

Title	Universal covering spaces of certain quasiprojective algebraic surfaces
Author(s)	Imayoshi, Yôichi
Citation	Osaka Journal of Mathematics. 1983, 20(3), p. 581-598
Version Type	VoR
URL	https://doi.org/10.18910/6965
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

UNIVERSAL COVERING SPACES OF CERTAIN QUASI-PROJECTIVE ALGEBRAIC SURFACES

Yoichi IMAYOSHI

(Received October 23, 1981)

Introduction. In this paper we investigate some function-theoretic properties of universal covering spaces of certain quasi-projective algebraic surfaces.

Let \hat{X} be a two-dimensional complex manifold and let C be a one-dimensional analytic subset of \hat{X} or an empty set. Let R be a Riemann surface. We assume that a proper holomorphic mapping $\hat{\pi}\colon \hat{X} \to R$ satisfies the following two conditions: (i) $\hat{\pi}$ is of maximal rank at every point of \hat{X} , and (ii) by setting $X = \hat{X} - C$ and $\pi = \hat{\pi} \mid X$, the fiber $S_p = \pi^{-1}(p)$ over each point p of R is an non-singular irreducible analytic subset of X and is of fixed finite type (g, n) with 2g - 2 + n > 0 as a Riemann surface, where g is the genus of S_p and n is the number of punctures of S_p . We call such a triple (X, π, R) a holomorphic family of Riemann surfaces of type (g, n) over R. We also say that X has a holomorphic fibration (X, π, R) of type (g, n).

We assume throughout this paper R is a non-compact Riemann surface of finite type and its universal covering space is the unit disc D=(|t|<1) in the complex t-plane.

P.A. Griffiths [2] got the following uniformization theorem of quasi-projective algebraic surfaces. Let \hat{X} be a two-dimensional, irreducible, smooth, quasi-projective algebraic varitey over the complex numbers. Then for every point x in \hat{X} , there exists a Zariski neighborhood X of x in \hat{X} such that X has a holomorphic fibration (X, π, R) as above. Then the universal covering space \hat{X} of X is topologically a cell. Griffiths proved that \hat{X} is biholomorphically equivalent to a bounded domain of holomorphy in \mathbb{C}^2 using the theory of simultaneous uniformization of Riemann surfaces due to Bers. (cf. Bers [1].) The function-theoretic properties of such interesting domains \hat{X} are little studied. (cf. Shabat [10].)

At the begining, in § 1, we recall some notations and results of [3], [4] and [5] which will be used later. Let \mathcal{M} be the homotopic monodromy group of (X, π, R) , which will be defined in § 1. Then we get the following theorems in § 2, § 3, § 4 and § 5.

Theorem 1. The universal covering space \tilde{X} of X is not biholomorphically equivalent to the two-dimensional unit ball $B_2 = (|z|^2 + |w|^2 < 1)$.

Corollary. The universal covering space \tilde{X} of X is not biholomorphically equivalent to any two-dimensional strongly pseudoconvex domains.

Theorem 2. The homotopic monodromy group \mathcal{M} is a finite group if and only if all the fibers S_b are conformally equivalent.

Theorem 3. The homotopic monodromy group \mathcal{M} is a finite group if and only if \tilde{X} is biholomorphically equivalent to the two-dimensional polydisc $D^2 = (|z| < 1) \times (|w| < 1)$.

Theorem 4. If (X, π, R) is of type (g, 0) with g>1, then \tilde{X} is biholomorphic to the polydisc D^2 if and only if the analytic automrophism group $\operatorname{Aut}(\tilde{X})$ of \tilde{X} is not a discrete group.

In the last \S 6, we give some examples of these quasi-projective algebraic surfaces X and some related problems.

1. Preliminaries. We shall briefly explain some notations and results in [3], [4] and [5] which will be used later.

Let G be a finitely generated Fuchsian group of the first kind with no elliptic elements acting on the upper half-plane U such that the quotient space S=U/G is a finite Riemann surface of type (g,n). Let $Q_{\text{norm}}(G)$ be the set of all quasi-conformal automorphisms w of U leaving $0, 1, \infty$ fixed and satisfying $wGw^{-1} \subset SL'(2;R)$, where SL'(2;R) is the set of all real Möbius transformations. Two elements w_1 and w_2 of $Q_{\text{norm}}(G)$ are equivalent if $w_1=w_2$ on the real axis R. The Teichmüller space T(G) of G is the set of all equivalence classes [w] obtained by classifying $Q_{\text{norm}}(G)$ by the above equivalence relation.

Let w_{μ} be the element of $Q_{\text{norm}}(G)$ with a Beltrami coefficient $\mu \in L^{\infty}(U, G)_1$ and let W^{μ} be a quasiconformal automorphism of the Riemann sphere \hat{C} such that W^{μ} has the Beltrami coefficient μ on the upper half-plane U, and is conformal on the lower half-plane L, and

$$W^{\mu}\!(z) = rac{1}{z+i} + O(\,|\,z\!+\!i\,|\,)$$

as z tends to -i. This mapping W^{μ} is uniquely determined by $[w_{\mu}]$ up to the equivalence relation, that is, $w_{\mu}=w_{\nu}$ on R if and only if $W^{\mu}=W^{\nu}$ on L. Let ϕ_{μ} be the Schwarzian derivative of W^{μ} . Then ϕ_{μ} is an element of the space $B_2(L, G)$ of bounded holomorphic quadratic differentials for G on L. Bers proved that the mapping sending $[w_{\mu}]$ into ϕ_{μ} is a biholomorphic mapping of T(G) onto a holomorphically convex bounded domain of $B_2(L, G)$, which

is denoted by the same notation T(G). The space $B_2(L, G)$ is a (3g-3+n)-dimensional complex vector space. We associate with each ϕ of $B_2(L, G)$ a uniquely determined solution $W_{\phi}=w_1/w_2$ of the Schwarzian differential equation on L

$$(w''/w')' - \frac{1}{2}(w''/w')^2 = \phi$$
,

where u_1 and u_2 are the solutions of the linear differential equation on L

$$2w'' + \phi w = 0$$

normalized by the conditions $w_1=w_2'=1$ and $w_1'=w_2=0$ at z=-i. The homomorphism $G\to SL'$ (2, C) induced by ϕ , which carries g into \hat{g} in such a way that $W_{\phi}\circ g=\hat{g}\circ W_{\phi}$, is denoted by χ_{ϕ} . Since each point ϕ of T(G) is a Schwarzian derivative of some W^{μ} with $\mu\in L^{\infty}(U,G)_1$, we have $W_{\phi}=W^{\mu}$ on L. Hence W_{ϕ} is conformal on L and has a quasiconformal extension of \hat{C} onto itself, which is denoted by the same notation. If we set $G_{\phi}=\chi_{\phi}(G)=W_{\phi}\circ G\circ W_{\phi}^{-1}$ and $D_{\phi}=W_{\phi}(U)$, then G_{ϕ} is a quasi-Fuchsian group and the definitions are legitimate since D_{ϕ} is the complement of the closure of $W_{\phi}(L)$ and since $W_{\phi}|L$ depends only on ϕ . The Koebe's one-quarter theorem implies that $D_{\phi}\subset (|w|<2)$ for every ϕ of T(G).

Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n) with 2g-2+n>0 and let $\rho: D\to R$ be the universal covering with the covering transformation group Γ . Then there exists a holomorphic mapping $\Phi: D\to T(G)$ such that the quotient space $D_{\Phi(t)}/G_{\Phi(t)}$ is conformally equivalent to $S_{\rho(t)}$ for every $t\in D$. We abbreviate $G_{\Phi(t)}$ to G_t and $D_{\Phi(t)}$ to D_t . We set

$$\tilde{X} = \{(t, w) | t \in D, w \in D_t\}$$
.

This set \tilde{X} is topologically equivalent to the two-dimensional polydisc D^2 . Since $D_t \subset (|w| < 2)$ for every $t \in D$, the set \tilde{X} is a bounded domain in \mathbb{C}^2 . We can also show that \tilde{X} is a domain of holomorphy. Let F_t be the conformal mapping of D_t/G_t onto $S_{\rho(t)}$ induced by $\Phi(t)$ for every $t \in D$ and let Π be the holomorphic mapping of \tilde{X} onto X sending (t, w) into $F_t(w)$. Then $\Pi: \tilde{X} \to X$ is the universal covering of X constructed by Griffiths [2].

