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Abstract

In quantum mechanics, measurements of an observable of a quantum system allow

for the prediction of the attentive characteristics of that system. The average value

of the observable is described by its operator and the quantum wave function that

represents the system state, and is well known as “expectation value.” If the system,

however, described by a two-state vector, i.e., an initial state and a final state, such

that the system’s initial state is preselected and its final state is postselected, then

the corresponding average value is known as “weak value,” which was first named by

Aharonov, Albert, and Vaidman in their groundbreaking study in 1988. Weak values,

however, mainly go along with weak measurements, which usually require an infinitely

small interaction strength.

In order to allow a finite strength in the measurement interaction, the concept of

modular value was proposed by Kedem and Vaidman in 2010. Although the concept of

modular values is similar to that of weak values, there also are many di↵erent exciting

points. However, the research on modular values is not so well developed as research

on weak values. A generalized relationship between modular values and weak values is

still not explicitly stated. Furthermore, fully generalized characterizations, as well as

the complex-behavior understanding of modular values, are still missing.

This dissertation, therefore, introduces and develops a general approach for strong

measuring quantum modular values in the two-state vector formalism, along with sev-

eral applications in quantum physics. Our work here provides more detailed generalized

characterization and fundamental understanding the complex behaviors of the quantum

modular values. Particularly, we indicate generalized relationships between modular

values and weak values for finite-dimensional systems by using the Lagrange interpo-

lation and then apply to analyze and interpret some quantum paradoxes in quantum

physics. We then theoretically characterize the generalized modular values by studying

generalized modular-value-based schemes which are extended from conventional two-

dimensional pointers to finite-dimensional discrete pointers and continuous pointers.

We particularly illustrate our proposal in the three cases of a spin-s particle pointer, a

semiclassical pointer, and a continuous Gaussian pointer. We also further describe the

i



time-dependent weak values and modular values in enlarged forms and show how to im-

plement an enlarged Hilbert space in various physical platforms. Finally, we investigate

the statistical property and the physical meaning of modular values in the polar form

for both cases of the discrete and continuous pointers. As a consequence, a relationship

between the modulus and phase is also fully investigated and simply illustrated on a

Bloch sphere.
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p of spin-2 (s = 2) particle. The vertical line at
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|↵|2. This phenomenon can be regarded as the amplification e↵ect of the

modular value. The quantum system can be chosen the same as in Fig.

4.1, i.e., interactions between spin and photon. . . . . . . . . . . . . . . 51

4.5 The conditional probabilities and modular values as functions of momen-

tum p for fixed g = ⇡/2 and several values of ✓ as shown in the figure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 The contour plot of the momentum displacement �hp̂i. . . . . . . . . . 53

viii



4.7 The SNRs as functions of the measurement strength for several ✓. . . . 54

5.1 A schematic setup of a single spin-12 particle under a magnetic field ap-

plied along the z-axis. The particle is initially prepared in spin up along

the x-axis, and then postselected onto the three cases of spin up along

the x-axis, spin up along the y-axis, and spin down along the x-axis. We

calculate the weak value of Pauli matrix �̂x(t) at time t between 0 and T . 62

5.2 Weak values of �̂x for preselection state in (5.19) and various postselection

states as in (5.20), which are the same in both cases of normal Hilbert

space and enlarged Hilbert space. . . . . . . . . . . . . . . . . . . . . . 63

5.3 A scheme of quantum gates acting on both the extra spin (e) and the

system single-particle spin (s). . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 A vector graphic illustrates the chain rule. The chain rule describing the

process of taking route | i ! |ai ! |�i is the summation over all possible

|xi’s of the product of taking | i ! |ai ! |xi and taking | i ! |xi ! |�i. 71

7.1 The phase of a modular value is the total phase shift of a system-state-

evolution process that starting from an initial state, evolve onto an in-

termediate state, then project onto a final state and finally project back

to the initial state. This total phase shift corresponds to the summation

of the geometric phase and the intrinsic phase. . . . . . . . . . . . . . . 77

7.2 (a, b) The logarithm of the modulus and the minus of the phase of the

complex modular value (�̂z)m, where their derivatives respect to g will

give the corresponding imaginary and the real parts of the weak value

in (c, d). The discrete values are obtained from an identical ensemble of

105 pre- and postselection states, while the curves are analytical results. 82

ix



Chapter 1

Introduction

We are not one of the followers but

belong to the founder of an exploding

new area.

Nobuyuki Imoto

1.1 Introduction

During the past 30 years, the concept of weak value and weak measurement has been

studied so far and gradually becomes a noncontroversial theory and attracts many stud-

ies both theoretical and experimental points of view. In 1988, a groundbreaking study

by Aharonov, Albert, and Vaidman pointed out that the measurement value of a com-

ponent of a spin-12 particle could turn out to be 100 [1]. This is the very first feature

of weak values, such that their values can widely excess the eigenvalue boundaries, and

unlike usual expectation values, they can be complex. These two strange features of

weak values have been considered in the context of probabilistic interpretation [2] or

contextuality [3], and become reliable sources to interpret many quantum phenomena,

specifically in quantum paradoxes with the EPR paradox [4,5], the Hardy paradox [6–9],

and the Cheshire-cat experiment [10, 11]. Furthermore, the concept of weak values has

been the most widely applied to amplification e↵ects and small shifts [12–14], precision

metrologies [15–18] and various exciting physical phenomena [19–21].
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Beyond the standard weak value formalism, i.e., the most studies on weak values

focus on a continuous-variable pointer of a measuring device, and constrain to a weak

coupling, there were other attempts to increase the coupling strength (see Refs. therein

[22]) or consider a qubit pointer apparatus [23–25]. Specifically, a proposal by Kedem

and Vaidman, wherein a quantum system arbitrarily coupled a qubit pointer under the

ideal von Neumann measurement for a quantum observable Â, which led to the so-called

“modular value” [25].

Indeed, modular values share some intriguing properties of weak values, such as

complexity and anomalous values, i.e., lie outside the range of standard eigenvalues.

Nonetheless, modular values are sometimes more beneficial than weak values, in the

sense that measuring a modular value is more e�cient than measuring a weak value

because the measurement coupling constant can be made large. Moreover, from the ex-

perimental point of view, modular values are seemingly easier to measure. Supporting

this point of view is because one can just perform the tomography using binary out-

comes of the qubit pointer. It is also more practical to measure nonlocal observables by

using modular values instead of using weak values. However, this concept has received

slight attention since it was first introduced in 2010. A generalized relationship between

modular values and weak values is still not explicitly stated. Furthermore, fully gen-

eralized characterizations, as well as the complex-behavior understanding of modular

values, are still missing.

This dissertation firstly presents generalized relationships between modular values

and weak values for finite-dimensional systems. More specifically, generalized modular

values are also demonstrated by analyzing a generalized modular-value-based scheme.

Also, time-dependent quantum weak and modular values in enlarged Hilbert spaces are

investigated. Furthermore, a statistical and a physical significance of quantum modular

values are also thoroughly characterized in this dissertation.

We first indicate generalized relationships between modular values and weak values

for finite-dimensional systems by using the Lagrange interpolation. These relations

enable us to evaluate weak values by experimentally obtainable modular values without

requiring an infinitesimally small coupling. We also fully characterize the generalized

relationships not only with the weak value of a single observable but also with a joint

weak value of nonlocal observables. We then analyze and interpret some quantum
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paradoxes by using modular values, such as the EPR paradox, the Hardy paradox, and

the Cheshire-cat paradox.

These studies also lead to generalizations of modular values and clarifying the com-

plex behaviors of modular values. As for the generalizations, we implement a generalized

modular-value-based scheme based on a positive-operator-valued-measure (POVM) ap-

proach for postselection measurements, where we generalize from conventional two-level

pointers to multi-level pointers and continuous pointers. These analyses lead to a so-

called generalized modular value. We then apply our proposal to the case of a spin-s

particle pointer, a semiclassical pointer state, a continuous pointer state, and also fur-

ther discuss on nonclassical pointer states.

After that, the time-dependent weak values and modular values are also generalized

onto an enlarged Hilbert space. Therein, we propose an enlarged state, which combines

both pre- and postselection states at a given time t. Using this enlarged state, quantum

weak and modular values can be completely interpreted as expectation values of a

linear combination of given operators in the enlarged Hilbert space. We also apply this

proposal to an example of a spin-12 particle evolves under an external magnetic field.

Subsequently, a method for implementing the enlarged Hamiltonian is also discussed.

As for clarifying the complex behaviors of modular values, we firstly investigate the

complex behaviors of modular values by using the spectral decomposition and connect

the modular values to the complex conditional probabilities. Next, the chain rules of the

conditional probabilities are also derived. Afterwards, we also investigate the physical

significance of modular values. We derive the polar decomposition of a modular value

into the modulus and phase components and connect these components onto some

physical properties of the system and the pointer. Then, we also discuss a relationship

between the modulus and phase, wherein the derivative of the phase is related to the

derivative of the logarithm of the modulus via a Berry-Simon-like connection, which is

in the form of a weak value. We also illustrate the modulus-phase relation on a Bloch

sphere.

Before discussing on modular values in detail, I will first give a brief about the

quantum measurement and the concept of weak values.
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1.2 Measurements in quantum mechanics

In this section, we will briefly review an indirect measurement of an arbitrary observable

of a given quantum system, following the standard treatment of von Neumann measure-

ments and standard POVM measurements. Particularly, to measure an observable Â in

the system, we couple it to a pointer observable of an apparatus. The coupling entangles

the eigenstates of the observable and the states of the pointer so that we can measure

an eigenstate of the system observable by looking at the final state of the pointer.

1.2.1 The total Hamiltonian

The total Hamiltonian including the coupling of the quantum system observable and

the pointer observable has the form

Ĥ = Ĥ0 + P̂0 + g(t)Â⌦ P̂ , (1.1)

where Ĥ0 is the free Hamiltonian of the system to be measured, and P̂0 is the free

Hamiltonian of the pointer. Most of the cases, we might ignore the e↵ect of the pointer

Hamiltonian to the total system because the spreading of pointer wavepacket can be

neglected due to the massive pointer [26]. The time-dependent coupling g(t) is assumed

to be nonzero over the interaction time interval t 2 [0, T ].

Generally, if Â does not commute with Ĥ0, then we have to take into account

the evolution of the observable during the measurement. However, for simplicity, let us

adopting that Â and Ĥ0 commute, i.e., [Â, Ĥ0] = 0, or we assume that the measurement

is implemented so quick that we can neglect the free evolution of the system during the

measurement time [26]. Then, the total Hamiltonian reduces to

Ĥ = ~g(t)Â⌦ P̂ , (1.2)

where we have added ~ to the formula for later convenience. We also note that during

the rest of this dissertation, we usually use this Hamiltonian as the total interaction

Hamiltonian.
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1.2.2 The evolution operator

In the Schrödinger picture, the time evolution of a quantum state | i is governed by

the Schrödinger equation

i~ @
@t

| (t)i = Ĥ| (t)i. (1.3)

Suppose that | (t)i = Û | (0)i for some operators Û . Then submitting this formula

into the Schrödinger equation (1.3) we obtain

i~@Û
@t

= ĤÛ . (1.4)

The solution is straightforwardly given by

Û = e�igÂ⌦P̂ , with g =

Z
T

0
g(t)dt , (1.5)

where we have used the initial condition Û(t = 0) = Î. In an arbitrarily strong

measurement, the coupling constant g is no need to require to be weak.

1.2.3 The pointer shift as a measurement result

The measured observable Â can be expanded on the diagonal basis as

Â =
X

n

an|anihan|, (1.6)

with the eigenvalue an corresponding to the eigenfunction |ani. We then recast the

evolution operator Û as

Û =
X

n

e�iganP̂ |anihan|. (1.7)

Now, if the pointer operator is the momentum, i.e., P̂ = �i~ @

@x
, and if the quan-

tum state is the superposition of Â eigenvalues, initially uncorrelated with the pointer

wavepacket ⇠(x) ⌘ hx|⇠i, such that

| i ⌦ ⇠(x) =
X

n

 n|ani ⌦ ⇠(x), (1.8)
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Before measurement After measurement
0 0 gan

Figure 1.1: The shift of the pointer position before and after the measurement. The
amount of shift corresponds to the eigenvalue of the measured observable.

where  n ⌘ han| i, then the action of the evolution operator upon this state gives

Û | i ⌦ ⇠(x) =
X

n

 n|ani ⌦ ⇠(x� gan), (1.9)

where the position of the pointer is now shifted an amount corresponding to the eigen-

value of the observable Â as illustrated in Fig. 1.1.

1.2.4 POVM measurements

Suppose that quantum measurements are described by a collection {⌦̂µ} of measured

operators. These operators act upon the quantum state | i and the measurement

outcome that may occur in the experiment is assigned as µ with a probability

P (µ) = h |⌦̂†
µ⌦̂µ| i. (1.10)

If the initial quantum state is a mixed state, which is described by a density matrix ⇢̂,

then the probability is given by

P (µ) = Tr(⌦̂†
µ⌦̂µ⇢̂). (1.11)

Then, the system state after the measurement is updated to

| i !
⌦̂µ| ip
P (µ)

and ⇢̂ !
⌦̂µ⇢̂⌦̂

†
µ

P (µ)
, (1.12)

for pure and mixed states, respectively.
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The measurement operators satisfy the completeness relation

X

µ

⌦̂†
µ⌦̂µ = Î, (1.13)

then, as a result, the probabilities sum to unity

X

µ

P (µ) =
X

µ

h |⌦̂†
µ⌦̂µ| i = 1. (1.14)

Furthermore, we define by Êµ ⌘ ⌦̂†
µ⌦̂µ, a positive operator, and hence, from (1.13)

P
µ
Êµ = Î. This complete set of operators Êµ allows us to determine the probabilities

of the measurement outcomes and is known as the Positive-Operator Valued Measure

(POVM).

As an example, let us illustrate how to employ the theorem of POVM to distinguish

non-orthogonal states. Assume that we are given a qubit prepared in one of two non-

orthogonal states, | 1i = |0i and | 2i = (|0i+ |1i)/
p
2. Since they are not orthogonal,

no measurement completely distinguishes them. For example, if we get |1i in the mea-

surement result, then we can assert that the given state is | 2i. However, if the result

is in |0i, then the given state could be either | 1i or | 2i.

Nevertheless, it is possible for us to proceed a measurement that discriminates be-

tween the two states, such as using a POVM containing three elements as in Ref. [27]

Ê1 =

p
2

1 +
p
2
|1ih1|, (1.15)

Ê2 =

p
2

1 +
p
2

(|0i � |1i)(h0|� h1|)

2
, (1.16)

Ê3 = Î � Ê1 � Ê2. (1.17)

Obviously, in this example, Ê1 is orthogonal to | 1i and Ê2 is orthogonal to | 2i. Or, in

other words, h i|Êi| ii = 0, for i = 1, 2. Therefore, if the measurement result is Ê1 (or

Ê2), then we make sure that the given state must in | 2i (or | 1i). However, if the result

corresponds to Ê3, then this measurement tells us nothing about the discrimination of

the state [27].
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1.3 A brief to weak measurements and weak values

1.3.1 Weak interactions

To describe weak measurements, we pursue a weak coupling between a measured sys-

tem and a pointer, where the interaction Hamiltonian and the corresponding evolution

operator are given as in Eqs. (1.2, 1.5), such that

Ĥ = ~g(t)Â⌦ P̂ , and Û = e�igÂ⌦P̂ , (1.18)

where Â is the measured observable and P̂ is the pointer momentum. For a weak

measurement, the coupling constant g is chosen to be infinitely small. How small is

weak enough? There are few ways to determine the weak coupling. Ideally, the limit

case is taken place, i.e., taking the limit g ! 0. However, it seems not enough to

consider only g ⌧ 1 since g might have a dimension or with unbounded variables in

the interaction (1.18), then the e↵ect of the interaction can be large even small g [28].

In this case, it is better to consider the weakness of the integration of the Hamiltonian

as [28]

���
DZ

Ĥdt
E���⌧ 1, or, equivalent

��ghÂihP̂ i
��⌧ 1. (1.19)

where h...i is the expectation value, assume that the measured system and the pointer

are initially uncorrelated. Another way to defined the weak interaction is that the

measured state after the interaction does not collapse. In other words, the back action

of the pointer to the measured system is mall, following [28] such that

|h 0
| i|2 ! 1, (1.20)

where | 0
i ⌘ e�igÂ⌦P̂

| i is the system state after the interaction.

1.3.2 Weak values

For weak interactions, we can expand the evolution operator in Eq. (1.18) up to the

first order of g as

Û = Î � igÂ⌦ P̂ +O(g2). (1.21)
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For simplicity, we also assume that the system state is pure and denoted as | i,

initially uncorrelated to the pointer state |⇠i. Then the composite state is given by

| i ⌦ |⇠i. After the interaction, the state evolves to

Û | i ⌦ |⇠i = (Î � igÂ⌦ P̂ )| i ⌦ |⇠i, (1.22)

where we have used the approximation (1.21).

In the manner of conditional weak measurement, the system is postselected onto a

final state |�i after the interaction. Then the remain pointer state is calculated to be

|⌘i = h�|Û | i ⌦ |⇠i

= h�| ie�ighÂiwP̂
|⇠i, (1.23)

where

hÂiw ⌘
h�|Â| i

h�| i
, (1.24)

is named as “weak value,” | i and |�i are known as pre- and postselection states,

respectively. The subscript “w” stands for “weak.”

1.3.3 Properties of weak values

Counter to conventional expectation values, weak values have many intriguing prop-

erties. Particularly, weak values can lie far outside the range of eigenvalues of the

measured observable and can even be complex. Of course, they also can be reduced to

expectation values or eigenvalues in some cases. Following are some of properties.

(i) Weak values as transition amplitudes

Naively, from the definition (1.24), a weak value can be understood as the ratio of

the transition amplitude from the preselection state to the postselection state for the

measured observables Â and Î, respectively. This ratio sometimes can be viewed as the

“relative change” in the detection probabilities [29, 30].

(ii) Without postselection case

If there is no postselection, or in other words, |�i = | i, then the weak value

mathematically reduces to the ordinary expectation value

hÂiw =
h |Â| i

h | i
= hÂi . (1.25)
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(iii) Eigenstate case

If the preselection state is an eigenstate of the measured observable, i.e., Â| i =

a| i, where a is the corresponding eigenvalue, then the straightforward calculation weak

value gives

hÂiw =
h�|a| i

h�| i
= a . (1.26)

Roughly speaking, the weak value becomes the eigenvalue that corresponds to the pre-

selection eigenstate regardless the postselection state. This result is also valid for the

case that the postselection is chosen to be an eigenstate of the measured observable.

(iv) Anomalous weak values

Weak values can describe a quantum system with pre- and postselection states which

can be chosen independently with each other. Their values, therefore, depend on the

choice of the states for a fixed measured observable and cause some anomalous results.

