

Title	On standard L-functions attached to $\text{alt}^{n-1}(C^n)$ -valued Siegel modular forms
Author(s)	Takayanagi, Hideshi
Citation	Osaka Journal of Mathematics. 1995, 32(3), p. 547-563
Version Type	VoR
URL	https://doi.org/10.18910/6943
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON STANDARD L -FUNCTIONS ATTACHED TO $\text{ALT}^{n-1}(C^n)$ -VALUED SIEGEL MODULAR FORMS

HIDESHI TAKAYANAGI

(Received February 8, 1993)

Introduction

In [23], we studied some properties of standard L -functions attached to $\text{sym}^l(V)$ -valued Siegel modular forms of weight $\det^k \otimes \text{sym}^l$. More precisely, let $\det^k \otimes \text{sym}^l$ be an irreducible rational representation of $GL(n, C)$ with representation space $\text{sym}^l(V)$, where V is isomorphic to C^n and $\text{sym}^l(V)$ is the l -th symmetric tensor product of V . Let f be a $\text{sym}^l(V)$ -valued holomorphic cusp form of weight $\det^k \otimes \text{sym}^l$ for $Sp(n, \mathbf{Z})$ (size $2n$). Suppose f is an eigenform, i.e., a non-zero common eigenfunction of the Hecke algebra. Then we define the standard L -function attached to f by

$$(0.1) \quad L(s, f, \underline{\text{St}}) := \prod_p \left\{ (1 - p^{-s}) \prod_{j=1}^n (1 - \alpha_j(p)^{-1} p^{-s}) (1 - \alpha_j(p) p^{-s}) \right\}^{-1},$$

where p runs over all prime numbers and $\alpha_j(p)$ ($1 \leq j \leq n$) are the Satake p -parameters of f . The right-hand side of (0.1) converges absolutely and locally uniformly for $\text{Re}(s) > n+1$. We put

$$\Lambda(s, f, \underline{\text{St}}) := \Gamma_R(s + \varepsilon) \Gamma_c(s + k + l - 1) \left\{ \prod_{j=2}^n \Gamma_c(s + k - j) \right\} L(s, f, \underline{\text{St}}),$$

with

$$\Gamma_R(s) := \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right), \quad \Gamma_c(s) := 2(2\pi)^{-s} \Gamma(s)$$

and

$$\varepsilon := \begin{cases} 0 & \text{for } n \text{ even,} \\ 1 & \text{for } n \text{ odd.} \end{cases}$$

Then we have the following (cf. Andrianov and Kalinin [Z], Böcherer [5] and Mizumoto [19] for $l=0$).

Theorem. ([23, Theorems 2 and 3]) For $k, l \in 2\mathbb{Z}$, $k, l > 0$, $\Lambda(s, f, \underline{St})$ has a meromorphic continuation to the whole s -plane and satisfies the functional equation

$$\Lambda(s, f, \underline{St}) = \Lambda(1-s, f, \underline{St}).$$

Suppose $k > n$. Then $\Lambda(s, f, \underline{St})$ is holomorphic except for possible simple poles at $s=0$ and $s=1$; it has a pole at $s=1$ (or equivalently, $s=0$) if and only if f belongs to the \mathbf{C} -vector space spanned by certain theta series in [24] which is invariant under the action of the Hecke algebra.

If we note that the signature of $\det^k \otimes \text{sym}^l$ is $(k+l, k, \dots, k) \in \mathbb{Z}^n$, we expect the following [23, §3.1 Remark] :

(C). Let ρ be an irreducible rational representation of $GL(n, \mathbf{C})$ with representation space V whose signature is $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$. Let f be a V -valued holomorphic cusp form of weight ρ for $Sp(n, \mathbb{Z})$. Suppose that f is an eigenform. Then, it is expected that the completed Dirichlet series

$$\Lambda(s, f, \underline{St}) := \Gamma_k(s+\varepsilon) \prod_{j=1}^n \Gamma_c(s+\lambda_j-j) L(s, f, \underline{St})$$

should satisfy a functional equation.

Unfortunately, within our knowledge it is not verified so far whether (C) holds or not except \det^k and $\det^k \otimes \text{sym}^l$ cases. We will give another example satisfying (C).

For $l \in \mathbb{Z}$, $0 \leq l \leq n$, let $\det^k \otimes \text{alt}^l$ be an irreducible rational representation of $GL(n, \mathbf{C})$ with representation space $\text{alt}^l(V)$, where V is isomorphic to \mathbf{C}^n and $\text{alt}^l(V)$ is the l -th alternating tensor product of V . Let $M_k^n(\text{alt}^l(V))$ (resp. $S_k^n(\text{alt}^l(V))$) be the \mathbf{C} -vector space consisting of $\text{alt}^l(V)$ -valued holomorphic modular (resp. cusp) forms of weight $\det^k \otimes \text{alt}^l$ for $Sp(n, \mathbb{Z})$.

Suppose that $f \in S_k^n(\text{alt}^{n-1}(V))$ is an eigenform. We note that the signature of $\det^k \otimes \text{alt}^{n-1}$ is $(k+1, \dots, k+1, k)$. We put

$$\Lambda(s, f, \underline{St}) := \Gamma_k(s+1) \left\{ \prod_{j=1}^{n-1} \Gamma_c(s+k+1-j) \right\} \Gamma_c(s+k-n) L(s, f, \underline{St}).$$

Then the main result of this paper is the following (cf. Piatetski-Shapiro and Rallis [21], Weissauer [24]).

Theorem 1. Let k be an even integer, n an odd integer and $2k \geq n > 2$. Then $\Lambda(s, f, \underline{St})$ has a meromorphic continuation to the whole s -plane and satisfies the functional equation

$$\Lambda(s, f, \underline{St}) = \Lambda(1-s, f, \underline{St}).$$

Moreover, suppose $k > n$. Then, $\Lambda(s, f, \underline{St})$ is entire.

NOTATION.

1°. As usual, \mathbf{Z} is the ring of rational integers, \mathbf{Q} the field of rational numbers, \mathbf{R} the field of real numbers, \mathbf{C} the field of complex numbers.

2°. Let $m, n \in \mathbf{Z}$, $m, n > 0$. If A is an $m \times n$ -matrix, then we write it also as $A^{(m,n)}$, and as $A^{(m)}$ if $m = n$. The identity matrix of size n is denoted by 1_n .

3°. For $m, n \in \mathbf{Z}$, $m, n > 0$, and a commutative ring R containing 1, let $R^{(m,n)}$ (resp. $R^{(n)}$) be the R -module of all $m \times n$ (resp. $n \times n$) matrices with entries in R .

4°. For a real symmetric positive definite matrix S , $S^{1/2}$ is the unique real symmetric positive definite matrix such that $(S^{1/2})^2 = S$.

5°. For matrix $A^{(m)}$, $B^{(m,n)}$, we define $A[B] := {}^t \bar{B} A B$, where ${}^t B$ is the transpose of B and \bar{B} is the complex conjugate of B .

6°. For a matrix $A^{(m)} = (a_{jh})_{1 \leq j, h \leq m}$, \tilde{a}_{jh} is the cofactor of a_{jh} and $\tilde{A} = (\tilde{a}_{jh})$.