Let \mathcal{G} be the covering transformation group of the universal covering $\Pi: \tilde{X} \rightarrow X$. We can explicitly express the elements of \mathcal{G} as follows. For each element $\gamma \in \Gamma$, the homotopic monodromy M_{γ} of γ is the element of the Teichmüller modular group $\operatorname{Mod}(G)$ of G with the property $\Phi \circ \gamma = M_{\gamma} \circ \Phi$. The subgroup $\mathcal{M} = \{M_{\gamma} | \gamma \in \Gamma\}$ of $\operatorname{Mod}(G)$ is called the homotopic monodromy group of (X, π, R) . Denote by N(G) the set of all quasiconformal automorphisms ω of U with $\omega \circ G \circ \omega^{-1} = G$. Take an element ω_{γ} of N(G) which induces M_{γ} , that is, $\langle \omega_{\gamma} \rangle = M_{\gamma}$. We may assume that $\omega_{\gamma \circ \delta} = \omega_{\gamma} \circ \omega_{\delta}$ for all γ , $\delta \in \Gamma$.

For each $t \in D$, let $[w_{\mu_t}]$ be the point of T(G) with a Beltrami coefficient μ_t corresponding to the holomorphic quadratic differential $\Phi(t)$ in $B_2(L, G)$. For each $g \in G$, we set $w_{\nu_t} = \lambda \circ w_{\mu_t} \circ (\omega_{\gamma} \circ g)^{-1} \in Q_{\text{norm}}(G)$, where λ is a real Möbius transformation. If we set

$$(\gamma, g)(t, w) = (\gamma(t), W^{\nu}{}_{t} \circ (\omega_{\gamma} \circ g) \circ (W^{\mu}{}_{t})^{-1}(w)),$$

then the mapping (γ, g) is an analytic automorphism of \tilde{X} for all $\gamma \in \Gamma$, $g \in G$. Now the covering transformation group \mathcal{G} is identical with the set $\Gamma \times G$. By definition, we have the relation

$$(1) \qquad (\gamma, g) \circ (\delta, h) = (\gamma \circ \delta, \omega_{\delta}^{-1} \circ g \circ \omega_{\delta} \circ h)$$

for all γ , $\delta \in \Gamma$ and g, $h \in G$, that is, \mathcal{G} is a semi-direct product of Γ by G. It is noted that $(\gamma, g) = (\delta, h)$ if and only if $\gamma = \delta$ and g = h.

Now, we have the following fundamental theorem. (See [3] and [4].)

Theorem. Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n) with 2g-2+n>0. Take a puncture p_0 of R. Let t_0 be a parabolic fixed point with $\rho(t_0)=p_0$ and let γ_0 be a generator of the stabilizer of t_0 in Γ . Then there exists an element ϕ_0 in the closure of T(G) in $B_2(L, G)$ such that the holomorphic mapping $\Phi(t)\colon D\to T(G)$ converges to ϕ_0 uniformly as t tends to t_0 through any cusped region at t_0 in D. The homotopic monodromy M_{γ_0} is of finite order if and only if $\phi_0\in T(G)$, and is of infinite order if and only if $\phi_0\in T(G)$, where $\partial T(G)$ is the boundary of T(G) in $B_2(L, G)$. In the latter case, the boundary group G_{ϕ_0} corresponding to $\phi_0\in \partial T(G)$ is a regular b-group.

2. **Proof of Theorem 1.** Assume that there exists a biholomorphic mapping $F: \tilde{X} \rightarrow B_2$. Let p_0 be a puncture of R and let t_0 be a parabolic fixed point with $\rho(t_0) = p_0$. By the above Theorem, there is an element ϕ_0 of the closure of T(G) such that holomorphic mapping $\Phi(t)$ converges to ϕ_0 uniformly as t tends to t_0 through any cusped region Δ at t_0 in D. Let G_{ϕ_0} be the Kleinian group corresponding to ϕ_0 , which is a quasi-Fuchsian group or a regular b-group. Take a component Ω of G_{ϕ_0} which is not equal to the invariant component of G_{ϕ_0} corresponding to the lower half-plane L.

Let K be an arbitrary compact subset of Ω . Then $K \subset D_t = D_{\Phi(t)}$ for any $\Delta \in t$ sufficiently near t_0 . Hence, by the diagonal method, we can take a sequence $\{t_n\}_{n=1}^{\infty}$ in Δ such that $t_n \to t_0$ as $n \to \infty$ and such that $F(t_n, w) = (F_1(t_n, w), F_2(t_n, w))$ converges to a holomorphic mapping $f(w) = (f_1(w), f_2(w))$: $\Omega \to \partial B_2$ uniformly on any compact subset of Ω as $n \to \infty$. Since

$$|f_1(z)|^2+|f_2(z)|^2=1$$
,

we have

$$rac{\partial^2}{\partial z\,\partial ar z}(\,|\,f_1\!(z)\,|^{\,2}+\,|\,f_2\!(z)\,|^{\,2})\!=\!\left|rac{\partial f_1}{\partial z}(z)
ight|^2\!+\!\left|rac{\partial f_2}{\partial z}(z)
ight|^2\!=0$$
 ,

which implies that $\frac{\partial f_1}{\partial z} = \frac{\partial f_2}{\partial z} = 0$ on Ω . Hence $f = (f_1, f_2)$ is a constant mapping. We may assume that f is a constant mapping with the value $(1, 0) \in \partial B_2$.

Denote by G_{Ω} the stabilizer of Ω in G_{ϕ_0} . Let $G_0 = \chi_{\overline{\phi_0}}^{-1}(G_{\Omega})$, $g_t = \chi_{\phi(t)}(g)$ for $g \in G$, $t \in D$, and $g_{t_0} = \chi_{\phi_0}(g)$ for $g \in G$. Set $A_g = F \circ (1, g) \circ F^{-1} \in \operatorname{Aut}(B_2)$ for each $g \in G$, where 1 is the identity element of Γ . Since $g_t \to g$ as $t \to t_0$ through Δ for all $g \in G$, and since $g_{t_0}(\Omega) = \Omega$ for all $g \in G_0$, the boundary point (1, 0) of B_2 is a fixed point of A_g for all $g \in G_0$.

We set

$$S = \{(u, v) \in \mathbb{C}^2 | \operatorname{Im}(u) > |v|^2 \}$$

where Im(u) is the imaginary part of u. This set S is a Siegel domain of the second kind. We put

$$z_1=rac{u-i}{u+i},\quad z_2=rac{2v}{u+i}.$$

Then the mapping $T: S \to B_2$ sending (u, v) into (z_1, z_2) is biholomorphic and it carries the boundary point $(\infty, 0)$ of S into the boundary point (1, 0) of B_2 . It is known that an analytic automorphism $\Psi \in \operatorname{Aut}(S)$ of S has a fixed point $(\infty, 0)$ if and only if

$$\Psi(u, v) = (|a|^2 u + 2ia\bar{b}v + c + i|b|^2, av + b)$$

where a is a non-zero complex number, b is a complex number and c is a real number. (See Pyatetskii-Shapiro [8, Chap. 1, § 2, Thm. 1].)

Let $A_g^* = T^{-1} \circ A_g \circ T \in Aut(S)$ for each $g \in G$. Then the point $(\infty, 0)$ is a fixed point of A_g^* for all $g \in G_0$. Hence,

$$A_g^*(u, v) = (|a_g|^2 u + 2ia_g \bar{b}_g v + c_g + i|b_g|^2, a_g v + b_g)$$

for all $g \in G_0$.

i) If $|a_{g_0}| \neq 1$ for some $g_0 \in G_0$, there exists an element $\Psi \in \text{Aut}(S)$ with $\Psi(\infty, 0) = (\infty, 0)$ such that $\Psi \circ A_{g_0}^* \circ \Psi^{-1}(u, v) = (|a_0|^2 u, a_0 v)$, where a_0 is a non-zero complex number with $|a_0| \neq 1$. Take an element $h \in G_0$ such that $g_0 \circ h \neq h \circ g_0$. We set

$$egin{aligned} U(u,\,v) &= \Psi \circ A_{g_0}^* \circ \Psi^{-1}\!(u,\,v) = (\,|\,a_0\,|^{\,2}\,u,\,a_0v)\,, \ V(u,\,v) &= \Psi \circ A_h^* \circ \Psi^{-1}\!(u,\,v) = (\,|\,a\,|^{\,2}u + 2iaar{b}v + c + i\,|\,b\,|^{\,2},\,av + b)\,. \end{aligned}$$