One of the strange features is that the weak value amplitudes can go far away from

the standard eigenvalues of the measured observable. This e↵ect occurs when the inner

product, h�| i, is tiny, which implies that the pre- and postselection states are closely

orthonormal. Another anomalous property, which contracts to the original expectation

values, is that weak values can be complex. Usually, if the transition amplitudes are real,

then the weak values are also real. However, if the transition amplitudes are complex,

then, in general, the weak values are complex. The meaning of complex weak values

has been discussed so far [31, 32].

1.4 Dissertation overview and key results

1.4.1 Dissertation overview

Chapter 2 presents the concept of quantum modular values. Therein, at first, we review

a von Neumann approach to postselection quantum measurements for the case of qubit

pointers. We also demonstrate how modular values can be obtained from the outcomes

of the pointers. After that, we propose and implement a simple quantum circuit using

a control-Z gate for such a modular-value measurement.

In Chapter 3, we will provide full relationships between modular values and weak

values and also the applications of modular values to quantum paradoxes. To do this,
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we proceed the Lagrange interpolation of an exponential function to the case of modular

values. We study detail for two and three dimensional Hilbert space cases, and then

infer the results to finite-dimensional Hilbert spaces. Later in this chapter, we describe

the applications of modular values to the EPR-Bohm paradox, the Hardy paradox, and

the Cheshire-cat paradox.

We then generalize the quantum modular values in Chapter 4. By “general,” we

mean the pointer is treated both finial-dimensional discrete and continuous, and the

measured system is generally prepared and postselected in mixed states. The relation

of generalized modular values and generalized weak values is also figured out in this

Chapter. We finally discuss the usage of the generalized pointer states by analyzing the

cases of a spin-s particle pointer, a semiclassical pointer state, and a continuous pointer

state as examples.

Time-dependent weak values and modular values will be described in Chapter 5 from

the viewpoint of enlarged Hilbert spaces. By introducing an enlarged quantum state

which engaged to both preselection and the postselection states, the quantum weak and

modular values become the expectation values, which can be measured dynamically.

In Chapter 6, we will express the concept of quantum modular values in the prob-

abilistic representation by using the spectral decomposition. Later in this chapter, we

also derive the chain rule of the quantum modular values in term of the conditional

probabilities.

Chapter 7 will explain the meaning of quantum modular values as complex values

and derive their polar representations. Therein, we demonstrate that the modulus and

phase of a modular value are associated with some physical properties. A modulus-phase

relation is also discussed and illustrated on a Bloch sphere.

Finally, we will give the conclusions and outlook in Chapter 8. Therein, we extend

the possible usages and various applications of the modular values. Our proposal also

could motivate and guide further various exciting experiments.

1.4.2 Key results

In this dissertation, we theoretically analyze the concept of quantum modular values

for both of the generalized characterization and complex behaviors fundamental un-

derstanding. We show generalized relationships between modular and weak values for
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Figure 1.2: “Ship-like” structure of the dissertation.

finite-dimensional systems by analyzing the Lagrange interpolation of the exponential

form of the measured observable. One of the important consequences of these relation-

ships is that weak values can be easily deduced from the corresponding measurement

results of modular values, which are, in principle, more accessible to measure than weak

values. Another critical result is that the modular-value amplification e↵ect (MVA),

similar to the weak-value case, is also observed in the case of the generalized modular

value. Furthermore, the time-dependent enlarged weak and modular values can be en-

tirely interpreted as expectation values of a linear combination of given operators by

introducing the enlarged Hilbert space, proposed in this thesis, which might enable us

to obtain the weak and modular values at any time dynamically. Finally, this disser-

tation also provides the significance of complex modular values, where the meaning of

the modulus and phase of a modular value in the polar form are connected to primary

concepts, such as the conditional probabilities and Pancharatnam phases.



Chapter 2

Quantum modular values

This chapter presents the concept of quantum modular values by analyzing von Neu-

mann measurements for a simple case of a qubit pointer. Particularly, starting from

a von Neumann measurement approach, we analyze a postselection measurement of a

quantum system with a qubit pointer. The resultant in the qubit pointer, after the

postselected in the quantum system, relates to a complex measurement quantity which

is named as “modular value.” Later in this chapter, we also propose and discuss a sim-

ple quantum circuit for modular-value measurement using a control-rotate-Z gate. Even

though the primary purpose of this chapter is just to introduced the concept of modular

values under the original motivation with the qubit pointer, we will extend this concept

to the finite-dimensional discrete pointer (qudit pointer) and the continuous pointer in

Chap. 4.

2.1 A brief review to quantum modular values

2.1.1 A von Neumann measurement approach

Following the standard von Neumann treatment [33], an operator Â on a system Hilbert

space Hs is coupled to an operator P̂ on an apparatus Hilbert space Hp via a time-

dependent interaction Hamiltonian of the form

Ĥ = ~g(t)Â⌦ P̂ . (2.1)

13
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The time-dependent interaction strength g(t) is assumed to be nonzero over the inter-

action time interval t 2 [0, T ]. For simplicity, we neglect the free evolution of both the

system and the pointer by assuming that the measurement is carried out quickly enough

as discussed in Chap 1. The interaction Hamiltonian (2.1), therefore is also the total

Hamiltonian.

We remind that the Schrödinger equation for the unitary operator Û is given by

i~@Û
@t

= ĤÛ . (2.2)

The solution is straightforwardly given

Û = e�igĤ⌦P̂ , with g =

Z
T

0
g(t)dt , (2.3)

where the initial condition Û(t = 0) = Î, and the coupling constant g is arbitrarily

large.

2.1.2 A postselection measurement with a qubit pointer

For more precisely, we consider the apparatus is a two-dimensional discrete pointer

which named as qubit pointer. The pointer operator P̂ is chosen to be a projection

operator as

P̂ ⌘ |1ih1|, (2.4)

where we have assumed the qubit pointer is spanned by the computation basis {|0i, |1i}.

The initial state of the qubit pointer is chosen to be a superposition state of the two

states on the basis as

|⇠i = �|0i+ �̄|1i, (2.5)

where � and �̄ are complex numbers satisfying |�|2 + |�̄|2 = 1.

The quantum system, which does not have to be a qubit, is conditioned by an

initial state vector | i. After the interaction as described above, the quantum system

is postselected into a final state vector |�i. The result of the measurement is readout

from the qubit pointer as schematically shown in Fig. 2.1 and is given as

|⌘i = h�|e�igÂ⌦P̂
| i|⇠i. (2.6)
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Figure 2.1: A postselection measurement scheme. The system (not necessary being a
qubit but could be in a higher dimensional Hilbert space) is conditioned by a preselection
state vector | i and a postselection state vector |�i. The system arbitrarily couples to
an apparatus with its initial probe state |⇠i. After the postselection in the system, the
outcome M in the probe is measured, which gives the result of the measured observable
Â in the system.

The Taylor series expansion for the unitary operator gives

e�igÂ⌦|1ih1| = Î +
(�igÂ)

1!
⌦ |1ih1|+

(�igÂ)2

2!
⌦ |1ih1|+ ... (2.7)

The action on the initial qubit pointer state |⇠i shows that

e�igÂ⌦|1ih1|
|⇠i = �|0i+ �̄|1i+ �̄

(�igÂ)

1!
|1i+ �̄

(�igÂ)2

2!
|1i+ ...

= �|0i+ �̄e�igÂ
|1i. (2.8)

Submitting Eq. (2.8) into Eq. (2.6), the final pointer state yields

|⌘i = h�| i

"
�|0i+ �̄

h�|e�igÂ
| i

h�| i
|1i

#
. (2.9)

The complex number
h�|e�igÂ

| i

h�| i
was named the “modular value” of operator Â [25],

which is written as (Â)m

(Â)m ⌘
h�|e�igÂ

| i

h�| i
. (2.10)
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2.1.3 Modular values and weak values

Modular values have the same amplification factor 1/h�| i as weak values. Therefore,

their values also might lay outside the usual boundaries of measured observables. Ap-

parently, a weak value of an observable is related to the corresponding modular value

through

hÂiw = i
@(Â)m
@g

���
g!0

. (2.11)

Nevertheless, in some particular cases, the modular value can be related to the weak

value. Let us give an example of spin operators �̂x, �̂y and �̂z with g = �⇡/2. We

have [25]

(�̂)m ⌘
h�|ei

⇡
2 �̂| i

h�| i
= ih�̂iw (�̂ = �̂x, �̂y or �̂z) . (2.12)

Therefore, the modular value of a spin component is directly related to its weak value

in this specific case, i.e., Â = �̂ and g = �⇡/2 [25].

From the measurement point of view, a modular value is easily obtained because one

can just perform the tomography using the binary outcomes of the qubit pointer. On

top of it, a modular value can be measured more e�ciently than a weak value because

the measurement coupling constant g can be made large. To obtain the modular value,

we perform a tomography measurement of the final state of the qubit pointer. Assume

that the outcome is found to be

|⌘i = ↵|0i+ �|1i. (2.13)

Then comparing with Eq. (2.9) we obtain,

(Â)m =
��

�̄↵
. (2.14)

2.2 A quantum circuit for modular-value measurements

2.2.1 Controlled-RZ gate

We present a controlled-rotate-Z gate (= C-Rz(✓) gate) as a simple quantum circuit

that possibly implements a modular-value measurement. However, in our scheme, the



17

-1.0

-0.5

0.0

0.5

1.0

1.5

2.5

2.0

0.0 0.2 0.4 0.80.6 1.0

^

^̂

^

D

(a) (b)

Figure 2.2: (a) Quantum circuit simulates the modular-value measurement. The system
is prepared in state | i and postselected to |�i. The qubit pointer state is prepared
as |⇠i = �|0i + �̄|1i, and measured on the �̂z basis. The qubit pointer controls the
system whenever its input is |1i. The system is rotated ✓ angle around the z-axis. (b)
The modular value as a function of coupling constant g = ✓/2. The highest position
corresponds to weak value when g = ⇡/2.

qubit system is controlled by the qubit pointer as is shown in Fig 2.2(a). The rotation

Rz(✓) around the z-axis has the form [27]

Rz(✓) = e�i✓�̂z/2 =

 
e�i✓/2 0

0 ei✓/2

!
. (2.15)

Then, the C-Rz(✓) gate is given as

Û = Î ⌦ |0ih0|+ e�i✓�̂z/2 ⌦ |1ih1| , (2.16)

which means the qubit system will rotate i↵ the qubit pointer is in state |1i. Let us

choose P̂ = 0|0ih0|+ 1|1ih1|, then this formula can be recast as

Û = e�i✓�̂z⌦P̂ /2 , (2.17)

which is also the unitary operator of a modular-value measurement with g = ✓/2 and

Â = �̂z. We, therefore, can extendedly conclude that controlled-rotate gates can simu-

late modular-value measurements.
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2.2.2 Example

As an example, let us choose the pre- and postselected states for the system following [4]

as

| i =
| "i+ | #i

p
2

, (2.18)

|�i =

p
2 +

p
2| "i �

p
2�

p
2| #i

2
, (2.19)

where we have used the eigenvalues 1 and �1, and eigenvectors | "i and | #i of Pauli

matrix �̂z, respectively. The weak value and modular value of �̂z for arbitrary value of

✓(= 2g) can be straightforwardly calculated, which yield

h�̂ziw = 1 +
p

2 , and (2.20)

(�̂z)m = cos
✓

2
� i(1 +

p

2) sin
✓

2
. (2.21)

Obviously, in this example, the modular value is complex and its modulus lies outside

the range of eigenvalues of �̂z, the same as the weak value, as we can see from Fig.

2.2(b). Moreover, the modulus of the modular value lies between the expectation values

and the weak value of observable �̂z, that is, 1  |(�̂z)m|  1 +
p
2, and coincides with

the weak value when g = ⇡/2 (the center peak in Fig. 2.2(b)). This boundary still

holds for all Pauli matrices in this particular example. This example might be tested in

the laboratory with the help of the current quantum information technology, which can

be implemented by a controlled-rotation gate and might also motive and guide further

various exciting experiments.



Chapter 3

Quantum modular values and

weak values: full relations and

applications to quantum

paradoxes

In this chapter, we characterize full relations of modular values to weak values. We

apply the Lagrange interpolation approach to a power series function of a given matrix,

which later becomes an operator. We also analyze detail for the cases of two- and three-

dimensional Hilbert space, and then extend to an arbitrary n-dimension. Afterwards,

we present some implications of quantum modular values to the concept of nonlocal joint

measurements. We first mathematically demonstrate that a nonlocal joint measurement

can be easily described by a modular value. Particularly, the modular value of a sum of

measured observables is related to the weak value of the product of these observables.

Finally, we apply this result to the quantum paradoxes, i.e., the EPR-Bohm paradox,

the Hardy paradox, the Cheshire-cat paradox.

19
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3.1 Full relations of modular values to weak values

In this section, we characterize the full relations of modular values to weak values. When

the dimension of the system Hilbert space is two, the modular value of an arbitrary

observable is linearly related to the corresponding weak value, for any quantity of the

coupling constant. Also, when the dimension n of the Hilbert space is larger than two,

the modular value can be expressed in term of weak values up to (n � 1)th order. At

first, let us introduce the Lagrange interpolation, which is the main tool for analyzing

these relationships.

3.1.1 The Lagrange interpolation

Suppose that we are given a square matrix A 2 Cn⇥n, where n is the range of the matrix

A, and we want to find f(A) for some functions f ; e.g., f(A) = e�igA, being defined

as a power series. We also assume that the matrix A has n non-degeneracy eigenvalues

�k (k = 1, 2, ..., n), which are known. The Lagrange interpolation of the matrix form is

given, following the theorem in Ref. [34], as

e�igA =
nX

k=1

e�ig�kLk(A) , (3.1)

where Lk(A) is a Lagrange interpolation coe�cient, which is given by a polynomial in

A of degree n� 1 as

Lk(A) =
nY

`=1,` 6=k

A� �`I

�k � �`
, for k = 1, 2, ..., n , (3.2)

where I the identity matrix. The proof of this theorem is given in Appendix A.

Taking the eigenvectors of an operator Â as the orthonormal bases for the matrix

expression, i.e., |a1i, |a2i, · · · , |ani, it is easy to show that

e�igÂ =

0

BBBBB@

|a1i

|a2i

:

|ani

1

CCCCCA
e�igA

⇣
ha1|, ha2|, · · · , han|

⌘
, (3.3)
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where A is the matrix expression of the operator Â. Similarly, it is also straightforward

to obtain

nY

`=1,`6=k

Â� �`Î

�k � �`
=

0

BBBBB@

|a1i

|a2i

:

|ani

1

CCCCCA

nY

`=1,` 6=k

A� �`I

�k � �`

⇣
ha1|, ha2|, · · · , han|

⌘
. (3.4)

Comparing these two Eqs. (3.3) and (3.4) with the help of Eqs. (3.1, 3.2), we obtain

the interpolation of operator form as

e�igÂ =
nX

k=1

e�ig�k

nY

`=1,` 6=k

Â� �`Î

�k � �`
. (3.5)

In the following, we apply this decomposition to modular values for particularly two-

and three-dimensional system Hilbert space cases. The results then can be expressed

to n-dimensional system Hilbert space case.

3.1.2 Two-dimensional Hilbert space

Two-dimensional systems are the simplest non-trivial cases in many physical systems,

such as two-level atoms, spin-12 particles, and attract the most studies on them. For

n = 2, let us assume that an arbitrary observable Â has two distinguishable eigenvalues

�1 and �2, and then Eq. (3.5) explicitly gives

e�igÂ = e�ig�1
Â� �2Î

�1 � �2
+ e�ig�2

Â� �1Î

�2 � �1

=
�1e�ig�2 � �2e�ig�1

�1 � �2
Î +

e�ig�1 � e�ig�2

�1 � �2
Â

= ⇤Î + ⇤0Â , (3.6)

where

⇤ =
�1e�ig�2 � �2e�ig�1

�1 � �2
and ⇤0 =

e�ig�1 � e�ig�2

�1 � �2

are complex numbers.

From the left-hand side of Eq.(3.6), applying pre- and postselection states, | i and

h�|, and dividing a nonzero inner product, h�| i, we obtain the modular value of Â.



22

Repeating the same procedures from the right-hand side, we obtain the corresponding

weak value. Then the expression (3.6) yields a linear relation

(Â)m = ⇤+ ⇤0
hÂiw . (3.7)

The weak value of Â can be straightforwardly expressed by inverting its modular value

such that

hÂiw =
(Â)m � ⇤

⇤0 . (3.8)

As an illustration, let us consider the case of a spin-12 operator �̂ (= �̂x, �̂y, or �̂z)

with g = �⇡/2. In this case, the spin operator has two eigenvalues �1 = 1 for | "i and

�2 = �1 for | #i. Then, the modular value of �̂ calculated from Eq. (3.7) immediately

yields

(�̂)m =
ei

⇡
2 � e�i

⇡
2

2
h�̂iw +

ei
⇡
2 + e�i

⇡
2

2

= ih�̂iw . (3.9)

This result is precisely the result obtained by [25] as shown in Eq. (2.12) of this disser-

tation.

Another example is the projection operator ⇧̂ = |1ih1|, which has two eigenvalues

�1 = 1 for |1i and �2 = 0 for |0i. Then for g = ⇡, we have

(⇧̂)m =
ei⇡ � 1

1
h⇧̂iw + 1

= 1� 2h⇧̂iw , (3.10)

which is also the same result as [25]. Obviously, our method can reproduce the previous

study results.

3.1.3 Three-dimensional Hilbert space

Along with the two-dimensional systems, three-dimensional systems are also well stud-

ies which can be realized such as three-level atoms, spin-1 systems. For n = 3, a

straightforward calculation of Eq. (3.5) for an arbitrary observable Â, which has three

distinguishable eigenvalues �1,�2, and �3, yields the result

e�igÂ = ⇤Î + ⇤0Â+ ⇤00Â2 . (3.11)
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where

⇤ =
�1Q

{i,j}(�i � �j)

X

{k,l,m}

e�ig�k�l�m(�l � �m) ,

⇤0 =
1Q

{i,j}(�i � �j)

X

{k,l,m}

e�ig�k(�2l � �2m) ,

and ⇤00 =
3X

k=1

e�ig�k

3Y

l=1,l 6=k

1

�k � �l
,

are complex numbers, and {i, j} takes {1, 2}, {2, 3}, and {3, 1}, whereas {k, l,m} takes

{1, 2, 3}, {2, 3, 1}, and {3, 1, 2}. Applying the pre- and postselected states into Eq.

(3.11), similarly two-dimensional case, we have the expression for the modular value as

(Â)m = ⇤+ ⇤0
hÂiw + ⇤00

hÂ2
iw . (3.12)

As an example, let us consider a spin-1 particle with the eigenvalues -1, 0, and 1,

which yields ⇤ = 1, ⇤0 = �i sin(g), and ⇤00 = cos(g)�1. In this case, Eq.(3.11) becomes

e�igÂ = 1� i sin(g)Â+
⇥
cos(g)� 1

⇤
Â2 , (3.13)

which is also clarified in [35]. And hence Eq. (3.12) yields

(Â)m = 1� i sin(g)hÂiw +
�
cos(g)� 1

�
hÂ2

iw . (3.14)

For n-dimensional Hilbert space, the modular value can be expressed in terms of

weak values up to the (n� 1)th order as

(Â)m = ⇤+ ⇤0
hÂiw + ⇤00

hÂ2
iw + ...+ ⇤(n�1)0

hÂn�1
iw . (3.15)

As can be seen in this equation, when the dimension of the Hilbert space of the system

is finite, the expression for the modular value becomes a finite series of weak values.

