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Abstract
Cell analysis is one of the core procedures done frequently during the course of re-

search in a number of fields, including bacteriology and embryology. The information
about cell morphology, lineages, and growth characteristics is gathered with microscopes,
providing visual data in the form of images for investigation. Human-based study of these
images is labor-intensive, error-prone due to subjective biases, lacks reproducibility and
gives the qualitative assessment of the subject, rather than the quantitative. These negative
aspects emphasize the importance of an automatic solution for the cell analysis problem.
Although a number of software applications, capable of performing cell detection and
tracking, are available, they have to be heavily altered and tailored to solve each partic-
ular task, complicating the processing pipeline. This thesis presents image processing
based solutions for two cell analysis problems: drug susceptibility testing and early stage
embryo segmentation.

Drug susceptibility testing is a process where a bacteria strain resistance to multiple
drugs with different concentration levels is investigated. Existing approaches for testing
rely on processing with specialized equipment that provides results not earlier than 24
hours. Recently a new device, drug susceptibility testing microfluidic device, that per-
forms analysis of cell images after 3 hours, has been introduced. Development of an
algorithm for processing these images to extract cell features and determine, whether a
strain is susceptible to a drug in presented concentration or not, was the focus of the re-
search. The designed method showed more than 97% accuracy of estimating minimum
inhibitory concentration on a dataset that contained 101 bacteria strains, tested in presence
of 5 different drugs. The implementation of the algorithm was created as a stand-alone
software application that is currently used frequently to perform drug susceptibility tests
by biology experts.

Analysis of cell morphology at early stages of embryo development present interest for
the medical community, for information about cell characteristics such as position, vol-
ume, size, and others facilitates designing comprehensive models of internal processes,
occurring in the embryo during its growth, thus, leading to new treatments of genetic
disorders and artificial tissue growth. To extract cell features cell segmentation must
be carried out in advance. Previously introduced methods processed single or multiple
phase contrast microscopy images and showed efficiency in segmenting embryos with 4
or fewer cells, yet were not able to achieve high accuracy for embryos with more blas-
tomeres. Advances in fluorescence imaging allowed to target particular cell parts provid-
ing visual cues that simplify segmentation. The aim of the studies presented in this thesis
was to design a method for automatic segmentation of early-stage embryos from multiple
cross sections fluorescence images. This task was solved by constructing energy func-
tions to describe desired segmentation and applying a 3D level set. The method achieved
93% accuracy for 4-cell embryos, yet it was lower for the higher number of blastomeres,
reaching 75% for 32-cell embryo.
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Chapter 1

Introduction

1.1 Image Processing in Biomedical Research

Biology is one of the scientific fields which heavily depends on processing visual in-
formation. The increased resolving power and efficiency of microscope hardware have
allowed acquiring huge amount of precise visual information without any considerable
effort. Imaging has become the main source of data collection for biologists, facilitating
testing and validating new hypotheses.

Understanding the structure and dynamics of internal processes in living microorgan-
isms with the help of new image capturing equipment has become the prime target of
biological research. Significant endeavors have been made to modify existing imaging
techniques or design new procedures to visualize cells with high specificity and accuracy.

For example, for continuous observations of cell culture growth, a variety of devices
have been created and successfully tested on different types of cells. Futhermore, de-
velopment of methods for using naturally fluorescent proteins and derived fluorescent
probes and laser scanning confocal microscope allowed to target and display specific
parts of cells. All these advances led to an explosive increase in the rate at which digital
image data is acquired in biological studies.

With the increased number of images produced during observations, there is now a
unified understanding in scientific community that sophisticated computational methods
are desperately needed to support high-throughput biological research [78], [96], [120].
Such methods not only are necessary to handle a gigantic volume of data, but more im-
portantly to provide a level of sensitivity and objectivity that human observer can not
match [91].

An increasing number of efforts in applying computational image processing methods
to biological data has been made [9], [30], [31], [101], [126]. Nevertheless, the field of
automatic cellular bioimage analysis is still very much in its infancy. The application of
computational tools is often limited to low-level signal manipulation, while the extraction
of biologically meaningful information from the image data is still done manually.

There are a number of factors which make the task of automating high-level analyses
of biology images challenging. First of all, the captured images can vary significantly,
demanding to design a specific tool for each case individually. Next, both biologists and
computer scientists have to work closely together to achieve the goal, requiring both sides
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to have substantial knowledge of the two domains. Finally, the once developed method
often has to be constantly adapted to support further biological research.

All these points have to be addressed in order to successfully apply the most advanced
and powerful image processing and computational techniques to the task of automating
extraction of valuable information from biology images.

1.2 Automated Cell Analysis

Analysis of cell morphology, growth, reaction to chemical agents is a frequently occurring
problem in biological research. It is a core task in many different fields including bacte-
riology and embryology. The studies presented in this thesis were focused on solving the
task of cell analysis automation in these two particular fields of biomedical research.

The emergence of new dangerous pathogens, resistant to the multitude of existing an-
timicrobial agents, requires meticulous search of effective drugs and establishing optimal
dose for each individual patient. Thus, the process of investigating if a drug has an effect
on a bacteria strain - drug susceptibility testing (DST) - is a task of crucial importance in
the field of bacteriology. The process of DST has been partially automated by means of
building new devices for cell growth and image acquisition. Furthermore, for some types
of microorganisms fully automatic robotic systems have become commercially available
not long ago. Despite their efficiency and ability to support full cycle of testing - from
strain selection to measuring an optimal dose of a potent drug - such systems are not
widely exploited due to high cost. Thus, the issue of designing a cheap, rapid approach
for imaging and carrying out DST remains unresolved.

Investigation of an early development of organisms and related genetic diseases is one
of the main topics of investigation in embryology. During early stages of growth, an em-
bryo consists of similar looking cells which later transform to create different complex
tissues. A complete detailed model of the process, during which cells become specialized,
would not only greatly enhance detection rates of early abnormalities, but also facilitate
engineering of transplant tissues for therapies. Even though a dramatic number of studies
attempted to construct such model, none were able to fully explain observed phenomena.
In addition to the intricate process taking place in an embryo the task of building a model
is challenging due to an excessive quantity of visual data and lack of computer-based sys-
tems for automatic image analysis. Thus, a system capable of aiding in cell segmentation
and analysis would be highly beneficial to this field of research.

1.3 Challenges and Goals

The primary motivation for the research projects, presented in this thesis, was to aid
biology experts by automating the high-level analysis of processes related to cell growth
and development. Two different problems in biomedicine were in the focus of the studies.

The first problem was the automation of drug susceptibility testing procedure. Drug
susceptibility testing (DST) is a process of determination which drug at what minimum
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concentration is effective against a bacteria strain. Not long ago a new approach of con-
ducting DST has been proposed. It is based on investigating cell growth under influence
of a drug with a specified concentration by observing images of cells growing in a spe-
cialized device - drug susceptibility testing microfluidic (DSTM) device [47]. Previously
this has been done manually, resulting in significant time for data acquisition and more
importantly reducing reproducibility. To overcome this deficiency an automatic algorithm
was required to be able to detect cells, extract measurable characteristics and based on
obtained data estimate if the drug was effective or not.

There were a number of challenges which needed to be resolved in order to design a
robust, accurate tool. Input images of the DSTM device are taken with a camera attached
to a phase contrast microscope. Hence they suffer from common drawbacks, such as
noise, nonuniform illumination, and others (see Fig. 1.1). One of the observed reactions
to drugs for some bacteria strains is elongation which causes the cells to be seen as oc-
cluded or overlapped in the input images. This factor increases the complexity of cell
detection and demands to design a specific algorithm for handling such cases correctly.
Finally, to identify if a drug has an effect it is vital to select and extract cell characteris-
tics, corresponding to changes in bacteria growth, and then make the judgment based on
this data.

Figure 1.1: Two input images of the DSTM device, used in analysis of drug susceptibility.
Different drugs are applied to a singular strain of Pseudomonas aeruginosa resulting in
distinct changes in cell morphology and number of live cells.

The investigation of cell specialization during early stages of embryo development
was the second biomedical problem the studies presented in this thesis were focused
on. At early stages of growth, a mammalian embryo consists of identical cells, that are
called blastomeres. In the course of growth these cells divide, transform and specialize
to become part of a complex tissue. Factors, that contribute to the specialization pro-
cess present a high interest for scientists, since this knowledge would allow developing
techniques for growing artificial transplants and treatment of genetic illnesses. Recent
studies revealed that important factors include cell morphology and position. Acquisition
of this data by carrying out manual observations is sophisticated procedure that requires
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a considerable amount of time.
It is possible to automate the process of examining cell characteristics by introducing

a blastomere segmentation method that can further facilitate extracting of cell character-
istics that present interest for biologists. Previously-reported approaches solve the seg-
mentation problem for HMC microscopy images for embryo stages with not more than 4
cells [37], [105]. However, these methods aren’t able to detect blastomeres for embryos
with a higher number of cells successfully. Thus, the goal was to design a framework
able to execute segmentation in these cases correctly.

Microscopy images taken with the HMC technique are not the best source of visual
data to carry out segmentation. Cells, seen in these images, are overlapped, cluttered
together and have side lit appearance. These factors are main obstacles, preventing the
development of a simple elegant method for segmentation. Instead of attacking the prob-
lem straightforward, attempting to get around the mentioned drawbacks, it was decided
to use an alternative imaging approach, fluorescence microscopy, to acquire input data
(see Fig. 1.2). Therefore, the main aim was set as to design a segmentation algorithm for
cell detection from the 3D data, presented as stacks of fluorescence microscopy images.
A challenging issue was to address embryo morphology to produce robust and accurate
results.

Figure 1.2: Fluorescence microscopy images of an embryo with four cells. Images in top
row present membranes, while in the bottom row display cell nuclei.

Regardless of different biological background, the two problems in their core share
the same objective - cell detection. Yet in each particular case, the cells visible on input
images have remarkably different appearances. In case of cell detection for DST with the
DSTM device the bacteria are seen as small connected regions of black pixels, while, on
the other hand, blastomeres in the study of early-stage embryo occupy a substantial area
of input cross sections and provide visual cues for the location of membranes and nuclei.
This difference in observable morphology prevents the adoption of identical approaches
for both task, thus forcing to tailor a separate method for each individual problem.

In this thesis, I present two methods for automatizing of the cell analysis problem for
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two biomedical tasks reviewed above: drug susceptibility testing with the DSTM device
and and investigation of cell specialization in early stage mammalian embryos.

I solved the problem of drug testing automation by introducing an algorithm that, first,
detects each individual microfluidic channel of the DSTM device, present in the image,
then executes cell detection, followed by feature extraction. The obtained cell characteris-
tics are fed into a support vector machine that predicts whether a bacteria strain is affected
by a drug with particular concentration. The method overcomes the issue of nonuniform
illumination of the input image by applying correction technique, while the matter of
cell overlapping is addressed with the specialized cell separation procedure. The created
algorithm was tested on a dataset that contained images of 101 bacteria strains grown
in the presence of 5 different drugs, injected into microfluidic channels in 3 distinctive
concentrations. Experimental result demonstrated the efficiency of the method, since it
was able to achieve an average accuracy of 97% for estimation of minimum inhibitory
concentration. The implementation was designed as a stand alone tool with a graphical
interface, that can be effortlessly used even by non specialists for performing cell analysis
[39].

For the second task, I proposed an energy minimisation approach based on 3D level
set to perform segmentation of embryos at early stages of development into a membrane
and inner cell regions. The level set functions were designed to describe various morpho-
logical features of the blastomeres as well as to penalize over-segmentation. The choice
of particular procedure for solving PDEs defined by the level set was done in favor of the
one that does not require solving PDE directly. Instead it uses simple operations over dis-
crete sets, achieving a high speed of computation. The constructed algorithm was tested
on a dataset, that contained embryos with 4-32 cells, achieving 90% accuracy for 4-cell
and minimum of 75% for 32-cell cases. The implementation was also programmed as a
stand-alone application with a graphical user interface.

1.4 Thesis Organization

This thesis is divided into two parts, presented in Chapter 2 and Chapter 3 respectively.
The first part is dedicated to the problem of developing an algorithm for automation
of drug susceptibility testing by processing microscopy images of bacteria cell cultures
grown in the DSTM device. The second part describes a 3D level set based method for
performing segmentation of a pre-implantation embryo from Z-stacks of fluorescence
microscopy images.