7°. For $n \in \mathbf{Z}$, $n > 0$, we put

$$\mathbf{T}^{(n)} := \left\{ T = \begin{pmatrix} t_1 & & 0 \\ & t_2 & \\ 0 & & \ddots & \\ & & & t_n \end{pmatrix} \in \mathbf{Z}^{(n)} \middle| t_j > 0 (1 \leq j \leq n), t_1 | \cdots | t_n \right\}.$$

8°. For $n \in \mathbf{Z}$, $n > 0$, let $\Gamma^n := Sp(n, \mathbf{Z})$ be the Siegel modular group of degree n and let \mathfrak{H}_n be the Siegel upper half space of degree n , that is,

$$\mathfrak{H}_n := \{Z = X + iY \in \mathbf{C}^{(n)} | {}^t Z = Z, Y > 0\}.$$

For each $r \in \mathbf{Z}$ with $0 \leq r \leq n$, we put

$$P_{n,r} := \left\{ \begin{pmatrix} * & * \\ C^{(n)} & D^{(n)} \end{pmatrix} \in \Gamma^n \middle| C = \begin{pmatrix} 0 & 0 \\ 0 & C_4^{(r)} \end{pmatrix}, D = \begin{pmatrix} * & 0 \\ * & D_4^{(r)} \end{pmatrix} \right\}.$$

All these are subgroups of Γ^n .

9°. For $n \in \mathbf{Z}$, $n \geq 0$, we put

$$\Gamma_n(s) := \prod_{j=1}^n \Gamma\left(s - \frac{j-1}{2}\right),$$

and

$$\gamma(s) := \begin{cases} \frac{\Gamma_n\left(\frac{s+n}{2}\right)}{\Gamma_n\left(\frac{s}{2}\right)} & \text{for } n \text{ even,} \\ \frac{\Gamma_{n-1}\left(\frac{s+n}{2}\right)}{\Gamma_{n-1}\left(\frac{s-1}{2}\right)} & \text{for } n \text{ odd,} \end{cases}$$

where $\Gamma(s)$ is the gamma function. We note that

$$\gamma(s) = \gamma(1-s)$$

Moreover, we put

$$\xi(s) := \Gamma(s)\zeta(s) = \xi(1-s),$$

where $\zeta(s)$ is the Riemann zeta function.

Throughout the paper we understand that a product (resp. a sum) over an empty set is equal to 1 (resp. 0).

1. Preliminaries

Let ρ be a finite-dimensional representation of $GL(n, \mathbf{C})$ with representation space \mathbf{V} . By definition, \mathbf{V} -valued C^∞ -Siegel modular forms of weight ρ are C^∞ -functions from \mathfrak{H}_n to \mathbf{V} satisfying

$$(1.1) \quad (f|_\rho M)(Z) = f(Z)$$

for all $Z \in \mathfrak{H}_n$ and $M = \begin{pmatrix} A^{(n)} & B^{(n)} \\ C^{(n)} & D^{(n)} \end{pmatrix} \in \Gamma^n$, where

$$(f|_\rho M)(Z) := \rho((CZ + D)^{-1})f(M \langle Z \rangle) \text{ and } M \langle Z \rangle := (AZ + B)(CZ + D)^{-1}.$$

The space of all such functions is denoted by $M_\rho^n(\mathbf{V})^\infty$.

We write $|_k$ for $\rho = \det^k$ and we omit subscripts ρ, k when there is no fear of confusion.

A holomorphic function f from \mathfrak{H}_n to \mathbf{V} is called a \mathbf{V} -valued Siegel modular form of weight ρ if it satisfies (1.1) and if it is holomorphic at the cusps when $n = 1$. The space of \mathbf{V} -valued Siegel modular forms of weight ρ is denoted by $M_\rho^n(\mathbf{V})$.

We define the Siegel operator on $M_\rho^n(\mathbf{V})$ by

$$(\mathcal{O}f)(Z) := \lim_{t \rightarrow \infty} f\left(\begin{pmatrix} Z & 0 \\ 0 & it \end{pmatrix}\right)$$

for $Z \in \mathfrak{H}_{n-1}$. Let \mathbf{W} be the subspace of \mathbf{V} generated by the values of $\mathcal{O}f$ for all $f \in M_\rho^n(\mathbf{V})$. Then \mathbf{W} is invariant under the transformations

$$\rho\left(\begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}\right), g \in GL(n-1, C).$$

If we assume $W \neq \{0\}$, we get the representation σ of $GL(n-1, C)$ with representation space W . Thus the operator Φ defines the map

$$\Phi : M_{\rho}^n(V) \rightarrow M_{\sigma}^{n-1}(W).$$

Suppose $f \in M_{\rho}^n(V)$. Then it is called a cusp form if it satisfies $\Phi f = 0$, and we put

$$S_{\rho}^n(V) := \{f \in M_{\rho}^n(V) \mid f \text{ is a cusp form}\}.$$

If ρ is an irreducible rational representation, ρ is equivalent to an irreducible rational representation $\tilde{\rho}$ satisfying the following condition : Let \tilde{V} be the representation space of $\tilde{\rho}$. Then, there exists a unique one-dimensional vector subspace $C\tilde{v}$ of \tilde{V} such that for any upper triangular matrix of $GL(n, C)$,

$$\tilde{\rho}\left(\begin{pmatrix} g_{11} & & * \\ & \ddots & \\ 0 & & g_{nn} \end{pmatrix}\right)\tilde{v} = \left(\prod_{j=1}^n g_{jj}^{\lambda_j}\right)\tilde{v},$$

where $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ and $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$.

Then we call $(\lambda_1, \lambda_2, \dots, \lambda_n)$ the signature of ρ .

REMARK. Suppose the signature of ρ is $(\lambda_1, \lambda_2, \dots, \lambda_n)$. We note that $M_{\rho}^n(V) = \{0\}$ if $\lambda_n < 0$ and that $M_{\rho}^n(V)^{\circ} = \{0\}$ if $\lambda_1 + \dots + \lambda_n \not\equiv 0 \pmod{2}$.

Now, we put

$$G^+Sp(n, Q) := \left\{ M \in GL(2n, Q) \mid {}^t M \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix} M = \mu(M) \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}, \mu(M) > 0 \right\}.$$

For $g \in G^+Sp(n, Q)$, let $\Gamma^n g \Gamma^n = \bigcup_{j=1}^r \Gamma^n g_j$ be a decomposition of the double coset $\Gamma^n g \Gamma^n$ into left cosets. For $f \in M_{\rho}^n(V)$ (resp. $S_{\rho}^n(V)$, $M_{\rho}^n(V)^{\circ}$), we define the Hecke operator $(\Gamma^n g \Gamma^n)$ by

$$f|(\Gamma^n g \Gamma^n) := \sum_{j=1}^r f|g_j.$$

Let $f \in S_{\rho}^n(V)$ be an eigenform. We define the standard L -function attached to f by (0.1). We also define the following series :

$$(1.2) \quad D(s, f) := \sum_{T \in \overline{T}^{(n)}} \lambda(f, T) \det(T)^{-s},$$

where $\lambda(f, T)$ is the eigenvalue on f of the Hecke operator $\left(\Gamma^n \begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix} \Gamma^n\right)$, $T \in \overline{T}^{(n)}$. By Böcherer [6], we have :

$$(1.3) \quad \zeta(s) \prod_{j=1}^n \zeta(2s-2j) D(s, f) = L(s-n, f, \underline{\text{St}}).$$