Since $g_0 \circ h = h \circ g_0$, we have $U \circ V = V \circ U$, which implies that b = 0 or c = 0. By direct computation, we have

$$W_n(u, v) = V \circ U^n \circ V^{-1} \circ U^{-n}(u, v)$$

$$= (u + 2i(1 - a_0^n)\bar{b}v + (1 - |a_0|^{2n})c + 2|b|^2 \operatorname{Im}(a_0^n) + i|(1 - a_0^n)b|^2, v + (1 - a_0^n)b)$$

for any integer n. Since $|a_0| \neq 1$, we have

$$W_n(u, v) \to W(u, v) = (u + 2i\bar{b}v + c + i|b|^2, v + b)$$

as $n \to \infty$ or $-\infty$, which implies that $(F^{-1} \circ T \circ \Psi^{-1})^{-1} \circ \mathcal{Q} \circ (F^{-1} \circ T \circ \Psi^{-1})$ is not discrete. Hence, \mathcal{Q} is not discrete and we have a contradiction.

ii) If $|a_g|=1$ for all $g\in G_0$ and if $a_{g_0}\pm 1$ for some $g_0\in G_0$, there exists an element $\Psi\in \operatorname{Aut}(S)$ with $\Psi(\infty,\ 0)=(\infty,\ 0)$ such that $\Psi\circ A_{g_0}^*\circ \Psi^{-1}(u,\ v)=(u+c_0,\ a_0v)$, where a_0 is a complex number with $|a_0|=1$ and $a_0\pm 1$, and c_0 is a real number. Take an element $h\in G_0$ such that $g_0\circ h\pm h\circ g_0$. We set

$$U(u, v) = \Psi \circ A_{\varepsilon_0}^* \circ \Psi^{-1}(u, v) = (u + c_0, a_0 v),$$
 $V(u, v) = \Psi \circ A_{\varepsilon}^* \circ \Psi^{-1}(u, v) = (u + 2ia\bar{b}v + c + i|b|^2, av + b),$

where a is a complex number with |a|=1, b is a complex number, and c is a real number. Since $h \circ g_0^n + g_0^n \circ h$ for all integer n, we have $V \circ U^n + U^n \circ V$ which implies that b + 0 and $a_0^n + 1$. If we set $a_0 = e^{i\pi\theta}$, then θ is an irrational number. By direct calculation, we have

$$W_n(u, v) = V \circ U^n \circ V^{-1} \circ U^{-n}(u, v)$$

= $(u + 2i\bar{b}(1 - \bar{a}_0^n)v + 2|b|^2 \operatorname{Im}(a_0^n) + i|b(1 - a_0^n)|^2, v + b(1 - a_0^n)$

for any integer n. Since θ is an irrational number, there exists a sequence $\{n_j\}$ of integers such that $(a_0)^{n_j} \to 1$ as $j \to \infty$. Therefore, $W_{n_j}(u, v) \to W(u, v) = (u, v)$ as $j \to \infty$, which implies that $(F^{-1} \circ T \circ \Psi^{-1})^{-1} \circ \mathcal{G} \circ (F^{-1} \circ T \circ \Psi^{-1})$ is not discrete. Hence, \mathcal{G} is not discrete and we have a contradiction.

iii) If $a_{\sigma}=1$ for all $g \in G_0$, we have

$$A_g^*(u, v) = (u + 2i\bar{b}_g v + c_g + i|b_g|^2, v + b_g).$$

Therefore,

$$A_g^* \circ A_h^* \circ (A_g^*)^{-1} \circ (A_h^*)^{-1}(u, v) = (u - 4 \operatorname{Im}(\bar{b}_g b_h), v).$$

Hence, the commutator subgroup of the group $\{A_{\varepsilon}^* | g \in G_0\}$ is commutative, which implies that the commutator subgroup $[G_0, G_0]$ of G_0 is commutative. Hence we have a contradiction. This completes the proof of Theorem 1.

Now, let us assume that there exists a strongly pseudoconvex domain Ω in C^2 which is biholomorphically equivalent to \widetilde{X} . Let $F \colon \widetilde{X} \to \Omega$ be a biholomorphic mapping. Since $\mathcal{G}^* = F \circ \mathcal{G} \circ F^{-1}$ is an infinite subgroup of $\operatorname{Aut}(\Omega)$ and acts on Ω properly discontinuously, for any point ζ of Ω , there exists an infinite sequence $\{T_n\}$ of \mathcal{G}^* such that $T_n(\zeta)$ tends to a boundary point ζ_0 of Ω

as $n \to \infty$. Therefore, the Proposition in Rosay [9] implies that Ω is biholomorphically equivalent to the unit ball B_2 . Hence, we have a contradiction and this completes the proof of Corollary.

3. **Proof of Theorem 2.** If all the fibers S_p are conformally equivalent, then the mapping $\Phi \colon D \to T(G)$ is a constant mapping with a value $q_0 \in T(G)$. By the relation $M_{\gamma} \circ \Phi = \Phi \circ \gamma$, the point q_0 is a fixed point of all $M_{\gamma} \in \mathcal{M}$. Since the modular group $\operatorname{Mod}(G)$ of G acts on T(G) properly discontinuously, the subgroup \mathcal{M} of $\operatorname{Mod}(G)$ also acts on T(G) properly discontinuously. Hence, \mathcal{M} is a finite group.

Conversely, assume that \mathcal{M} is finite, and let Γ_0 be the kernel of the monodromy map $\gamma \mapsto M_{\gamma}$. Then Γ_0 has finite index in Γ , so $R_0 = D/\Gamma_0$ is a Riemann surface of finite type. Since $\Phi \circ \gamma = \Phi$ for all γ in Γ_0 , the holomorphic map $\Phi \colon D \to T(G)$ factors through R_0 . Since T(G) is bounded, every holomorphic map from R_0 to T(G) is constant, so Φ is a constant map. Hence, all the fibers S_p are conformally equivalent and this completes the proof of Theorem 2.

4. Proof of Theorem 3. Assume that there exists a biholomorphic mapping $F=(F_1, F_2)$: $\tilde{X} \to D^2$. If we set $\mathcal{G}^*=F^*(\mathcal{G})=F \circ \mathcal{G} \circ F^{-1}$, then \mathcal{G}^* is a properly discontinuous subgroup of the analytic automorphism group $\operatorname{Aut}(D^2)$.

We recall that any analytic automorphism of $D^2 = (|z_1| < 1) \times (|z_2| < 1)$ is either one of the following two types:

(I)
$$(A, B)(z_1, z_2) = (A(z_1), B(z_2)),$$

(II)
$$(A, B)(z_1, z_2) = (A(z_2), B(z_1)),$$

where A, $B \in Aut(D)$. (See Narasimhan [7, Chap. 5, Prop. 3].) Note that $(A, B)^2$ is of type (I) for all $(A, B) \in Aut(D^2)$.

We also recall the following results, which will be used frequently in this section. (See Lehner [6, Chap. 2, § 9, Thm. 1 and Thm. 2, and Chap. 3, Thm. 2E].)

Two Möbius transformations are commutative if and only if they have the same set of fixed points provided that neither is the identity and provided that neither is a transformation of order two.

Let A be a hyperbolic or loxodromic transformation and let B be a Möbius transformation which has one and only one fixed point in common with A. Then the sequence $\{B \circ A^n \circ B^{-1} \circ A^{-n}\}$ of Möbius transformations converges to a Möbius transformation as $n \to \infty$ or $-\infty$.

By these results, we have the following assertion.

Let A, B be two Möbius transformations of infinite order with $A \circ B \neq B \circ A$ such that they have a common fixed point. Then the group generated

by A, B is not discrete.

Let p_0 be a puncture of R, t_0 be a parabolic fixed point with $\rho(t_0)=p_0$ and let γ_0 be a generator of the stabilizer of t_0 in Γ . Then Theorem of § 1 implies that there exists an element ϕ_0 in the closure of T(G) in $B_2(L, G)$ such that the mapping $\Phi(t)\colon D\to T(G)$ converges to ϕ_0 uniformly as $t\to t_0$ through any cusped region Δ at t_0 in D and such that the Kleinian group G_{ϕ_0} corresponding to ϕ_0 is a quasi-Fuchsian group or a regular b-group. Let $D_0=\Omega(G_{\phi_0})-\Delta(G_{\phi_0})$, where $\Omega(G_{\phi_0})$ is the region of discontinuity of G_{ϕ_0} and $\Delta(G_{\phi_0})$ is the invariant component of G_{ϕ_0} corresponding to the lower half-plane L. Then the quotient space

$$S_0 = (D_0 \cup \{\text{accidental parabolic fixed points of } G_{\phi_0}\})/G_{\phi_0}$$

is a Riemann surface of type (g, n) with or without nodes. Let $\{p_1, \dots, p_k\}$ be the set of nodes of S_0 , which may be empty. If $\pi_0: U \to S = U/G$ is the canonical projection and if $\alpha: S \to S_0$ is the deformation as in § 3 of [4], then there exists a family $\{W_t\}_{t \in \Delta}$ of quasiconformal automorphisms on \hat{C} such that W_t is conformal on L and has a Schwarzian derivative $\Phi(t)$ for all $t \in \Delta$ and such that W_t converges uniformly on any compact subset of $U_0 = U - \pi_0^{-1} \circ \alpha^{-1}(\{p_1, \dots, p_k\})$ to a locally quasiconformal mapping $W_0: U_0 \to D_0$ as $t \to t_0$ through Δ . (See § 4 in [4].) Then the locally quasiconformal mapping W_0 induces the above deformation $\alpha: S \to S_0$.

