<table>
<thead>
<tr>
<th>Title</th>
<th>On regular rings whose maximal right quotient rings are type I_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kutami, Mamoru; Inoue, Ichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 32(2) P.501–P.512</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6952</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6952</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
ON REGULAR RINGS WHOSE MAXIMAL RIGHT QUOTIENT RINGS ARE TYPE I_f

MAMORU KUTAMI AND ICHIRO INOUE

(Received July 26, 1993)

Introduction

This paper is written about the property (DF) on regular rings whose maximal right quotient rings are Type I_f. Hereafter regular rings whose maximal right quotient rings are Type I_f are said to satisfy (\dagger). The property (DF) is very important property when we study on regular rings satisfying (\dagger), and it was treated in the paper [5] written by the first author, where (DF) for a ring R is defined as that if the direct sum of any two directly finite projective R-modules is always directly finite. In the above paper, the equivalent condition that a regular ring R of bounded index satisfies (DF) was discovered and called (\ddagger). Stillmore, we proved that the condition (DF) is equivalent to (\ddagger) for regular rings whose primitive factor rings are artinian in the paper [6]. Then we have the problem that (DF) is equivalent (\ddagger) for regular rings satisfying (\dagger) or not, where the condition (\dagger) is weaker than one that primitive factor rings are artinian.

In §2, we shall prove Theorem 2.4. This is important, and using this, Theorem 2.5 (i.e. if R is a regular ring satisfying (\dagger) and k is any positive integer, then kP is directly finite for every directly finite projective R-module P) is proved. Moreover, we shall solve the above problem in Theorem 2.11.

In §3, we shall consider some applications of Theorem 2.11. We prove Theorem 3.3 that if R is a regular ring satisfying (\dagger) whose maximal right quotient ring of R satisfies (DF), then so does R. Though it is clear that a regular rings satisfying (\dagger) which has a nonzero essential socle satisfies (DF), we can prove that, for regular rings satisfying (\dagger), the condition having a nonzero essential socle is not equivalent to (\ddagger) in Example 3.4. Next, we shall consider that $(\Pi R)/(\bigoplus R)$ satisfies (DF) or not for a regular ring R satisfying (\dagger). This problem is a generalization of Example 3.4, and we prove that, for a regular ring R of bounded index, $(\Pi R)/(\bigoplus R)$ satisfies (DF) (Theorem 3.9).

Throughout this paper, R is a ring with identity and R-modules are unitary right R-modules.
1. Definitions and notations

Definition 1. A ring R is (Von Neumann) regular provided that for every $x \in R$ there exists $y \in R$ such that $xyx = x$.

Note. Every projective modules over regular rings have the exchange property.

Definition 2. A module M is directly finite provided that M is not isomorphic to a proper direct summand of itself. If M is not directly finite, then M is said to be directly infinite. A ring R is said to be directly finite (resp. directly infinite) if so is R as an R-module.

Definition 3. The index of a nilpotent element x in a ring R is the least positive integer such that $x^n = 0$ (In particular, 0 is nilpotent of index 1). The index of a two-sided ideal J of R is the supremum of the indices of all nilpotent elements of J.

If this supremum is finite, then J is said to have bounded index. If J does not have bounded index, J is said to be index ∞.

Note. Let R be a regular ring with index ∞. Then using [3, the proof of Lemma 2], there exists a family $\{A_n\}_{n=1}^\infty$ of independent right ideals of R such that A_n contains a direct sum of n nonzero pairwise isomorphic right ideals. Therefore R has a family $\{e_{ij}\}_{i,j=1,2,\ldots}$ of idempotents such that

$$
e_{21} R \simeq e_{22} R$$
$$
e_{31} R \simeq e_{32} R \simeq e_{33} R$$
$$
\ldots$$

, where $e_{ij} = 0 \ (i<j)$, and $\{e_{i1}, \ldots, e_{ij}\}$ are orthogonal for all i.

Definition 4. A ring R has (DF) if the direct sum of two directly finite projective R-modules is directly finite.

Definition 5. A regular ring R is abelian provided all idempotents in R are central.

Definition 6. A ring R satisfies (*) if every nonzero two-sided ideal of R contains a nonzero two-sided ideal of bounded index.

Definition 7. A ring R is unit-regular provided that for each $x \in R$ there is a unit $u \in R$ such that $xux = x$.
NOTE. Every finitely generated projective module over a unit-regular ring has the cancellation property ([2, Theorem 4.14]).

Definition 8. Let \(e \) be an idempotent in a regular ring \(R \). Then \(e \) is called an **abelian idempotent** (of \(R \)) whenever the ring \(eRe \) is abelian.