The advantage of this method is clear when comparing this to a Taylor series expansion,

i.e., e�igÂ = Î + (�ig)Â+ ..., which is, in general, an infinite series.
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3.2 Nonlocal joint measurements induced by modular val-

ues

3.2.1 Nonlocal observables

Given a set of nonlocal observables {�} on a multipartite system such that

� = {�̂1, �̂2, ..., �̂k, ...} , (3.16)

and denoted by �̂k the kth component, for k = 1, 2, · · · , N , in N -partite. �̂k is a

Hermitian operator on eachHk Hilbert subspace. Without loss of generality in assuming

�̂k and �̂l commute with each other even for k 6= l since they act in the di↵erent

subspaces in the total Hilbert space H = ⌦kHk. Therefore, we have

e�̂k+�̂l = e�̂ke�̂l , (3.17)

for N variables. More precisely, we should write this expression as e�̂k⌦Îl+Îk⌦�̂l =

e�̂k⌦ÎleÎk⌦�̂l , but we avoid this complexity unless things become confusing.

3.2.2 Lagrange interpolation for nonlocal observables

Let f{�} is a function such that

f{�} ⌘ e�ig
PN

k=1 �̂k , (3.18)

is the exponential function of a sum nonlocal observables. Thus we obtain, with the

help of Eq. (3.5)

e�ig
PN

k=1 �̂k =
NY

k=1

e�ig�̂k

=
NY

k=1

 nX

j=1

e�ig�j,k

nY

l=1,l 6=j

�̂j � �j,lÎ

�k,j � �j,l

�
, (3.19)

where we have assumed that the dimension n is the same for all N subsystems. Then,

considering the case that the rank of each observable is two, i.e., n = 2 for all of k, the

modular value of the sum is obtained as

✓ NX

k

�̂k

◆

m

=

h�|
Q

N

k

✓
⇤kÎk + ⇤0

k
�̂k

◆
| i

h�| i
. (3.20)
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where

⇤k =
�k,1e�ig�k,2 � �k,2e�ig�k,1

�k,1 � �k,2
,

and ⇤0
k =

e�ig�k,1 � e�ig�k,2

�k,1 � �k,2
.

The expression (3.20) shows the general relation between the modular value of the

sum and the weak value of the product for two-dimensional system operators, �̂k. A

particular example for N -spin particles (N Pauli matrices) has been shown in Ref. [25].

Now, we calculate the modular value of the sum of two arbitrary system operators Â

and B̂. From Eq. (3.20), we have

(Â+ B̂)m =

h�|

✓
(⇤AÎ + ⇤0

A
Â)(⇤B Î + ⇤0

B
B̂)

◆
| i

h�| i

= ⇤A⇤B + ⇤A⇤
0
BhB̂iw + ⇤0

A⇤BhÂiw + ⇤0
A⇤

0
BhÂB̂iw . (3.21)

Inversely solving this, we obtain

hÂB̂iw =
(Â+ B̂)m � ⇤B(Â)m � ⇤A(B̂)m + ⇤A⇤B

⇤0
A
⇤0
B

, (3.22)

where we have used ⇤0
X
hX̂iw = (X̂)m � ⇤X (X̂ ⌘ Â or B̂), which is derived from

Eq. (3.7). This relation can be generalized for arbitrary N > 2, by repeating the same

procedures.

Hereafter, we analyze the EPR paradox, the Hardy paradox and the Cheshire-cat

paradox one by one using the relations between modular values and weak values, i.e.,

Eqs. (3.7, 3.8) and the relations between the modular value of the sum observables and

the weak value of the product observables, i.e., Eqs. (3.21, 3.22). Joint weak values

can be obtained using Eqs. (3.22), where the modular values on the right-hand side are

experimentally obtained. As can be seen in the three examples below, it can be said,

from Eq. (3.40), the modular value of the sum observables is easier to measure because

one can directly perform the tomography from the outcomes of the qubit pointer. This

point has also been claimed by Kedem and Vaidman [25]. It is, therefore, easier to obtain

the joint weak values via modular values using our method than to use the previous

methods [36–38].
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3.3 Applications to quantum paradoxes

3.3.1 The EPR paradox

The paradox

To describe the EPR paradox, we consider the EPR-Bohm experiment with postselection

[4, 5, 39]. In this experiment, assuming a pair of spin-12 particles 1 and 2 in an initial

state | i1,2 at time t1 are passed to Alice and Bob, where

| i1,2 =
1
p
2

⇣
| "zi1| #zi2 � | #zi1| "zi2

⌘
, (3.23)

where the subscript k(= 1, 2) means particle k, and | "ji (| #ji) denotes the spin up

(down) in j direction. At a final time t2, Alice and Bob perform a post-measurement

with �̂1,y and �̂2,x, respectively, and obtain certain results (postselection states). At an

arbitrary moment t in between t1 and t2, let us consider the following three cases as are

shown in Fig. 3.1

(i) Only Alice measures �̂x of particle 1. (Measurement of �̂1,x), or

(ii) Only Bob measures �̂y of particle 2. (Measurement of �̂2,y), or

(iii) Alice and Bob make a joint measurement on �̂1,x�̂2,y.

It is important that the joint measurement is a single measurement �̂1,x�̂2,y without

measuring each observable independently. When Alice and Bob perform strong mea-

surements, it is straightforward to calculate the result, which shows [4, 5, 39]

(i) The single measurement of �̂1,x(t) yields ��̂2,x(t2).

(ii) The single measurement of �̂2,y(t) yields ��̂1,y(t2).

(iii) The joint measurement of �̂1,x�̂2,y, in principle, di↵erent from the measurement

of both (i) and (ii) separately [39]. However, the product of the single-measurement

results for two observables is not equal to the joint-measurement result of the product

of the observables. That is the paradox.

Weak values interpretation

This paradox can be expressed by the weak values, with the preselection state is given

in Eq. (3.23) and the postselection state is |�i1,2 = | "yi1| "xi2 at time t2(> t1), the
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t1

t

t2
Alice Bob

or

Figure 3.1: The schematic description of EPR-Bohm experiment. At time t1, a pair
of spin-12 particles, maximally entangled singlet state, is separated to Alice and Bod.
They measure their particle with certain results at time t2. Supporting that at time t
(t1 < t < t2) only Alice measures her particle, or only Bob measures his particle, or
they perform a joint measurement as shown in the figure. The paradox here is that the
product of single measurements does not equal to the joint measurement.

weak values yield

h�̂1,xiw = �1, h�̂2,yiw = �1, and h�̂1,x�̂2,yiw = �1 . (3.24)

Obviously, by using the weak values, the measurement results well agree with the above

prediction, and it also explains the strange result of the joint measurement.

Modular values interpretation

It is not so easy to experimentally obtain weak values since the measurement strength

should be made infinitesimally small (but should not be exactly zero for meaningful

measurement). It might be, however, easier to use the modular values since the coupling

constant g needs not to be infinitesimally small but can be arbitrarily large. The
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modular values are related to weak values as

(�̂1,x)m = cos(g)� i sin(g)h�̂1,xiw , (3.25a)

(�̂2,y)m = cos(g)� i sin(g)h�̂2,yiw , (3.25b)

(�̂1,x + �̂2,y)m = cos2(g)�
i

2
sin(2g)

�
h�̂2,yiw + h�̂1,xiw

�
� sin2(g)h�̂1,x�̂2,yiw . (3.25c)

Here, Eqs.(3.25a) and (3.25b) are derived from Eq.(3.7) by putting �1 = 1 and �2 = �1,

and Eq.(3.25c) is obtained from Eq. (3.21). It should be noted that the “sum rule”

does not hold, i.e., the sum of Eqs.(3.25a) and (3.25b) is not equal to (3.25c). The weak

values can be obtained from the modular values by reversing Eqs. (3.25). Therefore,

the paradox is also explained via modular values.

3.3.2 The Hardy paradox

The paradox

The second example is Hardy’s paradox experiment [6–9]. In this setup (Fig.3.2), a

monochromatic electron and a positron are respectively put into each Mach-Zehnder

interferometer. Each interferometer is independently adjusted so that the monochro-

matic electron goes out the upper exit without being detected and the monochromatic

positron goes out the right exit without being detected. When the two interferome-

ters are overlapped as is shown in the figure, then strange things happen, that is, the

electron is sometimes detected by the detector and the positron is sometimes detected

by the detector. It is not strange if we know quantum mechanics because it is due to

the electron-positron destruction at the overlapping point, whose probability is easily

calculated by quantum mechanics. Now we consider only those cases when we have the

coincidence counting by the two detectors, that is, we do not register the other events.

In this case, if we try to consider the path of each particle, then we encounter the

following paradox. First of all, we cannot assume that the electron took the |NO�i

path because if we assume it, the positron-Mach-Zehnder interferometer is independent

on the electron, and in this case, the positron could not be detected since we set the

interferometer as such. So, we conclude that the electron took |O�i path. The same

thing can be drawn for the positron, and we conclude that the positron took |O+i path.

Then we encounter the paradox that they should disappear by the collision, which
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BS1

BS1

BS2

BS2

coincidence
counting

|||

Figure 3.2: The setup for the Hardy paradox, where a monochromatic electron (e�)
and a positron (e+) are respectively put into each Mach-Zehnder interferometer. Here,
state |Oi� ( or |Oi+) denotes the electron (or positron) that goes to the overlapping
region, and the state |NOi� (or |NOi+) denotes the electron (or positron) that goes to
the non-overlapping region. BS means the beam splitter.

contradicts to the fact that we picked up only such cases when we have the coincidence

counting. This is the Hardy paradox, and the experiments have been performed using

photons instead of an electron and a positron. In this case, Hong-Ou-Mandel interference

is used instead of pairwise extinction of a particle and an anti-particle.

Weak values interpretation

We now review the Aharonov’s calculations and then use our general theory of the sum

of the modular values described in Sec. 3.2. The initial condition (we put a positron

from the left and an electron from the bottom) is expressed regarding the states inside
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the interferometer as

| 0i =
1
p
4

✓
|Oi+|NOi� + |NOi+|Oi� + |NOi+|NOi� + |Oi+|Oi�

◆
, (3.26)

just after passing through BS1. Here, state |Oi� (or |Oi+) denotes the electron (or

positron) that goes to the overlapping region, and the state |NOi� (or |NOi+) denotes

the electron (or positron) that goes to the non-overlapping region. The subsystem

subscript k thus represents k = + (positron) or � (electron). After the pairwise-

extinction point, the possibility of |Oi+|Oi� vanishes, which leads to the recalculated

state

| i =
1
p
3

✓
|Oi+|NOi� + |NOi+|Oi� + |NOi+|NOi�

◆
, (3.27)

where the denominator
p
4 is renormalized into

p
3. Now, we postselect the case that

two detectors in Fig. 3.2 click simultaneously. By inversely calculating this back to the

point before BS2s, the post-projection state |�i is expressed as

|�i =
1

2

✓
|Oi+ � |NOi+

◆✓
|Oi� � |NOi�

◆
. (3.28)

Using the prepared state Eq. (3.27) and the postselected state Eq. (3.28), one can

calculate the weak value for the “which path?” measurement between | i and |�i,

which leads to

h⇧̂+,Oiw = 1, h⇧̂�,Oiw = 1, and h⇧̂+,O⇧̂�,Oiw = 0 , (3.29)

where, ⇧̂±,O = |Oi±hO|±. This means the probability of each case is 1, whereas the

joint probability of the two cases is 0. This strange result was predicted by Aharonov

et al., [7] and experimentally verified by Lundeen et al., [8] and Yokota et al., [9]. These

studies show the significance of the weak values. Weak values adequately explain the

paradoxical behavior of the individual probabilities and their joint probability.

Modular values interpretation

Now, we relate weak values to modular values to this case. By performing the same

procedure as the first example (EPR paradox), it is easy to obtain the modular values
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as follows

(⇧̂+,O)m = (e�ig
� 1)h⇧̂+,Oiw + 1 , (3.30a)

(⇧̂�,O)m = (e�ig
� 1)h⇧̂�,Oiw + 1 , and (3.30b)

(⇧̂+,O + ⇧̂�,O)m = (e�ig
� 1)

h
(e�ig

� 1)h⇧̂+,O⇧̂�,Oiw + h⇧̂+,Oiw + h⇧̂�,Oiw

i
+ 1 .

(3.30c)

It is easy to express the weak values using the modular values by solving the above

equations inversely.

3.3.3 The Cheshire-cat paradox

The paradox

The Cheshire-cat paradox in nature is suggested by the Cheshire cat story in Alice in

Wonderland [40]: “Well! I’ve often seen a cat without a grin,” thought Alice; “but

a grin without a cat! It’s the most curious thing I ever saw in all my life!” In the

quantum world, the concept of quantum Cheshire cat was first introduced in [10] and

was experimentally verified in [11]. In this paradox, a quantum particle along with a

particular property is compared to the Cheshire cat. A Mach-Zehnder interferometer

is prepared for the particle, and the particle has the two possibilities in its paths, |Li

and |Ri and also the same for its property. The “which path?” information reflects the

position of the cat’s body, and the particle’s property is considered to be the cat’s grin.

For example, Aharonov et al., [10] have considered a photon as the cat’s body while its

polarization ( |Hi and |V i polarizations) is the cat’s grin. Experientially, by putting a

particle-beam attenuator in path L or R, or applying a magnetic field which changes the

neutron’s spin, Hasegawa’s group succeeded in observing that the neutron (the body of

the cat) goes through one path whereas its spin (the cat’s grin) goes through the other

path [11]. This is the paradox.
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BS1

BS2

PS

HWP

PBS

S

|||

Figure 3.3: Setup for the Cheshire cat, where a horizontally polarized photon is put
toward a Mach-Zehnder interferometer. The state |Hi (|V i) represents horizontally
(vertically) polarized photon state, state |Li (|Ri) is the left (right) of photon path.
These other notations are BS: beam splitter, PBS: polarized beam splitter, HWP: half
waveplate, PS: phase splitter.

Weak values interpretation

We follow the notation of [10], that is, we assume the initial state of the single photon

to be

| i =
1
p
2
|Hi1

✓
i|Li2 + |Ri2

◆
, (3.31)

which can be prepared by sending a horizontally polarized photon toward a 50/50 beam

splitter (BS1 in Fig. 3.3). Here, subscript 1 (k = 1) denotes the polarization degree

of freedom, and 2 (k = 2) denotes that of the “which path?”, and state |Hi represents

the horizontally polarized photon state. The quantum Cheshire cat is observed when

we perform weak measurement on “which-path?” in one arm and weak measurement

on the polarization in the other arm conditioned by the subsequent postselection of the

projection onto state |�i

|�i ⌘
�i
p
2

✓
|Hi1|Li2 + |V i1|Ri2

◆
, (3.32)
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where |V i is the vertically polarized photon state. The result of the weak measurement,

as is described below, suggests that the particle travels along one path, whereas its

polarization goes along the other. This strange result can be well expressed by the weak

values of the measurement. The calculations of the weak values for projection operators

⇧̂2,k = |kihk| (k = L,R) yield

h⇧̂2,Liw = 1, and h⇧̂2,Riw = 0 . (3.33)

It means that the particle just travels on the left side. Note that these local weak

measurements can be performed simultaneously and the measurement at one location

does not a↵ect the measurement result at the other location. Next, we carry out the

calculations for the nonlocal weak measurement to determine the location of polarization

component which yield

hŜ1⇧̂2,Liw = 0, and hŜ1⇧̂2,Riw = 1 , (3.34)

where Ŝ = i(|V ihH|� |HihV |) [10]. This result implies that the polarization component

of the quantum particle located on the right side. The Cheshire cat really exist in the

quantum world!

Modular values interpretation

Now, we relate weak values to modular values to this case. Using Eqs. (3.9, 3.10) and

Eq. (3.21) for arbitrary g, we have,

(⇧̂2,L(R))m = (e�ig
� 1)h⇧̂2,L(R)iw + 1 (3.35a)

(Ŝ1)m = cos(g)� i sin(g)hŜ1iw (3.35b)

(Ŝ1 + ⇧̂2,L(R))m = cos(g)� i sin(g)hŜ1iw + cos(g)(e�ig
� 1)h⇧̂2,L(R)iw

� i sin(g)(e�ig
� 1)hŜ1⇧̂2,L(R)iw . (3.35c)

Substituting Eqs. (3.33) and (3.34) into Eqs.(3.35a)(3.35b)(3.35c), with a specific value

of g, such as g = ⇡ we obtain

(⇧̂2,L)m = �1 , and (⇧̂2,R)m = 1 , (3.36)
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and

(Ŝ1 + ⇧̂2,L)m = 1 , and (Ŝ1 + ⇧̂2,R)m = �1 , (3.37)

These expressions give the modular-value expression of the paradox.

3.3.4 Measurements on the two-qubit pointer

In this subsection, we show how to realize such modular-value measurements for these

three examples above following the proposed scheme in Ref. [25]. Let us consider the

Hamiltonian that describes the interaction between a two-qubit pointer with the two

nonlocal observables Â and B̂ as

Ĥ = ~g(t)
h
|1ih1|1 ⌦ Â+ |1ih1|2 ⌦ B̂

i
, (3.38)

where both qubits of the pointer are always chosen to be the projection operators in the

state |1i of the computation basis. Of course, it also can be a projection onto spin down

in the z-direction or a projection onto the vertical polarization. The system observables

Â and B̂ are the measured modular values. For example, Â = �̂1,x and B̂ = �̂2,y as in

Eq. (3.25); Â = ⇧̂+,O and B̂ = ⇧̂�,O as in Eq. (3.30); and Â = Ŝ1 and B̂ = ⇧̂2,L(R)

as in Eq. (3.35).

Furthermore, the initial state of the two-qubit pointer is prepared in an entangled

state

�|00i+ �̄
h
|01i+ |10i+ |11i

i
, (3.39)

where |�|2 + 3|�̄|2 = 1. Then, after the measurement interaction and the postselection

of the system state, the final state of the qubits pointer becomes

h�| i

⇢
�|00i+ �̄


(Â)m|01i+ (B̂)m|10i+

�
Â+ B̂

�
m
|11i

��
. (3.40)

By performing full state tomography on the two-qubit pointer, the modular values of

Â, B̂, and sum Â + B̂ are well obtained from the tomography states |01i, |10i, and

|11i, respectiverly. Then, the weak values can be obtained correspondingly.



Chapter 4

Generalized modular-value-based

schemes and generalized modular

values

This chapter presents the concept of generalized modular values for both cases of finite-

dimensional discrete pointers and continuous pointers. We first generalize the concept of

modular values from a qubit pointer in Chap. 2 to a finite-dimensional discrete pointer

by introducing a generalized modular-value-based scheme, which is based on the the-

ory of POVM. We also explicitly derive the analytical expressions of the conditional

probability, the expectation value, and the average displacement in the measured value

of a pointer observable, which we name the pointer quantities. We provide an expres-

sion for an adjoint-form modular value and a generalized modular value and discuss

the relationship between the generalized modular value and generalized weak values.