Chapter 2 has the following structure. In section 2.1, an overview of biological back-
ground which prompted research in the field of antibiotics development is done. First,
the data, that highlights an increasing tendency of bacteria strains to become resistant
to multiple existing drugs is presented. Thereafter, existing techniques for DST are de-
scribed. Next, the scheme of a novel DSTM device and manual procedure for testing and
acquisition of minimum inhibitory concentration of a drug for a bacteria strain with this
device is explained.
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Section 2.2 is dedicated to reporting the developed method for automatic DST in de-
tails. First, existing approaches for automatic analysis of cells and their strong and weak
points are reviewed and discussed. Next, an overview of five modules of the new algo-
rithm is given, and then functioning of each module is explained in individual sections.

The description of the dataset and results of various types of testing, including accu-
racy evaluation for cell detection procedure, susceptibility estimation for each individual
sample, and determination of the minimum concentration of a drug to which a strain is
susceptible is presented in section 2.3.

The comparison of existing susceptibility testing methods and discussion of further im-
provements that could be achieved by processing time-lapse sequence of bacteria growing
in the DSTM device are discussed in the last section (section 2.4). Details of the devel-
oped implementation, description of the functions of the released tool can be found in
Appendix A.

The second part of this thesis, presented in Chapter 3, is focused on solving the seg-
mentation problem for pre-implantation mammalian embryos. section 3.1 provides an
overview of biological processes occurring in embryos on early stages of their growth.
Next, the mechanism of cell specialization is explained and necessity of designing au-
tomatic system for carrying out analysis is stated. In this section various techniques for
capturing microscopy images are also discussed.

Section 3.2 discuses existing approaches to the segmentation tasks, their advantages,
and disadvantages. Thereafter, a detailed design of the 3D level set algorithm for seg-
menting embryo into inner cell regions and membranes is given. The implementation of
the 3D level set method is described in the Appendix B

The results of testing on a dataset containing 4-32 cell embryos and analyses of the
affect of individual energy terms on the final segmentation are presented in section 3.3.
And the discussion of using alternative energy terms for increasing segmentation accuracy
for embryos with more than 24 cells can be found in section 3.4.

The final section of the thesis dedicated to an overview of the conducted studies and
achieved results.
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Chapter 2

Automatic drug susceptibility testing

2.1 Introduction

2.1.1 Introduction

In rescent years a rapid increase of bacteria strains, resistant not to one, but to multi-
ple antibiotics, has been observed. This is an extremely alarming issue which directly
affects human health. The factors responsible for the emergence of resistance include in-
napropriate use of antibiotics, increase of immunocompromised patients and others. The
multidrug resistant bacteria, such as Pseudomonas aeruginosa, have already caused noso-
comial outbreaks in Japan [99], [100]. Few antibiotics are available for treating multidrug
resistant infections and new drug development is lacking.

Traditional methods for investigating the susceptibility of clinically isolated strains are
based on detailed analysis of gene expression to identify factors contributing to cell resis-
tance. It takes significant time to perform testing, thus a method for rapid determination
of susceptibility to select effective drugs for each individual patient promptly has been
highly desired. Altough some newly developed methods reduce time to obtain results,
the drug testing remains time consuming. One of the major reasons is that the existing
approaches are mostly based on optical density or colorimetric methods to detect bacte-
rial growth, which require control bacteria to become visible after the incubation of intact
cells with drugs.

A number of methods, attempting to reduce the time needed to perform testing, have
been proposed in the last decade. Some of them are based on analyses of microscopy
images of bacteria cells [51], [89] while other approaches focus on desgining microflu-
idic chips facilitating observations of cell growth [18], [47], [52]. One of the proposed
devices, a drug susceptibility testing microfluidic (DSTM) device [47], [70], allowed
evaluating drug efflux pump activity for detection of infections and diagnosis of diseases.
Its first version showed efficiency in permitting enzyme reactions following short turm
incubation, but it was not useful for bacterial cultivation. The device was redesigned
to have four microfluidic channels, sharing a single inlet hole, to be used for bacterial
cultivation.

The protocol for estimating minimum inhibitory concentration to a drug for a bacteria
strain with the DSTM device has been based on manual analyses of microscopy images.
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The procedure starts with introduction of drugs with different concentrations into bacteria
solution. After several hours of incubation in the controlled environment an image of the
microfluidic channels of the device is taken by a camera, attached to a phase contrast
microscope. The obtained image is then manually analyzed by comparing cell growth
of a test and control sample. Abnormalities, such as alterations of cell morphology or
decrease of vital bacteria, signify that the input strain is susceptible to a drug with a
particular concentration. The MIC is obtained by observing cell reactions for a variety of
drug concentrations and selecting the lowest one [47].

Manual visual inspection of the DSTM device channels for determination of MIC can
provide useful qualitative information concerning alteration in cell numbers or morphol-
ogy. At the same time this procedure is highly labor intensive, based on subjective biases,
lacks reproducibility and prone to errors if carried out by a trained expert. Motivated by
these drawbacks and inspired by the number of papers where image processing methods
were successfully applied to solve biomedical problems, it was decided to develop a new
algorithm for providing a quantiative base analysis for MIC determination with DSTM
device.

2.1.2 Anitbiotic resistance crisis

For several decades emergence of multiple drug resistant bacteria strains has been a grow-
ing threat for countries worldwide [59], [62], [63]. The data, presented by the Center For
Disease Dynamics, Economics & Politics (CDDEP) demonstrates that the percentage
of strains of common pathogens Pseudomonas aeruginosa and Escherichia coli, which
show resistance for a variation of antibiotics has increased (see Fig. 2.1) [113].

Figure 2.1: Charts that demonstrate increase in multidrug resistance in two common
patogens Escherichia coli and Pseudomonas aeruginosa observed in the United States.

The term multidrug resistance (MDR) initially described resistant mammalian tumor
cells, but later it has been extended to represent the multidrug resistance of any microor-
ganism – bacterium, fungus or parasite. The emergence of MDR and antibiotic resistance
crisis has been attributed to the overuse and misuse of antimicrobial agents and other
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medications.
In bacteria, genes can be inherited from relatives or can be acquired from nonrelatives

on mobile genetic elements such as plasmids. This horizontal gene transfer can allow
antibiotic resistance to be transferred among different species of bacteria. Resistance
can also occur spontaneously through mutation. Antibiotics remove drug sensitive com-
petitors, allowing resistant bacteria to reproduce. Despite warnings regarding overuse,
antibiotics are overprescribed worldwide [94].

Incorrectly assigned antibiotics also contribute to the promotion of resistant bacteria.
Studies have shown that choice of agent or duration of antimicrobial agent is incorrect
in 30% to 50% cases [74]. Subinhibitory concentrations of drugs can potentially support
genetic alterations, such as changes in gene expression, and mutagenesis and lead to
increasing resistance and virulence. This process has been observed for a number of
common pathogens, including Pseudomonas aeruginosa [117].

Extensive agricultural use is an additional factor that boosts bacteria resistance. Antibi-
otics are commonly used in animals primarily to promote growth and to prevent infections
[63], [107]. Treating livestock with antimicrobials is said to improve the overall health
of the animals and produce larger yields. However, there is a downside to these actions
as well. Drugs used in food-producing animals kill or suppresses susceptible bacteria,
allowing to survive only those that acquired mechanisms to overcome agent’s influence.
Next, resistant bacteria are transmitted to humans through the food supply. These bacteria
can cause infections in humans, leading to adverse health consequences.

The development of new antibiotics is no longer considered to be a wise economical
investment for the pharmaceutical industry (see Fig. 2.2) [22], [48]. Antibiotics are not
profitable as drugs, since research and testing require high expenses while the agents are
used for relatively short periods of time [59]. Additional restraints imposed by infectious
disease specialists regarding antibiotic use also lead to a decrease of commercial interest
of investments.

Figure 2.2: A chart illustrating the decrease of new antibiotics developed and approved
worldwide over the past decade
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All the factors presented above emphasize the importance of developing new antibi-
otics. In recent years a significant effort has been done to facilitate this process by intro-
ducing novel methods, techniques, and devices.

2.1.3 Drug Susceptibility Testing

An important task that is carried out during the clinical research of new potential antibi-
otic agents is the drug susceptibility testing (DST) of bacterial isolates. The goal of DST
is to detect possible drug resistance in common pathogens as well as to determine the
lowest concentration of antibiotic that prevents bacterial growth. This concentration is
referred to as minimum inhibitory concentration (MIC).

There are two different types of DST: genotypic and phenotypic. Genotypic assays
involve gene sequencing for detecting mutated genes, related to drug action and requires
deep knowledge of internal mechanisms, occurring in bacteria cells. This type of testing
uses complex specialized equipment and highly trained personnel. On the other hand,
phenotypic assays measure the ability of a bacteria or a virus to grow in presence of
different drug concentrations. During inspection replication of cells at different antibiotic
concentrations is monitored and compared with replication of a reference control strain.

Unlike genotypic, phenotypic drug testing it is a simple process, however, it is rather
time-consuming, since a full cycle of culture growth has to be observed for both control
and test samples, and that has to be done for multiple drugs [49].

A commonly used DST method is a microbroth dilution method. This procedure in-
volves preparing two-fold dilutions of antibiotics in a liquid growth medium dispensed
in test tubes [32], [49]. Test tubes are assembled in trays, that often contain 96 wells of
0.1 mL volume. This design allows approximately 12 antibiotics to be tested in a range
of 8 two-fold dilutions in a single tray (see Fig. 2.3). To carry out testing, drugs are
pre-introduced and then the bacterial suspension is transferred into each well. Following
incubation, MICs are determined manually or using an automated device by inspecting
rate of cell growth. The accuracy of the method is very high, so it is commonly used for
obtaining ground truth MIC for bacteria strains. The other advantage of this approach for
MIC determination is relatively low cost of performing tests.

An alternative to broth dilution method is the antimicrobial gradient method. It is
based on establishing a drug concentration gradient in an agar medium. A commercially
available version employs a thin plastic test strips that contain on the underside a dried
antibiotic concentration gradient and are marked on the upper side with a concentration
scale. These strips are placed in a radial fashion on the surface of an agar plate that has
been inoculated with a bacteria suspension (see Fig. 2.4 (a)) . The MIC is determined af-
ter an overnight of incubation by analyzing shapes of inhibition areas. Gradient method is
most suitable for testing not more than 3 drugs simultaneously or when a microorganisms
requires special incubation atmosphere [45], [49], [50].

The least costly of all susceptibility testing methods is the disk dilution susceptibility
test [6], [19], [49]. To perform susceptibility testing with this method a bacterial inocu-
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Figure 2.3: MIC determination of an isolate by microbroth dilution method using 96-well
plate [21].

lum is applied to the surface of a large agar plate. Then paper antibiotic disks with fixed
concentration of the agent are placed on the inoculated agar surface (see Fig. 2.4 (b)).
Next, plates are incubated for 16-24 hours in a controlled environment. The zones of
growth inhibition around each disk are measured and susceptibility to each drug is de-
termined using criteria published by Clinical and Laboratory Standards Institute (CLSI)
[19].

Several attempts to automatize the process of susceptibility testing have been made
in order to standardize the readings and produce results in a shorter period of time [95].
For example, the MicroScan machined, developed by Siemens Healthcare Diagnostics,
was designed to incubate and analyze up to 96 standard microdilution trays. The device
grows manually prepared samples, examines them periodically with either a photometer
or fluorometer. Finally, it applies advanced computer software to measure susceptibility
and determine MIC. It takes approximately 22 hours to obtain results with the MicroScan
system [76].

The Vitek 2 System (bioMerieux) uses compact plastic reagent cards, that contain
small quantities of an antibiotic and test media in a 64-well format. The device can be
configured to perform up to 240 simultaneous tests. It determines the susceptibility of a
test by measuring the loss of intensity of transmitted light in the bacteria solution. The
results of the tests are obtained after 4-10 hours of incubation.

A number of studies showed that rapid susceptibility tests reduce time, required to
specify an appropriate antimicrobial agents, allowing to lower the cost of treatment due
to a shortened length of stay, fewer laboratory tests and invasive procedures [5], [27].
Therefore, automatic DST systems provide valuable contribution towards rapid result
acquisition by relieving experts from time-consuming labor-intensive work. However,
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(a) (b)

Figure 2.4: Two methods of drug susceptibility testing: (a) gradient method is used to
test an isolated strain of Staphylococcus aureus; (b) disk diffusion test used to determine
resistance of Escherichia coli [49].

high price of the devices and necessity to perform full-length incubation cycle of bacteria
isolates restricts the wide spread of these testing systems.

