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0. Introduction

In this paper we are concerned with the weak solution of the following
nonlinear evolution equation

%(t)+6(5(t)¢'+15)u(t)Bf(t) (0.1)

in a real Hilbert space H. Here ¢, 0<¢<7T, is a family of convex,zE -+ oo,
lower-semi-continuous functions from H into ]—oo, 4+ co]. Putting D(p’)=
{ueH; p'(u)<-+oo}, we assume that D(p’)=D is independent of z. The
operator 9(c(t) p’+Ip) is the subdifferential of ¢(t)p’+ I where ¢(2) is nonnega-
tive continuous function, D is the closure of D and I is the indicator function
of D (see [1]). The function ¢(t) may vanish somewhere, hence (0.1) is an equa-
tion of degenerate type. We denote the inner product and norm in H by (,)

and | |, respectively. Moreover we assume that there exist a continuous
function A(f) and two positive constants L, and /, depending on >0 such that
| pu—gul L, | h(t)—h(s)| {pu+1,} (0.2)

holds for 0<s=<t<T,usD and |u| <Zr.
Next, for ¢(¢) we assume

measure ({10, T[; ¢(2)=0} —int {t<]0, T[; c(t) =0})=0. (0.3)

DeriNtTION 0.1, We say that u C([0, T]; D) is a weak solution of (0.1) if
and only if u satisfies (c(t) @' +1p) u(t)=c(t) p*u(t) L'(0, T') and

S:c(s) q:sv(s)ds—Sijc(s) oFu(s)ds
2[00 920, o)~ ds

2 lolt)—u(e) "= 1 lo(t)—o(t)
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for any v€ W*'(¢,, t,: D) where ¢, and ¢, are nonnegative numbers such that
0=t,<t,=T.

Now we state our main theorem.

Theorem. Under the above assumptions the weak solution of (0.1) satisfying
the initial condition u(0)=u, exists and is unique for any f € L'(0, T: H) and u,<D.

Abstract equations of this form have been considered by H. Brezis [1],
H. Attouch et A. Damlamian [2], N. Kenmochi and T. Nagai [3], K. Maruo
[4], J. Watanabe [5], e.t.c. This paper has been motivated by [5], in which
the strong solution was considered under the condition of nondegenerate type.
For the linear case, Friedman and Shuss [6] considered a degenerate equation
of this form. In this paper, we have attempted to extend the results of [5]
and [6] in a certain sence.

First, in section 1, we introduce some definitions and lemmas which will
be used throghout this paper. Next, in section 2, we will prove the theorem
when @’ is independent of #. Finally, in section 3, we will prove the ex-
istence and the uniqueness of weak solutions of (0.1) in the general case.

1. Definitions and fundamental lemmas

Definition 1.1. We say that uC([0, T']: H) is a strong solution of (0.1)
if u is absolutely continuous on any compact subset of ]0,7'[ and satisfies (0,1)
almost everyshere on]0, T.

DrerFiNITION 1.2, We say that u=C([0, T']: H) is a piecewise strong
solution of (0.1) if there exists a partition of [0, T']: 0=¢,<¢, < - <t;_, <t;=T,
and u is strong solution of (0.1) on every [t, p+1] k0.1, ... i-1-

DeriNiTION 1.3, We say that u C([0, T']: H) is a s-weak solution of (0,1)
if there exists {#’};»,cC([0, T]: H) and {f’},;>»,cL'0, T: H) such that #/ is
a strong solution of

B (0)-+3(c(t) '+ 1) ()2 1)

and f?—fin LY0, T: H) and w/—u in C([0, T']: H) as j—>oco.

DerFINITION 1.4. We say that u= C([0, T]: H) is a piecewise s-weak solu-
tion of (0.1) if there exists a partition of [0, T']: 0=¢,<¢, <.+ <t;_,<t;=T, and
u is a s-weak solution of (0.1) on every [, tesi]e-0,1, ... i—1-

Lemma 1.1. The following diagram hold :
1) strong solution = s-weak solution => piecewise s-weak solution = waek

solution .
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2) strong solution = piecewise strong solution = piecewise s-weak solution.

