

Title	On regular rings whose maximal right quotient rings are type I_f
Author(s)	Kutami, Mamoru; Inoue, Ichiro
Citation	Osaka Journal of Mathematics. 1995, 32(2), p. 501-512
Version Type	VoR
URL	https://doi.org/10.18910/6952
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kutami, M. and Inoue, I.
Osaka J. Math.
32 (1995), 501–512

ON REGULAR RINGS WHOSE MAXIMAL RIGHT QUOTIENT RINGS ARE TYPE I_f ,

MAMORU KUTAMI AND ICHIRO INOUE

(Received July 26, 1993)

Introduction

This paper is written about the property (DF) on regular rings whose maximal right quotient rings are Type I_f . Hereafter regular rings whose maximal right quotient rings are Type I_f are said to satisfy (*). The property (DF) is very important property when we study on regular rings satisfying (*), and it was treated in the paper [5] written by the first author, where (DF) for a ring R is defined as that if the direct sum of any two directly finite projective R -modules is always directly finite. In the above paper, the equivalent condition that a regular ring R of bounded index satisfies (DF) was discovered and called (#). Stillmore, we proved that the condition (DF) is equivalent to (#) for regular rings whose primitive factor rings are artinian in the paper [6]. Then we have the problem that (DF) is equivalent (#) for regular rings satisfying (*) or not, where the condition (*) is weaker than one that primitive factor rings are artinian.

In § 2, we shall prove Theorem 2.4. This is important, and using this, Theorem 2.5 (i.e. if R is a regular ring satisfying (*) and k is any positive integer, then kP is directly finite for every directly finite projective R -module P) is proved. Moreover, we shall solve the above problem in Theorem 2.11.

In § 3, we shall consider some applications of Theorem 2.11. We prove Theorem 3.3 that if R is a regular ring satisfying (*) whose maximal right quotient ring of R satisfies (DF), then so does R . Though it is clear that a regular rings satisfying (*) which has a nonzero essential socle satisfies (DF), we can prove that, for regular rings satisfying (*), the condition having a nonzero essential socle is not equivalent to (#) in Example 3.4. Next, we shall consider that $(\Pi_1^\infty R)/(\oplus R)$ satisfies (DF) or not for a regular ring R satisfying (*). This problem is a generalization of Example 3.4, and we prove that, for a regular ring R of bounded index, $(\Pi_1^\infty R)/(\oplus R)$ satisfies (DF) (Theorem 3.9).

Throughout this paper, R is a ring with identity and R -modules are unitary right R -modules.

1. Definitions and notations

DEFINITION 1. A ring R is (Von Neumann) *regular* provided that for every $x \in R$ there exists $y \in R$ such that $xyx = x$.

NOTE. Every projective modules over regular rings have the exchange property.

DEFINITION 2. A module M is *directly finite* provided that M is not isomorphic to a proper direct summand of itself. If M is not directly finite, then M is said to be *directly infinite*. A ring R is said to be *directly finite* (resp. *directly infinite*) if so is R as an R -module.

DEFINITION 3. The *index* of a nilpotent element x in a ring R is the least positive integer such that $x^n = 0$ (In particular, 0 is nilpotent of index 1). The *index* of a two-sided ideal J of R is the supremum of the indices of all nilpotent elements of J .

If this supremum is finite, then J is said to have *bounded index*. If J does not have bounded index, J is said to be *index* ∞ .

NOTE. Let R be a regular ring with index ∞ . Then using [3, the proof of Lemma 2], there exists a family $\{A_n\}_{n=1}^{\infty}$ of independent right ideals of R such that A_n contains a direct sum of n nonzero pairwise isomorphic right ideals. Therefore R has a family $\{e_{ij}\}_{i,j=1,2,\dots}$ of idempotents such that

$$\begin{aligned} e_{21}R &\simeq e_{22}R \\ e_{31}R &\simeq e_{32}R \simeq e_{33}R \\ &\dots \end{aligned}$$

, where $e_{ij} = 0$ ($i < j$), and $\{e_{i1}, \dots, e_{ii}\}$ are orthogonal for all i .

DEFINITION 4. A ring R has (DF) if the direct sum of two directly finite projective R -modules is directly finite.

DEFINITION 5. A regular ring R is *abelian* provided all idempotents in R are central.

DEFINITION 6. A ring R satisfies $(*)$ if every nonzero two-sided ideal of R contains a nonzero two-sided ideal of bounded index.

DEFINITION 7. A ring R is *unit-regular* provided that for each $x \in R$ there is a unit $u \in R$ such that $xux = x$.

