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0. Introduction

In this paper we are concerned with the weak solution of the following

nonlinear evolution equation

(0.1)

in a real Hubert space H. Here φ^Q^t^T, is a family of convex, ̂  + 00,

lower-semi-continuous functions from H into ] — oo, +00]. Putting D(φt)=

{u^H; <£>'(#)< + °o }, we assume that D(φ*)=D is independent of t. The

operator 9(^(ί)^+/^) is the subdiίferential of £(£)<£>'+/# where c(t) is nonnega-
tive continuous function, D is the closure of D and /# is the indicator function

of D (see [1]). The function c(t) may vanish somewhere, hence (0.1) is an equa-
tion of degenerate type. We denote the inner product and norm in H by ( , )

and I I , respectively. Moreover we assume that there exist a continuous

function h(f) and two positive constants Lr and lr depending on r>0 such that

I φ'u-φ'u \^Lr\ h(t)-h(s) I {φ'u+l,} (0.2)

holds for Q^s^t^T,u<=D and \u\^r.

Next, for c(t) we assume

measure ({*e]0, Γ[; c(t)=0} -int {*e]0, Γ[; c(t) == 0}) = 0 . (0.3)

DEFINITION 0.1. We say that weC([0, Γ] D) is a weak solution of (0.1) if

and only if u satisfies (φ)^f+/s) w(ί)=έ;(ί)9ίXί)eL1(0, T) and

\ 2c(s)φsv(s)ds— \ 2φ) φsu(s)ds

fC/(*)~;r(*), »(*)-«(*))*
Ί <w

+y I »&)-«(*«) 12-y I ϋ(ί.)-^( ι̂
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for any v^.W1'1(t1, t2: D) where tl and t2 are nonnegative numbers such that

Now we state our main theorem.

Theorem. Under the above assumptions the weak solution of (0.1) satisfying
the initial condition u(Q)=u0 exists and is unique for anyf^Ll(Oy T: H) and u0^D.

Abstract equations of this form have been considered by H. Brezis [1],
H. Attouch et A. Damlamian [2], N. Kenmochi and T. Nagai [3], K. Maruo
[4], J Watanabe [5], e.t.c. This paper has been motivated by [5], in which
the strong solution was considered under the condition of nondegenerate type.
For the linear case, Friedman and Shuss [6] considered a degenerate equation

of this form. In this paper, we have attempted to extend the results of [5]
and [6] in a certain sence.

First, in section 1, we introduce some definitions and lemmas which will
be used throghout this paper. Next, in section 2, we will prove the theorem
when φ* is independent of ΐ. Finally, in section 3, we will prove the ex-
istence and the uniqueness of weak solutions of (0.1) in the general case.

1. Definitions and fundamental lemmas

Definition 1.1. We say that u<=C([Q, T]: H) is a strong solution of (0.1)
if u is absolutely continuous on any compact subset of ]0, T[ and satisfies (0,1)
almost everyshere on]0, T[.

DEFINITION 1.2. We say that t/eC([0, T]: H) is a piecewise strong
solution of (0.1) if there exists a partition of [0, T]: 0=ί0<ί1< <ίf_1<ίί=ϊ1,
and u is strong solution of (0.1) on every [tk, tk+l]k=0>ly...ti_1.

DEFINITION 1.3. We say that z/e C([0, T] : H) is a s-weak solution of (0,1)
if there exists {^y^cC^O, T]: H) and {/''̂ cL^O, T: H) such that uj is

a strong solution of

and/'-*/ in Lr(0, T: H) and u'-+u in C([0, T]: H)

DEFINITION 1.4. We say that w^C([0, T]: H) is a piecewise s-weak solu-
tion of (0.1) if there exists a partition of [0, T]: 0=ί0<ί1< - <*/_!<*,-= Γ, and

u is a s-weak solution of (0.1) on every [tk, £*+i]*=o,i, -,ί-ι

Lemma 1.1. The following diagram hold:
1) strong solution =Φ s-weak solution =Φ piecewise s-weak solution =Φ waek

solution .
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2) strong solution =t> piecewise strong solution =$> piecewise s-weak solution.

