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Introduction

Let M be a compact Riemannian manifold. We consider the Laplace
operator Δ acting on the space of differential forms on M. It is a strongly
elliptic self-adjoint differential operator, so it has discrete eigenvalues with
finite multiplicities. For a given Riemannian manifold, it may be an interesting
problem to determine explicitly the spectra and eigenforms of Δ on M. As
for the spectra and eigenfunctions of Δ acting on the space of functions, they
are known for the cases where M are the following manifolds; flat tori, Klein
bottles [3], symmetric spaces [12] and the Hopf manifolds [1]. On the other
hand, as for the spectra and eigenforms of Δ acting on the differential forms,
we have known no results except for flat tori. But, E. Calabi (unpublished)
and recently S. Gallot et D. Meyer [7] have computed the eigenvalues of differ-
ential forms on the standard sphere by using the harmonic polynomial forms
on Rn+\

In this paper, applying the representation theory we compute the eigen-
values of Δ and determine the spaces of eigenforms as representation spaces, on
the standard sphere Sn and the complex projective space Pn(C) with Fubini-Study
metric. Our method is as follows: Let M=G/K be a Riemannian homogeneous
space with G acting as transitive isometry group on M. Then Δ is a G-invariaut
differential operator, so its eigenspaces are G-modules. First, we decompose the
space of differential forms on M into G-irreducible modules. In the case where
M is 5Λ, Pn(C)y or more generally a symmetric space, roughly speaking Δ =
— Casimir operator on G. So from FreudenthaΓs Formula, we can compute the
eigenvalues. But the first step of decomposing the space of differential forms
on M into G-irreducible modules is generally not easy. In virtue of Frobenius
reciprocity law, the problem can be reduced to the following problem: For a
given irreducible G-module, how does it decompose into irreducible ^-modules ?
For this problem, a few results are known (cf. H. Boerner [3] and D. P. Zelobenko
[15]), and in case M=Sn, we apply the known results.

As for the Laplacian Δ acting on the space of functions on Sn and Pn(C)y its
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eigenfunctions have been obtained by the restriction to Sn and Pn(C) of the har-
monic homogeneous polynomials on Rn+1 and Cn+1 (cf. [12]). In 6 (Theorem
6.8) and 7 (Theorem 7.13), we give the analogy for differential forms on Sn and
Pn(C) using harmonic polynomial forms.

The authors express their hearty gratitude to Prof. H. Ozeki for valuable
suggestions and discussions.

1. Preliminaries

Let G be a compact connected Lie group, K a closed subgroup and M
the quotient space GjK. We denote by g and I the Lie algebras of G and K
respectively. A ϋΓ-invariant inner product on g/ϊ determines a G-invariant Rie-
mannian metric on M. We fix a G-invariant Riemannian metric on M and
extend it canonically to a hermitian metric, denoted by < , >, on APM, the p-th
exterior power of the complexified cotangent bundle of M. For a smooth vector
bundle E over M, we denote by C°°(E) the vector space of smooth sections of E.
When E is a homogeneous vector bundle, C°°(E) is considered as a G-module by
(g-s)(x)=g-s(g-1x) for £<ΞG, ίGC°°(ί), and x<=M, in particular, C°°(APM) has
a natural G-module structure over C Now, we define the inner product ( , )M

on C°°(APM) by

(1.1) (Φ> Ψ)u = \ <Φ, ^ > dm (φ, ψζΞC~(

where dm is the smooth measure on M defined by the Riemannian metric.
From the construction, the G-action preserves ( , )M, i.e.,

By means of this inner product, we define the codifferentiation δ as the operator
formally adjoint to the exterior differentiation d. We set A=d8+δd, and call it
the Laplace operator or Laplacian. Δ is a self-adjoint, strongly elliptic differential
operator on C°°{APM) for each py and commutes with the G-action on C°°(APM).
The set of eigenvalues of Δ on C°°(APM) is a discrete set of non-negative real
numbers 0 ^ λ{ < Xp

2 < > °°. Moreover, each eigenspace E{P is a finite dimen-

sional G-submodule and the algebraic sum Σ ^ is a dense subspace of C°°{APM),
i = 1

the topology being defined by the inner product ( , ) M .

First, we recall some effects of d, 8 and * on the spectra and the eigenspaces
of Laplacian. Hodge decomposition theorem asserts that

C~(ApM) = Ei®dC~(Ap-ιM)®hC°°{Ap+ιM),

where Eξ is the space of harmonic />-forms. This is a direct sum as G-modules.
For each eigenvalue λ of Laplacian, we set
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Έt = {φ<=Ei; dφ = 0}, "E{ = iφeEt; Sφ = 0} ,

which are both G-submodules of E{. We see

E{ = Έi®"E{ for λ Φ 0 ,
( 1 * 2 ) ( El = Έl = "El for X = 0 ,
and

(1.3) d: "El rs Έ Γ 1 , δ: '£> ~ "El"1 for X Φ 0 .

Here and in the following, " ~ " means a G-isomorphism, unless specially men-
tioned.

Suppose that M is orientable and is oriented. Then, the so-called star
operator

*: ApM 2ί A»-pM (n = dim M)

is defined, and the codifϊerentiation is expressed as

(1.4) δ = (-l) n * + Λ + W* on C°°(ApM).

This together with * Δ = Δ * implies

Xf = \n

i-
p (i= 1,2,—) and

Now, for a finite dimensional vector space Uy we denote by C°°(G; U) the
vector space of all smooth functions of G with values in U> and consider it as a
G-module by (g.f)(x)=f(g-1χ) for ^GΞG, f(=C°°(G; U)y and XEΞG. Further,
when U is a i£-module, we denote by C°°(G, K; U) the G-submodule consisting
of φ(ΞC°°(G\ U) such that Φ(^)=^" 1φfe) for any k<=K and £ ^ G . On the
other hand, the i£-module U defines a homogeneous vector bundle GxκU over
GjK. Then, the G-module C°°(G, K; U) can be identified with C°°(GxκU), in
particular, C°°(APM) is identified with C°°(G,K; Λ^β/Ϊ)*0), fl/ϊ being a ίC-module
by the adjoint action of K in g, since APM is canonically isomorphic to GxκA

p

Let £G be a complete set of inequivalent irreducible representations of G
over C. For an element p e ^ G , we define a G-homomorphism

V. HomG(Fp, C~{ApM))®cVp -> C~(Λ»M)

by φ®M -̂>φ(w), where F p is the representation space of p. £p is clearly injective.
We set μp=dimcHomG(Fp, C°°(APM)) and Tp=ύie image of tp. Then, it is easy
to see that μp and Γ£ depend only on the equivalence class of p, and that Γp* is
isomorphic to the direct sum of μp-copies of Vp. To compute μpy we apply the
following Frobenius' reciprocity law.
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Proposition 1.1. Let F be R or C. For a finite dimensional K-module U
over F and a finite dimensional G-module V over F, we have a canonical isomorphism
as vector spaces

HomG(F, C~{G, K; U)) ̂  Hom*(F, U).

For a proof, see R. Bott [4].

By this proposition, we get

(1.6) μp = dim Hom*(Fp, Ap(Q/t)*η for any

hence, in particular, μp is finite.