NOTE. Every finitely generated projective module over a unit-regular ring has the cancellation property ([2, Theorem 4.14]).

DEFINITION 8. Let e be an idempotent in a regular ring R . Then e is called an *abelian idempotent* (of R) whenever the ring eRe is abelian.

DEFINITION 9. Let e be an idempotent in a regular right self-injective ring R . Then e is *faithful* (in R) if 0 is the only central idempotent of R which is orthogonal to e . A regular right self-injective ring R is said to be *Type I* provided that it contains a faithful abelian idempotent, and R is *Type I_f* if R is Type I and directly finite.

NOTE. It is well-known from [4, Theorem 2] and [2, Lemma 7.17] that a regular ring R satisfies $(*)$ if and only if the maximal right quotient ring of R is Type I_f .

NOTE. Let R be a regular ring satisfying $(*)$. If P is a finitely generated projective R -module, then $\text{End}_R(P)$ is a regular ring satisfying $(*)$.

Proof. Choose a positive integer n and an idempotent matrix $e \in M_n(R)$ such that $e(nR_R) \simeq P$. Then $\text{End}_R(P) \simeq eM_n(R)e$. Using [2, Corollary 10.5], we see that $eM_n(Q(R))e \simeq Q(eM_n(R)e)$ is Type I_f , where $Q(R)$ is the maximal right quotient of R . Since $eM_n(R)e \leq_e Q(eM_n(R)e)$ as an $eM_n(R)e$ -module, we have that $eM_n(R)e$ satisfies $(*)$, and so has $\text{End}_R(P)$.

NOTATIONS. Let A , B and A_i ($i \in I$) be R -modules, and k be a positive integer. Take $x \in \prod A_i$. Then we have some notations as following.

$A < B$; A is a submodule of B .

$A \lesssim B$; B has a submodule isomorphic to A .

$A < \bigoplus B$; A is a direct summand of B .

$A \lesssim \bigoplus B$; B has a direct summand isomorphic to A .

$A <_e B$; A is an essential submodule of B .

$A \lesssim_e B$; B has an essential submodule isomorphic to A .

kA ; the k -copies of A .

$x(i)$; the i -th component of x .

$Q(R)$; the maximal right quotient ring of R .

2. The property (DF) for regular rings satisfying $(*)$

Lemma 2.1 ([2, Theorem 6.6]). Let R be a regular ring whose primitive factor rings are artinian. Then R satisfies $(*)$.

Lemma 2.2. *Let R be a regular ring satisfying $(*)$. Then there exist abelian regular rings $\{S_t\}_{t \in T}$ and orthogonal central idempotents $\{e_t\}_{t \in T}$ of R such that $R_R \lesssim_e [\prod M_{n(t)}(S_t)]_R$, $\bigoplus M_{n(t)}(S_t) \lesssim R$ and $e_t R = M_{n(t)}(S_t)$. Therefore $Q(R) \simeq \prod M_{n(t)}(Q(S_t))$.*

Proof. This theorem follows from [2, Lemma 7.17 and the proof of Theorem 7.18].

Lemma 2.3. *Let R be a regular ring of bounded index and P be a finitely generated projective R -module. Then P can not contain a family $\{A_1, A_2, \dots\}$ of nonzero finitely generated submodules such that $A_i \gtrsim A_{i+1}$ and $iA_i \lesssim P$ for each $i = 1, 2, \dots$.*

Proof. By [2, Corollary 7.13], we see that $\text{End}_R(P)$ has bounded index. Note the claim in the proof of [2, Theorem 6.6], and applying [5, Lemma 5] to $\text{End}_R(P)$, we see that this lemma holds.

Theorem 2.4. *Let R be a regular ring satisfying $(*)$, and P be a projective R -module with a cyclic decomposition $P = \bigoplus_{i \in I} P_i$. Then the following conditions (a) \sim (d) are equivalent:*

- (a) P is directly infinite.
- (b) There exists a nonzero cyclic projective R -module X such that $\aleph_0 X \lesssim P$.
- (c) There exists a nonzero cyclic projective R -module X such that $X \lesssim \bigoplus_{i \in I - \{i_1, \dots, i_n\}} P_i$ for any finite subset $\{i_1, \dots, i_n\}$ of I .
- (d) There exists a nonzero cyclic projective R -module X such that $\aleph_0 X \lesssim \bigoplus P_i$.