Proof. If u be a strong solution, then for any v^D

^), V-U(t))at

Hence c(t)φ*u(t) is absolutely integrable on [0, T~\. The remaining part of
the proof is simple and is omitted.

Lemma 1.2. Let u and v be pίecewise s-weak solution of

-^(t)+Q(c(t)φt+I-D)u(t)^f(t} (1.1)

dv (1.2)dt
respectively where f andg^Ll(Q, T: H). Then we have

+ \'(f(*)-g(*), «(*)-«(*))<** , (1.3)

I u(t)-v(t) I 5Ξ I u(s)~v(s) I + Γ \f(x)-g(x) \dx, (1 .4)
J S

for any O^s^

Proof. If u and v are ί-weak solutions, we have known these results from
[1], p. 64, Lemme 3.1. If u and v are piecewise s-weak solutions, we obtain
the above inequalities for respective partitions. Next, if we add these inequali-
ties, we have our results.

2. Some lemmas

In this section, we will prove Theorem when φt is independent of t in
Lemma 2.2 and Lemma 2.3.

Lemma 2.1. For any h(t)^.Ll(Q, T: H) and u^Ό, there exists a s-weak

solution u(t) of

du u(0) = u0 (2.1)
a

and it is the unique piecewise s-weak solution of this problem. In particular, if
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A(ί)eL2(0, T: H) and u0&D, then u is a unique piecewise strong solution.

Proof. The uniqueness follows from Lemma 1.2. We will prove the
existence of a solution. We can always reduce to the case min 93=0 since
D(dφ)*φ in view of [1]. We put for any *GΞ[0, T] and £<Ξ]0, 1],

cj(t) = c(t)+£, y = σ f(f) =

Case (1): h(t)<=L\Q, Γ: H) and «„<=£>.
Using [1] p. 72, Theorem 3.6, we get a strong solution of

£y), t;β(0) = MO ,dt
(2.2)

and have the next equality almost everywhere on [0, Γj where Te=σt(T),

d
dy "*

d
dy

Hence we get for any y€Ξ [0, TJ,

dx

We have for any y^ [0, Γ J

5^ d 2 (τ

Vz(x) dx ^2φuQ-\-\ I h ( t ) I αί , (2-3)
o d# Jo

1 fΓ I , 9

0 ̂  9?^s( j) ̂  ̂ w0H \ I MO I "* (2 τ)
2 Jo

Next we put ws(ί)=^2(σε(ί)); Ze[0, Γ], then ws(ί) is a unique strong solution of

*«(0) = M0, ίe[0, Γ]. (2.5)

(2.6)

(2.7)

dt

By (2.3) and (2.4), we get

Λ εv

where Cx is a positive constant independent of 8 and t.
On the other hand, from (2.5), we have
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ue(t), us,(t)-us(t)) (2.8)

-C,'(t) φu,'(t)

,W-«Λ«)) (2-9)

By adding these two inequalities (2.8) and (2.9), we have

Integrate above inequality on [0,ί], Then using (2.7), we get

-y|«.(<)-a,'(ί)Γ^«TC1.£ for any fe[0, T], 0<£'<£ .
LJ

So, there exists a w<=C([0, T]: H) such that

M8->ι/ as £->0 in C([0, T]: H) .

By (2.6), there exists a sunsequence £y->0 and weL2 (0, Γ: //) such that

—u^->w as ;->oo in w-L2(0, T: ΛΓ) .

Hence we get

XO, Γ: //), w - — eL2(0, Γ:

By (2.5), we have

J t ft
cz(x) φ(v) dx— \ cs(x) φuz(x) dx

s Js

for any v<=D(φ) and [s, ί]c[0, T] .

Letting £ = 6y->0, we get c(t)φu(i)<=L\Q, T) and

S £(#) φ(e ) ^Λ; — \ £(#) ^)W(Λ )
5 «/5

(^A(*) — —«(*), υ-v(x))dx .
dx
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duFor any Lebesque point of c(t)φu(t)y \/c(t) h(t) and - (t), we have
dt

for any

Hence we get that u(t) is a strong solution of (2.1), and in view of (2.7) we know

that u(t) e D for any t GΞ [0, T] .
Cace (2): h(t)eLl(Q, T: H), u0<=D.
There exists {u^j^dD such that u£-*uQ as j-*oo in H and {hj(t)} j^d
L2(0, T: H) such that A'-»A as j->oo in L^O, Γ: #). Let z/'eC([0, T1]: #) be
a strong solution of (2.1) with the initial deta u&. By Lemma 1.2, we get

I u*(t)-uk(t) I ̂  I ί/0

j-*4 1 + I tt(s)-hk(s) I * .