Figure 1

Let $\Sigma_1^0, \dots, \Sigma_r^0$ be the parts of S_0 , that is, the connected components of $S_0 - \{p_1, \dots, p_k\}$ and let $\Sigma_i = \alpha^{-1}(\Sigma_i^0)$ for each $i = 1, \dots, r$. Take a sufficiently small neighborhood $\delta_j = \{(z_1, z_2) \in C^2 | z_1 z_2 = 0, |z_1| < \varepsilon \text{ and } |z_2| < \varepsilon \}$ of a node p_j in S_0 for each $j = 1, \dots, k$ and set $\delta_0 = \delta_1 \cup \dots \cup \delta_k$. If we set $C'_j = \alpha^{-1}((|z_1| = \varepsilon) \times (z_2 = 0))$ and $C''_j = \alpha^{-1}((|z_1| = \varepsilon) \times (|z_2| = \varepsilon))$ for each $j = 1, \dots, k$, then the domain bounded by C'_j and C''_j is an annulus on S. Let Σ'_i be the connected component of $S - \alpha^{-1}(\delta_0)$ contained in Σ_i for each $i = 1, \dots, r$. Then Σ'_i is homeomorphic to Σ_i . (See Figure 1.)

Take a point q_0 on S, which is fixed as a base point. Let (C, q) be a pair of a point q on S and a path C from q_0 to q on S. A pair (C_1, q_1) is equivalent to a pair (C_2, q_2) if and only if $q_1 = q_2$ and $C_1 \circ C_2^{-1}$ is homotopic to the point q_0 . Then we can identify the universal covering space U of S with the set of all these equivalence classes [C, q] and the covering transformation group of the universal covering π_0 : $U \rightarrow S$ is identified with the fundamental group $\pi_1(S, q_0)$ of S with a base point q_0 , that is,

$$G = \{ [C_0]_* | [C_0] \in \pi_1(S, q_0) \},$$

where $[C_0]_*$ is a covering transformation sending [C, q] into $[C_0 \circ C, q]$ for $[C, q] \in U$. Suppose that $q_0 \in C'_1$ throughout this section and set

$$G_1 = \{ [C_0]_* | C_0 \in \pi_1(\Sigma_1, q_0) \} ,$$

$$U_1 = \{ [C, q] | q \in \Sigma_1 \text{ and } C \text{ is a path from } q_0 \text{ to } q \text{ on } \Sigma_1 \} .$$

Then U_1 is a connected component of $\pi_0^{-1}(\Sigma_1)$, which is invariant under G_1 . Since Σ_1' is homeomorphic to Σ_1 , we have $G_1 = \{[C_0]_* | C_0 \in \pi_1(\Sigma_1', q_0)\}$. If we set $\Omega_1 = W_0(U_1)$, then Ω_1 is a component of G_{ϕ_0} and the isomorphism $\chi_{\phi_0} \colon G \to G_{\phi_0}$ induces an isomorphism $\chi_{\phi_0} \mid G_1 \colon G_1 \to G_{\Omega_1}$, where G_{Ω_1} is the stabilizer of Ω_1 in G_{ϕ_0} .

Let $(f_{\gamma_0})_*$ be an element of the modular group $\operatorname{Mod}(S)$ of the Teichmüller space T(S) corresponding to the homotopic monodromy $M_{\gamma_0} = \langle \omega_{\gamma_0} \rangle \in \operatorname{Mod}(G)$ of γ_0 . Since there exists a positive integer m such that $(f_{\gamma_0})^m$ is homotopic to a product d of v-th powers of Dhen twists on S about Jordan curves mapped by $\alpha \colon S \to S_0$ into nodes, we may assume that the quasiconformal automorphism ω_1 of U with $\omega_1 \circ G \circ \omega_1^{-1} = G$ and $\langle \omega_1 \rangle = (M_{\gamma_0})^m$ is induced by d. Since $d \mid \Sigma_1'$ is the identity mapping, $\omega_1 \mid U_1'$ is also the identity mapping, where U_1' is the connected component of $\pi_0^{-1}(\Sigma_1')$ which is contained in U_1 . Note that U_1' is invariant under G_1 . Hence, we have $\omega_1 \circ g \circ \omega_1^{-1} = g$ for all $g \in G_1$.

Set $(A, B) = F \circ (\gamma_0^m, 1) \circ F^{-1}$, $(A_g, B_g) = F \circ (1, g) \circ F^{-1}$ for each $g \in G$, where 1 is the identity of Γ or G. We may assume that (A, B) is of type (I).

By the same reasoning as in § 2, we can choose an infinite sequence $\{t_n\}_{n=1}^{\infty}$ of Δ such that $t_n \to t_0$ as $n \to \infty$ and such that $F(t_n, w) = (F_1(t_n, w), F_2(t_n, w))$ converges to a holomorphic mapping $f(w) = (f_1(w), f_2(w))$: $\Omega_1 \to \partial D^2$ uniformly on

any compact subset of Ω_1 as $n \to \infty$. Since $\partial D^2 = \{(|z_1| = 1) \times (|z_2| \le 1)\} \cup \{(|z_1| \le 1) \times (|z_2| = 1)\}$, we have $|f_1(w)| = 1$ or $|f_2(w)| = 1$ for each $w \in \Omega_1$. Hence, $|f_1| = 1$ or $|f_2| = 1$ on a non-empty open subset of Ω_1 , which implies that f_1 or f_2 is a constant function with a value in ∂D . So we suppose that f_1 is a constant function with a value $c_1 \in \partial D$. Now, we have the following lemma.

Lemma 1. The analytic automorphism $(A, B) = F \circ (\gamma_0^m, 1) \circ F^{-1}$ of D^2 is equal to (A, 1) and A is of infinite order. For each $g \in G_1$, the analytic automorphism $(A_g, B_g) = F \circ (1, g) \circ F^{-1}$ of D^2 is of type (I) and B_g is of infinite order provided that $g \neq 1$. Moreover, the group $\mathcal{A} = \{A_g \mid g \in G_1\}$ is commutative.

Proof. Since $\omega_1 \circ g \circ \omega_1^{-1} = g$ for each $g \in G_1$, the relation (1) of § 1 implies that $(1, g) \circ (\gamma_0^m, 1) = (\gamma_0^m, 1) \circ (1, g)$ for each $g \in G_1$. Hence, we have $(A_g, B_g) \circ (A, B) = (A, B) \circ (A_g, B_g)$ for each $g \in G_1$. If (A_g, B_g) , $g \in G_1$, is of type (I), then $A_g \circ A = A \circ A_g$ and $B_g \circ B = B \circ B_g$. In general, denote by Fix(T) the set of fixed points in \hat{C} of an element $T \in Aut(D)$. Then, if neither A nor A_g is the identity, we have $Fix(A) = Fix(A_g)$. Similarly, if neither B nor B_g is the identity, then $Fix(B) = Fix(B_g)$.