Proof. It is clear that (a) \rightarrow (b) and (c) \rightarrow (d) \rightarrow (a) hold, hence we shall prove that (b) \rightarrow (c) holds. We may assume $\bigoplus M_{n(t)}(S_t) < R_R <_e [\prod M_{n(t)}(S_t)]_R$ for some set of abelian regular rings $\{S_t\}_{t \in T}$ by Lemma 2.2. Now we assume that (b) holds, hence there exists a nonzero principal right ideal X of R such that $\aleph_0 X \lesssim P$. Let $\{i_1, \dots, i_n\}$ be a subset of I and set $I' = I - \{i_1, \dots, i_n\}$. Since $\bigoplus M_{n(t)}(S_t) < R_R <_e [\prod M_{n(t)}(S_t)]_R$, there exists $t' \in T$ such that $Y = [(\prod_{t \neq t'} 0) \times M_{n(t')}(S_t)] \cap X \neq 0$. By the property of regular ring, it is clear that Y is a principal right ideal of R . Then $\aleph_0 Y \lesssim P$, hence $Y \lesssim \bigoplus P_i$. Thus for each $i \in I$, we have decompositions $P_i = P_i^1 \oplus P_i^{(1)}$ and $Y \simeq P_{i_1}^1 \oplus \dots \oplus P_{i_n}^1 \oplus (\bigoplus_{i \in I'} P_i)$. Set $(\prod_{t \neq t'} 0) \times M_{n(t')}(S_t) = S$, and then there exists a central idempotent e in R such that $eR = S$.

Note that S is a regular ring of bounded index. It is clear that

$$Y \otimes_R S \simeq (P_{i_1}^1 \otimes_R S) \oplus \dots \oplus (P_{i_n}^1 \otimes_R S) \oplus [\bigoplus_{i \in I'} (P_i^1 \otimes_R S)]$$

and $2Y \otimes_R S \lesssim P \otimes_R S$. Since S is unit-regular, $Y \otimes_R S$ has the cancellation property. Hence

$$Y \otimes_R S_S \lesssim \bigoplus (P_{i_1}^{(1)} \otimes_R S) \oplus \cdots \oplus (P_{i_n}^{(1)} \otimes_R S) \oplus \left[\bigoplus_{i \in I'} (P_i^{(1)} \otimes_R S_i) \right]$$

Thus for each i , we obtain that $P_i^{(1)} \otimes_R S_S = \bar{P}_i^2 \oplus \bar{P}_i^{(2)}$ for each $i \in I$ and

$$Y \otimes_R S_S \simeq \bar{P}_{i_1}^2 \oplus \cdots \oplus \bar{P}_{i_n}^2 \oplus \left(\bigoplus_{i \in I'} \bar{P}_i^2 \right).$$

Continuing this procedure, we have that $\bar{P}_i^{(m)} = \bar{P}_i^{m+1} \oplus \bar{P}_i^{(m+1)}$ and

$$Y \otimes_R S_S \simeq \bar{P}_{i_1}^{m+1} \oplus \cdots \oplus \bar{P}_{i_n}^{m+1} \oplus \left(\bigoplus_{i \in I'} \bar{P}_i^{m+1} \right)$$

for each $i \in I$ and each positive integer m .

Now we set $A_m = \bar{P}_{i_1}^m \oplus \cdots \oplus \bar{P}_{i_n}^m$, where $A_1 = (P_{i_1}^1 \otimes_R S) \oplus \cdots \oplus (P_{i_n}^1 \otimes_R S)$. Then $A_1 \lesssim \bigoplus A_2 \oplus \left(\bigoplus_{i \in I'} \bar{P}_i^2 \right)$, hence there exist a direct summand B_2 of A_2 and a direct summand Q_i^2 of \bar{P}_i^2 such that $A_1 \simeq B_2 \oplus \left(\bigoplus_{i \in I'} Q_i^2 \right)$. Continuing this procedure, we obtain a family $\{B_1, B_2, \dots\}$ ($A_1 = B_1$) of finitely generated projective S -submodules of $(P_{i_1} \oplus \cdots \oplus P_{i_n}) \otimes_R S$ such that $B_m \gtrsim B_{m+1}$ and $mB_m \lesssim nS$ for all m . By Lemma 2.3, there exists a positive integer k such that $B_m = 0$ for all m ($\geq k$). Thus we have that $A_1 \simeq \left(\bigoplus_{i \in I'} Q_i^2 \right) \oplus \cdots \oplus \left(\bigoplus_{i \in I'} Q_i^k \right)$ and $Y \otimes_R S_S \simeq \left(\bigoplus_{i \in I'} Q_i^1 \right) \oplus \cdots \oplus \left(\bigoplus_{i \in I'} Q_i^k \right)$. Noting that $0 \neq Y \lesssim S$, we have that $Y_R \lesssim \bigoplus_{i \in I'} P_i$.