For $k \in 2\mathbf{Z}$, $k > 0$, $s \in \mathbf{C}$ and $Z = (z_{jh}) \in \mathfrak{H}_n$ with $z_{jh} := x_{jh} + iy_{jh}$, we define the Eisenstein series by

$$E_k^n(Z, s) := \sum_{M = \begin{pmatrix} * & * \\ C^{(n)} & D^{(n)} \end{pmatrix} \in P_{n,0} \setminus \Gamma^n} \det(CZ + D)^{-k} \det(\text{Im}(M \langle Z \rangle))^s.$$

Then $E_k^n(Z, s) \in M_k^{n\infty}$, where $M_k^{n\infty}$ is the space of C^∞ -Siegel modular forms of weight k . The function $E_k^n(Z, s) \det(\text{Im}(Z))^{-s}$ converges absolutely and locally uniformly for $k + 2\text{Re}(s) > n + 1$. Moreover, we have the following :

Theorem 2. (Langlands [18], Kalinin [13] and Mizumoto [19, 20]) *Let $n \in \mathbf{Z}$, $k \in 2\mathbf{Z}$ and $n, k > 0$. Then for $Z \in \mathfrak{H}_n$,*

$$E_k^n(Z, s) := \frac{\Gamma_n\left(s + \frac{k}{2}\right)}{\Gamma_n(s)} \xi(2s) \prod_{j=1}^{\left[\frac{n}{2}\right]} \xi(4s - 2j) E_k^n\left(Z, s - \frac{k}{2}\right)$$

is invariant under $s \rightarrow \frac{n+1}{2} - s$ and it is an entire function in s .

It is also known that every partial derivative (in z_{jh} 's) of the Eisenstein series $E_k^n(Z, s)$ is slowly increasing (locally uniformly in s).

Theorem 3. (Mizumoto [20]) *Let $n \in \mathbf{Z}$, $k \in 2\mathbf{Z}$ and $n, k > 0$.
(i) For each $s_0 \in \mathbf{C}$, there exist constants $\delta > 0$ and $d \in \mathbf{Z}$ ($d \geq 0$), depending only on n, k and s_0 , such that*

$$(s - s_0)^d E_k^n(X + iY, s)$$

is holomorphic in s for $|s - s_0| < \delta$, and is C^∞ in (X, Y) .

(ii) Furthermore, for given $\varepsilon > 0$ and $N \in \mathbf{Z}$ ($N \geq 0$), there exist constants $\alpha > 0$ and $\beta > 0$ depending only on $n, k, d, s_0, \varepsilon, \delta$ and N such that

$$|(s - s_0)^d D_{X,Y} E_k^n(X + iY, s)| \leq \alpha \det(\text{Im}(Z))^\beta$$

for $Y \geq \varepsilon 1_n$ and $|s - s_0| < \delta$, where $D_{X,Y}$ is an arbitrary monomial of degree N in $\frac{\partial}{\partial x_{jh}}$ and $\frac{\partial}{\partial y_{jh}}$ ($1 \leq j, h \leq n$).

The assertion above for the case $N = 0$ has been proved by Langlands [18] and Kalinin [13].

2. Differential operators

In what follows, we put

$$\begin{aligned} V_1 &= \mathbf{C}e_1 \oplus \cdots \oplus \mathbf{C}e_n, \quad \mathbf{e}_1 = (e_1, \dots, e_n), \\ V_2 &= \mathbf{C}e_{n+1} \oplus \cdots \oplus \mathbf{C}e_{2n}, \quad \mathbf{e}_2 = (e_{n+1}, \dots, e_{2n}). \end{aligned}$$

Let $\text{alt}^{n-1}(V_1)$ (resp. $\text{alt}^{n-1}(V_2)$) be the $(n-1)$ -th alternating tensor product of V_1 (resp. V_2). If we put

$$\begin{aligned} t_j &:= (-1)^{j-1} e_1 \wedge \cdots \wedge e_{j-1} \wedge e_{j+1} \wedge \cdots \wedge e_n, \\ t_{n+j} &:= (-1)^{j-1} e_{n+1} \wedge \cdots \wedge e_{n+j-1} \wedge e_{n+j+1} \wedge \cdots \wedge e_{2n} \quad (1 \leq j \leq n), \end{aligned}$$

we can write

$$\text{alt}^{n-1}(V_1) = \mathbf{C}t_1 \oplus \cdots \oplus \mathbf{C}t_n \text{ and } \text{alt}^{n-1}(V_2) = \mathbf{C}t_{n+1} \oplus \cdots \oplus \mathbf{C}t_{2n}.$$

Moreover, we put

$$\mathbf{t}_1 := (t_1, \dots, t_n) \text{ and } \mathbf{t}_2 := (t_{n+1}, \dots, t_{2n}).$$

If for each $g \in GL(n, \mathbf{C})$, g acts on \mathbf{e}_j ($j=1, 2$) by $\mathbf{e}_j g$, then $\det^k \otimes \text{alt}^{n-1}(g)$ acts on \mathbf{t}_j ($j=1, 2$) by

$$\det^k \otimes \text{alt}^{n-1}(g) \mathbf{t}_j := \det(g)^k \mathbf{t}_j \tilde{g} = \det(g)^{k+1} \mathbf{t}_j^t g^{-1}.$$

If we put $\alpha = (a_1, \dots, a_n) \in \mathbf{C}^n$, $\det^k \otimes \text{alt}^{n-1}(g)$ acts on $\sum_{j=1}^n a_j t_j = \mathbf{t}_1^t \alpha \in \text{alt}^{n-1}(V_1)$ and $\mathbf{t}_2^t \alpha \in \text{alt}^{n-1}(V_2)$ by

$$\det^k \otimes \text{alt}^{n-1}(g)(\mathbf{t}_j^t \alpha) := \det(g)^k \mathbf{t}_j \tilde{g}^t \alpha = \det(g)^{k+1} \mathbf{t}_j^t g^{-1} \alpha \quad (j=1, 2).$$

Thus we get the action of $\det^k \otimes \text{alt}^{n-1}$ on $\text{alt}^{n-1}(V_j)$ ($j=1, 2$).

Let ι be the isomorphism from V_1 to V_2 defined by $\iota(e_j) = e_{n+j}$ ($1 \leq j \leq n$). It induces the isomorphism (also denoted by ι) from $\text{alt}^{n-1}(V_1)$ to $\text{alt}^{n-1}(V_2)$. For a $\text{alt}^{n-1}(V_1)$ -valued function f on \mathfrak{H}_n and for $Z \in \mathfrak{H}_n$, we define $\iota(f)$ by

$$(\iota(f))(Z) := \iota(f(Z)).$$

For a function F on \mathfrak{H}_{2n} , $\begin{pmatrix} Z^{(n)} & U^{(n)} \\ {}^t U^{(n)} & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$, we define the pullback d^* by

$$(d^* F) \left(\begin{pmatrix} Z & U \\ {}^t U & W \end{pmatrix} \right) := F \left(\begin{pmatrix} Z & 0 \\ 0 & W \end{pmatrix} \right).$$

We consider $\Gamma^n \times \Gamma^n$ imbedded in Γ^{2n} by

$$\begin{pmatrix} A^{(n)} & B^{(n)} \\ C^{(n)} & D^{(n)} \end{pmatrix} \times \begin{pmatrix} A'^{(n)} & B'^{(n)} \\ C'^{(n)} & D'^{(n)} \end{pmatrix} \mapsto \begin{pmatrix} A & 0 & B & 0 \\ 0 & A' & 0 & B' \\ C & 0 & D & 0 \\ 0 & C' & 0 & D' \end{pmatrix},$$

and when convenient will identify $\Gamma^n \times \Gamma^n$ with its image in Γ^{2n} .

