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Introduction

In [23], we studied some properties of standard L-functions attached to
sym'( Iθ-valued Siegel modular forms of weight det* (x) sym*. More precisely, let
det* (x) symz be an irreducible rational representation of GL(n, C) with represen-
tation space sym z(F), where V is isomorphic to Cn and sym'(F) is the /-th
symmetric tensor product of V. Let / be a sym'( F)-valued holomorphic cusp
form of weight det* ® symz for Sp(ny Z) (size 2n). Suppose / is an eigenform,
i.e., a non-zero common eigenfunction of the Hecke algebra. Then we define the
standard L-function attached to / by

(0.1) Us, f, St): =ukl-p-s)mi-aAp)-1p-s)(l-aAp)p-s)Y\
P \ j=l )

where p runs over all prime numbers and otj(p) (l<j<n) are the Satake p-
parameters of/. The right-hand side of (0.1) converges absolutely and locally
uniformly for Re(s)>?2 + 1. We put

{ n Λ

Π Γc(s + k—j)lL(s, f, St),

with

ΓR(s): =π-τr(f),Γc(s): =2(2π)-sΓ(s)

and

_ ίOfor ^even,
l l for n odd.

Then we have the following (cf. Andrianov and Kalinin [Z], Bocherer [5] and
Mizumoto [19] for 1 = 0).
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Theorem. ([23, Theorems 2 and 3]) For k, 1<=2Z, k, l>0, Λ(s, /, St) has a
meromorphic continuation to the whole s-plane and satisfies the functional
equation

Suppose k>n. Then Λ(s, f, St) is holomorphic except for possible simple poles at
5 = 0 and 5 = 1 it has a pole at 5 = 1 {or equivalently, s — 0) if and only if f
belongs to the C-vector space spanned by certain theta series in [24] which is
invariant under the action of the Hecke algebra.

If we note that the signature of det* ® sym z is (k+l, k, •••, k)^Zn, we expect

the following [23, §3.1 Remark] :

(C). Let p be an irreducible rational representation of GL(n, C) with
representation space V whose signature is (λi, Λ, •••, λn)^Zn with λi>λ2^ ~^λn

>0. Let f be a V-valued holomorphic cusp form of weight p for Sp(n, Z).
Suppose that f is an eίgenform. Then, it is expected that the completed Dirichlet
series

Λ(s, f, St): = j y s + e)]Ί Γc(s + λj-j)L(s, f, St)

should satisfy a functional equation.

Unfortunately, within our knowledge it is not verified so far whether (C)
holds or not except det* and det* (x) symz cases. We will give another example
satisfying (C).

For /GZ, 0< /< n, let det* (x) altz be an irreducible rational representation of
GL(n, C) with representation space dλtι(V), where V is isomorphic to Cn and
alt z(F) is the /-th alternating tensor product of V. Let Mk(dλt\V)) (resp.
Sk{dλtι{V))) be the C-vector space consisting of alt'(F)-valued holomorphic
modular (resp. cusp) forms of weight det* ® altz for Sp(n, Z).

Suppose that /£= Sk{dλtn~ι{ V)) is an eigenform. We note that the signature of
det* (x) alt72'1 is (k + 1, —, k + l, k). We put

Λ(s, f, St): =ΓΛ(5 + l){ff Γc(s + k + l-j)}rc(s + k-n)L(s, /, St).

Then the main result of this paper is the following (cf. Piatetski-Shapiro and Rallis
[21], Weissauer [24]).

Theorem 1. Let k be an even integer, n an odd integer and 2k>n>2.
Then Λ(s, f, St) has a meromorphic continuation to the whole s-plane and
satisfies the functional equation
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Moreover, suppose k>n. Then, Λ(s, /, St) is entire.

NOTATION.

Γ. As usual, Z is the ring of rational integers, Q the field of rational
numbers, R the field of real numbers, C the field of complex numbers.

2°. Let m, n^Z, my n>0. If A is an mX ^-matrix, then we write it also as
A{m'n\ and as Am if m=n. The identity matrix of size n is denoted by ln.

