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第 1 章 序論 

 

1.1 研究の背景 
 

 国土の 7 割以上が山地で構成される日本では，毎年，平均して 1,000 件以上の斜面崩壊が

発生している．気候変動に関する政府間パネル(IPCC)の第 5 次報告 1)によると，今後，地球

温暖化が進むにつれて，局所的かつ突発的な集中豪雨の発生頻度が増加すると予測されて

いる．したがって，そのような集中豪雨による斜面崩壊の発生件数も増加する可能性が高い．

斜面崩壊は人的被害から社会インフラの破壊まで多大な損失を引き起こす．それゆえ，豪雨

時の斜面崩壊に対する適切な防災対策が必要である． 
 

豪雨時の斜面崩壊に対する防災対策として，ハード対策とソフト対策がある．日本には，

急傾斜地崩壊危険区域が約 33 万箇所，土石流危険渓流が約 18 万渓流 2)あるように，全ての

斜面に対するハード対策は現実的に困難である．そのため，避難指示などのソフト対策の強

化が求められている．平成 13 年から施行された「土砂災害警戒区域等における土砂災害防

止対策の推進に関する法律」(以下，土砂災害防止法と呼ぶ)でも，従来のハード対策にあわ

せてソフト対策を推進していくことが定められていた．その後，土砂災害防止法は，平成 27

年に「土砂災害警戒区域等における土砂災害防止対策の推進に関する法律の一部を改正す

る法律 3),4)」(以下，改正土砂災害防止法と呼ぶ)に改正されたが，この改正土砂災害防止法

では，災害発生の危険性のある区域の明示や避難のための情報提供が法律で義務付けられ

ており，ソフト対策のより一層の強化が求められている．このようなソフト対策によって斜

面崩壊の被害を軽減するためには，斜面崩壊に対する危険度予測が重要である．つまり，「ど

こで，どのくらいの雨が降った場合に斜面崩壊発生の危険性が高まるか？」をより高精度に

予測できるシステムの構築が求められる． 
 

 豪雨時の斜面崩壊に対する危険度予測という問題を立場ごとのニーズから考える．まず，

都道府県や市町村などの地方自治体の立場で考えると，斜面崩壊が発生する前に住民の避

難が完了していなければならない．このような住民の避難を促すための情報としては，土砂

災害警戒情報 5)がある．土砂災害警戒情報は，5km 四方の地域を 1 つの「面」として考え，

それぞれの「面」における土砂災害発生に対する危険度を予測して，それらの危険度がある

条件を超えた場合に市町村単位で発令される警戒情報である．改正土砂災害防止法では，こ

の土砂災害警戒情報が避難勧告などの発令に資する情報として法律上に明確に位置付けら

れており，都道府県知事に対しては，土砂災害警戒情報の市町村長への通知および住民への

周知が義務付けられている 3)．このため，地方自治体の立場で考えると，「面」的な危険度

予測によってアラートを発令する土砂災害警戒情報への期待は大きい．しかし，土砂災害警

戒情報は，土砂災害発生を見逃す場合や，警戒情報を発令しても空振りする場合が多数報告

されており 6)，その精度向上が求められているのが現状である．このように，予測精度が低
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い主な理由として，土砂災害警戒情報は素因特性(地形，地質など)の考慮が不十分であるこ

とが考えられる．したがって，土砂災害警戒情報の高度化のためには，素因と誘因の影響を

考慮したマクロ的な危険度予測手法の確立が必要である． 
 

 次に，住民の立場から斜面崩壊の危険度予測について考えると，市町村単位で発令される

土砂災害警戒情報は非常に広範である．集中豪雨時の避難は容易ではないことを考慮する

と，より詳細な斜面単位での情報が求められる．つまり，「自分の家の裏山は崩壊するのか？」

というような「点」での危険度予測が必要である．このような「点」での議論に関しては，

現地計測，数値解析，模型実験など数多くの既往研究がある． 
 

 現地計測に関しては，降雨に伴って時間変化する物理量(土中水分量，斜面の変位など)を

計測し 7)-10)，それらの計測結果を遠隔地でリアルタイムに把握できるシステム 11)-13)が既に

実用化されている．これにより，降雨量だけでなく，水分量や変位に基づく斜面の監視が可

能になっている．例えば，小泉ら 11)は，高速道路沿いの斜面において，体積含水率をリアル

タイムに計測し無線センサネットワークによって計測結果を逐次送信するシステムを実用

化している．そして，体積含水率の現地計測結果に基づいて斜面崩壊に対する危険度予測を

行うための指標として，擬似飽和体積含水率に着目することを提案している 14)．しかし，現

地計測によって入手できる情報は計測した範囲内に限られる．このため，未経験のより強い

降雨外力が作用した場合の物理量を，過去に蓄積された現地計測結果から予測することは

困難である． 
 

 数値解析に関しては，飽和不飽和浸透流解析や極限平衡法による斜面安定解析 15)-17)，ま

たは，浸透と変形を同時に考慮する応力-浸透連成解析 18),19)などによって，斜面崩壊に対す

る危険度予測が数多く試みられてきた．例えば，鵜飼 20)は，せん断強度低減法を用いること

で，有限要素法による斜面の全体安全率を算出できることを明らかにしている．このような

数値解析の長所として，任意の降雨外力を設定できることが挙げられる．つまり，実斜面に

おいては未経験のより強い降雨外力が作用した場合の浸透挙動や変形挙動なども解析的に

予測できる．しかし，適切な予測結果を得るためには，適切な数値解析モデルが必要である．

実斜面において適切な数値解析モデルを設定することは容易ではなく，計測結果を数値解

析によって再現できない場合が多い 17),21)． 
 

 模型実験に関しても，斜面崩壊の発生メカニズムや計測値と崩壊発生の関係を明らかに

するために，様々な研究が行われてきた 22)-26)．このような模型実験の長所としては，数値

解析のように任意の降雨外力を設定できることに加えて，数値解析では分からない実際の

浸透挙動や変形挙動を把握できることが挙げられる．このような長所を利用して，斉藤 22)，

福囿 23)，笹原ら 26)などは，斜面崩壊の発生時刻を予測するための方法を提案している．し

かし，模型実験は，斜面崩壊のメカニズムを解明するための手段であり，それ自体で実斜面

に対する危険度予測を行うものではない． 
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 以上のように，「点」における危険度予測を行うために様々な検討がされているものの，

明確な危険度予測手法は確立されていない．これは，現地計測，数値解析，模型実験をそれ

ぞれ単体で行ったとしても，斜面崩壊の危険度予測は困難であることを示唆している．今後

は，これらを組み合わせた新たな危険度予測システムの構築が必要であると考えられる．松

尾ら 27)は，現地計測と数値解析を有機的に結びつけることで，豪雨時の斜面崩壊を予知し

て災害を未然に防止するシステムを提案している．これを実現するためには，現地計測結果

を適切に再現できる数値解析モデルの推定手法の確立が必要である．また，適切な数値解析

モデルを推定できたのであれば，そのモデルによって算出される物理量の予測値と斜面崩

壊に対する危険度の関係性を明らかにすることも重要な検討課題であると考えられる． 
 

 最後に，道路管理者や鉄道管理者の立場から危険度予測について考える．道路や鉄道は線

状構造物であるため，「線」に適した危険度予測が求められる．現状の管理方法としては，

例えば，高速道路会社では，インターチェンジ区間ごとに通行規制雨量を設定して，各イン

ターチェンジに設置された雨量計によって計測された降雨量が規制雨量値を超過した場合

に，通行規制を実施している 28)．このような管理方法は，区間ごとでマクロ的な危険度を評

価している点において，「面」における危険度予測に近い．また，区間ごとの危険度予測に

おいて，素因特性が十分に考慮されていないという点に関しても，「面」の現状と類似して

いる．したがって，素因と誘因の影響を考慮したマクロ的な危険度予測手法の確立は，「線」

にとっても重要な検討課題である． 
 

ところで，線状構造物では，1 カ所の斜面崩壊が交通ネットワーク全体の機能低下に直結

する．そのため，斜面崩壊発生に対する危険度が高いと考えられる斜面に関しては，「点」

での危険度予測も必要となる．そのためには，松本ら 29)が指摘しているように，長大な「線」

の中から危険な「点」を効率的に抽出する手法の確立も求められる． 
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1.2 研究の目的 
 

 上述のように，「面」としては，素因と誘因の影響を考慮したマクロ的な危険度予測手法

の確立，「線」としては，長大な「線」から危険な「点」を抽出する手法の確立，「点」にお

いては，現地計測結果を高精度に再現できる数値解析モデルの推定手法の確立と，算出され

る物理量の予測値と斜面崩壊に対する危険度の関係性を明らかにすることが求められる．

本研究では，これらを実現するために，既存データを有効活用するための方法論を提案する．

具体的には，「面」に関しては，数値標高モデル 30)やシームレス地質図 31)などの簡易に入手

可能な素因情報，解析雨量 32)から求められる誘因情報，各地点の崩壊発生の有無といった

情報を，近年，急速に発展している機械学習に適用することで，斜面崩壊発生予測モデルを

構築し，土砂災害警戒情報の精度向上を目指す．「線」に関しては，長大な道路沿いの斜面

を 1 つ 1 つ点検したデータ 33)が蓄積されている．これらの点検データを有効活用するため

に，人工知能技術や統計学的手法を組み合わせた危険斜面抽出手法を提案し，長大な「線」

から危険な「点」の抽出を試みる．「点」に関しては，現地計測システムの普及により，降

雨に伴って変化する物理量の時系列データが膨大に蓄積されている．本研究では，数値解析

のような演繹的推論と統計科学に代表される帰納的推論を融合させるための方法論である

データ同化 34)に着目し，現地計測結果を高精度に再現できる数値解析モデルの推定を試み

る．さらに，推定された数値解析モデルによって算出される物理量の予測値から斜面崩壊に

対する危険度予測を行うための方法論も提案する．本研究の目的は，既存データを有効活用

することで，「面」，「線」，「点」における豪雨時の斜面崩壊に対する危険度を予測する手法

をそれぞれ提案し，各提案手法の有用性と実際の運用方法を示すことである． 
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1.3 論文の構成 
 

 図-1-1 は本論文の構成を示している． 
 

 第 1 章は序論として，研究の背景と目的および本論文の構成について述べる． 
 

 第 2 章では，「面」における危険度予測を対象として，素因と誘因の影響を考慮した豪雨

時の斜面崩壊に対する 1km メッシュごとの危険度予測手法を提案し，その有用性を示す．

ここでの危険度予測とは，斜面崩壊の発生予測を意味している．第 2 章では，データ解析の

手法として機械学習を用いるが，まず，機械学習に適用するためのデータを作成する．次に，

様々な機械学習のアルゴリズムに対して作成したデータを適用して予測モデルをそれぞれ

構築する．そして，構築された予測モデルの学習精度と汎化能力を比較することで適切な予

測モデルを決定し，そのモデルに対して仮想の誘因情報を入力することで各 1km メッシュ

において斜面崩壊発生の危険度が高まる水分状況を予測する．最後に，第 2 章で提案した

危険度予測手法の有用性についてまとめるとともに，土砂災害警戒情報の精度向上に対す

る展望も述べる． 
 

 第 3 章では，「線」における危険度予測を対象として，長大な「線」から危険な「点」を

抽出する手法を提案し，その有用性を明らかにする．まず，素因情報の類似性に基づいて危

険斜面を抽出し，その中で順位付けを行うための手法を提案する．そして，その提案手法に

対して道路沿いの点検データを適用することで，危険斜面の抽出と順位付けを行う．つまり，

第 3 章の危険度は，崩壊斜面との素因的特徴の類似性を意味している． 

 

 

 

図-1-1 本論文の構成 

 

第1章 序論
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抽出と順位付け
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浸透解析モデルのデータ同化
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 第 4 章では，「点」における危険度予測を対象として，計測結果を高精度に再現できる数

値解析モデルの推定手法を提案し，その有用性を示す．本研究では，土中水分量の計測結果

に基づく浸透解析モデルの推定を試みるが，そのための方法論として逐次型データ同化手

法の一種である粒子フィルタを用いる．まず，浸透解析モデルの推定に対するデータ同化の

有用性を検証する．次に，ヒステリシスの影響を考慮した水分特性曲線モデルを導入し，浸

透解析モデルのデータ同化におけるヒステリシスの影響について議論する．また，浸透解析

モデルのデータ同化に有効な粒子フィルタのアルゴリズムについても議論する．最後に，計

測される物理量として地下水位のデータを用いた場合のデータ同化も試みる． 
 

 第 5 章でも，「点」における危険度予測を対象とするが，第 4 章のデータ同化によって推

定された浸透解析モデルを用いて，数値解析に基づく危険度予測を試みる．具体的には，推

定された浸透解析モデルを用いて算出される土中水分量に基づく危険度予測手法を提案し，

その有用性を示す．まず，データ同化によって得られた浸透解析モデルのバラツキと一面せ

ん断試験によって得られた強度定数のバラツキを比較し，その両者が斜面安定解析結果に

与える影響について明らかにする．そして，土中水分量に基づく危険度予測手法を提案し，

実斜面においてアラートを発令する土中水分量の閾値の設定を試みる．つまり，第 4 章と

第 5 章における「点」での危険度予測とは，土中水分量に関する予測を意味している． 
 

 第 6 章では，まず，第 2 章から第 5 章までの成果をまとめて，各章で提案した危険度予

測手法の実際の運用方法について議論する． 
 

 最後に，第 7 章において結果を総括し，本論文の結論を述べる． 
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第 2 章 素因と誘因の影響を考慮した豪雨時の斜面崩壊に対する 

1km メッシュごとの危険度予測 

 

2.1 はじめに 
 

 豪雨時の土砂災害に対するソフト対策の 1 つとして，土砂災害警戒情報および土砂災害

警戒判定メッシュ情報 1)がある．土砂災害警戒情報とは，大雨警報が発表されている状況で，

土砂災害発生の危険度がさらに高まった場合に，市町村長の避難勧告や住民の自主避難の

判断を支援するよう，対象となる市町村を特定して警戒を呼びかける情報であり，都道府県

と気象庁によって共同で発表される．土砂災害警戒判定メッシュ情報は，都道府県砂防部と

地方気象台等が提供するメッシュによる危険度情報 2)であり，5km 四方のメッシュごとに土

砂災害発生に対する危険度を表示しており，土砂災害警戒情報や大雨警報を補足する情報

という位置付けである．土砂災害警戒情報は，5km 四方のメッシュごとに 2 時間先までの

降雨と土中水分量の予測値を計算し，その値が土砂災害警戒情報の判断基準を超えた場合

に市町村単位で発令される．ここでの予測値とは，後述する連携案方式では，60 分間積算

雨量と土壌雨量指数 3)である．土砂災害警戒情報は，斜面単位での危険度評価は難しいが，

「面」的に降雨量と土中水分量の予測値と連動してリアルタイムにアラートを発令できる

という特徴がある．しかし，この土砂災害警戒情報は，土砂災害発生を見逃す場合や，警戒

情報を発令しても空振りする場合が多数報告されており，その精度向上が求められている 4)．

このような予測精度が低い理由として，評価範囲が 5km 四方と広域であること，各地域に

おける素因特性(地形，地質など)が十分に考慮されていないことなどが考えられる．したが

って，このような「面」的な危険度予測を行う場合にも，より狭域な範囲(例えば 1km 四方)

において，素因と誘因 5)の両方を考慮した危険度予測が必要であるといえる． 
 

 現在の日本では，総務省統計局の定める「統計に用いる標準地域メッシュおよび標準地域

メッシュ・コード 6)」の各メッシュ単位において様々なデータを入手できる．例えば，斜面

崩壊の素因の 1 つである地形情報に関しては，国土地理院の基盤地図情報ダウンロードサ

ービス 7)によって，全国における数値標高モデル(Digital Elevation Model，以下 DEM と呼ぶ)

を無料で入手可能である．また，地質情報に関しては，シームレス地質図 8)などによって全

国の地質情報が公開されている．さらに，斜面崩壊の主な誘因である降雨の情報についても， 

1km 四方の標準地域 3 次メッシュ 6) (以下，1km メッシュと呼ぶ)単位で解析雨量 9)として

簡易に入手できる状況であり，その値を用いることで 1km メッシュごとの土壌雨量指数を

算出することも可能である．したがって，これらの情報を有効活用することができれば，素

因と誘因の両方を考慮して，土砂災害警戒情報の精度向上に寄与できる可能性がある． 
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 近年，大量のデータを有効活用するための方法論として，多くの分野で機械学習(Machine 

Learning)が用いられている．機械学習では，コンピュータに大量のデータを学習させて，そ

のデータ内に潜むパターンを見出して予測モデルを構築する．そして，その構築されたモデ

ルを使用することで，未学習のデータに対する予測が可能となる．現行の土砂災害警戒情報

においても，機械学習の一種である放射基底関数ネットワーク 10),11)(Radial Basis Function 

Network，以下，RBFN と呼ぶ)を用いて，発生限界雨量線(Critical Line，以下 CL と呼ぶ)の

設定を行っている 12)．しかし，機械学習の分野は急速に発展しており，「国土交通省河川局

砂防部と気象庁予報部の連携による土砂災害警戒避難基準雨量の設定手法(案)12)」(以下，

「CL の設定手法」と呼ぶ)を作成した際には普及していなかった様々なアルゴリズムが，現

在では一般的になっている．したがって，これらの機械学習を活用して，素因の影響も考慮

した新たな基準の設定を試みる価値はあると考えられる． 
 

 本研究では，現行の土砂災害警戒情報を基本として，そこに素因情報を導入し，さらに，

新たな機械学習のアルゴリズムを適用することで，1km メッシュごとに斜面崩壊発生の危

険度予測を行う手法を提案する．そして，実際に豪雨災害が発生した地域を対象として危険

度予測を行うことで提案手法の有用性を明らかにする．以下，2.2 では本研究に関連する既

往の研究についてまとめる．2.3 では機械学習に適用するためのデータを作成する．具体的

には，1km メッシュごとの素因情報と誘因情報を入力ベクトルとして，斜面崩壊発生の有無

を教師データとした適用データを作成する．2.4 では本研究で用いる 5 種類の機械学習のア

ルゴリズムについてそれぞれ説明する．2.5 では各機械学習のアルゴリズムに対してデータ

を適用して構築された予測モデルの学習精度と汎化能力を比較し，本研究で用いる予測モ

デルを決定する．そして，決定した予測モデルに対して仮想の誘因情報(60 分間積算雨量と

土壌雨量指数)を与えることで，各 1km メッシュにおいて斜面崩壊発生の危険性が高まる水

分状況を予測する．2.6 では本研究で提案した危険度予測手法を用いた土砂災害警戒情報の

精度向上に対する展望を述べる．最後に，2.7 では本研究で得られた結論をまとめ，提案手

法の有用性を示す． 
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2.2 本章に関連する既往の研究 

 

2.2.1 概要 
 

 ここでは，素因と誘因の影響を考慮した豪雨時の斜面崩壊に対するマクロ的な危険度予

測に関連する既往の研究について概観し，本研究で解決する課題についてまとめる．2.2.2

では現行の土砂災害警戒情報について調べ，現行の CL の設定方法の問題点を指摘するとと

もに，土壌雨量指数の算出方法について述べる．2.2.3 では土砂災害と素因の関係に関する

既往の研究について調査し，2.2.4 では素因と誘因の両方を考慮した土砂災害に対する危険

度評価に関する既往の研究を調べる．2.2.5 では既往の研究に関するレビューをまとめて，

本研究で提案するマクロ的な危険度予測手法の方向性について述べる． 

 

 

2.2.2 土砂災害警戒情報 
 

 (1) 連携案方式と AND/OR 方式 
 

 土砂災害警戒情報は平成 20 年から全国的に運用が開始されている．土砂災害警戒情報の

発表の判断に用いる指標とその基準には，「連携案方式」と「AND/OR 方式」がある 1)．

「AND/OR 方式」を用いているのは平成 28 年 11 月の段階で，大阪府と熊本県のみであり，

その発表基準は，基準を府県と気象台が各々設定し，双方の基準に到達すると予想された場

合(AND 方式)，もしくは，震度 5 強以上の地震が発生した後の暫定基準等により，府県と

気象台のいずれか一方で基準に到達した場合(OR 方式)である．それに対して，「連携案方

式」は，土砂災害警戒情報の基準を都道府県と気象台が共通の基準として設定し，この基準

に達すると予想された場合に土砂災害警戒情報を発令するというものである．現在では，ほ

とんどの都道府県で「連携案方式」が採用されているため，本研究でも，この「連携案方式」

による土砂災害警戒情報の精度向上を研究対象とする．以下，「連携案方式」による土砂災

害警戒情報を単に土砂災害警戒情報と呼ぶ． 

 

 図-2-1 は土砂災害警戒情報の概念図を示している．短期降雨指標としては 60 分間積算雨

量を，長期雨量指標としては土壌雨量指数を用いて，各時刻における斜面崩壊発生に対する

危険度を評価している．さらに，2 時間先までの 60 分間積算雨量と土壌雨量指数の予測値

を計算することで，リアルタイムでの警戒情報の発表を可能としている．しかし，土砂災害

警戒情報発令の基準となる CL の設定には，改善の余地が残されている．上述のように，土

砂災害警戒情報は，評価範囲が 5km 四方と広域であり，各 5km メッシュにおける素因特性

が十分に考慮されていない．また，機械学習のアルゴリズムとして RBFN を用いているが，

RBFN は，基底関数の個数が多すぎると過学習(2.3.4 で詳述)する傾向があり，適切な基底

関数の個数の設定は難しいことが指摘されている 13)．したがって，より狭域な範囲で，素因

と誘因の両方を考慮して，過学習を抑制できる機械学習のアルゴリズムを用いて CL を設定

することができれば，土砂災害警戒情報の精度向上も可能になると考えられる． 
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(2) 現行の CL の設定方法 
 

「CL の設定手法 12)」によると，「CL は，過去に土砂災害が発生しなかった時の降雨を用

いて設定した土砂災害の危険性が低いと想定される降雨の発現する確率の高い領域と，過

去の土砂災害の発生状況や避難勧告等の実態などを総合的に勘案して，安全領域と土砂災

害の危険性が相対的に高いと想定される降雨の発現する確率の領域の境界として設定する」

とされている．また，「CL は，ある一定の範囲の土砂災害の危険度を降雨に基づいて評価す

るために設定するものであり，土砂災害危険箇所ごとの地形・地質および植生等の影響をも

考慮して土砂災害の危険度を評価するために設定するものではない」とも記載されている． 
 

 具体的な CL の設定方法を示す．まず，過去の 60 分間積算雨量と土壌雨量指数のデータ

を膨大に収集し，その中から，土砂災害が発生した降雨イベントを抽出しておく．次に，

RBFN を用いて予測モデルを構築するが，RBFN に適用するデータは，土砂災害が発生しな

かった降雨イベントのデータのみである．このため，RBFN によって推定される応答曲面は

誘因情報の発生確率を表したものが推定される．その後，基準にしたがって RBFN の出力

値を修正し，CL を設定するという流れである．ここで，RBFN を用いて予測モデルを構築

する段階で，土砂災害が発生した降雨イベントを使わない理由は，土砂災害が発生した降雨

イベントと比較して，土砂災害が発生しなかった降雨イベントの方が圧倒的に多いためだ

と記載されている 14)．つまり，現行の CL では，それぞれのメッシュにおいて過去に蓄積さ

れた大量の非発生データから安全領域を特定するという考えに基づいて学習を行っている．

しかし，本来的には，篠崎ら 15)が指摘しているように，全ての地域における崩壊・非崩壊の

データを学習させて，その境界を識別する方が望ましい． 

 

 

 

 

図-2-1 土砂災害警戒情報の概念図 

  

6
0
分
間
積
算
雨
量
（m

m
）

土壌雨量指数

現在

実況推移

1時間後 2時間後

土砂災害警戒情報
発表基準線（CL）
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本研究で提案する危険度予測手法は，現行の土砂災害警戒情報に素因情報を導入するこ

とを目指している．そのため，素因の影響を考慮した予測モデルを作成できれば，あるメッ

シュに対応する崩壊事例が存在しなかったとしても，そのメッシュの素因情報に基づいて

CL を設定できると考えられる．したがって，本研究では，崩壊・非崩壊という情報を教師

データとして用いることとする． 

 

(3) 土壌雨量指数 
 

気象庁では，土壌雨量指数 3)の計算に，3 段直列タンクを用いている．図-2-2 は 3 段直列

タンクの概念図を示している．タンクは上から第 1 タンク，第 2 タンク，第 3 タンクと呼ば

れ，それぞれの底面の孔からの流出は，表面流出，表層浸透流出，地下水流出に相当する．

また，各タンクには横孔もあり，例えば，第 1 タンクの横孔は豪雨時の表面流を模擬してい

る．降雨は第 1 タンクに与えられ，時間の経過に伴って上から下のタンクへと浸透してい

く．時間当たりの浸透量はタンク内の貯留量に比例して，豪雨時には横孔からの流出も発生

する仕組みとなっている．このように，タンクモデルは雨水の浸透とそれによって蓄積され

た土中水分量を簡易的に予測するシミュレーションモデルであるといえる． 

 

 

 

図-2-2 3 段直列タンクの概念図 
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 ある時刻を t，それから Δt だけ経過した時刻を t+Δt とすると，各タンクから横孔への流

出量 Q は以下のように表される． 

       1111111111 LtSwhenLtStQ   

 

(2-1) 

    11111 0 LtSwhentQ   

 

(2-2) 

       1211211212 LtSwhenLtStQ   

 

(2-3) 

    12112 0 LtSwhentQ   

 

(2-4) 

       222222 LtSwhenLtStQ   

 

(2-5) 

    222 0 LtSwhentQ   

 

(2-6) 

       333333 LtSwhenLtStQ   

 

(2-7) 

    333 0 LtSwhentQ   

 

(2-8) 

各タンクからの浸透量 Z は以下のように表される． 

   tStZ 111    

 

(2-9) 

   tStZ 222    

 

(2-10) 

   tStZ 333    

 

(2-11) 

降雨を R とすると，各タンク内の貯留量 S は以下のように表される． 

            tRtZtQtQtSttS  1121111
 

 

(2-12) 

             tZtZtQtSttS 12222   

 

(2-13) 

             tZtZtQtSttS 23333   

 

(2-14) 

 

以上の計算式によって算出される貯留量の和(S1(t+Δt)+S2(t+Δt)+S3(t+Δt))がその時刻にお

ける土壌雨量指数となる．また，この土壌雨量指数を計算するための 3 段直列タンクモデル

のパラメータは表-2-1 に示す全国一律の値が用いられている．このため，上述のように，土

壌雨量指数は各々の斜面における素因情報を考慮しているわけではない．その他にも，比較
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的表層の地中をモデル化したものであるため，深層崩壊や大規模な地すべりにつながるよ

うな地中深い状況を対象としたものではないこと，降水は雨や雪に関わらず即時に第 1 タ

ンクへと流入するため，雪が積雪として地表に蓄えられる過程やこれが融けて地中に浸み

込む過程を考慮しているわけではないことなどの留意点がある． 

 

 

2.2.3 豪雨時の土砂災害と素因情報の関係に関する既往の研究 
 

ここでは，豪雨時の土砂災害について，素因に着目して分析した既往の研究を概観する．

渡部ら 16)は，斜面崩壊と地質の関係性について調査し，斜面崩壊の発生には風化帯の影響

が大きいことを明らかにしている．低引ら 17)は，六甲山地の土石流を対象として，土石流が

発生しやすい地形特性は，流域面積が 5～10ha，渓流の平均勾配が 16°～18°以上，流域内

の高低差が 150m～200m 以上，渓流内の 0 次谷の本数が 20 本～30 本以上であり，地質特性

としては，リニアメントが流域内に 3 本以上，禿赭地・岩塔が存在する，深層風化帯の分布

は渓流内の上流域に存在することが重要であると述べている．近年では，西山ら 18)が，1972

年の天草豪雨で発生した斜面崩壊の地質的特徴を調査し，砂岩と泥岩の地質境界直下の泥

岩の風化部で多数の斜面崩壊が発生していたと報告している．この原因として，西山ら 18)

は，泥岩は砂岩よりも初生的に軟質であり風化による強度低下が著しいこと，高透水性と推

定される砂岩の直下に難透水性の泥岩が分布しているため，両者の地層境界付近で地下水

の浸透が遮断され，それによって泥岩最上部における間隙水圧が上昇したことを指摘して

いる．佐藤ら 19)は，地理的な崩壊・非崩壊の分布に及ぼす重要な要因として，斜面傾斜角，

平均曲率，地質を挙げている．特に，斜面傾斜角は 40°～45°をピークに崩壊率が最も高

くなり，平均曲率は凸型から凹型になるにしたがい崩壊率が高くなっているとしている．ま

た，これらの要因と比較すると，林相はそれほど重要ではないとも述べている．本田ら 20)

は，表層崩壊の発生地点と地質図の情報を比較し，全体的に，新第三系，火成岩および砂岩

泥岩互層の斜面での崩壊が多いと報告している．また，第四期沖積層のように年代が新しく

固結度が低い斜面では小さな降雨でも崩壊しているとも述べている．佐藤ら 21)は，斜面崩

壊の危険度評価に対してニューラルネットワークと最尤法分類の比較を行い，ニューラル

ネットワークの方が適切だとしている．その中で，佐藤ら 21)は，素因に関する説明変数とし

て標高，傾斜，曲率を用いている．このように，土砂災害と素因の関係について調査した既

往の研究は多数存在し，多くの知見が得られている．その中でも，DEM データ 7)から抽出

できる標高，傾斜，曲率といった地形情報やシームレス地質図 8)から得られる地質情報は，

斜面崩壊の発生に影響があることが報告されており，なおかつ，広域の範囲においても容易

に入手可能である．したがって，本研究では，これらの素因情報を用いて斜面崩壊発生に対

する予測モデルを構築することとした． 
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2.2.4 素因と誘因を考慮した豪雨時の土砂災害に対する危険度評価に関する既往の研究 
 

豪雨による土砂災害が発生すると，現地調査が実施されるが，その際には，素因情報と誘

因情報の両方を調査して斜面崩壊との関係を考察する場合が多い 22)-25)．このような災害報

告により，崩壊発生斜面における素因情報と，その地域に降った雨の誘因情報が情報提供さ

れ，それらのデータも着実に蓄積されている．しかし，このような情報だけでは，その地域

に対してどれだけの雨が降った場合に斜面崩壊発生の危険度が高まるかという予測は困難

である．このような予測を行うためには，過去の災害履歴から，素因情報と誘因情報の関係

を分析して，その関係性を把握する必要性がある． 
 

災害履歴に基づいて素因と誘因の関係を分析した事例として，大石ら 26)，高原ら 27),28)，

荒木ら 29)，菊池ら 30)の研究が挙げられる．大石ら 26)は，1999 年 6 月 29 日に広島県西部で

発生した土砂災害を対象として，ウィルコクソン順位和検定 31)を用いた分析を行った．結

果としては，渓流長が卓越した地形的要因に半減期 72h の実効雨量が大きくなるような長

期的な降雨が作用したことで土石流が発生し，延長の長い急傾斜地に最大時間雨量が大き

い集中豪雨が作用したことでがけ崩れが多発したと分析している．高原ら 27)は，2007 年か

ら 2013 年までに石川県で発生した 115 件の土砂災害について，その際の降雨パターンと地

質の関係を分析した．その結果，地質ごとに土砂災害が発生する降雨パターンが異なる傾向

を明らかにし，降雨パターンごとに適切な CL の補正を行うことで，土砂災害警戒情報の空

振りを少なくできる可能性があると論じている．しかし，より詳細な地質情報に基づいて再

検討を行った続報 28)における降雨パターンの分類結果でも，正しく分類されているのは

63.1%とその分類精度はそれほど高くない．荒木ら 29)は，ニューラルネットワークを用いて

土石流危険渓流における土砂崩壊の発生予測を行った．具体的には，土石流危険渓流におけ

る素因情報と降雨量や実効雨量のような誘因情報，その際の崩壊発生の有無をニューラル

ネットワークに学習させ，構築された予測モデルを用いて土砂崩壊発生に対する予測を行

った．これにより，構築された予測モデルを用いると，降雨特性と渓流の地形特性をうまく

捕らえて予測ができていると報告している．菊地ら 30)は，荒木ら 29)の方法を用いて，切土

のり面の崩壊に対するリアルタイム予測を試みた．結果としては，構築された予測モデルを

用いると，いつ，どこののり面の崩壊可能性が高いかを予測できるとしている．荒木ら 29)や

菊地ら 30)の方法は，マクロ的に斜面崩壊発生に対する危険度予測を行うための方法として

非常に有効であると考えられる．本研究では，これらの方法を参考にして，1km メッシュ単

位での「面」的な危険度予測を試みる．荒木ら 29)や菊地ら 30)は，機械学習のアルゴリズム

としてニューラルネットワークを用いているが，ニューラルネットワークは最急降下法に

よって目的関数を最小にするパラメータを推定するため，解が局所解に収束する可能性が

ある．それに対して，近年では，ニューラルネットワークや RBFN のような従来のアルゴリ

ズムよりも予測精度の高い方法が提案され，普及してきている．本研究では，様々なアルゴ

リズムを用いて予測モデルを構築し，それぞれの予測性能の比較も行うこととする． 
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表-2-1 タンクモデルのパラメータ 3) 

 

 

 

 

 

2.2.5 本章に関連する既往の研究のまとめと対応 
 

ここでは，まず，現行の土砂災害警戒情報に関する情報を整理し，その後，素因や誘因の

影響を考慮した豪雨時の土砂災害に対する危険度評価に関する既往の研究について調査し

た．土砂災害警戒情報に関しては，現在では，ほとんどの都道府県で「連携案方式」が採用

されているため，本研究でも，誘因の指標として 60 分間積算雨量と土壌雨量指数を用いる

こととした．また，現在の CL の設定方法では，各メッシュが有する素因特性を考慮してい

ないことだけでなく，土砂災害が発生しなかった降雨の発生確率に基づいて RBFN による

応答曲面を推定しているという問題点もあることが分かった．そこで，本研究では，機械学

習に適用するデータの教師データとしては，崩壊・非崩壊の情報を用いることとする．次に，

土砂災害と素因の関係に関する既往の研究のレビューを行い，土砂災害発生に大きな影響

を与えると考えられる地形的特徴や地質的特徴を抽出した．最後に，素因と誘因を考慮した

危険度評価方法に関する既往の研究についても調査した．その結果，荒木ら 29)や菊地ら 30)

の研究は，素因と誘因を考慮したマクロ的危険度予測手法として有効であることが分かっ

た．本研究では，これらの方法を参考にして，現状の「連携案方式」の土砂災害警戒情報を

基本として，そこに素因情報や新たな機械学習のアルゴリズムを導入することで，CL を適

切に設定するための方法論を提案する． 

 

 

 

 

 

 

 

一段目 二段目 三段目

流出孔の高さ L11=15

（mm） L12=60

流出係数 α 11=0.1

（1/h） α 12=0.15

浸透係数

（1/h）

L2=15 L3=15

α 2=0.05 α 3=0.01

β 1=0.12 β 2=0.05 β 3=0.01
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2.3 適用データの作成 

 

2.3.1 対象地域 
 

 本研究では，平成 26 年 8 月豪雨災害 32)により多数の斜面崩壊が発生したとある地域を対

象地域として選定した．この地域では，平成 26 年 8 月 16 日から 17 日にかけて停滞した前

線の影響により記録的な集中豪雨が発生した．図-2-3 は対象地域内のとある雨量計で計測

された時間雨量と累積雨量の関係を示している．8 月 16 日の夕方から雨が降り始め，線状

降水帯の影響により，日付が 17 日に変わる頃から明け方にかけて非常に激しい降雨が継続

した．この集中豪雨によって，対象地域内では写真 2-1 に示すように多数の斜面崩壊が発生

した．松村ら 32)によると，斜面崩壊は大小合わせて 700 箇所以上発生しており，航空レー

ザー計測の差分から算出した総崩壊土砂量は 1,000,000m3以上であると報告されている． 
 

本研究で解析対象とした領域は，総務省統計局が定める 10km 四方の標準地域 2 次メッシ

ュ 6)で表現するとメッシュ 4 つ分(南北に 15km，東西に 22.5km)に相当し，その中には，1km

メッシュが 400 個存在する．この範囲において，航空写真判読によって，合計 69 個の斜面

崩壊が発生した 1km メッシュ(以下，崩壊メッシュと呼ぶ)を抽出した．斜面崩壊が発生し

ていなかった残りの 331 個の 1km メッシュは非崩壊メッシュと呼ぶ．この各 1km メッシュ

における崩壊・非崩壊という 2 つのクラス(C1，C2)が機械学習を行う際の教師データとな

る． 

 

