarly above

method we can prove this lemma.

Lemma 4.19 A mild solution (u,p) on [0,T] is an

energy conserving solution on [0,T].

Proof. Put
t
Y(t) = C(t)a +S(t)b + [ S(t-s)f(s,u(s))ds,
0
z(t) = S-v(t) for t & [0,T]
at 'T1.

d 1
Then 3e2 & LZ(O,T;H), Y é-Ww(O,T;V),_and

d
(4.36) aeZ * AY = f£(e-,u).

Moreover, by Definition 4.1,
t

(4.37) u(t) = ¥(t) - [ S(t-s)n(u(s))dp(s)
0
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and

(4.38) %Eu(t) = z(t) - J C(t-s)n(u(s))dp(s).
0

For any ve(ﬂ([O,T];H)[TC({O,T];V) we infer from (4.36$ that
(4.39) J (z{s), a—v(s))ds - J (AY(s)-£f(s,u(s)), v(s))ds
0 S 0
= (z(T), v(T)) - (z(0), v(0)).

By switching the order of integration and integration by

parts, we have

T t ‘
(4.40) J (j C(t-s)n(u(s))dp(s), %Ev(t))dt
0 ‘0

T T _ 4
[ (] tete=srmtats)), Sgvieniatiants)
S

C(T-s)n(u(s))dp(s), v(T))

[}
Sy
o A

T

- jo (W(u(s)), v(s))do(s)

T T _ '
[ J (D”S(t-s)n{u(s)), v(t))dtdp(s),
0 ‘s .

where the parenthesis of the integrand of the last term stands

*
for the paring between V and V. The relation D2 = -A

and Fubini's theorem together yield

T T _ ‘
(4.41) f [ (D2S(t-s)A(u(s)), v(t))dtdp(s)
0 ’s

T [t
= J (J -AS(t-s)nl{uls))dp(s), v(t))dt.
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Combining (4.37) through (4.41) we have
T a T
(4.42) Jo(agu(s), %gv(s))ds - Jo(Au(s) - f(s,u(s})), v(s))ds

- T

= Gga(m, v(T)) - (5, v(0)) + [ (FCats)), vis)ian(s).

0
Thus, putting
T _ :
F(v) = j (F(u(s)),v(s))do(s) for v & C([0,T];H)
O ) .

we infer that u 1is the energy conserving solution on {0,T].

Proof cf Theorem 2. The proof is easily obtained from

Lemma 4.18 and 4.19.
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5. The representation of the linear functional F

Throughout this section we assume all of the conditions

listed in the assumption A-2. In what follows we put

1/2,

R = {the right side of (4.7)} T+ Jla]] .

In this section we give the proof of Theorem 3.

We first list some notations whichwill be used throughout

Y

this section.

Let e, be a poéitive number such that 0 < 2¢ -1

0o ¢ NR+1'
For simplicity suppose that dist(a, bdy(K)) <« €g-
Let {si}§=1 be an increasing sequence satisfying the
following conditions:
1) SO=O, Sn=T,
2) TFor 3§ =1, 2,e++,N-1, dist(u(sj), bdy(K)) = 2¢,

and dist(u(s), bdy(XR)) < 280 for Sj—1 L s <« sj if j is

odd; and dist(u(sj),bdy(K)) = € and dist(u(s),bdy(K)) > €

0 0
for s. s <s, 1f 3j 1is even.
j-1 = ]

We put Ii = [si,si+1] for i =0, 1,¢¢+,N-1 and define

n(r(t)) if .ttsIz.
(5.1) né(t) = Jr

Gjn(r(szj+1)) + (1—dj)n(r(52j+2))

if t &'12j+1’

-1 .
where oj = (t"82j+1)(32j+2—52j+1) and r{e) is the

mapping defined before Lemma 4.3.
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Further we define

1 1 t -1 t
n'(t) = nj(t) [[nfce)l

and
1 -1 if 0 £ s < t-¢
Xo ¢{s) = y(t-s)e if t-e ¢ s <t
€ 0 if t ¢ s.
Lemma 5.1 For any Vv € C([0,T];H) there exists
lim F(X Y v).
£-+0 '
Proof. From condition 5) stated in Definiticn 2.1 it
follows that  for any v € C'([0,T1;8)[]C((0,T];V)

t-¢ a a
f {(Fzu(s), Fgvis)) + (£(s,u(s))-d¢uls), v(s))}ds
t "
+ [ (t-s)e {( asuis)y dSV(S)) + (£(s,u(s))-3du(s), v(s))}ds