3°. For m, wGZ, m, ^>0, and a commutative ring R containing 1, let R{m'n)

(resp. R{n)) be the i?-module of all mX n (resp. nXn) matrices with entries in R.
4°. For a real symmetric positive definite matrix 5, 51 / 2 is the unique real

symmetric positive definite matrix such that (5 1 / 2 ) 2 =5.
5°. For matrix A{m\ B{m>n\ we define A[B]: =*BAB, where *B is the

transpose of B and B is the complex conjugate of B.
6°. For a matrix A(m) = (ajh)i^j,h^m, ajh is the cofactor of ajh and A = (ά7h).

7°. For n^Z, n>0, we put

rp{n) . __

0

8°. For « e Z , w>0, let Γ" : =Sp(n, Z) be the Siegel modular group of
degree n and let ξ>n be the Siegel upper half space of degree n, that is,

£»: ={Z=X+iY(ΞCw\tZ=Z, F>0}.

For each r^Z with 0<r<n, we put

Dw) ) D-(* ° )\

All these are subgroups of Γ".
9°. For n^Z, n^O, we put

Γn(s): = ]
j=ι

and
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r(s+n\
\ 2 /

- for n even,

Γ (s+n\
v z 7 for α odd,

Γn-l

where .Γ(s) is the gamma function. We note that

γ{s) = γ(χ — s)

Moreover, we put

where ζ(s) is the Riemann zeta function.
Throughout the paper we understand that a product (resp. a sum) over an

empty set is equal to 1 (resp. 0).

1. Preliminaries

Let p be a finite-dimensional representation of GL(n, C) with representation
space F. By definition, F-valued C°°-Siegel modular forms of weight p are
C°°-functions from ξ>n to V satisfying

(1.1)

/Ain) B{n)\
for all Z^ξ)n and M = [ ^(n) rι(n))EΞJΓ , where

and

The space of all such functions is denoted by Mp( V)°°.
We write |* for p^det* and we omit subscripts p, k when there is no fear of

confusion.
A holomorphic function / from ξ>n to V is called a F-valued Siegel modular

form of weight p if it satisfies (1.1) and if it is holomorphic at the cusps when n
= 1. The space of F-valued Siegel modular forms of weight p is denoted by

We define the Siegel operator on Mp( V) by

(Φ/XZ): =lir

for Z€Ξφn-i. Let W be the subspace of V generated by the values of Φf for all
Then W is invariant under the transformations
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ϊ - 1 , C).

If we assume WΦ{0}, we get the representation a of GL(n — 1, C) with representa-
tion space W. Thus the operator Φ defines the map

Φ:

Suppose f^Mp( V). Then it is called a cusp form if it satisfies Φ/=0, and we put

SSi V): ={f£:MP

n( V)\f is a cusp form}.

If p is an irreducible rational representation, p is equivalent to an irreducible
rational representation p satisfying the following condition : Let V be the repre-
sentation space of p. Then, there exists a unique one-dimensional vector subspace
Cv of V such that for any upper triangular matrix of GL(ny C),

where (Λi, λ2, —, /1«)GZΛ and λ i ^ Λ ^ ^λn.
Then we call (λi, /I2, ••*, λn) the signature of p.

REMARK. Suppose the signature of p is (λi, Λ, •••, λn). We note that Mp{ V)
= {ύ) if λn<0 and that M^(F)°°={0} if Λ + + Λ^O mod 2.

Now, we put

G+Sp(n,Q): =|i/eGL(2w, Q)'Afί ")M=μ(M)( π

For #<= G+Sp(n, Q), let ΓngΓn= Uj=iΓngj be a decomposition of the double coset
ΓngΓn into left cosets. For / E M ( F ) (resp. S*(F), M^(F)00), we define the
Hecke operator (ΓngΓn) by

f\(ΓngΓn): =±f\gj.
.7 = 1

Let /eSp( V) be an eigenform. We define the standard L-function attached
to / by (0.1). We also define the following series:

(1.2) D(s,f): = Σ λ(f, T)det(T)-5,

where λ(f, T) is the eigenvalue on / of the Hecke operator ί Γn( . ~λ ]Γn ), T

e Tin\ By Bδcherer [6], we have :
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(1.3) ζ(s)Uζ(2s-2j)D(s, f) = L(s-n, f, St).
.7 = 1

For k^2Z, k>0, s^C and Z = (zjh)^ί>n with zjh : = ^ + ίto, we define the

Eisenstein series by

EftZ, s): = , Σ det( CZ + Z?)-* det(Im(M<Z»)s.