 

 

図-2-3 平成 26 年 8 月豪雨災害時に対象地域内の雨量計で計測された 

         時間雨量と累積雨量の関係 
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写真-2-1 平成 26 年 8 月豪雨災害によって発生した斜面崩壊 33) 

 

 

2.3.2 素因情報に関するデータの作成 
 

 (1) 地形情報の導入 
 

国土地理院の基盤地図情報ダウンロードサービス 7)から提供されている DEM を用いて，

1km メッシュ内の地形情報を表現する．DEM データには，南北および東西方向に 10m 間隔

の標高値がデジタルデータとして保存されている．これ以降，DEM データにおける標高値

が存在する地点を標高地点と呼ぶ．データ間隔が 10m であることから，1km メッシュ内に

は約 10,000 個の標高地点が存在する．この標高という指標も地形情報を表現する入力ベク

トルとして用いる． 
 

 各標高地点における標高値の 1 階微分がその地点における傾斜となる．対象とする標高

地点(Z)の近傍の 8 点(ZN，ZNE，ZE，ZSE，ZS，ZSW，ZW，ZNW)を図-2-4 のように定義すると，

傾斜 I は各標高地点の標高値を用いて式(2-15)のように算出できる 34)． 
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である． 
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 次に，各標高地点における標高値の 2 階微分がその地点の凹凸を表すラプラシアンとな

る．ラプラシアン lap の計算式 35)は式(2-18)に示す通りである． 
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(2-18) 

ラプラシアンは，対象とする標高地点(Z)とそれに隣接する 4 点(ZN，ZE，ZS，ZW)の標高値

を用いて算出しており，谷地形や遷緩線では正の値を，反対に，尾根部や遷急線では負の値

をとる．そして，その絶対値は各標高地点の凹凸の大きさを表している． 

 

 

 

 

図-2-4 傾斜，ラプラシアンに関する各記号の定義 
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次に，1km メッシュ内での渓流に該当する標高地点を抽出する．図-2-5 は渓流の抽出方

法の概念図である．図中の矢印の方向に渓流が流下していくと仮定すると，中央の標高地点

に対して，黒色で網掛けされた標高地点の標高値は高くなると考えられる．このことから，

対象とする標高地点(Z)よりも標高の高い地点が周りの 8 点(ZN，ZNE，ZE，ZSE，ZS，ZSW，ZW，

ZNW)の中に 5 点以上存在する場合に，中央の標高地点では渓流地形が該当していると見な

すこととした． 

 

 

 

 

図-2-5 渓流の抽出方法の概念図 
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以上の検討により，1km メッシュ内の地形情報として，標高，傾斜，ラプラシアン，渓流

を抽出できた．図-2-6 から図-2-10 はとある 1km メッシュにおける地形図，標高の分布図，

傾斜の分布図，ラプラシアンの分布図，渓流の分布図をそれぞれ示している．図-2-10 にお

ける赤色の領域は渓流が該当していることを意味している．これらの図からも分かるよう

に，同じ DEM データを用いても，そこから多数の情報を得ることができる．また，1km メ

ッシュ内における地形的特徴は標高地点ごとで大きく異なっている．図-2-11 はとある 1km

メッシュにおける傾斜のヒストグラムを示しているが，同一の 1km メッシュ内であっても，

40°以上の標高地点もあれば，10°以下の標高地点も存在する．本研究では，1km メッシュ

ごとに崩壊・非崩壊の識別を行うため，図-2-11 に示すような分布を数値データとして表現

する必要性がある．そのため，ここでは，平均，標準偏差，歪度，尖度を用いて分布を表現

することとした．これらは，確率論における 1 次モーメントから 4 次モーメントに関連す

る統計量であり，それぞれ次式のようにして算出される．式(2-19)は平均，式(2-20)は標準偏

差，式(2-21)は歪度，式(2-22)は尖度を表している． 
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(2-22) 

ここに，x は確率変数，p は確率である．標準偏差は分布のバラツキ，歪度は分布の歪み，

尖度は分布の尖り具合を表現した指標である． 
 

本研究では，標高，傾斜，ラプラシアンに関しては，4 つの統計量(平均，標準偏差，歪

度，尖度)を用いて表現する．渓流に関しては，渓流の割合，渓床勾配の平均，渓床勾配の

標準偏差を用いて表現することとした．渓流の割合は，渓流が該当する標高地点数を 1km

メッシュ内の全標高地点数で除して 100 を乗じた割合である．渓床勾配は渓流が該当する

標高地点の傾斜を用いて算出した． 
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図-2-6 1km メッシュにおける地形図の一例 

 

 

 

 

 

図-2-7 1km メッシュにおける標高の分布図の一例 
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図-2-8 1km メッシュにおける傾斜の分布図の一例 

 

 

 

 

 

図-2-9 1km メッシュにおけるラプラシアンの分布図の一例 
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図-2-10 1km メッシュにおけるラプラシアンの分布図の一例 

 

 

 

 

 

図-2-11 傾斜のヒストグラムの一例 
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(2) 地質情報の導入 
 

地形情報以外の代表的な素因として地質情報が挙げられる．本研究では，シームレス地質

図 8)を用いて各 1km メッシュに該当する地質情報を抽出した．対象地域の地質は，約 2 億

9,900 万年前から 1 億 6,100 万年前に形成された付加体，約 70 万年前から 15 万年前に形成

された段丘堆積物，約 1 万 8,000 年前から現在の間に形成された堆積岩類の 3 種類に大別で

きる．図-2-12 は 400 個の 1km メッシュにおける各地質情報の該当数を示した円グラフであ

る．全体における約 3/4 の 1km メッシュは付加体が該当しており，残りの 1/4 の 1km メッ

シュは段丘堆積物と堆積岩類が同程度該当していることが分かる．表-2-2 は各地質情報が

該当する 1km メッシュの代表的な地形情報の平均値を示している．付加体が該当する 1km

メッシュは，標高が高く，傾斜が急であり，ラプラシアンのバラツキが大きい山地形である．

それに対して，堆積岩類は，典型的な平地の地形条件であることが分かる．段丘堆積物に関

しては，付加体と堆積岩類の中間の地形的特徴を有している．これは，段丘堆積物が山地か

ら流出した土砂が堆積して形成されたものであるため，標高は山地よりも低く，土の内部摩

擦角以上の傾斜を持つことは考えにくいという事実とも一致する．したがって，対象地域に

おける地質情報と地形情報は密接に関係しているといえる． 

 

 

 

 

 

図-2-12 全 1km メッシュにおける地質情報の該当数 
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 次に，各地質情報と斜面崩壊発生との関係について調べる．図-2-13 は 69 個の崩壊メッ

シュにおける各地質の該当数を示した円グラフである．堆積岩類が該当する平地では，斜面

崩壊は発生しておらず，付加体が該当する山地での崩壊数が多い．しかし，全体のメッシュ

数に対する崩壊メッシュの割合で考えると，付加体は 55÷296=約 0.186 であるのに対して，

段丘堆積物は 14÷53=約 0.264 と，段丘堆積物の割合が高い．ここでは誘因の影響を考慮し

ていないため断定はできないが，段丘堆積物という地質的特徴が該当する 1km メッシュで

は，地形的にはそれほど危険ではなくとも，斜面崩壊発生の危険性が高い可能性が考えられ

る． 

 

 

 

 

表-2-2 各地質情報が該当する 1km メッシュの代表的な地形情報の平均値 
 

 

 

 

 

 

 

図-2-13 崩壊メッシュにおける各地質の該当数 
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2.3.3 誘因情報に関するデータの作成 
 

誘因情報に関しては，1km メッシュ内でのバラツキは考慮せず，解析雨量に基づいて入力

ベクトルを作成する．気象庁の土砂災害警戒情報 1)の基準に倣って，短期降雨指標として 60

分間積算雨量を，長期降雨指標としては土壌雨量指数を採用した．土壌雨量指数を算出する

ためのタンクモデルのパラメータは表-2-1 に示す全国一律の値を用いた．図-2-14 はとある

1km メッシュにおいて算出された土壌雨量指数の経時変化を一例として示している．この

ような各時刻における土壌雨量指数を全ての 1km メッシュにおいて算出した．本研究では，

平成 26 年 8 月 16 日から 17 日の間で，最も降雨強度が強かった 8 月 17 日の 2 時から 3 時

までの 1 時間に斜面崩壊が発生したと仮定して，その時間における 60 分間積算雨量とその

時間までに蓄積された土壌雨量指数の 2 つを入力ベクトルとして用いることとした．図-2-

15 はその時間における 400 個の 1km メッシュの 60 分間積算雨量のヒストグラムを，図-2-

16 は土壌雨量指数のヒストグラムを示している．線状降水帯による局地的な集中豪雨であ

ったことに対して，解析対象範囲が南北に 15km，東西に 22.5km と広範囲であるため，計測

された 60 分間積算雨量の値は 1km メッシュごとで大きく異なっている．また，標高地点に

よっては，80mm/h 以上の猛烈な降雨が観測されていることも分かる．土壌雨量指数に関し

ては，解析対象地域における大雨警報の発令基準が，土壌雨量指数の値として 150 程度であ

ることを考慮すると，ほとんどの 1km メッシュにおいて異常な値を記録したといえる． 

 

 

 

 

図-2-14 土壌雨量指数の経時変化の一例 
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図-2-15 60 分間積算雨量のヒストグラム 

 

 

 

 

図-2-16 土壌雨量指数のヒストグラム 
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2.3.4 学習データと検証データの分割 
 

全ての 1km メッシュに関して，素因情報からは 16 個，誘因情報からは 2 個の入力ベクト

ルを抽出した．教師データとしては，2.3.1 で各 1km メッシュにおける崩壊・非崩壊の情報

が得られている．この 2 つを合わせて表-2-3 に示すような適用データを作成した．400 個の

1km メッシュに対して，素因情報と誘因情報によって斜面崩壊発生に対する危険度が表現

されており，それに対する崩壊発生有無の実績が教師データとして表されている．このデー

タを機械学習に適用することで，予測モデルを構築する． 
 

機械学習には過学習(Over fitting)の可能性がある．これは，モデル構築時に使用したデー

タに対して過剰に適合するモデルを構築してしまい，それ以外のデータへの汎化能力が著

しく低下する現象である．機械学習のアルゴリズムには，このような過学習を回避するため

の様々な工夫が施されているが，適用するデータによっては過学習が避けられない場合も

ある．そこで，機械学習の分野では，使用するデータをモデル構築に使うデータ(以下，学

習データと呼ぶ)と，構築されたモデルの妥当性を検証するためのデータ(以下，検証デー

タ)に分けることが多い．つまり，全てのデータを学習に用いるのではなく，モデルの汎化

能力を検証するためのデータを残しておく．本研究でも，作成された 400 メッシュ分のデー

タを，300 個の学習データと 100 個の検証データにランダムに分割した．学習データの中に

は，52 個の崩壊メッシュと 248 個の非崩壊メッシュがあり，検証データの中には，17 個の

崩壊メッシュと 83 個の非崩壊メッシュがある． 

 

 

 

表-2-3 作成した適用データの一例 
 

 

 

 

 

 

 

 

 

教師データ

渓流

平均 標準偏差 歪度 尖度 平均 標準偏差 歪度 尖度 平均 標準偏差 歪度 尖度 割合 平均 標準偏差
（m） （m） （°） （°） （1/m） （1/m） （%） （°） （°） （mm）

1 392.27 107.80 0.00 2.04 35.63 8.56 -0.51 3.12 0.00 0.05 0.10 3.71 19.33 31.43 9.04 付加体 14.00 146.97 非崩壊

2 40.08 18.22 0.11 -1.58 8.01 7.72 1.26 0.92 0.00 0.02 0.93 11.87 10.19 8.32 6.63 堆積岩類 63.00 307.64 非崩壊

3 116.56 17.11 2.48 9.05 5.58 10.03 1.89 5.38 0.00 0.02 0.28 23.22 4.94 14.04 10.63 付加体 38.00 174.34 非崩壊

4 155.59 57.55 1.18 3.27 17.92 16.08 0.31 1.56 0.00 0.03 -0.26 9.81 9.07 20.04 15.21 付加体 38.00 248.33 非崩壊

5 198.87 48.90 -0.15 -0.59 28.68 9.16 -0.24 -0.04 0.00 0.04 0.67 2.24 18.38 25.78 8.49 段丘堆積物 77.00 324.62 崩壊

6 368.33 76.51 -0.07 2.47 34.53 8.90 -0.57 3.44 -0.01 0.04 0.18 3.99 17.11 32.22 8.51 付加体 71.00 306.35 崩壊
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

400 243.89 66.15 0.48 2.51 34.45 14.65 0.51 4.11 0.00 0.05 -0.01 6.82 18.89 26.45 16.06 付加体 2.00 135.29 非崩壊

入力ベクトル

メッシュ
番号

誘因情報

崩壊実績
標高 傾斜 ラプラシアン 渓床勾配 60分間

積算雨量

土壌雨量
指数

素因情報

地質情報
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2.4 解析手法 

 

2.4.1 概要 

 

本研究で対象とする問題は，各 1km メッシュを表現する素因情報と誘因情報の入力ベク

トル x から，各 1km メッシュを崩壊・非崩壊という 2 クラス(C1，C2)に写像する識別規則

を推定する問題である．そして，その際に崩壊・非崩壊の実績データである教師データとの

適合度がなるべく高い識別規則を推定する．このため，データマイニング手法の中でも，教

師あり機械学習に分類される方法論を用いて予測モデルの構築を試みる．識別規則の構成

法として様々な方法論が提案されているが，ここでは，その中でも関数値による方法と決定

木による方法を用いる 36)．関数値による方法とは，例えば，y=f(x;w)=w1x1+…+wdxd=w
txのよ

うな線形識別関数でモデル化を行い，その結合係数 w を推定する方法である．代表的な方

法論としては，パーセプトロン型学習回路やサポートベクターマシンなどが挙げられる．一

方，決定木とは，条件ごとにデータを分割していき，最終的にその分割結果に基づいてクラ

スの写像を行う識別器であり，構築された決定木は偏りが小さく分散が大きいという特徴

がある．そのため，多数の決定木を組み合わせることで分散を小さくしようとする集団学習

法が提案されている．集団学習法の代表的な方法論として，バギングやブースティングなど

が挙げられる． 
 

ここでは，本研究で新たに用いる 4 つの機械学習(多層パーセプトロン 37,38)，サポートベ

クターマシン 39)-41)，ランダムフォレスト 42),43)，勾配ブースティング木 44),45))のアルゴリズ

ムと土砂災害警戒情報の CL の設定に用いられている RBFN10),11)についてそれぞれ説明す

る．多層パーセプトロン，サポートベクターマシン，RBFN は関数値による方法であり，ラ

ンダムフォレストと勾配ブースティング木は決定木による方法である．なお，本研究では，

解析ツールとして，統計解析向けのプログラミング言語である R 言語の caret パッケージ 46)

を用いた． 
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2.4.2 多層パーセプトロン 

 

 (1) 単純パーセプトロン 
 

脳をコンピュータ上のシミュレーションによって模擬しようとする情報処理技術の総称

はニューラルネットワークと呼ばれる．ニューラルネットワークの一種にパーセプトロン

型の識別器がある．最も単純なパーセプトロン型の識別器は単純パーセプトロンと呼ばれ

る．これは，図-2-17 に示すように，それぞれの入力ベクトル x に結合係数 w をかけて出力

するネットワークモデルである．数式としては， 

 hxwfy t   
(2-23) 

と表現され，y は出力値，f は出力関数，h は閾値である．なお，上添え字の t は転置を意味

している．出力関数 f に符号関数 sign を用いれば，wtx-h>0 の場合は 1 をとり，wtx-h ≤0 の

場合は-1 をとる 2 値出力となる． 
 

単純パーセプトロンは線形識別器であり，その表現能力には限界がある．より複雑な問題

にも対応できるように改良されたのが，次に示す多層パーセプトロン(Multi-Layer Perceptron，

以下 MLP と呼ぶ) 37,38)である． 

 

 

 

 

 

図-2-17 単純パーセプトロンの構造 36) 

 

 

 

 

1
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 (2) 多層パーセプトロンの構造 
 

図-2-18 は，MLP の構造を示している．MLP は，1 つの入力層，1 つないしは複数の中間

層，1 つの出力層という階層状の構造を有している．このような中間層を導入することで，

非線形のモデル化が可能になり，中間層を増やして学習を行うことにより深層学習(Deep 

Learning)47)も可能となる． 
 

MLP の構造を数式で表現する．まず，入力層に入力ベクトル xn(n=1,…,N)が与えられる．

ここに，n は学習データの番号であり，2.3 における 300 個目までの学習データに対応する．

学習データの次元は d とする．d は 2.3 における 18 種類の入力ベクトルを意味している．

バイアス項(図-2-18 における入力層の一番下の+1)も含めて n 番目の学習データの入力は

 n

d

nn xxx ,,,1 1  で表される．中間層の出力値である Vj(j=1,…,M)には， 





d

i

n

iji

n

j xwh
0

nt

j xw  
 

(2-24) 

の入力が入り，出力関数 g(u)を介して， 

 n

j

n

j hgV   
 

(2-25) 

が出力される．この出力関数 g(u)が線形であれば，多層のモデルとしても，1 層のモデルと

等価的に表現できてしまうため，g(u)は非線形の関数でなくてはならない．そのため，g(u)

は非線形出力関数と呼ばれ，あらゆる u で微分可能な単調増加関数が用いられる．この非線

形出力関数としては，式(2-26)に示すシグモイド関数が用いられることが多い． 

 

 

 

図-2-18 多層パーセプトロンの構造 36) 

入力層 中間層 出力層
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 
 u

ug



exp1

1
 

 

(2-26) 

ここに，β はパラメータである．基本的には，ロジスティック関数と同じであるが，この β

が入っていることによって，関数の傾きを調節できるようになっている． 
 

 次に，出力層への入力は， 

 
 











M

j

d

i

n

ijikj

M

j

n

jkj

n

k xwgwVwh
0 00

 
 

(2-27) 

で与えられ，その出力 ok(k=1,…,K)は， 

 





































  

 