Proposition 1.2. Under the above notations, we have

(1.7) ίlEp

λP=

Proof. The left hand side of (1.7) is clearly included in the right. The
converse is proved as follows. Since the inner product ( , )M on C°°(APM) is
invariant under G, Γ£'s are orthogonal to each other. On the other hand, the
left hand side of (1.7) is dense in C°°(APM) with respect to the topology defined
by ( , )M> a n d included in the right. From these, we get easily the proposition.

q.e.d.

In the case that (G, K) is a compact symmetric pair with a semisimple Lie
group G, we shall see later that each Γ£ is contained in a certain eigenspace E{.

2. The Laplace operator and the Casimir operator

In this section, we shall give some relations between /^'s and Γ£'s, using
the Casimir operator. Let G be a compact semisimple Lie group and B the
Killing form of the Lie algebra Q of G. Let {Xu •••, XN} be a basis of g, and
put

(2.1) C = ΣJσiXrXJt where (C«) = (B(X{, X,)Γ,

which is an element in the universal enveloping algebra Ϊ7β of g. C is in the cen-
ter of C/g and is called the Casimir element. Since each X{ may be regarded as
a left invariant differential operator on G, C can be considered as a differential
operator on G, and it is a two-sided invariant differential operator. Then, C is
called the Casimir operator.

The following fact is easily proved.

Proposition 2.1. Let G and C be as above, and U a finite dimensional vector
space over C. Then, for any finite dimensional G-submodule (F, p) of C°°(G; U),
we have
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(2.2) Cf = p(C)f for all f in V,

p being extended to the representation of UQ.

For a proof, see M. Takeuchi [12].

Corollary. Each finite dimensional G-submodule of C°°(G; U) is stable under
the Casimir operator.

In Proposition 2.1, if p is irreducible, then ρ(C) is a scalar operator by
Schur's Lemma, and the value of p{C) is given by the following

Proposition 2.2. Let G and C be as before. We fix a lexicographic order on
the dual space of a Cartan subalgebra of g. Then, for any irreducible representation
(V, p) of G over C with the highest weight λP, we have

(2.3) p{C) = - 4 ^ < λ P + 2 δ G , Xp>idv ,

where SG denotes the half sum of all positive roots of Q, and <̂  3 y denotes the inner
product on the dual space of the Cartan subalgebra of g, induced from the Killing
form sign changed.

For a proof, see N. Jacobson [9].

Now, we assume that (G, K) is a compact symmetric pair with a compact
connected semisimple Lie group G. Let tn be the orthogonal complement to ϊ
in Q with respect to the Killing form. Then, we have the Cartan decomposition,

Restricting the Killing form sign changed to tn, we can define a G-invariant
Riemannian metric on M=G/K. Then, we have the following formula.

Proposition 2.3. Let Gy K and M be as above. Let Δ be the Laplace
operator on M defined by the metric given above. Then, under the identification
C-(A*M)=C~(Gy K; Λ'fe/!)**), we have

(2.4) A=-C.

Analogous formula is given by Y. Matsushima—S. Murakami [10], when G is of
non-compact type. We shall prove the formula along the same way as in [10].

Proof. Let π: G->M be the projection. The identification

CM(ΛW) ~ C~(G, K; Λ>(g/f)*<0 ,

denoted by αf-*α, is given by

.-, Yp) = (π*a) (Yx, - , Yp) (g) ,
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and Yu ••-, Yp^Q> where (g/ί)* is considered as the set of linear forms
on g vanishing on f. Now, we choose an orthonormal basis {Xu •••, Xn, Xn+1>
•••, X^} of g, with respect to the inner product induced from the Killing form,
in such a way that {Xly •••, Xn} forms a basis of m and {Xn+i, •••, JSΓ̂ } a basis
of ϊ. An element η in C°°(G, i£; Λί(g/ί)*c) is determined by the system of C°°-
functions v(Xiiy ~>Xip) ( l^ii<* <ip^n).

Then, we define a linear map D:
by

( 1 ) (DV) (Xiι9 - , Xip+1)

We have

This follows from the fact that [Xiu, -Y/Jeϊ for X/β, JΓ^Gm.
Next, we define an inner product ( , )* on C°°(G, K; Λ^g/f)*6), using a

invariant inner product on AP(Q/1)*C by

( 2 ) (ξ,v)*

for f, v^C°°(G9K; Λ^g/Ϊ)**7), where rf^ denotes a G-invariant smooth measure
on G. Then, it is easy to see that

( 3 ) (α, /3)M = *•(«, /?)* (α

for some constant c.
The adjoint operator Z)* of Z) is given by

( 4 ) (D*ξ) (Xh,..-, Z,.^,) = - g JΓ

where
In fact, for V<ZΞC~(G, K; A"-\Qlt)*% we have

(cf. [io])
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= -zΛτ7 Σ t Σ

We set A°=DD*+D*D. Then, we see

(Δα, yS)M = c (Δ°fi, $)* for α, /9e C-(Λ>M),

consequently, Δ α = Δ ° α .
To prove the proposition, it suffices to show that

2 \Aa = - 2 X\a for

From (1) and (4), for Xiχ, •••, Xip with l ^ / i < <ip^n, we have

and

(Z)*Z)β)(Xίl( -..,X i t) = -±Xk(Dct)(Xk,Xh, - , X i p )

, Jr J, X,,, - , xiu, - ,

- Σ Σ {-tγ+ Xjiax,., xip], xh, xtι

Hence, we have

(Δ°β) (x,ιt -, xip) = -±

- Σ Σ (-i)-1^!., Xt

The second term in the right hand side of the above equation will be denoted by

II. Set [Xiy -X*]=Σ bJkXj. Since G is compact, the structure constants bJk

are skew symmetric with respect to /, j> k. Thus, we have

by virtue of [Xiuy Xk]^ΐ. On the other hand, for j = n + l , •••, N>

π = - Σ Σ (-I)""1 Σ W+xμix* xh, :.,£.,.... xip)
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d S(g) (exp tX4-Xh, - , exp tXrXip)
<=odt

•ί
» = 1
Σ (-1)-"aω {[Xj, xiul Xtι, -, xia, -

i* — 1

±3(—I)—X±3*A «(**> *,,, - , £ . , -,

Consequently, we have

which proves the desired formula. q.e.d.

3. Some remarks in Kahlerian cases

In this section, we assume that M=G/K is a homogeneous Kahlerian ma-
nifold acted on by a compact Lie group G. Denoting m=g/f, we identify m
with the tangent space of M at the origin e>K by the projection G-* G/K. We
denote by / the complex structure on m and by < , > the /-invariant inner pro-
duct on m defined by the Kahler metric on M. Then, the inaction on m, which
is identical to the isotropy representation at the origin, preserves J and < , >.
Let ί7(m) be the group of linear automorphisms of m leaving / and < , > in-
variant. Complexifying m and /, we set mc=m®RC and m ± = { I G m c ; JX=
±\/ — IX}. We have the direct sum as [/(m)-modules and also as i^-modules
over C

mc = m+0m~ .

tn+ and m" are conjugate-linearly j£-isomorρhic to each other by the conjugation
X-> X of tnc with respect to m, and the complex bilinear extension < , > c of
<( , y to xnc gives rise to canonical .^-isomorphisms over C

(3.1) (m*)* » m ? .

Now, we define a 2-form ω of type (1.1) and a hermitian inner product < , >A on

The i7(m)-action and the hermitian inner product < , >A will be canonically ex-
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tended to Λ*m~®Λ<7m+, and the later will be denoted simply by < , > in the
sequel. Λ^m'̂ Λ^m"*" will be written by Apt9m. ω is regarded as an element of
A1Am by (3.1).