In rescently published works a number of new inexpensive devices and rapid DST
techniques has been proposed [47], [51], [52], [92]. One of the proposed methods in-
volves using the drug susceptibility testing microfluidic (DSTM) device designed by
Matsumoto et al. [47], [71]. It was showed that this device can provide readable data
in no more than 3 hours.

2.1.4 DSTM

The mechanisms of bacteria strain sensitivity are highly related to the efficiency of pro-
teinaceous transporters, i.e. efflux pumps, localized in the cytoplasmic membrane. In
particular, resistance-nodulation-cell division (RND) can decrease the sensitivity of such
cells as P. aerugionsa [68]. Measuring activity of these efflux pumps allows easily deter-
mine levels of inhibition of an antimicrobial agent.

Not long ago Matsumoto et. al [70] and Iino et. al [47] proposed new techniques for
a simple and rapid measurements of the activities of efflux pumps and inhibitors using
microfluidic devices with different shape of channels. The following research of these
groups was focused on improving the developed instruments and increasing accuracy of
the observations. Their final design of the DSTM device allowed to acquire results of the
DST in less than 3 hour period.

The DSTM device is prepared as follows. It contains five sets of four microfluidic
channels, printed in a polymer on a cover glass by a conventional soft lithography method
[122]. The width of the microfluidic channels is 100 µm, height 50 µm and the length
in the observation area is 3-5 mm (see Fig. 2.5) . Four channels in one set share inlet
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hole allowing to perform observations of cell growth with an introduced drug with three
different concentrations and a control sample. The protocol of susceptibility estimation
with the DSTM device is presented in the next section.

Figure 2.5: An actual photograph and a scheme of the DSTM device, together with a
microscopy image of the microfluidic channels with P. aeruginosa growing in the presence
of different concentrations of ceftazidime (CAZ).

2.1.5 DST with DSTM device

Determination of MICs for bacteria strains using the DSTM device is conducted as fol-
lows. At first, a drug is added at three different concentrations into three test microfluidic
channels of one of the channel sets. The remaining channel is used as the control sample
for the observations. The drug solution is dried, and then a cation-adjusted Mueller-
Hinton broth of bacteria culture, grown in advance on Heart infusion agar, is introduced
into the device using a micropipette. To completely separate each channel, air is intro-
duced into the device from the shared inlet hole. Finally, the fully prepared device is
incubated under humid conditions at 37◦C for up to 3 hours.

The protocol of measuring the MIC consists of visual inspections of bacteria cells in
each channel by phase contrast microscopy. An image of a set of microfluidic channels is
taken with a camera attached to a phase contrast microscope. Visible differences in cell
shape, number of cells between microorganisms, present in the test sample, and those
in the control sample, signify that the input strain is susceptible to the used drug at a
particular concentration. The minimum concentration of the drug to which the strain is
susceptible constitutes its MIC.

The growth rate of each individual bacteria strain can differ from other strains. Thus,
it is not possible to carry out comparison of the changes using a uniform control sample
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for all range of strains. Hence, the control sample must be incubated together with the
test samples to perform correct observations.

Bacteria cell responses to the presence of a drug vary greatly depending on the strain,
antimicrobial agent, and its concentration. Among the most common reactions of the two
widely spread pathogens P. aeruginosa and E. coli are elongation, cell number decrease
and change of shape (see Fig. 2.6) .

(a) (b) (c)

Figure 2.6: Photographs of DSTM device channels illustrating cell responses to different
antimicrobial agents: (a) cell elongation for ciprofloxacin, meropenem, piperacillin; (b)
decrease in the number of living cells for amikacin; (c) formation of spheroplasts for
meropenem.

Manual measurements of these characteristics with visual inspection are extremely
labor-intensive and time-consuming. Moreover, such approach is prone to errors due to
subjective biases and lacks reproducibility. To overcome these drawbacks, an automatic
tool able to extract desired cell features and perform the analysis has been highly desir-
able.

2.2 Method: SVM for susceptibility estimation

2.2.1 Manual vs Automatic cell analaysis

Examining cells with a microscope has long been a primary method for studying cellular
mechanisms. Nowadays, with the advance of screening techniques and capturing devices,
it is possible to easily collect thousands of high-resolution images from time-lapse exper-
iments and from large-scale screens. A bottleneck exists at the image analysis stage. It is
commonly done by visual inspection of obtained data by expert biologists. This process
has a lot of hindrances and drawbacks.

First, due to direct manual measurements of cell features, human-scored image anal-
ysis is qualitative, rather than quantitative. Samples are usually categorized as ’hits’ or
’non-hits’. By contrast, automated tools produce consistent quantitative measurements of
a variety of cell characteristics for every image. Acquisition of large number of features
has already proven useful for grouping genes and revealing drug mechanisms [14], [75].
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Second, human-based inspection is not capable to assess each individual cell and con-
clusions and judgments are based on whole population data, which is not ideal for de-
tailed investigation of internal processes. On the contrary, automatic approaches are able
to measure features of each cell and even detect some characteristics that are not readily
detectable by a human observer [41].

Third, manual analysis conducted by an expert is extremely time consuming and labor-
intensive. Automatic methods are higher-throughput and generate reliable results from
a large-scale experiment in hours, versus months of tedious visual inspection in case
of manual processing of obtained data. This is a significant improvement, substituting
routinely conducts for such experiments.

Thus, automatic cell analysis increases accuracy and reproducibility of the results;
relieves human researchers from boring mundane work, allowing to focus on building
models and verifying hypothesis; significantly reduced the time for data acquisition.

2.2.2 Related work

In recent years a number of software implementations based on different approaches were
designed to perform cell detection, tracking, and analysis.

One of the oldest and most popular developed packages for biological image analysis
is ImageJ [1]. This software has been successfully used by many laboratories. It supports
most of the common and important formats of input images used in the field of biomedical
images. In addition, it allows direct acquisition of data from scanners, cameras, and other
video sources. This tool can perform basic operations, similar to Adobe Photoshop, such
as edge detection, convolution, Fourier transform and particle analysis. The main advan-
tages of the ImageJ include ability to run on different platforms and support user-written
macros and plug-ins. Overall, ImageJ is a highly useful tool for performing preliminary
general analysis of the target subject and preprocessing captured images. However, it is
not particularly suitable for complex tasks and deep analysis.

While not creating a general, flexible software tool, many groups have benefited from
dedicate automated cell detection and tracking instruments [9], [101].

For example, Carpenter et al. [13] presented an open-source system CellProfiler ca-
pable of simultaneously measuring size, shape, intensity, and texture of a variety of cell
types in a high throughput manner. CellProfiler carries out illumination correction by
applying common, as well as customly designed, algorithms [114]. Next, it applies a va-
riety of well known robust techniques for identifying cells using fluorescence markers. In
order to prevent miss-detection for cases where cells touch each other, the system utilizes
a three-step strategy. First, clumped objects are recognized and separated; second, the
dividing lines between objects are found; and third, some of the resulting objects are ei-
ther removed or merged together, depending on their size or shape [13], [66]. To perform
analysis CellProfiler measures a large number of simple and complex features for each
cell including area, shape, intensity, texture, Zernike shape, Haarlick and Gabor texture
features.
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Automated image analysis software CellC was developed for quantification of bacte-
rial cells and estimation of cell morphology in fluorescence images [101]. The procedure
of microorganism identification is divided into two phases [54]. The first phase is segmen-
tation and analysis of the cell count in images stained with 4’,6-diamino-2-phenylindole.
The second phase is the calculation of cell count from the image obtained with fluores-
cence in situ hybridization [4]. The aim of the first phase is the extraction of individual
cells from cell clusters to enable data acquisition on a cell-by-cell basis. The image is
corrected for brightness variation by fitting a two-dimensional quadratic polynomial to
the input picture and then, subtracting it [57]. Next, global thresholding is applied and
clustered cell are separated from each other, followed by marker watershed segmentation
[87]. This algorithm is repeated for the second image type and a logical AND operation
is performed between the results to produce the output [55].

Another system Cellscreen - for automated non-invasive cell counts in small volume
cultivation vessels - was introduced not long ago [9]. The system consists of an inverse
microscope, equipped with a 10x lense, a camera, and a special application software.
Initially, 96 well plate, filled with cell suspension is positioned on the motor stage. An
automated procedure calibrates the position of the plate, guaranteeing that exactly the
same area is analyzed. The positioning of the culture followed by an autofocus, and then
image recordings are done a the base of the well. A modified version of the Cedex image
is applied to the captured images extracting the number of viable and dead cells and their
morphology.

Commercial software has also been developed, mainly for the pharmaceutical screen-
ing market [35]. Development of these packages has been primarily focused on mam-
malian cell types and cellular features needed for medical analysis. The benefits of the
commercial software are reliability, usability and user support. For these reasons it has
been successfully adopted in many laboratories, however, the high cost of such solutions
and inaccessibility to the code limit their widespread.

To solve the task of measuring strain susceptibility from an image of DSTM device,
the existing methods require significant modification. Different packages must be used at
different stages of analysis, resulting in a complex workflow and an increased processing
time. Thus, a new dedicated method for processing microscopy images was needed.

2.2.3 Algorithm for drug susceptibility testing

The developed algorithm for quantitative analyses and susceptibility assessment of a bac-
terial strain from a microscopy image of the DSTM device is divided into five stages:
noise reduction, localization of the channel regions, cell detection, feature extraction,
susceptibility, and MIC estimation.

The scheme of the algorithm is presented in the Fig. 2.7. The input image of the DSTM
device channels is enhanced by applying illumination correction and denoising. Next, the
areas in the image corresponding to microfluidic channels are located by identifying their
borders with Probabilistic Hough Transform (PHT). After that, for each channel a cell
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detection is carried out assigning a label for each pixel to be background or a part of a
cell. From this information it is easy to extract a vast number of statistics and cell features.
Attributes obtained for the control sample are used for calculating relative cell features.
Finally, the features are assembled into feature vectors and fed into pre-trained SVM,
which determines if the bacteria strain is susceptible to a particular drug concentration or
not. The least concentration of the drug for which the SVM predicted susceptibility is the
MIC.

Figure 2.7: A scheme of the proposed algorithm for processing an input image of DSTM
device channel to extract cell features, estimate susceptibile for each drug concentration
and obtain MIC

2.2.4 Noise reduction and Illumination correction

The process of capturing digital images using microscopy often results in nonuniform
illumination of the scene. For further correct processing of the visual data it is essential
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to enhance the image by performing illumination calibration.
Since the distribution of the light intensity at the captured photograph can be assumed

to have a quadratic form it can be modelled using the following function [57].

Iq(x, y) = a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 (2.1)

The approach in the illumination correction is to fit this light distribution to an input
image. This fit is based on least-squares estimators. For an input M ×N image I(m,n)
the paramters ai, i = 1, ..., 6 are calculated by minimizing the merit function χ2.

χ2 =
M∑

m=1

N∑

n=1

(I(m,n)− Iq(m,n))2 (2.2)

The minimum of the merit function (2.2) occurs when its derivatives with respect to
all parameters ai are equal zero. This condition yields the following 6 equations.

M∑

m=1

N∑

n=1

[(I(m,n)−
6∑

j=1

ajXj(m,n))Xk(m,n)] = 0 k = 1, ..., 6 (2.3)

Where Xj = Xj(x, y) is the j − th function from all the basis functions X(x, y) =
{x2, y2, xy, x, y, 1}. Interchanging the order of summations the equation (2.3) can be
written as the matrix equation.

6∑

j=1

ajαkj = βk (2.4)

Where αkj is a 6× 6 matrix and βk is a vector.

αkj =
M∑

m=1

N∑

n=1

Xj(m,n)Xk(m,n) or equaivalently [α] = AT · A (2.5)

βk =
M∑

m=1

N∑

n=1

I(m,n)Xk(m,n) or equaivalently [β] = AT · b (2.6)

The equations (2.5) and (2.6) are called normal equations of the least-squares problem.
They can be solved for the vector of paramters ai, i = 1, ..., 6 by LU decomposition,
Choleksy decomposition, Gauss-Jordan elimination or other methods [34].

This illumination correction approach was directly applied to the input images of the
DSTM device channels and its output was used in channel detection stage (see Fig. 2.8).
Yet before being processed and the cell detection phase in undergoes and additional pro-
cedure - binarization.

Binarization is done by applying Otsu adaptive thresholding [87]. This method in-
volves iterating through all possible threshold values and calculating a measure of spread
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(a) (b) (c)

Figure 2.8: An example of an input image and the result of executing noise reduction step
of the proposed algorithm: (a) input image; (b) fitted quadratic polynomial; (c) output

of foreground and background pixels in an attempt to find threshold t which minimizes
the weighted within-class variance of each type of pixels (2.7).