We summarize some facts on differential operators obtained from invariant pluri-harmonic polynomials in Ibukiyama [12]. Let ρ_0 (resp. ρ_0') be an irreducible rational representation of $GL(n, C)$ with representation space V (resp. V'), where ρ_0 is equivalent to ρ_0' . For $n, k \in \mathbb{Z}$, $n, k > 0$, let $X = (x_{jv})$ be a variable on $C^{(n, 2k)}$. We put

$$\Delta_{jh} : = \sum_{v=1}^{2k} \frac{\partial^2}{\partial x_{jv} \partial x_{hv}}.$$

A polynomial $P(X)$ on $C^{(n, 2k)}$ is called pluri-harmonic if $\Delta_{jh}P = 0$ for each j, h with $1 \leq j \leq h \leq n$.

From now on, we assume that $2k \geq n$. Suppose that a polynomial map

$$P : C^{(n, 2k)} \times C^{(n, 2k)} \rightarrow V \otimes V'$$

satisfies the following three conditions :

- (2.1) $P(X_1, X_2)$ is pluri-harmonic for each X_j ($j = 1, 2$),
- (2.2) $P(X_1g, X_2g) = P(X_1, X_2)$ for each $g \in O(2k)$,
- (2.3) $P(a_1X_1, a_2X_2) = (\rho_0(a_1) \otimes \rho_0'(a_2))P(X_1, X_2)$ for each $a_j \in GL(n, C)$ ($j = 1, 2$).

Then there exists a unique polynomial map Q on $C^{(2n)}$ such that

$$P(X_1, X_2) = Q \begin{pmatrix} X_1^t X_1 & X_1^t X_2 \\ X_2^t X_1 & X_2^t X_2 \end{pmatrix}.$$

Let $\beta = (z_{jh})$ be a variable on \mathfrak{H}_{2n} . We put

$$\frac{\partial}{\partial \beta} : = \left(\frac{1 + \delta_{jh}}{2} \frac{\partial}{\partial z_{jh}} \right)_{1 \leq j, h \leq 2n},$$

where, for $z_{jh} = x_{jh} + iy_{jh}$,

$$\frac{\partial}{\partial z_{jh}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{jh}} - i \frac{\partial}{\partial y_{jh}} \right), \quad \frac{\partial}{\partial \bar{z}_{jh}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{jh}} + i \frac{\partial}{\partial y_{jh}} \right).$$

If we put

$$D : = d^* Q \left(\frac{\partial}{\partial \beta} \right),$$

we have the following :

Theorem 4. (Ibukiyama [12]) Let $n, k \in \mathbb{Z}$ and $2k \geq n > 0$.

(i) Let F be any C -valued C^∞ -function on \mathfrak{H}_{2n} . If we put $\rho = \det^k \otimes \rho_0$ and

$\rho' = \det^k \otimes \rho'_0$, then for each $(g, g') \in \Gamma^n \times \Gamma^n$ and $\beta = \begin{pmatrix} Z^{(n)} & U^{(n)} \\ {}^t U^{(n)} & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$, we get the following commutation relation :

$$((DF)|_\rho(g)_z|_{\rho'}(g')_w)(\beta) = (\mathbf{D}(F|_k(g, g')))(\beta),$$

where $(\)_z$ (resp. $(\)_w$) denotes the action on Z (resp. W).

(ii) The operator \mathbf{D} sends modular forms to modular forms :

$$\mathbf{D} : M_k^{2n\infty} \rightarrow M_\rho^n(V)^\infty \otimes M_{\rho'}^n(V')^\infty.$$

Moreover, \mathbf{D} is a holomorphic operator and it satisfies

$$\mathbf{D} : M_k^{2n} \rightarrow M_\rho^n(V) \otimes M_{\rho'}^n(V').$$

Now we apply it to $\det^k \otimes \text{alt}^{n-1}$ cases. Let $\rho_0 = \text{alt}^{n-1}$ (resp. $\rho'_0 = \text{alt}^{n-1}$) be the representation of $GL(n, C)$ with representation space $\text{alt}^{n-1}(V_1)$ (resp. $\text{alt}^{n-1}(V_2)$). For a variable $\beta = (z_{jh})$ on \mathfrak{H}_{2n} , we put

$$u_{jh} := z_{j+n+h} (1 \leq j, h \leq n), \quad U^{(n)} := (u_{jh}) \text{ and } \frac{\partial}{\partial U} := \left(\frac{\partial}{\partial u_{jh}} \right)_{1 \leq j, h \leq n}.$$

For functions on \mathfrak{H}_{2n} , we define the differential operator \mathcal{D} by

$$\mathcal{D} := d^* \left(t_1 \widetilde{\frac{\partial}{\partial U}} {}^t t_2 \right).$$

Then we have :

Proposition 1. Let $n, k \in \mathbb{Z}$ and $2k \geq n > 2$.

(i) Let F be any C -valued C^∞ -function on \mathfrak{H}_{2n} . Then for each $(g, g') \in \Gamma^n \times \Gamma^n$ and $\beta = \begin{pmatrix} Z & U \\ {}^t U & W \end{pmatrix} \in \mathfrak{H}_{2n}$, we get the following commutation relation :

$$((\mathcal{D}F)|_\rho(g)_z|_{\rho'}(g')_w)(\beta) = (\mathcal{D}(F|_k(g, g')))(\beta).$$

(ii) The operator \mathcal{D} sends modular forms to modular forms :

$$\mathcal{D} : M_k^{2n\infty} \rightarrow M_k^n(\text{alt}^{n-1}(V_1))^\infty \otimes M_k^n(\text{alt}^{n-1}(V_2))^\infty.$$

Moreover, \mathcal{D} is a holomorphic operator and it satisfies

$$\mathcal{D} : M_k^{2n} \rightarrow M_k^n(\text{alt}^{n-1}(V_1)) \otimes M_k^n(\text{alt}^{n-1}(V_2)).$$

Proof. Let X_j ($j=1, 2$) be variables on $C^{(n, 2k)}$. If we put

$$\frac{\partial}{\partial U} = X_1 {}^t X_2,$$

the polynomial $t_1 \widetilde{X_1 {}^t X_2} {}^t t_2$ satisfies the three conditions (2. 1), (2. 2), (2. 3).

Therefore we get Proposition 1 by Theorem 4. \square

3. Proof of Theorem 1

We prove Theorem 1 according to Böcherer's method in [5]. We first apply the differential operator \mathcal{D} to the Eisenstein series $E_k^{2n}(\mathfrak{J}, s)$. For this, we use the coset decomposition by Garrett :

Lemma 1. (Garrett [9] and Mizumoto [19, Appendix B])

(i) *The double coset $P_{2n,0} \backslash \Gamma^{2n} / \Gamma^n \times \Gamma^n$ has an irredundant set of coset representatives*

$$g_{\tilde{\tau}} = \begin{pmatrix} 1_n & 0 & 0 & 0 \\ 0 & 1_n & 0 & 0 \\ 0 & \tilde{T}^{(n)} & 1_n & 0 \\ \tilde{T}^{(n)} & 0 & 0 & 1_n \end{pmatrix},$$

where $\tilde{T} = \begin{pmatrix} 0 & 0 \\ 0 & T^{(r)} \end{pmatrix}$, $T \in \mathbf{T}^{(r)}$ ($0 \leq r \leq n$).

