



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | On the smoothing problem and the size of a topological manifold           |
| Author(s)    | Shikata, Yoshihiro                                                        |
| Citation     | Osaka Journal of Mathematics. 1966, 3(2), p. 293-301                      |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/6948">https://doi.org/10.18910/6948</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Shikata, Y.  
Osaka J. Math.  
3 (1966), 293-301

## ON THE SMOOTHING PROBLEM AND THE SIZE OF A TOPOLOGICAL MANIFOLD

YOSHIHIRO SHIKATA\*

(Received September 13, 1966)

### 0. Introduction

In this paper which is a direct continuation of [S], we treat the smoothing problem of a compact topological manifold.

We define in §3 a size  $|X/d|$  of a compact topological manifold  $X$  relative to a distance function  $d$  on  $X$ . As is seen in §4, it is rather easy to see that if  $X$  admits a smooth structure and if  $d$  is a Riemannian metric relative to the structure, then  $|X/d|=0$ .

Our main result is the converse of this fact, that is, if  $|X/d|$  is sufficiently small, then  $X$  admits a smoothing and  $d$  is approximated by a Riemannian metric on the smoothing in the sense of Lipschitz ratio. (See Theorem 1)

We call a smoothing  $\sigma$  of  $X$  compatible in the strong sense with its distance  $d$ , if  $\sigma$  admits a Riemannian metric whose Lipschitz ratio to  $d$  is less than  $|X/d|$  (see §3). Then, by Part II of [S], it is easy to see that if  $|X/d|$  is sufficiently small, any two compatible smoothings are differentiably equivalent. Therefore we conclude as follows:

“If  $|X/d|$  is sufficiently small, then  $X$  admits unique smoothing which is compatible with its distance  $d$ .”

Finally we define the absolute size  $|X|$  of  $X$  by

$$X = \inf \{|X/d| \mid d: \text{distance function on } X\},$$

to get a criterion for the existence of a smoothing on  $X$ :

“ $|X| = 0 \Leftrightarrow X$  is smoothable.”

### 1. Modification of $\phi$ -average

We start with the following lemma which might be well known;

**Lemma 1.** *Given relatively compact open sets  $U, V, W$  in  $R^n$  such that  $\bar{U} \subset V, \bar{V} \subset W$ , then there is a smooth function  $0 \leq t(p) \leq 1$  on  $R^n$  which satisfies*

---

\* During the work, the author was partly supported by Fūjukai Fund.

the following:

- (1)  $t=1$  on  $U$ ,  $t=0$  on  $W'$ .
- (2) when  $F$  denote the closed set defined by

$$F = \{x \in R^n / t(x) = 0\} \supset W'$$

then, for some positive  $\delta$ ,

$$t(p) \leq \text{dist}(p, F)\delta \quad \text{and} \quad F \subset V.$$

- (3) for any  $\xi \in T_p(R^n)$ ,

$$|\partial_\xi t(p)| < \alpha_0 |\xi| / \delta,$$

where  $\alpha_0$  is the constant of (1.2)' of [S].

Proof. Take an open set  $V_0$  so that

$$\bar{U} \subset V_0, \quad \bar{V}_0 \subset V,$$

and define  $u(p)$  by

$$u(p) = \min(1, \text{dist}(p, V') / \text{dist}(V_0, V')),$$

then  $u(p)$  is continuous and is such that

$$0 \leq u(p) \leq 1, \quad u(p) = 1 \quad \text{on } V_0, \quad u(p) = 0 \quad \text{only on } V'.$$

Let  $t(p)$  be the  $\phi$ -average of  $u(p)$  (see §1 of [S]):

$$t(p) = \int \phi_\delta(x, p) u(x) dv,$$

where  $\delta > 0$  is given by

$$\delta = \min(\text{dist}(U, V_0'), \text{dist}(V_0, V'), \text{dist}(V, W')).$$

Then  $0 \leq t(p) \leq 1$  and hence, if  $p \in U$ , then  $\text{Car } \phi_\delta(x, p) \subset V_0$ , therefore

$$u(x) = 1 \quad \text{on } \text{Car } \phi_\delta(x, p).$$

Consequently  $t(p) = 1$  on  $U$ . In case of  $p \in W'$ ,  $\text{Car } \phi_\delta(x, p) \subset V'$ , therefore

$$u(x) = 0 \quad \text{on } \text{Car } \phi_\delta(x, p)$$

Hence  $t(p) = 0$  on  $W'$  and similarly  $F \subset V$ .