We set Λo f5={tteΛ r'5m; <(w, ωΛ^)=0 for all ί)GΛr"1>s"1tn}.
Then, the following fact is known (See A. Weil [13]).

Proposition 3.1.

(i) For p and q with p+q^ny the U{m)-irreducible decomposition of Λ*'?m
is given by

(3.2) Λ> *m =

(ii) The mapping u\-*ωkΛu of Ap

0

t9 into ωkΛΛ§fί is a K-isomorphism, when
max. {p-\-k,

The irreducibility of Ar

o

tS follows from WeyΓs dimension formula.

Now, we denote by Apt9M the bundle of (/>+^)-covectors on M of type (p, q).
Since the G-action preserves the complex structure on M, Apt9Mis a homogeneous
vector bundle;

(3.3) A*' M<χGxκA>«m,

by virtue of (3.1). Under this isomorphism, the Kahler form of M corresponds
to the section of the bundle GxκA

hl given by

where ^X κω denotes the equivalence class of (g> ω). Then, we get immediately

the corresponding decomposition of Apt9M forp and q with p+qtίn>

(3.4) Ap'qM = Σ Ω ' Λ G X j Λ ί - ' -'

where Λ is defined in an obvious manner.
Further, we define a bundle homomorphism L of AptQM into Ap+h9+1M by

Lφ = ίlxAφ for φ^Apt9Mx

on each fiber of Apt9M. The G-invariance of Ω implies that L commutes with
the G-action and that the linear map induced from L of C°°(AP'9M) into C°°
(Ap+h9+1M) is a G-homomorphism, which we denote by the same letter L. By
Proposition 3.1, the linear map Lk of C°°(AP>9M) into C°°(Ap+k>9+kM) is a G-
isomorphism, when max. {p+k, q+k}^n. Now, we denote by L* the bundle
map adjoint to L with respect to the fiber metric on Apt9M
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The operator L* commutes with the G-action and the subbundle Ker L* of
ApfQM coincides with GxκA§ q. A section of GxκAfr9 is said to be a primitive
form of type (/>, q). It is known that the linear maps L and L* commute with
the Laplace operator. Laplacian preserves types of complek differential forms
onilί. (See A. Weil [13].)

From the above arguments, in order to decompose C°°(APM) or C°°(AP'9M)
into the eigenspaces of the Laplace operator, or into the irreducible G-submo-
dules, we may work on the space of primitive forms of type (r, s), Coo(GxκA

r

0

tS).

Next, we recall effects of several operators acting on M on the spectra of Δ.
More precisely, the exterior differentiation d decomposes

where

9: C~(AP>9M) -* C~(AP+1>9M)

B: C-(Λ*«Af) -* C°°(Ap-9+1M).

We denote by 9* and 9* the operators formally adjoint to 9 and 9 respectively.
Then, the following formulas are known (A. Weil [13]);

9 * = — * 5 * , J5* = — * 9 * ,

[L, 9*] = V~fWy [L, δ*] = - Λ / = Ϊ S ,
{ ' } [L*9 9] = \/-19*, [L*, S] = - V - 1 9 * ,

where [, ] denotes the commutator of two operators, for example,

[L, 9*] = L9*-9*L .

We have

Δ = 2(99*+9*9) = 2(95*+5*5).

With respect to the splitting ArM= 2 Ap>qM and the above operators, we have
p+g=r
2

p+g=r

the following decompositions of each eigenspace.
For each eigenvalue λ of Δ on C°°(Ap+qM)y we set

p

k'«; dφ = 0} , "JEJ = { φ e ^ ' 9 ; 9*φ = 0} ,

,E£r = {φ*ΞEp

λ'«; dφ = 0} , ,,Ep

λ'
q = {φtΞEp'<; 5*φ - 0} .

These are all finite dimensional G-submodules of C°°(Apf9M).
In our case, Hodge's decomposition theorem is expressed as

C~(Ap>*M) = E
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Hence, for λ=t=O, we have

(3.6) E£< = Έi-*®"Et«

= ,Eί'«®,M'q

Further, we have the following G-isomorphisms,

(3.7) 3: »E£'q 2£ Έ£+hq, 9*: 'El* 2ί "Eth9 >

where λ=t=O, and

(3.8) *: ,Et« ~ "EΓ9tn-p, *: /^ i f ^ ^J- "-' .

4. The spectra of Laplacian on the spheres

We retain the notations used in the preceding sections. In this section, we
employ the following notations;

G = SO(n+l), K = {(J °) GMΛ+1(Λ); AtΞSO(n)} ,

; <X+X = 0}, ! = = θ} ,

2π

(0)
0 —

0 —

where w=2w—1 for an odd n and n=2tn for an even w. f is a Cartan subalgebra
of g. And f is also a Cartan subalgebra of I when n is even. If n is odd, then,
the subspace fi consisting of the elements of f with λ i = 0 forms a Cartan sub-
algebra of I. We consider \ u •••, Xm as linear forms on f and take a linear order
on f* such that λ i > ••• > λ w > 0 . The Killing form B of g is given by

B(X, Y) = (n-l)tr.XY

and m is naturally identified with

0 -Xu

(X, Ye β)

xn

0,

We adopt the usual metric on Sn imbedded in Rn+ι with radius one. We
may identify S"=GjK and TS"=Gxκm. Note that the metric induced from
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the Killing form B is 2[n— l)-times the usual one and that the formulas recalled

in 1 and 2 hold with certain constant multiples.
Any dominant integral form Λ of G with respect to f is uniquely expressed

as

Λ = AiλH

where ku •••, km are integers satisfying

i^*2^-^*«-i^*«^0 (n = 2m).

When n is odd, we set

where right hand side denotes the restriction of the linear form λ> + 1 on f to the
subspace fl9 and zly •••, zM_x are ordered as

Proposition 4.1. Let (V, p) be an irreducible G-module over C with the highest
weight χp=k1λ1-\ \-km\m9 where kλ,-",km satisfy (4.1). Then, as a K-module,
V decomposes into K-ίrreducible submodules as follows

( i ) Incasen~2m>

where the summation runs over all integers k{, •••, h!m such that

and Vkί\1+...+k'afim denotes the irreducible K-submodule of V with the highest weight

Aίλi+ +Λiλ,?
(ii) In case n=2m—l,

j / "^i y f /
v — ZΛV Ml+-+*m-l*m-l »

^ summation runs over all integers k{3 •••, k'm such that

and the meaning of Vk'Zi+...+k'm_lZml is similar to the above.

For a proof, see H. Boerner [3],

Applying this proposition to our problem, we shall give explicitly the ir-
reducible representations of SO(n+l) intervening in C°°(ApSn).

The multiplicity μp of an irreducible representation (F, p) of G in C°°(ApSn)
is equal to dimcHom^F, Λ%t*) by Proposition 1.1, and the latter can be com-
puted, applying Schur's Lemma, from the i£-irreducible decomposition of Λ^m*
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and Proposition 4.1.

Now, identifying K—SO(n), the iC-module m is isomorphic to Rn with the

standard representation of SO(ή), and we know the following facts;

A. Suppose n is odd, n=2m— 1. Then, C®RApRn is an irreducible SΌ(w)-

module with the highest weight λ d \-\p for each p^m—l. For O^p^n,

C®RApRn^C®RA»-pRn as SO(/z)-modules.

