

Title	Role of TRPM1 channel in retinal circuit development
Author(s)	小塚,孝司
Citation	大阪大学, 2018, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/69655
rights	
Note	やむを得ない事由があると学位審査研究科が承認した ため、全文に代えてその内容の要約を公開していま す。全文のご利用をご希望の場合は、 大阪大学の博士論文につい てをご参照ください。</a

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

論文内容の要旨

	氏名 (小塚孝司)
論文題名	Role of TRPM1 channel in retinal circuit development (網膜神経回路形成におけるTRPM1チャネルの役割)

論文内容の要旨

Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual neuronal activity are not yet fully understood. In the current study, I investigated the role of neuronal activity of ON bipolar cells in development using mutant mouse lines of both sexes in which neurotransmission from photoreceptor cells to ON bipolar cells is abrogated. I found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, *TRPM1* deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goa, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the *TRPM1^{-/-/-}* retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development.

様式7

論文審査の結果の要旨及び担当者

		氏	名	(小	塚	:	孝 司)					
	(職) 氏 名															
								_								
متعاريب المتعارية والمتعارية والمتعارية	主			教授			Л	-	•	久						
論文審查担当者	副			教授			本	Ē	-	彦						
	副			教授		-	木	侹	-							
	副	査		教授	1	左	藤	英	į.							
	1															
論文審査の結果	その異															
	nik oo d	२२ स्वद्यी जन्म		እድ. መዚ አ ት መ		- - .	، مد				(m. 111 um um um um	ómnik e	an bet a	• 1 25 1 1		
小塚孝司君は、網	限の	JN型X	極細胞の	宿期を宣	る陽1オン	ナキ	マイノ	VTR	'M	102	又損マワノ	、稠限の	所作りても	「囲し	C . 11	. 吊
な網膜ON神経回路は	~ <u>511:45</u>	ረ እናር በበተታላ	以西方去	スマトン	と明たみたり	<i>t</i> -	TE	DNA 1	141	iri sar	防水之加	X/= Sev	と広いす	+- 0NI	का राज स्क्र	; suns
ん和引展の内中枢王国 昭平	いわりが	日田助力	wyg Co	19 L C 1	を明らかにし	ΓĊ	, IP	CP IVI I	(41	沙古利川	旭 / 가 이 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	的石地的	r z n	CONS	卫从也	19411
胞の神経活動を担う	5限人	オンエ	トマルフ	** か *		四1-	- - -	~ ~ 0	N1 F	না হল	極如晦の	手面的中,	出化力	Z 1	क इंग्र मे	: .h
旭の种種伯動で担う	「勁」」	4 29	ፕ ጥ ሥር	00,	I KPMI V X1	見れ	- d- ".		IN S	ЕM	<u>ተቋፉ ክ</u> ባቢ <u>በር</u> ደ ∨⊅ ተ	白助れる	月天 9	_{ରେ} ।	十 6月 1日	//*
TRPM1欠損マウス維	田尚え	破垢上。	たトアス	ONTHIS	マ毎知時の…	£6~	ボネ	ス増ん	トマ	v 1163	細胞の動態	古地の	婉小	キたい	ティロル	- 70
IKPWIX損マラス和	加火で	周平17日 し、		, ONE	人们达利耳用207	但且	ζø	ଭ 11 -1	ዮፖ	ላ ባሜ ነ	和加速 >> 440 矛	(小川))	(1)#E1/1 / 2	0.01	i⊂7∓14	·M
極細胞がシナプスを	112 다	オスムロ	ママカロ	ン細胞の	1.株計4222年1月11日	st 77	۲ ۵ -	が知る	Z -3	:111		ONE	亚标如	山内へ	つ加級	1=
昭和山心ハンノノへで	112113	y @All	7 3 9 9	 MUBICI 	小小小天地形。	uX.~	1.77	小的公式	¢C	:4L/	<u> </u>	ONSE	八个法和	10163 - ZA	シャリ酒	94
達が遮断されている	mGh	ゆんやい	ChiTI	日マウフ	網腊アけスナ	1 72	ത≇	s ¥回 Xil	<i>l</i> -†	御玄	はおわたか	$\sim t_{\tau}$	有就要	1-trp	DM1 ∓	·
たる。「「「「「」」」であっている。	mon				19119 CYD C 4	(<u>-</u>)	V) 2	く 27 , 5日	10	19657	CAUAN [*]	ہ <i>ــ</i> / ر	T DH E	ist i Ki	WI 7	Y

ネルの阻害因子であるG蛋白質Goαの過剰発現実験や、チャネルロドプシン2によるレスキュー実験を通して、TRPMI を介した桿体双極細胞への陽イオンの流入が網膜神経回路形成に重要であることを示した。以上のことから、申請者 は正常な網膜ON神経回路形成にTRPMIチャネルを介した神経活動が必要であることを明らかにした。この研究は、網 膜神経回路に神経活動が必要であることを示す新たな知見であり、中枢神経系の神経回路形成メカニズムの解明に貢 献し、神経科学の発展に寄与することが大きい。よって、申請者が博士の学位を授与されるにふさわしいと判断する。