In order to prove assertion (2), we prove first

- (4)  $\text{dist}(p, F) \geq \text{dist}(x, V')$  for any  $x$  for which  $\text{dist}(x, p) \leq \delta$ .

In case of  $x \in V$ , let  $f \in F$  be a point such that

$$\text{dist}(p, f) = \text{dist}(p, F),$$

and let the line  $\overrightarrow{xf}$  cross  $\partial V$  at  $y$ . Then it is easy to see the following:

$$\begin{aligned}\text{dist}(x, f) &= \text{dist}(x, y) + \text{dist}(y, f), \\ \text{dist}(x, f) &\leq \text{dist}(x, p) + \text{dist}(p, f), \\ \text{dist}(x, y) &\geq \text{dist}(x, V'), \quad \text{dist}(y, f) \geq \text{dist}(V, f) \geq \delta.\end{aligned}$$

Therefore

$$\begin{aligned}\text{dist}(x, V') &\leq \text{dist}(x, y) = \text{dist}(x, f) - \text{dist}(y, f) \\ &\leq \text{dist}(x, p) - \text{dist}(y, f) + \text{dist}(p, f) \\ &\leq \text{dist}(p, F).\end{aligned}$$

And if  $x \notin V$ , (4) is obvious, since  $\text{dist}(x, V') = 0$ , finishing the proof of (4).

Now (4) yields that

$$u(x) \leq \text{dist}(x, V')/\delta \leq \text{dist}(p, F)/\delta \quad \text{on } \text{Car } \phi_\delta(x, p),$$

therefore, taking  $\phi$ -average,

$$t(p) \leq \text{dist}(p, F)/\delta.$$

Thus (2) is proved, and (3) is proved as follows:

$$\begin{aligned}|\partial_\xi t(p)| &= \left| \int \partial_\xi \phi_\delta(x, p) u(x) dv \right| \\ &\leq 4\gamma(n)\delta^n \max |u(x)| |\xi| / \kappa(n)\delta^{n+1} \\ &\leq \alpha_0 |\xi| / \delta,\end{aligned}$$

where  $\alpha_0 = 4\gamma(n)/\kappa(n)$  (see (1.2)' of [S]).

Let  $U, V, W, \delta, t(p), F$  be as in Lemma 1 and assume there given a Lipschitz homeomorphism  $h$  of  $\bar{W}$  into  $R^N$ . Define (modified)  $\phi$ -average  $\phi h$  of  $h$  by

$$\phi h(p) = \begin{cases} h(p) & (p \in F \cap \bar{W}), \\ \int \phi_{K\delta, t(p)}(x, p) h(x) dv & (p \in F' \cap \bar{W}), \end{cases}$$

where  $K$  is a positive  $< 1$ .

Obviously  $\phi h$  is smooth on  $F'$  and because of (1.6) of Part II of [S],  $\phi h$  satisfies

$$(5) \quad |\phi h(p) - h(p)| \leq \mu_0(1 + \lambda)K\delta t(p),$$

provided  $h$  is of  $\lambda^2$ -Lipschitz condition.