M

j

d

i

n

ijik j

M

j

n

jkj

n

k

n

k xwgwgVwghgo
0 00

~~~  

 

(2-28) 

となる．  g~ は出力層における非線形出力関数であり，シグモイド関数が用いられる場合も

あれば，式(2-29)に示すソフトマックス関数が用いられる場合などもある． 

   

 



K

l

n

l

n

kn

k

o

o
og

1

exp

exp~  
 

(2-29) 

  

以上のようにして，MLP では，入力層に入力されたベクトル x が，様々な結合係数 w の

影響を受けて出力層から okとして出力される． 

 

 

 (3) 誤差逆伝播法 
 

MLP を用いて予測モデルを構築するためには，適切な結合係数 w の推定が必要である．

MLP における学習方法として，一般的に誤差逆伝播法(Error Backpropagation)が用いられる．

中間層と出力層の間の結合係数 w の学習は，出力値 okと教師データ tkを用いて，二乗誤差

最小化を最急降下法にしたがって行う．n 番目の学習データによる誤差の目的関数は， 
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(2-30) 

となり，学習データ全体で考えると， 

   



N

n

n wEwE
1

 

 

(2-31) 

となる．ここで，学習データ全体を用いて結合係数 w を修正することを 1 エポックと呼ぶ．

τ エポック目の修正量を Δwkj(τ)とすれば，wkj(τ+1)= wkj(τ)+ Δwkj(τ)として修正は行われる．

Δwkj(τ)は合成関数の微分法を用いて，式(2-32)のように与えられる． 
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(2-32) 

ここに， 

   n

k
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k
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n

k hgot  ~  

 

(2-33) 

 は誤差信号である． 
 

 次に，入力層と中間層の間の結合係数 w の学習に関しては，wji で微分するため，合成関

数の微分を 2 回行う必要性があり， 
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(2-34) 

となる．ここで，中間層の誤差信号を 

 



K

k

kj

n

k

n

j

n

j whg
1

  
 

(2-35) 

で定義すれば， 
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n

i

n

jji xw
1

  

 

(2-36) 

と表現できる．式(2-35)の 

K

k kj

n

k w
1
 の項は，各出力値で発生した誤差 n

k を，結合係数 k jw を

介して出力層から中間層へと戻しているため，この方法は誤差逆伝播法と呼ばれる． 
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2.4.3 サポートベクターマシン 

 

 (1) 線形分離可能な場合におけるマージン最大化の概念  
 

サポートベクターマシン(Support Vector Machine，以下 SVM と呼ぶ) 39)-41)は，学習データ

を 2 つのクラス(C1，C2)に識別するという問題に対して，クラスを識別する無限に存在する

超平面の中から，マージン最大化の基準を用いて識別境界を決定するアルゴリズムである．

図-2-19 はマージン最大化の概念図である．ここでは，簡単のために，入力ベクトルを x1と

x2の 2 次元とした場合を示している．マージン最大化は，学習データを〇と□の 2 つのグル

ープに分ける際，学習データの中で最も他グループと近い位置に存在するデータを基準と

して，その距離が最も大きくなるような位置に識別境界を設定するというものである．この

マージン最大化により，未学習の検証データに対しても汎化能力の高い識別器の構築が期

待できる． 
 

マージン最大化を数式で表現する．まず，ニューロンモデルとして単純パーセプトロンを

用いて線形分離可能な場合を考える．単純パーセプトロンの式は，式(2-37)のようになる． 

 hxwsigny t   
 

(2-37) 

 

 

 

 

図-2-19 マージン最大化の概念図 36) 

 

 

MAX

x1

x2
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ここで，2 つのクラス(C1，C2)のラベルを 1 と-1 に数値化しておき，学習データとして，N

個の入力ベクトル x1,…,xNと，それぞれの学習データに対するクラスラベル t1,…,tNが与えら

れているとする．その条件下において，学習データを線形分離可能であると仮定すると，全

ての学習データ i=1,…,N に対して， 

  Nihxwt i

t

i ,,1,1   

 

(2-38) 

を満たすような結合係数 w が幾つか存在する．これは，wtx-h=1 と wtx-h=-1 の 2 枚の超平面

で学習データが完全に分離されていることを意味している．このとき，識別平面とこれらの

超平面との距離(マージンの大きさ)は
w

1 となる．したがって，マージンを最大とする結

合係数 w と閾値 h を求める問題は，式(2-38)に示す制約条件の下で，目的関数 

  2

2

1
wwL   

 

(2-39) 

を最小にする結合係数wを求める問題に帰着する．このような最適化問題を解くために様々

な方法が提案されているが，例えば，Lagrange 定数 αi(>0)を導入して，目的関数を書き換え

ると， 

    
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(2-40) 

となる．結合係数 w および閾値 h に関する偏微分から停留点では， 
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(2-42) 

という関係が成り立つ．これらを式(2-40)に代入すると，制約条件 
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(2-43) 

の下で，目的関数 
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(2-44) 

を最大とする双対問題が得られる．ここで，αi
*>0 となる学習データは，先の 2 つの超平面

wtx-h=1 か wtx-h=-1 のどちらかにのっている．この αi
*が 0 ではない学習データがサポートベ

クターと呼ばれる．つまり，SVM では αi
*=0 の多数の学習データは無視し，αi

*>0 となるサ

ポートベクターのみを用いて結合係数 w を決定している． 
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 (2) ソフトマージン 
  

実問題では，線形分離可能な場合は稀である．このため，多少の識別誤りを許容するソフ

トマージンと呼ばれる方法がある．ソフトマージン法では，マージン
w

1 を最大としなが

ら，別のクラスに識別されることを許すが，その際に，別のクラスにどの程度入り込んだか

という距離を，パラメータ ξi(≥0)を用いて
w

i と表す．そして，その和である 
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N

i

i

w1
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(2-45) 

はできるだけ小さいことが望ましい．この問題は，制約条件 
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(2-46) 

の下で，目的関数 
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i

iwwL
1

2

2

1
,   

 

(2-47) 

を最小にする結合係数 w と ξ を求める問題に帰着する．線形分離可能な場合と同様に式を

展開すると，最終的に，制約条件 

Ni

t

i

N

i

ii

,,1,0

0
1









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の下で，目的関数 

  j

t

jij

N
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N
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iiD xxttL
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
1 1,2

1
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を最大とする双対問題が得られる．ここで，αi
*=0 の学習データに関しては線形分離可能な

場合と同様に無視されるが，これらは正しく識別される．0<αi
*<γ の学習データはサポート

ベクターであるため，これらも正しく識別される．しかし，αi
*=γ に対応する学習データは

ξi≠0 となり，別のクラスに識別されることとなる． 
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 (3) カーネルトリック 

  

非線形で複雑な識別問題を扱う際には，入力ベクトル x を非線形変換して，その空間で線

形識別を行うカーネルトリックと呼ばれる方法が用いられる．入力ベクトル x を非線形の

写像 φ(x)によって変換することを考える．一般には，このような非線形の写像によって変換

した特徴空間の次元は非常に大きくなる傾向がある．しかし，SVM は，目的関数 LDや識別

関数が入力パターンの内積のみに依存した形になっているため，内積が計算できれば最適

な識別関数を構築することが可能である．つまり，非線形に写像した空間で二つの要素 φ(x1)

と φ(x2)の内積が 

     2121 , xxKxx
t

  

 

(2-50) 

のように，入力ベクトル x1と x2のみで計算できるのであれば，非線形写像によって変換さ

れた特徴空間での特徴 φ(x1)や φ(x2)を計算する代わりに，K(x1,x2)から最適な非線形写像を構

成できる．ここで，K はカーネルと呼ばれ，このような計算方法がカーネルトリックと呼ば

れる．この方法を用いることで，SVM の性能が飛躍的に向上したと報告されている 41)．カ

ーネル関数としては，様々なものが提案されている．例えば，多項式カーネルは， 

   pt xxxxK 2121 1,   

 

(2-51) 

であり，Gauss カーネルは式(2-52)で表される． 

 












 


2

2

21

21
2

exp,


xx
xxK  

 

(2-52) 

また，シグモイドカーネルは， 

   bxaxxxK t  2121 tanh,  

 

(2-53) 

である．カーネル関数として，シグモイドカーネルを用いると 3 層の MLP と同様の構造と

なり，Gauss カーネルを用いると RBFN と同じ構造となる．本研究では，多項式カーネルを

用いて SVM の計算を行うこととした． 
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2.4.4 ランダムフォレスト 

 

 (1) 集団学習法 
 

ランダムフォレスト(Random Forest,以下 RF と呼ぶ)42),43)は集団学習法の一種である．集

団学習法とは，多数の識別器を用いて，識別性能の高い新たな識別器を構築しようとするア

ルゴリズムである．RF は識別器として多数の決定木(Decision Tree)を用いる．集団学習法

は，そのアルゴリズムによって，バギング(Bagging)とブースティング(Boosting)に大別され

る．RF はバギングの一種であり，後述する勾配ブースティング木はブースティングの一種

である． 

 

(2) 決定木 36) 
 

図-2-20 は決定木の概念図である．学習データを☆と★の 2 つに識別することを考える．

決定木を構成する要素はノード，リンク，リーフである．ノードはそこからの分岐条件であ

り，リンクはノード間を繋いでいる．リーフは終端ノードとも呼ばれるが，決定木による最

終的な識別結果を意味している．図-2-20 における x1，x2は入力ベクトルであり，a，b，c，

d，e はそれぞれ分岐を行うための基準値を表している．つまり，決定木では，条件ごとにデ

ータを分割していき，最終的にその分割結果に基づいて識別を行う． 

 

 

 

 

図-2-20 決定木の概念図 36) 
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各ノードにおける d 次元の入力ベクトル空間の最適な分割は，入力ベクトルごとに考え

得る分割を，不純度と呼ばれる目的関数で評価して選択する．例えば，とある入力ベクトル

が連続量の場合は，学習データが N であれば，N-1 個の離散的な分割候補点が考えられる．

つまり，隣り合った 2 点の中間の値が，その入力ベクトルにおける分割候補点となる．ま

た，入力ベクトルが名義尺度や順序尺度のようなカテゴリーデータである場合は，それらの

カテゴリー数の分割候補点が存在することとなる．したがって，決定木によって得られる分

割領域は，d 次元空間の入力ベクトルに直行する d-1 次元超平面で囲まれた領域となる．こ

こで，ノード t の不純度 I を， 

      tCPtCPtI K |,,|1    

 

(2-54) 

と定義すると，関数 φ(z1,…,zK)は，zi≥0， 


K

i iz
1

1に対して，次の 3 つを満たせばよい． 

(1) φ()は，全ての i=1,…,K に対して zi=1/K のとき，すなわち，どのクラスの事後確率も一

様に等しいとき，最大となる． 
 

(2)  φ()は，ある i について zi=1 となり，j≠i のときは全て zj=0，すなわち，ただ 1 つのクラ

スに定まるとき，最小となる． 
 

(3)  φ()は，(z1,…,zK)に関して対称な関数である． 
 

代表的な不純度を表す関数として，次の 3 つが提案されている． 

(1) ノード t における誤り率 

   tCPtI i
i

|max1  
 

(2-55) 

(2) 交差エントロピーまたは逸脱度 

     
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(2-56) 

(3) ジニ係数 
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(2-57) 

決定木の学習に関する代表的な方式である CART(Classification and Regression Tree)では，不

純度を表す関数としてジニ係数が推奨されている 36)．ジニ係数において，ノード t で i 番目

のクラスのデータが選ばれる確率がP(Ci|t)で，それが j≠iのクラスに間違われる確率がP(Cj|t)
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であるため，    tCPtCP j

K

i ij i ||
1  

は，ノード t における誤り率となっている．また，i 番

目のクラスを 1，それ以外を 0 とするベルヌーイ試行を考えると，P(Ci|t)(1-P(Ci|t))はその分

散となるため，全てのクラスに関する分散の和を与えていることを意味している． 
 

 ノード t で分割規則を作成する際，不純度の減り方が一番大きな分割を選択すれば良い．

これは，分割を s としたとき， 

        RRLL tIptIptItsI  ,  

 

(2-58) 

が最大となる s を，選択すれば良いということである．ここに，右下添え字の L や R は分

割における左と右をそれぞれ表している． 

 

 (3) バギング 
 

 バギングは学習データのブートストラップサンプルを用いて多数の識別器を並列に学習

させて，最後にその結果を集約して新たな識別器を構築する集団学習法である．ここで，ブ

ートストラップサンプルとは，図-2-21 に示すように，N 個のデータから N 回の復元抽出(デ

ータの重複を許す)を行って作成したサンプルのことである．このブートストラップサンプ

ルを用いることで，多数の識別器による学習が可能になる．しかし，この方法を用いると，

それぞれの識別器の構築には，ブートストラップサンプルのバラツキが反映されるのみな

ので，識別器間の相関が高くなる可能性がある．それにより，最終的に結果を集約しても，

十分な性能強化ができない場合がある．この問題を改良するために提案されたアルゴリズ

ムがランダムフォレスト(RF)である． 

 

 

図-2-21 ブートストラップサンプル 36) 
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 (4) ランダムフォレスト 
 

 図-2-22 は RF の概念図である．RF では，バギングと同様に，学習データのブートストラ

ップサンプルを作成するが，その際に，d’次元の入力ベクトルを選択する．ここで，全ての

入力ベクトルが d 次元の場合，d’<d である．これにより，個々に作成される決定木は，異

なる特徴を持つように学習を行うため，最終的に結果を集約して構築される決定木は汎化

能力が高くなる傾向がある． 
  

 RF のアルゴリズムを以下に示す． 

(1) m=1 から M まで以下の手順を繰り返す． 
 

(a) N 個の d 次元学習データからブートストラップサンプル Zmを生成する． 
 

(b) Zmを学習データとして，以下の手順により各ノード t を分割し，決定木 Tmを成長

させる．リーフのデータ数の下限は 1 とする． 
 

  (ⅰ) d 個の入力ベクトルからランダムに d’個のベクトルを選択する． dd  が推

奨されているが，問題によって最適な d’は変化するため，d’は調整パラメータ

の 1 つである． 

  (ⅱ)  d’個の中から，最適な分割を与える入力ベクトルと分割点を求める． 

  (ⅲ) ノード t を，分割点で left(t)と right(t)に 2 分割する． 

(2) ランダムフォレスト M

mmT
1
を出力する． 

(3) 入力ベクトル x に対する m 番目の木の識別結果を，    Km CCxy ,,1  とする．ランダム

フォレスト M

mmT
1
の識別結果を， j

j
i CC maxarg とする． 

 

 

 

図-2-22 ランダムフォレストの概念図 36) 
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2.4.5 勾配ブースティング木 

 

 (1) ブースティング 
 

 勾配ブースティング木(Gradient boosting Decision Tree，以下 GBDT と呼ぶ) 44),45)は，識別

器としては決定木を用いて，ブースティングによる学習を行う集団学習法である．バギング

では並列的な集団学習を行ったのに対して，ブースティングでは直列的な集団学習を行う．

つまり，新たな識別器を構築する際に，それまでに構築された識別器の学習結果を参考にし

て，逐次的に識別性能を向上させていく．具体的には，学習データの中で，前のステップで

間違って識別された学習データに対する重みを大きくして，次のステップではその学習デ

ータを適切に識別できるように識別器を修正していく． 

 

 (2) アダブーストと加法モデル 
 

 代表的なブースティングのアルゴリズムにアダブースト 36)がある．学習データを

xi(i=1,…,N)，教師データを ti={-1,+1}(i=1,…,N)，学習データの重みをwi
m(i=1,…,N，m=1,…,M)，

識別器を ym(x)={-1,+1}(m=1,…,M)とすると，アダブーストのアルゴリズムは以下のようにな

る． 

(1) 重みを
N

wi

11  (i=1,…,N)に初期化する． 

(2) m=1,…,M について以下の計算を繰り返す． 
 

(a) 識別器 ym(x)を重み付き誤差関数 

  












N

i

m

i

N

i

iim

m

i

m

w

txyIw

E

1

1  

 

 

(2-59) 

が最小になるように学習する．I(ym(xi)≠ti)は，識別関数の出力が教師データと一致

したときは 0，一致しなかったときは 1 となる指示関数である． 
 

(b) 識別器 ym(x)に対する重み αmを計算する． 













 


m

m
m

E

E1
ln  

 

(2-60) 

(c) 重み wi
mを次のように更新する． 

   iimm

m

i

m

i txyIww  exp1
 

 

(2-61) 

(3) 入力 x に対する識別結果を次のように出力する． 

   







 



M

m

mmM xysignxY
1
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(2-62) 
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上述のアルゴリズムにより構築されるアダブーストの出力関数は次式で表される． 

   



M

m

mmm xyxf
1

;  
 

(2-63) 

アダブーストの出力関数 f(x)は，パラメータ γmを持つ基底関数 ym(x;γm)で加法展開している

と見なすことができるため，加法モデルと呼ばれる．ここに，γmは重み付き誤差関数 Emを

最小にする m 番目の識別器のパラメータである．このことから，アダブーストは，目的関

数 L(y,f(x))を最小化するような加法モデルの構築と見なすことができる．このようなモデル

構築方法は，前進逐次加法モデリングと呼ばれ，以下のアルゴリズムにより，一般的表現が

可能である． 

(1) 初期値を f0(x)=0 とおく． 

(2) m=1,…,M について以下の計算を繰り返す． 

  (a) 目的関数 L(t,f(x))を(α,γ)について最適化する． 

      


 
N

i

iimimm xyxftL
1

1
,

;,minarg, 


 

 

(2-64) 

  (b)      mmmm xyxfxf  ;1   とする． 

 
 

 (3) 勾配ブースティング木のアルゴリズム 
 

 アダブーストでは，加法モデルにおける目的関数を L(y,f(x))としていたが，これを決定木

に対応した目的関数に変更したものが GBDT である．識別器を決定木に変更することで，

入力ベクトルが連続変数やカテゴリー変数であっても容易に対応可能であり，なおかつ，外

れ値や欠損値にも強い識別器の構築が可能となる．勾配ブースティング木のアルゴリズム

を以下に示す． 

(1)    



N

i

iyLxf
1

0 ,minarg  となるように初期化する．   xf0 である． 

(2)  m=1,…,M に対して，以下の計算を行う． 

(a) 添え字をランダムに入れ替えた上で，i=1,2,…,N に対して傾き γimを計算する． 

  
 

1
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
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ii
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xfyL
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(2-65) 

(b)  γimを目的変数として決定木を推定し，その終端領域を Rjm(j=1,2,…,Jm)とする． 

(c)  j=1,2,…,Jmについて，      
 




 
jmi Rx

jmimi xfyL


 1, を最小にするように γimをおく． 

(d)       


 
mJ

j

jmjmmm RxIxfxf
1

1  に f を更新する(0<ν<1 は学習速度)． 

(3) 最終モデルを    xfxf M とする． 
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2.4.6 放射基底関数ネットワーク(RBFN) 

 

 現行の土砂災害警戒情報の CL の設定に用いられている RBFN についても説明する．

RBFN は，基本的には多層パーセプトロン(MLP)と同様の構造であるが，中間層は 1 層のみ

であり，その中間層における非線形出力関数 g(u)が図-2-23 に示すガウス基底関数を用いる．

ガウス基底関数は式(2-66)に示す通りである． 

 














 


2

2

exp
r

cx
xg

j
 

 

(2-66) 

ここに，x は入力ベクトル，cjは基底関数の中心点，r は基底関数の半径である．RBFN もパ

ーセプトロン型のニューラルネットワークであることから，入力層にベクトル x が入力さ

れ，ネットワーク内の処理を経て出力 ok が算出されるという流れである．モデルパラメー

タの推定に関しても，出力値 ok と教師データ tk を用いて，これらの二乗誤差の最小にする

結合係数 w を推定するという仕組みである． 

 

 

 

 

図-2-23 ガウス基底関数の形状 14) 
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2.5 解析結果 
 

2.5.1 予測モデルの構築 
 

 2.3 において作成した 300 個の学習データを，2.4 で説明した機械学習のアルゴリズムに

対してそれぞれ適用して，予測モデルを構築した．そして，構築された 5 つの予測モデルに

対して学習データと検証データをそれぞれ適用して，学習の精度と未学習のデータに対す

る汎化能力を比較した．表-2-4 は予測モデルに対して学習データを適用した識別結果を示

しており，表-2-5 は検証データを適用した場合のそれを示している． 

 

表-2-4 学習データを適用した識別結果     表-2-5 検証データを適用した識別結果 

 

(a) MLP                                     (a) MLP 

 

 

 

 

(b) SVM                                     (b) SVM 

 

 

 

 

(c) RF                                       (c) RF 

 

 

 

 

(d) GBDT                                    (d) GBDT 

  

 

 

 

(e) RBFN                                    (e) RBFN 

 

 

 

 

崩壊 非崩壊

崩壊 51 2

非崩壊 1 246

実績群

推定群

崩壊 非崩壊

崩壊 37 5

非崩壊 15 243
推定群

実績群

崩壊 非崩壊

崩壊 52 0

非崩壊 0 248

実績群

推定群

崩壊 非崩壊

崩壊 52 0

非崩壊 0 248

実績群

推定群

崩壊 非崩壊

崩壊 51 1

非崩壊 1 247

実績群

推定群

崩壊 非崩壊

崩壊 13 5

非崩壊 4 78

実績群

推定群

崩壊 非崩壊

崩壊 11 2

非崩壊 6 81
推定群

実績群

崩壊 非崩壊

崩壊 13 1

非崩壊 4 82

実績群

推定群

崩壊 非崩壊

崩壊 14 0

非崩壊 3 83

実績群

推定群

崩壊 非崩壊

崩壊 11 3

非崩壊 6 80

実績群

推定群



49 

 

表-2-4 の結果から，集団学習法の RF と GBDT は学習データを完全に識別できており，学習

という点での精度が高いことが分かる．次に，表-2-5 の結果から，検証データに対しては全

てのアルゴリズムにおいて識別の誤りが発生している．これは，学習データに基づいて予測

モデルを構築する機械学習の性質上，仕方のない結果である．各アルゴリズムによって構築

された予測モデルがどの程度の誤差を含んでいるかを定量的に比較するために，式(2-67)に

示す正確度 36)を算出した． 

100





NP

TNTP
正確度  

 

(2-67) 

ここに，TP(True Positive)は崩壊と識別されて実際に崩壊している 1km メッシュの個数，

TN(True Negative)は非崩壊と識別され実際も非崩壊の 1km メッシュ数，P(Positive)は実際

に崩壊した 1km メッシュ数，N(Negative)は実際に非崩壊の 1km メッシュ数である．つま

り，正確度は正しい識別が行われている 1km メッシュの個数を全メッシュ数で除して 100

を乗じた割合である．表-2-6 は各アルゴリズムにより構築された予測モデルの学習データ

と検証データに対する正確度を示している．まず，MLP と RBFN は学習データに対する正

確度は高いものの，検証データに対する正確度は 91%と大きく減少している．この結果か

ら，MLP や RBFN によって構築された予測モデルは過学習している可能性があるといえる．

つまり，学習データに対して過度に適合する予測モデルを構築してしまったことで，未学習

の検証データに対する汎化能力が低減していると考えられる．SVM に関しては，学習デー

タに対する正確度と検証データに対する正確度の差はほとんどないものの，その両者にお

いて識別性能が低い．それに対して，集団学習法の RF と GBDT は学習データを完全に識別

できているだけでなく，検証データに対する汎化能力も高い．特に，GBDT は検証データに

対する正確度が 97%と非常に高い．したがって，本研究では，GBDT によって構築された予

測モデルを採用して，3%程度の誤差は許容しつつ仮想の誘因情報に対する予測を行うこと

とした． 

 

 

表-2-6 予測モデルの学習データと検証データに対する正確度 

 

 

 

 

 

 

 

 

 

学習データ 検証データ

（%） （%）

MLP 99.00 91.00

SVM 93.33 92.00

RF 100.00 95.00

GBDT 100.00 97.00

RBFN 99.33 91.00
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2.5.2 斜面崩壊発生の危険性が高まる水分状況の予測 
 

 ここでは，構築された GBDT による予測モデルに対して，仮想の誘因情報(60 分間積算雨

量，土壌雨量指数)を与えて，各 1km メッシュにおいて斜面崩壊発生の危険性が高まる水分

状況を予測する．表-2-7 は仮想の誘因情報の解析ケースを示している．合計 11 通りの解析

を行った．400 個の 1km メッシュにおける素因情報はそのまま用いて，誘因情報を表-2-7 に

示すように変動させたデータを構築された予測モデルに対して適用することで，崩壊・非崩

壊の予測を行った．なお，この 11 通りの解析ケースは，図-2-24 に示すような 60 分間積算

雨量と土壌雨量指数の実測データをプロットした際に引くことができる回帰直線上の値を

用いた．このような値を用いることで，内挿による予測が可能となる． 

 

 

表-2-7 仮想の誘因情報の解析ケース 

 

 

 

 

図-2-24 実測データと仮想の誘因の関係 

60分間積算雨量 土壌雨量指数

(mm)

Rain_30 30 193

Rain_35 35 206

Rain_40 40 220

Rain_45 45 233

Rain_50 50 246

Rain_50 55 259

Rain_60 60 272

Rain_65 65 286

Rain_70 70 299

Rain_75 75 312

Rain_80 80 325

解析ケース

0

20
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80

100

0 100 200 300 400

6
0
分
間
積
算
雨
量
（ m

m
）

土壌雨量指数

：実測データ

：仮想の誘因
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表-2-8 は全ての解析ケースにおける，地質ごとの崩壊と推定された 1km メッシュの個数

を示している．この結果から，降雨量が多い解析ケースほど，崩壊と推定される 1km メッ

シュの個数が増加していることが分かる．これは，降雨や土中水分量が斜面崩壊の誘因であ

るという一般的な事実と一致している．つまり，GBDT による予測モデルは，降雨量が大き

くなり土中水分量が増加すると，斜面崩壊発生の危険性が高まるという予測モデルを構築

できている．また，付加体や段丘堆積物で構成された 1km メッシュは降雨量が少ない解析

ケースでも斜面崩壊が発生すると予測されているのに対して，堆積岩類で構成された平地

の 1km メッシュはそのような解析ケースでは崩壊しないと予測されている．これは，堆積

岩類で構成される平地の 1km メッシュでは，斜面崩壊が発生しにくいという事実とも一致

している．しかし，Rain_70，Rain_75，Rain_80 においては，堆積岩類で構成された平地の

1km メッシュでも幾つか崩壊すると予測されている．これは，堆積岩類で構成された 1km

メッシュにそれほど強い雨が降った学習データが少なかったためであると考えられる．こ

のような予測の誤りを減らすためには，対象範囲を広げて，より多くの学習データを用いて

予測モデルを構築する必要性があると考えられるが，これは今後の検討課題である． 

 

 

 

 

表-2-8 各解析ケースにおける地質ごとの崩壊と推定された 1km メッシュの個数 

 

 

 

 

 

 

 

Rain_30 2 0 0

Rain_35 15 6 0

Rain_40 22 7 0

Rain_45 35 10 0

Rain_50 59 10 0

Rain_50 85 11 0

Rain_60 197 24 0

Rain_65 231 25 0

Rain_70 251 30 2

Rain_75 267 30 4

Rain_80 270 30 7

付加体 段丘堆積物 堆積岩類

2億9900万年前～

1憶6100万年前

解析ケース 70万年前～

15万年前

1万8000年前～

現在
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表-2-9 は，付加体で構成された 1km メッシュにおいて，解析ケースごとに崩壊と予測さ

れた 1km メッシュの標高の平均，傾斜の平均，ラプラシアンの標準偏差，渓流の割合，渓

床勾配の平均に関する平均値を示している．標高，傾斜，渓床勾配に関しては，値が大きい

方が斜面崩壊発生の危険度の高くなると考えられるため，平均を用いて評価している．それ

に対して，ラプラシアンは 1km メッシュ内における凹凸を表しているため，その平均は 0

付近になる傾向がある．そのため，ラプラシアンに関しては，標準偏差を用いて 1km メッ

シュ内の凹凸の大きさを比較することとした．表-2-9 の結果から，仮想の誘因情報が小さな

値であっても崩壊すると予測される 1km メッシュは，標高は高く，傾斜が急であり，ラプ

ラシアンのバラツキが大きく，渓床勾配が急であるという傾向を確認できる．渓流の割合に

関しては，明確な傾向は確認できなかった．したがって，付加体で構成された 1km メッシ

ュに関しては，崩壊・非崩壊の識別において，傾斜が急な斜面や地形の凹凸が激しい斜面ほ

ど崩壊しやすいといった地形的特徴が反映されているといえる． 
 

段丘堆積物で構成された 1km メッシュに対しても同様の検討を試みたが，この場合は，

明確な地形的特徴が確認できなかった．これは，段丘堆積物で構成された 1km メッシュに

関しては，1km メッシュの地形情報よりも，地質情報や誘因の影響が大きいためだと考えら

れる． 

 

 

 

表-2-9 付加体で構成された 1km メッシュにおける解析ケースごとに 

崩壊と推定されたメッシュの地形的特徴 

 

 

 

（m） （°） （1/m） （%） （°）

Rain_30 329.6292 35.4860 0.0459 0.1592 31.4844

Rain_35 328.3090 34.7774 0.0463 0.1704 30.8902

Rain_40 305.6538 33.2754 0.0440 0.1692 29.2474

Rain_45 301.3610 32.3681 0.0436 0.1721 28.4186

Rain_50 291.6059 31.3361 0.0447 0.1719 27.8024

Rain_50 274.1162 30.4097 0.0436 0.1730 27.1130

Rain_60 226.7431 28.1393 0.0435 0.1730 24.9128

Rain_65 213.3545 27.2375 0.0424 0.1730 24.1280

Rain_70 206.7896 26.6833 0.0417 0.1721 23.6582

Rain_75 199.7971 25.9813 0.0409 0.1706 23.0871

Rain_80 198.6517 25.9011 0.0408 0.1704 23.0231

渓床勾配
解析ケース

標高の平均 傾斜の平均
ラプラシアン
の標準偏差

渓流の割合
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GBDT によって構築された予測モデルは，1km メッシュ同士の素因的特徴が類似してい

れば，崩壊と推定される誘因情報も同程度であることが求められる．本研究では，とある崩

壊メッシュ(メッシュ番号 8)と類似した素因的特徴を有する複数の 1km メッシュにおいて，

崩壊と予測される誘因情報に違いがあるのかを検証した．表-2-10 は付加体で構成された各

1km メッシュの地形的特徴，実際の誘因情報，実際の斜面崩壊発生の有無，予測モデルにお

いて崩壊と予測される解析ケースを示している．8 番の 1km メッシュよりも激しい雨が降

った 38 番の 1km メッシュなどでは，当然，斜面崩壊が発生しており，ほとんど雨が降って

いない 178 番のメッシュなどでは斜面崩壊は発生していない．このような実際の誘因情報

や崩壊発生の有無は異なっているにも関わらず，構築された予測モデルを用いて算出した

斜面崩壊の発生が予測される誘因情報は，概ね同程度である．このことから，各 1km メッ

シュの素因的特徴が類似している場合は，斜面崩壊発生の危険性が高まる誘因情報も同程

度となるような予測モデルを構築できている．つまり，GBDT による予測モデルは，1km メ

ッシュの素因的特徴ごとに斜面崩壊発生の危険性が高まる誘因情報を予測できるモデルで

あるといえる． 

 

 

 

 

表-2-10 素因的特徴が類似した 1km メッシュにおける誘因情報，斜面崩壊発生の有無， 

崩壊と予測される解析ケース 

 

 

 

 

 

 

 

 

（m） （°） （1/m） （%） （°） （mm）

8 221.998 30.110 0.041 16.562 25.870 62.000 277.709 YES Rain_50

38 225.564 30.031 0.041 18.080 27.521 80.000 320.376 YES Rain_45

76 214.474 31.347 0.043 18.981 27.591 71.000 276.049 YES Rain_50

109 191.419 30.269 0.044 19.751 25.267 4.000 182.871 NO Rain_55

135 239.321 28.085 0.039 19.116 24.539 15.000 164.386 NO Rain_50

144 231.547 30.821 0.041 18.240 25.985 23.000 160.319 NO Rain_50

178 215.776 29.020 0.041 18.067 24.544 1.000 127.024 NO Rain_50

・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・

60分間積算

雨量

土壌雨量
指数 崩壊実績

崩壊と予測される
解析ケース

メッシュ
番号

標高の
平均

傾斜の
平均

ラプラシアン
の標準偏差

渓流の
割合

渓床勾配の
平均
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2.6 土砂災害警戒情報の精度向上に対する展望 

 

 現行の土砂災害警戒情報は，5km 四方のメッシュ単位で 60 分間積算雨量と土壌雨量指数

の予測値を計算し，その値が CL を超過する場合に発令される．このため，近接する 1km メ

ッシュの素因特性の違いは十分に考慮されていない．例えば，図-2-25 に示す 2 つの 1km メ

ッシュ(メッシュ West とメッシュ East)を考えると，この 2 つの 1km メッシュは隣接してい

るため，5km 四方の範囲では同一のメッシュに含まれる．このため，土砂災害警戒情報が発

令される CL は同一の基準となる．しかし，メッシュ West は堆積岩類で構成された平地が

卓越した 1km メッシュであるのに対して，メッシュ East は付加体で構成された山地が卓越

した 1km メッシュであり，斜面崩壊発生に対する危険度は明らかに異なると考えられる．

このような場合にも，本研究で提案したマクロ的な危険度予測手法では，1km メッシュの素

因的特徴ごとに斜面崩壊発生の危険性が高まる誘因情報を予測できる．実際に，2.5.2 にお

ける仮想の誘因情報の解析ケースで表現すると，メッシュ West では Rain_80 であっても崩

壊しないと予測されるのに対して，メッシュ East では Rain_55から崩壊すると予測される．

このように，素因特性を考慮し，1km メッシュ単位での評価を行うことで，よりきめ細やか

な危険度予測が可能となる． 

 

 

 

 

(a) メッシュ West           (b) メッシュ East 

 

図-2-25 2 つの 1km メッシュの地形図 
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本研究で提案したマクロ的な危険度予測手法は，誘因情報として 60 分間積算雨量と土壌

雨量指数を用いている．このため，現行の土砂災害警戒情報の発令方法はそのまま用いて，

その発令基準である CL を，素因特性の影響を考慮して修正することができる．図-2-26 は

本研究で提案した危険度予測手法の概念図を示している．提案した危険度予測手法を用い

ることで，素因情報に基づいて，少ない降雨量でも斜面崩壊発生の危険度が高い 1km メッ

シュに関しては CL を内側に設定し，危険度が低い 1km メッシュに関しては CL を外側に設

定することができると考えられる．ただし，このような CL を引くためには，より多くの降

雨イベントを学習させる必要である．本研究では，平成 26 年 8 月豪雨災害時の誘因情報の

みを用いて予測モデルを構築しているが，本来的には，その地域で降ったあらゆる降雨イベ

ントに対する学習によって予測モデルは構築されるべきである．また，本研究では，南北に

15km，東西に 22.5km の範囲を対象として危険度予測を行ったが，素因の影響をより強く反

映させるためには，さらに広域での学習を行う必要性もあると考えられる． 

 

 

 

 

 

 
 

図-2-26 提案した危険度予測手法の概念図 
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2.7 まとめ 

 

本研究では，現行の土砂災害警戒情報を基本として，そこに素因情報を導入し，新たな機

械学習のアルゴリズムを適用することで，1km メッシュごとに斜面崩壊発生の危険度を予

測する手法を提案した．そして，実際に豪雨災害が発生した地域を対象として，危険度予測

を行うことで提案手法の有用性について議論した．得られた主な結論を以下に示す． 

 

(1) 多層パーセプトロン(MLP)，サポートベクターマシン(SVM)，ランダムフォレスト

(RF)，勾配ブースティング木(GBDT)，放射基底関数ネットワーク(RBFN)の 5 種類の

アルゴリズムを用いて，予測モデルをそれぞれ構築し，各モデルの学習精度と汎化能力