Subsequently, the adjoint-form modular value also will be given and discussed for the

continuous pointer case. Finally, we apply our proposal to the cases of a spin-s particle

pointer, a semiclassical pointer state, and a continuous Gaussian pointer state. One of

the key results is that the amplification e↵ect, similar to the weak-value case, is also

observed in the case of modular values. Our study thus can also apply to the cases of

nonclassical pointer states.

35
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4.1 Finite-dimensional pointer states

4.1.1 A POVM approach to postselection measurements

We consider the arbitrarily large interaction of the system observable Â and the pointer

observable P̂ via the interaction Hamiltonian and the corresponding evolution operator

ĤI = ~ g(t)Â⌦ P̂ , Û = e�igÂ⌦P̂ ,with g =

Z
T

0
g(t)dt. (4.1)

as described in Chap. 1 and 2.

We also assume the system is initially prepared in state ⇢̂i while the pointer state

is |⇠i. The initial joint state of the system and the pointer is given as

⇢̂ = ⇢̂i ⌦ |⇠ih⇠| . (4.2)

After the interaction, the joint state evolves in the Schrödinger picture under the unitary

interaction to

⇢̂0 = Û ⇢̂Û † . (4.3)

For a postselection measurement, after the interaction, the system is postselected

onto the final state ⇢̂f ⌘ |�ih�| and leaves the pointer in |µi (|µi can be any of the

bases). We denote by P (µ, f) the joint probability, where µ and f are the obtained

outcomes indicating that the pointer is found in the state |µi and the system in ⇢̂f ,

respectively. By using the theory of the POVM, the joint probability of the system and

the pointer reads

P (µ, f) = Tr
h�
⇢̂f ⌦ |µihµ|

�
⇢̂0
i
= Trs

h
⇢̂f ⌦̂µ⇢̂i⌦̂

†
µ

i
, (4.4)

where “Tr” denotes the total trace and “Trs” means the partial trace over the system

“s.” We denote by ⌦̂µ the Kraus operator such that

⌦̂µ ⌘ hµ|e�igÂ⌦P̂
|⇠i , (4.5)

which is acting on the system Hilbert space only. It is easy to check that the operators

⌦̂ obey the completeness relation
P

µ
⌦̂†

µ⌦̂µ = Î.
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Taking the sum over all µ’s in the joint probability, we get the probability for ob-

taining the postselection outcome ⇢̂f with

P (f) =
X

µ

P (µ, f) = Trs
h
⇢̂f ⇢̂

0
i

i
, (4.6)

where ⇢̂0
i
is the system state right after the interaction (before the postselection), which

can be obtained by taking the partial trace on the pointer “p” as shown in the following

⇢̂0
i =

X

µ

⌦̂µ⇢̂i⌦̂
†
µ = Trp

⇥
⇢̂0⇤ . (4.7)

By using the Bayesian rule, the conditional probability for obtaining the outcome µ in

the pointer takes the form

P (µ|f) =
P (µ, f)

P (f)
=

Trs
⇥
⇢̂f ⌦̂µ⇢̂i⌦̂

†
µ

⇤

Trs
⇥
⇢̂f ⇢̂0

i

⇤ . (4.8)

Particularly, without post-section, i.e., ⇢̂f = Î, the conditional probably reduces to

P (µ|f) = Trs
⇥
⌦̂µ⇢̂i⌦̂

†
µ

⇤
and leaves the back action state ⇢̂i ! ⌦̂µ⇢̂i⌦̂

†
µ/P (µ|f) for the

outcome µ [27].

We next consider the expectation value of an arbitrary pointer operator and its

average displacement. The expectation value of an arbitrary pointer operator, Ôp, is

given by

hÔpi⌘ =
Tr[(⇢̂f ⌦ Ôp)⇢̂0]

Tr[(⇢̂f ⌦ Îp)⇢̂0]
, (4.9)

where h...i⌘ denotes the expectation value for the final pointer state (denoted as |⌘i).

After tracing out the pointer Hilbert space and using the spectral decomposition, i.e.,

Ôp =
P

k
ok|kihk|, where ok denotes the kth eigenvalue of the operator Ôp with Ôp|ki =

ok|ki, we have [see Appendix B.1]

hÔpi⌘ =
X

k

ok
Trs[⇢̂f ⌦̂k⇢̂i⌦̂

†
k
]

Trs[⇢̂f ⇢̂0
i
]

=
X

k

okP (k|f) , (4.10)

where we have used the basis {|ki} of the discrete Hilbert space Hp. We define and

calculate the average displacement in the measured value of the pointer observable Ôp

as

�hÔpi ⌘ hÔpi⌘ � hÔpi⇠ =
X

k

ok
h
P (k|f)� |ck|

2
i
, (4.11)
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where hÔpi⇠ ⌘ h⇠|Ôp|⇠i is the expectation of the pointer observable for the initial

pointer state |⇠i, and we have defined ck ⌘ hk|⇠i. The term inside the bracket [...] is the

average displacement of the probability, which is the di↵erence between probabilities

after and before the interaction in the pointer. So, Eq. (4.11) implies that the average

displacement in the measured value of the pointer observable is proportional to the

average displacement of the probability. The same as weak-value case, an amplification

e↵ect appears whenever the average displacement of the pointer observable is very large.

4.1.2 Adjoint-form modular values

Before analyzing the adjoint-form modular values, we also introduce an adjoint oper-

ation (adÂ)(·) ⌘ [Â, ·], which is the adjoint action of Â on its Lie algebra. We are

interested in, [32]

e�ig(adÂ)(·) = e�igÂ(·)eigÂ , (4.12)

that we will use for some calculations below.

We consider the case that the initial pointer state is |⇠i =
P

k
ck|ki, where ck = hk|⇠i

and
P

k
|ck|2 = 1, where k = 0, 1, ..., n � 1, for n-dimensional of the discrete pointer

Hilbert space. Furthermore, in the context of the modular measurements, we also

choose the pointer operator P̂ = |�ih�| =
P

k
�k�|kihk|, is the projection operator into

one of the bases of the pointer, where �k� is the Kronecker delta function. Then the

action of the evolution operator on the pointer state yields Û |⇠i =
P

k
cke�igÂ�k� |ki.

The Klaus operator reads [see Appendix B.2]

⌦̂µ = cµe
�igÂ�µ� . (4.13)

Then ⇢̂0
i
straightforwardly yields

⇢̂0
i =

X

µ

⌦̂µ⇢̂i⌦̂
†
µ = ⇢̂i

⇣
1� |c�|

2
⌘���

8µ 6=�
+ |c�|

2e�igÂ⇢̂ie
igÂ

���
µ=�

, (4.14)

where we have used the completeness relation
P

µ
|cµ|2 = 1, and we also assume Â is a

Hermitian operator during the rest of this chapter. Applying (4.12), the above equation

can be recast as

⇢̂0
i = ⇢̂i

⇣
1� |c�|

2
⌘���

8µ 6=�
+ |c�|

2e�ig(adÂ)⇢̂i

���
µ=�

. (4.15)
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Substituting Eqs. (4.13) and (4.15) into Eq. (4.8), we obtain

P (µ|f) =
|cµ|2Trs

h
⇢̂fe�ig(adÂ)�µ�⇢̂i

i

�
1� |c�|2

�
Trs
h
⇢̂f ⇢̂i

i���
8µ 6=�

+ |c�|2Trs
h
⇢̂fe�ig(adÂ)⇢̂i

i���
µ=�

. (4.16)

Particularly, for µ 6= �, we divide a non-zero term Trs
⇥
⇢̂f ⇢̂i

⇤
to both the numerator

and denominator, then the conditional probability gives

P (µ 6= �|f) =
|cµ|2

1� |c�|2 + |c�|2(adÂ)m
, (4.17)

where we have defined the adjoint-form modular value as

(adÂ)m ⌘
Trs
⇥
⇢̂fe�ig(adÂ)⇢̂i

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ . (4.18)

For µ = �, we have

P (µ = �|f) =
|c�|2(adÂ)m

1� |c�|2 + |c�|2(adÂ)m
. (4.19)

It is easy to prove that the sum of the conditional probabilities of all possible outcomes

µ must be
P

µ
P (µ|f) =

P
µ 6=�[P (µ 6= �|f)] + P (µ = �|f) = 1.

4.1.3 Generalized modular values

In this subsection, we introduce a generalized modular value and connect it to the

postselection conditional probability [Eq. (4.8)], the expectation value [Eq. (4.10)] and

the average displacement of the measured values of the pointer observable [Eq. (4.11)].

We first introduce an analytic function, which is based on the joint probability and the

Kraus operator (4.13), defined by

Z(µ, ⌫|�) ⌘ Trs
h
⇢̂fe

�igÂ�µ�⇢̂ie
igÂ�⌫�

i
, (4.20)

where the vertical bar “|” means “conditioned by,” and ⌫ is an extra integer su�x, which

will be used to express the density matrix elements like ⇢̂µ⌫ . This similar characteristic

function for weak values has been introduced and analyzed by Lorenzo [41]. We will

show that this analytic function, Z(µ, ⌫|�), is used to express a generalized modular

value as below.
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The generalized modular value is defined as

(Â)µ,⌫|�m ⌘
Z(µ, ⌫|�)

Z(µ0 6= �, ⌫ 0 6= �|�)

=
Trs
⇥
⇢̂fe�igÂ�µ�⇢̂ieigÂ�⌫�

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ , (4.21)

where, same as before, ⇢̂i is the prepared state, ⇢̂f is the postselected state, µ and ⌫ are

the su�xes of density matrix components used in the below. We classify the generalized

modular value in the following three cases:

(i) µ 6= � and ⌫ 6= � case, which both µ = ⌫ and µ 6= ⌫ are allowed. In this case, the

generalized modular value (Â)µ,⌫|�m becomes unity.

(ii) µ = � and ⌫ 6= � (or, ⌫ = � and µ 6= �) case. For µ = � and ⌫ 6= �, Eq. (4.21) gives

(Â)�,⌫|�m ⌘
Z(µ = �, ⌫ 6= �|�)

Z(µ0 6= �, ⌫ 0 6= �|�)
=

Trs
⇥
⇢̂fe�igÂ⇢̂i

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ . (4.22)

This expression is reduced to the original definition of the standard modular value [Eq.

(2.10)] when both pre- and postselected states are pure states, i.e., ⇢̂i = | ih |, and

⇢̂f = |�ih�|. For ⌫ = � and µ 6= �, on the other hand, the generalized modular value

becomes

(Â)µ,�|�m =
Trs
⇥
⇢̂f ⇢̂ieigÂ

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ =
⇥
(Â)�,µ|�m

⇤⇤
. (4.23)

(iii) µ = ⌫ = � case. Then, we have

(Â)�,�|�m ⌘
Z(µ = �, ⌫ = �|�)

Z(µ0 6= �, ⌫ 0 6= �|�)
=

Trs
⇥
⇢̂fe�igÂ⇢̂ieigÂ

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ , (4.24)

which will reduce to the square of the modulus of the standard modular value |(Â)m|2

when the system states are pure. Using (Â)µ,⌫|�m = [(Â)⌫,µ|�m ]⇤, (Â)�,�|�m becomes real.

We note that there is a similar “generalized” concept for weak values [41, 42], but the

way of generalization is very di↵erent. This particular case is also the adjoint-form

modular value Eq. (4.18) as discussed in the above subsection.
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To indices µ and ⌫ explicitly, we consider the final state of the pointer, which is

given by

⇢̂out
p =

Trs
⇥
(⇢̂f ⌦ Îp)⇢̂0

sp

⇤

Trsp
⇥
(⇢̂f ⌦ Îp)⇢̂0

sp

⇤ , (4.25)

where the denominator is the normalization factor, which equals to the success prob-

ability of the postselected of ⇢̂f , which is P (f). We can proceed the calculation, as is

seen in Appendix B.3, resulting in

Trs[(⇢̂f ⌦ Îp)⇢̂0
sp]

Trsp[(⇢̂f ⌦ Îp)⇢̂0
sp]

=

P
µ,⌫

cµc⇤⌫(Â)µ,⌫|�m |µih⌫|
P

µ
|cµ|2(Â)µ,µ|�m

=
X

µ,⌫

�
⇢̂out
p

�
µ⌫

|µih⌫| , (4.26)

where we define
�
⇢̂out
p

�
µ⌫

⌘
cµc⇤⌫(Â)µ,⌫|�m

P (f)
. In this form, we can see that the indicators

µ and ⌫ indicate the elements of the pointer density matrix outcome.

We now show the usage of the generalized modular value in the pointer, which gives

the attainable outcomes. First, it can be used to express the conditional probabilities.

The R.H.S. of Eq. (4.8) is rewritten, using Eqs. (4.13), (4.21), as

P (µ|f) =
|cµ|2(Â)µ,µ|�m

1� |c�|2 + |c�|2(Â)�,�|�m

. (4.27)

Clearly, the conditional probabilities satisfy the normalization condition
P

µ
P (µ|f) = 1.

Since these conditional probabilities appear in Eqs.(4.10) and (4.11), this means that

the generalized modular value also characterizes the expectation value of an arbitrary

operator Ôp and its average displacement �hÔpi.

4.1.4 Generalized modular values and generalized weak values

As we mentioned in Chap. 3, the standard modular value and the standard weak value

are closely related even for an arbitrarily large coupling g, which allows us to obtain the

weak value from the modular value. Here we show that this relation is still valid in the

generalized case. Let us illustrate this for cases (ii) and (iii), while ignoring the trivial
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case (i) in subsection 4.1.3. Following Chap. 3, for the two-dimensional nondegenerate

case, the corresponding exponential term e�igÂ is given by

e�igÂ = ⇤Î + ⇤0Â, (4.28)

where ⇤ ⌘
�1e

�ig�2��2e�ig�1

�1��2 , and ⇤0
⌘

e
�ig�1�e

�ig�2

�1��2 , with �1 and �2 are two distinct

eigenvalues of the operator Â (see Chap. 3). Inserting Eq. (4.28) into Eq. (4.22), we

have

(Â)�,⌫|�m = ⇤+ ⇤0
hÂiw, (4.29)

where we have used hÂiw =
Trs[⇢̂f Â⇢̂i]
Trs[⇢̂f ⇢̂i]

, which is the generalized weak value [42]. Simi-

larly, Eq. (4.24) gives

(Â)�,�|�m = ⇤⇤+ + ⇤0⇤+hÂiw + ⇤⇤0
1(hÂiw)

⇤ + ⇤0⇤0
+|hÂiw|

2, (4.30)

where we have also used ⇤+ ⌘
�1e

ig�2��2eig�1
�1��2 , and ⇤0

+ ⌘
e
ig�1�e

ig�2

�1��2 . The last term in

Eq. (4.30) can be viewed as a generalized high-order weak value [42].

Note that for higher-dimensional Hilbert space, the relation between the generalized

modular value and the generalized weak value is still valid, which allows for the mea-

surement of the generalized weak values and generalized high-order weak values from

the generalized modular values with an arbitrarily coupling constant g.

In nonlocal observables cases, for simplicity, we consider two nonlocal observables Â

and B̂ of the system. The rank of each observable is two. Following Chap. 3, we have

e�ig(Â+B̂) =
�
⇤AÎ + ⇤0

AÂ
��
⇤B Î + ⇤0

BB̂
�
, (4.31)

where ⇤A(B) and ⇤0
A(B) are the same as ⇤ and ⇤0 above for Â(B̂). Inserting this

equation into Eq.(4.22), we obtain

(Â+ B̂)�,⌫|�m = ⇤A⇤B + ⇤A⇤
0
B

Trs[⇢̂fB̂⇢̂i]

Trs[⇢̂f ⇢̂i]
+ ⇤0

A⇤B

Trs[⇢̂fÂ⇢̂i]

Trs[⇢̂f ⇢̂i]
+ ⇤0

A⇤
0
B

Trs[⇢̂fÂB̂⇢̂i]

Trs[⇢̂f ⇢̂i]

= ⇤A⇤B + ⇤A⇤
0
BhB̂iw + ⇤0

A⇤BhÂiw + ⇤0
A⇤

0
BhÂB̂iw, (4.32)

where (Â + B̂)�,⌫|�m is the generalized modular value of the sum of Â and B̂. The

denotation hAiw (or hB̂iw) represents the generalized weak value of Â (or B̂), which

is related to the generalized modular value (Â)m (or (B̂)m) via Eq. (4.29). hÂB̂iw is
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the generalized weak value of the product of Â and B̂. Equation (4.32) implies that

one can measure the generalized weak value of the product of nonlocal observables by

measuring the corresponding generalized modular values.

4.2 Continuous pointer states

4.2.1 Momentum-dependent modular values

Now let us consider the continuous pointer states case. We first assume the initial

pointer state is a zero-mean Gaussian in position, such that

⇠(x) ⌘ hx|⇠i = (2⇡�2)�1/4 exp(�x2/4�2). (4.33)

Using the Fourier transform, we have

⇠(p) ⌘ hp|⇠i =
⇣2�2

⇡

⌘1/4
exp(�p2�2), (4.34)

where we have used ~ = 1. In addition, the pointer operator is chosen to be the

momentum

P̂ ⌘ p̂ . (4.35)

Similar the qubit pointer case, the final state of the pointer is

|⌘i = h�|e�igÂ⌦p̂
| i|⇠i. (4.36)

The Taylor series expansion for the unitary operator yields

e�igÂ⌦p̂ = Î +
(�igÂ)

1!
⌦ p̂+

(�igÂ)2

2!
⌦ p̂2 + ... (4.37)

The action on the initial qubit pointer state |⇠i ⌘
R
dp⇠(p)|pi gives

e�igÂ⌦p̂
|⇠i =

Z
dp⇠(p)|pie�igpÂ , (4.38)

where p is the eigenvalue of p̂ such that p̂|pi = p|pi. Submitting Eq. (4.38) into Eq.

(4.36), the final pointer state yields

|⌘i = h�| i

Z
dp⇠(p)|pi(Â)pm . (4.39)
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where the modular value, in this case, is given as

(Â)pm ⌘
h�|e�igpÂ

| i

h�| i
, (4.40)

where we have used the superscript p for p-dependent of the modular value. In the

following, we will consider a POVM approach for this modular value.

4.2.2 A POVM approach to postselection measurements

We consider the same situation as the finite-discrete pointer state as above section. The

Kraus operator is also given as ⌦̂µ ⌘ hµ|e�igÂ⌦P̂
|⇠i and satisfies the completeness rela-

tion
R
⌦̂†

µ⌦̂µdµ = Î. Here, µ is a continuous variable, such as position x or momentum

p. The probability for obtaining the postselection outcome ⇢̂f and the probability for

obtaining the postselection conditional pointer outcome µ are given

P (f) =

Z
P (µ, f)dµ = Trs

⇥
⇢̂f ⇢̂

0
i

⇤
, (4.41)

where

⇢̂0
i =

Z
⌦̂µ⇢̂i⌦̂

†
µdµ = Trp[⇢̂

0] , (4.42)

and

P (µ|f) =
P (µ, f)

P (f)
=

Trs
⇥
⇢̂f ⌦̂µ⇢̂i⌦̂

†
µ

⇤

Trs
⇥
⇢̂f ⇢̂0

i

⇤ , (4.43)

respectively.