This particularly implies the continuity of  $\phi h$  on  $\bar{W}$  and yields

**Lemma 2.** *If  $\lambda < 1$ , then for  $K \leq \min(1, 1/4\mu_0)$ ,*

$$\phi h(F') \cap \phi h(F) = \emptyset.$$

Proof. Suppose  $\phi h(p) = \phi h(q)$  with  $p \in F'$ ,  $q \in F$ , then

$$|h(p) - h(q)| = |h(p) - \phi h(p)| \leq \text{dist}(p, F)/2,$$

On the other hand

$$|h(p) - h(q)| \geq \text{dist}(p, q)/(1 + \lambda) > \text{dist}(p, q)/2.$$

Therefore we should have

$$\text{dist}(p, F)/2 \leq \text{dist}(p, q)/2 < \text{dist}(p, F)/2,$$

which is a contradiction.

**Lemma 3.** For  $0 < K < K_0$  and  $\lambda < \lambda_0$ ,  $\phi h$  is non degenerate in  $F'$ .

Proof. Set  $\varepsilon = K\delta$  and let  $\partial'_\xi \phi_{te}$ ,  $\partial''_\xi \phi_{te}$  denote the differential of  $\phi_{te}$  keeping  $t$  fixed and the differential only in  $t$ , respectively. Then

$$\partial_\xi \phi h = \int \partial'_\xi \phi_{te} h dv + \int \partial''_\xi \phi_{te} h dv.$$

As for  $\partial'_\xi$  type differential we have ((1.7) of Part II of [S])

$$(6) \quad \left| \int \partial'_\xi \phi_{te}(x, p) h(x) dv - h_\sigma(\xi) \right| \leq \mu_1 \lambda |\xi|,$$

for a simplex  $\sigma$  at  $p$  of diameter  $t\varepsilon$ . And we get easily,

$$\partial''_\xi \phi_{te} = (-\phi' |x - p| / \kappa \varepsilon^{n+1} t^{n+2} - n\phi / \kappa \varepsilon^n t^{n+1}) (\partial_\xi t).$$

Therefore

$$\begin{aligned} \left| \int \partial''_\xi \phi_{te} h dv \right| &\leq \varepsilon \sqrt{N} (4+n)(1+\lambda) |\partial_\xi t| / \kappa \\ &\leq \alpha_1 K |\xi|. \end{aligned}$$

Thus

$$|\partial_\xi \phi h - h_\sigma(\xi)| \leq (\mu_1 \lambda + \alpha_1 K) |\xi|,$$

and an argument similar to that in §3 of [S] yields the conclusion.

A calculation similar to that in p. 68 [S] gives an evaluation of  $|h_\sigma(\xi)| - |\xi|$  and therefore gives

**Corollary 1.** With a constant  $\mu = \mu(n)$ ,  $\partial_\xi \phi h$  satisfies

$$||\partial_\xi \phi h| - |\xi|| \leq (\mu \lambda + \alpha_1 K) |\xi|.$$

## 2. Smoothing of homeomorphism

Let  $M$  be a smooth manifold (not necessarily closed) isometrically imbed-

ded in  $R^N$  with tubular neighbourhood  $T(M)$  of sufficiently small diameter. Then for any  $x \in T(M)$  and for any  $y \in M$ , we may assume

$$(1) \quad |y - \pi(x)|/4 \leq |x - y|.$$

where  $\pi$  denotes the projection of  $T(M)$  onto  $M$ .

**Lemma 4.** *Let  $h$  be a homeomorphism of a relatively compact open set  $W_1$  of  $R^n$  into  $M$  and let  $U, V, W$  be open sets such that  $\bar{U} \subset V, \bar{V} \subset W, \bar{W} \subset W_1$ . Then if  $h$  satisfies the  $\lambda_0^2$  Lipschitz condition on  $W_1$ , there is a positive  $K_0$  such that for any  $K < K_0$  the modified  $\phi_K$ -average  $f_K = \pi \phi_K h$  of  $h$  relative to  $U, V, W$  followed by the projection  $\pi$  maps  $F'$  into  $h(F')$ .*

Proof. Suppose on the contrary  $f_K(p) \notin h(F')$  for some  $p \in F'$ , then obviously

$$\rho(h(p), f_K(p)) \geq \rho(h(p), h(\partial F')) = \rho(h(p), h(q)),$$

for some point  $q \in \partial F'$ . Since  $h$  is of  $\lambda_0^2$ -Lipschitz,

$$\rho(h(p), f_K(p)) \geq |p - q|/1 + \lambda_0 \geq \text{dist}(p, \partial F')/1 + \lambda_0$$