Definition 9. Let \(e \) be an idempotent in a regular right self-injective ring \(R \). Then \(e \) is **faithful** (in \(R \)) if 0 is the only central idempotent of \(R \) which is orthogonal to \(e \). A regular right self-injective ring \(R \) is said to be **Type I** provided that it contains a faithful abelian idempotent, and \(R \) is **Type \(I_f \)** if \(R \) is Type I and directly finite.

Note. It is well-known from [4, Theorem 2] and [2, Lemma 7.17] that a regular ring \(R \) satisfies (*) if and only if the maximal right quotient ring of \(R \) is Type \(I_f \).

Note. Let \(R \) be a regular ring satisfying (*). If \(P \) is a finitely generated projective \(R \)-module, then \(\text{End}_R(P) \) is a regular ring satisfying (*).

Proof. Choose a positive integer \(n \) and an idempotent matrix \(e \in M_n(R) \) such that \(e(nR_R) \cong P \). Then \(\text{End}_R(P) \cong eM_n(R)e \). Using [2, Corollary 10.5], we see that \(eM_n(Q(R))e \cong Q(eM_n(R)e) \) is Type \(I_f \), where \(Q(R) \) is the maximal right quotient of \(R \). Since \(eM_n(R)e \leq eQ(eM_n(R)e) \) as an \(eM_n(R)e \)-module, we have that \(eM_n(R)e \) satisfies (*), and so has \(\text{End}_R(P) \).

Notations. Let \(A, B \) and \(A_i \) (\(i \in I \)) be \(R \)-modules, and \(k \) be a positive integer. Take \(x \in \Pi A_i \). Then we have some notations as following.

- \(A < B \); \(A \) is a submodule of \(B \).
- \(A \leq B \); \(B \) has a submodule isomorphic to \(A \).
- \(A < \oplus B \); \(A \) is a direct summand of \(B \).
- \(A \leq \oplus B \); \(B \) has a direct summand isomorphic to \(A \).
- \(A < _e B \); \(A \) is an essential submodule of \(B \).
- \(A \leq _e B \); \(B \) has an essential submodule isomorphic to \(A \).
- \(kA \); the \(k \)-copies of \(A \).
- \(x(i) \); the \(i \)-th component of \(x \).
- \(Q(R) \); the maximal right quotient ring of \(R \).

2. The property (DF) for regular rings satisfying (*)

Lemma 2.1 ([2, Theorem 6.6]). Let \(R \) be a regular ring whose primitive factor rings are artinian. Then \(R \) satisfies (*).
Lemma 2.2. Let R be a regular ring satisfying (\ast). Then there exist abelian regular rings $\{S_t\}_{t \in T}$ and orthogonal central idempotents $\{e_t\}_{t \in T}$ of R such that $R_R \cong \prod M_{n(t)}(S_t)$, $\oplus M_{n(t)}(S_t) \leq R$ and $e_t R = M_{n(t)}(S_t)$. Therefore $Q(R) \cong \prod M_{n(t)}(Q(S_t))$.

Proof. This theorem follows from [2, Lemma 7.17 and the proof of Theorem 7.18].

Lemma 2.3. Let R be a regular ring of bounded index and P be a finitely generated projective R-module. Then P cannot contain a family $\{A_1, A_2, \ldots\}$ of nonzero finitely generated submodules such that $A_i \geq A_{i+1}$ and $iA_i \leq P$ for each $i = 1, 2, \ldots$.

Proof. By [2, Corollary 7.13], we see that $\text{End}_R(P)$ has bounded index. Note the claim in the proof of [2, Theorem 6.6], and applying [5, Lemma 5] to $\text{End}_R(P)$, we see that this lemma holds.

Theorem 2.4. Let R be a regular ring satisfying (\ast), and P be a projective R-module with a cyclic decomposition $P = \bigoplus_{i \in I} P_i$. Then the following conditions (a)~(d) are equivalent:

(a) P is directly infinite.
(b) There exists a nonzero cyclic projective R-module X such that $X \leq \bigoplus_{i_1 \neq \cdots \neq i_n} P_i$ for any finite subset $\{i_1, \ldots, i_n\}$ of I.
(c) There exists a nonzero cyclic projective R-module X such that $X \nleq \bigoplus_{i \in I} P_i$.
(d) There exists a nonzero cyclic projective R-module X such that $X \nleq \bigoplus_{i \in I} P_i$.