を比較した．その結果，MLP と RBFN は，学習データに対する識別精度は高いものの，

検証データに対する汎化能力が低く，過学習の可能性があることが分かった．SVM は，

検証データに対する識別精度が学習データに対するそれと同程度のモデルを構築でき

ていたが，その両者における識別精度は比較的低い結果となった．集団学習法の RF と

GBDT は，学習データを完全に識別できただけでなく，検証データに対する汎化能力も

高いという結果が得られた．特に，GBDT は，検証データに対する正確度が 97%と非常

に高いことが明らかとなった． 

 

(2) GBDT によって構築された予測モデルに対して，仮想の誘因情報を与えて危険度予測

を行った．その結果，構築された予測モデルは，降雨量が大きくなり土壌雨量指数が増

加すると，斜面崩壊発生の危険度が高まる傾向があることが分かった．また，付加体や

段丘堆積物で構成された 1km メッシュは降雨量が少ない場合でも斜面崩壊が発生する

可能性があると予測されるのに対して，堆積岩類で構成された平地の 1km メッシュで

はそのような場合には崩壊しないと予測された．このことから，GBDT によって構築さ

れた予測モデルは，誘因情報と地質情報を適切に考慮した予測が行えていることが分

かった． 

 

(3) 付加体で構成された 1km メッシュにおいて，解析ケースごとに崩壊と予測された 1km

メッシュの地形的特徴を比較した．その結果，少ない降雨量であっても崩壊すると推定

される 1km メッシュは，標高が高く，傾斜が急であり，ラプラシアンのバラツキが大

きく，渓床勾配が急であるという傾向があることが分かった．このことから，構築され

た予測モデルは，崩壊・非崩壊の識別において，地形的特徴も十分に考慮されているこ

とが確認できた． 

 

(4) GBDT によって構築された予測モデルは，学習データにおける実際の誘因情報や崩壊

発生の有無が異なっていても，各 1km メッシュの素因的特徴が類似している場合は，

斜面崩壊発生の危険性が高まる誘因情報が同程度となるようなモデルを構築できてい

ることが分かった． 
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 以上の結果から，本研究で提案した手法は，1km メッシュの素因的特徴ごとに斜面崩壊発

生の危険性が高まる誘因情報を予測できるため，素因と誘因を考慮した危険度予測手法と

して非常に有用であるといえる．また，提案手法は，現行の土砂災害警戒情報における軸は

変えずに，素因的特徴を考慮してより適切な CL を設定するための手法であるため，現行の

土砂災害警戒情報を改善するための手法としても適切であると考えられる．今後の課題と

しては，予測モデルの一般化が必要である．全国で適用可能な予測モデルを構築するために

は，あらゆる地域のデータを学習させる必要性があるが，そのためには，崩壊履歴の収集だ

けでなく，新たな入力ベクトルの導入も必要であると考えられる． 
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第 3 章 素因情報の類似性に基づく危険斜面の抽出と順位付け 

 

3.1 はじめに 
 

 道路や鉄道などの線状構造物では，1 カ所の斜面崩壊の発生が交通ネットワーク全体の機

能低下を引き起こす．そのため，豪雨時に斜面崩壊発生の危険性が高い斜面(以下，危険斜

面と呼ぶ)に対しては適切な防災対策を行う必要性がある．しかし，日本には無数の斜面が

存在し，防災に費やすことができる時間や費用には限度がある．そのため，危険斜面を抽出

するために，全ての斜面を調査することは現実的に困難である．したがって，既存データを

用いて，簡易で低コスト，かつ効果的に危険斜面を抽出できる方法の確立が求められている．  
 

 豪雨時における斜面崩壊の発生要因には，素因(地形や地質など)と誘因(降雨や地下水な

ど)がある 1)．素因は時間的な変化が小さいのに対して，誘因は短時間でもその値は大きく

変化する．このため，長期的な時間スケールで考えた場合に，豪雨の発生時刻，発生場所，

発生規模を正確に予測することは難しい．危険斜面を抽出し，その後の防災対策を行うため

には，長期的な視点を持って，豪雨時に斜面崩壊発生の危険性が高い斜面を抽出しておく必

要性がある．このことから，本研究で対象とする問題においては，素因情報に基づく危険斜

面抽出が有効であると考えられる．すなわち，過去の豪雨によって斜面崩壊が発生した斜面

と素因的特徴が類似している斜面は，将来的な豪雨によって斜面崩壊が発生する可能性が

高いという観点に基づいて，崩壊斜面との素因的な類似性を評価することが望ましいと考

えられる． 
 

 日本では，道路沿い斜面の現在の状態や安定度を確認するために，道路防災点検が数年に

一度行われている．特に，平成 8 年度以降では，「道路防災点検要領 2)」が改訂され，点検

強化項目や新たな視点での点検項目，調査手法などについての再検討が行われた．このよう

な道路防災点検によって，崩壊斜面や非崩壊斜面に関する素因情報がデータベースとして

既に蓄積されている 3)．したがって，これらの点検結果に基づいて，1 次スクリーニングと

して危険斜面を効果的に抽出することができれば，防災上，有効であると考えられる． 
 

本研究では，素因の類似性に基づいて斜面崩壊に対する危険斜面を抽出して，抽出された

危険斜面の中で順位付けを行う手法を提案する．そして，提案手法に対して道路防災点検の

データを適用することで，危険斜面の順位付けを行い，提案手法の有用性を明らかにする．

以下，3.2 では本研究に関する既往の研究について整理する．3.3 では提案する危険斜面抽

出手法について述べ，その中で用いる解析手法についてもそれぞれ説明する．3.4 では提案

手法に対して道路防災点検のデータを適用し，危険斜面の抽出と順位付けを行う．最後に

3.5 では本章の内容をまとめ，提案手法の有用性を明らかにする． 
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3.2 本章に関連する既往の研究 

 

3.2.1 概要 
 

 本研究では，素因の類似性に基づいて，豪雨時に斜面崩壊発生の危険性が高い斜面を抽出

し，その中で危険度の順位付けを行うための手法を提案する．そして，その手法に道路防災

点検のデータを適用して提案手法の有用性を明らかにする．ここでは，既往の危険斜面抽出

手法に関する情報収集を行って各手法の利点や欠点について整理し，本研究で提案する危

険斜面抽出手法に求められる条件や解析手法について考察する．3.2.2 では採点方式による

危険斜面抽出についてまとめ，その問題点を指摘する．3.2.3 では力学的解析手法による危

険斜面抽出に関する既往の研究を紹介し，その利点と欠点を述べる．3.2.4 では統計学的手

法による危険斜面抽出に関する既往の研究を調べて，既往の研究の問題点を指摘する．最後

に，3.2.5 では既往の研究から明らかになった課題をまとめて，3.3 で提案する危険斜面抽

出手法に求められる条件を明らかにする． 

 

 

3.2.2 採点方式による危険斜面抽出 3) 
 

 既往の危険斜面抽出手法としては，まず，採点方式によるものが挙げられる．この手法は，

a) 崩壊発生に影響する要因(アイテム)，b) 各要因の内容(カテゴリー)，c) カテゴリーに与

える斜面崩壊発生への評価点(カテゴリースコア)，d) 評価点の和から崩壊・非崩壊を判断

する基準値(判別値)の 4 種類の内容をあらかじめ専門家が決めておき，これらの情報を活

用して危険度を判定する手法である．しかし，カテゴリースコアや判別値の決定は専門家の

経験的な知識に依るものであり，客観性に欠けるという問題点が指摘されている． 

 

 

3.2.3 力学的解析手法による危険斜面抽出 
 

 力学的解析手法による危険斜面抽出手法として，沖村ら 4)や鳥居ら 5)の研究がある．これ

らは，数値標高モデル(DEM)を用いて地形の集水性を考慮したモデルを作成し，その集水

モデルによって各時刻の地下水位を算出する．そして，メッシュごとに無限長斜面安定解析

を行って，斜面崩壊発生の危険性が高い斜面を抽出するというものである．つまり，安全率

が 1 を切る，もしくは，安全率が他と比べて低い斜面(渓流)は斜面崩壊発生の危険度が高い

という判断が可能である．しかし，これらの力学的解析手法は，第 1 章でも述べたように，

解析パラメータ(例えば，粘着力 c，内部摩擦角 φ，土層の高さ D)の設定が難しい．適切な

解析結果を得るためには，詳細な現地調査 6)が必要であり，簡易で低コストという条件には

反する．さらに，メッシュごとに地下水位を算定し，安全率を計算するため，広範囲で解析

を行うためには，多大な計算時間を要するという問題点も考えられる． 
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3.2.4 統計学的手法による危険斜面抽出 
 

 危険斜面抽出のための手法として，1970 年代頃から統計学的手法が用いられてきた 7)-9)．

その後，コンピュータや数量化理論の発展によって，統計学的な危険斜面抽出手法として，

数量化Ⅱ類 10)-12)が数多く適用されるようになった．また，近年では，自己組織化マップ(Self-

Organizing Map，以下 SOM と呼ぶ) 13)-15)などの従来では適用されていなかった新たな解析手

法を用いて危険斜面の抽出を試みる研究も行われている．ここでは，統計学的手法を用いた

既往の危険斜面抽出事例に関する情報収集を行った． 

 

 (1) 数量化Ⅱ類を用いた危険斜面抽出に関する既往の研究 
  

 1996 年 2 月 10 日に豊浜トンネルで発生した岩盤崩落事故 16)以後，岩盤崩落に対する危

険度を効果的かつ効率的に評価できる手法が求められていた．この問題に対して，橋本ら 17)

は，岩盤の点検データを数量化Ⅱ類に適用して，岩盤崩落に対する危険斜面の抽出を試みた．

結果としては，幾つかの問題点を有しているものの，統計学的根拠に基づいてカテゴリース

コアや判別的中点を決定し，危険斜面を抽出することができた．しかし，数量化Ⅱ類のみを

用いた崩壊・非崩壊の判別では，それぞれの崩壊斜面が有する素因的特徴を平均化して評価

してしまうため，それによって判別精度が低下する可能性が考えられる． 

 

(2) 自己組織化マップ(SOM)を用いた危険斜面抽出に関する既往の研究 
  

 SOM を利用して危険斜面抽出を試みた研究も幾つか存在する 18),19)．例えば，大加戸ら 18)

は，将来的な斜面災害の防止を目的として行われる道路防災点検のデータが，必ずしも維

持・補修に関する意思決定に有効活用されていないことを問題視して，SOM に対する点検

データの適用を試みた．結果としては，点検項目ごとに要素マップの考察を行うことで，崩

壊斜面と類似した素因的特徴を有する非崩壊斜面とその特徴を把握することができた．し

かし，この研究は SOM のみを用いた分析であるため，最終的な結果の考察が定性的な判断

に止まること，危険度の順位付けがされていないことなどの問題点を有している． 

 

(3) 自己組織化マップ(SOM)と数量化Ⅱ類を用いた危険斜面抽出に関する既往の研究 
  

 日外ら 20)は，数量化Ⅱ類のみを用いた橋本らの研究 17)は，解析に用いた適用データ自体

の妥当性が考慮できていないと指摘した．つまり，点検段階での判定が適切でない場合や，

点検項目のカテゴリー区分が適切でない場合に，統計学的傾向にそぐわない特異点が生じ

て，その結果，解析結果の精度低下が引き起こされると考えた．日外らは，この問題を解消

するために，数量化Ⅱ類と SOM を併用した分析手法を提案した．この手法では，数量化Ⅱ

類による推定を行った後に，SOM に対してデータを適用し，その解析結果に基づいて外れ

値であると考えられる斜面を抽出して，それらを除去する．そして，もう一度数量化Ⅱ類に

よる解析を行うことで推定結果の精度向上を試みた．結果としては，この手法に対して岩盤
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の点検データを適用することで，若干の精度向上が確認された．しかし，この手法は，推定

が一律の基準で行われるという数量化Ⅱ類の欠点を解消できていないと考えられる．危険

斜面抽出においては，各崩壊斜面が有する素因的特徴を適切に評価できる手法が望ましい

といえる． 
  

 神田ら 21)も，SOM と数量化Ⅱ類を併用した危険斜面抽出手法を提案した．神田らの手法

では，まず，SOM を用いて崩壊斜面のクラスタリングを行う．そして，崩壊斜面のクラス

ターごとに非崩壊斜面を合わせて，各クラスターの崩壊斜面と全非崩壊斜面のグループを

複数個作成する．そして，各グループのデータを数量化Ⅱ類にそれぞれ適用することで，崩

壊斜面の素因的特徴を考慮した危険斜面抽出が可能になると考えた．神田らは，数量化Ⅱ類

のみを適用した場合と提案手法を適用した場合の解析結果を比較して，提案手法の有用性

を検証した．結果としては，提案手法の方が検証データにおける崩壊斜面の捕捉率が高く，

提案手法の有用性が確認された．しかし，神田らの提案手法も問題点を有している．まず，

上述のように，SOM は定量的なクラスタリングが困難であるため，使用者によって解析結

果に違いが発生する可能性がある．また，神田らの提案手法は抽出された危険斜面の順位付

けがされていない．実務への適用を考慮すると，抽出された危険斜面の順位付け方法の確立

も必要である． 

 

 

3.2.5 本章に関連する既往の研究のまとめと対応 
 

 ここでは，既往の危険斜面抽出手法に関する情報収集を行い，各手法の利点と欠点を整理

した．その結果，採点方式による危険斜面抽出手法は，汎用性は高いものの，基準が専門家

の経験に左右されること，客観性に欠けることなどの問題点を有していることが分かった．

それに対して，力学的解析手法を用いた危険斜面の抽出は，集水モデルを作成し算出された

地下水位からメッシュごとの安全率を計算するため，客観的かつ定量的な結果を得ること

ができる．しかし，パラメータの決定が困難であること，広範囲を対象とする場合には多大

な計算時間を要することなどの問題点も考えられる．そのため，本研究では，危険斜面抽出

手法として統計学的手法に着目する．その中でも，数量化Ⅱ類は危険斜面を抽出するための

判別分析手法として多くの実績があり，カテゴリーデータを扱うという点で道路防災点検

との相性も良い．しかし，数量化Ⅱ類を単独で用いると，崩壊斜面が持つ素因的特徴が平均

化されて判別は行われてしまう可能性がある．したがって，本研究では，神田ら 21)が提案し

た手法を基本として，そこに，客観的なクラスタリングと抽出された危険斜面の順位付けの

方法を導入した新たな危険斜面抽出手法を提案する． 
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3.3 危険斜面抽出手法 

 

3.3.1 提案する危険斜面抽出手法の概要 
 

 図-3-1 は本研究で提案する危険斜面抽出手法の概念図である．この手法では，まず，全て

の崩壊斜面を素因の特徴ごとに幾つかのクラスターに分類する．これは，同程度の誘因によ

って崩壊した斜面であっても，その素因の特徴がそれぞれ異なっている可能性を考慮して，

素因的特徴が類似した崩壊斜面を同一のクラスターに集めておくためである．このクラス

タリングの段階において，SOM13)-15)と k-平均法 22),23)を用いる．どちらの手法もそれ単体で

用いるとクラスタリング時に不都合が生じるが，この両者を併用することで，客観的なクラ

スタリングが可能となる．次に，各クラスターの崩壊斜面と非崩壊斜面を合わせたデータセ

ットを複数個作成し，数量化Ⅱ類 10)-12)に対して各データセットをそれぞれ適用することで，

危険斜面を抽出する．そして最後に，全てのデータセットから抽出された危険斜面を危険度

の順に並び替える順位付けを行う．これにより，崩壊斜面の特徴ごとに抽出された危険斜面

の順位付けも可能となる． 

 

 

 

 

 

図-3-1 提案する危険斜面抽出手法の概念図 

 

 

 

全崩壊斜面（X箇所）

崩壊斜面を素因の特徴ごとに分類

崩壊斜面（aヶ所）

非崩壊斜面（Yヶ所）

危険斜面（非崩壊） 危険斜面（非崩壊）

危険斜面の順位付け

・・・・

・・・・

・・・・

各グループの崩壊斜面と特徴が類似した斜面を抽出

崩壊斜面（nヶ所）

非崩壊斜面（Yヶ所）
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3.3.2 自己組織化マップ(Self-Organizing Map) 
 

 SOM13)-15)は競合学習型ニューラルネットワークの一種であり，入力層と出力層の 2 層か

ら構成される．SOM は多次元のベクトル集団を 2 次元マップ上に写像することに優れてい

る．SOM を用いると，特徴が類似しているベクトル集団はマップ上の近い位置に配置され，

特徴が類似していないベクトル集団は遠い位置に配置される．これにより，ベクトル集団の

類似性を視覚的に捉えることができる． 
 

 図-3-2 は SOM の構造を示している．SOM では，式(3-1)によって学習が行われる． 

          tmtxthtmtm iciii 1  

 

(3-1) 

ここに，mi(t)は時刻 t における参照ベクトル，x(t)は時刻 t における入力ベクトル，hci(t)は学

習率係数も含めた近傍関数である．近傍関数 hci(t)は学習率係数 α(t)と近傍関数 h(d,t)によっ

て式(3-2)のように表される． 

     tdhtthci ,   

 

(3-2) 

出力層のベクトルは参照ベクトル mi(t)で表され，入力ベクトル x(t)が n 次元の場合は，参照

ベクトルも n 個の要素を有している． 

 

 

 

 

図-3-2 SOM の構造 14) 

 

mi1 mi2 mi3 

x1 x2 x3 xn

min

mi

・・・・・・

・・・・・・・・・

出力（競合）層

入力層

          tmtxthtmtm iciii 1
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SOM の学習は以下のようにして行われる．入力ベクトル x(t)はある測度，例えばユーク

リッド距離 ||x(t)-mi(t)|| を最小にするノード i を探し，それに添え字 C を付ける． 

       tmtxtmtx iC  min  

 

(3-3) 

式(3-3)により決定された参照ベクトル mi(t)を持つノードを勝者ノードと呼ぶ．つまり，と

ある入力ベクトルが提示された場合，その信号に一番近いノードが勝者ノードとなる．そし

て，勝者ノードの近傍領域の中にあるノードは入力ベクトルを学習し，式(3-1)にしたがって

入力ベクトルの方向に少し動く．この学習を何回も繰り返すことで(通常，数千回から数万

回)，図-3-3 に示すような SOM のマップが出力される．図中の暖色の部分に特徴が類似し

たベクトル集団が配置され，クラスターを形成している．それに対して，寒色の部分にはベ

クトル集団は配置されづらく，クラスター間の境界となる傾向がある．このように，SOM

を用いることで，高次元データにおけるベクトル集団の類似性を視覚的に把握できる．しか

し，上述のように，SOM によるクラスタリングは定性的な判断となるため，使用者によっ

てクラスタリング結果に違いが生じる可能性があるという問題点も有している． 

 

 

 

 

図-3-3 SOM の出力結果の一例 
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3.3.3 k-平均法 
 

 SOM 以外の代表的なクラスタリング手法として，k-平均法 22),23)がある．k-平均法は，デ

ータ間の類似度に基づいて大規模なデータを幾つかのクラスターに分類することができる．

しかし，k-平均法を適用するための条件も存在する．まず 1 つ目の条件として，データ間の

類似度を評価する測度を決定しておく必要性がある．この測度に関しては，本研究では，

SOM と同様のユークリッド距離 ||x(t)-mi(t)|| を用いることとした．2 つ目の条件としては，

クラスターの個数をあらかじめ設定しておく必要性がある．このクラスターの個数を決定

するために，SOM の出力結果を用いる．SOM とクラスター分析の併用方法に関する詳細は

3.3.5 で説明する． 
  

 入力データを{x1,…,xn}，クラスター数を k 個とした場合の k-平均法のアルゴリズムを以

下に示す． 
 

(1) データの中から k 個の代表ベクトル C1,…,Ckを適当に選び，それらを初期値とする． 
 

(2) 代表ベクトルが収束するまで以下の手順を繰り返す． 
 

  (a) データ xi から最も近い代表ベクトルが Clならば，xi をクラスターl に割り当てる．

このようにして，全てのデータを代表ベクトルにしたがって k 個のクラスターに

振り分ける． 
 

  (b) 各クラスターに含まれるデータの重心点を新たな代表ベクトルとする． 
 

(3) データの変化量が指定した最小変化量よりも小さくなった場合や，指定した最大反復

回数に達した場合に解析を終了する． 
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3.3.4 数量化Ⅱ類 
 

 数量化Ⅱ類 10)-12)は，カテゴリーデータで表現された説明変数を用いて，カテゴリーデー

タである目的変数を判別するための手法である．つまり，1 つの集団を 2 つの群に分割する

際に用いられる．数量化Ⅱ類によって，カテゴリーデータである説明変数は全て数量化され，

その数量化された値はカテゴリースコアと呼ばれる．とあるベクトル集団に該当するカテ

ゴリースコアの総和がそのベクトル集団のサンプルスコアとなる．このサンプルスコアを

用いて各ベクトル集団がいずれの群に属するかを推定する． 
 

 数量化Ⅱ類のアルゴリズムを以下に示す． 

(1) 各ベクトルに対するカテゴリースコア αjkを推定する． 
 

(2) 式(3-4)によって各ベクトル集団のサンプルスコア y を求める． 


 


Q

j

c

k

jkjk

j

xy
1 1

  

 

(3-4) 

  ここに，xjk は各カテゴリースコアが該当するかどうかによって 1 または 0 の値をとる

ダミー変数である． 
 

(3) 群ごとにサンプルスコア累積相対度数分布表を作成し，累積判別グラフを描く．この

際に，1 群と 2 群の交点の値が判別的中点となる． 
 

(4) 各ベクトル集団のサンプルスコアと判別的中点を比較し，各ベクトル集団が 2 群のう

ちのいずれに属するかを推定する． 
 

以上のようにして，数量化Ⅱ類では目的変数が推定される．この時，全ての斜面における

サンプルスコアが算出されているため，危険斜面抽出と順位付けにおける定量的な判断が

可能となる． 
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3.3.5 提案する危険斜面抽出手法のメリット 
 

 上述のように，本研究で提案する危険斜面抽出手法は SOM，k-平均法，数量化Ⅱ類を組

み合わせている．既往の危険斜面抽出手法と比較した場合の，提案手法の主なメリットを以

下に示す． 
 

(1) 各崩壊斜面が有する素因的特徴を考慮した危険斜面の抽出 

(2) 崩壊斜面の客観的なクラスタリング 

(3) 抽出された危険斜面の順位付け 

 

 (1) 各崩壊斜面が有する素因的特徴を考慮した危険斜面の抽出 
 

 数量化Ⅱ類のみを用いた手法では，それぞれの崩壊斜面が有している素因的特徴が一律

の基準で評価されるため，各崩壊斜面が持つ素因的特徴の影響は相対的に小さくなる．これ

により，危険斜面抽出を行う際に推定精度の低下が生じる．また，SOM や k-平均法のよう

なクラスタリング手法は，斜面の類似性の把握には有効であるものの，最終的な崩壊・非崩

壊の判断を行うためには，使用者の主観的な判断が余儀なくされる．つまり，上述した 3 つ

の解析手法は，危険斜面抽出の問題においては，その手法単体で用いるとそれぞれ不都合が

生じる．それに対して，提案手法は，3 つの解析手法を組み合わせることで，高精度な危険

斜面抽出を可能にする．具体的には，まず，崩壊斜面のみのクラスタリングを行うことで，

素因的特徴が類似している崩壊斜面を同じクラスターに集める．そして，各クラスターの崩

壊斜面と非崩壊斜面を合わせたデータセットを数量化Ⅱ類に対してそれぞれ適用すること

で，各クラスターの崩壊斜面と真に類似した非崩壊斜面を危険斜面として抽出することが

できる． 

 

 (2) 崩壊斜面の客観的なクラスタリング 
 

 崩壊斜面のクラスタリングを行う場合，SOM も k-平均法もそれぞれ短所が存在する．し

かし，この 2 つの手法を併用することで，客観的なクラスタリングが可能となる．具体的に

は，まず，出力された SOM のマップから視覚的にクラスター数を決定する．次に，そのク

ラスター数を k-平均法に入力し，定量的なクラスタリングを行う．そして，k-平均法によっ

て得られたクラスタリング結果を SOM のマップ上にプロットして SOM と k-平均法の解析

結果の整合性を確認する．本研究では，2 つの解析手法において同一の測度(ユークリッド

距離)を用いているため，入力したクラスター数に誤りがなければ k-平均法の解析結果と

SOM のマップが良く合致する．この 2 つが合致しない場合は，SOM の学習回数を変更す

る，もしくは，k-平均法のクラスター数を変更することで，両者が合致するクラスタリング

結果を得ることができる． 
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 (3) 抽出された危険斜面の順位付け 
 

 提案手法を用いて危険斜面抽出を行うと，危険斜面が大量に抽出されることも想定され

る．実務への適用を考えると，危険斜面の抽出だけではなく，抽出された斜面の順位付けが

必須である．つまり，危険斜面が膨大に抽出されたとしても，その中で順位付けをすること

ができれば，危険度の高い斜面から順番に調査を行うことができる．ところで，提案手法で

は，数量化Ⅱ類に対して複数のデータセットをそれぞれ適用するため，データセットごとに

算出されるカテゴリースコアや判別的中点などの基準が異なる．このため，各斜面に対応す

るサンプルスコアによって単純に危険度を比較することはできない．しかし，サンプルスコ

アと判別的中点の差の比較は可能である．これは，判別的中点は各斜面の崩壊・非崩壊を判

断する境界の値であるため，サンプルスコアが判別的中点よりもはるかに大きな値を示す

斜面は，その他の斜面と比較して，崩壊斜面に対する類似性が高いと考えられるためである．

このようにして，提案手法では，複数のデータセットから抽出される危険斜面の順位付けも

可能としている． 
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3.4 道路防災点検のデータに基づく危険斜面の抽出と順位付け 

 

3.4.1 適用データの作成 
 

 本研究では，平成 8 年度道路防災総点検のデータに基づいて危険斜面の抽出と順位付け

を行う．対象とする斜面は，とある高速道路沿い斜面 128 カ所(崩壊斜面 8 カ所)と，その周

辺の国道の道路沿い斜面 89 カ所(崩壊斜面 29 カ所)である．この合計 217 カ所の斜面では，

「道路防災点検要領 2)」にしたがって落石・崩壊に対する点検が行われ，安定度調査表にそ

の結果がまとめられている．表-3-1 は点検項目と点検結果のカテゴリー区分を示している．

崩壊性地形はその斜面が崩壊性の要因を持つ地形であるかどうかを評価しており，崩壊性

の土質は浸食に弱い土質であるか，または，水を含むと強度低下が起こりやすい土質である

かを評価している．崩壊性の岩質に関しては，割れ目や弱層の密度などが主な注目点である．

また，崩壊性の構造の有無を確認するための点検項目として，流れ盤や不透水性基盤上の土

砂が挙げられる．表土および浮石・転石，湧水状況，被覆状況は，表層の状況を調査するた

めの項目である． 
  

 提案手法を用いて危険斜面の順位付けを行うためには，これらの点検結果を数値データ

として表現する必要性がある．本研究では，点検項目における最も危険側のカテゴリーを 1，

最も安全側のカテゴリーを 0，その間のカテゴリーは 0 から 1 の間を均等に分割して数値デ

ータ化を行った．表-3-2 は本研究で作成した適用データの一例を示している． 

 

 

 

表-3-1 点検項目と点検結果のカテゴリー区分 

 

 

 

 

0個 安定

1個 やや不安定

2個以上 不安定

該当せず なし

やや顕著 しみ出し

顕著 湧水あり

該当せず 構造物

やや顕著 複合

顕著 裸地～植生

該当せず H＜15m

該当 15m≦H＜30m

該当せず 30m≦H＜50m

やや顕著 50m≦H

顕著

点検項目 カテゴリー区分 点検項目 カテゴリー区分

表土および浮石・
転石

湧水状況

崩壊性地形

崩壊性の土質

崩壊性の岩質

流れ盤

不透水性基盤上の
土砂

斜面の被覆状況

道路斜面の高さ
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3.4.2 危険斜面抽出と順位付け結果 
 

 (1) SOM と k-平均法を用いた崩壊斜面のクラスタリング結果 
 

 SOM と k-平均法を用いて，37 カ所の崩壊斜面を幾つかのクラスターに分類した．図-3-4

は崩壊斜面のクラスタリング結果を示している．SOM のマップと k-平均法による分類結果

が良く合致している．したがって，本研究で用いた 37 カ所の崩壊斜面は 5 つのクラスター

に分類できると判断した．表-3-3 は各クラスターに含まれる崩壊斜面の点検項目ごとの分

布状況を示している． 

 

 

 

表-3-2 本研究で作成した適用データの一例 

 

 

 

 

図-3-4 崩壊斜面のクラスタリング結果 

1 1 1 0 0.5 1 0 1 0.333 YES A1

1 1 1 1 0.5 1 0.5 0 0 YES A2

1 1 1 1 0.5 0.5 0.5 0 0 YES A3

1 1 1 1 0 0.5 0.5 0 0 YES A4

1 1 1 1 0.5 1 0.5 1 0 YES A5

1 1 1 1 0.5 1 0.5 0.5 0 YES A6

0.5 0.5 1 0 0.5 1 0.5 0 1 YES A7

1 0.5 1 1 0.5 0.5 1 0 1 YES A8

0 0.5 1 1 0.5 0 1 0 0.666 YES A9

1 1 1 1 0.5 0.5 1 0 0 YES A10
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
0 0 0 0 0 0 0.5 0.5 1 NO B180

崩壊性地形
崩壊性の
土質

崩壊性の
岩質

表土および
浮石・転石

湧水状況
斜面の
被覆状況

道路斜面の
高さ

崩壊履歴 斜面番号
不透水性基
盤上の土砂

流れ盤

①

①

②
③

④

④

④

⑤
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表-3-3 各クラスターに含まれる崩壊斜面の点検項目ごとの分布状況 

(a) クラスター① 

 

 

(b) クラスター② 

 

 

(c) クラスター③ 

 

0個 5 安定 7

1つ 2 やや不安定 0

2つ以上 0 不安定 0

該当せず 6 なし 1

やや顕著 1 しみ出し 6

顕著 0 湧水あり 0

該当せず 7 構造物 1

やや顕著 0 複合 6

顕著 0 裸地～植生 0

該当せず 7 15＞H 0

該当 0 30＞H≧15 1

該当せず 7 50＞H≧30 4

やや顕著 0 H≧50 2

顕著 0

カテゴリー
データ

斜面評価指標 カテゴリー 該当数 斜面評価指標 カテゴリー

崩壊性地形
表土および
浮石・転石

崩壊性の土質 湧水状況

崩壊性の岩質
のり面の
被覆状況

流れ盤
道路斜面
の高さ

不透水性
基盤上の土砂

0個 2 安定 4

1つ 2 やや不安定 3

2つ以上 3 不安定 0

該当せず 4 なし 2

やや顕著 3 しみ出し 2

顕著 0 湧水あり 3

該当せず 0 構造物 4

やや顕著 1 複合 3

顕著 6 裸地～植生 0

該当せず 0 15＞H 2

該当 7 30＞H≧15 1

該当せず 3 50＞H≧30 2

やや顕著 4 H≧50 2

顕著 0

崩壊性の岩質

カテゴリー
データ

崩壊性地形
表土および
浮石・転石

崩壊性の土質 湧水状況

斜面評価指標 カテゴリー 該当数 斜面評価指標

のり面の
被覆状況

流れ盤
道路斜面
の高さ

不透水性
基盤上の土砂

カテゴリー

0個 1 安定 1

1つ 2 やや不安定 5

2つ以上 4 不安定 1

該当せず 2 なし 5

やや顕著 2 しみ出し 2

顕著 3 湧水あり 0

該当せず 0 構造物 7

やや顕著 0 複合 0

顕著 7 裸地～植生 0

該当せず 7 15＞H 1

該当 0 30＞H≧15 3

該当せず 1 50＞H≧30 1

やや顕著 6 H≧50 2

顕著 0

崩壊性の岩質
のり面の
被覆状況

流れ盤
道路斜面
の高さ

不透水性
基盤上の土砂

カテゴリー
カテゴリー
データ

崩壊性地形
表土および
浮石・転石

崩壊性の土質 湧水状況

斜面評価指標 カテゴリー 該当数 斜面評価指標
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(d) クラスター④ 

 

 

(e) クラスター⑤ 

 

 

 

 
 

 クラスター①に分類された崩壊斜面は合計 7 カ所であり，全て高速道路沿い斜面である．

高速道路沿いの崩壊斜面が合計 8 カ所であることから，高速道路沿いの崩壊斜面はクラス

ター①に概ね分類されていることが分かる．特徴としては，各点検項目における安全側のカ

テゴリーが該当している斜面が多い．しかし，道路斜面の高さに関しては，他のクラスター

に分類された崩壊斜面よりも高い傾向がある．このことから，高速道路沿い斜面は国道沿い

斜面と比較して，斜面の高さが高いものの，比較的安全に管理されていると考えられる． 
 

 クラスター②に分類された崩壊斜面は合計 7 カ所である．特徴としては，全ての斜面にお

いて流れ盤が該当し，崩壊性の岩質も顕著である．その他の点検項目に関しては，中程度か

ら安全側のカテゴリーに該当している斜面が多い． 
  

0個 0 安定 0

1つ 2 やや不安定 4

2つ以上 6 不安定 4

該当せず 0 なし 1

やや顕著 0 しみ出し 4

顕著 8 湧水あり 3

該当せず 0 構造物 1

やや顕著 1 複合 4

顕著 7 裸地～植生 3

該当せず 8 15＞H 6

該当 0 30＞H≧15 2

該当せず 1 50＞H≧30 0

やや顕著 6 H≧50 0

顕著 1

流れ盤
道路斜面
の高さ

不透水性
基盤上の土砂

カテゴリー
カテゴリー
データ

崩壊性地形
表土および
浮石・転石

崩壊性の岩質
のり面の
被覆状況

崩壊性の土質 湧水状況

斜面評価指標 カテゴリー 該当数 斜面評価指標

0個 0 安定 1

1つ 0 やや不安定 4

2つ以上 8 不安定 3

該当せず 0 なし 2

やや顕著 0 しみ出し 5

顕著 8 湧水あり 1

該当せず 0 構造物 5

やや顕著 0 複合 1

顕著 8 裸地～植生 2

該当せず 0 15＞H 7

該当 8 30＞H≧15 1

該当せず 1 50＞H≧30 0

やや顕著 7 H≧50 0

顕著 0

斜面評価指標 カテゴリー 該当数 斜面評価指標 カテゴリー
カテゴリー
データ

崩壊性地形
表土および
浮石・転石

崩壊性の土質 湧水状況

崩壊性の岩質
のり面の
被覆状況

流れ盤
道路斜面
の高さ

不透水性
基盤上の土砂
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 クラスター③に分類された崩壊斜面は合計 7 カ所である．特徴としては，全ての斜面で崩

壊性の岩質が顕著である．しかし，全ての斜面が受け盤であり，斜面自体も構造物で覆われ

ている．その他の点検項目に関しては，不透水性基盤上の土砂がやや顕著に多く該当してい

るものの，比較的安全側のカテゴリーに分類されている斜面が多いという結果が得られた． 
 

 クラスター④に分類された崩壊斜面は合計 8 カ所である．特徴としては，全ての斜面にお

いて崩壊性の土質が顕著であり，崩壊性地形や崩壊性の岩質に関しても，ほとんどの斜面で

危険側のカテゴリーが該当している．しかし，全ての斜面が受け盤で構成されており，斜面

の高さも低い．その他の点検項目に関しては，中程度から危険側のカテゴリーに分類される

斜面が多い傾向が確認できた． 
  

 クラスター⑤に分類された崩壊斜面は合計 8 カ所である．特徴としては，全ての斜面で 4

つの点検項目(崩壊性地形，崩壊性の土質，崩壊性の岩質，流れ盤)において最も危険なカテ

ゴリーが該当している．さらに，その他の点検項目に関しても，道路斜面の高さを除くと，

中程度から危険側のカテゴリーに分類されている斜面が多い．このことから，クラスター⑤

に分類された崩壊斜面は，5 つのクラスターのうちで，斜面崩壊に対する危険性が最も高い

クラスターであると考えられる． 

 

 (2) 数量化Ⅱ類を用いた危険斜面の抽出結果 
 

 各クラスターの崩壊斜面に非崩壊斜面を合わせて 5 つのデータセットを作成し，数量化

Ⅱ類に対してそれらのデータセットをそれぞれ適用した．クラスター①の崩壊斜面と非崩

壊斜面を合わせたデータセットを数量化Ⅱ類に適用して構築される統計モデルをモデル①

と呼ぶ．その他のクラスターの崩壊斜面と非崩壊斜面を合わせたデータセットによって構

築される統計モデルも同様に，それぞれモデル②，モデル③，モデル④，モデル⑤と呼ぶこ

ととする．表-3-4 は各モデルにおける判別結果を示している．非崩壊斜面の中で崩壊と推定

された斜面は，モデル①からは 25 カ所，モデル②から 14 カ所，モデル③から 8 カ所，モデ

ル④から 10 カ所，モデル⑤からは 0 カ所である．本研究では，非崩壊斜面の中で崩壊と推

定された斜面を今後崩壊発生の恐れがある危険斜面として定義しているため，これらが抽

出された危険斜面となる．最も危険度が高いクラスター⑤の崩壊斜面と非崩壊斜面を合わ

せたデータセットを用いて構築されたモデル⑤からは，危険斜面が抽出されなかった．これ

は，そのような危険度が高い斜面が対象地域には存在していない，もしくは，既に補修が行

われたためだと考えられる． 
 

 表-3-5 は表-3-4 の判別結果を重ね合わせた最終的な判別結果を示している．この結果か

ら，非崩壊と推定された崩壊斜面は 1 カ所のみであり，斜面崩壊の見逃しは少ない．それに

対して，提案手法を用いて抽出された危険斜面は 52 カ所である．したがって，提案手法を

用いることで，崩壊斜面と類似した素因的特徴を有する危険斜面を幅広く抽出できている

といえる． 
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表-3-4 各モデルにおける判別結果 

(a) モデル① 

 

 

(b) モデル② 

 

 

(c) モデル③ 

 

 

(d) モデル④ 

 

 

(e) モデル⑤ 

 

 

表-3-5 最終的な判別結果 

 

崩壊 非崩壊

崩壊 6 25

非崩壊 1 155

実績群

推定群

崩壊 非崩壊

崩壊 7 14

非崩壊 0 166

実績群

推定群

崩壊 非崩壊

崩壊 7 8

非崩壊 0 172

実績群

推定群

崩壊 非崩壊

崩壊 8 10

非崩壊 0 170

実績群

推定群

崩壊 非崩壊

崩壊 8 0

非崩壊 0 180

実績群

推定群

崩壊 非崩壊

崩壊 36 52

非崩壊 1 128

実績群

推定群
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 (3) 抽出された危険斜面の順位付け結果 
 

 サンプルスコアと判別的中点の差を用いて，抽出された 52 カ所の危険斜面の順位付けを

行った．表-3-6 はその順位付け結果を示している．モデル②，モデル③，モデル④から抽出

された危険斜面の順位が高く，モデル①から抽出された危険斜面の順位は低い．これは，他

のモデルと比較して，モデル①から多数の危険斜面が抽出されたことが影響していると考

えられる．つまり，クラスター①に分類された崩壊斜面と類似した特徴を有する非崩壊斜面

は多数存在するのに対して，その他のクラスターの崩壊斜面と特徴が類似した非崩壊斜面

は少ない．このため，統計学的な基準による判別を行うと，クラスター②の崩壊斜面と類似

した斜面の方が，より危険度が高い斜面であると判断される．本研究では，崩壊斜面と素因

的特徴が類似している斜面ほど崩壊発生の危険性が高いと仮定していることから，このよ

うな結果が得られる提案手法は妥当であると考えられる． 
 

 表-3-7 は特に危険度が高かった 3 つの斜面の点検結果を示している．モデル②から抽出

された B53 は，クラスター②の崩壊斜面と同様に，崩壊性の岩質が顕著であり，流れ盤も

該当する．さらに，この斜面には崩壊性地形も 2 つ以上確認されており，表土および浮石・

転石もやや不安定であるというカテゴリーが該当している．この結果から，B53 はクラスタ

ー②の崩壊斜面が有する素因的特徴を満足し，さらに，その他の点検項目に関しても危険な

カテゴリーが該当しているといえる．次に，モデル③から抽出された B33 に関しても，ク

ラスター③の崩壊斜面の特徴である崩壊性の岩質と 2 つ以上の崩壊性地形の条件を満たし，

なおかつ，崩壊性の土質や湧水が該当している．モデル④から抽出された B11 も，クラス

ター④の崩壊斜面が有する素因的特徴を満たしつつ，道路斜面の高さも高い．以上の結果か

ら，提案手法を用いて危険度が高いと推定された斜面は，そのモデルの崩壊斜面が有する主

な素因的特徴を満足しつつ，その他の点検項目でも危険度が高いカテゴリーが該当してい

ることが分かった． 

 

表-3-6 抽出された危険斜面の順位付け結果 

 

順位 斜面番号 モデル 差

1 B53 ② 2.144

2 B33 ③ 1.953

3 B11 ④ 1.913

4 B54 ② 1.903

5 B23 ③ 1.654

6 B5 ④ 1.547

7 B33 ④ 1.205

8 B26 ② 1.159

9 B28 ② 1.159

10 B16 ④ 1.081
・ ・ ・ ・
・ ・ ・ ・
・ ・ ・ ・
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表-3-7 特に危険度が高かった 3 つの斜面の点検結果 

(a) B53 

 

 

(b) B33 

 

 

(c) B11 

 

 

 

 

 

 

 

点検項目 カテゴリー区分 点検項目 カテゴリー区分

不透水性
基盤上の土砂

表土および
浮石・転石

湧水状況

のり面の
被覆状況
道路斜面の

高さ

やや顕著

しみ出し

複合

15≦H＜30

崩壊性地形

崩壊性の
土質

崩壊性の
岩質

流れ盤

2つ以上

該当せず

顕著

該当

やや顕著

点検項目 カテゴリー区分 点検項目 カテゴリー区分

不透水性
基盤上の土砂

やや顕著

崩壊性の
岩質

顕著
のり面の
被覆状況

構造物

流れ盤 該当せず
道路斜面の

高さ
30≦H＜50

崩壊性地形 2つ以上
表土および
浮石・転石

やや顕著

崩壊性の
土質

顕著 湧水状況 湧水あり

点検項目 カテゴリー区分 点検項目 カテゴリー区分

流れ盤 該当せず
道路斜面の

高さ
15≦H＜30

不透水性
基盤上の土砂

やや顕著

崩壊性の
土質

顕著 湧水状況 しみ出し

崩壊性の
岩質

顕著
のり面の
被覆状況

複合

崩壊性地形 2つ以上
表土および
浮石・転石

やや顕著
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3.5 まとめ 

 

 本研究では，素因情報の類似性に基づいて斜面崩壊に対する危険斜面を抽出して，その中

で危険度の順位付けを行う手法を提案し，その提案手法に対して道路防災点検のデータを

適用することで，提案手法の有用性について議論した．本研究によって得られた主な結論を

以下に示す． 

 

(1) SOM と k-平均法を併用することで，全ての崩壊斜面は 5つのクラスターに分類できた．

クラスター①の崩壊斜面は，全て高速道路沿い斜面であり，道路斜面の高さは他のクラ

スターの崩壊斜面より高い傾向があった．クラスター②の崩壊斜面は，流れ盤と崩壊性

の岩質が多く該当するクラスターであることが分かった．クラスター③の崩壊斜面は，

崩壊性の岩質が顕著であるものの，崩壊性地形以外は，比較的危険度の低いカテゴリー

に分類されていた．クラスター④の崩壊斜面は，崩壊性地形，崩壊性の土質，崩壊性の

岩質が危険度の高いカテゴリーに分類されていたが，受け盤構造の斜面が集められた．

クラスター⑤の崩壊斜面は 4 つの点検項目(崩壊性地形，崩壊性の土質，崩壊性の岩質，

流れ盤)で最も危険なカテゴリーが該当し，その他の点検項目に関しても，危険度の高