On the other hand (see (1, 2) (1, 5)).

$$\begin{aligned} |\phi h(p) - h(p)| &\leq \mu_0(1 + \lambda_0)K\delta t(p) \\ &\leq \mu_0(1 + \lambda_0)K \min(\delta, \text{dist}(p, F')). \end{aligned}$$

Therefore, if  $K$  is small, we may assume that  $|h(p) - f_K(p)|$  is small and approximates  $\rho(h(p), f_K(p))$ , in particular,

$$\rho(h(p), f_K(p))/2 \leq |h(p) - f_K(p)|.$$

Thus we should have

$$\text{dist}(p, \partial F')/2(1 + \lambda_0) \leq 4\mu_0(1 + \lambda_0)K \text{dist}(p, F).$$

which yields a contradiction for  $K < 1/8\mu_0(1 + \lambda_0)^2$ .

**Corollary 2.** *Be the notations same as in Lemma 4, then if  $K < K_0$ , the map  $h_s$  defined by*

$$h_s(p) = \begin{cases} f_{sK}(p), & \text{if } 0 < s \leq 1 \\ h(p), & \text{if } s = 0 \end{cases}$$

*gives a homotopy between  $f_K$  and  $h$  as maps of  $F'$  into  $h(F')$  and therefore as maps of  $W_1$  into  $h(W_1)$ .*

**Lemma 5.** *Using the same notation as in Lemma 4, we can find a positive  $K_1$  ( $\leq K_0$ ) such that if  $K < K_1$ , then  $f_K = \pi \phi_K h$  is non degenerate on  $F'$ .*

Proof. The evaluation (1.7) and an argument similar to that in the proof of Proposition 3 of [S] yield easily the conclusion.

**Lemma 6.** *Be the notation same as in Lemma 5, then if  $K < K_1$ ,  $f_K$  maps  $F'$  onto  $h(F')$ .*

Proof. Suppose on the contrary,  $h(p) \notin f_K(F')$  with  $p \in F'$ , then the arc  $h_s(p)$  from  $h(p)$  to  $f_K(p)$  should cross  $\partial f_K(F')$  at  $h(q) \in h(F')$  (see Lemma 4). Since  $F'$  is compact and since  $f_K$  is an open map (see Lemma 5), we get

$$h(q) \in \partial f_K(F') \subset f_K(\partial F') = h(\partial F'),$$

which is a contradiction. Combining Lemmas 5, 6 with Corollary 1, we get

**Proposition 1.** *There exists a positive  $\alpha$  such that if a map  $h$  of an open set  $W$  into a Riemannian manifold  $M$  has the Lipschitz size less than  $\alpha$ , then for any open set  $U$  for which  $\bar{U} \subset W$ , a homeomorphism  $f$  of  $W$  into  $M$  approximates  $h$  in such a way that*

- (1)  $f = h$  on  $\bar{W}$ ,
- (2)  $f$  is differentiable on  $U$ ,
- (3) the differential  $df$  on  $U$  satisfies

$$I(df) \leq ((Ih))^{\gamma(n)}$$

with a positive  $\gamma = \gamma(n)$  depending on  $n = \dim W$ .

