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1. Introduction

In this paper we shall discuss the pathwise uniqueness and comparison
problems for solutions of one-dimensional stochastic differential equations.
Let a(ty x) and b(t, x) be bounded Borel functions defined on [0, oo)χi? with
values in R. Consider the following one-dimensional stochastic differential
equation

(1)
dx(t) = α(ί, x(t))dB(t)+b(t, x(i))dt,Γ dx(t) = a{\

I *(0) = x0,

where B(t) is a one-dimensional Brownian motion with β(0)=0 and xo^R is
a non-random initial value. In [3], I showed that a(ty x)=a(x) is uniformly
positive and of bounded variation on any compact interval and b(t, x) is time
independent, then the pathwise uniqueness holds for the equation (1). A. Yu.
Veretennikov [5] extended the above result to the case that the coefficients are
time dependent. The purpose of this paper is to obtain another extension of
the result of [3] different from that of A. Yu. Veretennikov.

VI([0, oo)χR) denotes the space of all functions defined on [0, °o)χi?
such that for /^0 f(t, x) is nondecreasing in x and for x^R f(t, x) is of bounded
variation in t on any compact interval. Throughout this paper we shall assume
that a(t, x) satisfies the following condition.

CONDITION A. α(ί, x) satisfies the following conditions
( i ) α(ί, x) is Borel measurable and there exist positive constants ax and a2

such that (Xa^aψ, x)^a2 for (t, #)e[0, °o)xR,
(ii) there exist a^t, a)eVI([0, oo)χi?) and a2(ty *)eVI([0, oo)χi?) such

that - J _ = α i ( f , x)-a2{U x) for a.e. (ί, tf)e[0, °°)X#,
a(t, x)
(iii) for t>0 and N>0 there exists a positive constant L(t, N) such that
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) for x€=[-N, N] and t = l , 2.

In this paper we adopt the definitions in [1] about the solution of (1) and
the pathwise uniqueness of (1). We obtain the following theorem.

Theorem 1. Suppose that a(t, x) satisfies Condition A and b(t, x) is bound-
ed Borel measurable. Then the pathwise uniqueness holds for the stochastic differ-
ential equation (1).

We now consider the following stochastic differential equations;

dx(t) = a(t, xifydBiή+b^t, x{i))dt,

and
j dy(t) = a(t, y(t))dB(t)+b2(t, y(t))dt,

{ { y(0) = * 0 .

The following comparison theorem is a generalization of a result of [4].

Theorem 2. Suppose that a(t, x), bλ{t, x) and b2(t, x) satisfy the following
conditions

( i ) a(t, x) satisfies Condition A,
(ii) bλ{t, x) and b2(t} x) are bounded Borel functions such that bx(ty x)^b2(t, x)

for (f,*)e[0, oo)χi? a.e.
Let (x(t), B(i)) and (y(t), B(t)) be solutions of the stochastic differential equations
(2) and (3) respectively defined on a same probability space (Ω, £?, P) with a re-
ference family (^Ft)t^o such that x(O)=y(O)=xo^R. Then it holds that x(t)^y(t)
a.s.fort^Q.

In section 2 we prove Theorem 1 and give an example of a(t, x) which
satisfies Condition A. In section 3 we prove Theorem 2 by a new method.

2. Proof of pathwise uniqueness theorem

First we shall prepare two lemmas for the proof of Theorem 1. Let
(Ω, £?, P) be a probability space with a reference family {3t)t^ and let B(t) be a
one-dimensional (ΞF^-Brownian motion defined on (Ω, £F, P) with 5(0)=0. Con-
sider the stochastic process defined by

x(t) = xo+ Γ σ(s)dB(s) + Γ j(s)ds ,
Jo Jo

where σ(s) and γ(s) are bounded measurable stochastic processes on (Ω, £F, P)