いカテゴリーが該当していることが分かった．このように，SOM と k-平均法を併用す

ることで，崩壊斜面をその素因的特徴ごとに客観的に分類できることが明らかになっ

た． 

 

(2) 各クラスターの崩壊斜面に非崩壊斜面を合わせて 5 つのデータセットを作成し，数量

化Ⅱ類に対して各データセットをそれぞれ適用することで 5 つのモデルを作成した．

その結果，最終的に 52 カ所の非崩壊斜面が危険斜面として抽出され，非崩壊と推定さ

れた崩壊斜面は 1 カ所のみであった．このことから，提案手法は，斜面崩壊の見逃しは

少なく，崩壊斜面と類似した素因的特徴を有する危険斜面は幅広く抽出できることが

分かった． 

 

(3) サンプルスコアと判別的中点の差を用いて抽出された危険斜面の順位付けを行った．

その結果，危険度が高いと判断された斜面は，各クラスターの崩壊斜面と素因的特徴が

類似しており，なおかつ，そのような素因的特徴を有する他の非崩壊斜面が少ないもの

が選ばれていることが分かった．また，特に危険度が高いと判断された斜面は，各モデ

ルの崩壊斜面が有する明確な素因的特徴以外の点検項目でも危険度が高いカテゴリー

が該当している傾向があることも分かった． 

 

 以上の結果から，道路防災点検のデータに基づいて，1 次スクリーニングとして危険斜面

を効果的に抽出するための方法論として，本研究で提案した手法は有用であるといえる． 

 

 



82 

 

参考文献 
 

  

1) 飯田智之：技術者に必要な斜面崩壊の知識，鹿島出版会，pp.1-7，2012． 
 

2) 一般社団法人全国地質調査業協会連合会：点検要領， 

https://www.zenchiren.or.jp/geocenter/lec-road/docs/guideline.pdf，(最終閲覧日：2018.01.17)． 
 

3) 社団法人地盤工学会：豪雨時における斜面崩壊のメカニズムおよび危険度予測 地盤工

学実務シリーズ 23，丸善株式会社，pp.1-96，2006．  
 

4) 沖村孝，市川龍平：数値地形モデルを用いた表層崩壊危険度の予測法，土木学会論文報

告集，Vol.358，No.Ⅲ-3，pp.69-75，1985．  
 

5) 鳥居宣之，大西剛史：斜面崩壊危険度評価のための表土層内の降雨浸透過程を簡略化し

た地下水位算定モデル，土木学会論文集 C(地圏工学)，Vol.67，No.4，pp.441-452，2011． 
 

6) 小田和広，原口勝則，鏡原聖史，鳥居宣之，小泉圭吾：集中豪雨時における自然斜面の

崩壊特性に関する数値シミュレーション，Kansai Geo-Symposium 2016－地下水地盤環

境・防災・計測技術に関するシンポジウム―，pp.61-66，2016．  
 

7) 持永竜一郎，福山俊郎：シラスのり面崩壊に関する要因分析，土木学会論文報告集，No.197，

pp.101-110，1972． 
 

8) 沖村孝，杉本博：統計的手法による自然斜面崩壊の研究，土木学会論文報告集，No.290，

pp.89-97，1979． 
 

9) 田尻要，中山洋，今泉繁良：地盤情報データベースを用いた熊本県中部地域斜面災害の

解析，土質工学会論文報告集，土質工学会，Vol.32，No.2，pp.159-168，1992． 
 

10) Hayashi, C.: On the quantification of qualitative data from the mathematico-statistical point of 

view (An approach for applying this method to the parole prediction), Annals of the Institute of 

Statistical Mathematics, Vol.2, No.1, pp.35-47, 1950. 
 

11) 菅民郎，藤越康祝：質的データの判別分析数量化Ⅱ類，現代数学社，p.1-191，2011． 
 

12) 内田修：数量化理論とテキストマイニング，日科技連，pp.43-52，2010． 
 

13) Kohonen, T.: Self-organized formation of topologically correct feature maps, Biological 

Cybernetics, Vol.43, No.1, pp.59-69, 1982. 
 

14) 大北正昭，徳高平蔵，藤村喜久郎，権田英功：自己組織化マップとそのツール，シュプ

リンガー・ジャパン，pp.1-53，2008． 
 

15) マーク M．ヴァン．フッレ：自己組織化マップ―理論・設計・応用，海文堂出版，    

pp.1-85，2001． 
 

https://www.zenchiren.or.jp/geocenter/lec-road/docs/guideline.pdf


83 

 

16) 菊地宏吉，水戸義忠：国道 229 号線豊浜トンネル上部斜面の岩盤崩落メカニズムに関す

る地質工学的考察，応用地質，Vol.39，No.5，pp.456-470，1998． 
 

17) 橋本祥司，菊池宏吉，水戸義忠：数量化理論を用いた岩盤評価手法―北海道日本海岸地

域を例として―，開発土木研究所月報 No.545，pp.8-16，1998． 
 

18) 大加戸彩香，小山倫史，丸木義文，中井卓巳，大西有三：自己組織化マップによる道路

斜面点検データの有効活用に関する研究，斜面・のり面の維持管理と防災マネジメント

に関するシンポジウム，pp.1-6，2011． 
 

19) 笠間清伸，西山浩司，本山健士：自己組織化マップを用いた阿蘇市における土砂災害の

分析，第 49 回地盤工学研究発表会，pp.1475-1476，2014． 
 

20) 日外勝仁，齋藤敏明，伊東佳彦，橋本祥司：数量化Ⅱ類および自己組織化マップによる

岩盤斜面危険度評価手法に関する研究，土木学会論文集 No.771，Ⅲ-68，pp.51-60，2004． 
 

21) 神田真太郎，小田和広，小泉圭吾，上出定幸：SOM による数量化Ⅱ類を組み合わせた

道路斜面の安定度評価手法の提案，第 47 回地盤工学研究発表会，pp.1779-1780，2012． 
 

22) MacQueen, J.: Some methods for classification and analysis of multivariate observations, 

Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 

1967. 
 

23) 金森敬文，竹之内高志，村田昇：R で学ぶデータサイエンス 5 パターン認識，共立出

版，pp.15-27，2015． 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

第 4 章 計測結果に基づく浸透解析モデルのデータ同化 

 

4.1 はじめに 
 

 近年，センサの小型化や低コスト化により，現地斜面にセンサを埋設し，体積含水率，土

壌水分吸引水頭，地下水位などを現地計測するシステムが普及している 1)-4)．さらに，無線

通信技術の発達により，計測されたデータを遠隔地でリアルタイムに把握することも可能

となっている 5)-7)．これにより，降雨量だけでなく，土中水分量を考慮した斜面の監視が可

能になってきている．このような斜面監視システムは，斜面崩壊発生の危険性が高まる異常

降雨時を対象としているが，システムそのものは常時活動を基本としている．そのため，斜

面崩壊を引き起こさないような発生頻度の高い通常降雨時の計測結果が膨大に蓄積される

こととなる．本来の目的からすれば，それらは破棄されるか死蔵されるかのいずれかである．

ここで，この膨大に蓄積された通常降雨時の計測結果を有効活用して，異常降雨時における

土中水分量を適切に予測することができれば，斜面監視システムのさらなる普及の一助と

なるだけでなく，斜面防災対策としても非常に有用であると考えられる． 
 

松尾ら 8)は，豪雨時の斜面崩壊を予知して災害を未然に防止することを目的として，現地

計測システムと数値解析シミュレーションを有機的に結びつけることにより構築される防

災システムを提案している．このシステムでは，現地計測された土中水分量に関するデータ

を分析した後，浸透流解析と斜面安定解析によって定量的な安定性評価を行うとしている．

これを実現するためには，現地計測結果を適切にシミュレートできる浸透解析モデルが必

要である．このような考えに基づいて，現地計測結果を利用して浸透解析モデルの推定を試

みた研究 9)-14)がこれまでに幾つか行われている．しかし，推定された浸透解析モデルを用い

て現地計測結果を適切に再現できた事例はそれほど多くない． 
 

一方で，地球物理学的現象のモデリングに用いられる手法として，データ同化 15)-19)があ

る．データ同化とは，数値解析モデル(初期条件，境界条件，パラメータ)を，観測データに

基づいて適切なものへと修正していくための方法論である．つまり，数値解析のような演繹

的推論と，統計科学に代表される帰納的推論を融合させるためのデータ解析法である 17)．

データ同化は，気象学，海洋学の分野で発展してきた手法であり，オンライン型とオフライ

ン型の 2 種類がある．オンライン型は逐次型データ同化手法，オフライン型は非逐次型デー

タ同化手法と呼ばれる．逐次型データ同化手法の代表的な手法としては，カルマンフィルタ

(Kalman Filter)20)，アンサンブルカルマンフィルタ(Ensemble Kalman Filter)21)，粒子フィル

タ(Particle Filter，以下 PF と呼ぶ)22)-24)などが挙げられ，非逐次型データ同化手法としては，

4 次元変分法(4D-VAR)25)などが有名である． 
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 本研究では，現地計測結果を適切に再現できる浸透解析モデルの推定手法の確立を目的

として，データが得られるたびにモデルを修正できる逐次型データ同化手法に着目し，その

中でも，実装が容易な PF を用いて，計測結果に基づく浸透解析モデルのデータ同化を試み

る．以下，4.2 では本研究に関連する既往の研究をまとめて，課題を抽出する．4.3 では浸

透解析モデルの推定に対するデータ同化の有用性の検証を目的として，まず，推定された浸

透解析モデルを用いた解析的外挿の可能性について検証する．さらに，様々な降雨時の計測

結果を用いたデータ同化を行い，浸透解析モデル更新の有効性を確率論的に示す．4.4 では

ヒステリシスを考慮した水分特性曲線モデルを導入し，浸透解析モデルのデータ同化にお

けるヒステリシスの影響について議論する．4.5 では PF の中でもアルゴリズムの異なる 3

種類の手法を用いてそれぞれデータ同化を行い，浸透解析モデルのデータ同化に有効なア

ルゴリズムについて議論する．4.6 では地下水位上昇に起因する斜面崩壊を想定し，地下水

位の計測結果を用いた浸透解析モデルのデータ同化を試みる．最後に，4.7 では本章の内容

をまとめ，PF を用いた浸透解析モデルのデータ同化の有用性を示す． 
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4.2 本章に関連する既往の研究 

 

4.2.1 概要 
 

ここでは，土中水分量の計測結果に基づく浸透解析モデルの推定に関連する既往の研究

を調査し，本章で検討すべき課題を抽出する．4.2.2 では現地計測システムについて概観し，

土中水分量に関して現状で得られるデータについてまとめる．4.2.3 では土中水分量の計測

結果に基づいて浸透解析モデルの推定を試みた既往の研究を調べ，その問題点を明らかに

する．4.2.4 では本研究で着目するデータ同化手法に関する既往の研究を調べる．最後に，

4.2.5 では既往の研究から明らかになった課題をまとめて，4.3 以降で解決する問題につい

て述べる． 

 

4.2.2 現地計測システムに関する既往の研究 
 

不飽和状態の浸透挙動を把握するための方法として，土壌水分吸引水頭や体積含水率の

現地計測が挙げられる 26),27)．土壌水分吸引水頭の計測にはテンシオメータ，体積含水率の

計測には土壌水分計が用いられることが多い．テンシオメータはセラミック製のポーラス

カップを土中に埋設し，これとチューブを介して圧力計に繋いだもので，ポーラスカップの

内部は，あらかじめ脱気水で満たされている．土中にテンシオメータを挿入すると，ポーラ

スカップ内の水圧が土中水の圧力よりも高いため，水はテンシオメータから飽和したポー

ラスカップを通過して，土中水と平衡に達するまで移動する．このため，テンシオメータ内

の水は負圧となり，この圧力を圧力計で計測するというシステムである．土壌水分計は誘電

率から体積含水率を推定する TDR 法や ADR 法などが普及しており，現地計測でも土壌水

分計は数多く用いられている．このようなセンサを斜面に埋設して現地計測を行うことで，

様々なデータや知見が蓄積されている．例えば，酒匂ら 3)は，土壌水分吸引水頭の上昇と降

雨量の関係について考察しており，岩田ら 1)は，地表面変位は土壌水分吸引水頭や体積含水

率の変化量と良い相関があることなどを明らかにしている．また，上述のように，計測され

たデータを無線で送信することで，遠隔地でのリアルタイムな斜面の監視も可能になって

きている 5)． 
 

飽和状態における地下水位を把握するためには，間隙水圧計や水位計などのセンサが用

いられることが多い 26)．サンプラーを用いて掘削した設置孔にセンサを挿入して，地下水

位の計測を行う．地下水位の計測に関しても，センサとロガーを組み合わせたリアルタイム

での観測が現在では主流になっている． 
 

その他にも，地中音測定による地下水流動の把握 28)，超音波測定による土中水分・水位測

定 29)，光ファイバによる土中水分量の計測 30)などが検討されているが，筆者らの研究グル

ープではこれらの計測結果が入手できていないため，本研究では対象としないこととした． 
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4.2.3 土中水分量の計測結果に基づく浸透解析モデルの推定に関する既往の研究 

 

まず，体積含水率や土壌水分吸引水頭の現地計測結果に基づく浸透解析モデルの推定に

関する既往の研究を概観する．笹原ら 9)によると，このような浸透解析モデルの推定方法は

2 種類に大別できるとされている．まず 1 つ目は，同一深度における体積含水率と土壌水分

吸引水頭を同時に計測して，直接水分特性曲線を描く方法 10),11)である．梁ら 10)は，この方

法を用いると，浸潤前線の下降が遅れる場合があるものの，現地計測結果を良好に再現でき

ると報告している．しかし，体積含水率と土壌水分吸引水頭の同時計測はコスト面・メンテ

ナンス面での弊害も多い．さらに，土壌水分吸引水頭の現地計測は，テンシオメータ内の水

位が低下すると適切に計測できない場合があるなどの問題点 9)も指摘されている．2 つ目の

方法として，体積含水率，もしくは土壌水分吸引水頭の現地計測結果に基づいて逆解析的に

浸透解析モデルを推定する方法がある．特に，体積含水率の現地計測は，簡便かつ土壌水分

計の信頼性が向上していることから，実務的にも有効であるとされている 9)．外狩ら 12)，笹

原ら 9)，臼木ら 13)は体積含水率の現地計測結果に基づいて浸透解析モデルの推定を試みた．

シミュレーションモデルとしては飽和不飽和浸透流解析を用いて，逆解析手法としては，外

狩らは最尤法を，笹原らはパラメータを試行錯誤で与える繰り返し探査法を，臼木らは最適

化法の一種である Levenberg-Marquardt 法 31)をそれぞれ適用し，目的関数(現地計測結果と

解析結果の誤差)を最小にする浸透解析モデルの探索を行った．矢部ら 14)は，シミュレーシ

ョンモデルとしてタンクモデル 32)を用いて，算出された土壌雨量指数 33)の値から土壌水分

吸引水頭の値を推定する方法を提案している．具体的には，土壌水分吸引水頭と土壌雨量指

数の間に線形関係を仮定し，その一次式のパラメータ(切片と傾き)を逆解析的に求めてい

る．しかし，これらの既往の研究では，推定された浸透解析モデルを用いたシミュレーショ

ンを行って，現地計測結果を再現できない場合が多い．つまり，既往の研究で用いた逆解析

手法では，適切な浸透解析モデルを推定できない可能性が考えられる．また，既往の研究で

は，ヒステリシス 34)の影響を考慮せずに逆解析を試みているものが多い．一般的に土はヒ

ステリシスを有していることを考慮すると，ヒステリシスの影響を考慮した水分特性曲線

モデルを導入して浸透解析モデルの推定を行う必要性があると考えられる． 
 

 次に，地下水位の計測結果に基づく浸透解析モデルの推定に関する既往の研究として，本

城ら 35),36)の研究がある．これらの研究は，豪雨時の斜面崩壊を研究対象としてはいないが，

浸透解析モデルの逆解析を行う計測結果として実測データを用いることの重要性や，逆解

析に用いた計測結果とは異なる計測結果も予測できるモデルを推定する必要性があること，

さらには，逆解析に用いるデータが多いほどモデルの推定精度が向上することなどを論じ

ている．地下水位の挙動をシミュレートするためのモデルとして，沖村ら 37)の集水モデル

や，それを改良した鳥居ら 38)のモデルがある．これらのモデルを用いたシミュレーション

事例は多数存在する 39),40)ものの，地下水位の現地計測結果に基づいてモデルパラメータを

推定したという報告は筆者の知る限りない． 
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 地下水位の経時変化自体は，現地計測に限らず，模型斜面に対する散水実験 41)-44)によっ

ても得ることができる．模型斜面に対する散水実験によって得られた地下水位の計測結果

を用いる利点として，概ね均質な斜面を作成できること，降雨外力を一定に調整できること，

底面を非排水境界とすることで基盤への浸透を無視することができ，確実な地下水位の発

生が可能なことなどが挙げられる．笹原ら 44)は，散水実験の計測結果に基づいて，「地下水

位～地表面変位」の回帰式と「時間～地下水位」の回帰式をそれぞれ算出し，それらを組み

合わせることで「時間～地表面変位」の予測式を作成した．そして，その予測式を用いるこ

とで，模型斜面の地下水位上昇に伴うせん断変形の計測結果を良好に再現できると報告し

ている．このことからも，地下水位の計測結果に基づく浸透解析モデルの推定を目的とした

場合には，まずは，模型斜面に対する散水実験の計測結果を活用することは有効であると考

えられる． 

 

4.2.4 データ同化に関する既往の研究 

 

データ同化手法として PF を用いて，数値解析モデルのデータ同化を行った事例を以下に

概観する．まず，土木分野では，河川工学 45),46)や構造工学 47),48)の分野での適用事例が多い．

河川工学分野では，河川の洪水を予測するために，河川流量の時系列データを用いて流出モ

デルの推定を試みている．構造工学分野では，橋梁の加速度応答から変位応答を推定するた

めに PF を適用した事例 47)や，RC 構造物の塩害劣化予測のパラメータ更新に PF を適用し

た事例 48)などがある． 
 

地盤工学の分野では，沈下問題に対する弾塑性パラメータの推定に PF が適用され，その

有用性が実証されている 49)-54)．模型実験の計測結果に基づく弾塑性パラメータの推定 49)だ

けでなく，実地盤に対する PF の適用 50)も行われている．また，村上ら 51)は，アンサンブル

カルマンフィルタと比較して，地盤解析における弾塑性パラメータの推定には PF が有効で

あると論じており，珠玖ら 52)は，PF の代表的なアルゴリズム 55)である Sampling Importance 

Resampling(以下，SIR と呼ぶ)と Sequential Importance Sampling(以下，SIS と呼ぶ)を比較す

ると，地盤構造物内の劣化箇所を同定する問題に対しては，SIS の方が有効であると報告し

ている． 
 

以上のように，土木分野では，PF を用いて数値解析モデルのデータ同化を行った事例が

多数存在し，その有用性が確認されているが，斜面防災の分野において，土中水分量の現地

計測結果に基づいて浸透解析モデルのデータ同化を試みた事例は筆者の知る限りない． 
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4.2.5 本章に関連する既往の研究のまとめと対応 

 

ここでは，既往の研究のレビューによって明らかになった本章で検討すべき課題と対応

をまとめる． 
 

(1) 現地計測システムの発展は著しく，土中水分量に関する計測結果をリアルタイムに入

手することができ，なおかつ，それらの計測結果は大量に蓄積されている．したがって，

これらの計測結果を有効活用して，斜面崩壊の予測に役立てる技術が必要である． 
 

(2) 土中水分量に関する現地計測結果に基づいて浸透解析モデルの推定を試みた研究は幾

つか存在するものの，推定された浸透解析モデルを用いたシミュレーションを行って，

現地計測結果を適切に再現できない場合が多い．このことから，既往の研究とはアルゴ

リズムの異なる逆解析手法を用いて，浸透解析モデルの推定を試みる価値はある．本研

究では，4.3 において，体積含水率の現地計測結果に基づく浸透解析モデルのデータ同化

を行う．そして，本城ら 36)が論じたように，データ同化に用いた降雨イベントよりも強

い降雨時の計測結果に対するモデルの再現性についても議論する． 
 

(3) 現地計測結果はリアルタイムに入手でき，なおかつ，自動的に蓄積されていく．このた

め，浸透解析モデルもデータが得られるたびに，より適切なものへと更新できることが

望ましい．4.3 では，逐次型データ同化手法の一種である PF の特徴を活かして，浸透解

析モデル更新の妥当性についても検証する． 
 

(4) 既往の研究では，現地計測結果に基づいて浸透解析モデルの推定を行う場合に，ヒス

テリシスの影響を考慮していないものが多い．一般的に土はヒステリシスを有している

ことを考慮すると，ヒステリシスの影響を考慮したデータ同化も試みる必要性がある．

4.4 では，浸透解析モデルのデータ同化におけるヒステリシスの影響について議論する． 
 

(5) PF の考え方を基本とした逐次型データ同化手法は幾つか提案されており，地盤沈下問

題における弾塑性パラメータの同定には SIS が有効であると報告されている 52)．しかし，

浸透解析モデルの推定に関しては，どのアルゴリズムが有効であるかは明らかでない．

4.5 では，PF の中でもアルゴリズムの異なる 3 種類の手法を用いてそれぞれデータ同化

を行い，浸透解析モデルのデータ同化に有効なアルゴリズムについて議論する． 
 

(6) 地下水位の計測結果に基づく浸透解析モデルのデータ同化に関しては，未知の情報(境

界条件，パラメータの不均質性)を減らすという点において，模型斜面に対する散水実験

によって得られた計測結果を活用することが有効であると考えられる．4.6 では防災科

学技術研究所において行われた大型模型斜面に対する散水実験の地下水位の計測結果に

基づく浸透解析モデルのデータ同化を試みる． 
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4.3 浸透解析モデル推定に対するデータ同化の有用性の検証 

 

4.3.1 概要 

 

ここでは，PF による浸透解析モデルのデータ同化に関する 2 つの適用事例を通じて，PF

の有用性を明らかにする．まず，4.3.2 では本研究で用いる解析手法について説明する．4.3.3

では通常降雨時の計測結果に基づいて推定された浸透解析モデルを用いた解析的外挿，す

なわち，異常降雨時の土中水分量に対する予測性能について議論する．4.3.4 では降雨形態

の異なる 3 種類の降雨時における現地計測結果を用いたデータ同化を通じて，浸透解析モ

デル更新の有効性を検証する．最後に，4.3.5 では 2 つの適用事例をまとめて，PF による浸

透解析モデルのデータ同化の有用性について議論する． 

 

 

4.3.2 解析手法 

 

(1) 粒子フィルタ(PF)の概要 
 

PF は，システムの状態に関する確率分布を粒子と呼ばれる多数の実現値集合(アンサンブ

ル)で近似的に表現し，ベイズの定理を応用して各粒子の時間推移を数値的に評価するデー

タ同化手法である 15)．それぞれの粒子は，数値解析モデル(初期条件，境界条件，パラメー

タ)の情報と，それぞれの数値解析モデルにおいてシミュレーションを行って算出される各

時刻の物理量を情報として有している．PF は，シミュレーションの線形性やノイズのガウ

ス性の仮定を前提としないため，一般的なモデル推定問題に対しても適用できるロバスト

なデータ同化手法である． 
 

 PF はそのアルゴリズムによって，SIR と SIS に大別される 55)．また，その他にも PF を改

良した様々なアルゴリズムが提案されている 56)-60)．アルゴリズムの違いによるデータ同化

の性能に関しては 4.5 で議論するが，ここでは，まず SIR のアルゴリズムについて説明す

る．図-4-1 は SIR の概念図を示している．SIR では，3 つの計算ステップ(1 期先予測，フィ

ルタリング，リサンプリング)を繰り返して，各粒子の時間推移を評価する．粒子数を N 個

とすると，1 期先予測では時刻 t-1 から t までのシミュレーションを N 通り実施する．つま

り，粒子数分の順解析を行い，各時刻における全粒子に対する物理量を算出する(図-4-1 (a))．

次に，観測データに基づいてフィルタリングを行う．1 期先予測により，ある観測データに

対して N 通りのシミュレーション結果が得られている．フィルタリングでは，ベイズの定

理を利用して，各粒子に与えられる重みを算出する．すなわち，時刻 t における観測データ

とシミュレーション結果の誤差が小さい粒子には大きな重みが与えられ，誤差が大きい粒

子に対する重みは小さくなる(図-4-1 (b))．最後に，各粒子の重みを再度統一するため，リ

サンプリングを行う．この際，フィルタリングの段階で大きな重みが与えられた粒子は複製
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され，与えられた重みが小さい粒子は消滅する(図-4-1 (c))．このように，SIR では，3 つの

計算ステップを逐次繰り返してシステムの状態に関する確率分布を更新する． 

 

 

 (2) 粒子フィルタ(PF)の計算式 
 

PF の計算式の導出過程を示す 16)．まず，離散時刻における一般状態空間モデルを考える．

式(4-1)はシステムモデル，式(4-2)は観測モデルと呼ばれる． 

  tttt vxfx  1  

 

(4-1) 

  tttt wxhy   

 

(4-2) 

ここに，xtは各離散時刻におけるシステムの状態，すなわち，粒子を表しており，ytは観測

データである．ベクトル vt と wt はそれぞれシステムノイズと観測ノイズを表しており，お

互いに無相関な任意の確率分布を設定できる．ft は時刻 t-1 から t までの非線形状態遷移関

数であり，シミュレーションを意味している．htは観測演算子であり，システムの状態 xtと

観測データ ytの間の関係を表している．つまり，式(4-1)は時刻 t における状態 xtが，時刻 t-

1 における状態 xt-1 に基づいてシミュレーション ft を行って得られる確率分布とシステムノ

イズ vtの和に等しいことを意味しており，式(4-2)は時刻 t における状態 xtと観測データ ytの

間の誤差が，観測ノイズ wtの確率分布にしたがうことを意味している． 

 

 

 

 

図-4-1 SIR の概念図 

 
 

(a) 1期先予測 (b) フィルタリング (c) リサンプリング
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 時刻 t-1 までの観測データ y1:t-1に基づいた時刻 t における状態 xtに関する確率分布は予測

分布 p(xt|y1:t-1)と呼ばれ，時刻 t までの観測データ y1:t に基づいた時刻 t における状態 xt に関

する確率分布はフィルタ分布 p(xt|y1:t)と呼ばれる．PF では，状態 xtに関する確率分布は多数

の粒子によるアンサンブルで近似的に表現される．そのため，粒子数が N 個のとき，予測

アンサンブル   N

i

i

ttx
11|  とフィルタアンサンブル   N

i

i

ttx
1| 
を用いて予測分布 p(xt|y1:t-1)は式(4-3)，

フィルタ分布 p(xt|y1:t)は式(4-4)のように近似的に表現される． 

   


 
N

i

i
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(4-4) 

ここに，δ はディラックのデルタ関数である． 
 

 PF では，予測分布 p(xt|y1:t-1)を算出するための計算ステップは 1 期先予測と呼ばれ，1 期

先予測の後に観測データ ytに基づいて各粒子の重み βt
(i)を計算するステップはフィルタリン

グと呼ばれる．まず，1 期先予測では，式(4-4)を用いて予測分布 p(xt|y1:t-1)は式(4-5)のように

求められる． 
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(4-5) 

次に，フィルタリングでは，ベイズの定理を用いて，時刻 t における予測分布 p(xt|y1:t-1)と

観測データ ytから，各予測アンサンブルが得られる確率  t

i

ttt yxxp :1
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1| | を計算する． 
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ここで， 

 )(
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)( | i
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t xyp   

 

(4-7) 

である．βt
(i)は，i 番目の予測分布 p(xt|y1:t-1)が得られた状態 xt|t-1

(i)での観測データ yt が得られ

る確率，つまり，尤度を表している．状態 xt|t-1
(i)も観測データ ytも所与であるため，各粒子

の相対的な重み )(~ i

t を算出できる．例えば，観測ノイズ wt が多次元正規分布である場合に

は，尤度 βt
(i)は式(4-8)のように求まる． 
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(4-8) 

ここに，R は分散・共分散行列，m は観測ノイズの次数である． 
 

 フィルタリングにより，各粒子の相対的な重み )(~ i

t が算出できる．SIR では，フィルタリ

ングの後にリサンプリングを行って，各粒子を複製・消滅させる．これにより，それぞれの

粒子の重み βt
(i)は，次の時刻の 1 期先予測を行う前には 1/N となる．すなわち，SIR では，

時刻 t におけるフィルタ分布 p(xt|y1:t)を粒子の個数で表現している． 
 

 以下に，SIR のアルゴリズムを示す． 

1) 初期分布を近似するアンサンブル   N

i

ix
10|0 
を生成する． 

2) t=1，…，T について(a)～(e)のステップを実行する． 

 (a) 各粒子について，システムノイズを表現する乱数  t

i

t vpv ～)( を生成する． 

 (b) 各粒子について，  )()(

1|1

)(

1| , i

t

i

ttt

i

tt vxfx   を計算し，予測アンサンブル   N

i

i

ttx
11|  を得る． 

 (c) 各粒子について，重み  )(

1|

)( | i

ttt

i

t xyp  を計算する． 

 (d) 各粒子について，相対的な重み 



N

i

i

t

i

t

i

t

1

)()()(~
 を求める． 

 (e) アンサンブル   N

i

i

ttx
11|  から各粒子が )(~ i

t の確率で抽出されるように N 回の復元抽出を

行い，得られた N 個のサンプルで，フィルタ分布 p(xt|y1:t)を近似するアンサンブル

  N

i

i

ttx
1| 
を構成する． 

このうち，2)の(a)，(b)は 1 期先予測の操作であり，(c)，(d)がフィルタリング，(e)がリサン

プリングの操作である． 
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 (3) 飽和不飽和浸透流解析 

 

支配方程式 
 

本研究では，シミュレーションモデルとして飽和不飽和浸透流解析を用いている．以下に

示す不飽和土中の連続式である Richards 式 61)を有限要素法により解いている． 
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(4-9) 

ここに，C は式(4-10)で表される比水分容量である． 


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
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(4-10) 

θ は体積含水率，Ψ は土壌水分吸引水頭である．式(4-9)における t は時間，k は不飽和透水

係数である．また，R は領域を，[0，∞]は正の時間領域を表している．不飽和透水係数 k は，

シミュレーションモデル内の水分状況(体積含水率 θ や土壌水分吸引水頭 Ψ)によって変化

する 27)．この θ と Ψ の関係を表現するモデルが水分特性曲線モデル 62)-64)であり，θ や Ψ か

ら不飽和透水係数 k を算出するモデルが不飽和透水係数モデル 65),66)である．本研究では，

水分特性曲線モデルとしては式(4-11)に示す van Genuchten モデル 63)を，不飽和透水係数モ

デルとしては式(4-12)に示す Mualem モデル 66)を用いた． 
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(4-12) 

ここに，Seは有効飽和度，θsは飽和体積含水率，θrは残留体積含水率，α と n は水分特性曲

線の形状を与えるパラメータ，ksは飽和透水係数である．この水分特性曲線モデルではヒス

テリシス 34)の影響は考慮されていない(ヒステリシスを考慮した水分特性曲線モデルにつ

いては 4.4 に記載)．このため，このモデルにおける推定すべき未知パラメータは θs，θr，

α，n および ksの 5 種類である． 
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有限要素定式化 
 

式(4-9)に示す Richards 式を空間的に離散化し，その後，差分近似によって時間領域にお

ける離散化を行う．離散化方法は参考文献 67)にしたがう． 
 

浸透挙動における境界条件は，式(4-13)に示すディリクレ型の境界条件と，式(4-14)に示す

ノイマン型の境界条件がある． 
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(4-13) 

  ,0qii SonQQnq  

 

(4-14) 

ここに， は規定間隙水圧，qiは流速ベクトルの成分，niは境界面の外向き法線の方向余弦，

Qは Sq 面という境界を通る規定垂直流れである．関数 π が式(4-13)を満足するように選べ

ば，式(4-9)，(4-13)，および(4-14)は，任意の関数 v，v を用いて積分記述した式(4-15)と等価

である． 
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(4-15) 

式(4-15)の弱形式を得るために，v=-v として， 
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の関係式を利用すれば，式(4-15)は次式のようになる． 
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(4-16) 

ここで，関数 v を Sq面上で 0 となるように選択すれば，最後の項は省略できるため， 
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(4-17) 

となる．式(4-17)の Ψ に Ψ={N}{h}を代入し，v として形状関数{N}を考えると， 
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(4-18) 

となる．したがって，不飽和浸透に関する有限要素方程式は式(4-19)のようになる． 
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ここに， 
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(4-20) 
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(4-23) 

である．[K]は不飽和透水係数に関するマトリクス(全体透水マトリクス)，[F]は比水分容量

C に関するマトリクス，{Q}は流量境界に関するベクトル(全体流量ベクトル)，{B}は重力

項に関するベクトルを意味している． 
 

次に，差分法を用いて，式(4-19)を時間領域で離散化する．時刻 t=tn～tn+1において，土壌

水分吸引水頭や流量が線形的に変化するものとすれば，これらの物理量{η}および{dη/dt}は

それぞれ式(4-24)と式(4-25)で表される． 

       n  

 

(4-24) 
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tdt
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
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

 

 

 

(4-25) 

したがって，式(4-19)における{h}，{dh/dt}，{Q}および{B}はそれぞれ次式で表される． 

     hhh n   

 

(4-26) 
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(4-27) 

     QQQ n   

 

(4-28) 

     BBB n   

 

(4-29) 
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これらを，式(4-19)に代入すると， 

                    BBQQthFhhKt nnn   

 

(4-30) 

となる．これを整理すると， 

                    BBQQthKthKtF nnn   

 

(4-31) 

となるため，最終的に定式化される方程式は， 
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(4-32) 

である．飽和不飽和浸透流解析では，式(4-32)を用いて各時刻における各積分点周りの{h}を

算出する．これにより，各時刻における各接点の土壌水分吸引水頭 Ψ が算出可能である．

体積含水率 θ は，水分特性曲線モデルを介して Ψ から求める．なお，不飽和透水係数 k や

比水分容量 C は各時刻において値が変動するため，これらも各時刻において計算する必要

性がある．この飽和不飽和浸透流解析の計算が式(4-1)における非線形状態遷移関数 ftに相当

する． 
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4.3.3 推定された浸透解析モデルを用いた解析的外挿 

 
 

データ同化により推定される浸透解析モデルは，データ同化に用いていない異常降雨時

の水分状態も適切に予測できるモデルでなくてはならない．ここでは，PF のアルゴリズム

として SIR を用いて，通常降雨時における体積含水率の現地計測結果に基づくデータ同化

を行い，浸透解析モデルに関するパラメータ(van Genuchten モデルと Mualem モデルにおけ

る θs，θr，α，n，ks；以下，土壌水分特性パラメータと呼ぶ)の確率分布をそれぞれ推定する．

そして，各土壌水分特性パラメータの確率分布における重み付き平均値を同定されたパラ

メータとして決定論的に扱った場合の，現地計測結果に対する再現解析を実施する．その際

に，データ同化に用いた通常降雨時の計測結果だけでなく，データ同化には用いていない計

測期間内で最強の降雨イベントに対するシミュレーションも行い，異常降雨時の計測結果

に対する予測性能について議論する．また，室内試験により土壌水分特性パラメータを決定

した場合，機械学習によりモデルを決定した場合，Levenberg-Marquardt 法 31)(以下，L-M 法

と呼ぶ)によって土壌水分特性パラメータを決定した場合のシミュレーション結果と，PF に

よって推定された土壌水分特性パラメータを用いた場合のシミュレーション結果とを比較

することで，PF による浸透解析モデルのデータ同化の有用性についても確認する． 

 

 

(1) 対象斜面と現地調査結果 
 

本研究の対象斜面は，九州地方に位置する高速道路沿いの切土斜面である．地質的には，

花崗岩が基盤であり，表層土はマサ土である．図-4-2 は対象斜面の斜面形状を示している．

斜面勾配は 40°程度であり，斜面中腹からのり尻にかけて 3 つのセンサノードが設置され

ている．本研究では，中央のセンサノード(S2-2)を解析対象として用いた． 
 

表-4-1 は S2-2 地点における深度ごと(深度 10cm から 70cm)の乾燥密度 ρd と飽和体積含

水率 θsの値を示している．ここで，表-4-1 の飽和体積含水率 θsは，乾燥密度 ρdと土粒子密

度 ρsを用いて，式(4-33)より算出している． 

s

d
s




 1  

 

(4-33) 

ここに，土粒子密度 ρsは 2.729(g/cm3)であり，深度 30cm の地点で採取された試料を用いた

土粒子密度試験により算出した．表-4-1 の結果より，S2-2 地点における飽和体積含水率 θs

は 0.5<θs<0.575 の範囲に収まっていることが分かる．図-4-3 は S2-2 地点で行われた簡易動

的コーン貫入試験の試験結果を示している．この結果から，S2-2 地点では基盤の位置が非

常に深いため，土壌水分計が設置されている深度(30cm と 60cm)では飽和側方流は発生し

ていないと考えられる．ただし，不飽和状態での側方流が発生している可能性はある．本研

究では，既往の文献 68)を参考に，不飽和状態での重力方向の流れが卓越すると仮定して，こ

の後の議論を行うこととした． 
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図-4-2 対象斜面の斜面形状 

 

表-4-1 深度ごとの乾燥密度 ρdと飽和体積含水率 θsの値 

 

 

 

図-4-3 簡易動的コーン貫入試験の試験結果 
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(2) 現地計測結果 
 

 現地計測に関しては，各センサノードにおいて，深度 30cm と 60cm に土壌水分計(Delta-

T 社製 SM-150)が埋設されており，10 分間隔で体積含水率を計測している．この土壌水分

計は，IP68 準拠のケースを使用したセンサであり，計測精度は±3%である．センサの設置方

法 6)については，図-4-4 に示すように，鉛直にトレンチ掘削を行い，その断面と垂直にセン

サを設置している．また，小段上には転倒桝型雨量計を設置し，降雨量も 10 分間隔で計測

している． 
 

 本研究では，1 年に複数回計測される程度の降雨(以下，降雨[1](弱)と呼ぶ)と現地計測期

間に計測された最大規模の降雨(以下，降雨[2](強)と呼ぶ)の 2 種類の降雨イベントを解析

対象として用いた．図-4-5 に降雨[1](弱)における降雨量と体積含水率の経時変化と降雨

[2](強)におけるそれを示す．表-4-2 に降雨イベントごとの計測期間，総雨量，最大 3 時間

雨量，時間雨量，体積含水率の変動幅を示す．4 年間の現地計測期間において，降雨[1](弱)

は総雨量が 5 位，最大 3 時間雨量が 16 位の降雨イベントであり，降雨[2](強)は総雨量に関

しては 1 位，最大 3 時間雨量が 2 位の降雨イベントである．降雨[2](強)の方が短期間に非

常に激しい雨が降り，体積含水率も高い値まで上昇していることが分かる． 

 

 

 

図-4-4 センサの設置方法 

 

 

 

 

 

 

 

雨量計
センサノード

土壌水分計