-1(F (S-a(s), v(s))ds + (b, v(0)) = F{ )
- € e gouls), s))ds ‘ = FlXe,¢7)-

From condition 3) of Definition 2.1 we infer that

(5.2)  Iim F(x, ,v) = - (Sra(t), vit)) + (b, v(0))
g0

ko4 d
+ [ {(Fzuls), FsV(s)) + (£(s,uls))-3¢u(s), v(s))}ds.

New let v be any element of C([0,T];H). * Then there

exists a sequence T,(v) ecl(ro,T1;8) (]c(10,T1;V) such that

sup  |IT.(v)(t) - vit) ][ & 57
0<t J

LesT

for any j = 1, 2,e%¢."
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Since

IF(X51,tv) - F(XEZItV)I £ ]F(X€1,tv) - F(XST,tTj(V))l
+ lF(Xsl,tTj(v)) T FlXe Ty
+ lF<x€2,tTj(v)> - F(st,tv"
for small 0 < €, < €, and
[Flxg,ev) = Flxg o T5(v)) ] <[P /3 for e >0,
we get
lim |F(x., v) - F(x. ] <2]Fl /3.
£1+O,€2+0 €1’t E2’t
+ lim |F(x T.(v)) - F(X T.(v))].
€1+O,€2+0 €1’t ] €2’t J
Therefore lim F(Xe £V) exists by (5.2).
e~>0 r
We then put p(0) ; 0 and
p(t) = lim F(x_  n') for any t € (0,T].

Lemma 5.2

g0

p 1is a left continuous nondecreasing

function on [0,T]. Moreover 1if u(tO) < % d;(to) = 0.
Proof. For any 0 <« t1 < t2 £ T we get
[o(ty) - p(t,)] < lim |F(X n') - F(x T.(n'))]|
2 =200 €,t, €,857]
i ) .(n')) - F T.(n'
+ iig lF(Aeltsz(n )) (Xe.t1 5(n )|

1i F T. ! - F !
' sig | (X€,t1 jint ) e, e, 2]
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Hence condition 5) of Definition 2.1 yields

lolty) = ole) | < 2 JF| /3

+ Jt2|<§gu<s), $5T5 (0" (s)) + (£(s,u(s))=36uls), Ty(n')(s))|ds
:

d '
|<—-u(t ) = FEulty), Tt (e ]

+

u (e | Ty (a"y(e,y) - Ty (n') (t, o,
and so condition 3) of Definition 2.1 implies that

lim  Jolty) - plt)] £ 2 Hell /3.
L, >t
1772

This means that p 1is left continuous.

Next there exists a sufficently small €5 > 0 and any 0 ¢ t, <«

t, ¢ T uls) - 53(X€,t2(s)5x€’t1(s))n'(s) belongs to K for

any s & (0,T) condition 5) of Definition 2.1 gives

!
F((Xs,tz = Xe,t Jn') 20 for 0 < t, < t, ¢ T.

Letting ¢ »+ 0, we see that p 1is nondecreasing over [0,T].

If u(to) & R for some t. > 0, there must exist tT,t2<E

0
{0,T}] and € ? 0 such that by o<ty < t, and u(s) =
! - *
Eo(Xe,tz‘ x€,t1)<s)n (s) € K .for s €1[0,T]. But u(-) ¢
1 - -
EO(Xe,tz - X€,t1)n (+) € C([0,T];K) by (5.1), and so

condition of Definition 2.1 implies that

F((x - Xe t yn') = 0.

€.ty 'ty
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]

Thus

p(ty) - p(t,) = lim P((Xg,t

e->0 2

This means that

(5.3)  df(ty) = 0 for amy point tj > 0 with u(ty) & K.

Proof of Theorem 3.

For a small > 0 let dist(u(to), bdy(K)) <«

€3 €

— -1/2 .
We assume that r(to) - e3n(rLtO)) + v 3(4NR+1) e(to) is
an exterior point of K, where e(tO) denotes a vector
satisfying (e(ty),n(r(ty))) = 0, (le(ty)] = 1.
Since r(to) - s3n(r(t0)) is an interior point of K there

exists a number mE (t such that

)
3 0

1) r(to) - €3n(r0to)) + m€3(to)e(to)€;bdy(K)

-1/2
2)  Veg(4Ng 1) 2m 0.