B. Suppose n is even, n=2m. Then, C®RApRn is an irreducible SO(n)~

module with the highest weight λ d [-\p for each p<m, and C®RAmRn splits

into two irreducible submodules with the highest weight λ d |-λ,w_i—\m and

λ d hλ*-i+λ« respectively. For p>m, C®RApRn^C®RAn"pRn as

modules.

Now, we put

Λo = 0,

Λj== λ i + + λ ; 0* = 1,2, - , m - 2 ) ,

+ +λ,.! (n = 2m),

m~l ~ ( τ ( λ i +

Λj, -,AW are the so-called fundamental weights of g and every dominant integral

form of G is uniquely expressed as a linear combination with non-negative integer

coefficients of Λ1} •••, Am.ly 2ΛW, when n=2m, and of Aly •••, Λm_2, 2ΛM_i, Λw_!

+ΛW, 2ΛW, when /2=2w~l. In our case, we remark m * ^ m (as i^-modules).

With these terminologies, by the above procedure we get easily the spectra of

Laplacian on Sn as given in the following theorem. Since Sn is orientable, it

would be sufficient to write down them for p < — .

2

Theorem 4.2.

(a) Suppose p^^-. The highest weights λp of the irreducible representations

p intervening in CO0(ApSn)> that is, p in SG with μ P ^ l , are as follows•;

(i) In case n=2m,

(0 ^ i>^

(p = i f i-

α// non-negative integers.

(ii) In case n=2m—l,
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(p= m-2),λ P =

where k runs over all non-negative integers.

Further, the multiplicity μp of the above p in C°°(ApSn) is exactly one except for

the case n=2m and p=m, and μp is two in this exceptional case.

(b) The Laplace operator has eigenvalue 47r2<λp+2δG, λp> on an SO(n-\-\)-

irreducible submodule of differential forms on Sn with the highest weight λp, where

-times the Killing form.- 1<( , y denotes the inner product on f* induced from

The values 47r2<λP+2δG, λP> are given in the following table.

case n = 2m

case n = 2m — 1

XP

kAλ

βΛx + Λ, (l^p^m-l)

khλ + 2Am

kA,

kKλ + Kp (l^p^m-2)

k^ + lK-i

ΛΛi + Λ ^ + Λ .

4τr2<λP + 2δG, λP>

k(k + n-l)

(k + p)(k + n+l-p)

(kΛ-m)(k + m+\)

k(k + n-l

(k + ρ)(k + n+l-p)

(k + m)2

(k-\-m-l)(k + m + l)

(k + m)2

REMARK. For the space of real differential forms on Sn, its irreducible
decomposition can be obtained from Theorem 4.2 together with the results of
N. Bourbaki [5] and N. Iwahori [8].

Except for the case n—2m— 1 and m is even, every irreducible submodule of
C°°(ApSn) is closed under the complex conjugation, and the space of real forms
contained in this submodule is an irreducible iSΌ(w+l)-module over R. When
n=2m-~ 1 and m is even, two irreducible submodules of differential forms with
the highest weight kKι-\-2A.m_ι and kAι-\-2Km are transformed to each other
under the complex conjugation, and the space of real forms in the sum of the
two submodules is irreducible over R. Conversely, any irreducible submodule
of real forms on Sn is obtained in this way.

5. The spectra of Laplacian on the complex projective spaces

In this section, we employ the following notations

G = SU(n+l)9
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K=S(U(ί)xU(n)) = {(jj

β = {IGMB+1(C) 'Z+X - 0, <r.* = 0} ,

f = {(S/Qίa γ)^Mn+1(C); 'Ϋ+Y = 0, αeiί, v/^ϊfl+ίr.F = θ} ,

, Y) = 2(»+\)tr.XY (X, Feg),

m =

0 -?i, ,-?.\
e=M,+1(C);ti,-,£.€= C

o
r r , /*i o \

The natural complex structure / on m is given by

(0 -ξ» '•; -ξ.\ I 0 •• - > / = ! ? „ ..., -s/^ΐζ.

l i O I I • O

and hence m may be identified with'C*.

Then, we may identify Pn(C)—GjK, and as complex vector bundle, we have

We adopt the usual Fubini-Study metric on Pn(C). Note that the metric

induced from the Killing form B is (τz+l)-times the Fubini-Study metric and

the results of 1 and 2 hold with certain constant multiples.

Now, we consider the above xu •••, xn+ι as linear forms on f and introduce a

linear order on f* such that

Xi>X2> >Xn>0>Xn+1 .

We note that the image of K in GL(xή) under the adjoint representation in

m is exactly U(m)9 the unitary group of m=Cn. Hence, the i£-modules Afrq are

all irreducible. The weights of m with respect to f are {#,—#r, /=2,3, -~,n-{-l}

and the highest weight of A$'g is (x2—Xi)+—\-(xq+i—Xi)-\-(xi—xn+i)~\ M#i—
Xn+2-p)'

Next, we shall give a general formula to decompose any irreducible G-

module into irreducible ^-modules. In our case, K is of maximal rank, and

every dominant integral form Λ of G and K with respect to f is uniquely ex-

pressed as

Λ = kM+k&z-) \-knxn ,

where ku k2, ~,kn are integers satisfying k^ -^k^O or k2^ - ^kn^0,
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according as the group is G or K. We denote the Weyl groups of G and K by

WG and Wκ respectively. WG is the permutation group of xu •••, xn+ί and Wκ is

the permutation group of x2, ••*, xn+i*

Proposition 5.1. Let (F, p) be an irreducible G-module with the highest weight

\p=m1x1-\ \-mnxn ( w ^ ^mn7^0). Then, (V, p) decomposes, as a K-module,

into irreducible K-modules as follows

V = 2 VklXl+k2X2+-+knXn

where the summation runs over all the integers ku •••, kn for which there exists an

integer k satisfying

*i = Σ3 «i—Σ3 * i—(«

Proof. For an element #ef*, we denote by ξ% and ξ* the principal alter-

nating sum under the Weyl groups WG and Wκ respectively.

&= Σ (-i)V,
W

where £*=exp 2zr\/—IΛ:, and (— l)σ denotes the signature of permutation σ. For

irreducible representations (F, p) and (V, p') of G and K respectively, we denote

their characters by %p and Xp\ Then, by the character formula of Weyl, we have

(1)

Now, we have

8G =

δ -K —

and put

Then, we have

(2)

~22§f<iXi'

pi = «i+«4

P.+i = 0 .

= ?λp+δβ on f ,

= ?f P '+δ Λ on f .

= ΣJ(»+i-*><>

-ftίn+l i)x +
» = 2

- l - i ( / = 1,2,

iet(β»ι'Λf.12....+1

n - l
2
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ςg — 11 \β * J β i *

Hence, putting zi=xi—xι (i=2, •••, w+1), we have

>̂ δ i = 2

We compute the right hand side of (2) as follows;

1 , . . . ,1

— e(P1+-+Pn)X1 1 β^n[

1,1,

(P = pι+-+pn)

π + l

y=2 Pn1!

n + 1
— ( 1 W * i TT C î 1^ y 1 7 det (pqtzi\ , o

y=2 ' f

j=2,3, ,n+l

where the summation Σ r r u n s o v e r all integers qly ••-,?„ satisfying

Further, we have

det

Hence, from (1) and (3), we get

Here we note that z2-\ \-zn+ι=—(n+ί)x1.
We put
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Then, we get easily

= Z £

where the summation runs over all integers ^ , •••, ΛΛ satisfying

Therefore, by the character formula of Weyl, we get immediately the proposition.

q.e.d.