(ii) *The left coset $P_{2n,0} \backslash P_{2n,0} g_{\tilde{\tau}} (\Gamma^n \times \Gamma^n)$ has an irredundant set of coset representatives $g_{\tilde{\tau}} \tilde{g}_1 g_2 \tilde{g}'_1 g'_2$,*

$$\tilde{g}_1 \in G_{n,r}, g_2 \in P_{n,r} \backslash \Gamma^n, \tilde{g}'_1 \in \Gamma^r(T) \backslash G_{n,r}, g'_2 \in P_{n,r} \backslash \Gamma^n,$$

where

$$G_{n,r} := \left\{ \begin{pmatrix} \tilde{A}^{(n)} & \tilde{B}^{(n)} \\ \tilde{C}^{(n)} & \tilde{D}^{(n)} \end{pmatrix} = \begin{pmatrix} 1_{n-r} & 0 & 0 & 0 \\ 0 & A^{(r)} & 0 & B^{(r)} \\ 0 & 0 & 1_{n-r} & 0 \\ 0 & C^{(r)} & 0 & D^{(r)} \end{pmatrix} \in \Gamma^n \mid (A \ B) \in \Gamma^r \right\}$$

and for $T \in \mathbf{T}^{(r)}$,

$$\Gamma^r(T) := \left\{ g \in \Gamma^r \mid \begin{pmatrix} 0 & T^{-1} \\ T & 0 \end{pmatrix} g \begin{pmatrix} 0 & T^{-1} \\ T & 0 \end{pmatrix} \in \Gamma^r \right\}.$$

Now we prove the following (cf. Böcherer [4, Satz 9], [5, Satz 3]):

Proposition 2. *Let k be an even integer, n an odd integer and s a complex number such that $k+2\operatorname{Re}(s) > 2n+1$. Suppose that $2k \geq n > 2$. For $\mathfrak{J} = \begin{pmatrix} Z^{(n)} \\ {}_t U^{(n)} \\ U^{(n)} \\ W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$, $\mathfrak{J}_0 = \begin{pmatrix} Z^{(n)} & 0 \\ 0 & W^{(n)} \end{pmatrix} \in \mathfrak{H}_{2n}$, we get*

$$\begin{aligned} & (\mathcal{D} E_k^{2n})(\mathfrak{J}, s) \\ &= \frac{\Gamma(2k+2s+1)}{\Gamma(2k+2s-n+2)} \sum_{T \in \mathbf{T}^{(n)}} \left(\mathcal{P}(Z, W, s) \mid \left(\Gamma^n \begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix} \Gamma^n \right)_w \right) \det(T)^{-k-2s} \end{aligned}$$

$$+ \frac{\Gamma(2k+2s+1)}{\Gamma(2k+2s-n+2)} \mathcal{R}(Z, W, s),$$

where

$$\begin{aligned} \mathcal{P}(Z, W, s) \\ := \sum_{g \in \Gamma^n} \{ \det(\text{Im}(Z))^s \det(\text{Im}(W))^s |\det(W+Z)|^{-2s} \rho((W+Z)^{-1}) (t_1^t t_2) \} |(g)_z, \end{aligned}$$

and

$$\begin{aligned} \mathcal{R}(Z, W, s) := \sum_{T \in \mathcal{T}^{(n-1)}} \sum_{g_2 \in P_{n,n-1} \setminus \Gamma^n} \sum_{g'_2 \in P_{n,n-1} \setminus \Gamma^n} \sum_{\tilde{g}_1 \in G_{n,n-1}} \sum_{\tilde{g}'_1 \in \Gamma^{n-1}(T) \setminus G_{n,n-1}} \\ \cdot \{ \det(\text{Im}(Z))^s \det(\text{Im}(W))^s |\det(1_n - \tilde{T}W\tilde{T}Z)|^{-2s} \\ \cdot \rho((1_n - \tilde{T}W\tilde{T}Z)^{-1}) (t_1 \tilde{T}^t t_2) \} |(\tilde{g}'_1)_W |(\tilde{g}_1)_Z |(g'_2)_W |(g_2)_Z. \end{aligned}$$

Proof. It follows from Proposition 1 and Lemma 1 that

$$(\mathcal{D} E_k^{2n})(\mathfrak{Z}, s) = \sum_{r=0}^n \sum_{T \in \mathcal{T}^{(r)}} \sum_{g_2 \in P_{n,r} \setminus \Gamma^n} \sum_{g'_2 \in P_{n,r} \setminus \Gamma^n} \sum_{\tilde{g}_1 \in G_{n,r}} \sum_{\tilde{g}'_1 \in \Gamma^{r-1}(T) \setminus G_{n,r}} \\ \{ \mathcal{D}(\det(\text{Im}\mathfrak{Z})^s |_k g_T) \} |(\tilde{g}'_1)_W |(\tilde{g}_1)_Z |(g'_2)_W |(g_2)_Z.$$

If for each \tilde{T} we put $g_T = \begin{pmatrix} * & * \\ \mathfrak{G}^{(2n)} & \mathfrak{D}^{(2n)} \end{pmatrix}$, we get

$$\mathcal{D}(\det(\text{Im}\mathfrak{Z})^s |_k g_T) = \det(\overline{\mathfrak{G}\mathfrak{Z}_0} + \mathfrak{D})^{-s} \mathcal{D}(\det(\mathfrak{G}\mathfrak{Z} + \mathfrak{D})^{-k-s} \det(\text{Im}(\mathfrak{Z}))^s),$$

by the form of \mathcal{D} and that of $\det(\text{Im}(\mathfrak{Z}))$,

$$= \det(\overline{\mathfrak{G}\mathfrak{Z}_0} + \mathfrak{D})^{-s} \det(\text{Im}(\mathfrak{Z}_0))^s \mathcal{D}(\det(\mathfrak{G}\mathfrak{Z} + \mathfrak{D})^{-k-s}).$$

As an example, we compute

$$d^* \widetilde{\frac{\partial}{\partial u_{nn}}} (\det(\mathfrak{G}\mathfrak{Z} + \mathfrak{D})^{-k-s}).$$

Let \mathfrak{S}_m be the symmetric group of degree m . We put

$$\delta := \det(\mathfrak{G}\mathfrak{Z} + \mathfrak{D}), \delta_0 := \det(\mathfrak{G}\mathfrak{Z}_0 + \mathfrak{D}), \delta_{jh} := \frac{\partial}{\partial u_{jh}} \quad (1 \leq j, h \leq n)$$

and, for $m, q \in \mathbf{Z}$, $0 < m$ and $0 \leq q < m$,

$$L_m^q := \left\{ (l_1, \dots, l_m) \in \mathbf{Z}^m \mid l_\nu \geq 0 \ (1 \leq \nu \leq m), \sum_{\nu=1}^m l_\nu = m - q, \sum_{\nu=1}^m \nu l_\nu = m \right\}.$$