Assume that neither A nor B is the identity. Take two non-commutative elements g_0 , $h_0 \in G_1$ such that both (A_{g_0}, B_{g_0}) and (A_{h_0}, B_{h_0}) are of type (I). If at least one of A_{g_0} , A_{h_0} is the identity, then clearly A_{g_0} and A_{h_0} are commutative. If $A_{g_0} \neq 1$ and $A_{h_0} \neq 1$, then $Fix(A) = Fix(A_{g_0}) = Fix(A_{h_0})$, which implies that A_{g_0} and A_{h_0} are commutative. Hence, in any case, A_{g_0} and A_{h_0} are commutative. Similarly, it is shown that B_{g_0} and B_{h_0} are commutative. Hence, (A_{g_0}, B_{g_0}) and (A_{h_0}, B_{h_0}) are commutative and so are g_0 and h_0 . We have a contradiction. Therefore, at least one of A, B is equal to the identity. Since γ_0 is of infinite order, either A or B is of infinite order. Hence, we have the two cases: (i) A is of infinite order and B=1, (ii) A=1 and B is of infinite order. Assume that A=1 and B is of infinite order. Then we have $A_{g_0} \circ A_{h_0} \neq A_{h_0} \circ A_{g_0}$, $B_{g_0} \circ B_{h_0} = B_{h_0} \circ B_{g_0}$ and we have that A_{g_0} and A_{h_0} are of infinite order because no powers of g_0 or h_0 commute. Set $g_{0,t} = \chi_{\Phi(t)}(g_0)$ for each $t \in D$. Then $(1, g_0)(t, w) = (t, g_{0,t}(w))$ for each $(t, w) \in \tilde{X}$. The relation $F \circ (1, g_0) = (A_{g_0}, B_{g_0}) \circ F$ implies that

$$F_1(t, g_{0,t}(w)) = A_{g_0} \circ F_1(t, w),$$

 $F_2(t, g_{0,t}(w)) = B_{g_0} \circ F_2(t, w)$

for each $(t, w) \in \widetilde{X}$. Let $g_{0,t_0} = \chi_{\phi_0}(g_0)$. Since $F_1(t_n, w)$, $F_2(t_n, w)$ and $g_{0,t_n}(w)$ converge uniformly on any compact subset of Ω_1 to $f_1(w) = c_1$, $f_2(w)$ and $g_{0,t_0}(w)$, respectively, as $n \to \infty$ and since $g_{0,t_0}(\Omega_1) = \Omega_1$, we have $A_{g_0}(c_1) = c_1$ and $f_2 \circ g_{0,t_0} = B_{g_0} \circ f_2$. Similarly, we have $A_{h_0}(c_1) = c_1$ and $f_2 \circ h_{0,t_0} = B_{h_0} \circ f_2$. Since A_{g_0} and A_{h_0} are two non-commutative Möbius transformations of infinite order with a common fixed point c_1 and since B_{g_0} and B_{h_0} are commutative, the group

generated by (A_{g_0}, B_{g_0}) and (A_{h_0}, B_{h_0}) is not discrete. Hence, $F \circ \mathcal{G} \circ F^{-1}$ is not discrete, which implies that \mathcal{G} is not discrete and we have a contradiction. Therefore, A is of infinite order and B=1. Moreover, it is shown that both B_{g_0} and B_{h_0} are of infinite order, A_{g_0} and A_{h_0} are commutative, and B_{g_0} and B_{h_0} are non-commutative.

Now, assume that (A_g, B_g) is of type (II) for some $g \in G_1$. Then we have

$$(A_g, B_g) \circ (A, 1)(z_1, z_2) = (A_g(z_2), B_g \circ A(z_1)),$$

 $(A, 1) \circ (A_g, B_g)(z_1, z_2) = (A \circ A_g(z_2), B_g(z_1)).$

Since (A_g, B_g) commutes with (A, 1), we have

$$(A_{\mathfrak{g}}(z_2), B_{\mathfrak{g}} \circ A(z_1)) = (A \circ A_{\mathfrak{g}}(z_2), B_{\mathfrak{g}}(z_1))$$

for each point (z_1, z_2) of D^2 . Hence, A=1, which contradicts $A \neq 1$. Therefore, (A_g, B_g) is of type (I) for all $g \in G_1$.

Since (A, B)=(A, 1), (A_g, B_g) is of type (I) and (A, 1) commutes with (A_g, B_g) , we have that $A \circ A_g = A_g \circ A$ for all $g \in G_1$. Hence, the group $\mathcal{A} = \{A_g | g \in G_1\}$ is commutative.

Moreover, B_g is of infinite order for all $g \neq 1$ of G_1 by the same argument as the one that A_{g_0} and A_{h_0} are of infinite order. This completes the proof of Lemma 1.

Lemma 2. The yomotopic monodromy M_{γ_0} of γ_0 is of finite order.

Proof. We use the notations in the proof of Lemma 1. Assume that M_{γ_0} is of infinite order. Then S_0 is a Riemann surface of type (g, n) with nodes p_1, \dots, p_k . Denote by C_j the Jordan curve $\alpha^{-1}(p_j)$ on S for each $j=1, \dots, k$.

i) Assume that at least one of C_1, \dots, C_k , say C_1 , is a non-dividing cycle on S. Suppose that $q_0 \in C_1' = \alpha^{-1}((|z_1| = \varepsilon) \times (z_2 = 0))$ and take a closed path C_0 starting at q_0 on Σ_1 . (See Figure 2.)

Figure 2.

Since the Dehn twist d inducing the homotopic monodromy $(M_{\gamma_0})^m = \langle \omega_1 \rangle$ is the identity mapping on $S - \alpha^{-1}(\delta_0)$, we have $[d(C_0)] = [C_1']^{\gamma_0} \circ [C_0]$ for

some integer ν_0 . Set $g_0 = [C_1']_*^{\nu_0} \in G_1$, $h_0 = [C_0]_* \in G$, $U_2 = h_0(U_1)$ and $G_2 = h_0 \circ G_1 \circ h_0^{-1}$. Then the relations $[d(C_0)] = [C_1']^{\nu_0} \circ [C_0]$, $d \circ \pi_0 = \pi_0 \circ \omega_1$ and $\omega_1 | U_1 = 1$ imply that $\omega_1 \circ h_0 = g_0 \circ h_0$ on U_1 . Hence, we have $\omega_1 = g_0$ on U_2 . If we set $\omega_2 = g_0^{-1} \circ \omega_1$, then $\omega_2 | U_2 = 1$, $\langle \omega_2 \rangle = \langle \omega_1 \rangle$ in $\operatorname{Mod}(G)$ and $\omega_2 \circ h \circ \omega_2^{-1} = h$ for all $h \in G_2$. Moreover, the quasiconformal mapping ω_2 induces an analytic automorphism $(1, g_0)^{-1} \circ (\gamma_0^m, 1)$ of \widetilde{X} . Hence, we have an element $(A_{g_0}^{-1} \circ A, B_{g_0}^{-1}) \in F \circ \mathcal{Q} \circ F^{-1}$. Note that, by Lemma 1, B_{g_0} is of infinite order. By the same reasoning as in the proof of Lemma 1, the relation $\omega_2 \circ h \circ \omega_2^{-1} = h$ for each $h \in G_2$ implies that $A_{g_0}^{-1} \circ A = 1$, (A_h, B_h) is of type (I) for all $h \in G_2$ and the group $\{B_h | h \in G_2\}$ is commutative.

If $(A_{h_0}, B_{h_0}) = F \circ (1, h_0) \circ F^{-1}$ is of type (I), then $\{B_g \mid g \in G_1\}$ and $\{B_h \mid h \in G_2\}$ are conjugate by B_{h_0} . Since the group $\{B_h \mid h \in G_2\}$ is commutative, the group $\{B_g \mid g \in G_1\}$ is also commutative and we have a contradiction.