The highest weight of Λo'9 with p-\-q^ny which we have seen before, is

described according to the type of (p, q) as follows;

(i) p=0,q=0 0,

(ii) p=0y n>q>0, —qXi+X2+ — +xq+u

(Hi) n>p>0, q=0 ( p + l ^ i + ^ H \-xn+i-P,
(iv) p,q>0,n>p+q (p-
(v) p,q>0,n=p+q (p-q+l)x1+2x2+-+2xq+ly

(vi) p=0,q=n —(n+ί)xly

(vii) p=n,q=0

By Proposition 5.1 and Frobenius' reciprocity, an irreducible G-module with the

highest weight χ?=mιxι-\ \-tnnxM appears in the irreducible decomposition of

C°°(Gx κM'q), if and only if m^s satisfy the condition given by Proposition 5.1.

For instance, in case (iii), there exists an integer k such that

The conditions are similar to the case above in the other cases.

We set Λ 0=0, A—Xi+Xz+ ' +Xj (/=1> '"> n) a n ( l Λ«+i=0. Then, Aly •••,

Λn are the so-called fundamental weights of G so that every dominant integral

form of G is uniquely written as a non-negative integral linear combination of

them. We set

A(k, r, s) = Λ(Λ I +Λ,)+(r-ί)Λ 1 +Λ,+Λ.. Γ + 1 ,

where k satisfies the condition

(*) k+r—s^0 and k^O .

Then, the highest weights of irreducible G-modules appearing in C°°(GxκA$'g)

are of the following forms

(#,£, q) incase (i), A(ky 0, 0),

incase (ii), A(ky 0, q)y A(ky 0, q+\)y



k(k+n+l-s) (r=0, l^s^ή),

k(k+n) (r=0, s=0),

(k+n) (k+n+1) (r=n+l, s=0),

(r=0,s=n+l).
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in case (iii), A(k,p, 0), A(k,ρ+l,0)9

in case (iv), A(k,p, q), A(k,p, q+1), A(k,p+l, q), A(k,p+1, q+ΐ),
in case (v), A(k,py q), A(k,p, q+1), A(k,p+\, q),
in case (vi), A(ky 0, n),
in case (vii), A(k, n> 0),

where kJs are integers satisfying (*).
Moreover, the multiplicity of the representation with the highest weight

mentioned above in C°°(GxκA
p

q'°) is exactly one.
I

Now, we denote by < , > the inner product on f* induced from B. For
n+1

A=k(A1+An)+(r—s)A1+As+An_r+1, we have by simple computations,

(k+r) (k+n+2-s) (1 ̂ r , s^n),

4τr2<Λ+2δG, Λ> =

Thus, we get

Theorem 5.2. Let Pn(C)=SU(n+ 1)/S( 17(1) X U(n)).
(a) Let p and q be non-negative integers with p+q^n. The highest weight Xp

of the irreducible representation p of SU(n+l) intervening in C°°(GxκA$'q), that
is, p in $G with μ p ^ 1, are those of (#, r, s) with r—s=p—q, r^p and s^q.

For Pn(C) with the Fubini-Study metric, the multiplicity of the above represen-
tation p in the space of primitive forms of type (r, s) is one.

(b) On the irreducible SU(n+ί)-submodule of differential forms with the
highest weight A(ky r, s), the Laplace operator defined by the Fubini-Study metric

has the eigenvalue (k+r) (k+n+2—s) for l^£r, s^n, (k+r) (k+n+ϊ) for l^r^n
and s=0, k(k+n+ί—s)for r=0 and ί^s^n, k(k+n) for r = s = 0 , (k+n) (k+n
+ l)for r=n+l and s=0, and k(k+l)for r = 0 and s—n+1.

REMARK. For the space of real differential forms on Pn(C)> its irreducible
decomposition can be obtained from Theorem 5.2 together with the results of
N. Bourbaki [5] and N. Iwahori [8]. Two irreducible representations of SU(n
+ 1) over C with the highest weight Λ;. and ΛM_;+1 are anti-isomorphic to each
other (/= 1, •••, n). We denote by p'qVk

r,s the SU(n+ l)-irreducible submodule of
primitive forms of type (p, q) with the highest weight k(Aι+An)+(r—s)A1+As

+An.r+1.
 p'qVk

r,s is complex conjugate of ̂ V\%r~s and the space p'qUk

r,s of real
forms in p'qVk

r,s+
q'pVk

s%
r-s is an irreducible 5C/(w+l)-module over R. Con-

versely, any irreducible *Si7(w+l)-submodule over R in the space of real forms
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on P\C) is of the form ΩhΛp'QUk

r,s for some h, k>p, q, r and s.

6. Eigenforms on Sn and the harmonic polynomial forms on Rn+1

In the following 6 and 7, we designate simply by KPM for C°°(APM)9 the
space of all differential />-forms on M.

Let Rn+1 be an (w+l)-dimensional real Euclidean space and (x°yx
ι

y ••-,#") be

the standard coordinate system on Rn+1. We put r2=X3(«')2, r — = 2 * ' — ^ >

rdr^Σx'dx1. Let ί/0 be the differential on Λ*(i2Λ + 1)=ΣΛ ί '(Λ''+ 1) ) δ0 the codi-
, = 0 j = 0

ίϊerential and *0 the Poincarό duality on A*(/2W+1). We define a linear operator

e(rdr) of Λ*(ΛΛ+1) into itself by e(rdr)a=rdrΛa> for αeΛ*(i?M + 1), and denote

by ί ( r—) the interior product by r— on Λ*(ΛM+1). Then the following lemma
\ drJ dr

is easily verified.

Lemma 6.1. Let a be a differential p-form on Rn+1. Then we have the

following formulas

(1) i(rjr)*oa = {-\γ*<t{rdr)ct,

(2) eirdryoct+d^rd^a = 0 ,

(3) d/\rj^ja+i{r^yQa = LrU/dr)a .

(4) V("fr)α+e("fr)δo« = (-l)" ί + 1*A(

where Lx denotes the Lie derivation by a vector field X on Rn+1.

We denote by 5=d0SQ-\-8Qd0 the Laplace operator on the space of differential

forms on Rn+1. Then the operators dOy δ0, S, ^(rrfr) and ί ( r — ) acting on Λ*
\ dr/

(Rn+1) commute with the natural action of O(n-\-ί), the orthogonal group of
Rn+\ on Λ*(i2*+1).

Now, let Pp

k be the set of a£ΞAp(Rn+1) of the form

a =

where alr..t/) are homogeneous polynomials of degree k.
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Proposition 6.2. Let a^PL Then we have

(1)

(2) 8oe(rdr)a+e(rdr)Soa = -(n+l-p+k)a

Proof. Let αG Pp. Then we can see easily Lr(d/dr)a=(k-\-p)a. Combining
this with (3), (4) in Lemma 6.1, we have Proposition 6.2.

q.e.d.

Corollary 6.3. We have the following direct sum decompositions',

P{ = (Ker

Pp

k = (Ker δ o nPί)θ(Ker

REMARK. We have

Pi = {constant functions on jRn+1} ,

Pn

Q

+1= {adx°Λ-Λdxn:a<EΞC} .