Corollary 2.5. *Let R be a regular ring satisfying (*). Then R contains no infinite direct sums of nonzero pairwise isomorphic right ideals. Hence R is directly finite.*

Proof. From Lemma 2.2, we may assume that, $R_R <_e \prod M_{n(t)}(S_t)$ for some abelian regular rings $\{S_t\}_{t \in T}$. Set $T = \prod M_{n(t)}(S_t)$. Now we assume that R contains a direct sum of nonzero pairwise isomorphic right ideals, and so there exists a nonzero idempotent e of R such that $0 \neq \aleph_0(eR) \lesssim R_R$. Then $\aleph_0(eR) \otimes_R T \lesssim R \otimes_R T$, and so $\aleph_0(eT) \lesssim T$, which contradicts to Theorem 2.4 because T is a directly finite regular ring satisfying (*).

Theorem 2.6. *Let R be a regular ring satisfying (*) and k be a positive integer. If P is a directly finite projective R -module, then so is kP .*

Proof. We may assume that $\bigoplus M_{n(t)}(S_t) < R_R <_e [\prod M_{n(t)}(S_t)]_R$ for some abelian regular rings $\{S_t\}_{t \in T}$, and let $P = \bigoplus_{i \in I} P_i$ be a cyclic decomposition of P . It is sufficient to prove that this theorem holds in case $k = 2$. Assume that $2P$ is directly infinite. Then Theorem 2.4 follows that there exists a nonzero principal right ideal X of R such that $X \lesssim \bigoplus_{i \in I - \{i_1, \dots, i_n\}} 2P_i$ for any finite subset $\{i_1, \dots, i_n\}$ of I . By the proof of Theorem 2.4, we may assume that exists t' of T such that $X < (\prod_{t \neq t'} 0) \times M_{n(t')}(S_{t'}) = S$. For any finite subset $\{i_1, \dots, i_n\}$ of I , we have that $0 \neq X \otimes_R S_S \lesssim \bigoplus_{i \in I - \{i_1, \dots, i_n\}} (2P_i \otimes_R S)$. Since S is a regular ring of bounded index, we see that $2(P \otimes_R S)_S$ is directly infinite by Theorem 2.4 and so $(P \otimes_R S)_S$ is directly

infinite by [5, Theorem 4]. Moreover, using Theorem 2.4 again, there exists a nonzero principal right ideal Y of S such that $Y \lesssim \bigoplus_{i \in I - \{i_1, \dots, i_n\}} (P_i \otimes_R S_S)$ for any finite subset $\{i_1, \dots, i_n\}$ of I . Considering Y as an R -module, $0 \neq Y_R \lesssim \bigoplus_{I - \{i_1, \dots, i_n\}} P_i$. Therefore P is directly infinite, and so this theorem is complete.

Corollary 2.7. *Let R be a regular ring satisfying (*). Then every finitely generated projective R -module is directly finite.*

Proof. It is clear by Corollary 2.5 and Theorem 2.6.

Corollary 2.8. *Let R be a regular ring satisfying (*).*

(a) $M_n(R)$ is directly finite for all positive integer n , and so $M_n(R)$ contains no infinite direct sums of nonzero pairwise isomorphic right ideals.

(b) If P and Q are finitely generated projective R -modules, then $P \oplus Q$ is directly finite.

Proof. (a) R is a regular ring satisfying (*), and hence so is $M_n(R)$. Therefore Corollary 2.5 shows that (a) holds. (b) follows from Corollary 2.7.

NOTE. In [1], Chuang and Lee have shown that there exists a regular ring satisfying (*) which is not unit-regular. Our Corollary 2.8 gives a partially solution for open problems 1 and 9 in Goodearl's book ([2]).

DEFINITION. Let R be a regular ring and P be a projective R -module. We call that P satisfies (#) provided that, for each nonzero finitely generated submodule I of P and any family $\{A_1, B_1, \dots\}$ of submodules of P with

$$\begin{aligned} I &= A_1 \oplus B_1, \\ A_i &= A_{2i} \oplus B_{2i}, \\ B_i &= A_{2i+1} \oplus B_{2i+1} \quad \text{for each } i = 1, 2, \dots, \end{aligned}$$

there exists a nonzero projective R -module X such that $X \lesssim \bigoplus_{i=m}^{\infty} A_i$ or $X \lesssim \bigoplus_{i=m}^{\infty} B$ for any positive integer m .

Lemma 2.9 ([5, Lemma 6]). *Let P be a nonzero finitely generated projective module over a regular ring R , and set $T = \text{End}_R(P)$. Then the following conditions are equivalent:*

- (a) P satisfies (#).
- (b) T satisfies (#) as a T -module.