Now, suppose that (A_{h_0}, B_{h_0}) is of type (II). We set $h_1 = h_0 \circ g_1$ and $U_3 =$ $h_1^2(U_1)$ for each $g_1 \in G_1$. The relations $[d(C_0)] = [C_1']^{\nu_0} \circ [C_0]$, $d \circ \pi_0 = \pi_0 \circ \omega_1$ and $\omega_1 | U = 1$ imply that $\omega_1 = g_0 \circ h_1 \circ g_0 \circ h_1^{-1}$ on U_3 . If we set $\omega_3 = (h_1 \circ g_0^{-1} \circ h_1^{-1} \circ g_0^{-1}) \circ \omega_1$, then we have $\omega_3 | U_3 = 1$, $\langle \omega_3 \rangle = \langle \omega_1 \rangle$ and $\omega_3 \circ h \circ \omega_3^{-1} = h$ for all $h \in h_1^2 \circ G_1 \circ h_1^{-2}$. The elemnt $\omega_3 \in N(G)$ induces an analytic auotmorphism $(1, h_1 \circ g_0^{-1} \circ h_1^{-1} \circ g_0^{-1}) \circ$ $(\gamma_0^m, 1)$ of \tilde{X} and we have an element $(X_1, Y_1) \in F \circ \mathcal{G} \circ F^{-1}$, where $X_1 = (A_{h_0} \circ B_{g_1}) \circ (A_{h_0} \circ B_{g_$ $B_{g_0}^{-1} \circ (A_{h_0} \circ B_{g_1})^{-1}$ and $Y_1 = B_{h_0} \circ A_{g_0}^{-1} \circ B_{h_0}^{-1} \circ B_{g_0}^{-1}$. Note that (X_1, Y_1) is of type (I). By the same argument as the proof of Lemma 1, we see that $(X_1, Y_1) = (X_1, 1)$ with $X_1 \neq 1$ or $(X_1, Y_1) = (1, Y_1)$ with $Y_1 \neq 1$. Since B_{g_0} is of infinite order, we have $X_1 \neq 1$ and $Y_1 = 1$. We set $h_2 = h_0 \circ g_1^2$. The same reasoning as above implies that the element $(h_2 \circ g_0^{-1} \circ h_2^{-1} \circ g_0^{-1}) \circ \omega_1$ of N(G) induces an element $(X_2, 1)$ of $F \circ \mathcal{G} \circ F^{-1}$, where $X_2 = (A_{h_0} \circ B_{g_1}^2) \circ B_{g_0}^{-1} \circ (A_{h_0} \circ B_{g_1}^2)^{-1}$. Now, we can prove that $\mathcal{A} = \{A_x | g \in G_1\}$ is a discrete subgroup of Aut(D) as follows. Assume that \mathcal{A} is not discrete. Then there exists a sequence $\{A_n\}$ of distinct elements of \mathcal{A} such that $A_n \to 1$ as $n \to \infty$. Take an element $g_1 \in G_1$ with $g_0 \circ g_1 \neq g_1 \circ g_0$ and consider the sequences $\{(A_n, B_n) \circ (X_1, 1) \circ (A_n, B_n)^{-1}\} = \{(A_n \circ X_1 \circ A_n^{-1}, 1)\}$ and $\{(A_n, B_n) \circ (X_2, 1) \circ (A_n, B_n)^{-1}\} = \{(A_n \circ X_2 \circ A_n^{-1}, 1)\}$ in \mathcal{G} . They converge to $(X_1, 1)$ and $(X_2, 1)$ respectively as $n \to \infty$. Therefore, the discreteness of \mathcal{G} implies that for any sufficiently large n, A_n commutes with X_1 and X_2 . Thus, $A_n \circ X_1 \circ A_n^{-1} = X_1$ and $A_n \circ X_2 \circ A_n^{-1} = X_2$ for any sufficiently large n, which implies that

$$\begin{aligned} & \operatorname{Fix}(A) = \operatorname{Fix}(A_n) = (A_{h_0} \circ B_{g_1})(\operatorname{Fix}(B_{g_0}^{-1})), \\ & \operatorname{Fix}(A) = \operatorname{Fix}(A_n) = (A_{h_0} \circ B_{g_1}^2)(\operatorname{Fix}(B_{g_0}^{-1})). \end{aligned}$$

Hence, we have $B_{g_1}(\operatorname{Fix}(B_{g_0})) = \operatorname{Fix}(B_{g_0})$, which implies that the group generated by (A_{g_0}, B_{g_0}) and (A_{g_1}, B_{g_1}) is not discrete and we have a contradiction. Therefore, \mathcal{A} is an Abelian discrete subgroup of $\operatorname{Aut}(D)$. Then \mathcal{A} is generated by an element A_{g_*} for some $g_* \in G_1$ with $g_* \neq 1$. Take an element $g_2 \in G_1$ with

 $g_*\circ g_2 \pm g_2\circ g_*$. Let $A_{g_2} = (A_{g_*})^n$ for some integer n and let $g_3 = g_2\circ g_*^{-n} \in G_1$. Then $g_3 \pm 1$ and $F \circ (1, g_3)\circ F^{-1} = (A_{g_3}, B_{g_3}) = (1, B_{g_3})$. Since (A_{h_1}, B_{h_1}) is of type (II), we have $F \circ (1, h_1\circ g_3\circ h_1^{-1})\circ F^{-1} = (A_{h_1}\circ B_{g_3}\circ A_{h_1}^{-1}, 1)$, which is of type (I). Therefore, (A_{g_3}, B_{g_3}) and $(A_{h_1}\circ B_{g_3}\circ A\circ_{h_1}^{-1}, 1)$ are commutative, which implies that g_3 and $h_1\circ g_3\circ h_1^{-1}$ are commutative. Since g_3 and h_1 are elements of the discrete subgroup G with no elliptic elements of Aut(U), it is shown that g_3 and $h_1 = h_0\circ g_1$ are commutative, where g_1 is an arbitrary element of G_1 . Take an element $g_1 \in G_1$ with $g_1\circ h_0 \pm h_0\circ g_1$. Since g_3 and $h_0\circ g_1$ are commutative and g_3 and $h_0\circ g_1^2$ are also commutative, we have that $h_0\circ g_1$ and $h_0\circ g_1^2$ are commutative. Hence, h_0 and g_1 are commutative and we have a contradiction.

ii) Assume that all the Jordan curves C_1, \dots, C_k are dividing cycles on S. Take two connected components Σ_1 and Σ_2 of $S-\alpha^{-1}(\{p_1, \dots, p_k\})$ which have the common boundary curve C_1 . Let $q_0 \in C'_1$, $q'_0 \in C''_1$ and let L be a simple path from q_0 to q'_0 on the annulus bounded by C'_1 and C''_1 . (See Figure 3.)

Figure 3.

Now, we set

 $U_1 = \{[C,q] | q \in \Sigma_1 \text{ and } C \text{ is a path from } q_0 \text{ to } q \text{ on } \Sigma_1 \}$,

 $U_2 = \{[L \circ C,\, q] | q \in \Sigma_2 \text{ and } C \text{ is a path from } q_0' \text{ to } q \text{ on } \Sigma_2 \}$,

 $G_1 = \{ [C]_* | [C] \in \pi_1(\Sigma_1, q_0) \}$,

 $G_2 = \{ [L \circ C \circ L^{-1}]_* | [C] \in \pi_1(\Sigma_2, q_1') \}.$

Then U_1 and U_2 are invariant under G_1 and G_2 , respectively. Since the Dehn twist d inducing the homotopic monodromy $(M_{\gamma_0})^m = \langle \omega_1 \rangle$ is the identity on $S - \alpha^{-1}(\delta_0)$, it is shown that d(L) is homotopic to $(C_1')^{\nu_0} \circ L$ for some integer ν_0 . Hence, if we set $g_0 = [C_1']^{\nu_0} \in G_1$, then we have $\omega_1 = g_0$ on U_2 and $\omega_1 \circ h \circ \omega_1^{-1} = g_0 \circ h \circ g_0^{-1}$ for all $h \in G_2$. Note that $g_0 \in G_1 \cap G_2$. If we set $\omega_2 = g_0^{-1} \circ \omega_1$, then we have $\omega_2 | U_2 = 1$ and $\omega_2 \circ h \circ \omega_2^{-1} = h$ for all $h \in G_2$, and $\langle \omega_2 \rangle = \langle \omega_1 \rangle$ in $\operatorname{Mod}(G)$. Moreover, the quasiconformal mapping ω_2 induces an analytic automorphism $(1, g_0)^{-1} \circ (\gamma_0^m, 1)$ of \tilde{X} and we have an element $(A_{g_0}^{-1} \circ A, B_{g_0}^{-1}) \in F \circ \mathcal{Q} \circ F^{-1}$. Note that B_{g_0} is of infinite order. By the same reasoning as in the proof of Lemma 1, the relation $\omega_2 \circ h \circ \omega_2^{-1} = h$ for each $h \in G_2$ implies that $A_{g_0}^{-1} \circ A = 1$, (A_h, B_h) is of type (I) for each $h \in G_2$, A_h is of infinite order for each $h \neq 1$ of G_2 and

the group $\{B_h | h \in G_2\}$ is commutative. Take a closed path C_0 starting at q_0' on Σ_2 and set $\tilde{C}_0 = L \circ C_0 \circ L^{-1}$ and $h_0 = [\tilde{C}_0]_* \in G_2$. (See Figure 3.) Let $\tilde{U}_1 = h_0(U_1)$, $\tilde{G}_1 = h_0 \circ_1 G_1 \circ h_0^{-1}$ and $\tilde{\omega}_1 = (g_0 \circ h_0 \circ g_0^{-1} \circ h_0^{-1})^{-1} \circ \omega_1$. Since $\omega_1 = g_0 \circ h_0 \circ g_0^{-1} \circ h_0^{-1}$ on \tilde{U}_1 , we have $\tilde{\omega}_1 | \tilde{U}_1 = 1$, $\tilde{\omega}_1 \circ g \circ \tilde{\omega}_1^{-1} = g$ for all $g \in \tilde{G}_1$, and $\langle \tilde{\omega}_1 \rangle = \langle \omega_1 \rangle$ in Mod(G). The quasiconformal mapping $\tilde{\omega}_1$ induces an analytic automorphism $(1, g_0 \circ h_0 \circ g_0^{-1} \circ h_0^{-1})^{-1} \circ (\gamma_0^m, 1)$ of \tilde{X} and we have an element $\Psi = (A_{h_0} \circ A_{g_0} \circ A_{h_0}^{-1} \circ A_{g_0} \circ A_{h_0}^{-1} \circ A_0 \circ$