Then Ek(Z, s)^Mk°°, where Λf*°° is the space of C°°-Siegel modular forms of

weight k. The function Eΐ(Z, s)det(Im(Z))~s converges absolutely and locally

uniformly for k + 2Re(s)>n + l. Moreover, we have the following:

Theorem 2. (Langlands [18], Kalinin [13] and Mizumoto [19, 20]) Let n

and n, k>0. Then for

Γnίs+ψj
EftZ, s ) : = K

Γ^ ' ξ(2s

n-\-\
is invariant under s—•—̂  s and it is an entire function in s.

It is also known that every partial derivative (in ^Λ'S) of the Eisenstein series

E%(Z, s) is slowly increasing (locally uniformly in s).

Theorem 3. (Mizumoto [20]) Let n^Z, k^2Z and n, k>0.

(i) For each So^ C, there exist constants δ>0 and d^Z(d>0), depending only

on n, k and so, such that

(s-So)dEn

k(X+iY,s)

is holomorphic in s for \s — So\<δ, and is C°° in (X, Y).

(ii) Furthermore, for given ε>0 and N^Z (N>0), there exist constants a>0

and /?>0 depending only on n, k, d, So, ε, δ and N such that

\(s-so)dDx,YEZ(X+iY, s)\<adet(lm(Z)Y

for Y>εln and \s — So\<δ, where Dχ,γ is an arbitary monomial of degree N in

-^ and -^ (l^y, k<n).
dxjh dyjh

 Jy

The assertion above for the case N=0 has been proved by Langlands [18] and

Kalinin [13].
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2. Differential operators

In what follows, we put

Vί=CteiΘ Θ Cen, eι = (eh '", en\
V2=Cen+ι Θ ••• Θ Ce2nj e2=(en+u •••, e2n).

Let alt""^ Vί) (resp. alt11""^ V2)) be the (w-l)-th alternating tensor product of Vi
(resp. V2). If we put

( ϊ)J1 iA — Aen,
~ Λe2n

we can write

έkn-KVi)=Ctι ®~ ®Ctn and <ύtn-1(V2)=Ctn+ι Θ - Θ Ct2n.

Moreover, we put

ti: =(ti, •••, ^w) and 12: =(tn+i, '", t2n).

If for each g<^GL(n, C), g acts on e, O'=l, 2) by e^, then det* (g) alt""^^) acts
on tj C/ = l, 2) by

If we put α=(βi, - , β , ) e Γ , detΛ ® alt"" 1^) acts on

and f2

ίflrGalt>l"1(V2) by

*+1ί/ί7-1 *α (j=l, 2).
Thus we get the action of det* (g) alt""1 on 2ltn~KVj) 0"=l, 2).

Let £ be the isomorphism from Vι to V2 defined by t{ej) — en+j (l<j<n). It
induces the isomorphism (also denoted by t) from altn"1( Vi) to alt71"^ V2). For a
alt""^ Fi)-valued function / on $« and for Z^ξ)n, we define c(f) by

/ Z{n) Uin)\
For a function F on &«, L w Λ ) ( n ) je$ 2 n, we define the pullback d* by

We consider Γ"xΓn imbedded in Γ2n by

ιA 0 B 0
?(«)\ (A>w Bnn)s ( 0 ^4' o B'

•'(»> ^ ' (" ί j ^ 1 c o Z) 0

\Q C 0 Z)'
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and when convenient will identify Γn X Γn with its image in Γ2n.
We summarize some facts on differential operators obtained from invariant

pluri-harmonic polynomials in Ibukiyama [12]. Let po (resp. Po) be an irreducible
rational representation of GL (n, C) with representation space V (resp. V), where
Po is equivalent to po'. For n, k^Z, n, k>0, let X=(xjv)bc a variable on Cin'2k).
We put

υ=l dXivdx

A polynomial P(X) on C(n'2k) is called pluri-harmonic if ΔjhP=ΰ for each , A
with l<j<h<n.