So, {wy}y>ι is a Cauchy sequence in C([0, T]: H).
There exists a ι*eC([0, Γ]; H) such that

tt^->iί in C([0,T\:H).

By the definition, ^ is a s-weak solution of (2.1).
Cace (3): h(t)<^L2(Q, T: H), u0€ΞD.

S t
c(s)ds>0, for

0
any *e]0, T], we denote by vl(y) a unique strong solution of (2.2) with a
initial deta u£. By [1] Theorem 3.6, we get, for any δe]0, T],

-j—v^y) αy^v ±<T\O)) o2-t-L,3 (2.10)
dy

where C2 and C3 are positive constants independent of S,j and δ.

Let u{(t)=v{(σ^(t)) ί^[0, T], then we know that ι̂ (ί) is a unique strong solution
of (2.1) with the initial deta u£. By (2.10), we get

dt ^

where C4 and C5 are positive constants.
As in Case (1) we get

u'-+u* as 6->0 in C([0, T]: H)

where uj is a unique strong solution of (2.1) with the initial deta uj

Q.
Using the method of Case (1) we have
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(2.11)
at

Now, recalling the proof of Case (2), we know that u is a unique s-weak solution

of (2.1) with the initial deta u0 where uj-*u asj->oo in C([0, T]: H) and more-
over u is a strong solution of (2.1) by (2.11).

Finally, if there exists positive constant S0 such that

δ0 = »ι/{δe[0,

we put

u(t)=(u0

( the solution of (2.1) with the initial deta UQ

Using the above method and Lemma 1.2, then u(t) is a picewise strong solution
of (2.1). We complete the proof of this Lemma.

Now, for simplicity we denote by £"(/, UQ) the initial value problem

dt

Lemma 2.2. For any f(t)^Ll(Q, T: H) and uQ^D there exists a weak solu-

tion Of E(f, UQ).

Proof. We put

TV = {t<= [0, T] c(t) = 0}, P = {te[0, T] c(t)>0} and

R = P U int N .

By the assumption (0.3), we have measure ([0, T]—R)—0. Since R is an open
set, there exists an at most countable set of disjoint open intervals {]aiy #, [}t ̂ ι
such that R= Σ/>ι ]aίy b{[. If {ί} is a finite set, the proof is easier. Thus we
assume {/} is an infinite set. Let/'eL^O, T: H) be the function such that

(/'(*)=.
j= 1, 2, » ,ί.

f« (ί) = 0; otherwise. (2.12)

Clearly

/••->/ as z^oo in L\OyT:H). (2.13)

Let us consider the equation

j..
(2.14)
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If ]ajy ό, [cP, we can apply Lemma 2.1 in this interval since /*(*) vanishes near
aj and bj. If ]ajy bj[c.int N, (2.14) reduces to

there. Hence there exists a unique piecewise s-weak solution u* of E(f*, U0).
By Lemma 1.2, we have

Iu'(t)—u k (t)I g ΓI fj(x) —f*(x)Idx for any te[0, T] .
JoΓJo

Thus there exists a function such that

u'-+u as t->oo in C([0, Γ]:H). (2.15)

By Lemma 1.1 we get the next iniquality for any Q^t^t^T.

1 «(*,)-«'(',) 1 2-- I v^-u

where ceίΓ1-1^,, t2: H) such that v(t)eD on [ίn <2] and
L'(0, Γ).

Using (2.13) and (2.15), we can complete the proof.
Next we will get the uniqueness of weak solutions by establishing the

following Lemma.

Lemma 2.3. Let u and v<= C([0, T] : H) be two weak solution of £"(/, w(0))
and E(g, v(0)) respectively. Then we get the same inequalities as (1.3) and (1.4).