1) Let f(s) be a real function defined on [0,oo). mfm, denotes the total variation of f(s) on [0,t].
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adapted to {3t) and x0 is a real number. Set σ = sup | σ(t> ω) | and γ =

sup I γ(f, ω) I. For Λ/>0, τN=inί {t | *(f) | _:iV}. Let g(t, x) be a Lebesgue

measurable function defined on [0, oo)χi?. Setting

G(ί, x) = [git, y)dy for (*, * ) e [ 0 , O O ) X J R
Jo

and

V(t) = G(t, x(t))-G(0f ^ o ) - Γ ^ , x(s))σ(s)dB(s),
Jo

we shall estimate the expectation of lll^lllίAr^*2^

L e m m a 1. Suppose that g(t, x) belongs to F7([0, oo)χΛ) and is continu-

ously differentίable in (ty x). Then it holds that for t>0 and N>0

E[\\\V\\\tAτJ^2(N+ty)M(t, N)+4NK(tf N),

where E denotes the expectation with respect to P,

M(t, N) = sup {\g(s,y)I (s, y)e[0, t]X [-N, N]}
and

K(t, N) = sup {\\\g(',y)\\\t;y^[-N, N]} .

Proof. Itό's formula implies that

V(t) = \'g(s, x(s))y(s)ds+ \' £-G(s, x(s))ds+^ Γ ^-g(s, x(s))σ(sfds
Jo Jo as 2 Jo ox

It is easy to see that ^ [ | | | / 1 | | | # A τ J ^ ί 7 M ( ί , Λ 0 and E[\\\I2\\\tAτM]^2NK(t,N).

Since | | | / ϊ | | | ,Λτ,= F ( ί Λ τ J , ) - / 1 ( ί Λ τ w ) - / 2 ( f Λ τ J f ) , we have J B [ | | | / , | | | / Λ τ , ] ^

E[V(tATN)] + tjM(t, N) + 2NK(t, N). On the other hand it holds that

W(tΛτN)] = E[G{tArN, x(tΛτN)) - G(0, x0)] ^ 2NM(t, N). Combining the

above estimates, we have E[\\\V\\\tAτJ^2(N+t7)M(t,N)+4NK(t,N), which

completes the proof.

Let p(s,y) be a non-negative C°°-function defined on R2 such that its sup-

port is contained in the closed unit ball and \ 2 p(s, y)dsdy=\. For δ > 0 set

(4) p^y) =

We now consider

Vt(t) = Gs(t, x(t))-Gs(0, x0)- \'gs(s, x(s))σ(s)dB(s),

*'°
2) Let a and b be real numbers. aΛb=min{a,b}.
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where

gs = g*Ps * 3 ) and Gfa x) = \ g*(t, y)dy .
Jo

Lemma 2. Suppose that g(t, x)&VI([0, oo)χR) satisfies that for t>0

and N>0 there exists a positive constant K(t,N) such that |||g( , x)\\\t<ίK(t9 N)

for *<Ξ [-iV, N]. Then it holds that for 0 < δ ^ 1, *>0 and N>0

E[\\\V\\\tAτ^2(N+t7)M(t+ίy N+l)+4NK(t+l, N+l),

where

M(t, N) = sup {\g(sy y)I (s, y)e [0, t]X [-iV, N]} .

Proof, It is easy to see that | | | ^ ( . , Λ?)| | |^jS:(ί+δ, N+S) for *e[—iV, iV]

and sup {|^8(ί,y) | (s,y)<=[0, t] X [-ΛΓ, iV]} ^ M ( ί + δ , iV+S). Hence Lemma 2

is an easy consequence of Lemma 1.

Proof of Theorem 1. Let ao=l>aι>a2>~ >ak> >0 be a sequence such

that i — d u = k for k=l, 2, •••. Then there exists a twice continuously dif-
Jαjt U

ferentiable and odd function ψk(u) on R such that 0^ψA(z/)^l for «ε[0, OO),

Γ 0 for 0<u<ak

I 1 for ak

and

(5) 0 ^ £ » * 4 ) ^ f o r

ku
Set α(ί, x)=a1(tyx)—a2{ty x), as=a*p8 and hδ(t, x)=\ as(t,y)dy, where pδ is

Jo
the function defined by (4).

Let (x(t), B(t)) and (y(t), B(t)) be solutions of (1) defined on a same quadru-

plet (Ω, 3*, P, (£?-,)). Set ̂ = {t; | Λ ( ί) | ^ iVor \y(t) | ^Λ^}. Theorem 2 of N. V.

Krylov [2] assures that for k=l, 2, ••• there exists a positive constant δ A =δ A ( ί , iV)

^ — such that

(6) max|ψί'>(β)|£Γ('ΛV|α αd.(ί,«(ί))-l|'Λl^4- for * = 1, 2.
" SB L J 0 -I K

Obviously the same estimates as (6) hold for (y(ή). For simplicity we set

hk = hδk, ak = aδk, zk(t)=hk(t,x(t))-hk(t,y(ή) and J(k9t) = (x(t)-y(t))ψk(zk(ή).