From now on, we assume that 2k>n. Suppose that a polynomial map

p . C(n,2k) χ

satisfies the following three conditions:

(2.1) P(Xi, X2) is pluri-harmonic for each Xό (J = h 2),

(2.2) P(Xi^, X2g) = P(Xi, X2) for each g£Ξθ(2k),

(2.3) P(fliXi, β2X2) = (po(βi) ® pΌ(a2))P(Xi, X2) for each aj(ΞGL(n, C) (j

= 1, 2).

Then there exists a unigue polynomial map Q on C(2;2) such that

Let 3 = (^JΛ) be a variable on $2 w. We put

JL. ==
(

9S ' \ 2 dZ

where, for Zjh=Xjh + iyjh,

_d_=λί_Λ _ 5 \ a = 1 / d , . 3 \

dzjh 2 \ â iΛ dyjh r dzjh 2 \ dxjh dyjh )'

If we put

we have the following :

Theorem 4. (Ibukiyama [12]) Let n, k^Z and 2k>n>0.
(i) Let F be any C-valued C°°-function on ξ>2n. If we put p=άetk ® po and
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p'=det* <g> p'0> then for each (g, g')ϊΞΓnxΓn and θ = ( ί t / ( n , ψ^Γ®2"' we

get the following commutation relation :

((DF)Ug)zU9%)(S)=(D(F\k(g,

where ( )z (resp. ( )w) denotes the action on Z (resp. W).

(ii) The operator D sends modular forms to modular forms :

D : M2

k

noo^MP

n( V)00 (g) Mϊ( VT.

Moreover, D is a holomorphic operator and it satisfies

D : Mln^Mϊ( V) (x) M?( V).

Now we apply it to det* ® alt72"1 cases. Let po^alt"' 1 (resp. p'o^alt72"1) be
the representation of GL(ny C) with representation space alt^CFi) (resp.
?λtn~ι{ V2)). For a variable 3 = ( ^ Λ ) on $2n, we put

, h<n), U(n): =(ujh) and -^τr

For functions on $2n, we define the differential operator <S0 by

Then we have:

Proposition 1. Lei w, k^Z and 2k^n>2.
(i) Lei F be any C-valued C°°-function on ξ>2n. Then for each (#, g

xΓn and S=[tγj w)^^2n' we %et ^ e f°H°win8 commutation relation

(ii) The operator 3) sends modular forms to modular forms :

Moreover, 3) is a holomorphic operator and it satisfies

3) : Mln-*M£(<i\tn-\ Vι)) ® MJAβ\tn'\ V2)).

Proof. Let Xό (; = 1, 2) be variables on C{n'2k\ If we put

the polynomial ίiXiίX2ίfe satisfies the three conditions (2. l)9 (2. 2), (2. 3).
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Therefore we get Proposition 1 by Theorem 4. O

3. Proof of Theorem 1

We prove Theorem 1 according to Bδcherer's method in [5]. We first apply
the differential operator 3) to the Eisenstein series Eln(8, s) For this, we use the
coset decomposition by Garrett:

Lemma 1. (Garrett [9] and Mizumoto [19, Appendix B])
(i) The double coset P2nAΓ2nlΓnXΓn has an ίrredundant set of coset

representatives

0

(

Ire

/ l n

,- °7t-[ o
\fi*

0
1»

!> 0

r<.n).

