

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A REMARK ON THE LAPLACE-BELTRAMI OPERATORS ATTACHED TO HERMITIAN SYMMETRIC PAIRS

RYOSHI HOTTA*>

(Received September 7, 1970)

In this note, we shall give an alternative proof of the theorem due to Oka moto and Ozeki, which says that the Laplace-Beltrami operator attached to a her mitian homogeneous vector bundle over a hermitian symmetric space is a multi ple of the Casimir operator plus a constant (Theorem 4.1 [2]). It plays an impor tant role in the works [1], [2].

1. Let *(G, K)* be a hermitian symmetric pair of non-compact type, i.e., *G* is a connected non-compact semi-simple Lie group with a finite center and *K* its maximal compact subgroup. Denoting by g, if the Lie algebras of G, K, we have a Cartan decomposition

$$
\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}\,.
$$

Its complexification will be denoted by $g^c = f^c \oplus p^c$, and we have a hermitian inner product $(x, y) = -B(x, \tau y)$ for x, y in g^c , where B is the Killing form of g^c , τ the conjugation with respect to the compact real form dual to g. We may take a Cartan subalgebra $\mathfrak h$ of $\mathfrak g$ in $\mathfrak k$, and have the root space decomposition $\mathfrak g^C=$ $\mathfrak{h}^c \,\oplus\, \Sigma$ g" where Δ denotes the root system for the pair (g^c, \mathfrak{h}^c). Let $\Delta_{\mathfrak{h}}$ (resp. Δ_p) be the set of the compact (resp. non-compact) roots. Then there exists a positive root system Δ^+ such that the subspace

$$
\mathfrak{p}_{\pm}=\!\!\sum_{\pmb{\beta}\in\Delta_{\mathfrak{p}}^+}\!\!\!\!\!\!\!\!\!\!\!\!\!g^{\pm\pmb{\beta}}
$$

is, respectively, a K-submodule of p^c , where $\Delta_p^+ = \Delta^+ \cap \Delta_p$. Hereafter, we shall fix the above linear order on Δ .

This linear order determines an invariant complex structure on *X = G/K* such as \mathfrak{p}_- can be identified with the anti-holomorphic tangent space at the origin $o = eK$ in X. Identifying the dual of \mathfrak{p}_- with \mathfrak{p}_+ via the Killing form B, we may

^{*&}gt; Research supported in part by Yukawa Foundation during the stay at Osaka University.

 $\text{consider } G \times {}_{K}\!\mathfrak{p}_{+}$ as the anti-holomorphic cotangent bundle, where $G \times {}_{K}\!\mathfrak{p}_{+}$ denotes the homogeneous vector bundle over X associated to the K-module \mathfrak{p}_+ . To an irreducible unitary K-module V_Λ with highest weight Λ with respect to the above linear order, the holomorphic vecter bundle $E_{\scriptscriptstyle \Lambda}=G\times {}_K\!V_{\scriptscriptstyle \Lambda}$ is associ ated, which has a hermitian metric on each fibre. The space of the differential forms of type $(0, q)$ with coefficients in E_Λ may then be considered as the space of all C^{∞} -sections of the homogeneous vector bundle over X associated to the K-module $V_A \otimes \Lambda^q \mathfrak{p}_+$, which will be denoted by $C^{\mathfrak{g}, q}(E_A)$. We shall aslo iden tify $C^{0,q}(E_\Lambda)$ with the space of $V_\Lambda \otimes \Lambda^q \mathfrak{p}_+$ -valued C^{∞} -functions *s* on *G* such that $s(gk) = k^{-1}s(g)$ for $g \in G$, $k \in K$. The Cauchy-Riemann operator

$$
\overline{\partial}: C^{0,q}\left(E_{\Lambda}\right) \to C^{0,q+1}(E_{\Lambda})
$$

is then expressed as follows. When we choose a basis of \mathfrak{p}^c such that

$$
B(e_{\beta}, e_{-\beta}) = 1, e_{\beta} \in \mathfrak{g}^{\beta} \tag{1}
$$

for each non-compact root $\beta \in \Delta_p$, we then have

$$
\overline{\partial} = \sum_{\beta \in \Delta_{\mathfrak{p}}^+} \nu(e_{-\beta}) \otimes \varepsilon(e_{\beta}) \tag{2},
$$

where $\nu(e_{-\beta})$ denotes the action of $e_{-\beta}$ as a left invariant vector field and $\varepsilon(e_{\beta})$ the exterior multiplication of e_{β} on Λ p₊. In the choice above, we shall note that the Casimir operator has a form of

$$
\Omega = \Omega_{\mathbf{k}} + \sum_{\beta \in \Delta_{\mathfrak{p}}} e_{-\beta} e_{\beta} \tag{3},
$$