Since r(to) & B(O,R+1), Lemma 4.1 implies that
[(n(r(ty)), esnlr(ty)) - m€3(to)e(to))l

2 12
LNppqleg” + me (E)7 )

which gives

2 2
+’m€3(to) }e

€3 £ Np,q{ e

If N €

R < 1/2, then we have

3
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-1 2 . -1

: an A

27 g5 & NR+1m€3(to) & eq (AN, )7 N £ /4

This is a contadiction. Hence it is concluded

{z(ty) - e n(r(t,)) + Ve, (4N )_1/2e(t )} belongs to K
0 3 0 3' TR +1 0 :

Therefore there exists an ¢

M 0 such that for any ¢ &

(0,e,) and any ¢t & [0,T],

)-1/2e(

{u(t) - en'(t) % /e(4N t)} belongs to K,

where e(e) is a function in C([0,T]1;H) with (e(t),n'(t))
= 0 and le(e) ] = 1. Thus from condition 5) of

Definition 2.1 it follows.that

-1/2

~/=n! A ‘
F(-/en' & (4N, ) e) £ 0.
Letting € + 0 we get F(e) = 0.

Let e'é& C([0,T];H) and let (e'(t),n'(t)) = O. Then
(5.4) Fle') = |le'|| F(e'/ |le']l) = 0.
For any 'v&€C([0,T];H) we write

v(t) = (v(t), n'(t))n'(t) + e'(t) = e (t)n'(t) + e'(t).

Then (5.4) vyields

S 1 1 - . 1
(5.5) F(v) = F(avn ) + Fle') = F(avn ) .
Let {t?}?=o be any sequence satisfying
m m m m
1) 0 = tO < t1 < t2 < < tm = T,
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m m .
2) |tj+1 - tjl _—<_ 2T/m fOI' j¢ 1, 2, 3’..'.,m—1-

Then F(v) can be decomposed as

m-1
+ F((1 - Xe’tg)v) = 11 + 12;+ I3.
First we consider 12‘ Since
F - i = F - !
((Xg'tnit+1 Xa,tT)V) ((xsltr;+1 Xe,tT)avn )
m N
=g (t){Fly m n') - Fly m n')}
vl { €'ti+‘1 E:’t:'L+1
+ F(( m - Yla, - a (t5))n")
Xe , &, Xg , g0/ lay = agthy ’
i+1
we have

m-1 :
m 1 '
115 - §= ey (B {Flx_ ¢m n') - F(Xg,t? n')}|

1 i+1
m-1

< w_ [|F|| Sup ( m -y m)(t) < 2w_[[F]]

= I “ ” t §=1 XElti+1 Elti = m !
where . = Sup a, () - a_ (s)]. Thus it follows

m [t-s|;2T/m v v
A . m-1 m m m
(5.7)  Tim ]I, - ] eyt (pte], ) - p(e]N] £ 20 [|F] -
‘ e~+0 1=1 .

Next, (5.5) implies that
—— m
(5.8) lim [T, - av(O)p(t1)[ L wg ”F[!.
>0
Finally, using condition 5) of Definition 2.1 and noting that

%%(-) is left continuocus we have for Jj= 1, 2, ¢°*
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lim lim F((1 - Xs,tE)Tj(v)) = Q.

Maw g0
Combining ][Tj(v) - v|| < 1/3 and the above we see
(5.9) lim 1lim F((1 = X m)v) = 0.
€It
My g0 m
Noting 1lim w, = 0, Combining (5.6), (5.7), (5.8) and (5.9)
Mo : .

and then letting m go to o, we get the desired integral
representation of the functional F: '
, o
F(v) = j (v(s), n'(s))dp(s).
0

This, togher with (5.3), implies that for any v & C([0,T]1;H),

T
(5.10) F(v) = J (v(s), m(u(s)))dp(s).
0

In particular, for any o¢ ¢« C([0,T]), we obtain an integral

representaion of the type

. |
F(on') = J o(s)dp(s).
.40

On the other hand if 8 1is left continuocus, non decreasing,

of bounded variation, 6(0) = 0, and
T
J g{s)dea(s) = 0 for any o & C([0,T1),
0
then it follows that 6(t) = 0 for any t & [0,T]. This

means that the function +p 1s uniquely determined by the

solution u.