0
0
In

0

° l
0 '

\J
where f =

(ii) The left coset P2«,o\ftn(o gτ{ΓnxΓn) has an irredundant set of coset
representatives \ r

where

Cτn,r

and for

: =-

r e

M ( n ) B ( n

\C{n) D{n

jι(r)

Λn-r

V o

0

0
C(r)

0
0

l«-r

0

0
βir)

0
ε Γ " (A

r-'\ /o
o Mr

Now we prove the following (cf. Bδcherer [4, Satz 9], [5, Satz 3]):

Proposition 2. Let k be an even integer, n an odd integer and s a complex
( Z{n)

number such that & + 2Re(s)>2τz + l. Suppose that 2k>n>2. For S=[tττ(n)

(Z{n) 0 . _
we get

, s)
Λ( (T 0 \ \

' W' s)\\Γ \ 0 T~lr )
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Γ(2k + 2s + l)
W's)'

where

Hz, w, s)
: = Σ {άet(lm(Z)ydet(lm(W))s\det(W+Z)\-2sp((W+Z)-1)(t1

tt2)}\(g)z,
g(ΞΓ"

and

X(Z, W, s): = Σ Σ Σ Σ Σ

•{det(Im(Z))sdet(Im( W))s\det(ln- TWfZ)\

Proof. It follows from Proposition 1 and Lemma 1 that

(Z>El")(8, s)=± Σ Σ Σ Σ Σ

If for each T we put fl'f = ̂ (2») φ(2n)j? we get

» ( d e t ( I m 3 ) 1 ^ f ) - d e t ( S ^ + Φ ) - s ^ (

by the form of 3) and. that of det(Im(3)\

- d e t ( S ^

As an example, we compute

Let ©rc be the symmetric group of degree m. We put

δ: =det((£3+®), δo: =det(S3o+®), dJh: =-J—

and, for w, ̂ ^ ^ , 0<m and 0<Q<m,

{ m m

(A, - , /»)eZB|/^0 (Kv^m), Σ/v=w-ί, Σ
For (/i, •••, /«)eLm,'let /l(/i, •••, /«) be the set consisting of/^@m such that, if

and
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v=0

Then we get

=d*( Σ sgn(r)Ar (i) - dn-i

n-2(/n-2-q

= Σ ( Π (-k-s-

xd* Σ Σ Σsgn(r)^; (h,-, ln-iW)},
Γ£βπ-i (A, - , ln-ι)tΞL"n-ι J&Λ )βπ-i (A, - ,

where Λ = Λ(li, •••, /w-i) and

' ' ' 7=1

x

With ΰfr '. =Σί=O Vlυ, 9r(/(.)) =5/(.)r(/( ))
For each # ( 0 < ^ < ^ - 2 ) , (/i, •••, / « - i ) G L l i , Γ G S » - I and / E Λ , we define

OJU)τ{J{h))) I — I -, ),

where, for Σϊ=i /̂  + l<<f<Σί=i /v and Σί'=ί /, + 1 < ? ? < Σ Γ = I /v, (Aί)w is a

7' matrix. In the same way, we define

( (( ~DΪ\ \(W —1 —9) 4* \

\ V *-J t) iV ) i

* Onnl

where (e3o+®)"1e=(* £\" )# ^ J and %=

Then we have

</* Σ sgn(r)3ί(ί (A, - , /»-
re®,.,

)""ff *= Σ ίsgnCff)ff

by d* det(G4S)«)(a)=(r+l)!ao det((Bδ«) (Σί-i

= <5o"-1-? π ' ίCr+D!} ' ' Σ ίsgnCσ) ""ff* det((flί)«#)}

/n-1 ]_ \ ( ^ — 1 ) !
Since the number of elements of A is ί Π ~j~τ) (Λ l)ll ((—_i)iy»-i» w e

obtain
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(3.1) d* £n(8-k-s)=(-l)"-1 n-£\an-x{q) " ί f\2s + 2k + 2μ))δόk-s b^n,
9=0 I μ=0 J

where

am(q) = {-Dq2-{m-q)m\ Σ (fi ^t}^) (0<my0<q<m).