Lemma 2.10 ([5, Lemma 7]). *Let P be a nonzero finitely generated projective*

module over a regular ring R , and set $T = \text{End}_R(P)$. Then the following conditions are equivalent:

- (a) R satisfies $(\#)$ as an R -module.
- (b) All nonzero finitely generated projective R -modules satisfy $(\#)$.
- (c) For any positive integer k , kR satisfies $(\#)$.
- (d) There exists a positive integer k such that kR satisfies $(\#)$.

Theorem 2.11. Let R be a regular ring satisfying $(*)$. Then the following conditions are equivalent:

- (a) R has (DF).
- (b) R satisfies $(\#)$ as an R -module.
- (c) For any nonzero finitely generated projective R -module P , $\text{End}_R(P)$ has (DF).
- (d) For any positive integer k , $M_k(R)$ has (DF).
- (e) There exists a positive integer k such that $M_k(R)$ satisfies (DF).

Proof. Note that $\text{End}_R(P)$ is a regular ring with $(*)$. [5, Theorem 8] was proved only using [5, Theorem 2]. Now [5, Theorem 2] holds on a regular ring satisfying $(*)$ by Theorem 2.4. Hence we see that this theorem holds under this condition using the similar proof of [5, Theorem 8] (Note that the unit-regularlity is not needed).

3. Some applications

Lemma 3.1. Let R be a regular ring satisfying $(*)$, and let $\{e_i\}$ be a set of nonzero orthogonal central idempotents of R such that $\bigoplus e_i R_R <_e R_R$. Then R has (DF) if and only if $e_i R$ has (DF) for all i .

Proof. Note that $e_i R$ is a ring direct summand of R . It is clear from Theorem 2.11 that “only if” part holds. We shall prove that “if” part holds. Let I be a nonzero direct summand of R , and so $e_i R \cap I \neq 0$ for some i . Setting $J = e_i R \cap I$, J is a principal right ideal of both R and $e_i R$. We consider decompositions

$$\begin{aligned} I &= A_1 \oplus B_1 \\ A_j &= A_{2j} \oplus B_{2j} \\ B_j &= A_{2j+1} \oplus B_{2j+1} \quad \text{for each } j=1, 2, \dots, \end{aligned}$$

and so there exist decompositions of J such that

$$J = C_1 \oplus D_1$$

$$C_j = C_{2j} \oplus D_{2j}$$

$$D_j = C_{2j+1} \oplus D_{2j+1}$$

$$C_j \lesssim \bigoplus A_j \quad \text{and} \quad D_j \lesssim \bigoplus B_j \quad \text{for each } j=1,2,\dots$$

By the assumption, there exists a nonzero cyclic projective e_iR -module X such that $X \lesssim \bigoplus_{j=m}^{\infty} C_j$ or $X \lesssim \bigoplus_{j=m}^{\infty} D_j$ for each positive integer m . Hence $X \otimes_R e_i R \lesssim \bigoplus_{j=m}^{\infty} (C_j \otimes_R e_i R)$ or $X \otimes_R e_i R \lesssim \bigoplus_{j=m}^{\infty} (D_j \otimes_R e_i R)$. Note that $\bigoplus_{j=m}^{\infty} (C_j \otimes_R e_i R) \lesssim \bigoplus_{j=m}^{\infty} A_j$ and $\bigoplus_{j=m}^{\infty} (D_j \otimes_R e_i R) \lesssim \bigoplus_{j=m}^{\infty} B_j$. Therefore $X \otimes_R e_i R \lesssim \bigoplus_{j=m}^{\infty} A_j$ or $X \otimes_R e_i R \lesssim \bigoplus_{j=m}^{\infty} B_j$. Since $X \otimes_R e_i R \neq 0$, this lemma has proved by Theorem 2.11.

Lemma 3.2 ([6, Proposition 2.1]). *Let R be an abelian regular ring. If $Q(R)$ has (DF), then so has R .*

Theorem 3.3. *Let R be a regular ring satisfying (*). If $Q(R)$ has (DF), then so does R .*

Proof. By Lemma 2.2, we may assume that there exists a set $\{S_t\}$ of abelian regular rings such that $R_R <_e [\prod M_{n(t)}(S_t)]$. Then $Q(R) = \prod M_{n(t)} Q(S_t)$. Assume that $Q(R)$ has (DF), then so does $M_{n(t)}(Q(S_t))$ for all t by Lemma 3.1. Moreover, Theorem 2.11 shows that $Q(S_t)$ also has (DF), hence so has S_t by Lemma 3.2. Thus $M_{n(t)}(S_t)$ also has (DF) by Theorem 2.11. There exists the set $\{e_t\}$ of orthogonal central idempotents of R such that $e_t R = M_{n(t)}(S_t) \times [\prod_{t \neq t'} 0]$ and $\bigoplus e_t R <_e R_R$. Therefore R has (DF) by Lemma 3.1.