### 3. Construction of a smooth manifold

Let  $\mathcal{C} = \{(U_i, h_i)\}_{i \in I}$  be a local coordinate system of a compact topological manifold  $X$  consisting of a open covering  $\mathcal{U} = \{U_i\}_{i \in I}$  of  $X$  and of a set of homeomorphism  $h_i$  of discs in  $R^n$  onto  $U_i$ . We refer simply by  $I(h_i)$  the Lipschitz size of  $h_i$  relative to a (fixed) distance  $d$  on  $X$  and the usual metric  $||$  on  $R^n$ , (see p. 66 [S]). Let  $I(\mathcal{C})$  denote the maximum of  $I(h_i)$  and let  $m(\mathcal{U})$  be the multiplicity of the covering:

$$m(\mathcal{U}) = \max_{i \in I} \#\{j \in I \mid U_i \cap U_j = \emptyset\}.$$

Then we define the size  $|\mathcal{C}/d|$  of  $\mathcal{C}$  relative to the distance  $d$  by

$$|\mathcal{C}/d| = (8\gamma)^{m(\mathcal{U})} \log I(\mathcal{C}).$$

where  $\gamma = \gamma(n)$  is the positive depending on  $n = \dim X$  of Proposition 1. The size  $|X/d|$  of the manifold is defined to be the infimum of the numbers  $|\mathcal{C}/d|$  taken over the set of the coordinate systems of finite coverings. Then the condition  $|X/d| < \varepsilon/2$  implies that there exists a finite covering  $\mathcal{U} = \{U_i\}_{i \in I}$  of  $X$  and a system of homeomorphism  $h_i$  of discs  $D_i$  onto  $U_i$  satisfying

$$(\mathcal{I}(\mathcal{C}))^{(8r)^{m(\mathcal{U})}} < \exp(\varepsilon).$$

We now construct a smooth manifold under the condition above, provided  $\varepsilon$  is sufficiently small.

**Lemma 7.** *From a given finite open covering  $\mathcal{U}$  of  $X$ , we can construct an open covering  $\{X_1, \dots, X_m\}$  of  $X$  such that*

- (1)  $m = m(\mathcal{U}) + 1$
- (2) *each open set  $X_i$  is a disjoint union of some of open sets of  $\mathcal{U}$ .*
- (3) *every open set  $U_i$  of  $\mathcal{U}$  appears in only one open set  $X_i$ .*

Proof. Using a suitably defined order in the index set  $I$ , we classify  $I$  into subsets  $I_1, \dots, I_m$  in the following way;

- (1)  $1 \in I_1$  and  $i \in I$ ,  $1 < i$  belongs  $I_1$  if and only if for all  $j \in I_1$ ,  $j < i$ , it holds that  $U_j \cap U_i = \emptyset$ .
- (2)  $\min(I - I_1 \cup \dots \cup I_k) \in I_{k+1}$  and  $i \in I - (I_1 \cup \dots \cup I_k)$ , belongs  $I_{k+1}$  if and only if for all  $j \in I_{k+1}$ ,  $j < i$ , it holds that  $U_j \cap U_i = \emptyset$ .

This process continues at most  $m = m(\mathcal{U}) + 1$  times, in fact, suppose on the contrary that there is  $i \in I$  such that  $i \notin I_1 \cup \dots \cup I_m$ , then  $U_i \cap U_{k_j} \neq \emptyset$  with some  $k_j \in I_k$  for each  $k = 1, \dots, m$ , indicating that  $\#\{j \in I_i \cap U_j \neq \emptyset\} \geq m = m(\mathcal{U}) + 1$ .

Hence letting  $X_k = \bigcup_{j \in I_k} U_j$ , we get the covering.

Let  $E_i$  denote the disjoint union of discs  $D_j$ ,  $j \in I_i$  and let  $H_i$  be the homeomorphism of  $E_i$  onto  $X_i$  which agrees with  $h_j$  on each component  $D_j$  of  $E_i$ .

Take concentric  $m$  discs  $D_m^m \subset \dots \subset D_2^2 \subset D_1^1 \subset D$ , such that the images  $X^k_i$  of  $E^k_i = \bigcup_{j \in I_i} D^k_j$  under the homeomorphism  $H_i$  form a covering of  $X$  for each  $k = 1, \dots, m$ .

Each open set  $X_i$  is obviously smoothable as an homeomorphic image of a smooth manifolds  $E_i$  having a naturally defined Riemannian metric  $d_i$ . The homeomorphism  $H_{12} = H_1^{-1}H_2$  is defined on  $E_{12} = H_2^{-1}(X_1 \cap X_2)$  and has the Lipschitz size less than  $\mathcal{I}(H_1)\mathcal{I}(H_2)$  (see (2.3) p. 66 [S]).