Proof. It is clear that (a) \rightarrow (b) and (c) \rightarrow (d) \rightarrow (a) hold, hence we shall prove that (b) \rightarrow (c) holds. We may assume $\oplus M_{n(t)}(S_t) \leq R < \prod M_{n(t)}(S_t)$ for some set of abelian regular rings $\{S_t\}_{t \in T}$ by Lemma 2.2. Now we assume that (b) holds, hence there exists a nonzero principal right ideal X of R such that $X \nleq Q(X)$. Let $\{i_1, \ldots, i_n\}$ be a subset of I and set $I' = I - \{i_1, \ldots, i_n\}$. Since $\oplus M_{n(t)}(S_t) \leq R < \prod M_{n(t)}(S_t)$, there exists $t' \in T$ such that $Y = [(\Pi_{i \neq t'} S_t) \times M_{n(t')} S_{t'}) \cap X \neq 0$. By the property of regular ring, it is clear that Y is a principal right ideal of R. Then $\mathfrak{k}_0 Y \nleq P$, hence $Y \nleq \bigoplus P_i$. Thus for each $i \in I$, we have decompositions $P_i = P_i^1 \oplus P_i^{(1)}$ and $Y \nleq P_i^1 \oplus \cdots \oplus P_i^1 \oplus (\bigoplus_{t' \in T} P_i^{(1)}$. Set $(\Pi_{i \neq t'} S_t) \times M_{n(t')} S_{t'} = S$, and then there exists a central idempotent e in R such that $eR = S$.

Note that S is a regular ring of bounded index. It is clear that

$$Y \otimes_R S \nleq (P_i^1 \otimes_R S) \oplus \cdots \oplus (P_i^1 \otimes_R S) \oplus (\bigoplus_{i \in I} (P_i^1 \otimes_R S))$$

and $2Y \otimes_R S \nleq P \otimes_R S$. Since S is unit-regular, $Y \otimes_R S$ has the cancellation property. Hence
Thus for each i, we obtain that $P_i^{(1)} \otimes R S = \bar{P}_i^{(2)}$ for each $i \in I$ and

$$Y \otimes R S \simeq P_i^{(2)} \oplus \cdots \oplus P_{in}^{(2)} \oplus (\oplus_{t \in T} P_i^{(2)}).$$

Continuing this procedure, we have that $\bar{P}_i^{(m)} = \bar{P}_i^{m+1} \oplus \bar{P}_i^{(m+1)}$ and

$$Y \otimes R S \simeq \bar{P}_i^{m+1} \oplus \cdots \oplus \bar{P}_i^{m+1} \oplus (\oplus_{t \in T} P_i^{(2)}).$$

for each $i \in I$ and each positive integer m.

Now we set $A_m = \bar{P}_i^m \oplus \cdots \oplus \bar{P}_i^m$, where $A_1 = (P_i^{(1)} \otimes R S) \oplus \cdots \oplus (P_i^{(1)} \otimes R S)$. Then $A_1 \simeq \oplus A_2 \oplus (\oplus_{t \in T} P_i^{(2)})$, hence there exist a direct summand B_2 of A_2 and a direct summand Q^2 of P_i^2 such that $A_1 \simeq B_2 \oplus (\oplus_{t \in T} Q^2)$. Continuing this procedure, we obtain a family $\{B_1, B_2, \cdots\}$ ($A_1 = B_1$) of finitely generated projective S-submodules of $(P_i^{(1)} \oplus \cdots \oplus P_i^{(1)}) \otimes R S$ such that $B_m \simeq B_{m+1}$ and $mB_m \leq nS$ for all m. By Lemma 2.3, there exists a positive integer k such that $B_m = 0$ for all $m \geq k$. Thus we have that $A_1 \simeq (\oplus_{t \in T} Q^2) \oplus \cdots \oplus (\oplus_{t \in T} Q^2)$ and $Y \otimes R S \simeq (\oplus_{t \in T} Q^2) \oplus \cdots \oplus (\oplus_{t \in T} Q^2)$.

Noting that $\mathbf{K}^0 \otimes R S < S$, we have that $Y \otimes R S \simeq (\oplus_{t \in T} P_i)$.

Corollary 2.5. Let R be a regular ring satisfying (*). Then R contains no infinite direct sums of nonzero pairwise isomorphic right ideals. Hence R is directly finite.