In view of this, we denote by Pu the function o

associated with u in the following.
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6. {ti}- energy conserving solutions

In this section we discuss the relation of the energy
conserving solution to the mild éolution and study the
existence and unigueness of {ti}-anergy conserving solutions.
Throughout this section we assume all of the cdnditions listed

in the assumption A-2.

Lemmma 6.1 An energy conserving solution of (2.4) is a
mild solution of (2.4). More precisely, if u 1is an

energy conserving solution, (u,pu) is a mild solution.

Proof. Let u be an energy conserving solution of
(2.4) and set

t

Tie) = ¥(e) = [ stt-s)f(uls))dp,(s),

0
where Y(+) 1is the function defined in the proof of
Lemma 4.19 and Py the function provided by Therem 3.
Using (4.36) and applying the same method as in the

verifications of (4.40) and (4.41), we have

T 4 - 4 —
J {(55T(s), SZvis)) + (£(s,u(s))-a¥(s), v(s))}ds

0
4= T _ -
+ (b, v(0)) - (&Tm, w(m)) - jo(n<u<s)), v(s))dp (s)
for any v €& C1([O,T];H)r7C([O,T];V). Put Y - u = w.

The above relation and (4.42) together yield

T g d
(6.1) [ ((Sz(s), Sv(s)) - (aw(s), v(s))}ds
0
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a | " B
- (EEW(*)’ v(T)) = 0.

For each g €& CT([O,T];H) we denote by v the solution of the
problem

g~2v + Av = g, 0 <t <T,
(6.2) dt

d
v(T) = 0, EEV(T) = 0. .

From (6.1) and (6.2) it follows that
T d2
J (w(s), -2v(S) + Av(s))ds = 0
0] dt

and

T
J (w(s), g(s))ds = 0.
0

Since C1([O,T];H) is dense in LZ(O,T;H), we infer that

w({(s) = 0 for are s & [0,T]. Since Y and u are

continuous, the proof is complete.
We are now in a position to give the proof of Theorem 4.

Let Mj, j = 0, 1, e+« , Dbe the sets as mentioned in
Definition 2.3. For each energy conserving solution u

let Py be the associated function provided by Theorem 3.

Lemma 6.2. All of Mj, j =1, 2,---; are not empty.
Proof. We put
(6.3) :Lnfl pw(t1) = aq.
wE L40
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Then one can choose a sedguence {uj} of energy conserving

solutions such that

w5, (5) = ;.

Jr= J
The application of Helly's theorem to {pu } implis that

Ty ; |
there exists a convergent subsequence {p, }  such that
I
lim o, (t) = p1(t) ~ for t & [O,T}-Q1
Ig7= 3y '

where P is an increasing left continuous function and
p1(0) = 0 and Q ~is some countable set in [0,T]. Let
Qi be some countable sets in [0,T] for i= 1, 2,*°-.

For simplicity in notation we denote the subsequence {u, }

i
by {uj}. Appling lemma 6.1 to uj and using the same
method as in Section 4, we infer that there exists a
subsaguence {uj }  such that

i
lim u. (t) = u(t) uniformly on [0,T],
ji-)-cc i
1im Soa. (t) = Seu(t)  for t € [0,T1-Q
= Eohet I at K 17
j>= i
lim 'A1/2u. (t) = A1/2u(t) for any t € [0,T].
3o 74
o Q '
It is easy to show if wu(t)& K then P4 = Const near t.