3) For a function g(t,x) defined on [0,°o) x R, JΓ(t,x) denotes the function on R X R such that
fg(t,x) t^O

g (t,x) = \ g*P8 denotes the convolution of g and
lg(0,x) t < 0 .

4) f G\u) denotes the i-th derivative of f(u).
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ft
The martingale part mk(t) of zk(t) is I (a ctk(s, x(s)) — a δtk(s, y(s)))dB(s). Sett-

Jo
ing vk(t)=zk(t)—mk(t)) we have by Itό's formula

/(*, *)

Ψk(Zk(s))d(x—y)(s)+ I (x(s)—y(s))ψ(

k

1)(zk(s))dmk(s)
i Jθ

i t
(χ(s) —y(s))ψίι\zk{s))dvk(s)

0

)(a(sy x(s))-a(syy(s)))(a.ak(s, x(s))-a-ak(s, y(s)))ds

+ γ\[ (x(s)-y(s))ψi2\zk(s))(a ak(s, x(s))-a'δtk(s, y(s)))*ds

= Mh t)+j2(k, t)+j3{k, t)+Mk, t)+js(k, t).

Using that

(7) 0< ^ = ^ <Ξα2 for t^O, xφy and δ>0
W hs{t, x)-h{t, y)~ - ' y

and

ί - 1 for u<0
(8) lim ψk(u) = X(u) = \ 0 for M = 0

( 1 for M > 0 ,

it is easy to see that

Kh t/\ηN) > \x(tΛyN)-y(tΛVN)\ in L\P)
/e->oo

and

\ t A Ύ > J r - y ) ( s ) in L\P).\
oo Jo

By (5) and (7) we obtain

and

E[\Uh ^
R

Since sup jB[|| |^|| |/ Λ η i 7] is finite by Lemma 2, we have Y\mE[\J2{k, tΛηN)+

UK tΛηN)\]=0. (6) implies that limE[\J4(k, tΛyN)+Mk,tΛyN)\]=0. Con-

sequently we have

X(x(s)-y(s))d(x-y)(s).

0
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Letting iV-» °° it holds that

(9) I x(t)-y(t) I = £ X(x(s)-y(s))d(x-y)(s).

(9) implies that

x(t)Λy(t)

±- {a(s, x(s))+a(s, y(s))-X(x(s)-y(s))(a(s, x(s))-a(s, y(s)))}dB(s)

+ Γ i - {b{s, x{s))+b(s, y(s))-X(x(s)-y(s))(b(s, x(s))-b(s, y(s)))}ds
Jo 2

= xo+ [' a(s,x(s) Ay(s))dB(s)+ [' b(s, x(s) A y(s))ds .
Jo Jo

In the same way max {x(t)yy(t)} is a solution of (1). Since the uniqueness in
law holds for (1), we conclude x(t)=y(t) a.s. The proof is completed.

REMARK. Let a(t, x) be a uniformly positive and bounded Borel function

5 * 1

Suppose that there exists a solution (%(t), B(ή) with %(t)=xo+\ a(s, x(s))dB(s)
Jo

such that h(t, %(t))—A(0, Λ?0) is a continuous quasimartingale and the martingale
part of h(t, %(t))—h(0, x0) is the one-dimensional Brownian motion B(t). Let
(Xι(t), B(t)) and (x2{t), B(t)) be solutions defined on a same quadruplet
(Ω, £F, P, (3^) such that

Xi(t) = xo+[ a(s, xi(s))dB(s)+ Γ fe(ί, Λ,.(ί))Λ i = 1, 2 .
Jo Jo

Then it holds that x1(t)=x2(t) a.s. for t^O.