Proof. From Lemma 2.2, we may assume that, $R_R < e_\Pi M_{\alpha t}(S_i)$ for some abelian regular rings $\{S_i\}_{t \in T}$. Set $T = \Pi M_{\alpha t}(S_i)$. Now we assume that R contains a direct sum of nonzero pairwise isomorphic right ideals, and so there exists a nonzero idempotent e of R such that $0 \neq R_0(eR) \leq R_R$. Then $R_0(eR) \otimes \mathcal{T} \leq R \otimes \mathcal{T}$, and so $R_0(eT) \leq T$, which contradicts to Theorem 2.4 because T is a directly finite regular ring satisfying (*).

Theorem 2.6. Let R be a regular ring satisfying (*) and k be a positive integer. If P is a directly finite projective R-module, then so is kP.

Proof. We may assume that $\oplus M_{\alpha t}(S_i) < R_R < [\Pi M_{\alpha t}(S_i)]_R$ for some abelian regular rings $\{S_i\}_{t \in T}$, and let $P = \oplus_{t \in T} P_i$ be a cyclic decomposition of P. It is sufficient to prove that this theorem holds in case $k=2$. Assume that $2P$ is directly infinite. Then Theorem 2.4 follows that there exists a nonzero principal right ideal X of R such that $X \leq \oplus_{t \in T} \otimes_{(i_1, \cdots, i_n) \neq 0} 2P_i$ for any finite subset $\{i_1, \cdots, i_n\}$ of I. By the proof of Theorem 2.4, we may assume that exists t' of T such that $X \subset (t' + t, 0) \times M_{\alpha t}(S_i)$. For any finite subset $\{i_1, \cdots, i_n\}$ of I, we have that $0 \neq X \otimes R S \leq \oplus_{t \in T} \otimes_{(i_1, \cdots, i_n) \neq 0}(2P_i \otimes R S)$. Since S is a regular ring of bounded index, we see that $2(P \otimes R S)_S$ is directly infinite by Theorem 2.4 and so $(P \otimes R S)_S$ is directly
infinite by [5, Theorem 4]. Moreover, using Theorem 2.4 again, there exists a nonzero principal right ideal \(Y \) of \(S \) such that \(Y \leq \bigoplus_{i \in I - \{i_1, \ldots, i_n\}} (P_i \otimes_R S) \) for any finite subset \(\{i_1, \ldots, i_n\} \) of \(I \). Considering \(Y \) as an \(R \)-module, \(O \neq Y \leq \bigoplus_{i \in I - \{i_1, \ldots, i_n\}} P_i \). Therefore \(P \) is directly infinite, and so this theorem is complete.

Corollary 2.7. Let \(R \) be a regular ring satisfying (\(*\)). Then every finitely generated projective \(R \)-module is directly finite.

Proof. It is clear by Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let \(R \) be a regular ring satisfying (\(*\)).

(a) \(M_n(R) \) is directly finite for all positive integer \(n \), and so \(M_n(R) \) contains no infinite direct sums of nonzero pairwise isomorphic right ideals.

(b) If \(P \) and \(Q \) are finitely generated projective \(R \)-modules, then \(P \oplus Q \) is directly finite.

Proof. (a) \(R \) is a regular ring satisfying (\(*\)), and hence so is \(M_n(R) \). Therefore Corollary 2.5 shows that (a) holds. (b) follows from Corollary 2.7.

Note. In [1], Chuang and Lee have shown that there exists a regular ring satisfying (\(*\)) which is not unit-regular. Our Corollary 2.8 gives a partially solution for open problems 1 and 9 in Goodearl's book ([2]).

Definition. Let \(R \) be a regular ring and \(P \) be a projective \(R \)-module. We call that \(P \) satisfies (\(\# \)) provided that, for each nonzero finitely generated submodule \(I \) of \(P \) and any family \(\{A_1, B_1, \ldots\} \) of submodules of \(P \) with

\[
I = A_1 \oplus B_1,
A_i = A_{2i} \oplus B_{2i},
B_i = A_{2i+1} \oplus B_{2i+1}
\]

for each \(i = 1, 2, \ldots \), there exists a nonzero projective \(R \)-module \(X \) such that \(X \leq \bigoplus_{i=m}^{\infty} A_i \) or \(X \leq \bigoplus_{i=m}^{\infty} B \) for any positive integer \(m \).

Lemma 2.9 ([5, Lemma 6]). Let \(P \) be a nonzero finitely generated projective module over a regular ring \(R \), and set \(T = \text{End}_R(P) \). Then the following conditions are equivalent:

(a) \(P \) satisfies (\(\# \)).

(b) \(T \) satisfies (\(\# \)) as a \(T \)-module.

Lemma 2.10 ([5, Lemma 7]). Let \(P \) be a nonzero finitely generated projective module over a regular ring \(R \), and set \(T = \text{End}_R(P) \). Then the following conditions are equivalent:

(a) \(P \) satisfies (\(\# \)).