4.2.3 Adjoint-form modular values

The starting point comes from the fact that the pointer momentum p̂ does not evolve

in the Heisenberg picture [Û , Î ⌦ p̂], therefore, the Kraus operator yields [32]

⌦̂p = hp|e�igÂ⌦p̂
|⇠i = e�igpÂ

hp|⇠i. (4.44)

Substituting (4.34) into (4.44), we recast the expression

⌦̂p =
⇣2�2

⇡

⌘1/4
exp(�p2�2)e�igpÂ. (4.45)
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As in the discrete case, the system state after the interaction yields

⇢̂0
i =

Z
⌦̂p⇢̂i⌦̂

†
pdp =

⇣2�2

⇡

⌘1/2 Z
exp(�2p2�2)e�igp(adÂ)⇢̂i dp . (4.46)

Then the conditional probability Eq. (4.43) reads

P (p|f) =
exp(�2p2�2)(adÂ)pmR
exp(�2p2�2)(adÂ)pm dp

, (4.47)

where the adjoint-form modular value is

(adÂ)pm =
Trs
⇥
⇢̂fe�igp(adÂ)⇢̂i

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ , (4.48)

here we have added a superscript p to the adjoint-form modular value to emphasize that

it depends on p. It is easy to see that
R
P (p)dp = 1 since the denominator does not

depend on p.

4.3 Applications

In this section, we apply our proposal to the cases of a spin-s particle pointer, a semi-

classical pointer state, and a continuous pointer state.

4.3.1 Spin-s particle pointer

We first consider a spin-s particle pointer. We investigate the conditional probability,

the expectation value, and the average displacement of an arbitrary operator of the

pointer. We also examine the signal-to-noise ratio (SNR) of the spin operator Ŝz to

discuss the enhancement of the signal-to-noise ratio.

We represent the spin state in the Zeeman basis with states |s, ki, where s takes

values 0, 1
2 , 1,

3
2 ,..., which corresponds to the (2s+1)-dimensional Hilbert space, and k

takes values �s,�s + 1, · · · , s, for a fixed s, which is an integer or a half-integer with

the natural unit ~ = 1 [43]. Notable that k are also the eigenvalues of Ŝz. Hereafter,

we omit the trivial case of s = 0.

Next, we choose the initial pointer state (for a fixed s) as

|⇠i =
�

p
2s

s�1X

k=�s

|s, ki+
p
1� �2|s, si . (4.49)
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For simplicity, we assume � is real (0  �  1). Also, the projection operator is selected

to be P̂ = |s, sihs, s|; i.e., |⌘�i = |s, si.

In the system, we also assume that the system is chosen to be a spin-12 particle and

described by the pure pre- and postselected states

| i =
1
p
2

⇣
| "i+ | #i

⌘
, (4.50)

|�i =
1

p
2✏2 � 2✏+ 1

⇣
✏| "i � (✏� 1)| #i

⌘
, (4.51)

where we have used the spin orientations " (up) and # (down) for z-direction. It should

be noted that the choice of the system is not relevant to the pointer, where the dimension

can be chosen arbitrarily. We then also choose Â ⌘ Ŝz = 1
2 �̂z to be the system

observable and g = ⇡. A straightforward calculation the modular value Eq. (4.24) gives

(Â)sm = (2✏�1)2. To change the modular value, e.g., from 0 to 9, we vary the parameter

✏ from 0.5 to 2.0 as shown in the Inset Fig. 4.1. Notable that |�i = | i when ✏ = 0.5,

and they are orthogonal when ✏! ±1.

We now calculate the conditional probabilities Eq. (4.27) for the outcomes µ = s

and µ 6= s, which yields

P (µ = s|f) =
(1� �2)(Â)sm

�2 + (1� �2)(Â)sm
, (4.52a)

P (µ 6= s|f) =
�2

2s
h
�2 + (1� �2)(Â)sm

i , (4.52b)

where we have introduced for short the symbol (Â)sm ⌘ (Â)s,s|sm . To see the e↵ect of the

modular values to the conditional probability, we calculate the probability displacement

�P (µ|f) ⌘ P (µ|f) � |cµ|2, which is the di↵erence between the probabilities after and

before the interaction in the pointer. The resultants give

�P (µ = s|f) =
�2(1� �2)

⇥
(Â)sm � 1

⇤

�2 + (1� �2)(Â)sm
, (4.53a)

�P (µ 6= s|f) =
�2(1� �2)

⇥
1� (Â)sm

⇤

2s
⇥
�2 + (1� �2)(Â)sm

⇤ . (4.53b)

Obviously, �P (µ = s|f)(4.53a) is positive when (Â)sm > 1, and negative when (Â)sm <

1, while the behavior for �P (µ 6= s|f) (4.53b) is opposite.
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Figure 4.1: The probability displacements�P (µ = s|f) and�P (µ 6= s|f) in Eqs. (4.53)
as functions of (Â)sm for � = 0.4, 0.6 and 0.8, and s = 1, i.e., spin-1 pointer. Inset:
the modular value of the system observable �̂z/2 varies as a function of ✏, where the
quantum system states are chosen as in Eqs. (4.50, 4.51), also we fix the value of g = ⇡.

The main Fig. 4.1 shows the results of �P (µ = s|f) and �P (µ 6= s|f) in Eqs. (4.53)

as functions of (Â)sm for � = 0.4, 0.6 and 0.8. Here we assumed a three-level pointer,

that is, s = 1. In general, with increasing (Â)sm from 1, the probability displacements

�P (µ = s|f) smoothly rise, while the probability displacements �P (µ 6= s|f) gradually

descend. In other words, the modular value plays a significant role in the probability

displacements. It can be used to design the measurement interaction to increase the

probability of getting the desired outcome, e.g., getting |s, si after the interaction.

We next examine the expectation value and the average displacement in the mea-

sured value of the pointer observable Ŝz
p, whose eigenvalues are k = �s, ..., s. The

expectation value, Eq.(4.10), straightforwardly yields

hŜz

pi⌘ =
2s(1� �2)(Â)sm � �2

2
⇥
�2 + (1� �2)(Â)sm

⇤ , (4.54)

where we have applied the expressions in Eq. (4.52). The average displacement in the
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Figure 4.2: Contour plot of the average displacement in the measured value of the
pointer observable Ŝz

p of spin-2 (s = 2) particle. The vertical line at (Â)sm = 1 indicates
the value zero, which means no “displacement”. The quantum system is chosen the
same as in Fig. 4.1.

pointer observable is given by Eq. (4.11), being

�hŜz

pi =
X

k

k�P (k|f)

=
(2s+ 1)�2(1� �2)

⇥
(Â)sm � 1

⇤

2
⇥
�2 + (1� �2)(Â)sm

⇤ . (4.55)

Fig. 4.2 presents the result of the average displacement of the pointer observable Ŝz
p

of spin-2 (s = 2) particle. It shows that, for (Â)sm = 1 (indicated by the vertical line),

the average displacement of Ŝz
p is 0 regardless of the � value. The figure also shows

that, by increasing (or decreasing) (Â)sm, the amount of displacement can be made large

toward positive (or negative) sign direction, and the e↵ect of the increase can be made

even greater by choice of �. Obviously, this tendency can be seen in Eqs. (4.11) and

(4.55). This e↵ect can be viewed as the amplification e↵ect in postselected modular-

value measurement. This amplification e↵ect has been extensively studied in weak-value

measurement both theoretically [1, 12, 29, 44] and experimentally [13, 14], but still lack



49

in the context of modular-value measurement. Here we first show the existence of this

e↵ect in the above example. Notable, in this example, Ŝz
p does not play a major role in

the amplification e↵ect. Instead, the e↵ect might appear for any pointer observable as

we showed in Eq. (4.11) with a suitable choice of pre- and postselected states.

Interestingly, all the above results depend on s, which means that the amplification

e↵ect depends on the dimension of the pointer Hilbert space 2s + 1. For more inves-

tigation regarding the dimension, we next investigate the signal-to-noise ratio (SNR),

which is defined by the ratio between the expectation value hŜz
pi⌘ and the square root

of the variance
q
Var(Ŝz

p), as follows [45]

SNR =

��⌦Ŝz
p

↵
⌘

��
q
Var
�
Ŝz
p

� , (4.56)

where the variance Var
�
Ŝz
p

�
is defined and given by

Var(Ŝz

p) ⌘
⌦
[Ŝz

p]
2
↵
⌘
�
⌦
Ŝz

p

↵2
⌘
, (4.57)

where

h[Ŝz

p]
2
i⌘ =

�2
h
s2 + 2s3(1� �2)(Â)sm +

s�1X

k=�s+1

k2
i

2s
⇥
�2 + (1� �2)(Â)sm

⇤ , (4.58)

and
⌦
Ŝz
p

↵2
⌘
is given in Eq. (4.54). We remind that h...i⌘ denotes an expectation value

for the final pointer state throughout this chapter. Fig. 4.3 presents the signal-to-noise

ratio (SNR) for s = 1
2 , 2,

7
2 and 5. It shows that the SNR increase significantly for the

larger s cases.

4.3.2 Semiclassical pointer state

In this subsection, we illustrate the usage of our model to the case of the semiclassical

pointer state. Here, the initial state of the pointer is a coherent state of bosons as [46]

|⇠i ⌘ |↵i = e�
1
2 |↵|

2
1X

n=0

↵n

p
n!
|ni. (4.59)



50

       

0.2

0.4

0.6

0.8

1.0

γ

       

0 1 2 3 4 5 6

(A)m
s

0.2

0.4

0.6

0.8

1.0

s = 1/2 s = 2

s = 7/2 s = 5

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

Figure 4.3: The SNRs are shown as functions of (Â)sm and � for s = 1
2 , 2,

7
2 and 5 as

can be seen in each panel. The quantum system is chosen the same as in Fig. 4.1.

The system-pointer interaction is given as Ĥ = g(t)Â⌦|nihn|, where |ni is a specifically

chosen number state for the pointer, i.e., |⌘�i ⌘ |ni. After the interaction, we postselect

the system state ⇢̂f and measure the boson number of the pointer and select the case

that the final state is |ni. So, the outcome µ is chosen to be n, which will be seen in

Eq. (4.61).

Before the interaction, the probability of finding the number n is given by the Poisson

distribution,

P (n) = |hn|↵i|2 =
e�|↵|2

|↵|2n

n!
, (4.60)

however, after the interaction, the conditional probability of finding the boson number

n is given in Eq. (4.27) as

P (n|f) =
P (n)(Â)nm

1� P (n) + P (n)(Â)nm
, (4.61)

where (Â)nm stands for (Â)µ,⌫|�m with µ = ⌫ = � = n. In this way, the conditional

probability is expressed by the generalized modular value even in this semiclassical
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Figure 4.4: The conditional probability-versus-n curves with di↵erent modular values
(Â)nm and |↵|2. All curves show the increasing with (Â)nm for each |↵|2. This phe-
nomenon can be regarded as the amplification e↵ect of the modular value. The quan-
tum system can be chosen the same as in Fig. 4.1, i.e., interactions between spin and
photon.

pointer-state case.

Equation (4.61) can be used, by designing the pre- or postselected states, to increase

the measurement signal, e.g., the conditional probability. When the modular value

takes 1, Eq. (4.61) tells that P (n|f) = P (n). Now there is a possibility to increase

P (n|f) by changing the value of (Â)nm [47]. To see this, we plotted the conditional

probabilities for di↵erent modular values (Â)nm and di↵erent values of |↵|2 in Fig. 4.4.

The results apparently tell that we can increase the conditional probability by increasing

the modular value. Furthermore, we predict that our study can be applied to various

kind of nonclassical pointer states such as squeezed vacuum state, Schrödinger cat state.

4.3.3 Continuous Gaussian pointer state

We consider the preselection and postselection system states as

| i =
1
p
2

h
ei✓| "i+ e�i✓

| #i

i
, (4.62)

|�i =
1
p
2

h
| "i � | #i

i
. (4.63)
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Figure 4.5: The conditional probabilities and modular values as functions of momentum
p for fixed g = ⇡/2 and several values of ✓ as shown in the figure.

The modular value of �̂z of the system is calculated to be

(�̂z)
p

m =
sin( ✓2 � gp)

sin( ✓2)
. (4.64)

The corresponding adjoint-form modular value reads

(ad�̂z)
p

m = |(�̂z)
p

m|
2 =

���
sin( ✓2 � gp)

sin( ✓2)

���
2
, (4.65)

which is the square of the modular value. Then the conditional probability (4.47) yields,

P (p|f) = 2

r
2�2

⇡
exp
� g2

2�2
� 2p2�2

�sin2(✓/2� gp)

eg2/2�2
� cos ✓

. (4.66)

The conditional probabilities and modular values as functions of p for fixed g = ⇡/2

and several values ✓ are given in Fig. 4.5. In this subsection, we also fix �2 = 0.5. For

each ✓, the result shows that the peaks of the probability locate at p’s that around the

maximum (positive and negative) modular values. Especially, the lower modular value

gives the higher probability. This is because the numerator and denominator of (4.47)
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Figure 4.6: The contour plot of the momentum displacement �hp̂i.

are both dependent on the modular value, and the denominator is varied faster than

the numerator as p changes.

We next calculate the momentum displacement �hp̂i, which is defined and given as

�hp̂i ⌘ hp̂i0 � hp̂i =
g sin ✓

2�2(�eg2/2�2 + cos ✓)
, (4.67)

where the average momentum over the final state is given by

hp̂i0 =

Z
p̂ P (p|f)dp, (4.68)

and the average momentum over the initial state, hp̂i, is zero.

In Fig. 4.6, the contour plot of the momentum displacement �hp̂i is shown. The

result shows that the momentum displacement can change toward from negative to

positive when ✓ changes from 0 to 2⇡ and the value is greater for weak coupling region

(small g).

Next, we examine the signal-to-noise ratio which is defined by

SNR ⌘
|hp̂i0|p
Var[p̂]

, (4.69)

where Var[p̂] ⌘ hp̂2
i
0
�hp̂i02. Figure 4.7 shows the SNRs as functions of the measurement

strength for several ✓. For each fixed ✓, as g increases, the SNR increases, reaches the
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Figure 4.7: The SNRs as functions of the measurement strength for several ✓.

maximum value at a certain g and then decreases to zero. The maximum value increases

as ✓ increasing toward to 2⇡ or decreasing toward to 0 due to the symmetry of the initial

system state.

Finally, we evaluate the optimal g for a given ✓. To do this, we calculate the condition

@gSNR = 0, where @g ⌘
@

@g
. The result gives,

gopt ⇡
2� sin ✓

2

(2 + cos ✓)1/4
, (4.70)

that well agrees with results in Fig. 4.7.



Chapter 5

Weak and modular values in

enlarged Hilbert spaces

This chapter describes the enlarged forms of time-dependent weak values and modular

values. The main idea carries on a way of thinking about an enlarged state, which

combines both the pre- and postselection states at a given time t in between the pre-

and postselection. Particularly, we first introduce a mapping process of a given quantum

state and an arbitrary state onto an enlarged state. The dynamical evolution process

of the enlarged system is also discussed. After that, we apply this formalism to the

quantum weak and modular values and show that they can be expressed as expectation

values in the enlarged space. This formalism thus potentially allows for the description

of the weak and modular values at any time dynamically. An example of a single spin

under an external magnetic field is also given. We finally propose an e�cient method

for implementing an enlarged Hamiltonian and applied to the above example.

5.1 Uncausal weak/modular measurements problem

Traditionally, it is believed that the state of a system at time t is solely determined by

the initial condition at time ti, both for classical mechanics and quantum mechanics.

This fact can be understood by adopting equations of motion with initial conditions.

In this manner, the final condition is not relevant since it is merely the result of the

natural evolution of the system. However, in the concept of quantum weak values and

55
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modular values, a final condition at time tf (> t) is taken into account via a projection

measurement. In this case, the final state plays a role of the posterior condition and

a↵ects, together with the initial state, the statistics of the observed values [1]. Thus

the initial and final states are equally important to give a complete description of the

quantum system [48]. Such kind of theory is known as the two-state vector formalism

(see p. 1-8 Ref. [49], and Chap. 13 Ref. [50]).

A weak value can be operationally obtained by weak measurements [1, 29, 51],

whereas a modular value can be acquired by arbitrarily strong measurements [25]. In

any case, the time t when the measurement is done does not matter if the system stays

in the same state during ti  t  tf . In cases of time-dependent weak values and modu-

lar values, however, to obtain a weak (or modular) value at time t, we need to prepare

| i at time ti, wait until tf , and postselect |�i at time tf , for each choice of t. This can

be seen as the uncausal problem in weak/modular measurements.

To solve this problem, in the following, we will propose an enlarged-Hilbert-space

method, that enables us to construct a quantum simulator that simulates the original

system in such a way that a time-dependent weak (or modular) value in the original

scheme is expressed as a one-way evolving expectation value in the enlarged scheme.

This means that, by causally running this simulator, we can simulate the time depen-

dence of the weak value, which does not evolve causally but merely is a function of time

t that will be known only after the postselection at the final time tf .

5.2 Enlarged Hilbert space method

An enlarged Hilbert space formalism that can be implemented in a quantum simula-

tor is a concept that has been proposed by Solano and his colleagues and has been exten-

sively studied recently both theoretically and experimentally [52–61]. In this method, a

given quantum state in a Hilbert space (usually named as simulated space) is embedded

onto an enlarged state in an enlarged Hilbert space. Several manners of mapping have

been suggested for di↵erent purposes. For example, a mapping that maps a pair of

conjugate wave functions ( , ⇤) onto an enlarged real wave function  ̃ allows us to

implement some unphysical operators, such as charge conjugation C, parity inversion

P, and time reversal T [52–55]. It is also applicable to Majorana particles [52–54]. It is
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also successfully applied to measurements of the entanglement monotone [56–59]. Using

another way of mapping, correlation functions in di↵erent reference frames, which are

not directly measured, become observables that are directly measured [60]. A noncausal

kinematic transformation and time/spatial parity transformations can also be discussed

by an expectation value of the enlarged state [60, 61].

5.2.1 The enlarged state

We introduce a way of mapping, where a given quantum state,  (t), is mapped together

with an arbitrary state �(t), which we name as a partner state, onto an enlarged state

 (t). Assume that the given quantum state | (t)i and its partner state |�(t)i are live

in an n-dimensional Hilbert space Hn, these two states are mapped onto an enlarged

state | (t)i in an enlarged Hilbert space C2 ⌦ Hn. The mapping M : Hn ! C2 ⌦ Hn,

following [60], is

 (t)
M
�!  (t) =

1

2

 
 (t) + �(t)

 (t)� �(t)

!
. (5.1)

Here we omit ket | i vectors for short. Notable, the mapping can be done by adding

an extra qubit to the given system that contains the given state and its partner state.