Proof. If u be a strong solution, then for any ve D
d
(B p'o—elt)pult) Z(ft) 5, - (8), v—ult))
= (f(0), o—ul®) + L |u(t)—ol*.
2 dt

Hence c(t)p'u(t) is absolutely integrable on [0, T']. The remaining part of
the proof is simple and is omitted.

Lemma 1.2. Let u and v be piecewise s-weak solution of
D (1) 4-0(e(t) 9"+ L) u(t) 302 (L1)
B 6)+0(c() 9"+ 1) o) 2400) (1.2)
respectively where f and g LY(0, T: H). Then we have
Ut —o(0) "< lu(9) (o)
+" ()0, uw)—e(a)) d, (1.3)
|u()—o(0)| = |u(s)—e(s) |+ |f(x)—g(x) d, (14)

for any 0<s<t<T.

Proof. If u and v are s-weak solutions, we have known these results from
[1], p. 64, Lemme 3.1. If « and v are piecewise s-weak solutions, we obtain
the above inequalities for respective partitions. Next, if we add these inequali-
ties, we have our results.

2. Some lemmas

In this section, we will prove Theorem when ¢’ is independent of ¢ in
Lemma 2.2 and Lemma 2.3.

Lemma 2.1. For any h(t)eL'(0, T: H) and u,ED, there exists a s-weak
solution u(t) of

~f;'—;i(t)Jra(C(t)szH-IB)u(t)9\/ o(t) -k(t), u(0) = u, (2.1)

and it is the unique piecewise s-weak solution of this problem. In particular, if
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h(t)e L¥(0, T: H) and u,&D, then u is a unique piecewise strong solution.

Proof. The uniqueness follows from Lemma 1.2. We will prove the
existence of a solution. We can always reduce to the case min =0 since
D(0p)=+ ¢ in view of [1]. We put for any ¢&[0, T] and €€]0, 1],

c(t) = c(t)+¢&, y = o (t) = S:ce(s)ds ,
o(t) = [ do)ds, 3) = ey of@) (1)

Case (1): h(t)eL*0, T: H) and u,D.
Using [1] p. 72, Theorem 3.6, we get a strong solution of

B o (+0p0.()28(9), 940 = ., @2)

and have the next equality almost everywhere on [0, 7".] where T, =a(7),

d 2 d _ 4 ().
]_d?v,(y){ +d—y~¢va(y)—(gs(y), e (7))

Hence we get for any ye[0, T],

1(° d 2 1¢» 1(T
= _w _ S—— 2 S— 2 .
L o art oo —ou= L[ 1= | h@)1as

We have for any y[0, 7]

[ ixvg(x) dx §2¢u0—l—gT|h(t)|2dt, 2.3)

0Sgo N Sgu+ | h))dr. 24)
Next we put u(t)=v,(o(?)); t[0, T], then u,(¢) is a unique strong solution of

%ug(t)we(t)ag;us(t)a\/z(?) I(2), u,(0) = u,, t<[0, T]. 2.5)
By (2.3) and (2.4), we get

i,

0<pu(t)<C, (2.7)

—t%—ug(t)izdtgcl (2.6)

where C, is a positive constant independent of € and ¢
On the other hand, from (2.5), we have
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ce(2) puys(t)—c(t) put)

Z(V A ——L (1), us(t)—ut) )
o/ (2) pu(t)—c/(t) puy(t)
Z(V A H(t) (1), w(t) (1) (29)

By adding these two inequalities (2.8) and (2.9), we have

(E—&) pux(t)+(&'—&) puy(?)

1 d 2
> 2 u(t)—u)]?.
2% () —ua)
Integrate above inequality on [0,£]. Then using (2.7), we get
%lug(t)—us/(t)lzg‘I-TCl-E for any t& [0, T], 0<& <& .