σ2
w(t) = q1(t)σ2

1(t) + q2(t)σ2
2(t) (2.7)

Where q1, q2 and σ1 and σ2 are defined with the following equations (2.8), (2.9), and
(2.10).

q1(t) =
t∑

i=1

P (i) & q2(t) =
I∑

i=t+1

P (i) (2.8)

µ1(t) =
t∑

i=1

iP (i)

q1(t)
& µ1(t) =

I∑

i=t+1

iP (i)

q2(t)
(2.9)

σ2
1(t) =

t∑

i=1

(i− µ1(t))2P (i)

q1(t)
& σ2

2(t) =
I∑

i=t+1

(i− µ2(t))2P (i)

q2(t)
(2.10)

2.2.5 Channel detection

The next step of the algorithm is the detection of DSTM device microfluidic channels in
the input image. This is done by locating left and right borders for each channel. Since,
there is significant change in intensity on the border, an edge detection technique can
be exploited to determine the position of each border. In the proposed algorithm Canny
edge detection is applied to the output of the illumination correction step. Then, channel
border candidates are located utilizing probabilistic Hough transform. Finally, additional
constraints are imposed to select among all detected lines those, which represent channel
borders.

The Hough Transform (HT) is a robust statistical method of detection lines and other
predifined features. In order to detect straight lines y = mx + b in a large set of edge
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points P = {(xi, yi), i = 1, ...,M}, each possible line that goes through the point xi is
expressed in polar coordinates.

ρ = x cos θ + y sin θ (2.11)

The intersection of a large number of sinusoids in the (ρ, θ) plane corresponds to a
straight line which goes through a large collinear subset of points in P . The standard im-
plementation of the HT is the Duda and Hart algorithm [29] in which the (ρ, θ) plane is
divided into Np ×Np rectangular cells and represented by an accumulator array. The al-
gorithm, first, for each line increments corresponding accumulators and then searches for
maxima. Thus, it represents normal parameters of straight lines through a large number
of points.

HT is a widely used and robust algorithm, however, it has two major drawbacks. First,
for each nonzero pixel in the image, the parameters for the existing line and redundant
ones are both accumulated. Second, the accumulator array is predefined in a heuristic
way. The more accuracy needed, the higher parameter resolution should be defined.

The Probabilistic Hough Transform (PHT) approach minimizes the proportion of points
that are used in the voting rule. A number of techniques to implement PHT exist. Kiryati
et al. [56] showed that it is often possible to obtain results identical to those of standard
HT even if only a fraction of input points is used. However, the method they described
requires a priori knowledge of the number of points belonging to the line, which is rare in
practice. It was also showed by Bergen and Shvaytser [8] that PHT can be formulated as a
Monte-Carlo estimation of the HT. Nevertheless, this method requires a priori knowledge
as well.

For the task of detecting channel borders an alternative implementation of HT, called
Progressive Probabilistic Hough Transform (PPHT), described in [69]. This algorithm,
unlike the above-mentioned works, minimizes the amount of computations, needed to
detect lines by exploiting the difference in the fraction of votes needed to reliably detect
lines with different numbers of supporting points. To minimise the computation require-
ments the PPHT repeatedly selects a new random point for voting. Then, after casting a
vote it is tested if the point has random noise or not by sampling m out of N total points
and calculating if any bin count exceeds the threshold of s points, which would be ex-
pected from random noise. This test requires a single comparison with a threshold per
bin. After detecting the line the supporting points retract their votes and then they are
removed from the set of points not yet voted. The procedure continues until all points are
not checked.

The output of PPHT is a set of lines, some of which represent channel borders while
others are misdetections. To select only those lines that correspond to channel borders
the developed algorithm imposes several additional constraints: vertical orientation of
the borders, number of neighbor lines, equality of channel widths. First, all lines, that
deviate from vertical orientation more than pre-defined threshold are removed. Next,
lines intersecting each other are combined together to produce an average approximation.
Finally, since the microfluidic channels in reality have same width, the method refines the
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border candidates taking into account for each line the distance to its neighbor, and the
number of lines it was combined from.

The result of channel detection step for an example input image is presented in the
Figure 2.9.

(a) (b) (c)

Figure 2.9: Images illustrating channel detection stage of the algorithm: (a) output of the
Canny edge detector, applied to the result image of the illumination correction procedure;
(b) lines representing channel border which were detected with the PPHT algorithm; (c)
an input image with the detected channels displayed in yellow.

2.2.6 Cell detection

Cell detection is the most challenging step in image analysis and its accuracy determines
the efficiency of the resulting cell measurements. The main challenge that has to be
resolved at this step is separation of overlapped cells.

This issue arrises from the phenomena of cell filamentation – anomalous growth in
which bacteria do not divide and continue to elongate. Due to three dimensional structure
of the microfluidic channels, movements of the microorganisms and flow of the solution
the bacteria cells are percieved as overlapped on a captured image. Existing approaches
for segmentation of cells, such as watershed or level set techniques [55], [93], show poor
results due to inability to distinguish where membranes of cells touch. Thus, to oppose
this matter a separation algorithm modeling overlapped cells as graphs and performing
splitting has been developed.

At first the algorithm extracts all conected regions using connected-component label-
ing method [26], [98] applying it to the binary image obtained as the result of procedures
carried out at the noise reduction stage (see Section 2.2.4). Next, aim is to idenitfy in
each connected region all intersections between cell candidates. To accomplish that mor-
phological thinning is applied [42], [43], [125]. The most common way to perform this
procedure is to use the method introduced by Zhang and Suen [125]. For each pixel
this method checks neighbours and removes pixels if they correspond to a certain pat-
tern. Thinning produces a skeleton representation of the original structure in which the
intersection points are pixels two or more non-background neighbors. In addition to in-
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tersections, points where potential cells touch are located. This is done by analyzing if
smoothness, i.e. second derivative, violates the constraint, defined by a threshold con-
stant.

(a) (b) (c)

Figure 2.10: An illustration of steps of the cell detection procedure: (a) detection of
vertices; (b) construction of the graph representation; (c) determining the longest route
with satisfied smoothness constraint.

The next step is to model a cell as a graph preserving its morphological structure.
Interesction, end points and touch points become nodes, while connection between these
points become edges (see Fig. 2.10). All possible routes in the graph are extracted using
the breadth-first search [106]. For each route, smoothness constraint is checked and if it
is not satisfied the route is removed from the set. The smoothness constraint is defined
as the maximum allowed angle between nodes. A set of routes with maximum number
of nodes to cover the entire graph is chosen. The found routes represent individual cells.
Finally, for all pixels removed at the thinning stage a corresponding cell label is assigned.

(a) (b) (c) (d)

Figure 2.11: Two close-up examples of elongated cells (a, c) and results of the cell detec-
tion stage of the algorithm (b, d) for the corresponding images.

2.2.7 Feature extraction

The output of the cell detection stage is a set of labeled pixels, which describes bacteria
cells. From this data extracting a variety of different features to represnet changes in cell
growth is a fairly straightforward task.

Cell morphology is one of the major indicators of the strain sensitivity. To represent
this attribute for each cell its area and length are calculated. It has to be noted that area is
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(a) (b)

Figure 2.12: Two examples of the binary image and the output of cell detection stage of
the algorithm for a sensitive strain (a) and a resistant strain (b).

defined as the total number of pixels, while length is approximated as the number of pixels
in the thinned representation of the cell. Statistics of these two features, mean, minimum,
and maximum, as well as a 8-bin histogram of cell frequencies in relation to length are
used to characterize strain growth in the presence of a particular drug concentration. In
addition to shape features cell count is also added to the set of features to represent the
number of living cell.

The growth rate of different bacteria strains varies significantly. Two different bacte-
ria strains, obtained from different patients, could show completely distinct growth rates,
even without the presence of a drug (see Fig. 2.13). Hence, it is not appropriate to per-
form comparison between samples of different strains using characteristics presented in
absolute values, i.e. pixels. Thus, cell features extracted for each one of three test chan-
nels are divided by those calculated for the control channel, producing a set of relative
attributes.

(a) (b)

Figure 2.13: Two images of channels, used as control, illustrate that different bacteria
strains show dissimilar growth rates even without any presence of antimicrobial agents.
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2.2.8 Susceptibility estimation with SVM

The prediction of susceptibility from a set of relative features for each test microfluidic
channel is performed with a Support Vector Machine.

Support Vector Machine (SVM) is a widely used supervised learning technique for
classification and regression [11], [116], [118]. Let set X = {(~xi, yi), i = 1, ..., N ; }
be the training data where ~xi ∈ Rd represents feature vectors and yi ∈ {−1, 1} are
labels. SVM solves the classification problem by identifying a hyperplane, separating
two classes.

~x · ~w + b = 0 (2.12)

In equation (2.13) parameter ~w is normal to the hyperplane, |b|/||w|| is the perepen-
dicular distance from the hyperplane to the origin, and ||w|| is the Euclidean norm of ~w.
Let d+ and d− are the shortest distances from the separating hyperplane to the closest
positive and negative point respectively. For the lineraly separable case SVM locates the
hyperplane with the largest margin defined as d+ + d−. The method achieves that by
minimizing ||w||2, subject to the following constraints.

yi(~xi · ~w + b)− 1 ≥ 0 ∀i (2.13)

Figure 2.14: The illustration of the SVM method, that solves the classification problem
by constructing a hyperplane with the larges margin between classes.

This could be done by minimizing Lagrangian, representing all inequality constraints
(2.13) with respect to ~w, b. In addition the derivatives of this Lagrangian 2.14 with respect
to all the αi has to be equal zero.

LP =
1

2
||w||2 −

N∑

i

αiyi(~xi · ~w + b) +
∑

i=1

αi (2.14)

25



The requirement that the gradient of LP with the repsect to ~w and b vanish give the
conditions (2.15) and (2.16).

~w =
N∑

i=1

αiyi~xi (2.15)

N∑

i=1

αiyi = 0 (2.16)

By substituting these conditions into the Lagrangian equation (2.14) a dual formulation
of the problem cand be given: to maximize functional LD (2.17) with the respect tot αi,
subject to constraints (2.16) and positivity of αi, with solution given by (2.15).

LD =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj ~xi · ~xj (2.17)

Since the dual maximization problem is a quadratic function of the αi subject to linear
constraints, it is efficiently solvable by quadratic programming algorithms.

2.2.9 Minimum Inhibitory Concentration

The pre-trained SVM for each feature vector representing microfluidic channel of the
input image produces a binary output. Either the strain is susceptibile to the injected
drug with the particular concentration or not. To obtain MIC it is simply necessary to
chose minimum drug concentration to which SVM - using cell features extracted from
corresponding channels - predicted susceptibility.

Figure 2.15: MIC is the minimum concentration of the applied drug to which the bacteria
strain is susceptibile.
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2.3 Experimental results

2.3.1 Dataset

The image dataset used for testing the developed algorithm was obtained with the DSTM
device that was prepared by fabricating microfluidic channels (width, 100µm; height,
50 µm) in a polymer (polydimethylsiloxane - PDMS; Silpot184, Dow Corning Toray
Co., Ltd., Tokyo, Japan) on a glass cover (Matsunami Glass Ind., Ltd., Osaka, Japan)
using soft lithography technique [122]. The input images were captured with a USB
camera, attached to a phase contrast microscope with 10-fold objective lens with JPEG
compression and 1280x1024 resolution (see Fig. 2.16).

The drug pool contained five different drugs: amikacin (AMK; Nichi-Iko Pharma-
ceutical Co., Ltd. Toyama, Japan), ciprofloxacin (CIP; Meiji Seika Kaisha, Ltd., Tokyo,
Japan), meropenem (MPM; Meiji Seika Kaisha, Ltd.), ceftazidime (CAZ; Sawai Pharma-
ceutical Co., Ltd, Osaka, Japan), piperacillin (PPC; TOYAMA CHEMICAL CO., LTD,
Tokyo, Japan). Each one of the drugs was used in three different concentrations during
the testing phase: AMK (4, 8 and 16 mg/L), CIP (1, 2 and 4 mg/L), MPM (1, 2 and 4
mg/L), CAZ (4, 8 and 16 mg/L) and PPC (4, 8 and 16 mg/L). The antimicrobial agents
were dissolved in water, pre-introduced to each microfluidic channel from the outlet hole,
and freeze-dried before use [71].