For $(l_1, \dots, l_m) \in L_m^q$, let $\Lambda(l_1, \dots, l_m)$ be the set consisting of $J \in \mathfrak{S}_m$ such that, if $l_\gamma \neq 0$ ($1 \leq \gamma \leq m$),

$$1 \leq J \left(\sum_{\nu=0}^{\gamma-1} \nu l_\nu + \gamma \lambda + 1 \right) < \dots < J \left(\sum_{\nu=0}^{\gamma-1} \nu l_\nu + \gamma \lambda + \gamma \right) \leq m \quad (0 \leq \lambda < l_\gamma)$$

and

$$1 \leq J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu} + 1\right) < J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu} + \gamma + 1\right) < \cdots < J\left(\sum_{\nu=0}^{\gamma-1} \nu l_{\nu} + \gamma(l_{\gamma} - 1) + 1\right) \leq m.$$

Then we get

$$\begin{aligned} d^* \widetilde{\partial}_{nn}(\delta^{-k-s}) &= d^* \left(\sum_{\tau \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\tau) \partial_{1\tau(1)} \cdots \partial_{n-1\tau(n-1)} \right) (\delta^{-k-s}) \\ &= \sum_{q=0}^{n-2} \left\{ \left(\prod_{\mu=0}^{n-2-q} (-k-s-\mu) \right) \delta_0^{-k-s-(n-1-q)} \right. \\ &\quad \times d^* \sum_{\tau \in \mathfrak{S}_{n-1}} \sum_{(l_1, \dots, l_{n-1}) \in L_{n-1}^q} \sum_{J \in \Lambda} \operatorname{sgn}(\tau) \partial_{\tau}^J(q; (l_1, \dots, l_{n-1}))(\delta) \Big\}, \end{aligned}$$

where $\Lambda = \Lambda(l_1, \dots, l_{n-1})$ and

$$\begin{aligned} \partial_{\tau}^J(q; (l_1, \dots, l_{n-1}))(\delta) &= \sum_{\gamma=1}^{n-1} \left\{ \left(\partial_{\tau(J(\alpha^{\gamma}+1))} \cdots \partial_{\tau(J(\alpha^{\gamma}+\gamma))} \right) (\delta) \right. \\ &\quad \times \cdots \\ &\quad \left. \times \left(\partial_{\tau(J(\alpha^{\gamma}+\gamma(l_{\gamma}-1)+1))} \cdots \partial_{\tau(J(\alpha^{\gamma}+1))} \right) (\delta) \right\} \end{aligned}$$

with $\alpha^{\gamma} := \sum_{\nu=0}^{\gamma-1} \nu l_{\nu}$, $\partial_{\tau(J(\cdot))} := \partial_{J(\cdot) \tau(J(\cdot))}$.

For each q ($0 \leq q \leq n-2$), $(l_1, \dots, l_{n-1}) \in L_{n-1}^q$, $\tau \in \mathfrak{S}_{n-1}$ and $J \in \Lambda$, we define

$$(\partial_{J(j) \tau(J(h))}) := \begin{pmatrix} ((A_{\tau})_{\epsilon\eta})^{(n-1-q)} & * \\ * & \partial_{nn} \end{pmatrix},$$

where, for $\sum_{\nu=1}^{\gamma-1} l_{\nu} + 1 \leq \xi \leq \sum_{\nu=1}^{\gamma} l_{\nu}$ and $\sum_{\nu=1}^{\gamma-1} l_{\nu} + 1 \leq \eta \leq \sum_{\nu=1}^{\gamma} l_{\nu}$, $(A_{\tau})_{\epsilon\eta}$ is a $\gamma \times \gamma$ matrix. In the same way, we define

$$(b_{J(j) \tau(J(h))}) := \begin{pmatrix} ((B_{\tau})_{\epsilon\eta})^{(n-1-q)} & * \\ * & b_{nn} \end{pmatrix},$$

where $(\mathfrak{C}\mathfrak{B}_0 + \mathfrak{D})^{-1}\mathfrak{C} = \begin{pmatrix} * & \mathcal{B}^{(n)} \\ * & * \end{pmatrix}$ and $\mathcal{B} = (b_{jh})$.

Then we have

$$\begin{aligned} d^* \sum_{\tau \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\tau) \partial_{\tau}^J(q; (l_1, \dots, l_{n-1}))(\delta) \\ = \sum_{\sigma \in \mathfrak{S}_{n-1} / \prod_{\gamma=1}^{n-1} \mathfrak{S}_{\gamma}^{\gamma}} \left\{ \operatorname{sgn}(\sigma) \prod_{\epsilon=1}^{n-1-q} d^* \det((A_{\sigma})_{\epsilon\epsilon})(\delta) \right\}, \end{aligned}$$

by $d^* \det((A_{\sigma})_{\epsilon\epsilon})(\delta) = (\gamma+1)! \delta_0 \det((B_{\sigma})_{\epsilon\epsilon})$ ($\sum_{\nu=1}^{\gamma-1} l_{\nu} + 1 \leq \xi \leq \sum_{\nu=1}^{\gamma} l_{\nu}$),

$$\begin{aligned} &= \delta_0^{n-1-q} \prod_{\gamma=1}^{n-1} \{(\gamma+1)!\}^{l_{\gamma}} \sum_{\sigma \in \mathfrak{S}_{n-1} / \prod_{\gamma=1}^{n-1} \mathfrak{S}_{\gamma}^{\gamma}} \left\{ \operatorname{sgn}(\sigma) \prod_{\epsilon=1}^{n-1-q} \det((B_{\sigma})_{\epsilon\epsilon}) \right\} \\ &= \delta_0^{n-1-q} \widetilde{b}_{nn} \prod_{\gamma=1}^{n-1} \{(\gamma+1)!\}^{l_{\gamma}}. \end{aligned}$$

Since the number of elements of Λ is $\left(\prod_{\gamma=1}^{n-1} \frac{1}{l_{\gamma}!} \right) \frac{(n-1)!}{(1!)^{l_1} \cdots ((n-1)!)^{l_{n-1}}}$, we obtain

$$(3.1) \quad d^* \widetilde{\partial_{nn}}(\delta^{-k-s}) = (-1)^{n-1} \sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s+2k+2\mu) \right\} \delta_0^{-k-s} \widetilde{b}_{nn},$$

where

$$a_m(q) = (-1)^q 2^{-(m-q)} m! \sum_{(l_1, \dots, l_m) \in L_m^q} \left(\prod_{r=1}^m \frac{(\gamma+1)^{l_r}}{l_r!} \right) \quad (0 < m, 0 \leq q < m).$$

In the same way, we have

$$\begin{aligned} & \mathcal{D}(\det(\mathfrak{C}\mathfrak{B} + \mathfrak{D})^{-k-s}) \\ &= (-1)^{n-1} \sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s+2k+2\mu) \right\} \det(\mathfrak{C}\mathfrak{B}_0 + \mathfrak{D})^{-k-s}(\mathbf{t}_1 \widetilde{\mathcal{B}}^t \mathbf{t}_2) \end{aligned}$$

and

$$\begin{aligned} \mathcal{D}(\det(\text{Im}\mathfrak{B})^s |_{\mathfrak{B}} g_{\tilde{T}}) &= (-1)^{n-1} \sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s+2k+2\mu) \right\} \\ & \quad \times \det(\mathfrak{C}\mathfrak{B}_0 + \mathfrak{D})^{-k} \det(\text{Im}(g_{\tilde{T}} \langle \mathfrak{B}_0 \rangle))^s(\mathbf{t}_1 \widetilde{\mathcal{B}}^t \mathbf{t}_2). \end{aligned}$$