So, there exists a u=C([0, T]: H) such that
u—u as =0 in C([0, T7: H).

By (2.6), there exists a sunsequence &,—0 and we L? (0, T: H) such that

w8 j—c in w—L*0, T: H).
Hence we get
ue W0, T: H), w = %ey(o, T: H)

By (2.5), we have

S:cg(x) P(v)dx— S:Ce(x) (%) dx

‘Z: (%), v—u(x))dx

= (v a@ha)—
for any v€D(p) and [s, t]cC[0, T7.
Letting é=¢&,—0, we get ¢(t) pu(t)e L'(0, T') and
S:c(x) 2(0) dx—S:c(x) ou(x) dx

gS:(\/ c_(x-)h(x)—%u(x), v—u(x))dx .
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For any Lebesque point of ¢(¢) pu(t), \V/ c(t) h(t) and %(t), we have

o(8) p(0)—c()u(t) 2 (v A h(B)— (1), v—u(t)
for any veD(p).

Hence we get that u(¢) is a strong solution of (2.1), and in view of (2.7) we know
that u(¢)e D for any t<[0, T1.

Cace (2): k() L0, T: H), u,=D.

There exists {#{};>,CD such that u{—u, as j—oco in H and {#/(t)};>,C
L0, T: H) such that h’—h as j—>oo in L0, T: H). Let w/€C([0, T]: H) be
a strong solution of (2.1) with the initial deta #f. By Lemma 1.2, we get

T R .
| wi(t)—uk(t)| < |ud—us| —I—S V c(s) | i(s)—h¥(s) | ds .
So, {#/};s, is a Cauchy sequence in C([0, T]: H).
There exists a u< C([0, T]; H) such that
w—u in C([0, T]: H).

By the definition, u is a s-weak solution of (2.1).
Cace (3): h(t)eL*0, T: H), u,eD.
t
There exists {ug} ;> CD such that u{—u, as as j—>co in H. If S ¢(s)ds>0, for

any t€]0, T], we denote by v{(y) a unique strong solution of (2.2) with a
initial deta uJ. By [1] Theorem 3.6, we get, for any §&]0, 77,

SU'E(T)
ae(8)

where C, and C, are positive constants independent of &, j and 8.

%vi(y)lzdyé(\/m)”-cﬁca (2.10)

Let ul(t)=v}(o.(t)) t€[0, T], then we know that %(¢) is a unique strong solution
of (2.1) with the initial deta #d. By (2.10), we get

T 2 S
SB %ug(t)’ At=(25(8)) "+ Co+-C,
where C, and C; are positive constants.
As in Case (1) we get
ul—»u as -0 in C([0, T]: H)

where %/ is a unique strong solution of (2.1) with the initial deta u].
Using the method of Case (1) we have
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Nd NP A3 —7EN \~
Ss!jﬁ—u’(t)' dt=(\/25(8))"+C,4-C, . 2.11)
|

Now, recalling the proof of Case (2), we know that « is a unique s-weak solution
of (2.1) with the initial deta », where u/—u as j—co in C([0, T]: H) and more-
over % is a strong solution of (2.1) by (2.11).

Finally, if there exists positive constant §, such that

8, — inf {5[0, T]; §8c(s)ds> 0},
0
we put
u(t) = {uo 0=t<3,
the solution of (2.1) with the initial deta u,
8,=<t<T.

Using the above method and Lemma 1.2, then u(¢) is a picewise strong solution
of (2.1). We complete the proof of this Lemma.
Now, for simplicity we denote by E(f, u,) the initial value problem

B o(c(t) p+Ip)us, u(0) = u,.

Lemma 2.2. For any f(t) L0, T: H) and u,& D there exists a weak solu-
tion of E(f, u,).
Proof. We put
N = {t€[0, T1; ¢(t) = 0}, P = {t=[0, TT; ¢(£)>0} and
R=PUintN.