Now, assume that $\mathcal{A} = \{A_g | g \in G_1\}$ is not discrete. Then there exists a sequence $\{A_n\}$ of distinct elements of \mathcal{A} such that $A_n \to 1$ as $n \to \infty$. Thus the sequence $\{(A_n, B_n) \circ (A_{h_0} \circ A \circ A_{h_0}^{-1}, 1) \circ (A_n, B_n)^{-1}\}$ tends to $(A_{h_0} \circ A \circ A_{h_0}^{-1}, 1)$ as $n\to\infty$, which implies that $A_n\circ (A_{h_0}\circ A\circ A_{h_0}^{-1})\circ A_n^{-1}=A_{h_0}\circ A\circ A_{h_0}^{-1}$, that is, A_n and $A_{h_0} \circ A \circ A_{h_0}^{-1}$ are commutative for any sufficiently large integer n. Hence, we have $Fix(A) = Fix(A_n) = A_{h_0}(Fix(A))$, which implies that A_{h_0} fixes every fixed point of A. By the same argument, we can take another element $h_1 \in G_2$ with the same property as h_0 and $h_0 \circ h_1 \neq h_1 \circ h_0$. Since B_{h_0} and B_{h_1} are commutative, A_{h_0} and A_{h_1} are non-commutative. Hence, A_{h_0} and A_{h_1} are two non-commutative Möbius transformations of infinite order with a common fixed c_0 , which implies that the group generated by (A_{h_0}, B_{h_0}) and (A_{h_1}, B_{h_1}) is not discrete and we have a contradiction. Therefore, \mathcal{A} is an Abelian discrete subgroup of Aut(D). Then \mathcal{A} is generated by an element A_{g_1} for some $g_1 \in G_1$ with $g_1 \neq 1$. Take an element $g_2 \in G_1$ with $g_2 \circ g_1 \neq g_1 \circ g_2$. Let $A_{g_2} = (A_{g_0})^n$ for some integer n and let $g_3=g_2\circ g_1^{-n}\in G_1$. Then $g_3\neq 1$ and $(A_{g_3},B_{g_3})=(1,B_{g_2}\circ B_{g_1}^{-n})$. If we set $\tilde{g} = h_0 \circ g_3 \circ h_0^{-1}$, then we have $(A_{\tilde{g}}, B_{\tilde{g}}) = (1, B_{h_0} \circ B_{g_3} \circ B_{h_0}^{-1})$. Then (A, 1)and $(A_{\tilde{e}}, B_{\tilde{e}})$ are commutative and so are $(\gamma_0^m, 1)$ and $(1, \tilde{e})$. Then, by the relation (1) of § 1, we have $\omega_1 \circ \tilde{g} \circ \omega_1^{-1} = \tilde{g}$. Since $\omega_1 \circ h_0 \circ \omega_1^{-1} = g_0 \circ h_0 \circ g_0^{-1}$ and $\omega_1 \circ g_3 \circ \omega_1^{-1} = g_3$, we have $g_3 \circ (g_0 \circ h_0^{-1} \circ g_0^{-1} \circ h_0) = (g_0 \circ h_0^{-1} \circ g_0^{-1} \circ h_0) \circ g_3$. Similarly, it can be proved that g_3 and $h_n = g_0 \circ h_0^{-n} \circ g_0^{-1} \circ h_0^n$ are commutative for any integer n, which implies that $Fix(g_3) = Fix(h_n)$ for any non-zero integer n. This is impossible. In fact, by conjugation, we may assume that $h_0(z) = k^2 z$ for some constant k>1 and $g_0(z)=(az+b)/(cz+d)$ with ad-bc=1. Since G is discrete and since g_0 and h_0 are non-commutative, we have $g_0(0) \neq 0$ and $g_0(\infty) \neq \infty$, which implies that $b \neq 0$ and $c \neq 0$. By direct computation, we have

$$(h_n z) = \frac{(ad - k^{2n}bc)z + (1 - k^{-2n})ab}{(1 - k^{2n})cdz + ad - k^{-2n}bc}.$$

If a=0, then the relation ad-bc=1 implies that bc=-1 and we have

$$h_n(z) = \frac{k^{2n}z}{(1-k^{2n})cdz+k^{-2n}}.$$

Since both h_0 and h_n are Möbius transformations of infinite order with a common fixed point z=0 and since G is discrete, we have $Fix(h_0)=Fix(h_n)$, that

is, $h_n(\infty) = \infty$. Hence, we have $(1-k^{2n})cd=0$. Since k>1 and $c\neq 0$, we have d=0 and $tr^2(g_0)=0$. Hence, g_0 is an elliptic element and we have a contradiction. Therefore, we have $a\neq 0$. Similarly, it can be shown that $b\neq 0$, $c\neq 0$ and $d\neq 0$.

Now, by direct computation, the fixed points z_n of h_n are given by the formula

$$z_n = \frac{(k^{-2n} - k^{2n})bc \pm \{(2ad - (k^{2n} + k^{-2n})bc)^2 - 4\}^{1/2}}{2(1 - k^{2n})cd}.$$

Then the two fixed points go to 0 and b/d as $n \to +\infty$ and they go to ∞ and a/c as $n \to -\infty$. On the other hand, since $\text{Fix}(g_3) = \text{Fix}(h_n)$ for any non-zero integer n, we have a contradiction. This completes the proof of Lemma 2.

Lemma 3. If \tilde{X} is biholomorphic to the polydisc D^2 and the homotopic monodromy M_{γ_0} of γ_0 is of finite order, then the homotopic monodromy group \mathcal{M} of (X, π, R) is a finite group.

Proof. Let $M_{\gamma_0} = \langle \omega_{\gamma_0} \rangle$ for some $\omega_{\gamma_0} \in N(G)$. Since $(M_{\gamma_0})^m = 1$ for some integer m, we may assume that $\langle (\omega_{\gamma_0})^m \rangle$ is represented by the identity mapping on the upper half-plane U.

We use the notations in the proof of Lemma 1. By Lemma 1, we may assume that $F \circ (\gamma_0^m, 1) \circ F^{-1}$ is equal to (A, 1) and is of type (I). Take an element $\delta \in \Gamma$ with $\gamma_0 \circ \delta \neq \delta \circ \gamma_0$. Set $F \circ (\delta, 1) \circ F^{-1} = (X, Y)$. We may assume that (X, Y) is of type (I) and we have $F \circ (\delta \circ \gamma_0^m \circ \delta^{-1}, 1) \circ F^{-1} = (X \circ A \circ X^{-1}, 1)$. If X is of finite order, then $(X^n \circ A \circ X^{-n}, 1) = (A, 1)$ for some integer n. Hence, we have $(\gamma_0^m, 1) = (\delta^n \circ \gamma_0^m \circ \delta^{-n}, 1)$, which implies that $\gamma_0^m = \delta^n \circ \gamma_0^m \circ \delta^{-n}$. Hence, γ_0 and δ are commutative and we have a contradiction. Therefore, X is of infinite order. Similarly, it is shown that A and X are non-commutative. Since $(\omega_{\gamma_0})^m = 1$, we have $\omega_{\delta \circ \gamma_0^m \circ \delta^{-1}} = 1$ and the relation (1) of § 1 implies that $(\delta \circ \gamma_0^m \circ \delta^{-1}, 1)$ and (1, g) are commutative. Hence, we have $(X \circ A \circ X^{-1} \circ A_g, B_g)$ $=(A_g \circ X \circ A \circ X^{-1}, B_g)$, that is, $(X \circ A \circ X^{-1}) \circ A_g = A_g \circ (X \circ A \circ X^{-1})$ for all $g \in G$. Assume that $A_g \neq 1$ for some $g \in G$ with $g \neq 1$. Since $Fix(A) = Fix(A_g) =$ $\operatorname{Fix}(X \circ A \circ X^{-1}) = X(\operatorname{Fix}(A)), A$ and X have a common fixed point. Hence, A and X are non-commutative Möbius transformations of infinite order with a common fixed point, which implies that the group generated by (A, 1) and (X, Y) is not discrete. Therefore, we have a contradiction. Hence, $A_g=1$ for all $g \in G$. Then we have the relations $F_1 \circ (1, g) = F_1$, $F_2 \circ (1, g) = B_g \circ F_2$ and $g_t \circ E_2 = E_2 \circ B_g$ for each $g \in G$, where $F = (F_1, F_2)$ is the above biholomorphic mapping, $E=(E_1, E_2)=F^{-1}$ and $g_t=\chi_{\Phi(t)}(g)$ for each $t\in D$. The relation $F_1 \circ (1, g) = F_1$ for all $g \in G$ implies that F_1 is a bounded holomorphic automorphic function on $D_{\Phi(t)}$ for $G_{\Phi(t)}$ for each $t \in D$. Since $D_{\Phi(t)}/G_{\Phi(t)}$ is of finite type, the function F_1 is a constant function with a value $c_t \in D$ on $D_{\Phi(t)}$ for