This mapping can always be implemented due to the fact that any wave function can

be expressed as

 (t) =
1

2

⇣⇥
 (t) + �(t)

⇤
+
⇥
 (t)� �(t)

⇤⌘
, (5.2)

and therefore, the quantum state and its partner can be decoded by the inverses

 (t) = M̂ (t) , and �(t) = M̂(�̂z ⌦ În) (t) , (5.3)

where M̂ ⌘ (1, 1)⌦ În, with În is the n-dimensional identity matrix.

5.2.2 The enlarged Schrödinger equation

We now treat the dynamics of the Schrödinger equation in the enlarged Hilbert space.

Notable that the quantum state satisfies the Schrödinger equation

(i@t � Ĥ) (t) = 0 , (5.4)
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with the initial condition  (t = 0), and Ĥ is the system Hamiltonian in the original

Hilbert space Hn. We want to map this equation onto the one in the enlarged Hilbert

space that satisfies

(i@t �
f̂H) (t) = 0 , (5.5)

as proposed in Ref. [56]. Here f̂H is the enlarged Hamiltonian in the enlarged Hilbert

space C2⌦Hn. Following [56], if the state  (t) is the solution of Eq.(5.5) with the initial

condition  (t = 0), then the state M̂ (t) is the solution of the Schrödinger equation

(5.4) with the initial condition M̂ (t = 0). Here, in our mapping (5.1), they are both

satisfied, such that

 (t = 0) = M̂ (t = 0), and  (t) = M̂ (t). (5.6)

Applying M̂ into Eq. (5.5), we have

i@tM̂ (t) =M̂f̂H (t)

i@t (t)
(5.6)
=

Ĥ (t)
(5.4)
=

ĤM̂ (t)
(5.6)
= (5.7)

Or, we obtain the condition M̂f̂H = ĤM̂ . With this condition we obtain

f̂H =

 
Ĉ B̂

B̂ Ĉ

!
= Î2 ⌦ Ĉ + �̂x ⌦ Ĉ , (5.8)

where B̂ is an arbitrary n ⇥ n matrix and Ĉ ⌘ Ĥ � B̂, and Î2 is the 2-dimensional

identity matrix.

We next discuss the initial state of the enlarged expression. In fact, any  (0) that

gives  (0) = M̂ (0) is not enough. This is di↵erent from the case of [60], because,

here we can freely choose the partner state independent from the initial state of the

system. Therefore, a proper choice would take into account to the partner state at the

initial time. The proper choice depends on each problem, and later we will show that

we choose the initial partner state �(t = 0) as the backwardly propagated state from

the postselected state �(tf) ⌘ |�i.
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5.3 Time-dependent quantum weak and modular values

Most of the studies on weak values and modular values have focused on the interaction

Hamiltonian between a quantum system and a measuring device for the case without

the time evolution of the system. There are only a few studies on time-dependent weak

values [62–64]. These studies, however, mainly focused on the time evolutions of the

pre- and postselection states. They were lacking in discussion on how to measure (or

obtain) time-dependent weak values. They instead mathematically consider the related

e↵ects caused by time-dependent weak values. Here, we also consider the evolution of

the quantum system in describing the weak values and modular values. The main scope

is to express them as expectation values evolving only by an enlarged initial condition

in the enlarged system. Therefore, the enlarged weak values and modular values could

be measured directly (measurements of expectation values) at the given time t.

5.3.1 Time-dependent weak values in a normal Hilbert space

We first introduce the process for time-dependent weak values in normal Hilbert spaces,

i.e., not enlarged spaces. The process can be described as follows. A quantum sys-

tem was prepared at time ti in the identical quantum states | (ti)i. The initial state

propagates from time ti by the unitary propagator Û(t, ti) = exp(� i

~
R
t

ti
Ĥd⌧) to time

t (> ti) when the weak measurement is performed. Here, Ĥ is the free Hamiltonian

of the system, which takes place in the Hilbert space Hn. The state just before the

measurement is thus Û(t, ti)| (ti)i. After weak interaction at time t, the system again

evolves freely towards the final time tf (> t) under the same propagator and then post-

selects in state |�(tf)i at that time. In general, the postselection state does not need to

be the freely evolved preselection state, i.e., |�(tf)i 6= | (tf)i. The postselection state

at time t can be obtained from the backward propagation of the postselection state

from time tf to time t. The connection between the forward and backward evolutions is

given by Û(tf , t) = Û�1(t, tf) = Û †(t, tf) [65]. Therefore, the final state of the system

propagates toward the past with h�(t)| = h�(tf)|Û †(t, tf). Then, the quantum weak

value of a Hermitian operator Â at time t (ti < t < tf), is expressed as

hÂ(t)iw =
h�(tf)|Û †(t, tf)|ÂÛ(t, ti)| (ti)i

h�(tf)|Û †(t, tf)Û(t, ti)| (ti)i
. (5.9)
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We next introduce “retarded” and “advanced” states at any time t, with ti < t < tf ,

that satisfy [66]:

| r(t)i = Û(t, ti)| (ti)i , and (5.10a)

|�a(t)i = Û(t, tf)|�(tf)i . (5.10b)

These expressions describe the forward evolution of the preselection state from ti to

t and the backward evolution of the postselection state from tf to t, respectively. By

using Eqs.(5.10), the weak value can be rewritten as follows

hÂ(t)iw =
h�a(t)|Â| r(t)i

h�a(t)| r(t)i
. (5.11)

5.3.2 Time-dependent weak values in an enlarged Hilbert space:

expectation-value forms

In this subsection, we aim to express weak values, which are conventionally defined

with so-called two-state vector formalism, by single-state formalism such as expectation

values. It can be done by embedding the retarded and advanced states, onto an enlarged

state by using our mapping method described in section 5.2. Indeed, the mapping (5.1),

would give

 (t) =
1

2

 
 r(t) + �a(t)

 r(t)� �a(t)

!
, (5.12)

where we have chosen  (t) =  r(t) and �(t) = �a(t) in (5.1). The retarded and advanced

states, of course, can be decoded by

 r(t) = M̂ (t), and �a(t) = M̂(�̂z ⌦ În) (t). (5.13)

Then, the weak value in the enlarged Hilbert space is given, using Eqs. (5.11) and

(5.13) as

hÂ(t)iw =
h (t)|(�̂z + i�̂y)⌦ Â| (t)i

h (t)|(�̂z + i�̂y)⌦ În| (t)i
, (5.14)

which completes the description of the weak value of the system observable Â by the

time dependence of the enlarged state | (t)i. Furthermore, the weak value now has
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the form of a causal dynamics of the expectation value, i.e., the ordinary single-state

formalism for an enlarged system operator, �̂z ⌦ Â+ i�̂y ⌦ Â. Note that, although this

operator is not a Hermitian operator, its expectation value is experimentally obtainable

since it is a linear combination of two Hermitian operators.

In the enlarged system, if an appropriate initial enlarged state is prepared at time

ti as | (ti)i, then it evolves to | (t)i under an appropriate enlarged evolution operator
êU(t, ti) ⌘ exp(� i

~
R
t

ti

f̂Hd⌧). The weak value at time t then is given by the expectation

value of the linear combination of Hermitian operators as above in Eq. (5.14). Of

course, the enlarged evolution operator êU(t, ti) should give the state evolution

 
⇣
 (ti),�(ti), ti

⌘ ê
U(t,ti)
����!  

⇣
 (t),�(t), t

⌘
. (5.15)

For this �(t), the following relation

|�(t)i = Û(t, tf)|�(tf)i (5.16)

must also hold.

One possible way to satisfy both Eqs. (5.15) and (5.16) is to choose B̂ = 0 and Ĉ =

Ĥ in Eq. (5.8). Then the backward evolution Û(ti, tf)|�(tf)i, satisfies the requirement

and thus,

|�(ti)i = Û(ti, tf)|�(tf)i. (5.17)

So that, if we know both the system free evolution Û(ti, tf) and the postselected state

|�(tf)i beforehand, then |�(ti)i also becomes well defined at the initial time ti.

Remarkably, other than B̂ = 0 and Ĉ = Ĥ, we can also freely choose B̂ and Ĉ in

Eq. (5.8). In this case, however, the backward evolution Û(ti, tf)|�(tf)i cannot satisfy

the requirement, and we need more complicated calculations with the prior knowledge

of postselected wave function at time t to determine the enlarged state | (ti)i.

5.3.3 Example

In this example, we illustrate a simple case where a single spin-12 particle evolves under

an external magnetic field applied along the z-axis. The Hamiltonian and the evolution

operator are given by

Ĥ =
µB

2
�̂z, and Û(t) = e�

i!t
2 �̂z , (5.18)
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Figure 5.1: A schematic setup of a single spin-12 particle under a magnetic field applied
along the z-axis. The particle is initially prepared in spin up along the x-axis, and then
postselected onto the three cases of spin up along the x-axis, spin up along the y-axis,
and spin down along the x-axis. We calculate the weak value of Pauli matrix �̂x(t) at
time t between 0 and T .

where µ and B are the amplitudes of the magnetic moment and the magnetic field,

respectively, and ! = µB

~ .

Suppose that we prepare an initial state, | "xi, which is a normalized eigenstate of

Pauli matrix �̂x

| (ti)i =
1
p
2

 
1

1

!
, (5.19)

with the bases | "zi =
�1
0

�
and | #zi =

�0
1

�
. For the postselection at time tf , we consider

three examples as the postselected states

|�(tf)i =
1
p
2

 
1

1

!
;
1
p
2

 
1

�1

!
; and

1
p
2

 
1

i

!
, (5.20)

which correspond to | "xi, | #xi, and | "yi, respectively. Let us choose ti = 0 and tf = T

for simplicity. We schematic show the setup in Fig. 5.1.

Then the time-dependent weak values of �̂x calculated in the normal Hilbert space

from Eq. (5.11) are

"xh�̂xi
w
"x = cos(!t) + sin(!t) tan(

!T

2
), (5.21a)

#xh�̂xi
w
"x = cos(!t)� sin(!t) cot(

!T

2
), (5.21b)

"yh�̂xi
w
"x =

cos(!t� !T

2 + ⇡

4 )

cos(!T2 �
⇡

4 )
. (5.21c)
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Figure 5.2: Weak values of �̂x for preselection state in (5.19) and various postselection
states as in (5.20), which are the same in both cases of normal Hilbert space and enlarged
Hilbert space.

We next go through with the same calculations in the enlarged Hilbert space. For

simplicity, let us choose B̂ = 0 and Ĉ = Ĥ in the decomposition Ĥ = B̂ + Ĉ. The

corresponding Hamiltonian and the evolution operator in the enlarged space are

f̂H =
µB

2
Îe

⌦ �̂s

z and êU(t) = e�
i!t
2 Î

e⌦�̂
s
z , (5.22)

where we have added superscripts ‘e’ and ‘s’ for the extra spin (ancilla qubit) and the

system spin.

We also need to calculate the state |�(ti)i from the given |�(tf)i, which can be done

using Eq. (5.17) for each postselected state of Eq. (5.20). The initial enlarged state is

then given as

| (ti)i =
1

2

 
| (ti)i+ |�(ti)i

| (ti)i � |�(ti)i

!
. (5.23)

Under the enlarged evolution êU(t, ti), this enlarged state evolves to | (t)i = êU(t, ti)| (ti)i.

Then the weak values obtained from Eq. (5.14) are the same as Eqs. (5.21). The detail

calculation is shown in Appendix C.1.

As an example case when we choose !T = ⇡/2, then the results of weak values

are shown in Fig. 5.2. In general, the weak values depend on the measurement time.
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At t = 0 for all postselection cases, the results of weak values always equal to 1, that

means �̂x will be measured up regardless of postselection since the initial preparation

state is | "xi, which is an eigenstate of �̂x. As time t increases, the results will be

depended on both pre- and postselection states at that time. For example, at t = T/2,

the postselected onto | "xi will give the maximum result of weak value (the red solid

curve), which lie outside the range of �̂x eigenvalues [-1,+1], while the postselected onto

| #xi will give the zero result (the green dashed curve), that means �̂x will be measured

up or down with equal probability. Finally, for t = T , similar t = 0 case, the weak

values depend on postselection states, for those are eigenstates of �̂x as we can see from

the red and green curves for up and down orientations, respectively.

5.3.4 Time-dependent modular values in an enlarged Hilbert space

We now consider the time-dependent modular values. By using the spectral decomposi-

tion, a modular value can be expressed regarding weak values as can be seen from Eqs.

(6.6,6.4) by

(Â(t))m =
X

i

e�ig�ih⇧̂ai(t)iw . (5.24)

where we have used ⇧̂ai = |aiihai|, and �i is one of the eigenvalues of the observable

Â, i.e., Â =
P

i
�i⇧̂ai . This means that the modular value at time t is obtained by

scanning and collecting all the weak values of the projection operators at this time.

Fortunately, these weak values can be simultaneously measured at a given time by

using such “scan-free method” that was introduced by Shi et al., [67]. As a result,

time-dependent modular values in the enlarged Hilbert space can be determined via the

time-dependent weak values.

5.4 Implementation of enlarged Hilbert spaces

In this section, we discuss how to implement the evolution associated with the enlarged

Hamiltonian by a real quantum simulator. To do this, let us first consider the Trotter

technique as follows
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5.4.1 Trotter technique

In many cases of the quantum simulation, a Hamiltonian to be simulated is expressed

by a many-body-system Hamiltonian, which is the summation of the subsystems Hamil-

tonians. So, we can assume that the Hamiltonian is expressed as

Ĥ =
X

j

Ĥj , (5.25)

where Ĥj are in general nonlocal and non-commuting operators. The Trotter technique

for an evolution operator states that [68, 69],

Û = e�
i
~
P

j Ĥjt '

⇣Y

j

e�
i
~Ĥjt/k

⌘k
, (5.26)

where k is the number of Trotter steps. If Ĥj are local Hamiltonians, the evolution

process can be implemented by using a “genetic algorithm” for digital quantum simu-

lations [70]. Here, however, we assume that Ĥj are nonlocal, so, the genetic algorithm

is not applicable. Fortunately, however, each Ĥj is decomposed into tensor products

of Pauli matrices [57,71]. In this case, e�
i
~Ĥjt/k can be implemented by using nonlocal

entangling Mølmer-Sørensen gates ÛMS(✓,�) = exp[�i ✓4(cos�Ŝx +sin�Ŝy)2], and local

single-qubit rotations (see Refs. [57, 71]), where the operators Ŝx,y =
P

N

i=1 �̂
i
x,y, ✓ and

� are two angle-parameters, and N is the number of local qubits [72, 73].

Particularly, the Mølmer-Sørensen gate has been proposed to solve such kind of

spin interaction [71–74]. These studies discuss on the Kitaev’s toric code Hamiltonian,

where the Hamiltonian describes four-body interactions of spins [75, 76] or in general,

the Hamiltonian can be expressed regarding the tensor products of Pauli matrices.

Specifically, even for fermion interaction, Casanova et al., have been introduced and

implemented explicitly that kind of interaction in the trapped ions within three-step [71].

Recently, Subaşı and Jarzynski have discussed on the simulating the highly nonlocal

Hamiltonians with less nonlocal Hamiltonians [77].

5.4.2 Trotter technique for the enlarged spaces

We now apply the above method to our enlarged Hamiltonian Eq.(5.8). Here we use a

nonlocal N -qubit system to realize an n-dimensional Hamiltonian Ĥ, where n = 2N . In
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most cases, as was discussed in Sec. 5.2 and will be discussed in this section, an N -body

system in the original Hilbert space can be expressed by an (N + 1)-body interaction

in the enlarged Hilbert space. This means that the quantum simulation in the enlarged

space is realized by adding one extra qubit to the original system [56,60]. Then we have

f̂H = Îe

2 ⌦ Ĉs + �̂e

x ⌦ B̂s =
2X

j=1

f̂Hj , (5.27)

where f̂H1 ⌘ Îe
2 ⌦ Ĉs and f̂H2 ⌘ �̂e

x ⌦ B̂s. We assume that both B̂s and Ĉs can

be decomposed into tensor products of N Pauli matrices. We then use the Trotter

technique to decompose the total evolution operator as

êU = e�igt
P

j
f̂
Hj =

⇣ 2Y

j=1

e�igt
f̂
Hj/k

⌘k
, (5.28)

where g is the coupling constant of the simulated system. The evolution corresponding

to j = 1 can be implemented easily by using single qubit rotations. For j = 2, the

evolution can be implemented (see Fig. 5.3) as follows:

(i) Operate a Mølmer-Sørensen entangling gate, ÛMS(✓,�), to all (N + 1) qubits.

(ii) Apply a local single-qubit gate, exp(�i'2 �̂
e
� ⌦ Îs

2N ), to the extra qubit. Here, the

phase ' is designed by controlling 2gt and � is chosen from x, y or z, depending on the

parity (odd or even) of N [71].

(iii) The total system is reversed by the inverse entangling gate Û †
MS(✓,�).

This sequence (i)-(iii) can be summarized as

ÛMS(✓,�)e
�igt�̂

e
�⌦Î

s
2N Û †

MS(✓,�), (5.29)

and can implement the desired enlarged evolution êU in Eq. (5.28).

5.4.3 Example

As an example, let us apply this method to the case of the example in Sec.5.3.3, where

we focus on the case f̂H = µB

2 �̂e
x ⌦ �̂z, i.e., j = 2 in Eq. (5.27). The evolution
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^ ^

^

U U

Figure 5.3: A scheme of quantum gates acting on both the extra spin (e) and the
system single-particle spin (s).

êU = exp(� i!t

2 �̂e
x ⌦ �̂s

z) can be calculated (see Appendix C.2) as

eU = ÛMS(
⇡

2
, 0)e�

i!t
2 Î

e
2⌦�s

yÛ †
MS(

⇡

2
, 0), (5.30)

where the Mølmer-Sørensen gates ÛMS(⇡/2, 0) and Û †
MS(⇡/2, 0) act on both the extra

spin and the system single-particle spin. Here, however, there is a slight di↵erence from

Eq. (5.29), that we apply the single-spin rotation onto the system spin, where it is

simpler for this particular example. The process can be seen from Fig. 5.3. We also

emphasize that such gates can be simulated by a physical system, such as ion-traps

[52, 78–80], quantum photonics, superconducting circuits, and among others (See [81]).



Chapter 6

Probabilistic representation of

complex modular values

In this chapter, we theoretically analyze the complex behavior of quantum modular val-

ues. We first use the spectral decomposition and show that a modular value is expressed

by the average of the dynamical phase factors with the complex conditional probabili-

ties. Concerning this expression, the chain rule of the conditional probabilities is also

derived, which relates the initial-final-state modular value with the initial-transitional-

state modular values and the transitional-final-state weak values.

6.1 Complex conditional probability

In this section, we extend the previous studies of Hofmann about weak values in Refs.

[82, 83] to probabilistic interpretation for modular values. We show that, analogous to

weak values, modular values can be understood in the context of complex conditional

probabilities.