By the assumption (0.3), we have measure ([0, 7]—R)=0. Since R is an open
set, there exists an at most countable set of disjoint open intervals {]a;, &;[};>:
such that R= 3%;5, ]a;, b;[. If {i} is a finite set, the proof is easier. Thus we
assume {7} is an infinite set. Let ffL'(0, T: H) be the function such that

fi@) = f(t); a;+277(b;—a,) <t <b;—27"(b;—~a))
J=1,2, 1.
fi(t) = 0; otherwise. (2.12)
Clearly
fi—=f as i—oco in LY0,T:H). (2.13)

Let us consider the equation

(1) oo+ IDun= 110 . (2.14)
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If Ja;, b,[c P, we can apply Lemma 2.1 in this interval since f() vanishes near
a; and b;. If Ja;, b;[Cint N, (2.14) reduces to

%‘_ (0)-0I5u(t) (1) ,

there. Hence there exists a unique piecewise s-weak solution u’ of E(f?, u,).
By Lemma 1.2, we have

|43 (t)—uk(z)| gST[ff(x)——f"(x)ldx for any [0, T7.
0
Thus there exists a function such that
w—u as i—co in C([0, T]: H). (2.15)

By Lemma 1.1 we get the next iniquality for any 0<t,<t,<T.
[ cOptI0d—{ ety o+ Iy de
2[00 -2 @), oy—uin)a
o o) = () P o(t) e

where v&E W*(¢,, t,: H) such that o(t)€D on [¢,, t,] and (c(t)p-+Ip)v(t)E
L0, T).

Using (2.13) and (2.15), we can complete the proof.
Next we will get the uniqueness of weak solutions by establishing the
following Lemma.

Lemma 2.3. Let u and v C([0, T]: H) be two weak solution of E(f, u(0))
and E(g, v(0)) respectively. Then we get the same inequalities as (1.3) and (1.4).

Proof. Fix z&D, we define the operator K, from L'0, T: H) to
C([0, T]: H) such that K_f is the weak solution of E(f, 2) which is actually
constructed in Lemma 2.2. Then we know that K, is a singlevalued operator
and D(K,)=L'0, T: H). Let u,=K,f,,u,=K,f,. By the proof of Lemma
2.2, there exist {ui};>;, and {u$};>, such that «} is a piecewises-weak solution of
E(fi, 2) p=1, 2. By Lemma 1.2 we get

utO)—us()| = | fiGx)—ri() d (2.16)

and so
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T
uy—u®| <[ 1 £.0O—f0)a

for any z=[0, T]. Hence K, is a continuous operator from L0, T: H) to
C([0, T]: H). For feL¥0, T; H), we denote by M, f the set of the weak solu-
tions of E(f, ). 'Then we get

D(M,)= L0, T: H), K,c M, .

Next, let [f,, w,JeM, and [f, u]eK,. Since fL'0, T: H), there exists
{f£}42: < L¥O, T: H) such that

fr—=>f as k—oco in LY0, T: H).

Let f* be the function defined by (2.12) and f; be the function defined similaly
with f, in place of f. There exists {#'};>, such that «’ is a piecewise s-weak
solution of E(f?, 2) and

wi—u as i—oco in C([0, T]: H)

by the proof of Lemma 2.2. And there exists {ui};>, >, such that u} is a
piecewise strong solution of E(f}, 2) on 0=t§*<t{*<..- <ty! =T. Con-
sequently by Lemma 1.2, we have for any t=[0, T]

T
e —w) |1 FO—fi).
So, ui—u’ as k—co in C([0, T': H).
For fixed 7,k, we take a positive constant p such that
O<P<2 +min {t_’ —tj 1,]:1, 2)""Ni,k}'
For simplicity, we write ¢; instead of #{"*. Thus we know
t
[ (z>¢+ln>u1<t)dt—5 " (e o+ o) ud(e) de
itr