Now we shall give an example of a regular ring with a zero socle satisfying (*) which has (DF), as following.

EXAMPLE 3.4. Let F be a field, and set $R = \prod_{i=1}^{\infty} F_i$ ($F_i = F$) and $\bar{R} = R / \text{soc}(R)$. Then \bar{R} is a regular ring satisfying (*) which has (DF).

Proof. Since it is clear that \bar{R} is a regular ring satisfying (*), we shall prove that \bar{R} has (DF) using Theorem 2.11. Let Ψ be the natural map from R to \bar{R} , and let I be a nonzero direct summand of \bar{R} with following decompositions:

$$I = A_1 \oplus B_1$$

$$A_i = A_{2i} \oplus B_{2i}$$

$$B_i = A_{2i+1} \oplus B_{2i+1} \quad \text{for } i=1,2,\dots$$

Now assume that there does not exist $\{C_j\}$ ($C_j = A_j$ for some j) which is an infinite subset of $\{A_i\}_{i=1}^{\infty}$ such that $C_j > C_{j+1}$ and $C_j \neq 0$ for all j . Let $\{D_p\}$ ($D_p = A_i$ for some i) be an infinite decreasing sequence of $\{A_i\}$, and so there exists a positive integer p' such that $D_p = 0$ ($p \leq p'$). Hence $0 = D_{p'} = A_{i_1}$ for some

i_1 . Thus $B_{i_1} \neq 0$. Next, we take $\{E_q\}$ ($E_q = A_i$ for some i) which is an infinite decreasing sequence of $\{A_i\}$, where $E_q < B_{i_1}$ and $B_{k_q} < B_{i_1}$ ($A_{k_q} = E_q$) for all positive integer q . Similarly, there exists a positive integer q' such that $E_{q'} = 0$ ($q' \leq q$). Hence there exists a positive integer i_2 ($i_2 > i_1$) such that $E_{q'} = A_{i_2} = 0$. Therefore $B_{i_2} \neq 0$ and $B_{i_1} > B_{i_2}$. Continuing this procedure, we can get an infinite set $\{B_{i_k}\}$ such that $\{B_i\} \supset \{B_{i_k}\}$ and $B_{i_k} \neq 0$ for all k . From the above, we may assume that there exists an infinite decreasing sequence $\{C_j\}$ such that $\{A_i\} \supset \{C_j\}$, $C_j > C_{j+1}$ and $C_j \neq 0$ for all j .

We have a set $\{e_j\}$ of idempotents of R such that $\Psi(e_j R) = C_j$ and $e_j R \geq e_{j+1} R$ for all j . We take an idempotent $f_1 (\in e_1 R)$ with $\dim_F(f_1 R) = 1$. Next we take an idempotent $f_2 (\in e_2 R)$ such that $\dim_F(f_2 R) = 1$ and $f_1 f_2 = 0$. Continuing this procedure, we can take a set $\{f_j\}$ of orthogonal idempotents of R . Set $e = \vee f_j$, and then $\Psi(e) \neq 0$. We have that $eR = J \oplus (eR \cap e_j R)$ and $J < \bigoplus F_i$ for some right ideal J . Noting that $J \otimes_R \bar{R} = 0$, we have that

$$\begin{aligned} 0 &\neq \Psi(e) \bar{R} \simeq eR \otimes_R \bar{R} \\ &\simeq [J \oplus (eR \cap e_j R)] \otimes_R \bar{R} \\ &\lesssim e_j R \otimes_R \bar{R} \\ &\simeq C_j \quad \text{for all } j. \end{aligned}$$

Therefore $0 \neq \Psi(e) \bar{R} \lesssim \bigoplus_{i=m}^{\infty} A_i$ for any positive integer m . Hence \bar{R} has (DF) by Theorem 2.11.

By Example 3.4, we have a problem that, for any regular ring S , $R = (\prod_{i=1}^{\infty} S_i) / (\bigoplus S_i)$ satisfies (DF) or not. Example 3.5 shows that, even if S satisfies (*), R does not satisfy (*). Therefore we shall give the necessary and sufficient condition for that R satisfies (*), and we solve the above problem under this condition.