DEFINITION. A harmonic polynomial form is an element aEzPt such that
Δa=0 and δoα=O. Let Hp

k be the set of these forms;

Lemma 6.4. We have the direct sum decomposition;

P\ =

Proof. Let Sk(Rn+1) and Ap(Rn+ι) be the real vector spaces of a symmetric
tensors of degree k and antisymmetric tensors of degree p over Rn+1. Then we
have the natural isomorphism between P{ and Sk(Rn+1)® Ap(Rn+1)®C as O(n+1)-
modules, where O(n+1) acts identically on C. We consider S*(JBII+1)®ΔP(JBII+1)
as a subspace of Tk+p(Rn+1), the real vector space of tensors of degree k-\-p. We
define linear operators sis of Tk+p(Rn+1) to τk+p~2(Rn+ι) by

where < , > denotes the standard inner product on Rn+1. Put Rffk+P= Γl

Ker ίlV and RHp

k=RHk+p Π S*(Λβ+1)(g) A^Λ"4-1). We denote by RQp

k the subspace
orthogonal complement to RR{ in Sk(Rn+1)®Ap(Rn+1). Put Q£=*3{®iZC and
Bp

k=RHp

k®C. Then the subspaces in P | corresponding to Qp

k and H | by the
natural isomorphism in Pp

k are Qp

k=e{rdr)Pp

kz\-\-r2Pp

k-2 and /if.
q.e.d.

Proposition 6.5. Let Sn be the unit sphere in Rn+1 and i be the inclusion
of Sn into Rn+1. Then we have
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( 1 ) i*: Ker δ0 Π P{ -> Λ*(Sn) is injective,

( 2 )

Proof. (2) follows easily by induction on A using Lemma 6.4, since z*(r2)
= 1 and i*(rώ)=0. We shall show (1). Let α<Ξ Ker δ0 Π Pi Suppose i*a=0.
Then a is in Ker e(rdr)Γ\Pl On the other hand δ 0 α=0, and so from Corollary
6.3, we have a=0.

q.e.d.

Corollary 6.6. i*: 2 # ί -* Λ^S") ώ injective and its image is dense in Ap(Sn).

Proof. By the polynomial approximation, ί*(Σf*) is dense in AHSn).

Proposition 6.5 implies that i*(Σ Pί)=*"*(Σ#ί) Thus the density is proved.

Now, let a^'ΣϊHξk and α 2 ^ Σ ^ - i Assume i*(a1+a2)=0. Then we

shall show that aι=a2=0. By Proposition 6.5, we may take au a2 in Pξko and
PLQ-I respectively for some k0 satisfying /*(#i)=£*(αi) and /*(^2)=ί*(«2) We
have (δtι-\-δt2) Ardr=0 on 5W. To prove the corollary, it is now sufficient to show
that if/1,/2 are homogeneous polynomials of degree 2kQ, 2kQ—\ respectively, and
if/1+/2 is zero on Sn, then / 1 ==/ 2=0 on Rn+1. By the assumption, we see that

fι+rf2 is zero on Sn and homogeneous on Rn+1. Thus fx-{-rf2=Q on Rn+1.
Substituting — x{ for x^Otίi^n), we have/i—r/2 = 0 on Rn+1. Thus we have

/i=/2=0.

q.e.d.

Lemma 6.7. L^ a<=Hp

k. Then we have dQa^Hp

kt\ and i(r~)a<=Hpk+\.
\ drl

Proof. The first statement follows easily from the facts that Δ=doδo-\-8odo

and </0Δ=ΔJ0. We see i(r^-)aeΞHfc\, since Soi(r^)a=-i(r4-)soa=O by
V dr/ \ dr/ \ drl

Lemma 6.1 (2) and we have

= 0.

q.e.d.

Put fm= Ker d0 Π Hp

k and " # £ = K e r tf r — ) n H{. By Proposition 6.2(1)

and Lemma 6.7, we get
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(6.1) Ht =

We see H°ϋ = 'H% = "Hi,
τjn + 1 /ττn+1 //τjn+1

Πθ = no = iϊo

Theorem 6.8. ( 1) The modules Ή°k (k>0) and "Hp

0 (0<p<n+l) are
reduced to zero.

(2) The module Ή\ (ρ>0) is decomposed into the irreducible SO(n+l)-
modules with the following highest weights and each of these appears with multiplicity
one.

(i) case n = 2m ,

(0<p<m)

{p = m,tn+l)

(ii) case n = 2m— 1

(p = w-1, m+ί)

(p = m)

(3) Themodule"Hp

k(k^\,p^Lri) is decomposed into the irreducible SO(n+\)-
modules with the following highest weights and each of these appears with multiplicity
one.

(i) case n = 2m ,

(ii) case n = 2m—I ,

>^2«—2).

(4) TAe module ί*('Hp

k) is consist of d-closed forms and the module i*("Hp

k)

of S-closed forms.

Proof. We shall give the proof for the case n=2m, the case n=2m— 1,
being treated quite analogously. The statement (1) can be easily seen by Pro-
position 6.2. We shall show (2) and (3). The module Pp

k is isomorphic to
S\Rn+1)®Ap(Rn+1)®C as SO(n+l)-modules. Therefore, the module P{
contains the *SΌ(rc+l)-iπ-educible submodule with the highest weight kKλ-\-Kp.
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We denote this submodule by Ep

k. By Lemma 6.4, we have EζczHζ. The module
dJEt is isomorphic to E{ or reduced to zero. But the highest weight of the
module Ppί\ is (k— lJΛx+Λ^+i which is strictly lower than kAλ-{-Ap. Thus the
module d0E

p

k is reduced to zero and this implies Ep

k<Z.Ή{. On the other hand

the module i(r—)Ep

k±\ is contained in "Hp

k. By Proposition 6.2, the module
/ Λ\

 X d r l / j \
dMr—)Et±l is equal to Et±\. Therefore, by (6.1) the module i[r—)Elt\ is

\ dr/ \ drJ
also isomorphic to the module Eζt\. Thus we have shown that the module /fH{
contains the irreducible submodules with the highest weights in (3). Then by
(6.1) and Theorem 4.2, no other submodules appear in H{. Thus we have proved
(2) and (3). Next we shall show (4). By the well known formula di*=i*d09 we
see that the module i*('Hp

k) is rf-closed. When we note that d> 8 and * are
*SΌ(w+l)-homomorphisms, we see that the module i*("Hp

k) is δ-closed by
comparing the irreducible submodules appearing in "H\ and Σ^*" 1 -

q.e.d.

7. Eigenforms on Pn(C) and the harmonic polynomial forms on Ctt+1

Let (z°y z
1, •••, #n) be a standard holomorphic coordinate on Cn+1 and

g=y£dzi dzi be the flat Kahler metric on Cn+1. We denote by Ap-q(Cn+1) the
ί = 0

space of differential forms of type (p, q). We designate by d0 the differential and
δ0 the codifferential on Λ*(CΛ+1). The operators d0 and δ0 are decomposed as
follows;

d0 = 9 0 +8 0

with 9 0 : Ap>«(Cn+1) -> Ap+h«(Cn+1)

ϋ0: Ap>%Cn+1) -> Ap'q+1(Cn+1),

a n d

δ0 = df+df

with 9?: Ap>«(Cn+1) -> Λ^" 1 ' ^^ 1 )

Sf: Ap-\Cn+1) -* A*-'-χcn+1).