(b) \(T \) satisfies (\(\# \)) as a \(T \)-module.

Let \(P \) be a nonzero finitely generated projective
module over a regular ring \(R \), and set \(T = \text{End}_R(P) \). Then the following conditions are equivalent:

(a) \(R \) satisfies (\#) as an \(R \)-module.
(b) All nonzero finitely generated projective \(R \)-modules satisfy (\#).
(c) For any positive integer \(k \), \(kR \) satisfies (\#).
(d) There exists a positive integer \(k \) such that \(kR \) satisfies (\#).

Theorem 2.11. Let \(R \) be a regular ring satisfying (\#). Then the following conditions are equivalent:

(a) \(R \) has (DF).
(b) \(R \) satisfies (\#) as an \(R \)-module.
(c) For any nonzero finitely generated projective \(R \)-module \(P \), \(\text{End}_R(P) \) has (DF).
(d) For any positive integer \(k \), \(M_k(R) \) has (DF).
(e) There exists a positive integer \(k \) such that \(M_k(R) \) satisfies (DF).

Proof. Note that \(\text{End}_R(P) \) is a regular ring with (\#). [5, Theorem 8] was proved only using [5, Theorem 2]. Now [5, Theorem 2] holds on a regular ring satisfying (\#) by Theorem 2.4. Hence we see that this theorem holds under this condition using the similar proof of [5, Theorem 8] (Note that the unit-regularity is not needed).

3. Some applications

Lemma 3.1. Let \(R \) be a regular ring satisfying (\#), and let \(\{e_i\} \) be a set of nonzero orthogonal central idempotents of \(R \) such that \(\oplus e_iR \neq eR \). Then \(R \) has (DF) if and only if \(e_iR \) has (DF) for all \(i \).

Proof. Note that \(e_iR \) is a ring direct summand of \(R \). It is clear from Theorem 2.11 that "only if" part holds. We shall prove that "if" part holds. Let \(I \) be a nonzero direct summand of \(R \), and so \(e_iR \cap I \neq 0 \) for some \(i \). Setting \(J = e_iR \cap I \), \(J \) is a principal right ideal of both \(R \) and \(e_iR \). We consider decompositions

\[
I = A_1 \oplus B_1 \\
A_j = A_{2j} \oplus B_{2j} \\
B_j = A_{2j+1} \oplus B_{2j+1}
\]

for each \(j = 1, 2, \ldots \), and so there exist decompositions of \(J \) such that

\[
J = C_1 \oplus D_1 \\
C_j = C_{2j} \oplus D_{2j}
\]
\[D_j = C_{2j+1} \oplus D_{2j+1} \]

\[C_j \leq \oplus A_j \quad \text{and} \quad D_j \leq \oplus B_j \quad \text{for each } j = 1, 2, \ldots. \]

By the assumption, there exists a nonzero cyclic projective \(e_j R \)-module \(X \) such that \(X \leq \oplus_{j=m}^n C_j \) or \(X \leq \oplus_{j=m}^n D_j \) for each positive integer \(m \). Hence \(X \otimes e_j R \leq \oplus_{j=m}^n (C_j \otimes e_j R) \) or \(X \otimes e_j R \leq \oplus_{j=m}^n (D_j \otimes e_j R) \). Note that \(\oplus_{j=m}^n (C_j \otimes e_j R) \leq \oplus_{j=m}^n A_j \) and \(\oplus_{j=m}^n (D_j \otimes e_j R) \leq \oplus_{j=m}^n B_j \). Therefore \(X \otimes e_j R \leq \oplus_{j=m}^n A_j \) or \(X \otimes e_j R \leq \oplus_{j=m}^n B_j \). Since \(X \otimes e_j R \neq 0 \), this lemma has proved by Theorem 2.11.

Lemma 3.2 ([6, Proposition 2.1]). Let \(R \) be an abelian regular ring. If \(Q(R) \) has (DF), then so has \(R \).

Theorem 3.3. Let \(R \) be a regular ring satisfying (*). If \(Q(R) \) has (DF), then so does \(R \).