%Suu p(fi uk, w—ul)dt, j=0,1,-,N;,—1. (2.17)

tij+p
Since [f,, w,]€M,, we have

J+17

[ g ity a7 0y Ty

7

S'J+1‘P(f1_i

tj+p dt

%

uf, ub—u,)dx
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]. 2 i 2
"‘*2— |ui(tj 1, —p)—w,(t;4:—P)| —% lui(t;+p)—u(2;+p)|
for j=0,1, -, N;,—1. (2.18)
Adding (2.17), (2.18) and letting p—0, we get

OgSOT(f,—f,‘,, ui—ul)dt—i——;—lui(T)—ul(T)l2—%[1&‘,‘,(0)—1;1(0)[ .
Then we have
ST(f—fl, u—w)dt=0, forany [f,u]ek., [fouw]EM. (2.19)

Let 4 be an arbitrary element of L'(0, 7: H) and 0<g<1. Substituting
Jf=(1—¢q)f,+gh, in (2.19) and using the continuity of K,, we easily get

S:(h—f,, K.fi—u)dt=0.

So we have K,f,=u,. Thusweobtain K,=M,. Recallingthe proof of Lemma
2.2 we can easily show that (1.3) and (1.4) are valid for [f, u]€ K., [g, V]E K, -
Thus the proof of the lemma is complete.

3. Proof of Theorem
Lemma 3.1. For any f€L'0, T: H) and u,ED, there exists a weak solu-
tion of (0,1) with the initial deta u,.

Proof. There exists a sequence {f.}z2,CL*0, T: H) such that f,—f as
k—co in L0, T: H). Let {fi}4>, :>, be the family of functions defined in the
proof of Lemma 2.3. Setting #p=2""-p-T, define

Pi(u) = @'o(u); for 1<t <ty p=10,1,---,2"—1,

Let {u,},>,CC([0, T]: H) be the functions such that w,(t); t,<t=<t,,, p=
0, 1,.--,2"—1, is a unique weak solution of

%u"(t)—}—ﬁ(c(t) Pit+-I5)ut)> f(2)

uty) = (t,, if p=20.
the value of u,(¢) (f-1=t=<¢) at ¢t=1p,
if p=1,2,..-,2"—1.

Thesse functions {u,} >, exist by virtue of LLemma 2.2. For simplicity we write
u,=Su(f, u,) and similarly define wu, ,=3S,(fs, #,) and u} . =S.(f} u,). By



CeRTAIN DEGENERATE EvoLuTioN EQUATION 609

Lemma 2.1 u} 4(t); ty<t=<tp.,, is a piecewise strong solution of

—;t-u,‘,_,,(t)—{—a(c(t) Pit-T5)ub DY) .

Using Lemma 2.3, we get

T
|t ) —na®I (| fimfaldw, forany te[0, T].
0
Consequently we find %} ,—>u, x as i—co in C([0, T]: H). We also get u, ;—u,
as k—>oo in C([0, T]: H). Taking veD, we have
(@) prt-Ip) v—(c(t) prt-Ip) tn.»

d
z(fi——‘-it—uf..k, v"“uf.,x)

=(f%, v—u,‘,,,,)—i—%%lv—u,‘._,,]z, ae. [0, T], 3.1

Since uj , is continuous, piecewise absolutely continuous on [0, 7] and there
exist positive constants a, and a, such that

P'u=—a,|u|—a,, forany ueH, t<[0, T)
(see [2]), we get by [1] p. 156 Lemma A.5
luni(8)] =Cy, (3.2)

where C, is a positive constant independent of =, k, 7 and ¢.
By (3.1) and (3.2), we have

Stz(C(s) Prt-Ip)unsds=C, (3.3)
11

where C, is a positive constant independent of #, &,7,¢,,¢,. Since u ,, uf, (m=n)
are piecewise strong solutions, we have

(e(s) pit-Tp) b, s— (e(5) pA-T5) a2 ( f:—diiu:,., Ul y—10h )

(c(8) Pm+1p) s s—(c(8) P t-15) i, 1 = (fi—% Uk, byy Ub 4— U 1)
a.a [0, T].