It is also clear that u satisfies the energy equality (4.35)

as well as the energy inequality (4.34). Hence Lemma 4.19

states that u 1s an energy conserving solution. Since

Py. (t) < Py (t1) for t < t1 and so ~p1(t) Loy for
I3 Ji
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a-e t é—[O,t1). Now the left continuity of <P yields

p1(t1) L Q. Combining this with the fact that u is an
energy conserving solution, we get p1(t1) = Q. Thus M1
is not an empty set. Suppose then that Mi’ 1 < i L j, are

not empty, and put

(6.4) inf p (t. ) o= a. .
wC—Mj woj+1 T3+

-+

Using the same method as in the case J = 1, we can show that

there exists a sequence {u .} in My such that

lim uk(t) = u(t) uniformly for t € [0,T],
K-
l.u t = . d
) ki: puk( j+1) aj+1' an
lir t) = t for ¢t Q,T]-Q.
ki: ouk( ) P, () € [0, ]Qj+1,

First we see in the same as way as the above that u belongs

: . -

to MO’ Since Mj(: M,, we have puk(t1) e,

for k=1, 2, 3, **-. Now the left continuity of P,
yields o, 2 p, (£;). Hence o, = p (t,) by the definition
of M1. Thus u €& M1. We next assume 116L%' (0 < 1
< ). Since MjC: M, qr we have puk(ti+1) = Q. for
all k. Hence, in the same way as the above, we see from
the left continuity of 0, and the definition of Mi+1 that
9 = ou(ti+1) and u & M; .. By induction we con;lude
that u ¢ Mj. Therefore we can apply the same method as in

the case j =1 to get ug Mj+1’ and the proof ‘is complete.
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Lemma 6.3 For u & M,

37 j 2 2, we have

= =}'-x
ol (tk) o, 1in pw

weM ‘

()
k-1 :

fOI‘ k=1, 2, '..,j.

The proof follows directly from the definition of M

J
Proof of Theorem 4.
First we show that [ | M. is nonempty. b
We can choosa a seguence {uk}§=1 such that u, & My
for k =1, 2, e, For simplicity in notation we denote
ol bv pk. Then Lemma 6.3 vyields

lim t. = Q. .
kim ok( J) 3

Applying Helly's theorem to {pk}, we get a subsequencs {pk }
. i

such that

lim p, (£) = p(t) for t € [0,T]1-Q
i ,

k.>o
i
whera p 1is left continuous and Q_ is some countable ss=t in

[(0,T]. For brevity in notation we write o for Oy -
i

Following the argument of Section 4 we see that

lim u.(t) = u(t) uniformly on {0,T]

iro L ‘

lim A1/2 u.(t) = A1/2u(t) for any t &« [0,T],
i+ 1 .
lim S, (t) = Su(t) ase tef(o0,T]

. dt i dt It

1o
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and that the limit function u is tXe energy conserving
solution . Further, by the method emploved in the proof of
Lemma 6.2 we can show u é-Mj for j =1, 2,0,

x
Thus fpw M. is nonenmpty.

j=1

. < : B
Second we demonstrats that ng Mj is a singletion set.

j=1

.
@

Let u, w & J:J Mj. _ Then we have pu(ti) = pw(ti) for
any 1 =1, 2,9%¢.. Therefore it follows from the left

continuity of Pur Py and the denseness of {ti} that

pu(t) = pw(t) for any t & {0,T].  We then put Py = Py
= Q.

We now assume that there exists a number 1 , T and a subset

{ik};=1 of (1,T] such that
u(t) = w(t) for any 0 ¢ t ¢ T,

ulg,) k w(g ) and lim g, = 7.

ks

+ If 1 > 0, then we have

d a .
a?u(l') = dtﬂ(‘r),
and if = 0, then we understand as g:u(O) = Q:V(O) = b
=T =Y = _ dt = e’ = D-
Recalling {U(t)} is a group, we have
a-
(6.5) u(t+t) = C(t)ul(t) + S(t)EEU(T)
t _ t
- f S{t-s)n(u(s+t))dp(s+1) + J S(t-s)f(s+t,ul(s+7))ds
0 0 '
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for 0 LT <1t +t < T.
[=]
1) Case of uf{T) & X. The third term on the right
side of (6.5) vanishes for t small. Hence u(t+71) = w(t+T)

for those values of t, which contradicts the definition of T

2) Case of u(7) € bdy(X). From (6.5) ,we have

t
[uftst) - wit+D) || < Np, JO fluls+1) - wis+T)|[dp(s+1)

t
+ J his+1) |Jul(s+1) - w(s+1)||ds
0
for positive sufficiently small t. Applying Gronwall's

inequality, we obtain
(6.6)  [lult+t) ~ wit+1) |l

_ t
LNy 4 (1 + Ceexp C) jo luts+1) - w(s+1) | dp(s+1),

T
where C = J h(s)ds.
0

Now we consider the case such that NR+1(1 + Ceexp C){p(T+0) -

p(T)) < 1/2. We put
T, = Min {T1 as in lemma 4.18, the Maximum of number of

t satisfying Np,1(1+Ceexp C)(p(t+t)-p(1)) < 1/2}..