where Ω_k denotes the part consisting of the basis of \mathfrak{k}^c . Introducing, as usual, an invariant kählerian metric on X via the hermitian metric (,) on g^c , we have the formal adjoint ϑ of $\overline{\partial}$ and the Laplace-Beltrami operator

$$
\Box = \overline{\partial} \vartheta + \vartheta \overline{\partial}.
$$

Theorem (Okamoto-Ozeki [2]). *Under the above situation*, \Box acts on each $C^{\scriptscriptstyle 0,q}(E_*)$ as

$$
\Box = \frac{1}{2} \{ (\Lambda + 2\rho, \Lambda) \mathbf{1} - \nu(\Omega) \},
$$

where $\rho = \frac{1}{2} \sum \alpha$, 1 denotes the identity operator, and ($\Lambda + 2\rho$, Λ) the inner product **2 «EΔ⁺** on the weights induced from the Killing form.

2. A proof of the above Theorem is as follows. We shall first see that $\Box +$ $\frac{1}{\alpha}$ v(Ω) is at most a first order operator on $C^{0,q}(E_\Lambda)$. Because of the invariance of the differential operators, it suffices to see that it holds for any real cotangent vector ξ at the origin $o \in X$

$$
\sigma_{\xi}^2(\square)=-\frac{1}{2}\sigma_{\xi}^2(\nu(\Omega)),
$$

where σ_{ξ}^{2} (...) denotes the symbol map at the origin with respect to ξ . When we consider \frak{p} as the real cotangent space at $o\in X,$ ξ as the element of $\frak{p}\subset\frak{p}^c,$ we then have

$$
\sigma_{\xi}^1(\overline{\partial})v = \varepsilon(\xi_+)v \quad \text{for } v \in V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+,
$$

where *σ(* .) denotes the symbol map at the origin and *ξ⁺* is the image of *ξ* by the orthogonal projection $\mathfrak{p}^c \to \mathfrak{p}_+$. In fact, take a real valued function f on X and a section $s \in C^{0,q}(E_A)$ such that $f(o) = 0$, $(df)(o) = \xi$, $s(e) = v$, where e is the unit of G. Then we have $\sigma_{\xi}^{1}(\overline{\partial})v=(\overline{\partial}(fs))(e)=\xi(\overline{\partial}(f))v$, and through the above identification, $\overline{\partial} f(\overline{\rho}) = \xi_+$. Since the symbol of the formal adjoint ϑ is

$$
\sigma_{\xi}^1\!(\vartheta)=-\hskip.03cm\varepsilon(\xi_+)^*
$$

where $\mathcal{E}(\xi_+)^*$ denotes the adjoint of $\mathcal{E}(\xi_+)$ with respect to the hermitian inner product on $\overline{V}_{\mathbf{\Lambda}} \otimes \Lambda^q \mathfrak{p}_+$, we have

$$
\sigma_{\xi}^{2}(\Box) = \sigma_{\xi}^{1}(\bar{\partial}) \sigma_{\xi}^{1}(\vartheta) + \sigma_{\xi}^{1}(\vartheta) \sigma_{\xi}^{1}(\bar{\partial})
$$
\n
$$
= - (\varepsilon(\xi_{+}) \varepsilon(\xi_{+})^{*} + \varepsilon(\xi_{+})^{*} \varepsilon(\xi_{+}))
$$
\n
$$
= - (\xi_{+}, \xi_{+}) \mathbf{1}
$$
\n
$$
= -\frac{1}{2} (\xi, \xi) \mathbf{1}.
$$

On the other hand, we see easily that $\sigma_{\xi}^2(\nu(\Omega)) = (\xi, \xi) \mathbf{1}$, which implies the assertion.

3. We shall next see that every invariant first order operators on $C^{\scriptscriptstyle 0,q}(E_{\Lambda})$ is, in effect, of order zero, i.e., a vector bundle map induced from some K -module endomorphism on $V_{\Lambda} \otimes \Lambda^g \mathfrak{p}_+$. Consider the symbol map $\sigma^1_\ell\left(D\right)$ of an invariant first order operator *D* as a bilinear map

$$
\sigma^1(D) : (V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+) \times \mathfrak{p} \to V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+,
$$

and extend it to p^c on the part p complex-linearly. We then have a K -module homomorphism

$$
\sigma^1(D): (V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+) \otimes \mathfrak{p}^c \to V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+.
$$

It suffices to see $\sigma^1(D) = 0$. In fact, the highest weight of an irreducible component in $(V_\Lambda \otimes \Lambda^q \mathfrak{p}_+) \otimes \mathfrak{p}^c$ is of a form

$$
\Lambda + \beta_1 + \cdots + \beta_q \pm \beta,
$$

while that of one in $V_A \otimes \Lambda^q \mathfrak{p}_+$ is

$$
\Lambda + \beta_1' + \cdots + \beta_q',
$$

for some β_i , β'_i , β in $\Delta^*_\mathfrak{p}$. Therefore, if $\sigma^1(D)=0$, then there must exist posi tive non-compact roots $\beta_1, \dots, \beta_q, \beta'_1, \dots, \beta'_q, \beta$ such that

$$
\beta_1+\cdots+\beta_q\pm\beta=\beta_1'+\cdots+\beta_q'.
$$

On the other hand, it is known that, when g is simple, there exists a simple root $\alpha_0 \in \Delta_p^+$ such as the following holds; expressing a positive non-compact root as a linear combination of the simple roots in Δ^+ , the coefficient of α_0 has to be 1. Hence, under our assumptions, the above equality is impossible, which implies the assertion.