EXAMPLE 3.5. Let F be a field and set $S = \prod_{n=1}^{\infty} M_n(F)$, $\bar{S} = S / (\bigoplus M_n(F))$, $T = \prod_{i=1}^{\infty} S_i$ ($S_i = S$) and $R = T / (\bigoplus S_i)$. Then S satisfies (*), but R does not satisfy (*).

Proof. It is clear that S satisfies (*). Therefore we shall show that R does not satisfy (*). Set a central idempotent e ($\in T$) as following;

$$e(n) = (0, \dots, 0, \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}, 0, 0, \dots),$$

$$\lfloor n-1 \rfloor \lfloor n \rfloor$$

where $e(n) \in S_n$.

Let Φ be the natural map from S to \bar{S} , and ρ be the natural map from T to R . Set $\Psi = \rho|_{eT}$. Noting that $e(n)S_n \simeq M_n(F)$, we have $eT \simeq S$. Hence there exists a ring

isomorphism κ from eT to S . Now, we define a ring homomorphism α from $\Psi(e)R$ to \bar{S} as following; for each x ($\in \Psi(e)R$), we take any element y of $\Psi^{-1}(x)$ and set $\alpha(x)=\Phi\kappa(y)$.

$$\begin{array}{ccc} \Psi(e)R & \xrightarrow{\alpha} & \bar{S} \\ \uparrow \psi & & \uparrow \Phi \\ eT & \xrightarrow{\kappa} & S \end{array}$$

Similarly we define a ring homomorphism β from \bar{S} to $\Psi(e)R$. Then we have that $\beta\alpha=1_{\Psi(e)R}$ and $\alpha\beta=1_{\bar{S}}$. Hence α and β are isomorphic. Therefore $\Psi(e)R \simeq \bar{S}$. Let I be a nonzero two-sided ideal of \bar{S} , and so $I=J/(\bigoplus S_i)$ for some nonzero two-sided ideal of S which contains $\bigoplus S_i$. There exists $0 \neq x \in J - (\bigoplus S_i)$ with $x(i) \neq 0$ for almost all i . Since $S_i x(i) S_i = M_i(F)$ has index i , there exists a nonzero central idempotent $e(i)$ of $M_i(F)$ which $S_i x(i) S_i$ has index i . Therefore SxS does not have bounded index, and so does not $J/(\bigoplus S_i)$. Therefore \bar{S} does not satisfy (*), and hence so does not $\Psi(e)R$. Thus R does not satisfy (*).

Lemma 3.6. *Let R be a ring, and e, f be idempotents of R . Then $eR \simeq fR$ if and only if there exist u and v of R such that $vu=e$ and $uv=f$.*

Lemma 3.7. *Let S be a regular ring which has index ∞ , and set $R=(\prod_{i=1}^{\infty} S_i)/(\bigoplus S_i)$ ($S_i=S$). Then R has an infinite direct sum of nonzero pairwise isomorphic right ideals.*

Proof. Let Ψ be the natural map from $\prod_{i=1}^{\infty} S_i$ to R . Since S has index ∞ , there exists a set of idempotents $\{e_{ij}\}_{i,j=1,2,\dots}$ as following:

$$\begin{aligned} & e_{11}S \\ & e_{21}S \simeq e_{22}S \\ & e_{31}S \simeq e_{32}S \simeq e_{33}S \\ & \dots \end{aligned}$$

, where $e_{ij}=0$ ($i < j$) and $\{e_{11}, \dots, e_{ii}\}$ are nonzero orthogonal for all i . For all positive integer m , we take idempotents $\{f_m\}$ such that $f_m(k)=e_{km}$ for all positive integer k . Since $e_{k1}S \simeq e_{k2}S$ for all k , there exist u_k and v_k of S such that $u_kv_k=e_{k2}$ and $v_ku_k=e_{k1}$ by Lemma 3.6. Set u and v of $\prod_{i=1}^{\infty} S_i$ such that $u(k)=u_k$ and $v(k)=v_k$. Then $uv=f_2$ and $vu=f_1-e$, where e is an idempotent with $e(1)=e_{11}$ and $e(k)=0$ ($k \neq 1$). Hence $(f_1-e)(\prod S_i) \simeq f_2(\prod S_i)$ and $(f_1-e)(\prod S_i) \cap f_2(\prod S_i)=0$. Therefore we see from Lemma 3.6 that $\Psi(f_1-e)R \simeq \Psi(f_2)R$ and $\Psi(f_1-e)R \cap \Psi(f_2)R=0$. Since $\Psi(f_1-e)R=\Psi(f_1)R$, we have that $\Psi(f_1)R \simeq \Psi(f_2)R$ and $\Psi(f_1)R \cap \Psi(f_2)R=0$.