Proof. Fix z<=D, we define the operator Kz from !/((), T: H) to
C([0, T]: H) such that ϋΓ,/ is the weak solution of E(f, z) which is actually
constructed in Lemma 2.2. Then we know that Kz is a singlevalued operator
and D(KX)=L1(Q, T: H). Let uλ=KJly u2=Kzf2. By the proof of Lemma
2.2, there exist {wι}^ι and {i/!}*^ such that ul

p is a piecewises-weak solution of
E(fi> *) ί=1» 2 B7 Lemma 1.2 we get

\u{(t)-ui(t)\ ^\fί(x)-fϊ(x)\dx. (2.16)

and so
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for any Ze[0, T]. Hence K2 is a continuous operator from L^O, T: H) to
C([0, T\ : H). For /eL^O, Γ; if), we denote by AT,/ the set of the weak solu-
tions of E(fy z). Then we get

Next, let [/Ί, nJeΛf, and [/, w]<Ξ^. Since /eL^O, Γ: #), there exists
, T: #) such that

as ->co n

Let/' be the function denned by (2.12) and/* be the function defined similaly
with//, in place of/. There exists {u?}^ such that u* is a piecewise $-weak
solution of £"(/% )̂ and

t/'-^M as i-»oo in C([0, Γ]: /ί)

by the proof of Lemma 2.2. And there exists {tt*}f ̂ ι, k^ such that z/i is a
piecewise strong solution of E(fi, z) on 0=ίJ *<ίί *< <t$tk=T. Con-
sequently by Lemma 1.2, we have for any ίe[0, Γ]

So, ui-^ui as Λ->oo in C([0, T]: H).

For fixed z,A, we take a positive constant p such that

0</)<2-1 min {fj '-ίjii;/ = 1, 2, » , JV(.»} .

For simplicity, we write ί, instead of ί$ *. Thus we know

ί— -«ί, «ι-«ί)Λ, j = 0, 1, -,ΛΓ,,ft-l . (2.17)
at

Since [/1? z/JeM^, we have
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+y I u\(t^-p)-Ul(tj+l-p} 1 2-l I u](tί+p)-Ul(t/+p) 1 *

for ; = 0, 1, -,ΛΓ,,ft-l. (2.18)

Adding (2.17), (2.18) and letting />-*0, we get

o 2

Then we have

for any [/, M]eJsΓ,, [/,, nJeM . (2.19)

Let h be an arbitrary element of L^O, T: H) and 0 <<?<!. Substituting
/=(!— - q)fι-\-qh, in (2.19) and using the continuity of .K ,̂ we easily get

So we have Kzf1=ul. Thus we obtain K2=MZ. Recalling the proof of Lemma
2.2wecaneasilyshowthat(1.3)and(1.4)are valid for [/, u]^Ku^, [g, v\^Kv^.
Thus the proof of the lemma is complete.

3. Proof of Theorem

Lemma 3.1. For any /eL^O, T: H) and u^D, there exists a weak solu-

tion of (0,1) with the initial deta UQ.

Proof. There exists a sequence {/^}^ιCL2(0, T: H) such that /*-*/ as
k-*oo in L^O, T: H). Let {/!} k^\,ί^\ be the family of functions defined in the
proof of Lemma 2.3. Setting t%=2-" ρ T, define

Uμ) = φ'*(uy, for t^t<tn

p+ly p = 0, 1, - .- , 2W-1 .

Let {ttJ^cCdΌ, Γ]:ίί) be the functions such that uH(ί)\ tp^t^tp+1, p=
0, 1, •••, 2n— 1, is a unique weak solution of

dt

= ( MO , if p = 0 .

the value of un(f) (ί£_ι g t ̂  ζ) at ί = ίj ,

.if j > = l , 2 , . . ,2"-l.