By adding these two inequalities, we get
(e(8) Pat-15) e, 1(5)—(e() Pm~+-1 5) thm. ()
+(c(s) i +1I5) tn, () —(e(s) PatI5) n. o(5)

% % by 1(5)—tb (5) | .
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Since us, », ur,» € C([0, T]: H) are piecewise absolutely continuous, we have
T
[, (et Ip)ut )~ els) @it Io) o (5} s
T
o+ A Tt ss) —(l6) Pt Ip) (O} ds

= up () —ul 4(2)]?, for any t<[0, T7]. 3.4

1
2
In view of (3.2), (3.3), (3.4) and (0.2), for any given £€>0 there exists an in-
teger 7,>0 such that

|1, () — 1 4(2) | <VEC, forany m=n=n,,

where C, is a positive constant independent of m, n, k, 7 and ¢.
Then we have

| n(t)—u,(2)| <V E C, for any mgngnoi and [0, T]. (3.5)
Hence there exists u= C([0, T']: H) such that

u,~u as n—oo in C([0, T]: H). (3.6)
By (3.2) and (3.3), we also have

lua(t)| =C, forany » and t€[0, 7], (3.7)

sz(c(s)cp,i—i—ID) uy(s)ds<C, forany #» and 0=#,=<¢,<T. (3.8)

From the construction of u,, we have
v u(t)eD on [0, T], (c(t)pitIp)u(t)s L0, T: H)
for any [t,, ¢,] [0, T7
NGO e LGS WUCTEE ATHOR
2 (") —-Lo9), o)l ds
t1 A

oy 1)t = (k) )

for any veW"(¢, t,: H) such that v({)&D on [t,t,] and
(c@®)@p'+Ip)v(t)eL'(t, t,) .

Using (3.6), (3.7), (3.8) and (0,2), we prove the existence of a solution.

Now, we get the uniqueness of solutions by the following Lemma.



CEerTAIN DEGENERATE EvorLuTtioN EquaTioN 611

Lemma 3.2. Let f, g L0, T: H) and u, v be two weak solutions of (1.1),
(1.2) respectively.
Then we get the inequalities same as (1.3), (1.4).

Proof. Fix z&D, we define the operator K, from L0, T: H) into
C([0, T]: H) such that K_f is the weak solution of (0. 1) with the initial value
g which is actually constructed in Lemma 3.1. We know that K, is a sin-
glevalued operator and D(K,)=L'(0, T: H). By using Lemma 2.3, we see that
K, is a continuous operator from L'(0, T: H) to C([0, T]: H). For any
feL0, T: H), we denote by M f the set of weak solutions of (0. 1) with the
initial deta 2. Thus D(M,)=L'(0, T: H), K,cM,. Let[f, ul€K,, [f,, u,]E
M, and {u,}, {un s}, {#i .} be the sequences defined in the proof of Lemma 3.1
with u, replaced by 2. We know u, ,—u,, as i—>cc, u, ,—u, as k—oco and
u,—u as n—oo in C([0, T]: H). Noting that #}, , is a strong solution of

L )0 P+ I3 F1(E), wh(0) = 5
on t?fi‘gtét?'k't’j =12, Nn.k,i > (39)

and following the proof of Lemma 2.3 we get
T T
[ )i+ Tpymds—{ @)+ Io)uds
T T
+SO (e(s) 9"+ I 5)ut, nds— S (c(s) - I5) k. o ds
T
2( (it wta—w) ot L (D) —u (D
— OO (3.10)
In view of (3.2), (3.3), (3.10) and (0.2), for any £€>0 we have
T
8-Coo{{ ()9 + I (s)ds+C)
T
+S (fz —fl) ufia.k_'ul)ngO

if n 1s sufficiently large where C, and C; are positive constants independent
of n, kand .. So we have

([~ u—u)dsz0,

for any [f, u]JeK, and [f,, u,]JEM,. We can complete the proof by the
method used at the last part of Lemma 2.3.
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