On the other hand, we obtain

$$\begin{aligned} & \det(\mathfrak{C}\mathfrak{B}_0 + \mathfrak{D})^{-k} \det(\text{Im}(g_{\tilde{T}} \langle \mathfrak{B}_0 \rangle))^s(\mathbf{t}_1 \widetilde{\mathcal{B}}^t \mathbf{t}_2) \\ &= \det(\text{Im}(Z))^s \det(\text{Im}(W))^s |\det(1_n - \tilde{T}W\tilde{T}Z)|^{-2s} \rho((1_n - \tilde{T}W\tilde{T}Z)^{-1})(\mathbf{t}_1 \widetilde{\mathcal{B}}^t \mathbf{t}_2). \end{aligned}$$

Therefore we have only to prove

$$\sum_{q=0}^{n-2} \left\{ a_{n-1}(q) \prod_{\mu=0}^{n-2-q} (2s+2k+2\mu) \right\} = \prod_{\mu=0}^{n-2} (2s+2k-\mu).$$

To prove the formula above, we put $x=2s+2k$ and $m=n-1$. Then we have to prove

$$(3.2) \quad \sum_{q=0}^{m-1} \left\{ a_m(q) \prod_{\mu=0}^{m-1-q} (x+2\mu) \right\} = \prod_{\mu=0}^{m-1} (x-\mu).$$

We put $a_m(q)=0$ if $q \geq m$, $0 > q$ or $0 \geq m$. We use induction on m . If $m=1$, the assertion is trivial. We suppose

$$\sum_{q=0}^{m'-1} \left\{ a_{m'}(q) \prod_{\mu=0}^{m'-1-q} (x+2\mu) \right\} = \prod_{\mu=0}^{m'-1} (x-\mu).$$

for any $m' < m$. Then we have

$$\begin{aligned} \prod_{\mu=0}^{m-1} (x-\mu) &= \left\{ \prod_{\mu=0}^{m-2} (x-\mu) \right\} (x-m+1) \\ &= \left\{ \sum_{q=0}^{m-2} \left\{ a_{m-1}(q) \prod_{\mu=0}^{m-2-q} (x+2\mu) \right\} (x+(2m-2-2q)-(3m-3-2q)) \right\} \\ &= \sum_{q=0}^{m-2} \left\{ a_{m-1}(q) \prod_{\mu=0}^{m-1-q} (x+2\mu) \right\} \\ & \quad - \sum_{q=1}^{m-1} \left\{ (3m-2q-1) a_{m-1}(q-1) \prod_{\mu=0}^{m-1-q} (x+2\mu) \right\} \end{aligned}$$

$$= \sum_{q=0}^{m-1} \left\{ (a_{m-1}(q) - (3m-2q-1)a_{m-1}(q-1)) \prod_{\mu=0}^{m-1-q} (x+2\mu) \right\}.$$

If we note $3l_1 + \dots + (m+1)l_{m-1} = 3m-2q-1$ in L_{m-1}^{q-1} , we have

$$\begin{aligned} & a_{m-1}(q) - (3m-2q-1)a_{m-1}(q-1) \\ &= \frac{1}{m} (-1)^q 2^{-(m-q)} m! \sum_{L_{m-1}^q} \left\{ (l_1+1) \frac{2^{l_1+1}}{(l_1+1)!} \left(\prod_{\gamma=2}^{m-1} \frac{(\gamma+1)^{l_\gamma}}{l_\gamma!} \right) \right\} \\ & \quad + \frac{1}{m} (-1)^q 2^{-(m-q)} m! \sum_{L_{m-1}^q} \left\{ \left(\prod_{\gamma=1}^{m-1} \frac{(\gamma+1)^{l_\gamma}}{l_\gamma!} \right) \left(\sum_{\gamma=1}^{m-1} (\gamma+1)(l_{\gamma+1}+1) \frac{\gamma+2}{l_{\gamma+1}+1} \frac{l_\gamma}{\gamma+1} \right) \right\} \\ &= (-1)^q 2^{-(m-q)} m! \sum_{L_{m-1}^q} \left\{ \left(\prod_{\gamma=1}^m \frac{(\gamma+1)^{l_\gamma}}{l_\gamma!} \right) \frac{1}{m} \sum_{\gamma=1}^m \gamma l_\gamma \right\} \\ &= a_m(q). \end{aligned}$$

Thus we get (3.2). \square

REMARK. Under the notation above, we note that the formula

$$d^* \tilde{\partial_{jh}}(\delta^{-k-s}) = (-1)^{n-1} \prod_{\mu=0}^{n-2} (2s+2k-\mu) \delta_0^{-k-s} \tilde{b_{jh}}$$

which is obtained from (3.1) and (3.2), and the formula

$$d^* \left(\det \left(\frac{\partial}{\partial U} \right) \right) (\delta^{-k-s}) = (-1)^n \prod_{\mu=0}^{n-1} (2s+2k-\mu) \delta_0^{-k-s-1} \det(\tilde{T})$$

in [4, Satz 9], [5, Satz 3] have the same meaning.

For $\sum_{j=1}^n a_j t_{n+j}$, $\sum_{j=1}^n b_j t_{n+j} \in \text{alt}^{n-1}(V_2)$, we define the inner product of them by

$$\left\langle \sum_{j=1}^n a_j t_{n+j}, \sum_{j=1}^n b_j t_{n+j} \right\rangle := \sum_{j=1}^n a_j \bar{b}_j.$$

Suppose $f, g \in M_k^n(\text{alt}^{n-1}(V_2))^\infty$. The Petersson inner product of f and g is defined by

$$\langle f, g \rangle := \int_{\Gamma^n \setminus \mathfrak{H}_n} \langle \rho'(\sqrt{\text{Im}(W)}) f(W), \rho'(\sqrt{\text{Im}(W)}) g(W) \rangle \det(\text{Im}(W))^{-n-1} dX dY$$

if the right-hand side is convergent. Here $W = X + iY$ with real matrices $X = (x_{jh})$ and $Y = (y_{jh})$;

$$dX := \prod_{j \leq h} dx_{jh}, \quad dY := \prod_{j \leq h} dy_{jh};$$

the integral is taken over a fundamental domain of $\Gamma^n \setminus \mathfrak{H}_n$. We write $dW = dX dY$ when there is no fear of confusion.

Theorem 5. *Let k be an even integer, n an odd integer and $2k \geq n > 2$. If*

$f \in S_k^n(\text{alt}^{n-1}(V_2))$ is an eigenform,

$$\begin{aligned} & \left(f, (\mathcal{D}E_k^{2n}) \left(\begin{pmatrix} -\bar{Z}^{(n)} & 0 \\ 0 & * \end{pmatrix}, \frac{\bar{s}+n}{2} \right) \right) \\ &= 2\pi^{nk-\frac{1}{2}(n-1)^2} i^{nk+n-1} \gamma(s) \Lambda(s, f, \underline{\text{St}})(\iota^{-1}(f))(Z). \end{aligned}$$

If Theorem 5 is proved, the functional equation of $\Lambda(s, f, \underline{\text{St}})$ is obtained from that of $E_k^{2n}(\beta, s)$. Since it follows from Theorem 3 that the location of poles of $E_k^{2n}(\beta, s)$ is invariant under the operation of \mathcal{D} , its holomorphy is proved in the same way as that by Mizumoto [19, Theorem 1] (cf. Weissauer [24]). Thus we get Theorem 1.