Let us first give a summary of the previous studies. The ordinary expectation value,

that is, the expectation value without the postselection condition, can be interpreted as

the average of weak values over all possible postselection states as postselect

hÂi ⌘ h |Â| i =
X

�

hÂiwP (�| ) , (6.1)

68
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where hÂi is the expectation value of the operator Â. P (�| ) is the conditional

probability of observing state |�i on condition that the prepared state is | i, and is, of

course, equal to |h�| i|2 [2, 84–87].

In the standard statistics of a discrete distribution, we denote by x̄, the mean value

of a random variable X, which is given by

x̄ =
X

x

x P (x) , (6.2)

where x spans all possible values of the random variable X with the corresponding

probability P (x). Comparing the formula Eq. (6.1) to Eq. (6.2), the weak value can be

treated as a |�i dependence variable, which can take complex values, but its expectation

value is real with the real probability P (�| ) [2].

Interestingly, a weak value itself can be regarded as the average of conditional prob-

abilities. In this case, however, conditional probabilities themselves can take complex

values [82, 83, 86, 88]. In fact, using the spectral decomposition Â =
P

a
a ⇧̂a, where

⇧̂a ⌘ |aiha|, it is straightforward to obtain [82,83]

hÂiw =
X

a

a P (a| ,�) . (6.3)

Here,

P (a| ,�) =
h�|⇧̂a| i

h�| i
= h⇧̂aiw , (6.4)

is known as the complex conditional probability [82,83], for the process: from the initially

prepared state | i to the finally postselected state |�i via the intermediate state |ai.

Typically, the weak value of the projection operator Â = |aiha| is the transition am-

plitude from the initial state to the final state via the intermediate state. The squared

of its value which is known as the probability [2]. However, here we interpreted it as a

complex conditional probability in the scene that the state |ai is might not observed by

projective measurements, for example, “counter-factual probabilities” [89–91].

Using Eq. (6.3), the ordinary expectation value is expressed by the chain rule as

hÂi =
X

a

a
X

�

P (a| ,�)P (�| ) . (6.5)
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Here, P (�| ) is real but P (a| ,�), so to say a jointly conditioned probability, can be

negative or even complex, and the finally obtained expectation value is real. Neverthe-

less, Hofmann also constructed quantum mechanics based on this generalized probability

formalism, where he called the properties of these generalized probabilities as physical

properties [92, 93], which provide the full framework of quantum mechanics, including

quantum ergodicity [92], and quantum paradoxes [93].

6.2 Complex modular values

Our main result in this section is to show that the modular value is the average of the

dynamic phase factor e�iga over all eigenvalues with the complex conditional probability,

which is expressed as

(Â)m =
X

a

e�igaP (a| ,�) . (6.6)

To prove this expression, we use the spectral decomposition of an arbitrary function

of operator Â =
P

a
a|aiha|, where all eigenvalues {|ai} form orthonormal bases. The

spectral decomposition of F (Â), where F is any analytic function, is written as

F (Â) =
X

a

F (a)|aiha| , (6.7)

which is derived from the Taylor (Maclaurin) expansion of function F (Â). Choosing

e�igÂ as the function F (Â), Eq. (6.7) immediately leads to

e�igÂ =
X

a

e�iga
|aiha| . (6.8)

Putting this into the modular value, i.e., Â = h�|e�igÂ|�i
h�| i , and using Eq. (6.4), we obtain

Eq. (6.6).

6.3 Chain rules

Next, we discuss the chain rules. We fix the initial state | i and the final state |�i,

and consider the case that the intermediate state is found to be |ai, assuming that

there is another intermediate measurement that randomly projects the state onto one
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Figure 6.1: A vector graphic illustrates the chain rule. The chain rule describing the
process of taking route | i ! |ai ! |�i is the summation over all possible |xi’s of the
product of taking | i ! |ai ! |xi and taking | i ! |xi ! |�i.

of the orthonormal states |xi’s. In this case, the chain rule describing the process of

taking route | i ! |ai ! |�i is the summation over all possible |xi’s with proper

conditional probabilities. Therein, the process of taking route | i ! |ai ! |xi ! |�i

for each |xi is the product of P (x| ,�), which is the process of taking | i ! |xi ! |�i

conditioned by the initial | i and the final |�i, and P (a| , x), which is the process of

taking | i ! |ai ! |xi conditioned by | i and |xi (See Fig. 6.1). Thus the chain rule

becomes [92]

P (a| ,�) =
X

x

P (a| , x)P (x| ,�) . (6.9)

Substituting Eq. (6.9) into Eq. (6.3), and using P (x| ,�) = h⇧̂xiw with ⇧̂x ⌘ |xihx|,

we obtain

�hÂi
w
 =

X

x

xhÂi
w
 · �h⇧̂xi

w
 , (6.10)

where f h·i
w
i
denotes the weak value between pre- and post- selection states |ii and hf |.

We obtain a chain rule for the modular value in a similar way. In fact, substituting

Eq. (6.9) into Eq. (6.6), we obtain

�(Â)m =
X

x

x(Â)m · �h⇧̂xi
w
 , (6.11)

where f (·)mi denotes the modular value between pre- and post- selection states |ii and

hf |. We can also generalize the expression if we define

(Â)F ⌘
h�|F (Â)| i

h�| i
=
X

a

F (a)P (a| ,�) , (6.12)
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where function F can be any analytic function. Substituting Eq. (6.9) into Eq. (6.12),

we also obtain the chain rule

�(Â)F =
X

x

x(Â)F · �h⇧̂xi
w
 . (6.13)

When F (a) = a, it leads to the weak value, and when F (a) = e�iga, it leads to the

modular value.



Chapter 7

Polar representation of complex

modular values

In this chapter, we investigate the modular value in the polar decomposition under var-

ious pointer state approaches. We also discuss a relationship between the modulus and

phase, therein, the derivative of the phase is related to the derivative of the logarithm of

the modulus via a Berry-Simon-like connection, which is in the form of a weak value. As

a consequence, the modulus-phase relation allows us to obtain these polar components

whenever the connection is specified. One of the possible applications of this results is

to evaluate the weak value (the Berry-Simon- like connection) when the polar modular

value is experimentally obtained.

7.1 Polar representation

In this section, we theoretically demonstrate a meaning of the modular value in the polar

representation for both cases of the finite-dimensional discrete pointer and continuous

pointer. We show that the modulus of the modular value is related to the pointer

preselection conditional probabilities, and the phase of the modular value is connected

to the summation of a geometric phase and an intrinsic phase regardless of the finite-

dimensional discrete pointer state or continuous pointer state.

73
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7.1.1 The modulus of modular values

To examine the meaning of the modulus of modular values, we analyze the adjoint-form

modular values as discussed in Chap. 4. We derive the adjoint-form modular values as

the modulus of the modular values in the polar representation. As a transitive result,

these relations allow us to examine the modulus of the modular values regarding the

pointer conditional probabilities.

For the discrete pointer case with pure system states, i.e., ⇢̂i = | ih | and ⇢̂f =

|�ih�|, the expression for the adjoint-form modular value (4.18) explicitly reads

�
adÂ

�
m
=

Trs
⇥
⇢̂fe�igÂ⇢̂ieigÂ

⇤

Trs
⇥
⇢̂f ⇢̂i

⇤ =

��h�|e�igÂ
| i
��2

��h�| i
��2 =

��(Â)m
��2 , (7.1)

where
��(Â)m

��2 is the square of the modulus of the modular value. Then the modulus

of the modular value can be derived easily regarding the conditional probabilities (4.17,

4.19) as

��(Â)m
�� =

 
1�

1

|c�|2
+

|cµ|2

P (µ 6= �|f)

!1/2

, (7.2)

for µ 6= �, and

��(Â)m
�� =

"
P (µ = �|f)

�
1� |c�|2

�

|c�|2
�
1 + P (µ = �|f)

�
#1/2

, (7.3)

for µ = �. Here, we remind that µ is a possible outcome of the pointer and � is the

projection state, i.e., P̂ = |�ih�|.

We now turn to the case of the continuous pointer state. A similar adjoint-form

modular value reads

�
adÂ

�p
m
=

��h�|e�igpÂ
| i
��2

��h�| i
��2 =

���Â
�p
m

��2 , (7.4)

where we have also used explicitly ⇢̂i = | ih | and ⇢̂f = |�ih�|. Then Eq.(4.47) yields,

P (p|f) =
exp(�2p2�2)

���Â
�p
m

��2
R
exp(�2p2�2)

���Â
�p
m

��2 dp
. (7.5)
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Furthermore, for the operator Â satisfies the property Â2 = Î2, e.g., Pauli mastics, the

modular value is given as

�
Â
�p
m
= cos(gp)Î � i sin(gp)hÂiw , (7.6)

where hÂiw ⌘
h�|Â| i
h�| i is the original weak value, and the modulus of the modular value

yields,

��(Â)pm
��2 = 1 +

�
|hÂiw|

2
� 1
�
sin2(gp) + Im|hÂiw| sin(2gp) . (7.7)

Then, the integral of the denominator in (7.5) reads

C2 =

r
⇡

2�2
+

r
⇡

8�2

⇣
|hÂiw|

2
� 1
⌘h

1� e�g
2
/2�2

i
, (7.8)

where we have defined by C2 for convenience. It is a constant for a fixed of pre- and

postselection states for a given measured observable Â, and can be evaluated experimen-

tally from the completeness relation of the conditional probabilities. Then the modulus

of the modular value reads from (7.5) as

��(Â)pm
�� = C exp(p2�2)

p
P (p) , (7.9)

which is also given in term of the conditional postselection probability.

Furthermore, to understand the meaning of the modulus of the modular value, we

can look back to the definition of the modular value in Eq. (2.10) where the quantity

of the modular value is the ratio of the transition amplitudes for going, over g, from

the preselection state to the postselection state via Hamiltonians Ĥ = Â, and Ĥ =

0, respectively. With this definition in mind, we can imply from Eq. (7.1) for the

discrete case and also Eq. (7.4) for the continuous case that the square of the modulus

of the modular value is the ratio of the corresponding probabilities for obtaining the

postselection state from the preselection state via Hamiltonians Ĥ = Â, and Ĥ = 0,

respectively.

7.1.2 The phase of modular values

As was discussed by Cormann et al., [94] the phase of a modular value can be measured

by the phase in a quantum eraser interference experiment. Here, we analyze the phase of
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the modular value more in detail, and we show that it is expressed by the Pancharatnam

phases, particularly, by the summation of an intrinsic phase and a geometric phase, as

is shown in the following.

We can imply from Eqs. (4.14) and (4.46) for the discrete and continuous cases that

the system evolution state after the interaction is recast as

| i
Û
! | 0

i / e�igÂ
| i . (7.10)

For the continuous case, g is replaced by g0 = gp. Therefore, here after, we consider

only case g. Since (7.10), we can conclude that the phase in the modular value includes

an intrinsic property of the quantum system in the sense that the evolution operator

e�igÂ in the modular value solely depends on the system evolution but not on the

measurement apparatus or environments.

For this reason, let us consider the following system-state-evolution process: Starting

from an initial state, i.e., preselected | i, the state evolves to | 0
i, then the resultant

state | 0
i is projected onto the postselection state |�i. The final state (after postselec-

tion) is given by | 00
i = |�ih�|e�ig|Â

| i (not normalized). The phase di↵erence between

this final state and the initial state is calculated to be

arg
⇥
h | 00

i
⇤
= arg

⇥
h |�ih�|e�igÂ

| i
⇤
= arg

h
h�|e�igÂ

| i

h�| i

i
, (7.11)

where the last term is the phase of the modular value. This phase-di↵erent is also the

phase shift in a closed-loop projection | i  | 0
i ! |�i ! | i, as we illustrate on the

left-hand side of Fig. 7.1, where the wave arrow indicates the evolution process. This

equation gives one meaning of the phase of the modular value, that it corresponds to

the phase shift in the system-state-evolution process as above. To be more precise, a

straightforward calculation of this phase yields

arg
h
h�|e�igÂ

| i

h�| i

i
= arg

h
h |�ih�| 0

ih 0
| i

|h |�i|2h 0| i

i
= �( , 0,�) + �( , 0) , (7.12)

where we have used

�( , 0) = arg
⇥
h | 0

i
⇤
, (7.13)

and

�( , 0,�) = arg
h
h |�ih�| (g)ih (g)| i

i
. (7.14)
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Figure 7.1: The phase of a modular value is the total phase shift of a system-state-
evolution process that starting from an initial state, evolve onto an intermediate state,
then project onto a final state and finally project back to the initial state. This total
phase shift corresponds to the summation of the geometric phase and the intrinsic phase.

Here, � and � are interpreted as the intrinsic phase and the geometric phase, respec-

tively, as follows. The meaning of � is that this phase shift is induced by the closed-loop

projection, | i ! | 0
i ! |�i ! | i [95–97]. This phase is gauge invariant because the

local phase factor, which might be independently chosen for each quantum state, always

appears with its complex conjugate due to a couple of bra and ket vectors, and thus

all the local phases are canceled. Therefore, although | 0
i is the result of the evolution

induced by e�igÂ, � does not carry any phase shift by this evolution since the bra and

ket vectors cancel out this phase shift. So, only the pre- and post-projections yield the

geometric phase �, but the evolution does not. The evolution phase shift is solely car-

ried by � as can be seen from Eq. (7.13). In both of � and � cases, one needs to project

the final state onto the initial state to obtain the phase shift directly. We illustrate this

situation in Fig. 7.1. Interestingly, as we show here, the phase of the modular value

now becomes the summation of the geometric phase � of a geodesic triangle having

three vertices | i, | 0
i, and |�i, and the intrinsic phase � between the initial state and

the evolution state | 0
i.

Particularly, when the coupling g is su�ciently small, we can take the first order of
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the Taylor series expansion of the exponential term and obtain

arg
h
h�|e�igÂ

| i

h�| i

i���
g!0

⇡ arg
h
h�|(Î � igÂ)| i

h�| i

i

= arg
h
1� ighÂiw

i

⇡ arg
h
e�ighÂiw

i

= �gRehÂiw . (7.15)

We thus emphasize that, for small g, the phase of the modular value does not reduce to

the phase of the weak value, but instead, it is proportional to the real part of the weak

value (see Ref. [98] also).

7.2 The modulus-phase relation

In this section, we indicate a relation of the modulus and phase of the modular value

and show how this relationship may be used to evaluate the real and imaginary part of

the corresponding weak value. Notable that in this section we discuss the polar modular

values regardless of the pointer states.

7.2.1 The modulus-phase relation

Let us express the modular value in both the polar representation and the complex

phase representation as

(Â)m = ⌅(g)ei�(g) = ei⇥(g), (7.16)

where ⌅(g) ⌘ |(Â)m| and �(g) ⌘ arg[(Â)m] are the modulus and phase of the modular

value (Â)m, which are in general, deepened on g, and ⇥(g) ⌘ �i ln(Â)m is the complex

phase. Di↵erentiating Eq. (7.16) with respect to g, we obtain the modulus-phase

relation

@g�(g)� i@g ln⌅(g) = @g⇥(g), (7.17)

where @g ⌘ @/@g. We also introduce a connection Ag as

Ag ⌘ @g⇥(g) = �i
h�|@g| 0

i

h�| 0i
, (7.18)
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where, in this section, we use | 0
i ⌘ e�igÂ

| i for simplicity. In this form, Ag plays a

role as a Berry-Simon connection [99, 100]. A straightforward calculation relates Ag to

the weak value of the observable Â in between the evolution state | 0
i and postselection

state |�i [84, 101] as

Ag = �
h�|Â| 0

i

h�| 0i
. (7.19)

Then the relation (7.17) is recast as

@g�(g)� i@g ln⌅(g) = Ag. (7.20)

We note that in Eq. (7.20), the derivative @g�(g) corresponds to the real part of the

connection Ag, while the derivative @g ln⌅(g) can be expressed by the imaginary part

of the connection. This relation, therefore, allowing the reconstruction of the modulus

and phase of the modular value when the value of g changes from 0 to g as

⌅(g)

⌅(0)
= exp

hZ g

0
�Im[Ag]dg

i
, (7.21)

and

�(g)� �(0) =

Z
g

0
Re[Ag]dg, (7.22)

whenever the connection is specified. These equations imply that the modulus and phase

of the modular value play the same role as the imaginary and real parts of the weak

value (the connection), respectively, even for a large g. From the experimental point of

view, we can evaluate the corresponding weak value by experimentally measuring the

modulus and phase of the modular values.

7.2.2 An illustration for the modulus-phase relation on the Bloch

sphere

On the Bloch sphere, the quantum pre- and postselection states are represented by their

directions in polar coordinates as

| i =

 
cos ✓2

sin ✓

2 ei'

!
, and |�i =

 
cos ✓

0

2

sin ✓
0

2 ei'
0

!
, (7.23)
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where ✓(✓0) and �(�0) are polar angles on the Bloch sphere. For simplicity, we also

consider the evolution operator as Û = e�i
↵
2 �̂z , where ↵ is the rotating angle around

the z-axis. The evolution state is given as

| 0
i =

 
cos ✓2 e�i

↵
2

sin ✓

2 ei'ei
↵
2

!
. (7.24)

Then the modular value of �̂z is calculated to be

(�̂z)m =
cos ✓2 cos

✓
0

2 e�i
↵
2 + sin ✓

2 sin
✓
0

2 ei'
00
ei

↵
2

cos ✓2 cos
✓0
2 + sin ✓

2 sin
✓0
2 ei'00 , (7.25)

where '00 = '� '0. For convenience, we transform ✓ from the polar coordinates on the

sphere to the stereographic coordinates r on the plane where the radial coordinate is

r = tan
✓

2
, and r0 = tan

✓0

2
. (7.26)

Then Eq. (7.25) is recast as

(�̂z)m =
e�i

↵
2 +Rei'

00
ei

↵
2

1 +Rei'00 = X + iY , (7.27)

where R = rr0 and

X =
(1 +R2) cos ↵2 + 2R cos(↵2 + '00)

1 +R2 + 2R cos'00 , (7.28)

Y =
(R2

� 1) sin ↵

2

1 +R2 + 2R cos'00 . (7.29)

Following this modular value, its polar components can be evaluated to be

|(�̂z)m| =

s
1 +R2 + 2R cos(↵+ '00)

1 +R2 + 2R cos'00 , and (7.30)

arg[(�̂z)m] = arctan
h (R2

� 1) sin ↵

2

(R2 + 1) cos ↵2 + 2R cos(↵2 + '00)

i
. (7.31)

Furthermore, from Eq. (7.20), we calculate

�@↵/2 ln |(�̂z)m| =
2R sin(↵+ '00)

1 +R2 + 2R cos(↵+ '00)
, and (7.32)

@↵/2arg[(�̂z)m] =
R2

� 1

1 +R2 + 2R cos(↵+ '00)
. (7.33)
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We then compare with the Berry-Simon connection that

Ag = �
h�|Â| 0

i

h�| 0i
=

R2
� 1 + i2R sin(↵+ '00)

1 +R2 + 2R cos(↵+ '00)
, (7.34)

where, obviously, its real and imaginary parts are equal to Eq. (7.33) and Eq. (7.32),

respectively, then the relation (7.20) is verified.