Strains of 101 clinically isolated specimens of Pseudomonas aeruginosa ATCC27853
were used in experiments. Among these 55 showed resistance to multiple drug com-
pounds, 21 were sensitive to a single agent, and the rest were sensitive to all compounds
[71]. The strains were grown overnight on Heart infusion agar and suspended in cation-
adjusted MuellerHinton broth, and then were introduced with a micropipette into the
DSTM devices. Next, the DSTM devices then were incubated under humid conditions
(37C) for up to 3h.

The ground truth minimum inhibitory concentrations were determined for the same set
of bacteria strains with the microbroth dilution method using a Dry plate Eiken (DPD2)
(EIKEN Chemical Co., Ltd, Tokyo, Japan).

2.3.2 Channel detection accuracy

The first stage of the conducted experiments was focused on determining the accuracy
of channel detection. The whole dataset provided 505 images (101 images for each one
of 5 drugs), each one of them had 4 observable microfluidic channels. Thus, in total
the number of channels reached 2020. Among all these channels the algorithm was not
capable of correctly determining only 8 channels, which is 0.003% of the total number.

During the course of developing algorithm after careful observation of input images
it was deduced that channel borders are visible as dark lines. And for major cases that
observation is correct, yet in some cases due to image artifacts the borders could have
higher levels of intensity, without any traces of black lines, making it impossible to cor-
rectly apply Canny edge detection, paired with PPHT (see Fig. 2.17).
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AMK CIP MPM

CAZ PIP

Figure 2.16: Images taken after 3h of incubation for 5 different drugs, applied to a single
bacteria strain.

Figure 2.17: Example of a channel, which the algorithm was not able to detect correctly
due to lack of dark pixels in the channel border.

28



2.3.3 Cell detection accuracy

Next step of experiments was dedicated to examining if the developed algorithm capable
of correctly detecting bacteria cells. It is impossible to obtain directly ground truth pixel-
based segmentation of cells that can be compared with the output of the cell detection
stage of the algorithm. Manually labeling cells in all the samples was also not possible
due to the sheer number of data. Therefore, to conduct estimation of cell detection accu-
racy the cells in 100 sample channels from 25 randomly chosen images were manually
counted. Then, the obtained values were compared with those calculated by the proposed
technique.

Figure 2.18: Scatter plot that represents the accuracy of cell detection with the proposed
algorithm.

The Figure 2.18 represents the relationship between the number of cells identified
automatically with those counted manually. The average accuracy of correctly detected
cells was 93%. Careful analysis of the samples where misdetection had occurred revealed
that the main cause of errors is highly overlapped elongated cells where the algorithm
labels segments as individual cells.

2.3.4 Susceptibility estimation

Next step in evaluating the efficiency of the method was to calculate the accuracy of de-
termining the susceptibility of bacteria strains to each drug with particular concentration.
To accomplish that separate SVMs were trained for each antimicrobial agent. The en-
tire dataset containing 303 feature vectors (3 test samples for each one of 101 images)
was split into training and testing sets in the ratio 80:20 and testing was done with cross
validation.
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Figure 2.19: Left image displays several overlapping cells as seen in the input image.
Middle image presents the ground truth separation of cells. Image on the right shows
misdetections.

Several feature vectors for SVM training was combined with different cell charac-
teristics to investigate which set of features is able to achieve the highest accuracy. The
following feature sets were used: (F1) length statistics, (F2) area statistics, (F3) count and
average length, (F4) count and average area, (F5) average length and area, (F6) histogram
(see Table 2.1).

Drug
Feature AMK CIP MPM CAZ PPC
ALL 0.91 0.96 0.94 0.95 0.9
F1 0.81 0.85 0.9 0.88 0.89
F2 0.83 0.88 0.89 0.86 0.87
F3 0.9 0.96 0.94 0.94 0.9
F4 0.85 0.88 0.87 0.85 0.88
F5 0.78 0.83 0.87 0.87 0.89
F6 0.89 0.95 0.94 0.92 0.9

Table 2.1: Susceptibility estimation accuracies for feature vectors constructed from dif-
ferent cell characteristics

For CAZ and PPC, features indicating length (F3, F4 and F5) were more reliable char-
acteristics for estimation, whereas for AMK and CIP it was cell count. For MPM, feature
vectors indicating length or cell count were equally accurate. The average accuracy of
susceptibility estimating exceeded 90%.

The figure 2.20 provides visualization of the trained SVM classifiers for the two-
dimensional feature vector combined from cell count and average length for each one
of five drugs.

2.3.5 Susceptibility estimation: 2h vs 3h incubation

For bacteriologists, it is a matter of crucial importance to determine whether a bacteria
strain is susceptible to a particular concentration of an antimicrobial agent as quick as
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Figure 2.20: ROC curves built for each one of five antimicrobial agents: amikacin
(AMK), ciprofloxacin (CIP), meropenem (MPM), ceftazidime (CAZ), piperacillin (PPC)

possible. Therefore, the next stage of experiments was dedicated to investigating how
well the SVM can predict susceptibility from images taken earlier than 3h.

The same dataset of 101 strains and 5 drugs was used during this experiment, yet the
input images were captured merely after 2h of incubation. The feature vectors fed into
the SVM consisted of only two elements: cell count and average length.

Then, the accuracy of susceptibility estimation after 2h for each drug was compared
with the one, achieved after 3h. The results of this examination is presented in Table 2.3.

Drug
Incubation time AMK CIP MPM CAZ PPC
2 h 0.74 0.85 0.82 0.8 0.79
3 h 0.9 0.96 0.94 0.94 0.9

Table 2.2: Susceptibility estimation accuracy using a feature vector, reflecting only cell
count and average length, on samples incubated for 2 h or 3 h

Due to less prominent difference between cell features of the control and test samples
the overall accuracy of susceptibility estimation was dramatically lower after 2 h incuba-
tion than after 3 h. The lowest value was of 74% was observed for the amikacin (AMK).
The primary reason for this outcome was that the bacteria strains grown in the presence
of AMK expressed lesser morphological changes in comparison to other drugs.
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Figure 2.21: Example DSTM device microscope images taken after 2h (left) and 3h
(right) of incubation.

2.3.6 MIC estimation accuracy

Next stage of the evaluation of the constructed algorithm was to determine the degree of
correlation between predicted minimum inhibitory concentration (MIC) and the ground
truth. To get the estimation of the minimum concentration for each individual bacteria
strain, the susceptibility of each channel in the corresponding image was calculated with
the pre-trained SVM from a feature vector, containing only cell count and average length.
Then, the MIC was assigned as the minimum concentration among susceptible channels.
The ground truth MIC was obtained by applying the microbroth dilution method using
the same bacterial solution on the same day.

Including samples that showed a two-fold difference in the MIC, as determined by the
traditional microbroth dilution method, the matching rate of the proposed method was at
least 96% (see Table 2.3).

Drug
AMK CIP MPM CAZ PPC

Accuracy 0.97 0.99 0.97 0.97 0.96

Table 2.3: Accuracy of MIC estimation for different drugs based on a feature vector
containing only cell count and average length.

2.3.7 SVM classifier vs human expert

Finally, the accuracy of MIC prediction with the SVM was compared with the criteria
devised by a human expert, that investigated various features: length, count, the ratio of
cell pixels to the background, and distribution of cells with different lengths (see Figure
2.22). The criteria were derived through trial and error to obtain the best correlation
between estimated and ground truth MICs [71].

The accuracy of MIC estimation with the SVM and manually by a human expert were
mostly same. The differences of not more than 1% were observed for AMK and CIP.
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Drug
AMK CIP MPM CAZ PPC

SVM 0.97 0.99 0.97 0.97 0.96
Human 0.96 1.0 0.97 0.97 0.96

Table 2.4: MIC estimation with the trained SVM classifier vs criterie selected by a human
expert

Figure 2.22: Two cumulative charts demonstrating distribution of cells with particular
lengths when all three samples are resistant to injected drug (left) and sensitive (right).

2.4 Discussion

2.4.1 Comparison with existing DST methods

Previously, drug susceptibility tests required long incubation times so that the difference
in growth between control and test samples become visible. Development of advanced
nanotechnology methods allowed to rely on microfluidic chips and microscopy for a wide
range of microbiological experiments [47], [70], [89].

Among all proposed procedures for DST, only a handfull were able to obtain results
in less than 4h. For example, Choi J. et al. [51], [52] described a method involving mi-
crofluidic agarose channel chip for MIC acquisition by analyzing alterations in bacterial
number and size occurred in response to drugs. The method required a complicated pro-
cess of setting up a 96-well type unique plate and conducting observations where images
of the plate had to be taken one by one at a certain time interval. Many other methods use
microfluidic chips and measure susceptibility by assessing time-lapse images [18], [72],
[77]. Most notable, Price et al. [92] using an automated microscopy system analyzed sus-
ceptibility of Staphylococcus aureus obtaining results in 2-4h. The suggested approach
was not designed to assay multiple strains simultaneously and required 2h preincuba-
tion to get logarithmically growing cells. The system has been extended towards rapid
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identification and has been applied in clinical environment [28], [73].
The key factor that contributed to the rapidity of susceptibility estimation with the

DSTM device is the introduction of a microscope. Under a microscope the damaged
bacteria cells treated by antimicrobial agents could be easily visualized and studied. In
comparison to other methods, to obtain visual information with the DSTM device requires
less than 4 hours: 10min to set-up and 3h of incubation.

The algorithm developed for automatic cell detection facilitates the analysis of bac-
teria cells, and capable of processing input images within 2 minutes. The advantage of
the automatization is not only the speed of result acquisition but also the accuracy of
cell detection, susceptibility estimation, and MIC prediction, that was proved with the
conducted experiments to be similar to a highly skilled expert.

Probabilistic hough transform allowed to provide rather a high degree of invariance
to rotation of channels seen in the input images and the separation technique proved to
be useful in cell detection procedure. Although SVM is not a complex machine learning
method it showed its efficiency for binary classification of susceptible and resistant strains
from feature vectors that contained even only 2 characteristics: length and count.

The implementation of the algorithm as a stand-alone software tool was deemed useful
to bacteriologist in daily research, since it provided an easy to use graphical interface and
functionality to extract cell features for more detailed analysis.

Currently, the DST procedure using DSTM device is undergoing clinical trials in
Japan. It is planned to expand the range of bacteria types for which the method can
be applied. The implementation of the developed automatic algorithm for susceptibility
testing will be supplied with the device. When this technology is put into practical use,
susceptibility testing will elevate the need for expensive equipment providing low cost,
simple, accurate and rapid tool.

2.4.2 Time lapse analysis

There are different approaches towards increasing the accuracy of the developed algo-
rithm. One of them involves incorporating cell features extracted from time-lapse images
of the DSTM device (see Fig. 2.23).

In the beginning of incubation, when an antimicrobial agent has been just introduced
into microfluidic channels of the DSTM device there is no significant difference between
cells in control and test channels. Gradually, over time, the morphology of cells and the
count of alive bacteria start to change and alterations in a strain, susceptible to a particular
drug concentration become more prominent (see Fig. 2.24).

To increase the accuracy of susceptibility estimation features can be extracted from
each individual image separately, then combined into a feature vector and used as an
input for the SVM or other machine learning method. Another wait to exploit the time-
lapse data is to attempt to predict susceptibility earlier than 3h. This could be done either
by approximating the value of desired features at 3h with linear or quadratic regression
or by directly exploiting obtained features.
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Figure 2.23: Time-lapse sequence images with CAZ injected into test channels. Each
image from top left to bottom right was taken with a 15 minute interval. The first image
was taken after 15 minutes from the beginning of incubation, and the last - after 3 hours.
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Figure 2.24: Changes of cell count through time from the beginning of the incubation till
3h for a bacteria strain, grown in the presence of
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Chapter 3

Automatic embryo segmentation

3.1 Introduction

3.1.1 Cell analysis in embryology

Embryology is a wide field of study that includes investigation of internal mechanisms
of a variety of processes such as cellular differentiation, morphogenesis, metamorphosis,
tissue regeneration, and many others that occur during development of an organism. The
early stages of embryo growth, from fertilization to implantation, are of particular interest
to the medical community, since during this time frame the core structure of the future
being is established and any flaws in internal functioning directly affect the health of the
organism.

To detect disorders in the embryo during its development a pre-implantation genetic
diagnosis is performed. This procedure involves genetic profiling of embryos prior im-
plantation to assess its quality and estimate pregnancy rate. In general, profiling for
prediction pregnancy rates is focused mainly on visual profiles and short-term biomark-
ers including expression of RNA and proteins, while profiling for health prediction puts
more focus on the genome analysis.