4. Put $A^{\mathfrak{a}}_{\Lambda} = \Box + \frac{1}{2} \nu(\Omega)$ on $C^{0,\mathfrak{a}}(E_{\Lambda})$. Then we know through 2, 3 that $A^{\mathfrak{a}}_{\Lambda}$ is induced from a *K*-module endomorphism of $V_{\Lambda} \otimes \Lambda^{\mathfrak{a}} \mathfrak{p}_{+}$, and it is easy to see

$$
\overline{\partial} A_{\Lambda}^{\mathfrak{q}} = A_{\Lambda}^{\mathfrak{q}+1} \overline{\partial}
$$

from the property of the Casimir operator. If we assume that $A^{\mathfrak{q}}_{\Lambda}$ is a scaler operator c_Λ^q 1, then A_Λ^{q+1} is also c_Λ^q 1. In fact, for any $v \in V_\Lambda \otimes \Lambda^{q+1} \mathfrak{p}_+$ one can choose a section *s* in $C^{0,q}(E_\Lambda)$ such that $(\overline{\partial}s)(e)=v$. Since $A^{\rho+1}_\Lambda$ is of order zero, $\mathcal{A}^{q+1}_\Lambda(\overline{\partial}s)(e) = (A^{q+1}_\Lambda\overline{\partial}s)(e)$, where $\mathcal{A}^{q+1}_\Lambda$ denotes the K -module endomor phism of $V_{\Lambda} \otimes \Lambda^{q+1} \mathfrak{p}_+$ inducing A_{Λ}^{q+1} . Hence $A_{\Lambda}^{q+1}v = (\overline{\partial} A_{\Lambda}^q s)(e) = c_{\Lambda}^q(\overline{\partial} s)(e) = c_{\Lambda}^q v$, which shows $A_{\Lambda}^{q+1} = c_{\Lambda}^q 1$. On the other hand, $A_{\Lambda}^0 = c_{\Lambda} 1$ for some constant c_{Λ} , because V_A is irreducible. Thus we have

$$
A_{\Lambda}^{\mathfrak{q}} = c_{\Lambda} \mathbf{1} \quad \text{for every } q.
$$

It remains to determine the above constant c_A . For this purpose, it suffices to see the action of A^0_Λ on $C^{0,q}(E_\Lambda)$. For a highest weight vector $v_\Lambda \in V_\Lambda$, take a local holomorphic section s near the origin $o{\in}X$ such that $s(e)=v_\Lambda.$ We then have

$$
A_{\Lambda}^{\mathfrak{o}} s = \frac{1}{2} \nu(\Omega) s.
$$

By the formula (3), we have

$$
\nu(\Omega)s=\nu(\Omega_k)s+\sum_{\beta\in\Delta_{\mathcal{D}}^+}(2\nu(e_{\beta})\nu(e_{-\beta})s-\nu([e_{\beta}, e_{-\beta}])s).
$$

It is well known that $\nu(\Omega_k) s = (\Lambda + 2\rho_k, \Lambda) s$ where ρ_k is a half of the sum of the

positive compact roots. On the other hand, $\nu(e_{\beta})s=0$ for $\beta \in \Delta_n$ in view of (2), and $(\nu([e_{\beta}, e_{-\beta}]s)(e) = -(\beta, \Lambda)v_{\Lambda}$ because of $[e_{\beta}, e_{-\beta}] \in \mathfrak{h}^c$ and the choice (1). Therefore it holds

$$
(\nu(\Omega)s)(e) = (\Lambda + 2\rho, \Lambda)s(e).
$$

Thus we have $c_A = \frac{1}{2}(\Lambda + 2\rho, \Lambda)$, which completes a proof of the Theorem.

REMARK. This way of determination of the Laplace-Beltrami operator can be also applied for a hermitian symmetric pair of compact type, and we have a quite similar formula except for a switch of sign, which is due to B. Kostant.

HIROSHIMA UNIVERSITY

References

- [1] M.S. Narasimhan and K. Okamoto: *An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type,* Ann. of Math. 91 (1970), 486-511.
- [2] K. Okamoto and H. Ozeki: *On square-integrable Q-cohomolgy spaces attached to hermitian symmetric spaces,* Osaka J. Math 4 (1967), 95-110.