In the same way, we have

( ) Ίl{(ί)τϊ
9=0 I //=0

and

M^

On the other hand, we obtain

=det(Im(Z)) s det(Im( Wθ) s |det(ln- TWTZ)\~2s

Therefore we have only to prove

_ , n-1(g)n~f[\2s + 2k + 2μ)}=fΐ(2s+2k-μ).
9=0 L μ=0 μ-0

To prove the formula above, we put x = 2s + 2k and m=n — l. Then we have to
prove

772 — 1 ( m-l-q ~] 772 — 1

(3.2) Σ Wtf) Π (x + 2μ)\=π(x-β).
9=0 I μ=0 ) μ=0

We put am(q) = 0 if q>m, 0>q or 0>m. We use induction on m. If m = l, the
assertion is trivial. We suppose

m'-l( m'-l-q \ m'-l

Σ]fl«'(ί) Π (x + 2μ)\=Π(χ-μ).
9=0 L μ=o ) μ=o

for any mf<m. Then we have

n\xμ) \Ίl
μ=0 [μ=0

9=0 I μ=o
772—2 r m-l-q

ΣU—iU) Π
9=01 μ=o

772-1 ( m-l-q
— y \(^m — 9/7 — 1 )/7™ Λ(Ω — \) TT (

/ i j \ vJ A/ί Li LI -L/U'772 — l \ t i -1-/ 11 \
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9=0 I μ=0

If we note 3/H \-(m + ϊ)lm-i = Sm — 2q — 1 in LV-i, we have

Thus we get (3.2). Q

REMARK. Under the notation above, we note that the formula

^;() ( ) n(

which is obtained from (3.1) and (3.2), and the formula

j l (2s + 2k-μ)δϊk-s-1 det(f)

in [4, Satz 9], [5, Satz 3] have the same meaning.

For Σ7=i cijtn+j, Σi=i bjtn+j^alt"'1 (V2), we define the inner product of them
by

n n n
<Σ ajtn+j, Σ bjtn+j>' = Σ djbj.

Suppose /, g^Mlί(altn x( V2))00. The Petersson inner product of/ and g is defined
by

if the right-hand side is convergent. Here W=X+iY with real matrices X=(xjh)
and F=(#,•*)

dX: = Π ώiΛ, (/F: = Π <δ>;*

the integral is taken over a fundamental domain of Γn\φn. We write dW^dXdY
when there is no fear of confudion.

Theorem 5. Let k be an even integer, n an odd integer and 2k>n>2. If
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is an eίgenform,

-r
If Theorem 5 is proved, the functional equation of Λ(s, f, St)is obtained from

that of Ekn(8, s). Since it follows from Theorem 3 that the location of poles of
Eln(8, s) is invariant under the operation of <2), its holomorphy is proved in the
same way as that by Mizumoto [19, Theorem l] (cf. Weissauer [24]). Thus we get
Theorem 1.

Proof of Theorem 5. It follows from Theorem 3 that (f, (S)Eln)(( " Z £ Y

converges absolutely and locally uniformly for k + 2Re(s)>2n + l. We note that
%(Z, Wy s) is orthogonal to Sk{vλtn~\ V2)) in the variable W by the same reason
as that in Klingen [15, Satz 2]. Since the Hecke operators are Hermitian operators
and / is an eigenform, we have

n-z, *, s))

by the definition (1.2). If we compute the integral (/, P{ — Z, *, s")) according
to Klingen [14, § l] (see also [5], [7], [23]), we obtain

( / , / > ( - z , * , j))=2n{n-2s-k)+2ink+n-1Φ(r1(f))(z)

and

Φ=J det(l» - SS)"+'-"-ι\( In - SS )[έpn] JdS,

where p{

n

ι'n): =(0, - , 0, 1) and Sn : = { 5 e C ( n ) | S = <5, 1«- SS>0}. Moreover,
by Hua [10, § 2.3] (see also [5], [7], [14], [23]), we get

i-n) "rί1 Γ{2k+2s-2n + l + 2j)
2

Thus, by (1.3), we obtain
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Γ(s + k) A
X Γ(s + k- h

and Theorem 5 is proved.
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