The evaluation of the embryo quality is often done through observations of cell mor-
phology with a microscope at certain time points and calculating the score using a mor-
phological scoring system. This approach has shown to significantly improve pregnancy
rates.

Advances in molecular biology and microscopy provided new insights into internal
processes occurring at early stages of embryo development. After fertilization, a se-
ries of cleavage divisions occur producing identical cells - blastomeres. Blastomeres are
undifferentiated cells, they are not yet committed to becoming any particular type of dif-
ferentiated cells, thus have potential to give rise to any cell of the body that is depleted as
they transform to become part of the complex tissue. Pluripotent blastomeres extracted
from an embryo are called embryonic stem cells. Embryonic stem cells can continue
to proliferate and replicate themselves indefinitely and still maintain the developmental
potential to form any cell type of the body, promising an essentially unlimited supply of
specific cell types for basic research and for transplantation.

Cultivation of embryonic stem cells is a challenging task, and, although a significant
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Figure 3.1: Phase-contrast images of human embryo development from day 0 to day 7.
Following fertilization, embryos undergo a series of mitotic cell divisions forming morula
at day 4. A fluid-filled structure composed of an inner cell mass called blastocyst forms
at day 5. [80]

progress was achieved in the field of regenerative medicine, a number of difficulties re-
main. Primarily the existing models do not fully describe factors contributing to cell
specialization, limiting the type of cells that could be grown from stem cells.

3.1.2 Embryo development and cell specialization

The development of the pre-implantation embryo starts from a single fertilized cell, the
zygote. The first division of the zygote usually occurs within 24 hours after ovulation and
produces two cells, known as blastomeres, that contain a full copy of the new embryo
genome. Subsequently, a series of mitotic divisions take place, yet the volume of the em-
bryo remains constant, while the newly formed blastomeres become smaller and smaller
with each division [7], [80], [124]. When the number of cells reaches 16 the embryo en-
ters the morula stage, during which identical blastomeres start to differentiate. This step
in embryo growth is known as compaction (see Fig. 3.1) [80].

The step that follows morula compaction is known as blastulation phase, during which
the embryo transforms into a cluster of cells called blastocyst. The blastocyst has a spher-
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ical formation with a cavity inside it. At this stage embryo is organized into three distinct
cell lineages and cell fate at this point has been already determined [97], [7].

Understanding the mechanism behind the cell specialization process in the preimplan-
tation embryo has been complicated by the flexibility of embryo development. Exper-
iments, where the blastomeres are removed or rearranged manually or cells from two
different embryos are combined together to produce a chimaera, demonstrated ability of
cells to adapt in response to contextual changes [7], [110], [111].

A number of hypotheses have been proposed to explain the process that drives cells to
commit to a distinctive line. Early hypotheses were based on assumptions that develop-
ment of an embryo was driven by random processes, where cell contributed equally to any
type of lineage. However, more recent time-lapse imaging studies suggest that a variety
morphological characteristic - volume, shape and relative positions of blastomeres - play
a significant role in determining cell fate [44], [83], [97], [112], [121]. Despite significant
progress in understanding the process of cell specification there are other aspects that also
contribute to the determination of the resulting cell [24], [108].

Figure 3.2: Overview of the pre-implantation development of a mouse embryo during
which a fertilized egg divides into increasingly smaller cells resulting in the formation of
the blastocyst.

Uncovering all the mechanisms, underlying the specification of individual cells and es-
tablishing a complete model, requires quantitative analyses of various blastomere charac-
teristics. They can be obtained without a considerable effort if segmentation into individ-
ual cells is performed. A number of methods to automate this labor-intensive procedure
have been developed over the past decade.

3.1.3 Methods for blastomere segmentation

Embryos are commonly imaged by means of phase contrast technique called Hoffman
Modulation Contrast (HMC). It detects optical gradients and converts them into variations
of light. Obtained HMC images display a transparent embryo with a side-lit appearance
(see Fig. 3.3).

Singh et al. [105] presented a segmentation algorithm for processing a single HMC im-
age for estimating embryo viability for fertility. The algorithm successfully segments up
to 4 blastomeres, applying isoperimetric graph partitioning, followed by region merging
which uses length, vesselness, and entropy of the borders between regions. To estimate
shape, least-squared fitting of an ellipsoidal model is used.
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Figure 3.3: A 4-cell embryo captured with the Hoffman Modulation Contrast (HMC)
technique.

In order to perform 3D morphology measurements and modeling of an embryo, HMC
images are captured at different focus levels. Resulting set of slice images is called a
Z-stack. Guisti et al. [37] presented a graphcut-like global energy minimization approach
for segmenting a Z-stack of HMC images and extracting 3D morphology characteristics.
Other approach was introduced by Pederson et al. [88]. It applies a general multiphase
variational level set with manually extracted contours to determine relative positions of
blastomeres.

Graphcut-based algorithms, being very versatile, showed efficiency in segmenting
each individual cell nuclei in histopathology images and tissue samples of higher or-
ganisms [3]. The watershed approaches described in [33] [84] [85] [119] were also able
to successfully detect nuclei in tissue or cell cultures. Segmentation by gradient vector
flow tracking was capable of producing accurate results, however it is sensitive to object
texture [58] [64].

Tian et al. [115] proposed an approached based on least square curve fitting apllying
it to single phase contrast image to detect blastomeres. This method combines edge de-
tection, removing of multiple connected ponts and mophology operations to obtain part
of cell edges. Then least saure circle fitting is used to detect blastomeres. Experiments,
showed efficiency of the developed technique on a dataset contatining 381 embryo mi-
croscopic images obtained from eight-cell period (see Fig. 3.4).

Thick 3D topology of blastomeres, partial or full occlusions, varying defocus of HMC
imaging technique, all these issues complicate the cell segmentation process[115]. There-
fore, for the stages of embryo development with more than 4 cells the accuracy and effi-
ciency of existing methods decreases, highlighting the necessity of different approaches
for solving the segmentation task for these embryo stages. The choice of other than HMC
imaging technique can simplify such endeavours.
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Figure 3.4: Results of blastomere detection for Hough transform-based method (middle
row) and LSCF (bottom row) [115].

3.1.4 Fluorescence microscopy

Embryonic development is a dynamic three-dimensional process of complex cellular in-
teractions, which are highly regulated spatially and temporally. Investigation of these
interactions requires time-lapse visualization of the living embryo during the course of
its growth. For high-resolution visualization of development progression genetically en-
coded fluorescent protein (FP) reportes have been most prominent, because of their high
signal-to-noise ratio, minimal toxicity, and ease of use [79], [82],[123]. FPs can be not
only used natively but also fused to any protein of interest to provide subcellular segmen-
tation [81].

In order to visualize FP reporters different techniques have been proposed: wide-
field fluorescence microscopy for observing whole embryos, confocal microscopy that
allows visualize an embryo at subcellular and spatio-temporal resolution, and light sheet
fluorscence microscopy, that utilizes plane of light to optically section and view tissues
with subcellular resolution.

Unlike segmentation an embryo from HMC images, techniques that provided simi-
lar output for fluorscence microscopy images has not been well studied. Nethertheless a
number of algorithms for general cell segmentation in fluorescence images have been de-
veloped [30], [36], [65]. Dufour et. al [30] proposed a method, based on multiple active
surfaces, for automatic segmentation and tracking fluorescent cells in 3D microscopy.
The algorithm is able to process multiple cells, even if they touch, divide or move. Im-
proved version of this method, in terms of tracking precision and computational time, was
introduced by Dzyubachyk et. al [31]. Xinghua et al. [65] developed at tool designed to
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provide quantitative cells measurements in fluorescent intensity 2D and 3D image data.
The main algorithm consists of a detection module to identify each nucleus, a segmenta-
tion module that propagates assigned labels to the entire body of the respective nucleus,
and a classification module identifying different types of cells.

Figure 3.5: Cross sections images of a 4 cell embryo nuclei and membranes. To mark
nuclei and membranes H2B-mCherry and mG proteins were used.

3.1.5 Embryo segmentation from fluorescence images

The solution of the cell segmentation problem presented in this study was done for the
embryos that were obtained by crossing female H2B-mCherry mice with male mG mice
making embryo membranes and nuclei visible [79].

As a result the input data consisted of two Z-stacks of 3D fluorescence microscopy
images: one stack for cell nuclei and another one for membranes (see Fig. 3.6). The
two sets of FP data, though not perfect, represent well borders of cells and the regions of
nuclei. Observing the input images it is also possible to conclude that the difficulty arises
due to areas of low intensity in parts of membrane and to distinguish the location where
a membrane of one cell touches the other one, since there is no visible separation.

Inspired by the results of applying level set based techniques for segmentation and
tracking cell, presented in works of Dzyubachyk et. al [31] and Dufour et. al [30], it
was decided to design and implement a new level set approach. The segmentation task is
formulated as the detection of inner regions for each individual cell as well as localizing
the whole volume, occupied by membranes. Membranes, corresponding to individual
cells can be afterwards acquired from the solution by locating surfaces equidistant from
inner cell region boundaries with the distance transform [40].
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Figure 3.6: To perform segmentation of an embryo 3D level set method is applied to two
Z-stacks of fluorescence microscopy images. One of the Z-stacks composed of images
displaying cell membranes, while the other one contains visual information about cell
nuclei positions.

3.2 Method: 3D Level Set

3.2.1 Segmentation methods

There are numerous ways to approach the task of image segmentation. Learning based
algorithms are capable of achieving high segmentation accuracy, yet they require a con-
siderable amount of input data to train on. Filtering techniques such as the Canny edge
detector [12] rely only on local information and cannot guarantee continuous closed edge
contours. Region growing and merging methods able to test if the area inside the seg-
mented region satisfies a condition, yet they generate irregular boundaries and produce
small holes [61]. Snake [53] and Balloon [20] methods require good initial estimation of
the region boundaries and use edge cues to carry out segmentation, however, they lack a
meaningful probabilistic interpretation and global conditions. Finally, optimization tech-
niques based on energy functions or Bayesian criteria involve the usage of global criteria
for which solving a minimization task is difficult.

A trade-off between local and global criteria is the level set method [2], [86]. It per-
forms evolution by fitting statistical models to intensity, color or texture with each of the
separated regions, making it far less sensitive to noise and to varying initialization. The
other advantage of the level set method is its ability to handle complex morphology and
topological changes automatically. However, the major drawback of the method is that
solving the defined partial differential equation (PDE) is often computationally expen-
sive. This issue was overcome by limiting the region where computation is performed
[60] or totally avoiding solving the PDE [104]. The second method, in particular, was
able to increase processing speed dramatically.

Efficiency in solving not only two dimensional, but three dimensional segmentation
tasks [16], the simplicity of defining conditions of region boundaries, speed of existing
implementations - all these factors contributed in the choice of the level set algorithm for
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Figure 3.7: A 3D model of a 4 cell embryo with labelled elements: membrane, nucleus,
inner cell region.

the embryo segmentation task from fluorescence images.
Embryos in our study have a 3D structure similar to the one shown in Fig. 3.7. They

consist of cells, each of which has its own nuclei and membrane that separates the inner
region from the external environment. The cell membranes are surfaces without ruptures
or gaps, yet there is a likelihood that their representation in the images of the input Z-
stack can have areas of low intensity, seen as holes, caused by uneven distribution of
fluorescent proteins. To estimate cell membranes correctly, instead of directly attempting
to locate each one of them individually the developed algorithm performs segmentation
into inner cell regions and the whole region occupied by membranes. For each type of ob-
ject to segment, a separate level set energy function as a differential equation was defined
that penalizes overlapping with other segments, forces membrane to wrap around inner
regions, and specifies that inner cell boundary is where intensity changes significantly.

3.2.2 3D level set segmentation

The level set method was introduced in [25], then extended in [86] to track moving inter-
faces for various problems in fluid dynamics. Later it was successfully applied to perform
segmentation in computer vision [23]. The central idea behind this method is to evolve
the boundary surface S in the domain Ω ∈ R3 from some initialization in direction of
negative energy gradient with the gradient descent procedure presented in the equation
3.1.

∂S

∂t
= −E(S)

S
= F · n (3.1)
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The boundary S following the geometric active contour model is defined implicitly as
a zero level surface of a time-dependent embedding function φ (3.2).