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(a) 降雨[1](弱) 

 

 

(b) 降雨[2](強) 

 図-4-5 各降雨イベントにおける降雨量と体積含水率の時系列データ 

 

 

 

表-4-2 降雨イベントごとの計測期間，総雨量，最大 3 時間雨量， 

時間雨量，体積含水率の変動幅 
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(3) 解析条件 
 

シミュレーションとしては，鉛直一次元の飽和不飽和浸透流解析を行った．式(4-9)におけ

る Richards 式 61)は次式のようになる． 
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(4-34) 

ここに，z は上向き正の鉛直座標である．このため，式(4-32)に対応する最終的に定式化され

た方程式は式(4-35)のようになる． 
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(4-35) 

式(4-35)によって各時刻の節点ごとの土壌水分吸引水頭 Ψ を算出できるが，これが PF にお

ける 1 期先予測に対応する．図-4-6 は本研究で用いた一次元解析モデル(節点数 74，要素数

36)を示している．各センサに 1 つの層を仮定し，深度 45cm を境界として上層と下層の 2

層に分割した．このため，5 種類，合計 10 個の土壌水分特性パラメータ(上層と下層の θs，

θr，α，n，ks)に関する確率分布を SIR によりそれぞれ推定することとした．その他の境界条

件としては，モデル上部に降雨境界，モデル側面に非排水境界，モデル下部に自由排水境界

を設定した．降雨境界には，現地の転倒桝型雨量計で計測された降雨量を全て与えた．当然，

転倒桝型雨量計で計測された降雨が全て斜面内には浸透せずに，表面流が発生している可

能性は十分考えられる．しかし，降雨強度，斜面の傾斜，および土壌水分特性などに対する

斜面内への浸透量の関係は，多くの研究 69),70)が実施されているものの，現時点では明らか

になっていない．このため，本研究では，上述のような降雨境界を仮定してシミュレーショ

ンを行った．自由排水境界は，境界上の節点と境界の下に位置する節点の圧力勾配が 0 であ

り，位置水頭の差によって排水を行う境界条件である 71)．本事例のように，基盤の位置が非

常に深い場合には有効な排水境界である．初期条件に関しては，深度 45cm 以浅のモデル上

層には深度 30cm において計測された体積含水率の値 θt=0
30cmを，深度 45cm 以深のモデル下

層には深度 60cm における計測値 θt=0
60cmを与えた． 

 

データ同化には，合計 5,000 個の粒子を用いた．表-4-3 はデータ同化を行う各パラメータ

の変動幅を示している．この範囲内で一様乱数により粒子を作成した．なお，この変動幅は，

事前にパラメトリックスタディを試行錯誤的に行って決定した．また，PF の尤度計算には

観測ノイズ wtが大きく影響する．本研究では，観測ノイズ wtとして 2 次元正規分布を仮定

し，分散 σ2=0.005 を設定し，非対角項(共分散)は 0 とした．システムノイズに関しては，

正規分布 N(μ=0, σ2=0.0001)を設定した． 
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図-4-6 一次元解析モデル 

 

 

 

 

(4) データ同化結果 
 

図-4-7 はデータ同化過程における粒子の分布の推移を示している．ここでは，一例とし

て，土壌水分特性パラメータ n に関する粒子の分布を示している．解析の初期段階では，

5,000 個の n の値(緑丸)がランダムに配置されている．この緑丸が粒子であり，この段階で

は，各粒子の個数は 1 つずつである．時間の経過に伴って，1.5<n<1.8 の範囲に配置されて

いた粒子は概ね消滅し，1.25< n<1.5 の範囲の粒子が多数複製されていることが分かる．こ

れは，1.5<n<1.8 の値を用いた解析結果は計測結果との誤差が大きく，1.25< n<1.5 の値を用

いた方が計測結果と良く合致することを意味している．このように，SIR では粒子の個数に

よって確率分布を表現する．ここでは，式(4-36)を用いて各土壌水分特性パラメータの重み

付き平均値をそれぞれ算出した． 
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であり， )(

|

i

ttx は各粒子に対応するパラメータである．表-4-4 は推定された各土壌水分特性パ

ラメータの値，図-4-8 はそれによって求められた水分特性曲線を示している．なお，SIR で

はアンサンブルの退化 56)(4.5 で詳述)という問題が発生する可能性があるが，ここでは，デ

ータ同化終了時にも約 1,200 種類の初期粒子が残存していたため，深刻な退化は生じていな

いと判断した． 
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表-4-3 データ同化を行う各パラメータの変動幅 

 

 

 

 

 

 

 

 

 

(a) 0 min                (b) 2880 min 

 

 

(c) 5760 min              (d) 8640 min 

 

図-4-7 データ同化過程における粒子の分布の推移 
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表-4-4 推定された各土壌水分特性パラメータの値 

 

 

 

 

 

 

 

図-4-8 水分特性曲線 
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(5) 現地計測に対する再現解析結果と異常降雨に対する予測性能 
 

表-4-4 に示すように推定された浸透解析モデルを用いて，現地計測結果に対するシミュ

レーションを実施した．まず，データ同化に用いた降雨[1](弱)に対する再現解析を行った．

図-4-9(a)はその再現解析結果を示している．当然のことながら，解析結果は計測結果を精度

良く再現できている．次に，計測期間内で最強の降雨である降雨[2](強)に対する再現解析

も実施した．図-4-9(b)はその再現解析結果を示している．体積含水率が上昇するタイミング

やそのピーク値に関して，解析結果は計測結果と良く合致している．このことから，PF に

よって，弱い降雨時の現地計測結果に基づいて推定された浸透解析モデルを用いると，より

強い降雨時の計測結果を高精度に再現できている．つまり，未経験の降雨外力に対する外挿

が可能になっているといえる．このような解析的外挿が可能であることから，SIR によって

推定された浸透解析モデルを用いると，異常降雨時における土中水分量も予測できる可能

性があると考えられる． 

 

 

(a) 降雨[1](弱) 

 

(b) 降雨[2](強) 

図-4-9 各降雨イベントに対する再現解析結果 
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(6) 室内試験，機械学習，L-M 法を用いてモデル化した場合の再現性 
 

異常降雨時における土中水分量を予測するために考えられる方法論はデータ同化だけで

はない．例えば，現地斜面で不撹乱試料を採取し，室内試験(保水性試験，透水試験)を行っ

て土壌水分特性パラメータを決定する方法は従来から多く用いられてきた 72),73)．また，第

2 章で用いた機械学習によってモデルを推定し，その構築されたモデルを用いて予測を行う

という方法も考えられる．さらに，既往の研究で用いられた L-M 法などで逆解析を行った

場合との比較も行っておく必要性がある．ここでは，PF を用いて浸透解析モデルのデータ

同化を行った場合と，室内試験，機械学習，L-M 法によってモデル化を行った場合の現地計

測結果に対する再現性を比較して，PF の有用性について議論する． 
 

まず，室内試験に関しては，深度 30cm で採取した不撹乱試料を用いて，保水性試験と透

水試験を実施した．保水性試験は，UMS 社の HYPROP74)を用いて蒸発法により ks以外の土

壌水分特性パラメータを推定した 75)．この試験法は，不飽和状態で採取した供試体を強制

的に飽和させ，その後，自然乾燥させる方法であるが，その際に，供試体の重量と土壌水分

吸引水頭 Ψ を逐次計測することで，水分特性曲線を求めるというものである．蒸発法は，

土壌物理学の分野において数多くの適用事例 76)がある保水性試験法である．図-4-10 は

HYPROP による保水性試験結果を示している．同図より，本研究で対象としたマサ土の水

分特性曲線は van Genuchten モデルにおけるそれと良く合致していることが分かる．飽和透

水係数 ks に関しては，撹乱試料の湿潤密度を ρt=1.873(g/cm3)になるように締め固めて供試

体を作成し，定水位透水試験により算出した．表-4-5 はこの 2 つの室内試験(保水性試験，

透水試験)によって推定された土壌水分特性パラメータの値を示している． 

 

 

 

図-4-10 HYPROP による保水性試験結果 
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図-4-11 は室内試験によって推定された土壌水分特性パラメータを用いた降雨[1](弱)と

降雨[2](強)に対する再現解析結果を示している．まず，降雨[1](弱)に対する再現解析の結

果から，不撹乱試料を採取した深度 30cm に関しては，現地計測結果をある程度再現できて

いるのに対して，深度 60cm における再現解析結果は現地計測結果を大幅に過少評価してい

る．これは，深度 30cm と深度 60cm では，土壌水分特性が異なっているためであると考え

られる．このことから，室内試験結果に基づいて現地計測結果を高精度に再現するためには，

空間的に多点で不撹乱試料を採取する必要性があるといえる．しかし，現実的には，多点で

の試料採取と室内試験の実施は多大な労力を要する．PF によるデータ同化は，現地計測結

果が得られさえすれば浸透解析モデルを推定可能であるため，この点では，室内試験を多点

で実施するよりも有効な手段であると考えられる．また，降雨[2](強)に対する再現解析で

は，現地計測結果のピーク値に達していない．これは，室内試験によって推定された土壌水

分特性パラメータの飽和体積含水率 θs の値が低いことが主な原因である．飽和体積含水率

θsの値が低い理由として，不撹乱試料を完全に飽和させることができていなかった，もしく

は，センサ設置位置と試料採取位置とでは間隙が異なっていたなどの理由が考えられるが，

その理由は定かではない．いずれにせよ，室内試験ではそのような誤差が発生しうるのに対

して，PF によるデータ同化では，現地計測結果に基づいて浸透解析モデルを推定するため，

現地計測結果に対する適合度が高く，さらにそのモデルを用いた解析的外挿も可能である

という点において有効であるといえる．ただし，PF によるデータ同化は，ある領域(本研究

では層区分に該当)におけるパラメータをマスとして推定している．そのため，PF によって

推定されるパラメータは，その地点のパラメータではなく，その周辺の平均的なパラメータ

であるといえる．それに対して，室内試験は，その地点(試料を採取した深度)におけるパラ

メータを精度良く推定することができるというメリットがある． 

 

 

 

表-4-5 室内試験によって推定された土壌水分特性パラメータの値 

 

 

 

 

 

 

 

θ s θ r α n k s

(1/cm) (cm/min)

0.4340 0.0947 0.0967 1.4800 0.2060
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(a) 降雨[1](弱) 

 

 

(b) 降雨[2](強) 

 

 図-4-11 室内試験によって推定された土壌水分特性パラメータを用いた 

各降雨イベントに対する再現解析結果 
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次に，機械学習を用いて予測モデルを構築する．ここでは，教師データとして体積含水率

の経時変化を，入力ベクトルとして 10 分間雨量，累積雨量，無降雨継続時間の経時変化を

用いた．また，降雨[1](弱)における現地計測結果を学習データとして，降雨[2](強)におけ

るそれを検証データとした．機械学習のアルゴリズムとしては，多層パーセプトロン(MLP)

と勾配ブースティング木(GBDT)を採用した．図-4-12 は降雨[1](弱)における現地計測結果

に基づいてモデルを構築し，そのモデルに対して，降雨[1](弱)における現地計測結果を適

用した再現解析結果を示している．つまり，図-4-12 は学習の精度を示している．MLP によ

り構築されたモデルは，値がバラついており，不自然な体積含水率の挙動を示している．そ

れに対して，GBDT による予測モデルは降雨[1](弱)における現地計測結果を高精度に再現

できている．これは，GBDT は学習データを高精度に再現できるモデル化が可能であるとい

う特徴が表れている． 

 

 

(a) MLP 

 

 

(b) GBDT 

 図-4-12 機械学習によりモデルを構築した場合の降雨[1](弱)に対する再現解析結果 
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次に，図-4-13 は降雨[2](強)に対する再現解析結果を示している．この結果から，MLP も

GBDT も現地計測結果を全く再現できていない．MLP は降雨[1](弱)と同様に不自然な挙動

を示しており，GBDT は典型的な過学習であったことが分かる．つまり，機械学習を用いる

と，学習に用いた降雨[1](弱)における現地計測結果は再現することはできても，それ以上

の雨が降った降雨[2](強)における現地計測結果は全く再現できない．これは，土中への雨

水の浸透過程などは全く考慮せず，ただ単に，学習データを高精度に再現できる統計モデル

を構築するという機械学習の性質上，仕方がない結果である．それに対して，PF によるデ

ータ同化では，Richards 式，van Genuchten モデル，Mualem モデルという力学モデルを介し

て，その計算の中で必要なパラメータを推定しているため，本研究で行ったような，より強

い降雨外力に対する解析的外挿が可能となる． 

 

 

 

(a) MLP 

 

 

(b) GBDT 

 図-4-13 機械学習によりモデルを構築した場合の降雨[2](強)に対する再現解析結果 
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最後に，逆解析手法として L-M 法を用いて，土壌水分特性パラメータの推定を試みる．

ここでは，数値解析コード HYDRUS71)を用いて逆解析を実施した．解析モデルは図-4-6 と

同様であり，合計 10 個の土壌水分特性パラメータを推定した．適用データに関しても，PF

と同様に，降雨[1](弱)における計測結果を用いて逆解析を行い，降雨[2](強)における計測

結果に対する再現性を検証した．L-M 法による逆解析に関しては，参考文献 31)を参照され

たい．表-4-6 は L-M 法によって推定された各土壌水分特性パラメータの値を示しており，

図-4-14 はそれによって得られた水分特性曲線を示している．PF によって推定された水分

特性曲線と比較して，θs の値が小さく，曲線の曲がり具合も小さいことが分かる．図-4-15

は推定された土壌水分特性パラメータを用いた降雨[1](弱)に対する再現解析結果を示して

いる．同図より，計測結果と解析結果は精度良く合致している．つまり，L-M 法による逆解

析を行っても，パラメータの推定に用いた降雨[1](弱)の計測結果は高精度に再現できると

いえる．次に，推定されたパラメータを用いて降雨[2](強)に対する再現解析を実施した．図

-4-16 はその再現解析結果を示している．同図より，降雨ピーク時における解析値が過少に

算出されており，L-M 法によって推定されたパラメータを用いると，計測結果を適切に再

現できないことが分かる．これは，L-M 法によって推定された飽和体積含水率 θsが 0.42 程

度であり，再現解析の途中でモデル内が飽和してしまったためである．このようなパラメー

タが推定された理由として，L-M 法のアルゴリズムの影響が考えられる．L-M 法は目的関

数の勾配情報に基づいてパラメータを修正していく逆解析手法であるため，推定されるパ

ラメータは初期値に依存する．そのため，不適切な初期値を設定した場合に，局所解に収束

する可能性が非常に高くなるという問題点がある．それに対して，PF は，多数の順解析を

並列に行い，それぞれの粒子に重みを与えていくデータ同化手法であるため，目的関数を最

小にするパラメータを探索する最適化手法とは根本的な枠組みが異なる．以上の結果から，

PF と L-M 法を比較すると，現地計測結果に基づく土壌水分特性パラメータの推定という問

題に関しては，PF の方が有効であるといえる． 

 

 

 

表-4-6 L-M 法によって推定された各土壌水分特性パラメータの値 

 

 

 

 

θ s θ r α n k s

(1/cm) (cm/min)

上層 0.4226 0.1585 0.0500 1.3714 0.2039

下層 0.4212 0.1764 0.0213 1.2725 0.1016
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図-4-14 L-M 法によって推定された水分特性曲線 

 

 

図-4-15 推定された土壌水分特性パラメータを用いた降雨[1](弱)に対する再現解析結果 

 

 

図-4-16 推定された土壌水分特性パラメータを用いた降雨[2](強)に対する再現解析結果 
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4.3.4 様々な降雨時の計測結果を用いた浸透解析モデルの更新 

 
 

図-4-7 に示すように，SIR は，ベイズの定理に基づいて，計測結果が得られるたびに確率

分布を逐次修正していくデータ同化手法である．このため，様々な降雨時の計測結果を用い

てデータ同化を行うことで，より適切な浸透解析モデルへと更新できると考えられる．ただ

し，樋口ら 17)が指摘しているように，数値解析では，最適なパラメータや初期条件または境

界条件を設定できたとしても，実現象を完全に再現することは難しい．これは，力学モデル

自体が実現象を近似したものであること，数値解析を行う際は空間的かつ時間的に離散化

が行われること，そもそも現地計測結果にも避けられない誤差が含まれることなどが原因

である．そのため，SIR では，実現象と力学モデルの間に確率分布を仮定して，その尤度が

大きくなる粒子を複製している．つまり，モデルの最適解を求めるのではなく，多数のモデ

ル情報を粒子として近似し，その粒子の個数を増減させることで確率分布を表現している．

したがって，SIR によるデータ同化結果を用いて，計測結果に対する誤差を評価する際にも

確率論的な議論が望ましい． 
 

本研究では，降雨形態の異なる 3 種類の現地計測結果を用いて，SIR による浸透解析モデ

ルの更新を行う．まず，1 つ目の降雨イベントに対する現地計測結果を用いて浸透解析モデ

ルを推定し，そのモデルに対して，2 つ目，3 つ目の降雨イベントに対する現地計測結果も

学習させていくことで，モデルを更新する．最後に，それぞれの更新段階において，各降雨

イベントに対するモンテカルロシミュレーション(Monte Carlo Simulation，以下 MCS と呼

ぶ)を行い，浸透解析モデル更新の有効性を検証する． 

 

 

(1) 現地計測結果 
 

対象斜面は，九州地方に位置する高速道路沿いの盛土斜面である．表-4-7 は対象斜面の表

層土の物理特性を示している．この斜面にも複数地点にセンサノードが設置されており，土

中に土壌水分計(SM-150，計測精度±3%)が埋設されている．4.3.3 の対象斜面と同様に，ト

レンチの断面と垂直に土壌水分計を設置しているが，それによる体積含水率の計測の時間

間隔は 20 分である．降雨に関しては，現地斜面の小段上に設置した転倒桝型雨量計により

10 分間隔で計測を行っている．本研究では，とある地点の深度 20cm と 40cm で計測された

体積含水率の経時変化を計測結果として用いた．図-4-17 は解析対象地点で実施された簡易

動的コーン貫入試験の試験結果を示している．この結果から，計測深度と比較して基盤の位

置が非常に深いため，この地点でも，不飽和状態の鉛直浸透が卓越していると考えられる． 
 

図-4-18 は本研究で用いた 3 種類の降雨時における体積含水率の経時変化を示している．

この 3 つの降雨イベントはその特徴がそれぞれ異なっている．1 つ目の降雨イベントを降雨

[1](長雨)，2 つ目を降雨[2](集中)，3 つ目を降雨[3](交互)と呼ぶ．表-4-8 は各降雨イベント

の特徴と体積含水率の変動幅を示している．降雨[1](長雨)は，それほど強くない雨が約 2 日



115 

 

間降り続いたため，体積含水率が高い状態で上昇，低下を繰り返している．降雨[2](集中)に

関しては，まとまった雨が 3 段階で降っており，特に，時間が後になるほど雨が強くなる後

方集中型の降雨イベントである．最大 3 時間雨量も 72.75(mm/3h)と他の 2 つの降雨イベン

トと比較して大きく，体積含水率も最大の値を記録している．降雨[3](交互)に関しては，計

測期間における前半と後半に激しい雨が降っている．しかし，その継続時間が短いため，最

大 3 時間雨量としてはそれほど大きな値ではない．また，計測期間における中盤の約 3 日

間では無降雨が続いているという特徴もある． 

 

表-4-7 対象斜面の表層土の物理特性 

 

 

 

図-4-17 簡易動的コーン貫入試験の試験結果 

 

表-4-8 各降雨イベントの特徴と体積含水率の変動幅 

 

 

土粒子密度 50％粒径 最大粒径 均等係数

ρ s  (g/cm3) D 50  (mm) D max  (mm) U c

2.370 0.660 19.0 38.0
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(a) 降雨[1](長雨) 

 

 

(b) 降雨[2](集中) 

 

 

(c) 降雨[3](交互) 

図-4-18 3 種類の降雨時における体積含水率の時系列データ 
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(2) 解析条件 
 

表-4-9 は本研究で行った解析ケースを示している．まず，降雨[1](長雨)における現地計

測結果を用いて SIR によるデータ同化を行い，浸透解析モデルを推定する．このモデルを

SIR1 と呼ぶ．その後，降雨[2](集中)や降雨[3](交互)における計測結果も利用してデータ同

化を行い，モデルを更新する．それぞれのデータ同化過程において推定された浸透解析モデ

ルを SIR12，SIR123 と呼ぶ．つまり，SIR12 は SIR1 を事前分布として降雨[2](集中)のデー

タが得られた際の事後分布を意味しており，SIR123 は SIR12 を事前分布として降雨[3](交

互)のデータが得られた際の事後分布を意味している．最後に，SIR1，SIR12，SIR123 を用

いてそれぞれの降雨イベントに対する MCS を行い，推定誤差を評価する．誤差の評価方法

としては式(4-38)に示す平均絶対誤差(Mean Absolute Error，以下 MAE と呼ぶ)を用いた． 





M

i

i

obs

i

cal
M

MAE
1

)()(1
  

 

(4-38) 

ここに，θcal は体積含水率の解析値，θobs は体積含水率の計測値，M は計測結果の個数であ

る．式(4-38)から分かるように，MAE は各計測時刻における計測値と解析値の誤差が平均す

るとどの程度であるかを表した指標である． 
  

 図-4-19 は本研究で用いた一次元解析モデル(節点数 62，要素数 30)を示している．本研

究で対象とした斜面でも不飽和状態の重力方向の流れが卓越することが予想されるため，

4.3.3 と同様に，一次元解析モデルを仮定した．モデル上部や底部における境界条件も 4.3.3

と同様である．上層と下層の境界は深度 30cm とした．粒子数は 4,500 個であり，観測ノイ

ズ wt として 2 次元正規分布を仮定し，分散 σ2=0.01 を設定し，非対角項(共分散)は 0 とし

た． 

 

 

表-4-9 解析ケース 

 

 

 

 

SIR1-MCS1 降雨[1]（長雨）

SIR1-MCS2 降雨[2]（集中）

SIR1-MCS3 降雨[3]（交互）

SIR12-MCS1 降雨[1]（長雨）

SIR12-MCS2 降雨[2]（集中）

SIR12-MCS3 降雨[3]（交互）

SIR123-MCS1 降雨[1]（長雨）

SIR123-MCS2 降雨[2]（集中）

SIR123-MCS3 降雨[3]（交互）

解析ケース
データ同化に用いた

降雨イベント

MCSに用いた

降雨イベント

降雨[1]（長雨）

  降雨[1]（長雨），

降雨[2]（集中）

　降雨[1]（長雨），

a降雨[2]（集中），

降雨[3]（交互）
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(3) データ同化結果と MCS による浸透解析モデル更新の妥当性の検証 
 

各降雨イベントにおける計測結果を用いてデータ同化を行い，3 種類の浸透解析モデル

(SIR1，SIR12，SIR123)が得られた．表-4-10 は各浸透解析モデルにおける土壌水分特性パ

ラメータの重み付き平均値，表-4-11 はその分散を示している．この結果から，モデルの更

新を行うことによる重み付き平均値はそれほど変化しないが，分散の値はモデルの更新を

行うたびに減少している．この傾向は，全ての降雨イベント，全ての土壌水分特性パラメー

タで該当する．つまり，より多くの計測結果を学習するほど，各土壌水分特性パラメータの

バラツキが小さくなっているといえる． 

 

 

図-4-19 一次元解析モデル 

 

表-4-10 各浸透解析モデルにおける土壌水分特性パラメータの重み付き平均値 

 

 

表-4-11 各浸透解析モデルにおける土壌水分特性パラメータの分散 
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SIR123 0.559 0.214 0.072 1.540 0.681
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SIR12 0.425 0.253 0.107 1.554 0.675
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θ s θ r α n k s

SIR1 1.58E-04 2.02E-04 7.24E-05 2.31E-03 3.90E-02

SIR12 1.53E-04 1.96E-04 7.23E-05 2.23E-03 3.87E-02

SIR123 1.38E-04 1.89E-04 5.86E-05 1.92E-03 3.35E-02

SIR1 7.08E-05 2.00E-04 2.50E-04 3.82E-03 3.51E-02

SIR12 6.86E-05 1.89E-04 2.47E-04 3.62E-03 3.49E-02

SIR123 6.12E-05 1.85E-04 1.84E-04 3.59E-03 3.47E-02

下層

上層
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データ同化により求められた 3 種類の浸透解析モデル(各更新段階における事後分布)を

用いて，各降雨イベントに対する MCS を実施した．図-4-20 は MCS を行って得られた MAE

のヒストグラムを示している．同図における縦軸は，横軸の MAE の範囲に当てはまる粒子

数を全粒子数で除した割合である．全ての降雨イベントにおいて，更新回数の多いモデルほ

ど分布が左に寄っていることが分かる．MAE が小さいほど計測結果と解析結果の誤差が小

さいことを意味しているため，3 種類の降雨イベントによって更新された SIR123 が最も現

地計測結果に対する再現性が高いといえる．以上の結果より，様々な降雨時の計測結果を用

いてデータ同化を行うことで，より適切な浸透解析モデルへと更新できることが明らかに

なった．また，図-4-21 は，表-4-10 に示す SIR123 の重み付き平均値を用いた各降雨イベン

トに対する再現解析結果を示している．更新されたパラメータを用いると，異なる特徴を持

つ降雨イベントにおける土壌水分状態を適切に再現できていることが分かる． 

 

 

 

4.3.5 粒子フィルタによるデータ同化の有用性に関する議論 

 

ここでは，現地計測結果に基づく浸透解析モデルのデータ同化に関する 2 つの適用事例

をまとめて，PF の有用性について議論する． 
 

まず，1 つ目の適用事例では，通常降雨時における体積含水率の計測結果に基づいて，PF

によって推定された浸透解析モデルを用いると，データ同化に使用したものよりも強い降

雨時における現地計測結果を適切に再現できた．このような解析的外挿が可能であること

から PF によって推定される浸透解析モデルは，異常降雨時における土中水分量も予測でき

る可能性があると考えられる．また，室内試験，機械学習，L-M 法によりモデルを決定した

場合には，現地計測結果を高精度に再現することができなかった．それに対して，PF はシ

ミュレーションモデルを介して，そのシミュレーションに必要なパラメータを推定してい

るため，解析的な外挿が可能となる．このような点からも，PF によるデータ同化は有用で

あるといえる． 
 

次に，2 つ目の適用事例では，降雨形態の異なる 3 種類の現地計測結果を用いて，PF に

よる浸透解析モデルの更新を行った．その結果，データをより多く学習させたモデルほど，

現地計測結果に対する再現性が高くなることが明らかになった．このことから，様々な降雨

時の計測結果を用いてデータ同化を行うことで，より現地計測結果に対する再現性の高い

浸透解析モデルへと更新できるといえる． 
 

以上の 2 つの結果から，PF によるデータ同化は，現地計測結果に基づいて浸透解析モデ

ルを推定するための手段として非常に有効であるといえる． 

 



120 

 

 

(a) 降雨[1](長雨) 

 

 

(b) 降雨[2](集中) 

 

 

(c) 降雨[3](交互) 

図-4-20 各降雨イベントに対する MCS を行って得られた MAE のヒストグラム 
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(a) 降雨[1](長雨) 

 

 

(b) 降雨[2](集中) 

 

 

(c) 降雨[3](交互) 

図-4-21 SIR123 の重み付き平均値を用いた各降雨イベントに対する再現解析結果 
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4.4 ヒステリシスの影響を考慮した浸透解析モデルのデータ同化 

 

4.4.1 概要 
 

一般的に，不飽和状態にある土では，土が吸水する過程(体積含水率が上昇する段階)と排

水する過程(体積含水率が下降する段階)では水分特性曲線が異なり，それによって吸水時

と排水時における土の保水性が異なるというヒステリシス 34)を有している．ヒステリシス

の発生には，間隙のくびれに起因するインクビン効果，吸水時と排水時における流体の接触

角の変化，流体の流動に伴う多孔体の膨潤などの様々なメカニズムが関わっていると説明

されている 77)．4.3 での検討では，このヒステリシスの影響を考慮していなかった．したが

って，ヒステリシスを考慮できる水分特性曲線モデルを導入することで，より適切な浸透解

析モデルを推定できると考えられる． 
 

 本研究では，粘土質シルトで構成された斜面において現地計測された体積含水率の時系

列データを対象として，粒子フィルタに基づく浸透解析モデルのデータ同化におけるヒス

テリシスの影響について議論する．具体的には，ヒステリシスを考慮しない水分特性曲線モ

デルを用いてシミュレーションを行う解析ケース(以下，No-hysteresis と呼ぶ)と，ヒステリ

シスを考慮した水分特性曲線モデルによってシミュレーションを行う解析ケース(以下，

Hysteresis-seepage と呼ぶ)の 2 通りのデータ同化を行う．そして，各解析ケースによって推

定された浸透解析モデルに基づく再現解析を行い，その結果を比較することで，ヒステリシ

スの影響について議論する． 
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4.4.2 ヒステリシスの影響を考慮した水分特性曲線モデル 

 

ヒステリシスの影響を考慮した水分特性曲線モデルは数多く提案されている 78),79)．本研

究では，その中から，菊本ら 80)によって提案されたモデルを採用した．この水分特性曲線モ

デルは，任意条件下にある土の水分保持特性を体積含水率 θ，土壌水分吸引水頭 Ψ，水分履

歴パラメータ Iw によって全て統一的に表現できるため，水分特性曲線における走査曲線を

計算する必要性がないという特徴がある． 

 

まず，体積含水率 θ と土壌水分吸引水頭 Ψ の一義的な関係を与える水分特性曲線モデル

(例えば van Genuchten モデル 63))を用いて飽和体積含水率 θs から排水して得られる主排水

曲線 fd=0 と，残留体積含水率 θrから吸水して得られる主吸水曲線 fw=0 を表現する．排水側

および吸水側の両極に位置する 2 つの主曲線は次式のように表される． 
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(4-40) 

ここに，αdは排水時の α，αwは吸水時の α である．α は土壌水分吸引水頭 Ψ の逆数の次元を

持つパラメータであるため，αd<αwとすることで，同一の土壌水分吸引水頭 Ψ に対応する体

積含水率 θ は主吸水曲線より主排水曲線上で常に大きくなり，主排水・吸水曲線が交差しな

いことが保証される． 
 

 次に，ヒステリシスの影響を考慮した水分特性曲線モデルを表現する．土の水分保持状態

(θ，Ψ)は常に主排水曲線と主吸水曲線で囲まれた領域内を移動するため，ヒステリシスの

影響を反映する状態変数として，式(4-41)に示す水分履歴パラメータ Iwを定義できる． 

wd

w
wI








  

 

(4-41) 

ここに，θ は現在の体積含水率，θd，θwは現在の土壌水分吸引水頭 Ψ における主排水曲線お

よび主吸水曲線上の体積含水率の値であり，式(4-39)，(4-40)より求まる．水分履歴パラメー

タ Iw は主吸水曲線上では 0，主排水曲線上では 1 となる変数であり，0≤Iw≤1 を満たす．こ

の水分履歴パラメータ Iwと式(4-39)，(4-40)を用いると，任意条件下にある水分保持特性は，

式(4-42)に示す 1 つの関数 f(θ，Ψ，Iw)で統一的に表すことができる．この関数が描く曲面は

水分特性曲面と呼ばれる． 



124 

 

       

      01

,1,,,









wwdw

wwdww

FIFI

fIfIIf

 

 
 

(4-42) 

図-4-22 に示すように，任意の水分保持特性は，常にこの水分特性曲面 f(θ，Ψ，Iw)=0 上に位

置する． 
 

 水分履歴パラメータ Iw は，排水過程(dθ≤0)においては単調増加して 1 に収束し，吸水過

程(dθ>0)では単調減少して 0 に収束する．この関係を満足する水分履歴パラメータ Iwの発

展則は幾つか考えられるが，本研究では，菊本ら 80)が用いている式(4-43)の関係を採用した． 
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(4-43) 

ここに，h(Iw)(=dIw/dθ)は h(0)=h(1)=0 かつ 0<Iw<1 を満たす関数である． 
 

 本研究では，体積含水率 θ を現地計測結果として用いているため，時刻 t=0 における土壌

水分吸引水頭 Ψ の値は未知数である．このため，上述した手順では，θdと θwが不明であり，

それによって，Iwも算出できない．そこで，本研究では，時刻 t=0 における初期の αt=0と排

水時の αd を未知パラメータとして与え，時刻 t=0 における水分履歴パラメータは Iw=0.5 と

仮定することで，吸水時の αwを算出した．水分履歴パラメータ Iwは，既往の研究 81)より，

Iw=0.5 付近にピークを持つ分布となる傾向があることは確認している．つまり，本研究では，

θs，θr，時刻 t=0 における αt=0，n，ks，排水時の αd，ξ の 7 種類を未知パラメータとして，デ

ータ同化により各土壌水分特性パラメータの確率分布をそれぞれ推定することとした． 

 

 

図-4-22 排水・吸水の履歴を反映する水分履歴パラメータ Iwと 

現在の水分特性を通る水分特性曲面 f=0 
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4.4.3 現地計測結果 

 

本研究の対象斜面は，粘土質シルトで構成された道路沿いの切土斜面である 82)．図-4-23

は対象斜面における現地調査地点とセンサの設置状況を示している．この斜面には複数地

点に土壌水分計が設置されており，体積含水率を 10 分間隔で計測している．また，現地の

降雨量も転倒桝型雨量計により 10 分間隔で計測している．センサの設置方法については

4.3.3 で示した通りであり，本研究では，S-7 地点の深度 45cm の深さで計測された体積含水

率の時系列データを現地計測結果として用いる．図-4-24 は本研究で用いた現地計測結果を

示している．最大時間雨量 39(mm/h)の激しい降雨に伴って体積含水率が急激に上昇してい

るが，その後の無降雨期間では体積含水率の下降が非常に遅い．つまり，保水性の高い土で

構成された斜面であることが分かる．また，センサを設置した S-7 地点では簡易動的コーン

貫入試験が行われており，本研究で対象とした地点においても，基盤は深度 45cm よりも遥

かに深いことが確認されている． 

 

 

 

 

図-4-23 現地調査地点とセンサの設置状況 
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4.4.4 解析条件 

 

本研究では，ヒステリシスを考慮しない水分特性曲線モデルを用いてシミュレーション

を行う No-hysteresis と，ヒステリシスの影響を考慮する菊本らのモデルを用いてシミュレ

ーションを行う Hysteresis-seepage の 2 つのデータ同化を実施する．表-4-12 は 2 つの解析ケ

ースにおける各土壌水分特性パラメータの変動幅を示している．この範囲内で一様乱数に

より 5,000 個の粒子を作成した．すなわち，No-hysteresis では θs，θr，αt=0，n，ksの 5 つのパ

ラメータ，Hysteresis-seepage では合計 7 種類のパラメータ(θs，θr，αt=0，n，ks，αd，ξ)につ

いてそれぞれ一様乱数に基づいて変動幅内で粒子を作成した．なお，この変動幅に関しても，

事前のパラメトリックスタディの結果から決定した．PF のアルゴリズムとしては SIR を用

いた．また，観測ノイズ wtに関しては正規分布 N(μ=0，σ2=0.005)を，システムノイズ vtに関

しては正規分布 N(μ=0，σ2=0.0001)を，両解析ケースについて設定した． 

 

 

 

 

図-4-24 現地計測結果 

 

 

表-4-12 各土壌水分特性パラメータの変動幅 
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図-4-25 は本研究で用いた一次元解析モデル(節点数 74，要素数 36)を示している．本研

究では，体積含水率が一深度でのみ計測されているため，一層モデルを仮定した．その他の

境界条件や初期条件に関しては，4.3 で説明した設定と同様である． 

 

 

 

図-4-25 一次元解析モデル 
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4.4.5 解析結果の比較とヒステリシスの影響に関する議論 

 

図-4-24 に示す現地計測結果に基づいて，No-hysteresis と Hysteresis-seepage におけるデー

タ同化を行った．表-4-13 はデータ同化により推定された各土壌水分特性パラメータの確率

分布の平均値を，表-4-14 はその標準偏差を示している．2 つの解析ケースにおいて共通す

る 5 種類の土壌水分特性パラメータ(θs，θr，αt=0，n，ks)に関しては，平均値も標準偏差もそ

れほど大きな違いはないことが分かる．図-4-26 は各パラメータの平均値より同定された水

分特性曲線を示している．Hysteresis-seepage では，吸水過程における水分特性曲線と排水過

程におけるそれとが顕著に異なっている．また，No-hysteresis では，Hysteresis-seepage の主

排水曲線と主排水曲線の間を通るような唯一の水分特性曲線が推定されている． 
 

2 つの解析ケース(No-hysteresis，Hysteresis-seepage)において，データ同化を実施してそれ

ぞれ推定された各パラメータの確率分布を用いて，2 通りの再現解析を行う．そして，その

結果を比較することで，浸透解析モデルのデータ同化におけるヒステリシスの影響につい

て議論する． 

 

 

 

表-4-13 推定された各土壌水分特性パラメータの確率分布の平均値 

 

 

 

表-4-14 推定された各土壌水分特性パラメータの確率分布の標準偏差 
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θ s θ r α t=0 n k s α d ξ
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0.0022 8.2098
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まず，データ同化によって推定された各パラメータの確率分布に基づいてMCSを行って，

現地計測結果に対する再現性を確率論的に比較する．各粒子に対する誤差の評価方法とし

ては，MAE を採用した．図-4-27 は 2 つの解析ケースにおいて MCS を行って得られた MAE

のヒストグラムを示している．ヒステリシスの影響を考慮した水分特性曲線モデルを用い

てデータ同化を行った Hysteresis-seepage の方が，ヒステリシスの影響を考慮していない No-

hysteresis よりも，分布が左側に寄っていることから，Hysteresis-seepage の方が現地計測結

果に対する誤差の小さい粒子を多く複製できているといえる．つまり，ヒステリシスの影響

を考慮することで，計測結果に対する誤差が減少していることが明らかになった． 

 

 

 

図-4-26 各パラメータの平均値より決定された水分特性曲線 

 

 

 

 

図-4-27 2 つの解析ケースにおいて MCS を行って得られた MAE のヒストグラム 
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次に，表-4-13 に示す各パラメータの平均値を用いて，現地計測結果に対する再現解析を

実施した．つまり，各パラメータの平均値を同定されたパラメータとして決定論的に扱った

場合の計測結果に対する再現性を比較した．図-4-28 は No-hysteresis における再現解析結果

を，図-4-29 は Hysteresis-seepage におけるそれを示している．両者を比較すると，降雨ピー

ク時の体積含水率が上昇するタイミングや上昇後の体積含水率の値にはそれほど大きな差

はない．ただし，降雨終了後における体積含水率の経時変化を比較すると，Hysteresis-seepage

では降雨終了後も体積含水率は緩やかに下降して，対象斜面の保水性の高さを精度良く表

現できているのに対して，No-hysteresis では降雨が終了してすぐに体積含水率が下がり始め，

最終時刻では大きな誤差が発生している．これは，本研究で用いた現地計測結果のように，

降雨ピーク時には体積含水率が急激に上昇し，降雨終了後には体積含水率が緩やかに下降

するという土壌水分特性を 1 本の水分特性曲線で表現することが困難であるためだと考え

られる．そのような場合には，ヒステリシスを考慮した水分特性曲線モデルを用いて，主排