These functions {^«}M^ι exist by virtue of Lemma 2.2. For simplicity we write
un=Sn(f, MO) and similarly define un>k=Sn(fk, MO) and ufl>k=Sn(fi, u0). By
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Lemma 2.1 Un,k(t)', ζ^ί^^i, is a piecewise strong solution of

at

Using Lemma 2.3, we get

^ Γ I /ί-Λ I dx , for any ί e= [0, Γ] .
Jo

Consequently we find Un,k-*un>k as /->oo in C([0, 71]: #). We also get un>k-*un

as k-*oo in C([0, T] : H). Taking αeD, we have

=(/ί, σ_< 4)+--l t '-<»l 1 . β *.[0,Γ], (3.1)Z αί

Since t£tk is continuous, piecewise absolutely continuous on [0, T] and there
exist positive constants a^ and a2 such that

φ*u^— dι\u\— a2 , for any z/eίί, ίe[0, T]

(see [2]), we get by [1] p. 156 Lemma A. 5

KiWI^C,, (3.2)

where Cl is a positive constant independent of n, k, i and t.

By (3.1) and (3.2), we have

(3.3)

where C2 is a positive constant independent of n, k, i, tly t2. Since u^. *, u^. k(m^
are piecewise strong solutions, we have

«.β to,
By adding these two inequalities, we get

(φ) φί+Ijg) ul, k(ή-(c(s) φ<m+IB ) at. t(ί)

«ί. *(*)-(Ψ) 9>ί+/s) "ί. *W
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Since u^tkί t£.k&C([Q9 T] : H) are piecewise absolutely continuous, we have

, for any ίe[0, 7]. (3.4)

In view of (3.2), (3.3), (3.4) and (0.2), for any given £>0 there exists an in-
teger w0>0 such that

\ultk(t)-ulk(t)\^\/'eC2 for any m^n^n, ,

where C2 is a positive constant independent of m, w, Λ, i and ί.
Then we have

\um(t)-un(t)\^VtίC3 for any m^n^n, and *e[0, T] . (3.5)

Hence there exists «eC([0, T]: £Γ) such that

-̂̂  as τz->oo in C([Q,T]:H). (3.6)

By (3.2) and (3.3), we also have

\un(f)\^Cl for any n and fe[0, Γ] , (3.7)

^\c(s)φ9

n+ID)un(s)d5^C2 for any n and Q^t^t^T . (3.8)
J*l

From the construction of un, we have

un(t)^D on [0, Γ] , (φ)p<+/i>)f/Λθ€=L1(0, Γ: //)

for any [ί,, /Jc[0, Γ]

c(s) φs

n+ID) un(s) ds

+1 1 KO-β-ίί.) Γ- y I »(O-«-(ίι) 1 2

for any weϊP 'ίίi, ί2: H) such that v(t)<=D on [ί,, ίj and

Using (3.6), (3.7), (3.8) and (0,2), we prove the existence of a solution.

Now, we get the uniqueness of solutions by the following Lemma.
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Lemma 3.2. Letf, g^Ll(Q, T: H) and u3 v be two weak solutions o/(l.l),
(1.2) respectively.

Then we get the inequalities same as (1.3), (1.4).

Proof. Fix #eZ>, we define the operator Kz from //(O, T: H) into
C([0, T]: H) such that KJ is the weak solution of (0. 1) with the initial value
# which is actually constructed in Lemma 3.1. We know that Kz is a sin-
glevalued operator and D(KZ)=U(Q, T: H). By using Lemma 2.3, we see that
Kz is a continuous operator from Z^O, T: H) to C([0, T]: H). For any
/ei^O, T: H), we denote by M2fthe set of weak solutions of (0. 1) with the
initial deta z. Thus J3(Mβ)=L1(0> T: H), KZC.MZ. Let [/, u]e KM, [/,, nje
Mz and {#„}, {w»>fe}, {#£,*} be the sequences defined in the proof of Lemma 3.1
with u0 replaced by z. We know u^tk-^untk as /->oo, un>k-^un as k-*oo and
un-*u as /z->oo in C([0, 71]: jf/). Noting that z4,£ is a strong solution of

on <5ιV^ί^ί5 * ',y= 1, 2, -,NH,kιi, (3.9)

and following the proof of Lemma 2.3 we get

. (3.10)

In view of (3.2), (3.3), (3.10) and (0.2), for any £>0 we have

if 7^ is sufficiently large where C4 and C5 are positive constants independent
of n, k and ί. So we have

for any [/, u]^K2 and [/„ ttJeMz. We can complete the proof by the
method used at the last part of Lemma 2.3.
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