S(t) = {(x, y, z) ∈ Ω|φ(x, y, z, t) = 0} (3.2)

Since φ(S(t), (t)) = 0, the total time derivative of φ at the boundary must vanish,
giving the following equation:

d

dt
φ(S(t), t) = ∇φ∂S

∂t
+
∂φ

∂t
= ∇φF · n+

∂φ

∂t
= 0 (3.3)

Next by inserting the definition of the normal n = ∇φ
|∇φ| in the above equation the

evolution equation for φ is obtained.

∂φ

∂t
= −|∇φ|F (3.4)

On the other hand, equation 3.1 is possible to redefine on the space of level set func-
tions using the variational principle, deriving the Euler-Lagrange gradient descent equa-
tion for minimizing the energy functional E(φ).

∂φ

∂t
= −∂E(φ)

∂φ
(3.5)

Combining equations 3.4 and 3.5 the canonical form of the level set equation for seg-
mentation is obtained.

∂φ

∂t
= −∂E(φ)

∂φ
= −F |∇φ| (3.6)

Following the approach for identifying multiple segmentation regions [10], [67], indi-
vidual level set functions φi are defined for each of N inner cell region boundaries and
one ψ is set to describe the surface of the membranes, all of which are evolved simulta-
neously.

3.2.3 Energy functions

The choice of the energy function E(φ) is important, since it determines the accuracy
and robustness of the level set method. In the developed approach individual energies
Einner(φi) and Emembrane(ψ) were constructed for the two types of level set functions φi
and ψ respectively.

Inner region energy
The inner region energy Einner(φi) is designed to describe the morphology of the inner
cell region boundary. It is a weighted sum of three terms.

Einner(φi) = w1Eedge(φi) + w2Enucleus(φi) + w3Eoverlap(φi) (3.7)
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Eedge(φi) Enucleus(φi) Eoverlap(φi)

Figure 3.8: Illustrations of the inner region energy terms: Eedge(φi) forces the detected
inner region boundary to be closer to membrane; Enucleus(φi) includes nuclei inside the
cell regions; Eoverlap(φi) prevents overlap.

The edge energy Eedge(φi) measures how well the surface Si matches the boundary
of the i − th cell inner region. It is defined following the approach of geodesic active
contours [15], [38].

Eedge(φi) =

∫∫

Si

e(x, y, z) ds (3.8)

In the equation above, function e(x, y, z) is the edgeness metric. It can be defined
with a number of methods, however, for any definition, the function must be zero at the
boundary surface of a segmented object and take large values elsewhere. In the proposed
approach the edgeness metric was specified as the Euclidean distance from each point of
the detected surface Si to the cell membranes displayed in fluorescence images.

The energy Enucleus(φi) characterizes the position of the nucleus, forcing the inner
region to contain nuclei inside it. Since the optimal partition P (Ω) of the domain Ω ∈ R3

can be obtained by computing the a posteriori probability p(P (Ω)|I). It is possible to
describe separate image-based and geometric cues in conditional probabilisty by applying
the Bayes rule [23].

p(P (Ω)|I) ∝ p(I|P (Ω))p(P (Ω)) (3.9)
Defining geometric prior with no restrictions on surface area an image prior the previ-

ous equation can be presented in the following form.

Enucleus(φi) = −
∫∫∫

Qi

log p(Qi|I(~x))dx dy dz−
∫∫∫

Q0

log p(Q0|I(~x)) dx dy dz (3.10)

The I(~x) = I(x, y, z) is the intensity of the pixel (x, y) in the z − th cross section of
the nuclei z-stack. TheQi denotes the region occupied by the i−th nucleus, while theQ0

is the background. The terms log p(Qi|I(~x)) and log p(Q0|I(~x)) represent logarithm of
posterior probabilities of a pixel (x, y, z) to belong to the inner cell region or background,
depending on its intensity I(~x).
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To penalize the overlapping of the cell regions theE(φi)overlap energy was constructed.
This energy simply achieves its minimum when the none of pairs of cells (i, j), j 6= i has
a shared volumes. It is defined with the help of Heaviside functions, H(−φi(~x)) and
H(−φj(~x)), that are zero outside cell region and one inside.

Eoverlap(φi) =
∑

j=1
j 6=i

∫∫∫

Ωi

H(−φi(~x))H(−φj(~x)) dx dy dz (3.11)

Membranes region energy

The surface boundaries of the all individual cell membranes combined together are
specified by the energy Emembrane(ψ). It consists of three terms: one that specifies occu-
pied volume that depends on the intensity of voxels in fluorescence images of membranes,
other penalizes overlapping with inner cell regions and the final one, that prevents occur-
ring tearing in the surface by attempting to cover inner cell regions.

Emembrane(ψ) = v1Evolume(ψ) + v2Eoverlap(ψ) + v3Einclusion(ψ) (3.12)

Evolume(ψ) Eoverlap(ψ) Einclusion(ψ)

Figure 3.9: Illustrations of the membrane energy terms: Evolume(ψ) determines mem-
brane location depending on intensity; Eoverlap(ψ) prevents overlap with inner regions;
Einclusion(ψ) fills the gaps in the membrane.

The primary energy term to characterize the membranes volume is the energyEvolume(ψ).
It is defined with the help of the Bayesian region-competition framework [23], [127] and
represents the joint posterior probability that each pixel (x, y) in cross section z belongs
to membranes.

Evolume(ψ) = −
∫∫∫

Ω1

log p(Ω1|J(~x)) dx dy dz − −
∫∫∫

Ω0

log p(Ω0|J(~x)) dx dy dz

(3.13)
The components Ω1 and Ω0 correspond to membranes region and the background re-

spectively. The J(~x) = J(x, y, z) is the intensity of the membrane pixel (x, y, z).
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The energy function Eoverlap(ψ) is constructed similar to Eoverlap(φi) (3.11) penalizes
the membrane overlap with cell inner regions.

Eoverlap(ψ) =
∑

i=1

∫∫∫

Ω1

H(−ψ(~x))H(−φi(~x)) dx dy dz (3.14)

The fluorescent proteins mark cell membranes nonuniformly, which makes some im-
ages display nonexistent holes in membrane surface. To overcome this issue and restore
the correct structure of the embryo the term Einclusion(ψ) was designed to force the mem-
brane to cover inner cell region.

Einclusion(ψ) =

∫∫∫

Ω1

1

1 + e(k∗(d(x,y,z)−D))
dx dy dz (3.15)

The function d(x, y, z) measures the distance from the point (x, y, z) to the boundary
of the inner cell region. The constant D sets the maximum allowed distance from the
membrane to the inner cell regions.

3.2.4 Level set evolving equations

To summarize all the above, for the segmentation problem defined as locating inner cell
regions and membranes it is necessary to solve N + 1 PDEs, where N is the number of
cells in the embryo.

∂φi
∂t

= −∂Einner(φi)
∂φi

= −Finner|∇φi|, i = 1, N (3.16)

∂ψ

∂t
= −∂Emembrane(ψ)

∂ψ
= −Fmembrane|∇ψ| (3.17)

It has to be noted that these equations are mutually dependent due to energy functions
Einner(φi) interact with each other and with the Emembrane(ψ) via the Eoverlap(φi) and
Eoverlap(ψ). Thus the equations (3.16) and (3.17) have to be solved simultaneously.

3.2.5 Fast two-cycle algorithm

The level set method has many advantages, however, its implementations that directly and
fully solve PDEs, such as (3.16) and (3.17), with numerical methods are computationally
expensive. Different approaches have been taken to increase the processing speeed of
the evolution of the zero-level functions. Some proposed techniques were focused on
updating the level-set function globally over the entire regular grid [17]. Other methods
suggested that in those cases when only the zero level set is of interest, then to accelerate
processing it is sufficient to perform computations only in a restricted neighborhood of
the zero level set. These methods were called narrow band techniques [60], [90], [103],
[104].
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One example of narrow band methods is [2], where a tube is constructed in the neigh-
borhood of the zero level set, that is initialized as a signed distance function within this
tube. When the zero level set becomes too close to the edge of the tube, then both the tube
and level set function is reinitialized with the fast marching method [102]. Modification
of this approach in which a Hamilton-Jacobi PDE is solved to initialize the level set was
late presented in [90].

A significant number of development methods attempt to solve the associated evolu-
tion PDEs accurately, yet for some problems, such as image segmentation, accuracy is
not necessary. Exploiting this idea Shi and Karl [103], [104] developed a method, that
completely avoids direct calculations of PDEs. This method was able to achieve near
real-time performance due to the fact that it does not demand reinitialization of the level
set functions and update it only in the narrow band.

The boundary surface in the level set method is defined via the zero level set function
φ that in discrete case is defined over a grid. Specifying that φ is negative inside the and
positive outside the surface with the implicit boundary representation, it is possible to
define two sets Lin and Lout of neighboring points [103].

Lin = {~x|φ(~x) < 0,∃ ~x0 ∈ N(~x) : φ(~x0) > 0}
Lout = {~x|φ(~x) > 0,∃ ~x0 ∈ N(~x) : φ(~x0) < 0} (3.18)

In the Shi-Karl method instead of directly solving PDE (3.4) these two sets Lin and
Lout are evolved. The evolution is separated into two cycles: data driven expansion
and smoothness regularization with a term derived from a Gaussian filtering process.
The first cycle switches grid points from one set Lin or Lout to another, specified by
the sign of the discrete approximation F̂ of the speed function, therefore shrinking or
expanding the boundary. The regulation cycle provides smoothness regulation to the
boundary using local Gaussian filtering. The points during this step are added to one of
the sets, depending on the sign of convolution of the level set function with a Gaussian
filter. The iteration procedure stops when the stop condition (3.19) is satisfied or if a
pre-specified maximum number of iterations is reached.

F̂ (~x) ≤ 0,∀x ∈ Lout, F̂ (~x) ≥ 0,∀x ∈ Lin (3.19)

Those equations disagree with each other on which direction to evolve the boundary
only when the energy minimum is reached.

In comparison to other narrow band techniques, the Shi-Karl algorithm performs com-
putation only with two lists of grid points neighboring the surface boundary. Although
it belongs to the class of narrow band techniques, representing one of the extreme cases,
it has one fundamental difference. The level set curve evolution is done without solving
any PDE, thus there is no need for controlling step size or maintaining numerical stability.
Despite avoiding using PDEs, this method preserves all the advantages of the level set:
generality of formulations for an arbitrary number of dimensions and automatic handling
of topological changes.
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3.2.6 Discrete approximation

To solve the segmentation problem, defined by the equations (3.16), (3.17), with the Shi-
Karl algorithm it is necessary to give a discrete approximation for each term first.

There are numerous ways to define the approximation of the level set functions φi and
ψ. For faster computation, it is advised to chose values from a limited set of integers, for
example as given in equation (3.20).

φi(~x), ψ(~x) =





3, if ~x is an exterior point
1, if ~x ∈ Lout
−1, if ~x ∈ Lin
−3, if ~x is an interior point

(3.20)

This particular definition allows easily distinguish the relative location of any point
with respect to boundary surface.

The discrete approximations F̂inner and F̂membrane of the speed functions in (3.16),
(3.17) are acquired by approximating derivatives of each term in ∂Einner(φi)

∂t and ∂Einner(ψ)
∂t .

For the edge speed function F̂edge, corresponding to the energy Eedge(φi), a central-
difference approximation of derivatives of the equation (3.8) is used.

F̂edge = ē
′
xφ̄i

′

x + ē
′
yφ̄i

′

y + ē
′
zφ̄i

′

z
(3.21)

ē
′
x = e(x+ 1, y, z)− e(x− 1, y, z)

φ̄i
′

x = φi(x+ 1, y, z)− φi(x− 1, y, z)
(3.22)

The edgeness function e(x, y, z) in this equation is defined to be the Euclidean distance
transform of the result of Canny edge detector [46] applied to images of cell membranes
J(x̄)

Likewise, F̂ of each energy term is created. The value of the discrete functions
F̂overlap, representing Eoverlap(φi) and Eoverlap(ψ), is set to −1 in the overlapped re-
gion, while everywhere else it is zero. The term |∇φi| is calculated with a first order
upwind scheme. Finally, for the region speed F̂volume and F̂nucleus a range of intensities
is specified, where the function is −1, otherwise it is 1.

F̂nucleus(x, y, z) =

{
−1 if I(x, y, z) ∈ [I1, I2]

1 otherwise
(3.23)

F̂volume(x, y, z) =

{
−1 if J(x, y, z) ∈ [J1, J2]

1 otherwise
(3.24)

The main parameters in the Shi-Karl algorithm are number of iterations for each cycle
and the size of Gaussian filter kernel. Following suggestions, discussed in [103], for the
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choice of these parameters the method was set to perform 3 steps for the evolution and 1
step with 5× 5 kernel for the regularization cycle.