水曲線と主吸水曲線で囲まれた領域内の土壌水分特性をシミュレーションに反映できると

いう条件の下でデータ同化を行い，現地計測結果との適合度が高いパラメータを推定する

必要性があるといえる． 
 

以上の結果から，MCS によって確率論的に再現解析結果を比較した場合も，重み付き平

均値を用いて決定論的に再現解析結果を比較した場合も，ヒステリシスの影響を考慮した

Hysteresis-seepage の方が現地計測結果に対する適合度が明らかに高いことが示された．した

がって，本研究で用いたような土壌水分特性を 1 本の水分特性曲線で表現することが困難

なデータに対しては，ヒステリシスの影響を考慮した水分特性曲線モデルを導入してデー

タ同化を行う必要性があるといえる． 
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図-4-28 No-hysteresis における再現解析結果 

 

 

 

図-4-29 Hysteresis-seepage における再現解析結果 
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4.5 浸透解析モデルのデータ同化に有効なアルゴリズムに関する議論 

 

4.5.1 概要 
 

4.3や4.4では，SIRを用いて現地計測結果に基づく浸透解析モデルのデータ同化を行い，

その有用性を明らかにした．しかし，PF のアルゴリズムとして SIR を用いると，アンサン

ブルの退化 17)が発生する可能性がある．PF では，システムの状態に関する確率分布を粒子

と呼ばれる多数の実現値集合(アンサンブル)で近似的に表現するが，アンサンブルの退化

とは，SIR において実施されるリサンプリングの計算過程により，ある特定の粒子が占める

割合が著しく大きくなり，それによって粒子の種類が僅少になる現象である．アンサンブル

の退化が発生すると，統計的な多様性が失われ，データ同化の性能が低下することが指摘さ

れている 17)．このようなアンサンブルの退化は，粒子の種類を十分に多くすることで理論

的には回避可能であるが，粒子の種類を多くすることは計算コストの増大を意味する．その

ため，アンサンブルの退化を抑制しつつ，データ同化を行うためのアルゴリズムが多数提案

されている 56)-60)．その中でも，中野らによって提案された融合粒子フィルタ 56),57) (Merging 

Particle Filter，以下 MPF と呼ぶ)は，PF の利点を活かしつつも，アンサンブルの退化は起こ

りにくく，モデルが高次元になっても計算コストはそれほど増大しないという特徴がある．

また，PF の代表的なアルゴリズムの 1 つである SIS はリサンプリングを行わないため，粒

子の種類が僅少になることはない． 
 

 以上のように，PF の考え方を基本とした逐次型データ同化手法には様々なアルゴリズム

が存在する．このようなアルゴリズムは，当然，未知パラメータの確率分布を適切かつ効果

的に推定できることが求められる．本研究では，SIR，SIS，および MPF という 3 種類の異

なるアルゴリズムによって浸透解析モデルのデータ同化を行う．そして，アンサンブルの退

化の抑制と効果的なデータ同化という観点から，不飽和浸透問題における浸透解析モデル

のデータ同化に関する MPF の有用性について明らかにする．  
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4.5.2 各アルゴリズムの相違点 

 

(1) Sequential Importance Sampling(SIS) 
 

図 4-30 は SIS の概念図である．SIS では，リサンプリングは行わず，1 期先予測とフィル

タリングのみを逐次繰り返す．つまり，各時刻において計算されたそれぞれの粒子の重みを

逐次的に更新していき，それによってフィルタ分布 p(xt|y1:t)を表現する．SIS では，その性質

上，粒子の複製・消滅が起こらないため，粒子の種類が僅少になることはない．ただし，フ

ィルタリングを繰り返すうちに，ごく一部の粒子を除いたほとんどの粒子の重みが 0 に近

い無視できる値になってしまう問題が生じる場合がある．これは，実質的に，ごく少数の粒

子によって確率分布を近似していることと等しいため，確率分布の形状を正しく表現でき

ず，推定精度が著しく悪化することとなる．この現象もアンサンブルの退化と呼ばれる． 
 

以下に，SIS のアルゴリズムを示す． 

1) 初期分布を近似するアンサンブル   N

i

ix
10|0 
を生成する． 

2) t=1，…，T について(a)～(e)のステップを実行する． 

 (a) 各粒子について，システムノイズを表現する乱数  t

i

t vpv ～)( を生成する． 

 (b) 各粒子について，  )()(

1|1

)(

1| , i

t

i

ttt

i

tt vxfx   を計算し，予測アンサンブル   N

i

i

ttx
11|  を得る． 

 (c) 各粒子について，重み  )(

1|

)( | i

ttt

i

t xyp  を計算する． 

(d) 各粒子について，相対的な重み 



N

i

i

t

i

t

i

t

1

)()()(~
 を求める． 

 (e) 各時刻において各粒子が有する事後分布の重み γt
(i)は )()(

2

)(

1

)( ~~~ i

t

iii

t   により

求まる． 
 

つまり，SIS は(e)の部分のみが SIR と異なり，リサンプリングは行わずに，次の時刻のシミ

ュレーションを実施する．このため，多数のモデル情報を用意して，それに対応した MCS

によって算出された物理量さえ得ることができれば，SIS の計算は可能である．つまり，演

繹的なシミュレーションと，帰納的な確率分布の算出を完全に切り離して考えることがで

きるため，SIR や MPF よりも遥かに実装が容易であるという特徴もある． 
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(2) 融合粒子フィルタ(MPF) 
 

図 4-31 は MPF の概念図である．MPF は，SIR を基に，アンサンブルの退化が起こりに

くくなるように変更を施したアルゴリズムの 1 つである．この方法では，フィルタ分布

p(xt|y1:t)の平均，分散共分散行列の情報，すなわち，2 次モーメントまでの情報を保持したア

ンサンブルを，行列計算を行わずに得ることができる．MPF が SIR と異なるのは，フィル

タアンサンブル{xt|t
(i)}i=1

N を構成する粒子を 1 個生成するために，予測アンサンブル{xt|t-

1
(i)}i=1

Nから複数個のサンプルを抽出し，その重み付き和をとる点である．したがって，粒子

xt|t
(i)を生成するのに予測分布 p(xt|y1:t-1)から抽出した粒子を l 個(l は 3 以上の整数)用いるこ

ととすると，N 個の粒子で構成されるフィルタアンサンブル{xt|t
(i)}i=1

Nを生成するために，予

測アンサンブル{xt|t-1
(i)}i=1

Nから l×N 個のサンプルを l 個ずつの組にして，それぞれの組ごと

に重み付き和をとることで，フィルタアンサンブル{xt|t
(i)}i=1

Nを構成する粒子を生成する．こ

の過程が Merging であり，これによって多様な粒子が生成されるため，アンサンブルの退化

が起こりにくくなる． 
 

 重み付き和をとる際の重み{αj}については， 

 
 


l

j

l

j

jj

1 1

2 1,1   

 

(4-44) 

を満たすように与える．本研究では，既往の文献 17)を参考として，l=3 として，重みに関し

ては， 

8

113
,

8

113
,

4

3
321





   

 

(4-45) 

と設定した． 
 

 MPF のアルゴリズムも上述した SIS のアルゴリズムの(e)以降が異なり， 

 (e)     N

tttt xx 1|

1

1| ,,   から，各粒子 xt|t-1
(i)が βt

(i)の確率で抽出されるようにして l×N 個の粒子

を復元抽出し，         Nl

tt

N

tt

l

tttt xxxx ,

|

,1

|

1,

|

1,1

| ,,,,,,  を生成する． 

(f) 各 i(i=1,…,N)について，l×N 個の粒子   ij

ttx ,

|
から l 個の粒子     il

tt

i

tt xx ,

|

,1

| ,,  を取り出し

た上でその重み付き和 



l

j

ij

ttj

i

tt xx
1

),(

|

)(

|  をとり，     N

tttt xx |

1

| ,,  を生成する． 

となる． 
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図 4-30 SIS の概念図 

 

 

 

 

図 4-31 MPF の概念図 
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MPFのアルゴリズムにより生成されるアンサンブル{xt|t
(i)}i=1

Nが元のフィルタ分布 p(xt|y1:t)

と近似的に等しい平均，および分散共分散行列を持つことを示す 17)．まず，注意しておくべ

きことは，l×N 個の粒子{xt|t
(1,1),…, xt|t

(l,1),…, xt|t
(1,N),…, xt|t

(l,N)}から N 個の粒子{xt|t
(j,1),…, xt|t

(j,N)}

を取り出してできる部分集合は，SIR と全く同じアルゴリズムで生成されているということ

である．したがって，この N 個の粒子の部分集合だけでもフィルタ分布 p(xt|y1:t)が近似でき

ていることになる．つまり，任意の j(j=1,…, l)について 

   



N

i

ij

ttttt xx
N

yxp
1

),(

|:1

1
|   

(4-46) 

がいえる．式(4-46)を利用して，アンサンブル{xt|t
(i)}i=1

Nで近似される確率分布の平均値を算

出すると， 
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(4-47) 

となり，フィルタ分布 p(xt|y1:t)の平均値 μt|tと近似的に等しくなる．次に，分散共分散行列に

関しては， 
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となり，フィルタ分布 p(xt|y1:t)の分散共分散行列 Σt|t に一致する．このように，MPF によっ

て得られるフィルタアンサンブル{xt|t
(i)}i=1

Nには，フィルタ分布 p(xt|y1:t)の 2 次モーメントま

での情報が近似的に保持される．しかし，3 次以上のモーメントの保存は保証されないため，

分布の歪みや尖りなどの情報は一般的には失われる． 
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4.5.3 現地計測結果 
 

対象斜面は 4.3.3 で説明した九州地方に位置する高速道路沿いの切土斜面である．センサ

の設置状況なども 4.3.3 に示した通りである．ここでは，現地計測結果として，合計 30 日

分の体積含水率の経時変化を用いてデータ同化を行うこととした．図-4-32 はその計測結果

を示している．計測期間における 10 日，20 日，25 日頃にまとまった雨が降り，それぞれ体

積含水率が上昇している．深度 30cm において計測された体積含水率の値は，深度 60cm に

おけるそれと比較して，全体的に小さな値を示しているが，降雨時の体積含水率のピーク値

に関しては概ね一致していることが分かる．また，この斜面では，4.3.3 において，ヒステ

リシスの影響を考慮しない水分特性曲線モデルを用いても，十分な精度でシミュレーショ

ンが可能であった．これは，水分特性曲線における主排水曲線と主吸水曲線の間にそれほど

大きな幅がなかったためであると考えられる．このことから，本研究でも，ヒステリシスの

影響は考慮せずに，θs，θr，α，n，ksの 5 種類の土壌水分特性パラメータの確率分布をそれ

ぞれ推定することとした． 

 

 

 

 

図-4-32 現地計測結果 
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4.5.4 解析条件 
 

ここでは，3 つの異なるアルゴリズム(SIR，SIS，MPF)を用いたデータ同化をそれぞれ行っ

た．SIR によりデータ同化を行う解析ケースを DA-SIR，SIS によるそれを DA-SIS，MPF に

よるそれを DA-MPF と呼ぶ．表-4-15 はデータ同化を行う各パラメータの変動幅を示してい

る．この範囲内で一様乱数により 2,500 個の粒子を作成し，3 つの解析ケースにおけるデー

タ同化をそれぞれ実施した．なお，この変動幅は，4.3.3 の結果を参考に決定した．解析モ

デルに関しては，4.3.3 と同様の一次元解析モデルを用いた．また，観測ノイズ wtに関して

は，全ての解析ケースにおいて，観測ノイズ wtとして 2 次元正規分布を仮定し，分散 σ2=0.02

を設定し，非対角項(共分散)は 0 とした．システムノイズ vt は全ての解析ケースで 0 とし

た．つまり，3 つの解析ケースにおいて，アルゴリズム以外の条件は全て同一として，アル

ゴリズムの違いによるデータ同化結果の違いを比較することとした． 

 

 

 

表-4-15 データ同化を行う各パラメータの変動幅 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ s θ r α n k s

(1/cm） （cm/min）

min 0.50 0.10 0.05 1.30 1.00

max 0.55 0.15 0.10 1.50 5.00

min 0.50 0.12 0.03 1.30 1.00

max 0.55 0.17 0.08 1.50 5.00

上層

下層
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4.5.5 解析結果の比較と有用性に関する議論 
 

図-4-33 は各解析ケースにおいてデータ同化を行った際の粒子の種類数の経時変化と 10

分間雨量の関係を示している．DA-SIR では約 15 日間で粒子が消滅しており，最終時刻で

は約 30 種類の粒子しか残存していなかった．それに対して，DA-SIS と DA-MPF では粒子

が 2,500 種類のままデータ同化が行われており，粒子の種類数は減少していない．ただし，

DA-SIS は最初に設定したモデル情報を最終時刻まで使い続けるのに対して，DA-MPF では

計算ステップごとに Merging を行うため，各粒子が有するモデル情報は計測結果との適合

度が高まるように逐次更新されるという違いがある． 
 

データ同化によって推定されたパラメータの確率分布を比較する．図-4-34 は一例として

上層のパラメータ θrを横軸とした場合における確率分布を示している．DA-SIR と DA-MPF

における縦軸は，横軸の各区間に当てはまる粒子数を全粒子数で除した確率であり，DA-SIS

における縦軸は，最終時刻において各粒子が有する事後分布の重み γT
(i) である．DA-SIR に

関しては，確率が 0 となる区間が数多く点在しており，確率分布として不適切である．これ

は，粒子の種類数が約 30 種類まで減少したことが原因である．つまり，DA-SIR では著しい

アンサンブルの退化が発生し，それによって，粒子を用いて確率分布を近似的に表現するこ

とが困難になっているといえる．DA-SIS に関しては，初期に与えた一様乱数とほとんど変

わらない分布が推定されている．この結果から，DA-SIS では効率的なデータ同化が行えて

いない可能性が考えられる．DA-MPF に関しては，0.13<θr<0.136 あたりに明確なピークを

持つ単峰性の分布が得られている．その他のパラメータに関しても，同様の傾向を確認する

ことができた．MPFではフィルタ分布の情報が 2次モーメントまでしか保存されないため，

このような単峰性の分布が推定される傾向がある．そのため，フィルタ分布が多峰性を有す

る場合には，分布を精度良く推定できないという問題点が指摘されている 83)． 

 

 

 

 

図-4-33 各解析ケースにおける粒子の種類数の経時変化と 10 分間雨量の関係 
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(a) DA-SIR 

 

 

(b)  DA-SIS 

 

 

(c) DA-MPF 

図-4-34 各解析ケースにおいて推定されたパラメータの確率分布 
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次に，データ同化によって得られた粒子の事後分布に基づいて，現地計測結果に対する

MCS を実施して，計測結果に対する解析結果の誤差を評価した．各粒子に対する誤差の評

価方法としては，MAE を採用した．なお，DA-SIR では明らかな退化が発生しているため，

DA-SIS と DA-MPF によって得られた分布のみを用いて MCS を実施した．図-4-35 は MAE

のヒストグラムを示している．MAE の値が小さいほど，計測結果と解析結果の誤差が小さ

いことから，MPF を用いて得られた粒子の分布の方が SIS によって得られたそれよりも，

計測結果に対する再現性が明らかに高いといえる．例えば，MAE が 0.04 以下である粒子の

割合は，DA-SIS では 30%以下であるのに対して，DA-MPF は約 88%である．このことから，

MPF により推定された単峰性の確率分布によってフィルタ分布は十分に表現できており，

効果的なデータ同化が行えていることが確認できた． 
 

最後に，DA-MPF のデータ同化過程における体積含水率の事後分布の期待値の経時変化

を図-4-36 に示す．図-4-36 には深度 30cm と 60cm で計測された体積含水率の値も併せて示

している．同図より，データ同化の初期段階では，計測結果とシミュレーションの期待値の

間に大きな誤差が発生している場合もあるが，時間の経過に伴って，その誤差は非常に小さ

くなっていることが分かる．つまり，多くの計測結果を用いてデータ同化を行うことで，計

測結果との適合度が高い浸透解析モデルへと更新できていることが，この結果からも確認

できた． 
 

以上の結果から，体積含水率の現地計測結果に基づいて浸透解析モデルのデータ同化を

行う場合に，アンサンブルの退化の抑制と効果的なデータ同化という 2 つの条件を同時に

満たす PF のアルゴリズムとして，MPF が最も有用であるといえる． 

 

 

 

 

図-4-35 MCS によって得られた MAE のヒストグラム 
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図-4-36 DA-MPF のデータ同化過程における体積含水率の事後分布の期待値の経時変化 
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4.6 地下水位の計測結果に基づく浸透解析モデルのデータ同化 

 

4.6.1 概要 
 

これまでの検討により，現地計測結果に基づいて浸透解析モデルを推定するための手段

として PF によるデータ同化が有効であること(4.3)，ヒステリシスの影響を考慮した水分

特性曲線モデルを導入することで，より現地の状態に近い浸透解析モデルを推定できるこ

と(4.4)，逐次型データ同化手法の中でも，MPF は効果的なデータ同化とアンサンブルの退

化の抑制という条件を同時に満たす有効なデータ同化手法であること(4.5)などが明らかに

なった．しかし，これまでの検討では全て，土中の状態としては不飽和状態である．当然，

不飽和状態であっても，急傾斜な斜面では，雨水浸透に伴う土塊自重の増加やサクションの

消失などによって斜面崩壊が発生する場合もある 72)．しかし，斜面崩壊の発生は地下水位

の形成によって引き起こされる場合が多い 84)．したがって，斜面崩壊の発生を未然に予測

するためには，不飽和浸透だけでなく，飽和状態における地下水流動も適切にシミュレート

できる浸透解析モデルが必要である． 
 

地下水流動をシミュレートする際に問題となるのが，底面の境界条件である．現地斜面に

おいては，不飽和状態における鉛直一次元浸透の境界となる基盤深度の推定が困難な場合

がある．また，基盤深度を推定できたとしても，基盤内への浸透を考慮すると，非排水境界

が不適切な場合もある．それに対して，模型斜面を用いれば，人工的に土槽を作成できるた

め，底面の境界条件を完全に非排水境界とすることができる．さらに，模型斜面は，斜面の

形状や土層区分を制御可能なこと，斜面に与える降雨外力を一定に調節できることなどの

特徴がある．これらの特徴は，数値解析モデルを作成する際の不確実性を大幅に軽減できる

ことを意味している．したがって，地下水流動を適切にシミュレートできる浸透解析モデル

を推定するためには，まずは，模型実験に対する散水実験における計測結果に基づくデータ

同化を試みる必要性がある． 
 

檀上ら 85)は，繰り返しの降雨履歴を受けた斜面における浸透挙動や地下水の動態を把握

するために，2015 年に大型模型斜面に対する繰り返しの散水実験を行った．これにより，

大型模型斜面の多点で地下水位の時系列データが得られた．本研究では，この地下水位の計

測結果に基づいて浸透解析モデルのデータ同化を試みる．そして，推定された浸透解析モデ

ルを用いたシミュレーションを通じて，地下水流動の再現性について議論する． 
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4.6.2 大型模型斜面に対する散水実験の計測結果 

 

(1) 大型模型斜面の作成と実験試料 
 

檀上ら 85)は，防災科学技術研究所内の大型降雨実験施設において，大型模型斜面を作成

し散水実験(以下，大型模型実験と呼ぶ)を行った．図-4-37 は土槽の概要図を示している．

模型斜面の形状は，高さ 5.0m×幅 3.9m，斜面角度 30°であり，枠組みは銅製である．斜面

底面はモルタルで形成され，非排水境界となっている．のり尻底面には排水礫層が設けられ

た．試料には，笠間産マサ土が使用された．作成した盛土の層厚は，盛土基盤に対して垂直

に 1.0m である．模型斜面は，のり尻から鉛直方向に 0.3m ずつ盛土を行い，所定の密度にな

るように人力で踏み固めて作成された．なお，斜面密度の確認のためにサンプリングを行っ

たが，大きなバラツキは見られなかったと報告されている．表-4-16 は笠間産マサ土の物性

条件を示している． 

 

 

 

図-4-37 土槽の概要図 
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(2) 計測機器および降雨装置の概要 
 

大型模型実験では計測機器として，土壌水分計，テンシオメータ，水位計，伸縮計，傾斜

計，土圧計が用いられた．その中で，本研究で用いた計測結果は，水位計による地下水位の

時系列データである．水位計(共和電業製 BWL-10MET)は大気圧変動の補正が必要ないひず

みゲージ式水位計が用いられた．図-4-38 は水位計の設置位置を示している．模型斜面の底

面部分に合計 6 基の水位計が設置された． 
 

大型模型実験では，防災科学技術研究所内の大型降雨装置を用いて散水が行われた．雨滴

粒径は大きさの異なる4本のノズルを用いて，0.1～2.2mmの範囲で調節することができる．

また，降雨強度は 15~200(mm/h)の範囲で調節可能である．表-4-17 は大型模型斜面に与え

た降雨履歴を示している． 

 

 

表-4-16 笠間産マサ土の物性条件 

 

 

 

図-4-38 水位計の設置位置 
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(3) 解析対象とした計測結果 
 

本研究では，10 月 28 日の降雨 2 において計測された地下水位の時系列データを解析対象

として用いた．図-4-39 は降雨 2 における時間雨量と各水位計で計測された地下水位の関係

を示している．のり尻底面の排水境界上に位置する WL01 と斜面のり肩の底面に位置する

WL06 では地下水位が発生していない．その他の水位計では，降雨が終了してから約 20 分

後に地下水位が発生し，約 90 分後にピークを迎えた後，時間の経過に伴って地下水位が低

下していることが分かる． 

 

 

表-4-17 大型模型斜面に与えた降雨履歴 

 

 

 

 

図-4-39 時間雨量と各水位計で計測された地下水位の関係 
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4.6.3 解析条件 

 

シミュレーションとしては，二次元の飽和不飽和浸透流解析を行った．Richards 式 61)は式

(4-49)，最終的に定式化された方程式は式(4-50)のようになる． 
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(4-50) 

図-4-40 は本研究で用いた二次元解析モデル(節点数 351，要素数 308)を示している．大型

模型実験では，概ね均質に盛土が作成されているため一層でのモデル化を行った．境界条件

に関しては，排水砂礫が設置されているのり尻底面には自由排水境界を，その他のモデル底

面と側面には非排水境界を設定した．また，盛土表面は降雨境界として，時間雨量 20(mm/h)

の降雨を所定の時間与えた．また，大型模型実験の斜面内には合計 9 基の土壌水分計が設置

されており，斜面内の多地点で体積含水率が計測されている．そのため，シミュレーション

の初期条件としては，初期の体積含水率の平均値を用いて θt=0=0.23 とした．パラメータに

関しては，事前の解析 86)によって，大型模型実験ではヒステリシスの影響が大きいことが

確認されているため，4.4 と同様に，7 種類の土壌水分特性パラメータ(θs，θr，αt=0，n，ks，

αd，ξ)の確率分布をそれぞれ推定することとした． 
 

データ同化手法としては MPF を用いた．これは，SIR を用いてデータ同化を行うとアン

サンブルの退化が発生したためである．図-4-41 は SIR を用いてデータ同化を行った際の粒

子の分布を示している．ここでは一例として，パラメータ ks を横軸に取った場合の粒子の

分布を示している．この結果から，確率分布としては不適切な分布が推定されており，適切

なデータ同化が行えていないといえる．本研究では，二次元解析モデルを用いているため，

初期に作成できる粒子の個数には限界がある．このため，アンサンブルの退化が発生しやす

い条件となっている．そのような場合であっても，MPF を用いることで，アンサンブルの

退化をある程度抑制できる．したがって，本研究では，表-4-18 に示す範囲内で一様乱数に

より 1,000 個の粒子を作成し，MPF によってデータ同化を行うこととした．表-4-18 に示す

パラメータの範囲は，事前の解析 86)の結果を参考に決定した．観測ノイズ wt に関しては，

6 次元の正規分布を仮定し，平均は 0，標準偏差は 30 とした．なお，水位計ごとの相関性は

考慮せず，非対角項は 0 とした．また，システムノイズ vtも考慮しないこととした． 
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図-4-40 二次元解析モデル 

 

 

 

 

図-4-41 SIR を用いてデータ同化を行った際の粒子の分布 

 

 

 

表-4-18 各土壌水分特性パラメータの範囲 
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4.6.4 解析結果と地下水流動の再現性に関する議論 

 

図-4-42 はデータ同化を行う前の各土壌水分特性パラメータ(θs，θr，αt=0，n，ks，αd，ξ)に

対する粒子の初期分布を示している．表-4-18 に示す範囲内で一様乱数により粒子を作成し

ているため，粒子の初期分布も一様分布となっている．この粒子の分布を事前分布として，

図-4-39 に示す地下水位の経時変化を用いてデータ同化を行った．図-4-43 はデータ同化終

了後の粒子の分布，つまり，事後分布を示している．全ての土壌水分特性パラメータに関し

て，分布の中央付近にピークを持つ山型の分布が推定されている．これは，データ同化を行

ったことにより，計測結果との適合度が悪い分布の両端の粒子が消滅し，分布の中央付近で

粒子が再作成されていることを意味している．つまり，より計測結果との適合度が高くなる

ように浸透解析モデルが推定されているといえる．次に，図-4-43 に示す分布を事前分布と

して，図-4-44 に示す地下水位の経時変化に対して再度データ同化を行った．つまり，同じ

計測結果に対して 2 回目のデータ同化を実施した．図-4-44 はその事後分布を示している．

同図より，2 回目のデータ同化を行うことで，分布のバラツキが非常に小さくなっているこ

とが分かる．つまり，モデルの確信度が高まっているといえる．このことから，MPF を用

いて得られた事後分布を事前分布として，複数回データ同化を行うことで，より適切な浸透

解析モデルへと更新できると考えられる． 
 

データ同化前の一様分布，1 回目のデータ同化によって得られた事後分布，2 回目のデー

タ同化によって得られた事後分布に基づいて MCS を行い，計測結果に対する再現性を比較

した．図-4-45 は MCS によって得られた MAE のヒストグラムを示している．同図における

横軸(MAE の合計)は，水位計が設置されている 6 点における地下水位の計測結果と解析結

果の MAE の合計である．つまり，式(4-51)で示される値である． 

 
 











m

j

M

i

ji

obs

ji

cal WLWL
M

MAE
1 1

),(),(1
の合計  

(4-51) 

ここに，m は観測ノイズの次数，つまり，水位計の設置個数の 6 である．WL は地下水位，

M は計測結果の個数である．図-4-45 より，データ同化を行うたびに MAE の合計が小さく

なっており，MPF によって適切なデータ同化が行われていたことが分かる．さらに，2 回目

の事後分布を用いた MCS の結果は，MAE の合計の平均が 6cm 程度である．これは，1 つ

の水位計で平均して考えると 1cm 程度の誤差に収まっていることを意味している．大型模

型実験は基盤に対して垂直に 100cm の土槽であることや水位計の計測誤差を考慮すると，

これは十分に小さい値であり，地下水位の計測結果に対しても，MPF を用いた浸透解析モ

デルのデータ同化は十分に有効であるといえる． 
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図-4-42 各土壌水分特性パラメータに対する粒子の初期分布 

0

0.1

0.2

0.3

0.4

0.35 0.37 0.39 0.41 0.43 0.45

確
率

θsの範囲

0

0.1

0.2

0.3

0.4

0.1 0.12 0.14 0.16 0.18 0.2

確
率

θrの範囲

0

0.1

0.2

0.3

0.4

0.06 0.066 0.072 0.078 0.084 0.09

確
率

αt=0の範囲

0

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5 3

確
率

ksの範囲

0

0.1

0.2

0.3

0.4

10 18 26 34 42 50

確
率

Iwの範囲

(g) Iw 

(e) ks 

(c) αt=0 

(a) θs 

0

0.1

0.2

0.3

0.4

1.3 1.6 1.9 2.2 2.5 2.8

確
率

nの範囲

0

0.1

0.2

0.3

0.4

0.03 0.036 0.042 0.048 0.054 0.06

確
率

αdの範囲

(b) θr 

(d) n 

(f) αd 



151 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

図-4-43 1 回目のデータ同化後の各土壌水分特性パラメータに対する粒子の分布 
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図-4-44 2 回目のデータ同化後の各土壌水分特性パラメータに対する粒子の分布 
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図-4-45 MCS によって得られた MAE のヒストグラム 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

4 6 8 10 12 14 16 18 20

MAEの合計（cm）

確
率

：初期の一様分布

：1回目の事後分布

：2回目の事後分布



154 

 

4.7 まとめ 

 

本研究では，現地計測結果を適切に再現できる浸透解析モデルの推定手法の確立を目的

として，PF を用いて，計測結果に基づく浸透解析モデルのデータ同化を行った．4.3 では浸

透解析モデルの推定に対するデータ同化の有用性の検証を目的として，まず，推定された浸

透解析モデルを用いた解析的外挿の可能性について検証した．さらに，様々な降雨時の計測

結果を用いたデータ同化を行い，浸透解析モデル更新の有効性を確率論的に評価した．4.4

ではヒステリシスを考慮した水分特性曲線モデルを導入し，浸透解析モデルのデータ同化

におけるヒステリシスの影響について議論した．4.5 では PF の中でもアルゴリズムの異な

る 3 種類の手法を用いてそれぞれデータ同化を行い，浸透解析モデルのデータ同化に有効

なアルゴリズムについて議論した．4.6 では地下水位の計測結果を用いた浸透解析モデルの

データ同化を行った．本研究により得られた主な結論は以下の通りである． 

 

(1) 弱い降雨時における体積含水率の現地計測結果に基づいて，PF によって推定された浸

透解析モデルを用いると，データ同化に使用したものよりも強い降雨時における現地

計測結果も適切に再現できた．このことから，PF によって推定された浸透解析モデル

を用いると，未経験の降雨外力に対する解析的外挿が可能であることが分かった． 

 

(2) 室内試験，機械学習および L-M 法により浸透解析モデルを決定した場合には，現地計

測結果を高精度に再現することができなかった．その理由として，室内試験には避けら

れない誤差が発生すること，機械学習は学習したデータ以上の予測が不可能なこと，L-

M 法が局所解に収束していたことなどが考えられる．それに対して，PF ではシミュレ

ーションモデルを介して，そのシミュレーションに必要なパラメータを推定している

ため，解析的な外挿も可能となる．このような点からも，PF によるデータ同化は有用

であるといえる． 

 

(3) 降雨形態の異なる 3 種類の現地計測結果を用いて，PF による浸透解析モデルの更新を

行った．その結果，データをより多く学習させたモデルほど，現地計測結果に対する再

現性が高くなることが明らかになった．このことから，様々な降雨時の計測結果を用い

てデータ同化を行うことで，より現地計測結果に対する再現性の高い浸透解析モデル

へと更新できるといえる． 

 

(4) PFに基づく土壌水分特性のデータ同化におけるヒステリシスの影響について議論した．

2 つの解析ケース(No-hysteresis と Hysteresis-seepage)におけるデータ同化によってそれ

ぞれ推定された確率分布を用いて 2 通りの再現解析を行った．その結果，MCS によっ

て確率論的に再現性を比較した場合も，重み付き平均値を用いて決定論的に再現性を

比較した場合も，ヒステリシスの影響を考慮した Hysteresis-seepage の方が現地計測結

果を適切に再現できていることが分かった． 
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(5) SIR，SIS，および MPF という 3 種類の異なるアルゴリズムによって浸透解析モデルの

データ同化をそれぞれ行い，現地計測結果に基づく浸透解析モデルの推定問題に対す

る有用性を比較した．その結果，アンサンブルの退化の抑制と効果的なデータ同化とい

う 2 つの条件を同時に満たす PF のアルゴリズムとして，MPF が最も有用であることが

分かった． 

 

(6) 大型模型斜面に対する散水実験によって得られた地下水位の計測結果に基づいて，浸

透解析モデルのデータ同化を行った．ヒステリシスの影響を考慮して，MPF によるデ

ータ同化を行った結果，地下水位の計測結果を十分な精度で再現できる浸透解析モデ

ルを推定できた．このことから，MPF を用いたデータ同化は，地下水位の計測結果に

対しても十分に有効であることが分かった． 

 

 以上の結果から，土中水分量に関する計測結果に基づいて，浸透解析モデルを推定するた

めの方法論として，PF によるデータ同化は非常に有効であることが明らかになった． 
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第 5 章 数値解析に基づく斜面崩壊に対する危険度予測 

 

5.1 はじめに 
 

 第 4章の検討により，逐次型データ同化手法の一種である粒子フィルタを用いることで，

現地計測結果に基づく浸透解析モデルの推定が可能であることが明らかになった．これに

より，膨大に蓄積された現地計測と数値解析を組み合わせて，現地の土中水分量に関する予

測が可能となった．しかし，通行規制や避難指示のような豪雨時の斜面崩壊に対するアラー

トを発令するためには，数値解析によって算出される物理量の予測値と斜面崩壊に対する

危険度の関係を明らかにしておく必要性がある．ここで，数値解析によって算出される予測

値には，安全率，斜面の変位，土中水分量などの様々なものが考えられる．安全率は雨水浸

透解析と極限平衡法のような斜面安定解析を組み合わせることで算出可能である 1)-5)．斜面

の変位は応力-浸透連成解析 6),7)により求めることができる．また，応力-浸透連成解析に関

しては，せん断強度低減法 8),9)を用いることで斜面の全体安全率の算出も可能である．土中

水分量に関しては，このような応力の計算は行わず，飽和不飽和浸透流解析によって求める

ことができる．このように，現在の斜面の状態を評価する解析手法は多数存在するが，適切

な数値解析を行ってアラートを発令するためには，パラメータの設定が重要となる．雨水浸

透解析に関しては，データ同化により土壌水分特性パラメータの確率分布を把握できてい

る．それに対して，極限平衡法や応力-浸透連成解析で必要となる強度定数は，室内試験に

よって求められる．このようなパラメータは，どのような手法によって算出されたものであ

っても必ずバラツキ(誤差)が生じる．したがって，現状で得られるパラメータのバラツキを

考慮して確率論的なシミュレーションを行った場合に，算出される予測値のバラツキが小

さく，なおかつ，斜面崩壊に対する危険度を適切に評価できる解析手法が望ましい． 
 

 本研究では，上述の問題意識を考慮して，数値解析に基づく豪雨時の斜面崩壊に対する危

険度予測手法の確立を目的とする．まず，5.2 では数値解析に基づく危険度予測手法に関す

る既往の研究について情報収集を行い，課題を抽出する．5.3 ではデータ同化によって得ら

れた浸透解析モデルのバラツキと一面せん断試験によって得られた強度定数のバラツキを

比較するために，極限平衡法による安全率の算出を行う．そして，その両者が斜面安定解析

結果に与える影響について明らかにする．5.4 では 5.3 で得られた知見に基づいて，土中水

分量に基づく危険度予測手法を提案する．そして，提案手法を実斜面に適用することで，そ

の斜面における土中水分量の閾値の設定を試みる．最後に 5.5 では本研究によって得られた

結論をまとめる． 
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5.2 本章に関連する既往の研究 

 

5.2.1 概要 
 

 本研究では，数値解析に基づく豪雨時の斜面崩壊に対する危険度予測を行う．ここでは，

既往の危険度予測手法に関する情報収集を行い，本研究で提案する危険度予測手法につい

て考察する．5.2.2 では斜面安定解析に関する既往の研究についてまとめて，斜面安定解析

を行う上で必要な情報を抽出する．5.2.3 では強度定数(粘着力，内部摩擦角)のバラツキに

関するレビューを行い，強度定数の不確実性が斜面安定解析に与える影響について考察す

る．5.2.4 では斜面安定問題において確率論的な議論を行った既往の研究をまとめ，本研究

で行う確率論的な危険度の評価方法について議論する．最後に，5.2.5 では既往の研究から

明らかになった課題をまとめて，本研究で提案する危険度予測手法の方向性を示す． 

 

 

5.2.2 斜面安定解析に関する既往の研究 
 

 豪雨時における斜面崩壊の主な発生要因として，雨水浸透に伴うすべり土塊自重の増加，

サクションの消失によるせん断強度の低下，地下水上昇に伴う浸透力の増加などが挙げら

れる 10)．そのため，数値解析に基づく斜面崩壊に対する危険度予測手法として，雨水浸透解

析と斜面安定解析を組み合わせた手法がこれまでに数多く用いられてきた 1)-5)．これらは，

雨水浸透解析によって斜面内の間隙水圧分布を算出し，その分布に基づいて極限平衡法に

よる斜面安定解析を行うというものである．雨水浸透解析に関しては，例えば，松尾ら 2)は

2 相流浸透理論を用いて土中水分量を算出していたが，近年では，計算技術の発展に伴い，

飽和不飽和浸透流解析が一般的に用いられている．極限平衡法による斜面安定解析に関し

ては，川端ら 3)は無限長斜面安定解析を，鏡原 4)は修正フェレニウス法を，酒匂ら 5)は Janbu

法をそれぞれ適用している．このように，雨水浸透解析と斜面安定解析を組み合わせて危険

度予測を行った事例は多数存在するが，これらの数値解析を行うためには，上述のように，

モデルパラメータを適切に推定しておく必要性がある．雨水浸透解析に関しては，第 5 章

で実施したデータ同化により，土壌水分特性パラメータの確率分布が推定できている．それ

に対して，斜面安定解析に必要な強度定数(粘着力，内部摩擦角など)は，一般的に，室内試

験によって推定される．このため，各手法によって求められたパラメータのバラツキが，斜

面安定解析結果に与える影響を把握しておくことは重要である． 
 

 その他の危険度予測手法として，応力-浸透連成解析が挙げられる 6),7)．これは，斜面内に

雨水が浸透し，間隙水圧が上昇することで斜面が変形するという一連の現象を解析的に再

現しようとするものである．応力-浸透連成解析におけるパラメータを適切に推定できれば，

斜面の変形までを再現し，安全率を求めることも可能である．しかし，パラメータの種類は

極限平衡法よりも多く，その推定が困難なことはいうまでもない． 
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5.2.3 強度定数のバラツキに関する既往の研究 
 

 斜面安定解析に必要な強度定数はせん断試験によって求められる．特に，豪雨時の表層崩

壊を想定した場合，鉛直有効応力が小さいため，低拘束圧条件下での一面せん断試験が有効

である 4)．しかし，八木ら 11)は，せん断試験によって求められた強度定数は同一地点であっ

ても大きなバラツキを有していると指摘している．したがって，このようなせん断試験によ

って推定された強度定数を用いて数値解析を行うためには，強度定数が有するバラツキの

程度を把握しておく必要性がある． 
 

 小堀ら 12)は，一面せん断試験により算出される強度定数が持つ不確かさを評価するため

に，100 個の供試体を用意し，5 名の測定者によって，それぞれ 5 回の一面せん断試験を実

施した．なお，垂直応力の大きさは 40，80，120，160kN/m2の 4 通りであり，試料には豊浦

標準砂を用いた．表-5-1 はその試験結果を示している．(σ，τf)の 4 点を最小二乗法で近似し

た際の相関係数は全て 0.9 以上と高いが，それによって算出された粘着力 c と内部摩擦角 φ

には大きなバラツキがあることが分かる．したがって，これらの強度定数のバラツキが斜面

安定解析の結果に与える影響について予め評価しておく必要性がある． 

 

 

表-5-1 合計 25 通りの一面せん断試験の試験結果 12) 

 

粘着力 内部摩擦角

σ=40kN/m2 σ=80kN/m2 σ=120kN/m2 σ=160kN/m2 c （kN/m2） φ（°）

1 29.00 57.19 86.00 115.00 0.00 35.77 0.9999

2 33.07 62.70 79.24 128.15 0.30 37.03 0.9791

3 33.07 63.39 93.02 129.52 0.00 38.57 0.9987