$=0$. Continuing this procedure, for all positive integers i and j , $\Psi(f_i)R \simeq \Psi(f_j)R$ and $\Psi(f_i) \cap \Psi(f_j)R = 0$ ($i \neq j$). Thus R has an infinite direct sum of nonzero pairwise isomorphic right ideals.

Theorem 3.8. *Let S be a regular ring, and set $R = (\prod_{i=1}^{\infty} S_i) / (\oplus S_i)$ ($S_i = S$). Then the following conditions are equivalent:*

- (a) R satisfies $(*)$.
- (b) R is a regular ring whose primitive factor rings are artinian.
- (c) R has bounded index.
- (d) R contains no infinite direct sums of nonzero pairwise isomorphic right ideals.
- (e) S has bounded index.

Proof. It is clear by Lemma 3.7 that (d) \rightarrow (e) \rightarrow (c) \rightarrow (b) \rightarrow (a) hold. (a) \rightarrow (d) follows from Corollary 2.5. Therefore this theorem is complete.

Theorem 3.9. *Let S be a regular ring of bounded index. Set $R = (\prod_{n=1}^{\infty} S_n) / (\oplus S_n)$ ($S_n = S$). Then R has (DF).*

Proof. Set $\prod_{n=1}^{\infty} S_n = T$, and let Ψ be the natural map from T to R . Let I be a nonzero direct summand of R with following decompositions:

$$\begin{aligned} I &= A_1 \oplus B_1 \\ A_i &= A_{2i} \oplus B_{2i} \\ B_i &= A_{2i+1} \oplus B_{2i+1} \quad \text{for } i = 1, 2, \dots \end{aligned}$$

Similarly to the proof of Example 3.4, we may assume that there exists an infinite subset $\{C_j\}$ of $\{A_i\}$ ($C_j = A_i$ for some i) such that $C_j > C_{j+1}$ and $C_j \neq 0$ for all positive integer j . We have the set of idempotents $\{e_j\}$ of T such that $\Psi(e_j T) = C_j$ and $e_j T > e_{j+1} T$. Set $J_n = S_n \times (\prod_{i \neq n} 0)$. Then, $J_{n_1} \cap e_1 T \neq 0$ for some positive integer n_1 . There exists a nonzero idempotent $f_1 \in T$ such that $f_1 T = J_{n_1} \cap e_1 T$. Next we have a nonzero idempotent $f_2 \in T$ for some $n_2 (> n_1)$ such that $f_2 R = J_{n_2} \cap e_2 R$. Continuing this procedure, we have the set $\{f_j\}$ of orthogonal idempotents of T . Now, we set an idempotent g of T as following;

$$\begin{aligned} g(n_j) &= f_j(n_j) = e_j(n_j) \\ g(k) &= 0 \quad (k \notin \{n_j\}). \end{aligned}$$

Put $K_j = f_1 T \oplus \dots \oplus f_{j-1} T$ for all j . Then $gT = K_j \oplus (gT \cap e_j T)$. Noting $K_j \otimes_T R = 0$, we have that

$$\begin{aligned}
0 &\neq \Psi(g)R \simeq gT \otimes_T R \\
&\simeq [K_j \oplus (gT \cap e_j T)] \otimes_T R \\
&\simeq (gT \cap e_j T) \otimes_T R \\
&\lesssim e_j T \otimes_T R \\
&\simeq C_j \quad \text{for all } j.
\end{aligned}$$

From the above, we have that $\Psi(g)R \lesssim \bigoplus_{i=m}^{\infty} A_i$ for any positive integer m . Therefore R has (DF) by Theorem 2.11.

References

- [1] C.-L. Chuang and P.-H. Lee: *On regular subdirect products of simple artinian ring*. Pacific J. Math. **142** (1990), 17–21.
- [2] K.R. Goodearl: Von Neumann regular rings, Kreiger, Florida, 1991.
- [3] K.R. Goodearl and J. Moncasi: *Cancellation of finitely generated modules over regular rings*, Osaka J. Math. **26** (1989), 679–685.
- [4] H. Kambara and S. Kobayahi: *On regular self-injective rings*, Osaka J. Math. **22** (1985), 71–79.
- [5] M. Kutami: *Projective modules over regular rings of bounded index*, Math. J. Okayama Univ. **30** (1988), 53–62.
- [6] M. Kutami and I. Inoue: *The property (DF) for regular rings whose primitive factor rings are artinian*, Math. J. Okayama Univ. **35** (1993), 169–179

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753
Japan