Proof. By Lemma 2.2, we may assume that there exists a set \(\{S_t\} \) of abelian regular rings such that \(R \leq \prod M(S_t) \). Then \(Q(R) = \prod M(Q(S_t)) \). Assume that \(Q(R) \) has (DF), then so does \(M(Q(S_t)) \) for all \(t \) by Lemma 3.1. Moreover, Theorem 2.11 shows that \(Q(S_t) \) also has (DF), hence so has \(S_t \) by Lemma 3.2. Thus \(M(Q(S_t)) \) also has (DF) by Theorem 2.11. There exists the set \(\{e_t\} \) of orthogonal central idempotents of \(R \) such that \(e_t R = M(Q(S_t)) \times [\prod t \neq t] \) and \(\oplus e_t R \leq R \). Therefore \(R \) has (DF) by Lemma 3.1.

Now we shall give an example of a regular ring with a zero socle satisfying (*), which has (DF), as follows.

Example 3.4. Let \(F \) be a field, and set \(R = \prod_{i=1}^\infty F_i \) and \(\bar{R} = R / \text{soc}(R) \). Then \(\bar{R} \) is a regular ring satisfying (*), which has (DF).

Proof. Since it is clear that \(\bar{R} \) is a regular ring satisfying (*), we shall prove that \(\bar{R} \) has (DF) using Theorem 2.11. Let \(\Psi \) be the natural map from \(R \) to \(\bar{R} \), and let \(I \) be a nonzero direct summand of \(\bar{R} \) with following decompositions:

\[I = A_1 \oplus B_1 \]

\[A_i = A_{2i} \oplus B_{2i} \]

\[B_i = A_{2i+1} \oplus B_{2i+1} \quad \text{for } i = 1, 2, \ldots. \]

Now assume that there does not exist \(\{C_j\} \) (\(C_j = A_j \) for some \(i \)) which is an infinite subset of \(\{A_i\}_{i=1}^\infty \) such that \(C_i > C_{i+1} \) and \(C_j \neq 0 \) for all \(j \). Let \(\{D_p\} \) (\(D_p = A_i \) for some \(i \)) be an infinite decreasing sequence of \(\{A_i\} \), and so there exists a positive integer \(p' \) such that \(D_p = 0 \) (\(p \leq p' \)). Hence \(0 = D_{p'} = A_i \) for some
MAXIMAL QUOTIENT RINGS ARE TYPE \(I_f \)

Thus \(E_q \neq 0 \). Next, we take \(\{E_q\} \) (\(E_q = A_i \) for some \(i \)) which is an infinite decreasing sequence of \(\{A_i\} \), where \(E_q < B_{i_1} \) and \(B_{k_2} < B_{i_1} \) (\(A_{k_2} = E_q \)) for all positive integer \(q \). Similarly, there exists a positive integer \(q' \) such that \(E_q = 0 \) (\(q' \leq q \)). Hence there exists a positive integer \(i_2 (i_2 > i_1) \) such that \(E_q = A_{i_2} = 0 \). Therefore \(B_{i_2} \neq 0 \) and \(B_{i_1} > B_{i_2} \). Continuing this procedure, we can get an infinite set \(\{B_{i_k}\} \) such that \(\{B_{i_1} \} \supset \{B_{i_k}\} \) and \(B_{i_k} \neq 0 \) for all \(k \). From the above, we may assume that there exists an infinite decreasing sequence \(\{C_j\} \) such that \(\{A_j\} \supset \{C_j\} \), \(C_j > C_{j+1} \) and \(C_j \neq 0 \) for all \(j \).

We have a set \(\{e_j\} \) of idempotents of \(R \) such that \(\Psi(e_j R) = C_j \) and \(e_j R \supset e_{j+1} R \) for all \(j \). We take an idempotent \(f_1 (e_1 R) \) with \(\dim_f (f_1 R) = 1 \). Next we take an idempotent \(f_2 (e_2 R) \) such that \(\dim_f (f_2 R) = 1 \) and \(f_1 f_2 = 0 \). Continuing this procedure, we can take a set \(\{f_j\} \) of orthogonal idempotents of \(R \). Set \(e = \bigvee f_j \) and then \(\Psi(e) \neq 0 \). We have that \(e R = J \oplus (e R \cap e_j R) \) and \(J \subset \oplus F_i \) for some right ideal \(J \). Noting that \(J \otimes R = 0 \), we have that

\[
0 \neq \Psi(e) \bar{R} \cong e R \otimes_R \bar{R} \
\cong [J \oplus (e R \cap e_j R)] \otimes_R \bar{R} \
\cong e_j R \otimes_R \bar{R} \
\cong C_j \quad \text{for all } j.
\]

Therefore \(0 \neq \Psi(e) \bar{R} \leq \oplus_{i=0}^\infty A_i \) for any positive integer \(m \). Hence \(\bar{R} \) has (DF) by Theorem 2.11.