Proof of Theorem 5. It follows from Theorem 3 that $\left(f, (\mathcal{D}E_k^{2n}) \left(\begin{pmatrix} -\bar{Z} & 0 \\ 0 & * \end{pmatrix}, \bar{s} \right) \right)$ converges absolutely and locally uniformly for $k+2\text{Re}(s) > 2n+1$. We note that $\mathcal{R}(Z, W, s)$ is orthogonal to $S_k^n(\text{alt}^{n-1}(V_2))$ in the variable W by the same reason as that in Klingen [15, Satz 2]. Since the Hecke operators are Hermitian operators and f is an eigenform, we have

$$\begin{aligned} & \left(f, (\mathcal{D}E_k^{2n}) \left(\begin{pmatrix} -\bar{Z} & 0 \\ 0 & * \end{pmatrix}, \bar{s} \right) \right) \\ &= \frac{\Gamma(2k+2s+1)}{\Gamma(2k+2s-n+2)} D(k+2s, f)(f, \mathcal{P}(-\bar{Z}, *, \bar{s})) \end{aligned}$$

by the definition (1.2). If we compute the integral $(f, \mathcal{P}(-\bar{Z}, *, \bar{s}))$ according to Klingen [14, § 1] (see also [5], [7], [23]), we obtain

$$(f, \mathcal{P}(-\bar{Z}, *, \bar{s})) = 2^{n(n-2s-k)+2} i^{nk+n-1} \psi(\iota^{-1}(f))(Z)$$

and

$$\psi = \int_{S^n} \det(1_n - S\bar{S})^{k+s-n-1} \left((1_n - \widetilde{S\bar{S}}) [{}^t \mathbf{p}_n] \right) dS,$$

where $\mathbf{p}_n^{(1,n)} := (0, \dots, 0, 1)$ and $S^n := \{S \in \mathbf{C}^{(n)} \mid S = {}^t S, 1_n - S\bar{S} > 0\}$. Moreover, by Hua [10, § 2.3] (see also [5], [7], [14], [23]), we get

$$\psi = \pi^{\frac{n(n+1)}{2}} \left(\frac{2k+2s-n+1}{2} \right) \frac{\Gamma(k+s-n)}{\Gamma(k+s+1)} \prod_{j=1}^{n-1} \frac{\Gamma(2k+2s-2n+1+2j)}{\Gamma(2k+2s-n+1+j)}.$$

Thus, by (1.3), we obtain

$$\begin{aligned} & \left(f, (\mathcal{D}E_k^{2n}) \left(\begin{pmatrix} -\bar{Z} & 0 \\ 0 & * \end{pmatrix}, \frac{\bar{s}+n-k}{2} \right) \right) \\ &= 2^{n(1-s)+2} i^{nk+n-1} \pi^{\frac{n(n+1)}{2}} \zeta(s+n)^{-1} \prod_{j=1}^n \zeta(2s+2n-2j)^{-1} \end{aligned}$$

$$\times \frac{\Gamma(s+k)}{\Gamma(s+k-n+1)} \prod_{j=1}^n \frac{\Gamma(s+k-n-2+2j)}{\Gamma(s+k-1+j)} L(s, f, \text{St})(\iota^{-1}(f))(Z)$$

and Theorem 5 is proved. \square

References

- [1] A.N. Andrianov : *The multiplicative arithmetic of Siegel modular forms*, Russian Math. Surveys **34** (1979), 75-148 ; English translation.
- [2] A.N. Andrianov and V.L. Kalinin : *On the analytic properties of standard zeta function of Siegel modular forms*, Math. USSR-Sb. **35** (1979), 1-17 ; English translation.
- [3] S. Böcherer : *Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen*, Math. Z. **183** (1983), 21-46.
- [4] ——— : *Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen II*, Math. Z. **189** (1985), 81-110.
- [5] ——— : *Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe*, J. Reine Angew. Math. **362** (1985), 146-168.
- [6] ——— : *Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe*, Abh. Math. Sem. Univ. Hamburg **56** (1986), 35-47.
- [7] S. Böcherer, T. Satoh and T. Yamazaki : *On the pullback of a differential operator and its application to vector valued Eisenstein Series*, Commentarii Math. Univ. St. Pauli. **42** (1992), 1-22.
- [8] P. Feit : Poles and residues of Eisenstein series for symplectic and unitary groups, Mem. Amer. Math. Soc. **61** no. 346, Providence, Rhode Island, 1986.
- [9] P.B. Garrett : *Pullbacks of Eisenstein series ; applications*, Automorphic Forms of Several Variables, Progress in Math. **46**, 114-137, Birkhäuser, Boston-Basel-Stuttgart, 1984.
- [10] L.K. Hua : Harmonic analysis of functions of several complex variables in the classical domains, Trans. Amer. Math. Soc. **6**, Providence, Rhode Island, 1963.
- [11] T. Ibukiyama : *Invariant harmonic polynomials on polysheres and some related differential equations*, preprint.
- [12] ——— : *On differential operators on automorphic forms and invariant pluri-harmonic polynomials*, preprint.
- [13] V.L. Kalinin : *Eisenstein series on the symplectic group*, Math. USSR-Sb. **32** (1977), 449-476 ; English translation.
- [14] H. Klingen : *Über Poincaré Reihen zur Siegelschen Modulgruppe*, Math. Ann. **168** (1967), 157-170.
- [15] ——— : *Zum Darstellungssatz für Siegelsche Modulformen*, Math. Z. **102** (1967), 30-43.
- [16] R.P. Langlands : *Problems in the theory of automorphic forms* : Lecture Notes in Math. **170**, 18-86, Springer, Berlin-Heidelberg-New York, 1970.
- [17] ——— : Euler products, Yale Univ. Press, 1971.
- [18] ——— : On the functional equations satisfied by Eisenstein series, Lecture Notes in Math. **544**, Springer, Berlin-Heidelberg-New York, 1976.
- [19] S. Mizumoto : *Poles and residues of standard L-functions attached to Siegel modular forms*, Math. Ann. **289** (1991), 589-612.
- [20] ——— : *Eisenstein series for Siegel modular groups*, Math. Ann. **297** (1993), 581-625.
- [21] I. Piatetski-Shapiro and S. Rallis : *L-functions for the classical groups*, Lecture Notes in Math. **1254**, 1-52, Springer, Berlin-Heidelberg-New York, 1987.
- [22] G. Shimura : *On Eisenstein series*, Duke Math. J. **50** (1983), 417-476.
- [23] H. Takayanagi : *Vector valued Siegel modular forms and their L-functions ; applications of a differential operator*, Japan. J. Math. **19** (1993), 251-297.
- [24] R. Weissauer : *Stabile Modulformen und Eisensteinreihen*, Lecture Notes in Math. **1219**, Springer, Berlin-Heidelberg-New York, 1986.

Department of Mathematics
Keio University
3-14-1 Hiyoshi Kohoku-ku Yokohama, 223 Japan

Current Address
Department of Business Administration
Sakushin Gakuin University
908 Takeshita-machi Utsunomiya-city
Tochigi-pref., 321-32, Japan