Furthermore, we denote by *0 the Poincarά duality and put

-^T, W0 = Έ * '—, Wf = Σ **<**', and Wf = Σ ^ ^ .
fe1 95* 0

For αGΛ*(CB+1), we define e(Wf) a and e{W%) a by

e(Wf)a=WtAa

and
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We designate by i{W$) (resp. i(Wf)) the interior product by Wo (resp.
Then these operators d0> δ0, 30, df, d0, df, e{Wf), e(Wf), i(W0) and i(Wf) on
Λ*(C+ 1) commute with the action of U(n+1) on Λ*(C+ 1). Now the following
lemma is easily verified.

Lemma 7.1. For any α G Λ ί '(C"+I), we have

(1) K W,yoa = ( - IY+"*A Wf)a

i(Wo)*oa = (-iγ+"*ΰe(Wf)a.

(2) i{ W0)doa+30ί( W0)a = LWoa

i(Wo)Bocc+ϋoi(W0)a = LWoa

i{W«)doa+doi(Wa)a = 0

i{W,)Έoa+^{Wϋ)a = 0 .

(3) dfe(Wt)a+e(Wt)d*a = ( - l ) ί + ί +

d$e(Wf)a+e(Wt)d*a = 0

= 0.

Now, we put Ωo=—V—1 ^dz'Adz' and define linear maps Lo, Λo of
1=0

Λ*(C+ I) into itself by

= Ω0Λα

and

for

Then the operators Lo and Λo also commute with the action of U(n-\-ί) on
Λ*(CB+1). We have the following

Lemma 7.2. .For aeA*(C ! + ! ) , we have

(1) βββίPΓfJα+K^f)^ = 0

= 0

(2) 9?i(IF0)α+ί(ίF0)9?« = 0

ϋti(W0)a+i(W0)dfa = 0

B$i(W0)a+i(W0)dta = V^Λ

Put P£? be the set of α ε Λ f '(C"+1) of the form

«Sίi<-</>S« » #• i »

" s y < < y s «
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where cCiy-ipj^-j, are polynomials of degree k with respect to z", z1, ••',zn and of
degree / with respect to z°, z1, • ••, z". Then, using Lemma 7.1, we have in the
same way as for Proposition 6.2

Proposition 7.3. Let a^Pi Ί. Then we have

(1) W 9 o « + 9 o W α = (k+p)a

(2) i(Wo)Baa+Boi(Wo)a = (/+?)«

(3) e(Wt)dta+dfe(Wt)a = -(n+ί-p+l)a

(4) e(W$)Bta+B$e(Wo*)a = -(n+l-q+k)a .

By this proposition, we have the following direct sum decompositions;

P£J = (Ker 90 ΠPf;?)θ(Ker i(W0) ΠPt'.ί) (k+pΦO)

= (Ker d0 ΠP|;?)θ(Ker i(W0) ΠPjt ί) (1+qΦO)

= (Ker df n.Pfcί)θ(Ker <ΓFf) ΠPί.1) («+l-/>+/ΦO)

= (Ker Bf ΠPH)Φ(Ker e(Wf) ΠP{;f) (»+ 1-j+Λ.Φθ).

By Lemma 7.1, we have also the following direct sum decompositions;

(7.1) P11 = (Ker3 o ΠKer9 0 nPf:0Φ(Ker9 0 ΠKerί(ΐr o )nP^?)

θ(Ker i(W0) Π Ker 9"0 Π Pf :?)θ(Ker i(W0) f] Ker t( ΐT0) Π Pf ί)

(Λ+/>Φ0, /+JΦ0)

= (Ker df Π Ker 9? nP£,1)Φ(Ker 9* Π Ker e(Wf) nPfcf)

Φ(Ker βίPΓ?) Π Ker ̂ f ΓΊ Pf:f)θ(Ker e(ίFo*) Π Ker e(Wf) Π P{;f)

REMARKS. We have

(1) Po°.1 = Ker

Pt l = Ker 50 Π PI'S = Ker ί(

P?.Vβ = Ker 90* n P*.V!ί = Ker e(W0) Π P?,Vρ,

Pfcj« = Ker 9? Π P?:?+1 = Ker β(l^0) Π Pg;?+1.

(2) Pg S = {constant functions on C"+1} ,

PgV"+1 = {α dz°Ad!?-ΛdznΛdsn: βεC} .

Furthermore, in the same way as for Lemma 6.4, we have

(7.2) P{;J = Ker 90* n Ker 50* Π Ker D o Π Ker Λo Π P{;ί

where D 0 = 0

Now, put



SPECTRA AND EIGENFORMS OF THE LAPLACIAN 541

H{ f = Ker 90* Π Ker 9* Π Ker Π o Π Ker Λo Π Pfcf.

DEFINITION. A harmonic polynomial form on Cn+ι is an element of the
space Hξ'j.

The space Hp

k\1 is an SU(n-\- l)-invariant subspace in the space Pp\q. Assume
^ φ θ , # φ θ and p+q^n+l. Then by (7.2), the module Hp

k\
qι contains the highest

weight vector in the module Pt'.Ί. The irreducible subspace in Hi',] which con-
tains the highest weight vector of the module P\\\ shall be denoted by Ep,9. Then
the irreducible module Ep

k\1 has the following highest weight;

(7.3) lA1+Aq+kAu+Au+1.p.

The following Lemma 7.5 can be verified easily from the formulas in (3.5)
and Lemma 7.1.

Lemma 7.4. Let a^Hfcl Then we have doa<=Hp

kt{:l ϋoa^Hp

k j l l i(W0)

f andi(

Combining this lemma with (7.1), we have

(7.2) Ht'J = (Ker 90 Π Ker % Π iϊί:?)Φ(Ker 90 Π Ker i( Wo) Π H{;ί)

θ(Ker i(W0) Π Ker Bo Π # 0 ) θ ( K e r i{W0) f] Ker i( Wo) Π Hi, ?)

O, / + J Φ 0 ) .

Proposition 7.5. Suppose p+qSn. Then the module Hί\] contains the
irreducible SU{nJ

r\)-modules with the following highest weights;

(1) /Λx+ΛΛ, (p = ? = 0)

(2) /Λ 1 +M,+Λ ί ,(/-1)Λ,+AΛ.+Λ, + 1 (/» = 0, n > ? > 0 )

(3) /Λ1+ΛΛ»+Λ1I+1_,, /Λ1+(A-1)Λ.+Λ,,_ ί (n>p>0, q = 0)

(4) /Λ1+AΛf,+Λf+Λ11+I_,, (/-

(p>0,q>0, ί<p+q<ή)

(5) /Λ1+ΛΛ,+Λ,+Λ11+I_ί, (/-l)A1+feΛ,,+Af+1+A,+1_#,

lA1+(k-l)An+Aq+An.t (pφO, ?Φ0, ί + ϊ = »)

(6) /^H-^+lJA, (p = 0, ? = ιι)
(7) (l+\)A1+kAn (p = n,q=0)

Proof. Assume/>ΦO, <?φθ and p-\-q^n-\-l. Then in the same way as for
the proof of Theorem 6.8, we get 90£'?:?=0 and S0£'{;?=0. We shall show that
the module i(W0)i(W0)Ep

k j is not reduced to zero. Let ae.Ei'J. Assume i(W0)
i(W0)a=0. Then we have i(W0)a<= Keri(W0). On the other hand, we get
doi(W0)a=-i(WojBΰa=0. Therefore we have i(W 0)aeKer3 0. Thus we have
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i(Wo)a=O, i.e., α e K e r i(W0). Since α e K e r 90, we have a=0. Thus we see
that the module i(W0)i(W0)Ep

k't
qι is isomorphic to the module E£'J. Moreover the

modules i(W0)Ep

k:
qι and i(WQ)Et'J are also isomorphic to £"£;?. Combining these

facts with Lemma 7.4, we get Proposition 7.5.
q.e.d.