By Example 3.4, we have a problem that, for any regular ring \(S, R = (\Pi_{i=0}^\infty S) / (\oplus S) \) satisfies (DF) or not. Example 3.5 shows that, even if \(S \) satisfies (\(* \)), \(R \) does not satisfy (\(* \)). Therefore we shall give the necessary and sufficient condition for that \(R \) satisfies (\(* \)), and we solve the above problem under this condition.

Example 3.5. Let \(F \) be a field and set \(S = \Pi_{i=0}^\infty M_n(F), \ \tilde{S} = S / (\oplus M_n(F)), \ T = \Pi_{i=1}^\infty S_1(S_1 = S), \) and \(R = T / (\oplus S_0) \). Then \(S \) satisfies (\(* \)), but \(R \) does not satisfy (\(* \)).

Proof. It is clear that \(S \) satisfies (\(* \)). Therefore we shall show that \(R \) does not satisfy (\(* \)). Set a central idempotent \(e \in T \) as following;

\[
e(n) = (0, \ldots, 0, \left[\begin{array}{c} 1 \\ 1 \end{array} \right], 0, 0, \ldots)
\]

where \(e(n) \in S_n \).

Let \(\Phi \) be the natural map from \(S \) to \(\tilde{S} \), and \(\rho \) be the natural map from \(T \) to \(R \). Set \(\Psi = \rho|_T \).

Noting that \(e(n) S_n \cong M_n(F) \), we have \(e T \cong S \). Hence there exists a ring
isomorphism \(\kappa \) from \(eT \) to \(S \). Now, we define a ring homomorphism \(\alpha \) from \(\Psi(e)R \) to \(S \) as following; for each \(x \in \Psi(e)R \), we take any element \(y \) of \(\Psi^{-1}(x) \) and set \(\alpha(x) = \Phi \kappa(y) \).

\[
\Psi(e)R \xrightarrow{\alpha} S \\
\uparrow_{\Psi} \quad \uparrow_{\Phi} \\
eT \xrightarrow{\kappa} S
\]

Similarly we define a ring homomorphism \(\beta \) from \(S \) to \(\Psi(e)\Lambda \). Then we have that \(\beta \alpha = 1_{\Psi(e)R} \) and \(\alpha \beta = 1_{S} \). Hence \(\alpha \) and \(\beta \) are isomorphic. Therefore \(\Psi(e)R \cong S \). Let \(I \) be a nonzero two-sided ideal of \(S \), and so \(I = J/(\oplus S_i) \) for some nonzero two-sided ideal of \(S \) which contains \(\oplus S_i \). There exists \(0 \neq x \in J - (\oplus S_i) \) with \(x(i) \neq 0 \) for almost all \(i \). Since \(S_i x(i) S_i = M_i(F) \) has index \(i \), there exists a nonzero central idempotent \(e(i) \) of \(M_i(F) \) which \(S_i x(i) S_i \) has index \(i \). Therefore \(SxS \) does not have bounded index, and so does not \(J/(\oplus S_i) \). Therefore \(S \) does not satisfy \((*) \), and hence so does not \(\Psi(e)R \). Thus \(R \) does not satisfy \((*) \).

Lemma 3.6. Let \(R \) be a ring, and \(e, f \) be idempotents of \(R \). Then \(eR \cong fR \) if and only if there exist \(u \) and \(v \) of \(R \) such that \(vu = e \) and \(vw = f \).

Lemma 3.7. Let \(S \) be a regular ring which has index \(\infty \), and set \(R = (\Pi_{i=1}^{\infty} S_i)/(\oplus S_i) \) (\(S_i = S \)). Then \(R \) has an infinite direct sum of nonzero pairwise isomorphic right ideals.

Proof. Let \(\Psi \) be the natural map from \(\Pi_{i=1}^{\infty} S_i \) to \(R \). Since \(S \) has index \(\infty \), there exists a set of idempotents \(\{ e_{ij} \}_{i,j=1,2,...} \) as following:

\[
e_{11}S \\
e_{21}S \approx e_{22}S \\
e_{31}S \approx e_{32}S \approx e_{33}S \\
.....
\]