4 35.00 70.00 105.00 139.18 0.00 41.00 0.9999

5 29.63 68.90 97.84 126.78 0.70 38.69 0.9969

1 37.21 73.72 88.88 146.07 1.00 40.51 0.9746

2 32.38 58.98 82.00 104.04 7.80 31.00 0.9990

3 30.00 61.00 92.00 123.00 0.00 37.60 1.0000

4 32.38 66.14 77.17 124.02 3.40 35.56 0.9747

5 32.38 53.05 84.06 115.06 1.40 34.90 0.9959

1 34.12 75.79 90.26 119.26 2.40 36.86 0.9829

2 28.94 73.72 102.66 131.60 0.00 40.11 0.9177

3 36.12 57.88 90.95 126.78 1.70 37.33 0.9943

4 28.00 55.00 82.00 109.00 0.00 34.20 1.0000

5 32.38 65.46 84.75 116.44 6.90 34.16 0.9953

1 28.94 57.19 91.36 108.59 3.20 34.33 0.9925

2 29.00 58.00 88.00 118.00 0.00 36.60 0.9999

3 29.00 59.00 88.00 117.13 0.00 36.13 0.9999

4 31.01 61.32 86.81 123.33 0.00 37.09 0.9975

5 29.63 57.00 83.37 110.00 3.00 35.00 0.9999

1 29.00 57.00 85.44 113.00 0.00 35.40 0.9999

2 33.07 73.03 105.42 132.29 3.40 39.53 0.9960

3 35.83 82.68 112.70 139.18 7.60 40.37 0.9904

4 39.96 77.86 117.13 148.82 4.50 42.45 0.9350

5 38.58 77.00 116.00 156.00 0.00 44.13 0.9999

32.31 64.92 92.40 124.81 1.89 37.37

3.34 8.41 11.28 13.33 2.51 2.98

10.30 13.00 12.20 10.70 132.80 8.00変動係数（%）

試験者
試験の
繰り返し

せん断強度　τ f（kN/m2） σ-τ fの

相関関係

A

B

C

D

E

平均値

標準偏差
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5.2.4 確率論的な斜面安定に関する既往の研究 
 

 斜面安定問題を確率論的に議論した既往の研究として，桜井ら 13)の研究がある．この研

究の中で，桜井らは，強度定数のような材料特性の不確実性を考慮した有限要素法による解

析手法を幾つか紹介している． 
 

まず，Su ら 14)は，材料定数の空間的なバラツキを考慮するために，乱数を用いて各要素

の材料定数を変動させる解析手法を提案した．このような考え方は，本城ら 15)-17)も提案し

ており，その提案手法を用いた実盛土での適用事例 18)もある．しかし，本論文では，第 4 章

において現地計測結果を適切に再現できる土壌水分特性パラメータをマスパラメータとし

て推定し，その確率論的なバラツキも把握している．したがって，このような空間的なバラ

ツキを考慮した解析手法は，データ同化によって推定された浸透解析モデルを有効活用す

るための解析手法としては不適切であると考えられる． 

 

Cambou19)は，有限要素解析において，材料定数および荷重を確率変数とみなし，線形一

次近似法を適用して変位および応力の期待値と分散を求めている．桜井ら 13)は，この方法

は，地盤工学の問題に有限要素法を適用する場合のアプローチとして，1 つの方向を示すも

のであると述べている．しかし，森口ら 20)は，このような方法は，数値解析と確率理論が直

接的に関係付けられた枠組みとなっているため，実務利用に向けては計算コストが大きな

問題になると指摘している．そのため，森口ら 20)は，本城ら 21),22)が提案した応答曲面を用

いる手法によって落石の確率論的危険度評価を行った．これは，パラメータを変動させた合

計 108 ケースの個別要素法による数値解析を行い，その結果をロジスティック関数で近似

することで，より多くのモンテカルロシミュレーション(MCS)が可能となり，それによって

確率論的な落石危険度評価が可能になるというものである．この方法は，信頼性設計という

考え方において，実務上有効な手法であるといえる．しかし，本論文の第 4 章で用いた粒子

フィルタ(PF)は，粒子と呼ばれる多数のアンサンブルによって確率分布を近似的に表現す

ることを前提としている．このため，応答曲面によって確率分布を近似することは，粒子に

よって近似された確率分布の特徴を消滅させてしまう恐れがあると考えられる． 
 

 Kovari ら 23)は，材料定数としてのインプットデータを種々変化させ，それらの多数の組

み合わせに対して解析を行うMCSによって，確率論的な議論を行った．このような研究は，

多数の解析が必要であるため，計算コストが問題になると指摘されている 13)．しかし，PF

によって得られた浸透解析モデルの確率分布をそのまま活かして，土中水分量などの物理

量に関する確率分布を予測するための方法としては最も有効であると考えられる．また，近

年，コンピュータの計算能力が飛躍的に向上 24)していることから，現在の計算コストの問

題は今後解消される可能性が高い．したがって，本研究では，PF によって推定された確率

分布に基づく MCS によって確率論的な議論を行うこととした． 
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5.2.5 本章に関連する既往の研究のまとめと対応 
 

 ここでは，数値解析に基づく斜面崩壊に対する危険度予測に関する既往の研究について

情報収集を行った．まず，斜面安定解析に関する手法としては，雨水浸透解析と極限平衡法

を組み合わせた手法が数多く用いられている．また，応力-浸透連成解析によって間隙水圧

の上昇に伴う斜面の変形を計算する試みも多数行われている．これらのいずれの方法を用

いても，適切な強度定数の設定は必須である．そこで，強度定数のバラツキに関する既往の

研究についての情報収集も行った．小堀ら 12)の研究によると，同一の条件で行った一面せ

ん断試験であっても，試験者や試験の繰り返しによって，算出される強度定数にはバラツキ

が発生することが分かった．したがって，本研究では，まず，データ同化によって得られた

浸透解析モデルのバラツキと一面せん断試験によって得られた強度定数のバラツキを比較

して，その両者が斜面安定解析の結果に与える影響について明らかにする．最後に，確率論

的な斜面安定に関する既往の研究についてもレビューを行った．確率論的な手法として，乱

数を用いてそれぞれの有限要素のパラメータを変動させる手法や，応答曲面を用いて確率

分布を近似する手法，MCS によって多数のシミュレーションを行う手法などがあることが

分かった．本研究では，第 4 章のデータ同化によって推定された浸透解析モデルを有効に

活用するための手法としては MCS が適切だと判断し，次節以降は，MCS による確率論的な

議論を行うこととした． 
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5.3 強度定数の不確実性が安定解析結果に与える影響の評価 

 

5.3.1 概要 
 

 ここでは，データ同化によって得られた浸透解析モデルのバラツキと一面せん断試験結

果のバラツキを比較して，その両者が斜面安定解析に与える影響について考察する．具体的

には，表-5-2 に示すように，浸透解析モデルの確率分布に基づく MCS を行って算出された

土中水分量の確率分布に対して，強度定数は 1 通りの安定解析を行う解析ケースを MCS-

Seepage とする．そして，浸透解析モデルの確率分布における代表値を使って 1 通りの雨水

浸透解析を行って算出された土中水分量に対して，表-5-1 に示す一面せん断試験結果から

得られた全ての強度定数に対応する斜面安定解析を行う解析ケースを MCS-Stability とする．

これらの 2 つの解析ケースにおける安全率のバラツキを比較することで，斜面安定解析結

果に強度定数の不確実性が与える影響について評価する． 

 

 

5.3.2 比較方法 
 

 雨水浸透解析に関しては，4.3.3 で行った九州地方のマサ土斜面におけるデータ同化結果

を用いる．この斜面では 5,000 個の粒子を用いてデータ同化を行っており，図-4-7(d)に示す

ような確率分布が得られている．MCS-Stability における浸透解析モデルの代表値に関して

は，表-4-4 に示す重み付き平均値を用いた．この斜面はマサ土で構成されており，小堀ら 12)

が一面せん断試験を行った豊浦標準砂とは土性が異なるが，本研究では，浸透解析モデルの

バラツキと強度定数のバラツキが斜面安定解析に与える影響の比較を目的としているため，

これらの値を用いて解析を行うこととした． 
 

 斜面安定解析に関しては，無限長斜面安定解析を行った．本研究では，解析モデルの各節

点における体積含水率が得られているため，式(5-1)に示すように，モデル内の体積含水率の

分布を反映して各時刻における安全率 Fsを算出した． 

  




tan

tan

cossin
0








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H

h

hwd

s

hgg

c
F  

 

(5-1) 

ここに，c は飽和度を考慮した粘着力，φ は内部摩擦角，ρd は乾燥密度，g は重力加速度，

ρwは水の密度，θhは各節点における体積含水率，H は基盤までの深さ，α は斜面の角度であ

る．粘着力 c と内部摩擦角 φ に関しては，MCS-Stability では表-5-1 に示す 25 通りの強度定

数を用いて，MCS-Seepage では粘着力 c=6.9kN/m2，内部摩擦角 φ=34.16°を用いた．乾燥密

度 ρdは表-5-1 を参考に 1.245g/cm3(=1245kg/m3)として，斜面の角度は α=30.00°とした．な

お，重力加速度は g=9.81m/s2である． 
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5.3.3 安全率の比較結果 
 

 図-5-1 は MCS-Seepage における深度 30cm と 60cm の雨水浸透解析の結果を示している．

赤色と青色の実線は現地計測結果，その他の線はMCSを行って算出された解析結果である．

ここでは，5,000 個の粒子を用いて MCS を行っているため，各時刻における体積含水率の

解析結果は幅を持っている．それに対して，MCS-Stability における雨水浸透解析の結果は図

-4-9(a)に示した通りである． 

 

 

表-5-2 各解析ケースの特徴と評価項目 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 深度 30cm 

 

 

 

 

 

 

 

 

 

 

(b) 深度 60cm 

図-5-1 MCS-Seepage における雨水浸透解析の結果 

解析ケース 雨水浸透解析 斜面安定解析 評価項目

MCS-Seepage MCS 代表値 浸透解析モデルのバラツキ

MCS-Stability 代表値 MCS 強度定数のバラツキ
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 図-5-1 と図-4-9(a)に示す各時刻における土中水分量に基づいて，斜面安定解析を行い，安

全率を逐次算出した．図-5-2 は各解析ケースにおいて斜面安定解析を行って得られた安全

率の推移を示している．浸透解析モデルのバラツキを考慮した MCS-Seepage では，全ての

粒子で概ね同様の傾向が得られており，安全率のバラツキは小さい．それに対して，強度定

数のバラツキを考慮した MCS-Stability では，安全率の計算結果の幅が大きく，その傾向も

大きく異なっている．図-5-3 は安全率の推移における期待値 μ と標準偏差 σ を示している

が，この結果からも，MCS-Stability における安全率のバラツキは明らかに大きいことが分か

る．つまり，データ同化によって得られた浸透解析モデルのバラツキと一面せん断試験結果

のバラツキを比較すると，一面せん断試験結果のバラツキの方が安全率の計算結果に与え

る影響が明らかに大きい．このため，データ同化によって適切な浸透解析モデルを推定でき

たとしても，極限平衡法と組み合わせた安定解析を行うと，不確実性の大きい強度定数によ

って安全率の値が左右されてしまうと考えられる． 

 

 

 

 

 

 

 

 

 

 

 

(a) MCS-Seepage 

 

 

 

 

 

 

 

 

 

 

(b) MCS-Stability 

図-5-2 各解析ケースにおいて MCS を行って得られた安全率の推移 
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上述のような問題は，本研究で行った極限平衡法だけでなく，応力-浸透連成解析を行っ

ても同様に生じる問題である．このため，安全率や斜面の変位という指標によって斜面崩壊

の発生予測を行うよりも，土中水分量に基づいて危険度の予測を行う方が現実的かつ有効

であると考えられる．図-5-1 と図-5-2 からも分かるように，斜面崩壊発生の危険度が最も

高まる時，つまり安全率が最小となる時は，土中水分量が最大の時である．この事実を利用

して，本研究では，斜面安定解析を行わずに，雨水浸透解析によって算出される土中水分量

に基づいて危険度予測を行う方法を提案する． 

 

 

 

(a) MCS-Seepage 

 

 

(b) MCS-Stability 

図-5-3 安全率の推移における平均と標準偏差 
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5.4 土中水分量に基づく危険度予測 

 

5.4.1 提案する危険度予測手法 
 

 ここでは，土中水分量に基づいて斜面崩壊に対する危険度予測を行う手法を提案する．図

-5-4 は提案手法の概念図を示している．図中の棒グラフが降雨量，折れ線グラフが土中水分

量を表している．本研究で提案する危険度予測手法の基本的な考え方は，過去から現在まで

のデータに基づいて浸透解析モデルを推定し，そのモデルに基づいて未来の土中水分量を

予測するというものである．ここで問題となるのが，土中水分量がどの程度まで増加すると

斜面崩壊発生の危険度が高まるかという閾値の設定である．本来的には，斜面安定解析と組

み合わせて安全率が 1 を切る，もしくは 1 近くまで減少した際にアラートを発令すること

が望ましい．しかし，5.3 の検討により，安全率の算出には強度定数のバラツキが大きく影

響してしまい，適切な安全率の予測が困難であることが明らかになっている．そこで，本研

究では，現地計測を始める以前のデータも用いて，危険度が高まる土中水分量の閾値を決定

することとした．具体的には，現地計測を始める以前の期間においても，降雨量のデータは，

アメダス雨量計 25)や解析雨量 26)によって把握することができる．データ同化によって現地

の土中水分量を適切に再現できる浸透解析モデルが推定できているため，そのモデルに対

して過去に降った降雨イベントを入力することで，その際の土中水分量も推定できる．過去

の降雨イベントにおいて，土中水分量が最大となった時が，安全率が最小になっている時で

あることは 5.3 からも明らかである．したがって，本研究では，過去最大の土中水分量を超

過するまでは斜面崩壊は発生しないが，その土中水分量を超過した場合は斜面崩壊が発生

する危険性があると仮定し，その時の土中水分量を閾値として設定することとした．なお，

本研究では，土中水分量を表現する指標として，モデル内の有効飽和度の平均を用いている．

これは，既往の研究 27)より，モデル内の有効飽和度の平均が最大となった時に安全率が最

小になることが明らかとなっているためである． 

 

 

図-5-4 提案手法の概念図 

降雨量と土中水分量の推移（概念図）
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5.4.2 提案手法に基づく閾値の設定 
 

 5.4.1 で提案した危険度予測手法を用いて，実斜面における閾値を設定を試みる．対象斜

面としては，4.3.3 のマサ土斜面を選択した．この斜面において，計測期間前に降った強い

降雨イベントを 14 個抽出した．そして，表-5-4 に示す土壌水分特性パラメータの重み付き

平均値を用いて，各降雨イベントにおける有効飽和度の平均の最大値を算出した．表-5-3 は

各降雨イベントの特徴と有効飽和度の平均の最大値を示している．土中水分量は雨の降り

方の影響を受けるため，総雨量や最大時間雨量，最大 10 分間雨量では一義的に決まらない．

ただし，今回対象とした斜面に関しては，降雨イベント 2 において，総雨量，最大時間雨

量，最大 10 分間雨量が最大であり，それによって，有効飽和度の平均の最大値も最も大き

な値を記録している．つまり，この斜面において，斜面崩壊発生の危険性が最も高まったの

は，降雨イベント 2 の時であったといえる．図-5-5 は降雨イベント 2 における算出された

有効飽和度と 10 分間雨量の関係を示している．図中には，算出された有効飽和度の平均の

期待値 μ と併せて標準偏差 σ も示している．このように，データ同化によって推定された

浸透解析モデルを用いると，モデル内の有効飽和度の平均に関する期待値だけでなく，その

バラツキも把握できる．図-5-6 は土中水分量が最大となった時刻における有効飽和度の平

均値の確率分布を示している．同図より，有効飽和度の平均値は 0.8 から 0.86 程度の範囲

内をバラついている．したがって，誤差の影響も考慮して，例えば，有効飽和度の平均の期

待値が 0.82 を上回るような降雨が予測された場合に，アラートを発令するというというよ

うなソフト対策が可能であるといえる． 

 

 

表-5-3 各降雨イベントの特徴と有効飽和度の平均の最大値 

 

 

 

1 2 157.0 40.0 11.0 0.668

2 5 381.5 55.5 19.0 0.833

3 2 194.5 24.5 6.5 0.730

4 3 214.0 27.5 7.5 0.728

5 5 176.5 19.0 10.0 0.648

6 4 176.5 33.0 10.0 0.675

7 1 109.5 52.0 16.0 0.708

8 2 154.0 25.0 8.0 0.729

9 2 148.0 30.0 7.5 0.725

10 1 124.5 21.0 9.0 0.710

11 3 180.5 37.5 15.0 0.689

12 4 342.0 46.0 14.0 0.821

13 1 124.0 45.5 15.5 0.693

14 4 136.5 34.5 17.5 0.726

有効飽和度の
平均の最大値

降雨
イベント

期間
（day）

総雨量
（mm）

最大時間雨量
（mm/h）

最大10分間雨量
（mm/10min）
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図-5-5 降雨イベント 2 における算出された有効飽和度と 10 分間雨量の関係 

 

 

 

 

 

図-5-6 土中水分量が最大となった時刻における有効飽和度の平均値の確率分布 
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5.5 まとめ 

 

 本研究では，数値解析に基づく豪雨時の斜面崩壊に対する危険度予測手法の確立を目的

として，まず，データ同化によって得られた浸透解析モデルのバラツキと一面せん断試験に

よって得られた強度定数のバラツキが斜面安定解析の結果に与える影響について比較した．

その後，土中水分量に基づく危険度予測手法を提案し，実斜面においてアラートを発令する

ための閾値の設定を行った．得られた主な結論を以下に示す． 

 

(1) 浸透解析モデルの確率分布に基づく MCS を行って算出された土中水分量の確率分布

に対して，強度定数は 1 通りの安定解析を行う解析ケース MCS-Seepage と，雨水浸透

解析は代表値による 1 通りの計算を行って土中水分量を計算し，その値に対して一面

せん断試験から得られた全ての強度定数を用いて安定解析を行う解析ケース MCS-

Stability を行った．両解析ケースにおける安全率の経時変化のバラツキを比較すると，

MCS-Stability の方が明らかにバラツキが大きいことが分かった．このことから，データ

同化によって適切な浸透解析モデルを推定できたとしても，極限平衡法と組み合わせ

た安定解析を行うと，不確実性の大きい強度定数によって安全率の値が左右されてし

まう可能性が高いことが分かった． 

 

(2) 土中水分量に基づいて斜面崩壊に対する危険度予測を行う手法を提案した．この提案

手法では，現地計測されたデータだけでなく，現地計測を始める前の降雨データも用い

て過去最大の土中水分量を推定し，その値を閾値とする．そして，数値解析によって，

将来的に土中水分量がその閾値を超過する可能性がある場合にアラートを発令すると

いうものである．この提案手法を用いると，予測のバラツキは小さく，なおかつ，安全

率が最小となるタイミングは捉えることができる． 

 

(3) 提案手法に基づいて，実斜面における閾値の設定を試みた．データ同化によって推定

された浸透解析モデルを用いることで，過去最大の土中水分量となった時の，モデル内

の有効飽和度の平均の確率分布を求めることができた．このように，過去最大の土中水

分量に関する確率分布が明らかになれば，その分布に基づいて，誤差も考慮した閾値の

設定が可能になることが明らかになった． 
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第 6 章 提案した危険度予測手法の運用方法 

 

6.1 はじめに 
 

 本論文の目的は，既存データを有効活用することで，「面」，「線」，「点」における豪雨時

の斜面崩壊に対する危険度を予測する手法をそれぞれ提案し，各提案手法の有用性と実際

の運用方法を示すことである．第 2 章から第 5 章では，危険度予測手法をそれぞれ提案し，

その有用性について議論した．第 2 章では，「面」における危険度予測手法として，素因と

誘因の影響を考慮した豪雨時の斜面崩壊に対する 1km メッシュごとの危険度予測手法を提

案し，1km メッシュ単位で素因情報を導入し，新たな機械学習のアルゴリズムを適用するこ

とで，現行の土砂災害警戒情報の高度化に寄与できる可能性を示した．第 3 章では，長大な

「線」の中から危険な「点」を選び出すために，素因情報の類似性に基づく危険斜面抽出手

法を提案した．結果としては，提案手法に対して道路防災点検のデータを適用することで，

崩壊斜面と素因的特徴が類似した斜面を危険斜面として抽出し，その中で危険度の順位を

付けることができた．第 4 章では，「点」における現地計測結果を適切に再現できる浸透解

析モデルを推定するために，計測結果に基づく浸透解析モデルのデータ同化を提案した．そ

して，様々な検討を行った結果，土中水分量に関する計測結果に基づいて浸透解析モデルを

推定するための手法としてデータ同化が有効であることを明らかにした．第 5 章では，デ

ータ同化によって推定された浸透解析モデルを用いて算出される土中水分量に基づく危険

度予測手法を提案し，実斜面における土中水分量の閾値の設定が可能であることを示した．

このように，第 2 章から第 5 章までの検討によって，「面」，「線」，「点」における危険度予

測という異なる問題に対して，既存データの有効活用という 1 つの考え方によって，それぞ

れ有用な危険度予測手法を提案することができた．本章では，これらの提案した危険度予測

手法の実際の運用方法について議論する． 
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6.2 危険度予測手法の運用方法 

 

6.2.1 「面」における危険度予測手法の運用方法 
 

 2.6 でも論じたように，第 2 章で提案した「面」における危険度予測手法は，誘因情報と

して 60 分間積算雨量と土壌雨量指数を用いているため，現行の土砂災害警戒情報における

縦軸と横軸は変えずに，素因情報を考慮した CL の修正が可能である．また，現行の土砂災

害警戒情報よりも狭域な範囲(1km メッシュ)で予測を行っていること，RBFN 以外の新たな

機械学習のアルゴリズムを適用していることなどの特徴もある．したがって，提案手法を用

いることで，現行の土砂災害警戒情報の高度化に寄与できる可能性は高い．ただし，この提

案手法を用いて全国で適用可能な予測モデルを構築するためには，崩壊事例を増やして，よ

り多くの素因情報や誘因情報を学習させることが不可欠である．崩壊事例の収集に関して

は，国土交通省の土砂災害発生事例 1)-5)などを参考にすることで，崩壊が発生した地点と時

刻が概ね把握できる．表-6-1 は平成 24 年から平成 28 年までの 5 年間に発生した主な土砂

災害の特徴を示している．同表より，土砂災害警戒情報で対象としている土石流やがけ崩れ

は，毎年全国各地で多発していることが分かる．そのため，これらのデータを集積し，ビッ

グデータとして学習させることで，各 1km メッシュの素因特性を考慮した一般化された予

測モデルの構築が可能になると考えられる．このような一般化された予測モデルを構築す

ることができれば，各 1km メッシュの素因情報を入力することで，その 1km メッシュにお

ける CL を設定できる．現行の土砂災害警戒情報では，崩壊事例が少ないメッシュが多数存

在するため，土砂災害が発生しなかった降雨の発生確率に基づいて CLを設定 6)しているが，

本研究の提案手法を用いて一般化された予測モデルを構築することができれば，崩壊事例

が少ないメッシュでも，素因的特徴に基づいて適切な CL を設定できると考えられる． 

 

 

6.2.2 「線」における危険度予測手法の運用方法 
 

 「線」における危険度予測としては，区間ごとでのマクロ的な危険度予測と，危険な「点」

における斜面単位での危険度予測がある．マクロ的な危険度予測に関しては，第 2 章で提

案した素因と誘因の影響を考慮した危険度予測手法が適用可能である．例えば，切土の高さ

や斜面勾配，地質などの線状構造物沿いの素因情報を入手することができれば，誘因情報

(例えば，高速道路会社であれば時間雨量と連続雨量の関係 7)，東日本旅客鉄道株式会社で

あれば実効雨量 8)など)とあわせて機械学習を行うことで，区間ごとでの危険な誘因情報が

予測可能である．また，図-6-1 に示すように，線状構造物沿いの情報だけでなく周辺の情報

も入手することができれば，「面」的な危険度予測を行って，その結果を考慮して規制基準

を修正することもできる．例えば，図-6-1 における区間 B はその周辺も含めて斜面崩壊発

生の危険度が高いため，少ない雨でも通行規制を実施する必要性があるのに対して，区間 C

は危険度が低いため規制基準を引き上げることができるなどの意思決定が可能になる．こ
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のような「面」的な危険度予測は用地外からの土石流などを対象としているが，「線」沿い

での危険度予測よりも多くの崩壊事例を用いて予測モデルを構築できるという利点がある．

以上のように，第 2 章で提案した危険度予測手法を用いることで，「線」においても区間ご

とのマクロ的な危険度予測が可能であり，素因の影響を考慮することで現行の規制基準の

高度化が期待できる． 

 

 

表-6-1 平成 24 年から平成 28 年までの 5 年間に発生した主な土砂災害の特徴 1)-5) 

 

 

 

 

図-6-1 線状構造物における「面」的な危険度予測の概念図 

 

年 月日 名称 土石流 地すべり がけ崩れ 主な都道府県

6/19～6/20 台風4号による土砂災害 3 0 32 静岡県

6/20～6/21 台風5号から変わった温帯低気圧による土砂災害 4 0 30 高知県，鹿児島県

6/27～7/10 6月27日～7月10日までの梅雨前線による土砂災害 23 4 83 大分県，宮崎県，鹿児島県

7/12～7/14 7月九州の豪雨による土砂災害 140 19 109 福岡県，大分県，熊本県

9/29～10/1 台風17号による土砂災害 1 2 21 三重県，鹿児島県

6/19～6/26 台風4号及び梅雨前線による土砂災害 6 1 41 石川県，山口県，鹿児島県

7/17～8/7 7月17日から8月7日までの大雨による土砂災害 102 17 119 新潟県，島根県，山口県

8/8～8/9 8月8日からの大雨による秋田県・岩手県を中心とした土砂災害 15 1 13 秋田県，岩手県

9/15～9/16 台風第18号及び前線による大雨に係る土砂災害 50 17 78 青森県，新潟県，福井県，滋賀県，三重県

10/15～10/16 台風26号の土砂災害 15 5 96 東京都(伊豆大島)，神奈川県，千葉県

6/4～6/7 6月4日から続く前線等による土砂災害 3 2 64 神奈川県，高知県

7/9～7/10 台風第8号及び梅雨前線等による土砂災害 35 3 71 山形県，富山県，長野県，鹿児島県

8/1～8/15 台風第12・第11号の大雨等による土砂災害 34 27 215 高知県

8/16～8/20 8月16日からの大雨等による土砂災害 205 1 163 北海道，兵庫県，広島県

10/6～10/7 台風18号による土砂災害 9 1 108 神奈川県，静岡県

6/10～6/18 6月10日から続く梅雨前線等に伴う土砂災害 15 4 72 熊本県，鹿児島県

7/16～7/18 台風11号の大雨に伴う土砂災害 8 1 60 和歌山県

8/25～8/26 台風15号の大雨に伴う土砂災害 5 0 27 宮崎県

9/9～9/10 台風18号の大雨に伴う土砂災害 36 5 136 宮城県，福島県，栃木県

6/19～6/30 6月19日から続く梅雨前線豪雨に伴う土砂災害 62 9 442 広島県，愛媛県，長崎県，熊本県

8/30～8/31 台風10号による土砂災害 161 0 16 北海道，岩手県

9/20～9/22 台風16号による土砂災害 63 7 163 宮崎県，鹿児島県

28

24

25

26

27

区間A

区間B
区間C

高

低

危険度
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 線状構造物において「点」における危険度予測を行うためには，長大な「線」の中から危

険な「点」を抽出する必要性がある．この問題に対しては，第 3 章で提案した素因情報の類

似性に基づく危険斜面抽出手法が適用可能である．この提案手法に対して線状構造物沿い

の点検データを適用することで，崩壊斜面と類似した非崩壊斜面を抽出し，その中で危険度

の順位を付けることができる．ただし，提案手法は，対策や監視が必要な斜面を特定するた

めの 1 次スクリーニングという位置付けである．そのため，実際に対策や監視を行う斜面を

特定するためには，その後の現地調査が必要である．したがって，提案手法は現地調査を実

施する斜面を絞り込み，現地調査の優先順位の意思決定を促すための危険斜面抽出手法で

あるといえる． 

 

 

6.2.3 「点」における危険度予測手法の運用方法 
 

 危険な斜面が特定できている場合には，まず，その斜面にセンサを設置して，降雨量と土

中水分量を計測する．これにより，対象斜面のモニタリングができるだけでなく，降雨に伴

って変化する土中水分量の時系列データも膨大に蓄積される．現地計測結果が十分に蓄積

されれば，第 4 章で提案した計測結果に基づく浸透解析モデルのデータ同化が適用可能と

なる．データ同化手法を適用することで，対象斜面における土中水分量を適切に再現できる

浸透解析モデルを推定できる．適切な浸透解析モデルが推定できれば，第 5 章で提案した

土中水分量に基づく危険度予測が適用可能となり，数値解析を行って，過去最大の土中水分

量を超過する可能性がある場合にアラートを発令することができる．つまり，数値解析の予

測結果に基づいて，ソフト対策に対する意思決定が可能となる．具体的には，確率分布とし

て算出される未来の降雨の予測値とデータ同化によって推定された浸透解析モデルの確率

分布を用いて MCS を行うことで，未来の土中水分量が同時分布として算出される．この同

時分布が，過去最大の土中水分量に関する確率分布を超過する場合にアラートを発令する

ことができる．このように，外力と数値解析モデルの確率分布にしたがって MCS を行うこ

とで，Cambou9)や本城ら 10)と同様の考え方に基づいて，「点」における確率論的な危険度予

測が可能となる． 
 

図-6-2 は現地計測と数値解析を組み合わせた「点」における危険度予測システムの概念図

を示している．データ同化によって適切な浸透解析モデルを推定することができれば，数値

解析により土中水分量を算出できるため，その斜面をモニタリングし続ける必要性がなく

なる．その場合は，その斜面に設置していたセンサを撤去して，次の危険斜面にそのセンサ

を設置することができる．このように，センサを再利用することで，危険度予測を行う「点」

の数を拡充することができ，多くの斜面に対する危険度予測が可能となると考えられる． 
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図-6-2 現地計測と数値解析を組み合わせた「点」における危険度予測システムの概念図 
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6.3 まとめ 

 

 本章では，第 2 章から第 5 章までで提案した危険度予測手法の実際の運用方法について

議論した．得られた主な結論を以下に示す． 

 

(1) 「面」における危険度予測としては，第 2 章で提案した素因と誘因の影響を考慮した

危険度予測手法が適用可能である．この提案手法を用いることで，現行の土砂災害警戒

情報の高度化に寄与できる可能性が高い．今後の課題としては，予測モデルを一般化さ

せることが求められるが，これは，全国各地で発生した土砂災害の履歴を用いることで

解消されると考えられる．一般化された予測モデルを構築することができれば，崩壊事

例が少ないメッシュであっても，その地域の素因的特徴に基づいた CL の設定が可能に

なる． 

 

(2) 「線」における危険度予測としては，区間ごとでのマクロ的な危険度予測と，危険な

「点」における斜面単位での危険度予測がある．マクロ的な危険度予測に関しては，「面」

と同様に，第 2 章で提案した素因と誘因の影響を考慮した危険度予測手法が適用可能

であり，素因の影響を考慮することで現行の規制基準の高度化が期待できる．次に，長

大な「線」の中から危険な「点」を抽出するためには，第 3 章で提案した素因情報の類

似性に基づく危険斜面抽出手法が適用可能である．この手法を用いることで，崩壊斜面

と特徴が類似した非崩壊斜面を危険斜面として抽出することができるため，線状構造

物においても「点」での危険度予測が可能となる． 

 

(3) 「点」における危険度予測としては，現地計測と数値解析の組み合わせることが有効で

ある．まず，危険な斜面に対してセンサを設置して，斜面をモニタリングしながら，計

測結果を蓄積していく．計測結果が蓄積されれば，第 4 章で提案した計測結果に基づ

く浸透解析モデルのデータ同化が可能となり，それによって適切な浸透解析モデルを

確率分布として推定できる．適切な浸透解析モデルを推定できれば，第 5 章で提案し

た土中水分量に基づく危険度予測が可能となり，対象斜面における土中水分量の閾値

を設定できる．そして，未来の降雨量の確率分布と浸透解析モデルの確率分布を用いて

MCS を行うことで，閾値を超過する土中水分量を確率論的に算出できるため，それに

基づくアラートの発令も可能となると考えられる．また，適切な浸透解析モデルが推定

できれば，それ以上のモニタリングが不要となるため，次の危険斜面にセンサを移動さ

せて対象斜面を拡充していくことも可能である．このように，現地計測と数値解析を組

み合わせることで，多数の「点」での詳細な危険度予測が可能になる． 

 

 以上のように，本研究で提案した危険度予測手法を運用することで，「面」，「線」，「点」

のそれぞれに対して，現状より高精度な危険度予測が可能になると考えられる． 
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第 7 章 結論 

 

 本研究では，既存データを有効活用することで，「面」，「線」，「点」における豪雨時の斜

面崩壊に対する危険度を予測する手法をそれぞれ提案し，各提案手法の有用性，実際の運用

方法について議論した．本研究によって得られた主な結論を以下に示す． 

 

 第 1 章では，本研究の背景，目的，構成について述べた． 

 

 第 2 章では，「面」における危険度予測手法である土砂災害警戒情報の高度化を目的とし

て，1km メッシュ単位で素因情報を考慮し，新たな機械学習のアルゴリズムを適用する危険

度予測手法を提案した．そして，実際に豪雨災害が発生した地域を対象として，危険度予測

を行って提案手法の有用性について議論した．その結果，GBDT によって構築された予測モ

デルは，学習データを完全に識別できただけでなく，検証データに対する汎化能力も高いこ

とが分かった．そこで，GBDT によって構築された予測モデルに対して仮想の誘因情報を与

えた結果，予測モデルは，降雨量が大きくなり土壌雨量指数が増加すると崩壊発生の危険性

が高まる傾向があること，地質が付加体や段丘堆積物で構成されたメッシュは，崩壊発生の

危険度が高く予測されること，標高が高く，傾斜が急であり，ラプラシアンのバラツキが大

きく，渓床勾配が急であるメッシュは，少ない降雨量でも崩壊すると予測される傾向がある

ことなどが明らかになった．したがって，GBDT によって構築された予測モデルは，素因と

誘因の影響を考慮した斜面崩壊に対する危険度予測ができており，第 2 章で提案した危険

度予測手法は，土砂災害警戒情報の高度化に対して有用であると考えられる．ただし，本研

究で構築された予測モデルは，対象地域限定の予測モデルであるため，今後は予測モデルの

一般化が必要である．そのためには，別の地域における崩壊履歴の収集や，新たな入力ベク

トルの導入などが課題として残されている． 

 

 第 3 章では，長大な「線」の中から危険な「点」を抽出するために，素因情報の類似性に

基づく危険斜面抽出手法を提案した．そして，提案手法に対して道路防災点検のデータを適

用することで，提案手法の有用性について議論した．まず，SOM と k-平均法を併用するこ

とで，崩壊斜面をその素因的特徴ごとに客観的に分類できることを確認した．次に，各クラ

スターの崩壊斜面と非崩壊斜面を合わせたデータセットを数量化Ⅱ類にそれぞれ適用する

ことで，危険斜面を抽出した．その結果，提案手法を用いることで，崩壊斜面の見逃しは少

なく，崩壊斜面と類似した素因的特徴を有する危険斜面を幅広く抽出できることが分かっ

た．また，抽出された危険斜面の順位付けを行った結果，危険度が高いと推定された斜面は，

各クラスターの崩壊斜面と素因的特徴が類似しており，なおかつ，そのような素因的特徴を

有する他の非崩壊斜面が少ないという特徴があることが分かった．以上の結果から，線状構

造物沿いの点検データに基づいて，危険斜面を効果的に抽出するための方法論として，提案

した危険斜面抽出手法は有用であることが明らかになった． 
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 第 4 章では，「点」において現地計測結果を適切に再現できる浸透解析モデルの推定手法

の確立を目的として，土中水分量の計測結果に基づく浸透解析モデルのデータ同化を行っ

た．まず，浸透解析モデル推定に対するデータ同化の有用性を検証するために，推定された

浸透解析モデルを用いた解析的外挿の可能性について検証した．その結果，弱い降雨時の現

地計測結果に基づいて推定された浸透解析モデルを用いると，データ同化に使用したもの

よりも強い降雨時の現地計測結果も適切に再現できた．このことから，PF によって推定さ

れた浸透解析モデルを用いると，未経験の降雨外力に対する解析的外挿が可能であること

が明らかになった．次に，様々な降雨時の計測結果を用いたデータ同化を行い，浸透解析モ

デル更新の有効性について議論した．その結果，データをより多く学習させたモデルほど，

現地計測結果に対する再現性が高くなることが分かった．その他には，PF に基づく浸透解

析モデルのデータ同化におけるヒステリシスの影響についても議論した．その結果，ヒステ

リシスの影響を考慮した水分特性曲線モデルを導入してデータ同化を行った場合の方が，

未知パラメータの個数は増加しているにも関わらず，現地計測結果に対する再現性が高く

なることが明らかになった．また，PF の中でもアルゴリズムの異なる 3 つの手法(SIR，SIS，

MPF)を用いたデータ同化をそれぞれ行い，浸透解析モデルの推定に有用なアルゴリズムに

ついても議論した．結果としては，アンサンブルの退化の抑制と効果的なデータ同化という

2 つの条件を同時に満たす PF のアルゴリズムとして，MPF が最も有用であることが分かっ

た．最後に，地下水流動を適切に再現できる浸透解析モデルの推定を目的として，大型模型

斜面に対する散水実験によって得られた地下水位の計測結果に基づく浸透解析モデルのデ

ータ同化を行った．ヒステリシスの影響を考慮して，MPF によるデータ同化を行った結果，

地下水位の計測結果を高精度に再現できる浸透解析モデルを推定できた．以上の結果から，

土中水分量に関する計測結果に基づいて，浸透解析モデルを推定するための方法論として，

PF によるデータ同化は非常に有用であるという結論が得られた． 

 

 第 5 章では，数値解析に基づく「点」における危険度予測手法の確立を目的として，ま

ず，データ同化によって得られた浸透解析モデルのバラツキと一面せん断試験によって得

られた強度定数のバラツキが，斜面安定解析結果に与える影響について比較した．その結果，

強度定数のバラツキが斜面安定解析結果に与える影響が大きく，データ同化によって適切

な浸透解析モデルを推定できたとしても，不確実性の大きい強度定数によって安全率の値

が大きく影響を受けることが分かった．そのため，本研究では，土中水分量に基づく危険度

予測手法を提案した．これは，現地計測されたデータだけでなく，現地計測を始める以前の

降雨データも用いて過去最大の土中水分量を推定し，その値を閾値とする．そして，数値解

析によって，将来的に土中水分量がその閾値を超過する可能性がある場合にアラートを発

令するというものである．この提案手法を実斜面に対して適用すると，過去最大の土中水分

量に関する確率分布が算出できるため，その確率分布に基づいて，誤差も考慮したアラート

発令に対する意思決定が可能になることが分かった． 
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 第 6 章では，まず，第 2 章から第 5 章までの成果を総括し，提案した危険度予測手法の

実際の運用方法について議論した．「面」における危険度予測に関しては，第 2 章で提案し

た素因と誘因の影響を考慮した危険度予測手法を用いて，一般化された予測モデルを構築

することで，各メッシュの素因特性に基づいて CL を設定できることを指摘した．「線」に

おける危険度予測に関しては，区間ごとでのマクロ的な危険度予測と，危険な「点」におけ

る斜面単位での危険度予測があるが，マクロ的な危険度予測に関しては，第 2 章で提案し

た素因と誘因の影響を考慮した危険度予測手法が適用可能であることを述べた．また，長大

な「線」の中から危険な「点」を抽出するためには，第 3 章で提案した素因情報の類似性に

基づく危険斜面抽出手法が適用可能であることを示した．最後に，「点」における危険度予

測に関しては，現地計測結果が蓄積されれば，第 4 章で提案した計測結果に基づく浸透解

析モデルのデータ同化が可能であり，それによって適切な浸透解析モデルが推定されれば，

第 5章で提案した土中水分量に基づく危険度予測も可能になることを明らかにした．また，

データ同化によって浸透解析モデルを推定することができれば，センサを移動させること

で，対象斜面を拡充できることも指摘した． 

 

 以上，本研究では，既存データを有効活用することで，「面」，「線」，「点」における豪雨

時の斜面崩壊に対する危険度を予測する手法をそれぞれ提案して，各提案手法の有用性を

明らかにするとともに，実際の運用方法についても明示した． 
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