Let t, € (0,T,] be such that Max lutt+t) - wit+1) || =
OgcteT
==2

”u(t2+r) - w(t2+r)]I. Then we see from (6.6) that

Hu(t2+r) - w(t2+T)H
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< NRf1(1+C~exp C)(P(T,+T) - p(T)) Hu(t2+T) - w(t2+T)H

< 271 Hu(t2+T) - w(t2+r)|l.

Thus we have wu(t+t) = w(t+1t) for any 0 <& t < T,. This
is also a contradiction. '
Next suppose NP+1(1+C-exp Cl(p(T+0) - plT)) 2 1/2. Since

u is a mild solution of (2.4) by Lemma 6.1 it follows from

(6.5) that

a* a” -
dta(f) = dtu(r) - {p(Tt+0) - p(T))n(u(T)).

In view of the energy equality stated in Definition 2.2 we

have
H——u Y| = H u(T .

This equality and the relation p(T+0) - p(T) > 0 together

yield
a-
p(Tt+0) - p(T) = 2(dtu(r), n(u(t))).
Hence
at a” -
(6.7) (agu(r).n(u(r))) = - (EEu(T)’ n(u(t))) < 0.

Further, assume that there exists a sequence {si}? 1
in (t1,T] such that

lim s, = 1 and u(s,) € bdy(K) for any i.
i+ 1 1

Then Lemma 3.1 implies that
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+

(ggu(T), n(u(t)))

0,

wnich contradicts (6.7).
such that

Hence there would exist t
[«]
u{t+t) & K

3° 0
for any 0 < t < t3.

But we see with the aid of the result of lineaf hvperbolic
equation that

u(t+1) w(t+T) for 0 < t < ts.
This contradictions the definition of T.
Thus u(t) w(t)

for any 0 < t < T.

. x
It is concluded that (] Mj is a singleton set.
j=1
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7. Examples

Example 1.  Let H = L,(0,1), V = f1(0,1) = {a€Wi(0,T
u(0) = u(1) = 0} and define the function ¢ : V -+ [0, =]
T.o1.a 2 -1 4 |
¢(u) = J {27 |gu)|® + 4 fu(x) | "} ax.
0 % .

We then introducs the closed linear subspacs of E
1

L = {f QL2(0,1); J f(x)sin(2mmx)dx = 0 for any
0 -

and the closed convex subéet of H

=
]

1
(£ er; J |£(x) |ax < 1}.

Then

: N ,
1t = {fé:L2(0,1); £(x) = %_Ocmsin(mex) for qne (-o,=)

);
by

}

and conditions 1),2) and 4) of the assumption A-1 are easily

verified. Moreover the application of Sobolev's imbedding

theorem implies that for any u, v &V
sup |u(x) - v(x)| ¢ Const( [Ju - v]| v “u - v[|)1/2.
0<x<1
On the other hand it is seen that
2
dpu = - —.u + u3.
d=x
Combining the above two facts we conclused that the operator
satisfies condition 3) of the assumption A-1, too. Thus

all of the conditions 1listed in the assumption A-1 are

satisfied.
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Example 2. Let QCR"

be a domain with smooth

boundary and consider the Hilbert space

{pj }] =1
positive numbers such that

be an orthonomal base of H and {aJ}J ]

for any

H =

LZ(Q). Let

a set of

We then define the closed convex set K by

[~

K = {x & H;
j=1

The set K may be regarded as an

elliptic”
Then, defining
L(x) = 2a.(x . .
(%) jz=1 3(%r P3Py
we have
n(x) = Jnee) || T1nix)

Moreover we infer that

£

[ln(ﬁ)-- n(y) || <

¥ a.(x,pj)2.< 1}.

infinit dimensional

Np [l - vl

for any x € bdy(X),

for any x & bdy(K).

for x, y'ebdy(K)FWB(O,R).

Thus it is concluded that all of the conditions given in the

assumption A-2 are satisfied.
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