each $t \in D$. Set $D(t) = (z_1 = c_t) \times (|z_2| < 1)$ for each $t \in D$. Then F_2 induces an injective holomorphic function $(F_2)_t$: $D_{\Phi(t)} \to D(t)$ for each $t \in D$. Moreover, E_1 is a constant function with a value t on D(t) and E_2 induces an injective holomorphic function $(E_2)_t$: $D(t) \to D_{\Phi(t)}$ for each $t \in D$. Since $E \circ F = 1_{\widetilde{x}}$ and $F \circ E = 1_{D^2}$, we have $(E_2)_t \circ (F_2)_t = 1_{D_{\Phi(t)}}$ and $(F_2)_t \circ (E_2)_t = 1_{D(t)}$. Hence, $(F_2)_t$: $D_{\Phi(t)} \to D(t)$ is conformal and it induces a conformal mapping of $D_{\Phi(t)}/G_{\Phi(t)}$ onto $D(t)/\mathcal{B}$ for each $t \in D$, where $\mathcal{B} = \{B_g \mid g \in G\}$ is a finitely generated Fuchsian group with no elliptic elements. Since all the Riemann surfaces $D(t)/\mathcal{B}$, $t \in D$, are conformally equivalent, all the fibers S_p , $p \in R$, are also conformally equivalent. Hence, Theorem 2 implies that the homotopic monodromy group \mathcal{M} of (X, π, R) is a finite group. This completes the proof of Lemma 3.

Now, we can prove Theorem 3. If the homotopic monodromy group \mathcal{M} of (X, π, R) is a finite group, then Theorem 2 implies that the mapping $\Phi \colon D \to T(G)$ is a constant mapping with a value ϕ_0 . Hence, the universal covering space \tilde{X} of X is equal to $D \times D_{\phi_0}$, which is biholomorphic to the polydisc D^2 .

Conversely, if \tilde{X} is biholomorphic to D^2 , then Lemmas 2 and 3 imply that \mathcal{M} is a finite group. This completes the proof of Theorem 3.

- 5. **Proof of Theorem 4.** If \tilde{X} is biholomorphic to the polydisc D^2 , then it is clear that $\operatorname{Aut}(\tilde{X})$ is not discrete. Conversely, assume that $\operatorname{Aut}(\tilde{X})$ is not discrete. Since the fibers of (X, π, R) are compact, Theorem 3 in Shabat [10] implies that $\operatorname{Aut}(\tilde{X})$ is transitive. Hence, by E. Cartan's Theorem, the homogeneous bounded domain \tilde{X} in \mathbb{C}^2 is biholomorphic to the unit ball B_2 or the polydisc D^2 . By Theorem 1, \tilde{X} is not biholomorphic to B_2 . Therefore, \tilde{X} is biholomorphic to D^2 . This completes the proof of Theorem 4.
- 6. Examples and problems. We give the following typical examples of (X, π, R) .

EXAMPLE 1. Let S be a Riemann surface of finite type (g, n) with 2g-2+n>0 and let R be an open Riemann surface of finite type whose universal covering space is the upper half-plane. Let $X=R\times S$ and let π be the canonical projection of X onto R. Then (X, π, R) is a holomorphic family of Riemann surfaces of type (g, n) over R. All the fibers are conformally equivalent to S and the homotopic monodromy group \mathcal{M} is trivial. It is clear that the universal covering space \tilde{X} of X is biholomorphic to the polydisc D^2 . Theorem 1 implies that \tilde{X} is not biholomorphic to the unit ball B_2 . Hence, Theorem 1 is a generalization of the famous theorem due to Poincaré which asserts that the polydisc D^2 is not biholomorphic to the unit ball B_2 .

$$R = C - \{0, 1\}$$
,
 $X = \{(x, y, t) | y^2 = x^3 + t, (x, y) \in C^2, t \in R\}$.

Let $\pi \colon X \to R$ be the canonical projection. Then (X, π, R) is a holomorphic family of Riemann surfaces of type (1, 1) over R and its homotopic monodromy group \mathcal{M} is a finite cyclic group. All the fibers S_t are conformally equivalent and the universal covering space \tilde{X} of X is biholomorphic to the polydisc D^2 .

Example 3. We set

$$R = C - \{0, 1, 2, 3\},$$

$$X = \{(x, y, z, t) \in P_2(C) \times R \mid y^2 z^3 = x(x - zt)(x - z)(x - 2z)(x - 3z)\},$$

where $P_2(\mathbf{C})$ is the two-dimensional complex projective space and (x, y, z) are the homogeneous coordinates of $P_2(\mathbf{C})$. Let $\pi\colon X\to R$ be the canonical projection. Then (X, π, R) is a holomrophic family of Riemann surfaces of type (2, 0) and its homotopic monodromy group \mathcal{M} is an infinite group. All the fibers S_t , $t\in R$, are not confomally equivalent. Theorems 1 and 2 imply that the universal covering space \tilde{X} of X is not biholomorphic to B_2 or D^2 . Moreover, Theorem 4 implies that $\operatorname{Aut}(\tilde{X})$ is a discrete group.

Let (X, π, R) be a holomorphic family of Riemann surfaces of type (g, n) with 2g-2+n>0. Let us give the following problems.

PROBLEM 1. Let R be a closed Riemann surface of genus $g_0>1$. Then prove that the universal covering space \tilde{X} of X is not biholomorphic to the unit ball B_2 . (cf. Shabat [10].)

PROBLEM 2. Let X be a Stein manifold. Then prove that the universal covering space \tilde{X} of X is biholomorphic to the polydisc D^2 if and only if $\operatorname{Aut}(\tilde{X})$ is not a discrete group. (cf. Shabat [10].)

PROBLEM 3. When $\operatorname{Aut}(\tilde{X})$ is a discrete group, can we write down all the elements of $\operatorname{Aut}(\tilde{X})$? Note that the covering transformation group \mathcal{G} of $\Pi \colon \tilde{X} \to X$ is a subgroup of $\operatorname{Aut}(\tilde{X})$ and its elements are known as in § 1.

References

- [1] L. Bers: On Hilbert's 22nd problem, Proc. Sympos. Pure. Math. 28 (1976), 559-609.
- [2] P.A. Griffiths: Complex analytic properties of certain Zariski open sets on algebraic varieties, Ann. of Math. 94 (1971), 21-55.
- [3] Y. Imayoshi: Holomorphic families of Riemann surfaces and Teichmüller spaces, in "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference" edited by I. Kra and B. Maskit, Ann. of Math. Studies 97, Princeton Univ. Press, (1981), 277-300.

- [4] Y. Imayoshi: Holomorphic families of Riemann surfaces and Teichmüller spaces II, Applications to uniformization of algebraic surfaces and compactification of two-dimensional Stein manifolds, Tôhoku Math. J. 31 (1979), 469-489.
- [5] Y. Imayoshi: Holomorphic families of Riemann surfaces and Teichmüller spaces III, Bimeromorphic embedding of algebraic surfaces into projective spaces by automorphic forms, Tôhoku Math. J. 33 (1981), 227-247.
- [6] J. Lehner: Discontinuous groups and automorphic functions, American Mathematical Society, Rohde Island, 1964.
- [7] R. Narasimhan: Several complex variables, University of Chicago Press, Chicago, 1971.
- [8] I.I. Pyatetskii-Shapiro: Automorphic functions and the geometry of classical domains, Gordon and Breach Science Publishers, New York, 1969.
- [9] J.P. Rosay: Sur une caractérisation de la boule parmi les domaines de Cⁿ par son groupe d'automorphismes, Ann. Inst. Fourier 29 (1979), 91-97.
- [10] G.B. Shabat: The complex structure of domains covering algebraic surfaces, Functional Anal. Appl. 11 (1976), 135-142.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan

Current address:
Department of Mathematics
White Hall
Cornell University
Ithaca, New York 14853
U.S.A.