Therefore, if  $\mathcal{I}(H_1)\mathcal{I}(H_2) \leq \alpha$  on  $E_{12}$  ( $\alpha$  of Proposition 1), then an application of Proposition 1 to  $H_{12}$  and  $E_{12}^1 = H_2^{-1}(X_1^1 \cap X_2^1) \subset E_{12}$  yields that there exists a homeomorphism  $h_{12}$  of  $E_{12}$  into  $E_1$  which is diffeomorphic on  $E_{12}^1$ . By the identification through  $h_{12}$ ,  $E_1^1 \cup E_2^1$  (disjoint union) turns out to be a smooth manifold  $C_2^1$  and then  $X_1^1 \cup X_2^1 = Y_2^1$  to be a smoothable manifold by a homeomorphism  $F_2$  of  $C_2^1$  onto  $Y_2^1$  defined by the following:

$$F_2(x) = \begin{cases} H_1 p_1^{-1}(x) & \text{if } x \in p_1(E_1^1) \\ H_1 h_{12} p_2^{-1}(x) & \text{if } x \in p_2(E_{12} \cap E_2^1) \\ H_2 p_2^{-1}(x) & \text{if } x \in p_2(E_2^1) - p_2(E_{12}) \end{cases}$$

In order to make  $Y_3^2 = X_1^2 \cup X_2^2 \cup X_3^2$  smoothable, consider the homeomorphism  $H_{23} = F_2^{-1}H_3$  of  $E_{23} = H_3^{-1}(Y_2^1 \cap X_3^1)$  into  $C_2^1$ . We may proceed as in the same way above, if the Lipschitz size of  $H_{23}$  is sufficiently small relative to a certain Riemannian metric  $\rho_2$  on  $C_2^1$  and  $d_3$  on  $E_3$ . Define  $\rho_2$  by the following bilinear form  $\langle \cdot, \cdot \rangle_x$  on the tangent space  $T_x(C_2^1)$  of  $C_2^1$ ;

$$\langle \xi, \eta \rangle_x = a_1(x) \langle dp_1^{-1}(\xi), dp_1^{-1}(\eta) \rangle + a_2(x) \langle dp_2^{-1}(\xi), dp_2^{-1}(\eta) \rangle,$$

where  $a_i$  is a partition of unity associated to the covering  $\{p_i(E_i)\}_{i=1,2}$ . Then an inequality

$$(4) \quad | |dh_{12}\xi|^2 - |\xi|^2 | \leq \beta^2 |\xi|^2 \quad (\xi \in T(E_i))$$

yields that, for  $\xi \in T_x(C_2^1)$ ,

$$\begin{aligned} | |\xi|_x^2 - |dp_i^{-1}(\xi)|^2 | &\leq a_j(x) | |dh_{12}dp_i^{-1}(\xi)|^2 - |dp_i^{-1}(\xi)|^2 | \\ &\leq \beta^2 |dp_i^{-1}(\xi)|^2 \quad (i \neq j). \end{aligned}$$

Therefore we easily see that under the inequality (4),

$$\sqrt{1 - \beta^2} d_i(p, q) \leq \rho_2(p_i(p), p_i(q)) \leq \sqrt{1 + \beta^2} d_i(p, q)$$

and we get the following:

**Lemma 8.** *If  $\text{I}^2(dh_{12}) \leq 4/3$ , then  $\text{I}(p_i)$  (rel.  $\rho_2, d_i$ )  $\leq \text{I}^2(dh_{12})$ .*

Thus combining Lemma 7 with Proposition 1, (3), we get;

$$\text{I}(H_{23}) \text{ (rel. } \rho_2, d_3) \leq \text{I}^{2\gamma}(H_{12}) \text{I}^r(H_{12}) \text{I}^2(C) \leq \text{I}^{8\gamma}(C).$$