Let π be the natural projection of Cn+1— {0} onto Pn(C) and πs its restriction
to 5 2 " + 1 c C " + 1 - {0}. For p^S2n+\ we denote by Tp(S2n+1) the tangent space at
p. Put Fp—Ker ((πs)*)p Let Fp1 be the orthogonal complementary subspace to
FpmTp(S»+>);

Tp(S2n+1) = FP®F^ .

We introduce the Riemannian metric on Pn(C) so that the restriction of (πs)* to
Fj- is an isometry onto T^p){Pn{C)). Let Jo and / be the standard complex
structures on Cn+1and Pn(C) respectively. Then for ^Gί 1 /, we have

We denote by Ap

s\
q(Cn+1) the set of all a<=Ap'%Cn+1) such that g*a=a for any

0 \ )
# . e U(n-\-ί)\ and we define a linear map

0 e2*iΘJ J

by

- , Xp+q) - α ( ^ , -., lp+q),

where X, are tangent vectors at π(p) to Pn(C) and Xt are the lift to S2n+1 by
the isomorphism F^^ Tt

<(/>)(PW(C)). Then the map φ is well defined and we have

Proposition 7.6. (1) φ( Σ Ptlί) is dense in Ap'%Pn(C)).
k+P=l+V

(2) Let Ω be the fundamental form on Pn(C). Then we have
(3)
(4)
(5) φ: Ker 9^ Π Ker 9? Π Pfcf -> PΛ(C) ά injective.
(6) For α e ίΓί ί, φ(a) is a primitive form on Pn(C) if and only if ί{ W0)i( Wo)

a=0.

Proof. We shall show here (5) and (6), the other statements being easily
proved. Let α e K e r 9JnKer5f ΠPί ί. Assume φ(α)=0. Then we have
WjΛWΐΛa=0, i.e., WfAa^Ktre(Wt). On the other hand we have 9?
(W$Λa)=-W$Λdfa=0. Therefore we have ΫPfAαeKer 9?. Thus we
have W*Aoc=0. In the same way as above, we see α = 0 . Thus we have
proved (5). Let Wu •••, Wn be a unitary base complementary to Wo atp^S2n+1
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i n C n + 1 . For a<=Hp

k:
9

h we have

0 = Σ Wi)KWda = ΣJ Wi)Wi)a+i(W0)i(W0)a .
» = 0 ί = l

It is clear that φ(cx) is primitive form if and only if the first term vanishes.
Thus we have proved (6)

q.e.d.

According to (6) in Proposition 7.6, for an element of the last three direct
summands in (7.2), its φ-image is a primitive form. On the other hand for
Ker ΘQ Π Ker 90 Π H{\% we put

cc2 = i(W0)i(W0)a.

Then we have

Lemma 7.7. φ((Xi) and φ(a2) ore primitive forms.

Proof. φ(a2) is a primitive form follows from (6) in Proposition 7.6. On
the other hand we, have

- φ{-V=ϊ(n+3-p-q)i(W0)i(W0)a

= 0.
q.e.d.

Lemma 7.8. α φ O f f αwJ ow/3; ί/

Proof. Assume a2=0. Then /(PF0)i(W0)α=0. Thus we have i(
Keri(ίΓo). Since doi(Wo)a=-i(W0)d0a=O, we have z(PF0)α=0. In the same
way, we see a=0.

q.e.d.

Lemma 7.9. IfaΦO and k+pΦ0, then axΦ0.

Proof. Assume αφO. We shall show

By our assumption, we have i(W0)a^0. Since i(WQ)a is a (p, 5— l)-form and
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p+(q— l)^w, we have Ω0/(T?"o)αΦ0. Thus we have shown
q.e.d.

Corollary 7.10. We have a direct sum decomposition,

Φ(PPk\qι) = g Ω?φ(Htzftz)) (k+p = l+q) .

Corollary 7.11. φ: Σ ΩS/ϊίΓ/' *""1' -> A.p'q(Pn(C))

is injective and its image is dense.

Combining this with Theorem 5.2, we have

Proposition 7.12. Assume k-\-p—l-\-q. Then we see that Hp

k\
qι contains only

irreducible SU(n-\-\)-modules appearing in Proposition 7.5 with multiplicity one and

no other submodules occur in Hp

k'
qι.

Now, put

= 0, Έ<μ = 0} ,

3 ^ = O, i(W0)a = 0} ,

i(W0)a = 0, fa = 0} ,

= 0, i(W0)a = 0} .

, ?+/ΦO) .

and "Hp

k\
q =

Then by (7.2), we have

(7.5) flfcf = \H\\\

Theorem 7.13. Assume k-\-p=l-}-q and OtS-p+q^n. Then we have (1)

!,Hpk,% "fH
pk'qι, '//Hjtii, except for the modules listed in (1), are irreducible modules

with the following highest weights]

/>Φ0, ?Φ0

p=0,
qφθ,n

',m.qι

M .Ί

",m .qι
r,m

A(A1 + A,) + (p-?)A1 + At + A1,+1_>

(ft-l)(Λ1 + Λ,) + (/>-ί+l)A1 + A, + Λ,_#

A(Λ1 + Λ,) + ( ρ - j - l ) A 1 + Af+I + Λ.+1_>

(A-l)(Λ1 + A,,) + (/>-?)AI + Af+1 + Λ1,_#

A(A1 + Aβ) + (-ϊ)A 1 + At

Λ(Aχ + A.) + ( - q- 1)ΛX + Λ ί+1
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ρφθ,n
q = 0

p = 0, q=n

p = n,q = 0

p = q=0

;,mΐ

zm .i
//τjo.n

/ τjn,o
t/t±k,l

//rjo.o

ft(A1 + A.)+iAi + A 1 l + w

(fe-l)(A1 + Λll) + (p + l)A1 + A l l^

(Λ+l)(A1 + Λll) + (-n-l)A 1

ft^ + ΛJ + ίn+lJAx

Aί^ + A.)

(3) φ(;;i/|;?)cκer δnA>>«(Pn(c))

φ(Λfffcf)cKer 9 ΓΊ Ker 8* Π Λ>"(PW(C)) (pΦO)

ΦC/tfiDciKer 5Π Ker 8* ΠΛ>'*(Pn(C)) (?Φ0).

Proof. _It is clear that tff f Cfffcf, i(W0)EttΓ.}cz,',Hto, i(W0)Et7Ϊ ilc',ΉM

and i(fF0)i( Wo)^{Tl ίTi CL'/,Hi\]. Combining this fact with (7.5) and Proposition

7.12, we get (1) and (2). Moreover, we get (3) by comparing the irreducible SU

(ra+l)-modules appearing in Hfcj.
q.e.d.
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