One of the advantages of modular values in comparison to weak values is that we

can easy to carry out modular measurements as we discussed in Chap. 3. Therefore, it

is useful to connect the modular values to the weak values as we did (in Chap. 3), and

then evaluate the weak values from the modular values. For example, we can calculate

the weak value in between the evolution state | 0
i and the postselection state |�i by

experimentally measuring the modulus and phase of the modular value. Assuming that

the pre- and postselection states are chosen as

| i =

 
1/
p
2

1/
p
2

!
, and |�i =

 p
2 +

p
2/2

�

p
2�

p
2/2

!
, (7.35)

such that ✓ = ⇡/2, ✓0 = ⇡/4 and ' = 0,'0 = ⇡. We first perform a strong measurement

of the �̂z operator. Right after the measurement, the initial state will evolve to | 0
i =

exp(�ig�̂z)| i, i.e., g = ↵/2. At this moment, a weak measurement of �̂z is performed,

which reveals the corresponding weak value in between | 0
i and |�i after postselected

the system state.

The polar components of the modular value in the first strong measurement are

given by

|(�̂z)m| =
q
cos2 g + (1 +

p

2)2 sin2 g, and (7.36)

arg[(�̂z)m] = � arctan[(1 +
p

2) tan g]. (7.37)

Practically, these polar components can be measured experimentally. Here, we perform

a numerical simulation instead. The results for ln |(�̂z)m| and -arg[(�̂z)m] are shown in

Fig. 7.2 (a) and (b), respectively, where the simulation results (cross curves) are well

agreement with the analytical results (solid curves).

To evaluate the weak value of the second measurement, we use the relation (7.20),

where the derivative of the logarithm of the modulus is the imaginary part of the weak

value, and the minus of the derivative of the phase is the real part of the modular value.
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Figure 7.2: (a, b) The logarithm of the modulus and the minus of the phase of
the complex modular value (�̂z)m, where their derivatives respect to g will give the
corresponding imaginary and the real parts of the weak value in (c, d). The discrete
values are obtained from an identical ensemble of 105 pre- and postselection states, while
the curves are analytical results.

The results are shown in Fig. 7.2 (c) and (d). In Fig. 7.2, the simulation results are

performed in between an identical ensemble of 105 pre- and postselection states. The

simulation scheme following the method was introduced in Ref [102].



Chapter 8

Conclusions and Outlook

8.1 Conclusions

In this dissertation, we have theoretically studied the concept of quantum modular val-

ues of measured observables in quantum mechanics and its relations to quantum weak

values. Our study provides detailed generalizations of the quantum modular value as

well as its complex behaviors in various aspects of quantum mechanics. We first carried

out full relations of modular values to weak values for finite-dimensional systems. Sub-

sequently, on the one hand, we have presented and investigated the generalized modular

values under various pointer states, extended from the original proposal with the qubit

pointer to the finite-dimensional discrete pointer and the continuous pointer. We have

also described the concept of time-dependent quantum weak and modular values in an

enlarged Hilbert space, which can be viewed as a quantum simulator that simulates

weak/modular measurement scheme. On the other, we have carried out some statis-

tical/physical properties of modular values under the viewpoint of complex modular

values. Our study, therefore, provides a more powerful and e�cient tool than weak

values to look inside the quantum world via quantum measurements. Furthermore, this

work gives significant contributions to quantum physics in the sense that the quantum

modular value is a topic that requires a close examination of the use in quantum physics

in the coming years.

83



84

8.2 Outlook

In future, we intuitively believe that quantum modular values and quantum strong

measurements which are based on modular values can be potential concepts to motivate

and guide further various exciting studies in the field.

8.2.1 Quantum state estimation

One possible application is the quantum state estimation. In this concept, a practi-

cal technique for quantum state identification is known as quantum state tomography

(QST). This indirect method requires measurements on multiple copies of the system

in a complete set of noncommuting observables and then reconstructs the quantum

state that reveals from the measurement results by using a reliable numerical algo-

rithm. However, this method still has a limitation of usage because of the requirement

of the advanced experimental equipment and the reliable algorithm especially in high-

dimensional. There is another approach, which is known as the direct state measurement

(DSM). In this method, the wave function amplitudes of the quantum states are pro-

portional to the weak values of the weak measurements. However, the precision of the

DSM based on weak measurement is not so high in comparison with QST because of

the bias error caused by the finiteness of the weak interaction. A strong measurement,

therefore, would give a better result for the estimations. Moreover, strong measurement

schemes combining with enlarged quantum states can possibly improve the accuracy re-

sult in the direct state reconstruction or estimate the unknown quantum states and also

provides a reliable tool for universal quantum computing, testing of quantum circuits.

8.2.2 Continuous monitoring enlarged systems

Another possible application is continuous monitoring enlarged systems. Particularly,

we can consider an enlarged quantum density matrix in an enlarged Hilbert space that

incorporate both the preselection and postselection density matrices. Using this en-

larged density matrix, we can evaluate quantum weak and modular values of some

physical properties for any quantum systems, such as superconducting qubit system.

This proposal might provide a convenient tool for continuous monitoring a quantum

system and could motivate and guide further various exciting experiments.
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Appendix A

The Lagrange interpolation

In this appendix, we will revise and prove the Lagrange interpolation that we have used

in Chap. 3. Before doing this, let us introduce the Cayley-Hamilton theorem, which

will be used later for proving the interpolation, as below.

A.1 The Cayley-Hamilton theorem

The idea that every square matrix satisfies its own characteristic equation was first

explicitly proposed by Arthur Cayley in 1858 [103]. The author did not prove the

theorem in general but generalized from the proof of 3-by-3 matrices. Before this claim

was introduced, William Rowan Hamilton also had stated that a three-dimensional

rotation transformation satisfies its own characteristic equation [104]. Even though

they did not prove the theorem generally, to give the reference on their works in the

literature, we usually name it as the Cayley-Hamilton theorem. The theorem then was

first generally proved by Georg Frobenius in 1878 [105].

Let us now describe the theorem in the language of mathematics. Suppose that

A(n, n) is a square n-by-n matrix with the characteristic polynomial is denoted and

given as

�(�) = det(A� �I). (A.1.1)
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Then expanding the full determinant and collecting terms the same power of �, we have

det(A� �I)

= det
�
a1 � �e1,a2 � �e2, ...,an � �en

�

(0)
= det(a1,a2, ...,an)

(1)
+
h
det(a1, ....,an�1, en) + det(a1, ...., en�1,an) + ...+ det(e1,a2, ....,an)

i
(��)

...

(n-1)
+
h
det(a1, e2, ..., en) + det(e1,a2, ..., en) + ...+ det(e1, ..., en�1,an)

i
(��)n�1

(n)
= det(e1, e2, ..., en)(��)

n , (A.1.2)

where we have assumed A = [a1,a2, ....,an]. From (0) we have

det(a1,a2, ...,an) = det(A) . (A.1.3)

From (n) we have

det(e1, e2, ..., en)(��)
n = (�1)n�n . (A.1.4)

And let us consider, for example, (n-1), we derive

det(a1, e2, ..., en) = det(a11e1 + ...+ a1nen, e2, ..., en) = a11 (A.1.5)

Perform similarly and take the summation, we obtain

(n� 1) = a11 + a22 + ...+ ann = trace(A) . (A.1.6)

Then Eq. (A.1.2) can recast as

�(�) = det(A) + ...+ (�1)n�1trace(A)�n�1 + (�1)n�n

=
nX

i=0

�i�
i . (A.1.7)

The Cayley-Hamilton theorem states that �(A) = 0, where 0 is the zero matrix, and

therefore

�(A) =
nX

i=0

�iA
i

= det(A)I + ...+ (�1)n�1trace(A)An�1 + (�1)nAn. (A.1.8)
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As an example, let us choose

A =

0

BB@

1 2 2

2 4 5

5 6 8

1

CCA (A.1.9)

Then we have

A� �I =

0

BB@

1� � 2 2

2 4� � 5

5 6 8� �

1

CCA , (A.1.10)

and the characteristic polynomial is calculated to be

�(�) = det(A� �I) = 4 + 13�2 � �3. (A.1.11)

We can also easy to verify that

�(A) = 4 + 13A2
�A3 = 0. (A.1.12)

Since the Cayley-Hamilton theorem is not our main subject to study, so we will not

prove this theorem, but use as a result instead.

A.2 Proof of the Lagrange interpolation

To prove the Lagrange interpolation, let us define a matrix function F by the following

equation

F (g) ⌘ e�igA =
nX

k=1

e�ig�kLk(A), (A.2.1)

where Lk(A) is a Lagrange interpolation coe�cient as mentioned in Eq. (3.2) in the

main text. All we need to do is that verify the di↵erential equation and the initial

condition, such that

8
<

:
@gF (g) = �iAF (g)

F (0) = I
(A.2.2)
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From Eq. (A.2.1) we can see that

iAF (g) + @gF (g) = i
nX

k=1

e�ig�k(A� �kI)Lk(A). (A.2.3)

Using the Cayley-Hamilton theorem above, we have (A � �kI)Lk(A) = 0 for each k,

then F satisfies the di↵erential equation @gF (g) = �iAF (g).

Next, to show the initial condition, we express it as

nX

k=1

Lk(A) = I. (A.2.4)

Let us define by Lk(�) the polynomial in � of degree n� 1 as

Lk(�) =
nY

j=1, j 6=k

�� �j
�k � �j

, (A.2.5)

where �1, ...,�n are n distinct scalars. For �i 6= �k, we have,

Lk(�i) =
�i � �1
�k � �1

·
�i � �2
�k � �2

.....
�i � �i
�k � �i

.....
�i � �n
�k � �n

= 0, (A.2.6)

and for �i = �k, then we have,

Lk(�i) =
nY

j=1, j 6=k

�k � �j
�k � �j

= 1. (A.2.7)

Then, for each �, it gives

nX

k=1

Lk(�) = 1. (A.2.8)

As a consequence, we have

nX

k=1

Lk(A) = I. (A.2.9)

that we prove the initial condition Eq. (A.2.4), and also, the Lagrange interpolation

was proved.



Appendix B

The generalized modular-value

based scheme

In this appendix, we perform the detail calculations for the joint probability in the

generalized modular-value-based scheme as we discussed in Chap. 4. We later also

calculate the expectation value of a pointer observable and the final state of the pointer.

B.1 Joint probability and the expectation value

Let us first derive explicitly the joint state of the system and the pointer after the

interaction which is given as

⇢̂0 = Û ⇢̂Û †

= Û
�
⇢̂i ⌦ |⇠ih⇠|

�
Û † . (B.1.1)

Substituting this expression into the joint probability, Eq.(4.4) yields

P (µ, f) = Tr
⇥
(⇢̂f ⌦ |µihµ|)⇢̂0⇤

= Tr
⇥
(⇢̂f ⌦ |µihµ|)Û(⇢̂i ⌦ |⇠ih⇠|)Û †⇤

= Trs
⇥
⇢̂f · Trp

⇥
(Î ⌦ |µihµ|)Û(⇢̂i ⌦ |⇠ih⇠|)Û †⇤⇤

= Trs
⇥
⇢̂f · hµ|Û |⇠i⇢̂ih⇠|Û

†
|µi
⇤

= Trs
⇥
⇢̂f ⌦̂µ⇢̂i⌦̂

†
µ

⇤
, (B.1.2)
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where the operator ⌦̂µ = hµ|Û |⇠i represents the Kraus operator.

The probability P (f) can be straightforwardly calculated by taking the sum of all

µ’s for Eq.(B.1.2), resulting in

P (f) = Trs[⇢̂f ⇢̂
0
i] , (B.1.3)

where ⇢̂0
i
is calculated, by tracing out the pointer Hilbert space of Eq. (B.1.1), to be

⇢̂0
i = Trp

⇥
Û
�
⇢̂i ⌦ |⇠ih⇠|

�
Û †⇤

=
X

µ

⌦̂µ⇢̂i⌦̂
†
µ . (B.1.4)

We next calculate the expectation value of an arbitrary observable in the pointer,

which is given as

hÔpi⌘ =
Tr[(⇢̂f ⌦ Ôp)⇢̂0]

Tr[(⇢̂f ⌦ Îp)⇢̂0]
, (B.1.5)

We now insert Ôp =
P

k
ok|kihk| into the numerator and Îp =

P
k0 |k

0
ihk0| into the

denominator, and then perform calculations as in (B.1.2). The result is Eq.(4.10) in the

main text.

B.2 Kraus operator

Consider the basis {|ki, k = 0, 1, 2, ..., n � 1}, where n denotes the dimension of the

discrete pointer Hilbert space Hp. The initial pointer state can be expressed in the

form

|⇠i =
X

k

ck|ki, ck = hk|⇠i , (B.2.1)

and the projection operator P̂ = |�ih�| can be explicitly expressed as

P̂ =
X

k

k|kihk| with

8
<

:
k = 1 if k = �

k = 0 if k 6= �

=
X

k

�kl|kihk| . (B.2.2)
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Now, the action of the unitary operator Û on the initial pointer |⇠i can be characterized

as follows [106]

Û |⇠i =
X

k

exp(�igÂ�k�) hk|⇠i|ki

=
X

k

exp(�igÂ�k�) ck|ki . (B.2.3)

Then, the Kraus operator yields

⌦̂µ = hµ|Û |⇠i

=
X

k

exp(�igÂ�k�) ckhµ|ki

=
X

k

exp(�igÂ�k�) ck�µk

= cµe
�igÂ�µ� , (B.2.4)

where cµ = hµ|⇠i.

B.3 The final state of the pointer

The final state of the pointer is given as

⇢̂out
p =

Trs[(⇢̂f ⌦ Î)⇢̂0]

Tr[(⇢̂f ⌦ Î)⇢̂0]
. (B.3.1)

In the numerator, let us insert
P

µ
|µihµ|(= Î) and

P
⌫
|⌫ih⌫|(= Î), then we have

Trs
h⇣

⇢̂f ⌦

X

µ

|µihµ|
⌘
Û
⇣
⇢̂i ⌦ |⇠ih⇠|

⌘
Û †
X

⌫

|⌫ih⌫|
i

=
X

µ,⌫

cµc
⇤
⌫Trs

⇥
⇢̂f ⌦̂µ⇢̂i⌦̂

†
⌫

⇤
|µih⌫|. (B.3.2)

Similarly, in the denominator, we insert
P

µ
|µihµ|, and then trace out the pointer

Hilbert space, which leads to

Tr
h⇣

⇢̂f ⌦

X

µ

|µihµ|
⌘
Û
⇣
⇢̂i ⌦ |⇠ih⇠|

⌘
Û †
i

=
X

µ

|cµ|
2Trs

⇥
⇢̂f ⌦̂µ⇢̂i⌦̂

†
⌫

⇤
. (B.3.3)
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After that, we divide both the numerator and denominator by the nonzero factor

Trs[⇢̂f ⇢̂i], and use the definition of modular value Eq. (4.21). Then we finally ob-

tain

⇢̂out
p =

P
µ,⌫

cµc⇤⌫(Â)µ,⌫|�m |µih⌫|
P

µ
|cµ|2(Â)µ,µ|�m

, (B.3.4)

which is Eq.(4.26).



Appendix C

Enlarged weak values

This appendix shows the detail calculation the weak value in the enlarged Hilbert space

as given in the example in Chap. 6 and the implementation of the enlarged evolution

operator.

C.1 Weak values in the enlarged Hilbert space

In this section, we will show how to calculate the weak value of �̂x in the enlarged

Hilbert space. Let us assume that the pre- and postselection states are both | "xi, and

other cases can be treated similarly. We first calculate the postselection state at time

ti = 0 by performing the backward evolution as

|�(0)i = Û(0, T )|�(T )i

= e
i!T
2 �̂z

1
p
2

 
1

1

!

=
1
p
2

 
e

i!T
2

e�
i!T
2

!
, (C.1.1)

where we also choose tf = T . Then the enlarged state at time ti = 0 is given by

| (0)i =
1

2
p
2

0

BBBBB@

1 + e
i!T
2

1 + e�
i!T
2

1� e
i!T
2

1� e�
i!T
2

1

CCCCCA
. (C.1.2)
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Under the evolution Eq. (5.22), the enlarged state propagates forward in time according

to

| (t)i = êU(t, 0)| (0)i

=
1

2
p
2

0

BBBBB@

e�
i!t
2 (1 + e

i!T
2 )

e
i!t
2 (1 + e�

i!T
2 )

e�
i!t
2 (1� e

i!T
2 )

e
i!t
2 (1� e�

i!T
2 )

1

CCCCCA
. (C.1.3)

Then the weak value of �̂x, which is given by Eq. (5.14), yiels

"xh�̂xi
w
"x =

h (t)|(�̂z + i�̂y)⌦ �̂x| (t)i

h (t)|(�̂z + i�̂y)⌦ Î2| (t)i

= cos(!t) + sin(!t) tan(
!T

2
), (C.1.4)

which is the same result as Eq.(5.21a) of the normal case in the main text.

C.2 An implementation the enlarged evolution

In this section, we will show how to implement the evolution

êU(t) = e�
i!t
2 �̂

e
x⌦�̂

s
z , (C.2.1)

by using two Mølmer-Sørensen gates and a local rotation gate. We start from two

Mølmer-Sørensen gates applied onto both the extra spin and the system spin and one

local rotation gate applied on the system spin only (see Fig. 5.3 in the main text):

ÛMS(✓,�)e
� i!t

2 �̂
s
yÛ †

MS(✓,�) = e�
i!t
2 ·ÛMS(✓,�)�̂s

yÛ
†
MS(✓,�) . (C.2.2)

Here, we have used the useful formula [107]

ÛeĤÛ † = eÛĤÛ
†
. (C.2.3)

We write the Mølmer-Sørensen gate explicitly as

ÛMS(✓,�) = e�
i✓
4 (cos�Ŝx+sin�Ŝy)2 , (C.2.4)
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where Ŝx,y =
P

K

k=1 �̂
k
x,y, and K is the number of qubits that the Mølmer-Sørensen gate

acting on. In our case, K = 2, and � = 0, which leads to

ÛMS(✓, 0) = e�
i✓
4 (�̂e

x+�̂
s
z)

2
. (C.2.5)

Then the term ÛMS(✓,�)�̂s
yÛ

†
SM(✓,�) in Eq. (C.2.2) is calculated to be

ÛMS(✓,�)�̂
s

yÛ
†
MS(✓,�) = e�

i✓
4 (�̂e

x+�̂
s
z)

2
�̂s

ye
i✓
4 (�̂e

x+�̂
s
z)

2

= cos ✓�̂s

y + sin ✓�̂e

x�̂
s

z , (C.2.6)

where we have used the Baker-Campbell-Hausdor↵ relation

eÂB̂e�Â = B̂ + [Â, B̂] +
1

2!

⇥
Â, [A, B̂]

⇤
+ .... (C.2.7)

Then with the choice of ✓ = ⇡/2, Eq. (C.2.2) reduces to Eq. (C.2.1), which is the result

in Eq. (5.30).
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