Therefore if  $\text{I}^{8\gamma}(C) \leq \alpha$  then we approximate  $H_{23}$  by  $h_{23}$  on  $E_3^1 = H_3^{-1}F_2(C_2^1)$  so as to the identified manifold  $C_3^2 = E_3^2 \bigcup_{h_{23}} C_2^2$  through  $h_{23}$  is a differentiable manifold which covers  $Y_3^2$  by a suitably defined homeomorphism  $F_3$ . We continue the process and get manifolds  $C_{k+1}^k$  and homeomorphisms  $F_k$ , covering  $Y_{k+1}^k = Y_1^k \cup \dots \cup Y_{k+1}^k$ , as long as  $H_{k+1} = F_k^{-1}H_{k+1}$  satisfy

$$\text{I}(H_{k+1}) \text{ (rel. } \rho_k, d_{k+1}) \leq \alpha.$$

Since inductively we easily verify

$$\text{I}(H_{k+1}) \text{ (rel. } \rho_k, d_{k+1}) \leq \text{I}^{(8\gamma)^k}(C),$$

provided  $\text{I}^{(8\gamma)^{k-1}}(C) \leq 2/\sqrt{3}$ , the assumption that

$$\text{I}^{(8\gamma)^M}(C) \leq \min(\alpha, 2/\sqrt{3}),$$

where  $M = m(\mathcal{U})$ , yields that we can complete our construction.

#### 4. A remark in the differentiable case

We remark that if  $X$  is differentiable then  $|X|=0$ . In fact, take a Riemannian metric  $d$  on  $X$ , then the exponential map  $\exp_p$ , defined around  $p \in X$ , relative to  $d$  is such that if  $\text{diam}(U(p)) \rightarrow 0$ , then  $\text{I}(\exp_p)$  (rel.  $d$ ,  $||$ )  $\rightarrow 1$  on  $U(p)$ . Thus to prove  $|X/d|=0$ , it is sufficient to show that for any  $\delta > 0$ , there exists an open covering  $\mathcal{U} = \{U_i\}_{i \in I}$  of  $X$  such that  $\text{diam}(U_i) < \delta$  and  $m(\mathcal{U}) \leq M$  ( $M$  is independent of  $\delta$ ). Such a covering is constructed as follows; Take the triangulation of  $X$ , described in [Wy. p. 124–135] or [S. p. 72], for  $\varepsilon = 1/4 \delta$ , and let  $U(p) = \{x \in X/d(p, x) < \delta/2\}$  for each  $p \in K^0$ , the 0-skelton of  $K$ . Then since  $\text{diam} \sigma < \varepsilon = 1/4 \delta$  for any  $\sigma \in K$ ,  $\{U(p)\}_{p \in K^0}$  forms an open covering of  $X$  and each open set of the covering has diameter less than  $\delta$ . To evaluate the multiplicity, consider the volume of  $n$ -simplex  $\sigma$  in  $K$  which is estimated in [S] as in the following form with positive functions  $\theta(n)$ ,  $\beta(n)$  of  $n$ ;

$$\text{vol } \sigma \geq 1/4 \theta(n) \text{diam}^n(\sigma) \geq \beta(n) \theta(n) \delta^n / 4^{n+1}$$

provided  $\delta$  is sufficiently small. Therefore the maximal number of vertices in  $U(p)$  is less than

$$\text{vol}(U(p)) / \text{vol } \sigma \leq 4^{n+2} \Gamma(n) / \beta(n, N) \theta(n, N) = M,$$

where  $\Gamma(n)$  is the ratio to the volume of  $n$ -sphere to its diameter, thus we see the multiplicity is less than  $M$ .

OSAKA CITY UNIVERSITY

---

#### References

- [S] Y. Shikata: *On a distance function on the set of differentiable structures*, Osaka J. Math. 3 (1966), 65–79.
- [Wy] H. Whitney: Geometric Integration Theory, Princeton University Press.