Proof. By the assumption the sample paths of h(ty Xi(t))—h(t, x2(t)) are
continuous and of bounded variation on any compact interval with probability
one. Let ψk(u) (k=l, 2, •••) be the function defined in the proof of Theorem
1. Itδ's formula implies

(Xl{t)-x2(t))ψk(h(t, Xl(t))-h(t, x2(t)))

= \'ψk(h(s, Xl(s))-h(s, x2(s)))d{Xl~x2)(s)
JO

h(s, Xl(s))-h{s, x2(s)))d(h(s, Xl(s))~h(s, x2(s))).
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Letting k-+ oo we have

\y(f\ V (t\\ I Ύί'vίΛ V (cWrKv <v> \ ( Λ
I IV ) 2v / I — 1 /V/lΛjlo I *™2\. )I \ 1 2/ V / >

Jo

which implies the conclusion of Remark.
Finally we state an example of a(t> x) which satisfies Condition A.

EXAMPLE. Let f(t) be a continuous function defined on [0, oo). For
t>0 and c^R, n(t, c) denotes the number of the connected components of
{s(Ξ(0,t);f(s)<c}. Define

f 2 for x^f(t)
a(t. x) = <Ky } ( 1 for x>f(t).

If sup n(t, c) is finite for t>0 and N>0, then a(t, x) satisfies Condition A.

But this example does not satisfy those sufficient conditions in the preceding
papers [1], [3], [5].

3. Proof of comparison theorem

Let Wx be the space of all continuous functions w defined on [0, oo) with
values in R such that w(0) = x^R. J33t{Wx) denotes the σ-field generated by
w(s) O^stSit and Pw denotes the Wiener measure on Wo. Let <Bt(W0) be the
completion of lBt(W0) with respect to Pw.

Proof of Theorem 2. Fix a initial value xo^R. If the pathwise unique-
ness holds for the stochastic differential equation (1), then there exists a unique
function F(w) defined on Wo with values in WXQ such that

(i) F(w) is ̂ (^^/^(W^^-measurable for each ^ 0 ,
(ii) any solution (x(t)> B(t)) of (1) with x(0)=x0 can be represented in the

form x( ) = F(B( )) a.s. (cf. [1]).
Let Fλ{w) and F2(w) be the above functions for the stochastic differential

equations (2) and (3) respectively. It is sufficient to prove that F1(w)*5)^F2(w)
a.s. (Pw).

Set ak=a*ρ1/k and bk

t=bi*ρ1/k (i=l, 2), where p8 is the mollifier defined by
(4). Let (Ω, £F, P) be a probability space with a reference family (3ϊt) such that
there exists a one-dimensional (ΞF^-Brownian motion B(t) with 5(0)=0. Ob-
viously there exist solutions (xk(t), B(ή) and (yk(t)> B(t)) defined on (Ω, S", P, (βt))
such that for &—1, 2, •••

*(*, xk(s))dB(s)+ ( b\(s, xk (s))ds
Jo

and

5) For w1)w2 εW, Wi^w2 means that W!(t)^w2(t) for each t ^ 0 .
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= xo+ \' a\s, yk(s))dB(S)+ Γ bk

2(s, yk(s))ds .
Jo Jo

Since the family of the laws P z * of Zk(t)=(xk(ΐ)y yk(t), B(ή) (Λ=l, 2, •••) is tight,

there exist a subsequence (kn) and a sequence of stochastic process (#*Λ(*)> ykjf)*

Bkn(t)) defined on a probability space (Ω, £F,P) satisfying the following conditions;
S (i) for each kn the law of (xk£t), ftfi), Stf)) is P**,

(ii) there exists a stochastic process (x(t), y(t), B(t)) defined on (Ω, £F, P)

such that (#Λj|(ί), ;)>*„(£)> Bkn{t)) converges to (#(*), >>(£)> -B(O) uniformly on each

compact interval a.s.

Since bfa, x)^bk

2(t,x), it holds that %k(t)^yk(t) a.s. for t^O and k=kuk2y

— (cf. [1]). Noting that (Λ(ί), jB(ί)) and (y(ί), B(ή) are solutions of (2) and (3)

respectively, we have F1(B( ))=x( )^y( )=F2(B( )) a.s. (P). Therefore we

conclude F1(w)^F2(w) a.s. (P^). The proof is completed.

The above method can be applicable for the following general case.

REMARK. Let a(t, x) be a uniformly positive bounded Borel function on

[0, oo)χi?. Let bλ{ty x) and b2(t, x) be bounded Borel functions such that

b1(t,'x)^b2(ty x) for (ί, x)^[0y oo)χR a.e. If the pathwise uniqueness holds

for the equations (2) and (3), then the conclusion of Theorem 2 holds.
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