where \(e_{ij} = 0 \) (\(i < j \)) and \(\{ e_{i1},...,e_{ii} \} \) are nonzero orthogonal for all \(i \). For all positive integer \(m \), we take idempotents \(\{ f_m \} \) such that \(f_m(k) = e_{km} \) for all positive integer \(k \). Since \(e_{k1}S \approx e_{k2}S \) for all \(k \), there exist \(u_k \) and \(v_k \) of \(S \) such that \(u_k v_k = e_{k2} \) and \(v_k u_k = e_{k1} \) by Lemma 3.6. Set \(u \) and \(v \) of \(\Pi_{i=1}^{\infty} S_i \) such that \(u(k) = u_k \) and \(v(k) = v_k \). Then \(uv = f_2 \) and \(vu = f_1 - e \), where \(e \) is an idempotent with \(e(1) = e_{11} \) and \(e(k) = 0 \) (\(k \neq 1 \)). Hence \((f_1 - e)(\Pi S_i) \approx f_2(\Pi S_i) \) and \((f_1 - e)(\Pi S_i) \cap f_2(\Pi S_i) = 0 \). Therefore we see from Lemma 3.6 that \(\Psi(f_1 - e)R \cong \Psi(f_2)R \) and \(\Psi(f_1 - e)R \cap \Psi(f_2)R = 0 \). Since \(\Psi(f_1 - e)R = \Psi(f_1)R \), we have that \(\Psi(f_1)R \cong \Psi(f_2)R \) and \(\Psi(f_1)R \cap \Psi(f_2)R = 0 \).
MAXIMAL QUOTIENT RINGS ARE TYPE I_1

Continuing this procedure, for all positive integers i and j, $\Psi(f_i)R \simeq \Psi(f_j)R$ and $\Psi(f_i) \cap \Psi(f_j)R = 0$ ($i \neq j$). Thus R has an infinite direct sum of nonzero pairwise isomorphic right ideals.

Theorem 3.8. Let S be a regular ring, and set $R = (\Pi_{i=1}^\infty S_i)/(\oplus S_i)$ ($S_i = S$). Then the following conditions are equivalent:

(a) R satisfies (\ast).

(b) R is a regular ring whose primitive factor rings are artinian.

(c) R has bounded index.

(d) R contains no infinite direct sums of nonzero pairwise isomorphic right ideals.

(e) S has bounded index.

Proof. It is clear by Lemma 3.7 that (d) \rightarrow (e) \rightarrow (c) \rightarrow (b) \rightarrow (a) hold. (a) \rightarrow (d) follows from Corollary 2.5. Therefore this theorem is complete.

Theorem 3.9. Let S be a regular ring of bounded index. Set $R = (\Pi_{n=1}^\infty S_n)/(\oplus S_n)$ ($S_n = S$). Then R has (DF).

Proof. Set $\Pi_{n=1}^\infty S_n = T$, and let Ψ be the natural map from T to R. Let I be a nonzero direct summand of R with following decompositions:

$I = A_1 \oplus B_1$

$A_i = A_{2i} \oplus B_{2i}$

$B_i = A_{2i+1} \oplus B_{2i+1}$ for $i = 1, 2, \ldots$.

Similarly to the proof of Example 3.4, we may assume that there exists an infinite subset $\{C_j\}$ of $\{A_i\}$ ($C_j = A_i$ for some i) such that $C_j > C_{j+1}$ and $C_j \neq 0$ for all positive integer j. We have the set of idempotents $\{e_j\}$ of T such that $\Psi(e_j) = C_j$ and $e_j T > e_{j+1} T$. Set $J_n = S_n \times (\Pi_{i \neq n}^\infty S_i)$. Then, $J_{n_1} \cap e_1 T \neq 0$ for some positive integer n_1. There exists a nonzero idempotent $f_1 \in T$ such that $f_1 T = J_{n_1} \cap e_1 T$. Next we have a nonzero idempotent $f_2 \in T$ for some n_2 ($> n_1$) such that $f_2 R = J_{n_2} \cap e_2 R$. Continuing this procedure, we have the set $\{f_j\}$ of orthogonal idempotents of T. Now, we set an idempotent g of T as following:

$g(n_j) = f_j(n_j) = e_j(n_j)$

$g(k) = 0$ ($k \notin \{n_j\}$).

Put $K_j = f_1 T \oplus \cdots \oplus f_{j-1} T$ for all j. Then $g T = K_j \oplus (g T \cap e_j T)$. Noting $K_j \oplus T R = 0$, we have that
0 \neq \Psi(g)R \cong gT \otimes_T R
\cong [K_j \otimes (gT \cap e_j T)] \otimes_T R
\cong (gT \cap e_j T) \otimes_T R
\cong e_j T \otimes_T R
\cong C_j \quad \text{for all } j.

From the above, we have that \(\Psi(g)R \leq \bigoplus_{i=m}^\infty A_i \) for any positive integer \(m \). Therefore \(R \) has (DF) by Theorem 2.11.

References

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753
Japan