3.3 Experimental results

3.3.1 Dataset

For testing the proposed 3D level set method 20 embryo samples at various development
stages (4-32 cells) were collected. The embryos were obtained by crossing female H2B-
mCherry mice with mG mice. After recovering the embryos they were cultured under the
condition of 37C, 5% CO2 in 20µl drop of KSOM in the chamber installed in the inverted
light-sheet microscope [109]. The visual data was composed of 130 optical cross sections,
acquired every 10 minutes, the distance between the two consecutive optical slices was
1µm, then scaled to have 260 images. The resolution of the input images was 260x260.

To initialize the primary sets Liin and Liout, used in Shi-Karl iterative algorithm, cell nu-
clei were detected. To do that, first, the input images of the nuclei Z-stack were smoothed
with the 3D Gaussian filter, followed by Otsu’s adaptive thresholding. Next, among all
blobs, located with the connected labeling method, N with a maximum number of points
were chosen. Finally, the sets were calculated according to their definitions (3.18). The
same approach was applied to determine initial sets of cell membranes.

3.3.2 Qualitative accuracy evaluation

The results of the segmentation of embryos with a different number of cells are presented
in figures Fig. 3.10 and Fig. 3.11. The Fig. 3.10 presents results of the segmentation as
3D renders of cell inner regions and all membranes for embryos that contain 4, 8, 16, 24,
and 32 cells. The Fig. 3.11 displays some selected cross-sections of the same embryos.

Visually examining the results of segmentation it was possible to conclude that the
method was able to rather correctly identify inner cell regions and membranes in those
cases when embryos consisted of 4, 8, and 16 cells. However, if the number of blas-
tomeres was 24 or 32 the algorithm appeared to provide less accurate results. The shapes
of the detected inner regions were less smooth, with traces of under-segmentation (see
Fig. 3.11, columns (d) and (e)). The obtained surface of cell membranes, on the other
hand, appeared to suffer less from those problems observed for inner regions.

These results can be explained by studying the changes occurring in the embryos with
the increase of the number of blastomeres. The most striking morphological change that
occurs at the 24-32 stage is the formation of an internal cavity, forcing blastomeres to
clutter to one side of the embryo. The outer embryo membranes, separating it from the
outside environment become less visible, their intensity is low, while the membranes
between cells become more prominent.

51



(a) 4 (b) 8 (c) 16 (d) 24 (e) 32

Figure 3.10: 3D reconstruction of segmentation results for inner cell regions and mem-
branes for embryos containing 4, 8, 16, 24, and 32 cells.

(a) 4 (b) 8 (c) 16 (d) 24 (e) 32

Figure 3.11: Cross sections of embryos that contain 4, 8, 16, 24, and 32 blastomeres that
display the results of the inner region segmentation with the developed method.
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3.3.3 Quantitative accuracy evaluation

Performing quantitative assessment of the segmentation accuracy for the desribed task
can not be done straightforward, since it is impossible to obtain ground truth labeling
for blastomeres and membranes from any direct measurements. Therefore, to conduct
tests, the ground truth set was built by manually specifying areas of inner cell regions and
membranes on the input images.

The accuracy of the segmentation for each cell component was evaluated as an average
F-score, which is defined as the harmonic mean of precision and recall (see Equations
(3.25) and (3.26)).

F =
2× precision× recall
precision+ recall

(3.25)

If the segmentation result obtained with the proposed method is denoted as Se and S0

is the ground truth, then precision and recall are defined as:

precision =
|Se ∩ S0|
|Se|

recall =
|Se ∩ S0|
|S0|

(3.26)

The results of the segmentation for inner cell regions and membranes given as preci-
sion, recall and F-measure are presented in Table 3.1 and Table 3.2.

Cell count 4 8 16 24 32
Precision 0.93 0.93 0.85 0.8 0.66

Recall 0.93 0.9 0.9 0.83 0.80
F-score 0.93 0.91 0.88 0.81 0.75

Table 3.1: Segmentation accuracies for inner cell regions presented as precision, recall,
F-score for embryos with different number of blastomeres.

Cell count 4 8 16 24 32
Precision 0.81 0.78 0.7 0.73 0.75

Recall 0.79 0.77 0.74 0.69 0.67
F-score 0.8 0.79 0.72 0.72 0.7

Table 3.2: Segmentation accuracies for cell membranes presented as precision, recall,
F-score for embryos with different number of blastomeres.

The F-measure of labeling inner cell regions is 93% for the 4 cell stage and it gradually
dropped as the number of cell increased. For the 32 cell embryos it reached 70%. As
it was illustrated above in previous section, this tendency is caused by the increasing
embryo’s morphological complexity as it undergoes cell division. Segmentation accuracy
for the membranes is slightly lower than inner cells, ranging from 70% to 77%, depending
on the number of cells.
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3.3.4 Comparison with other methods

Segmentation results obtained with the proposed algorithm were also compared with
those acquired by applying 3D version of the watershed algorithm [66]. Initial mark-
ers were set up to be cell nuclei that were extracted in the same way as was described in
the previous chapter by applying Gaussian smoothing, followed by adaptive threshold-
ing. The input images of embryo membranes were thresholded to obtain binary image,
then dilated in order to separate the volume occupied by the embryo cells from the back-
ground, then the binary representation of the membrane is subtracted from the images
obtained at the previous step.

The watershed method successfully detected some cell regions, yet other regions suf-
fered from under-segmentation. The segmentation accuracy for embryos with 4, 8, 16,
and 24 blastomeres of the watershed algorithm was lower than the proposed 3D level set
method (see Table. 3.3). For 32 cell embryo, the watershed approach showed slightly
better results. However, it has to be noted that this implementation of the watershed un-
like the developed level set method allowed detection only of the inner cell region and
not designed for reconstructing membranes.

Cell count 4 8 16 24 32
3D level set 0.93 0.91 0.88 0.81 0.75
Watershed 0.73 0.89 0.83 0.78 0.77

Table 3.3: Comparison of inner cell region segementation accuracy achieved with the
developed 3D level set method and watershed method.

For this moment, there are two previous reports on the problem of embryo segmenta-
tion with a numerical assessment of the developed approach. Guisti et al. [37] proposed a
method that involves processing of Z-stack of HMC images. They assessed its efficiency
on 53 4-cell embryo image stacks. During the testing stage, the candidate cell was con-
sidered as correct if its Jaccard similarity index was higher than 0.8, achieving 71% of
accuracy. Singh et al. [105] applied isoperimetric graph partitioning to HMC embryo im-
ages to approximate blastomere position. It achieved 81% of accuracy (Jaccard similarity
index was also set to 0.8) on a dataset of 40 embryo images. In comparison, the approach
described in this thesis was able to achieve 90% with the same evaluation technique.

3.3.5 Analysis of individual energy terms

Fine-tuning weights in the definition of the energy functionsEinner(φi) andEmembrane(ψ)
is a difficult procedure, since there is no guarantee that the chosen set allows achieving
the best accuracy. Thus to understand how the individual energies affect accuracy of
segmentation a number of weight sets were tested (see Table 3.4 and Table 3.5). The
accuracies of blastomere and membrane segmentation were calculated for an embryo
with 8 cells.
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w1 w2 w3 Accuracy
0 1 1 0.63
1 1 0 0.74
1 1 1 0.90
1 1 3 0.91

Table 3.4: Accuracy of cell region segmentation depending on weight values for an em-
bryo with 8 cells presented as F-score

(a) (b) (c) (d)

Figure 3.12: (a) An input cross section. (b) Inner cell regions detected with Eoverlap(φi)
term included into the definition. (c-d) Inner cell regions detected without using
Eoverlap(φi).

The Eedge(φi) is the main force which expands the boundaries during evolution. If this
term is removed the result of the segmentation algorithm is the initial surfaces – borders
of the cell nuclei. The energy function Eoverlap(φi) plays a significant role in cases when
there are holes or gaps in membranes separating two blastomeres. If the energy is not
used then the detected inner regions become overlapped (see Fig. 3.12).

v1 v2 v3 Accuracy
1 0 0 0.75
0 1 1 0.77
1 1 1 0.79
1 1 3 0.8

Table 3.5: Accuracy of membrane segmentation depending on weight values for an em-
bryo with 8 cells presented as F-scores

Exclusion of Evolume(ψ) forces to rely only on Einclusion(ψ) during evolution of cell
membranes, results in under segmentation.

For restoring the morphology of the embryo and covering the holes in membranes the
Einclusion(ψ) is extremely useful (see Fig. 3.12). It approximates the membrane and fills
the gaps. The negative effect of using this energy is that the thickness of boundary could
increase, if the constant D chosen in equation (3.15) is too high.
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(a) (b) (c) (d)

Figure 3.13: (a) An input cross section. (b) Detected inner cell regions. (c) Detected
membranes with Einclusion(ψ). (d) Detected membranes without Einclusion(ψ).

3.4 Discussion

3.4.1 Improving the accuracy

The second part of this thesis was dedicated to a new method for performing segmenta-
tion of early stage embryos from Z-stacks of fluorescence images. The use of fluores-
cence visual data instead of images, obtained with Hoffman Modulation Contrast (HMC)
technique greatly facilitates localization of blastomeres and cell membranes.

Experimental results showed that the developed 3D level set algorithm is capable of
segmenting efficiently embryos with up to 24 cells. However due to significant changes
in internal embryo morphology it did not achieve good results for the samples containing
32 cells (Figure 3.14: (a), (b)). The advantages of the designed 3D level set method
include handling complex embryo morphology, restoring regions of membranes with low
visibility and processing speed.

(a) (b) (c)

Figure 3.14: (a) A 3D model reconstructed from the input cross sections of the 32 cell
embryo. (b) A cross section of a 32 cell embryo. (c) Missdetection of membrane regions.

There are two factors which primarily affect the segmentation accuracy of the devel-
oped method. The first one is the design and usage of the energy term Einclusion(ψ).
This energy was created to correctly fill ’holes’ by enveloping inner cell regions and in
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some cases it forces to incorrectly add regions which are not belong to membranes (Fig-
ure 3.14: (c)). The second factor, contributing to estimation accuracy, is the precision of
Canny detector used for computing edgeness function e(x, y, z) in (3.21). Re-defining
edgeness metric with a different function potentially can increase the accuracy.

Another approach for improving segmentation accuracy, for the 32-cell embryos in
particular, is to introduce additional energies into equation (3.7) and (3.8). For exam-
ple, to carry out more direct control of blastomere smoothness an individual smoothness
energy can be included into computations, instead of relying on regularization cycle of
the Shi-Karl iterative algorithm. Specifying an energy for a cavity in the 32-cell embryo
could also increase the result of segmentation.
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Chapter 4

Conclusion

The advances in live cell imaging allowed rapid acquisition of big quantities of visual
data without effort, dramatically transforming the biomedical science. Image-based ex-
periments became the standardized approach to carry out scientific studies. Despite sig-
nificant progress achieved in inventing new devices for data acquisition, there is a lack of
tools capable to process this data automatically, such as to detect cells, extract features,
perform segmentation, or carry high-level analysis. This issue motivated the scientific
community to focus on developing new computer-based methods for aiding biomedical
research.

Image processing frameworks that were primarily designed for generic tasks of image
classification or semantic segmentation are often not directly applicable to biomedical
problems. Frequent changes in device settings used to obtain images, high variety of
input samples, the necessity of achieving high accuracy - all these factors make it chal-
lenging to devise a robust approach. Furthermore, not only the construction of an efficient
algorithm, but also an assessment of its accuracy presents difficulties. The main reason
is that commonly the ground truth, especially in cases of where it is required to execute
cell detection or segmentation, cannot be obtained by direct measurements, demanding to
reserve to indirect evaluation, qualitative analysis or providing manually prepared ground
truth data.

In this thesis, two new methods for computer-aided biomedical image analysis were
presented. More specifically, both of the developed methods targeted the most common
task that occurs during biomedical research - cell analysis.

The first method was built to aid bacteriologists with the task of DST. The DST was
done with the special microfluidic device - DSTM device, designed to reduce time neces-
sary to obtain the image of cells grown in presence of drug with different concentrations.
Before conducting studies, described in this thesis, the cell analysis procedure was car-
ried out manually, by visually observing changes in cell growth rate and morphology,
examining images of the device captured with a camera attached to a phase contrast mi-
croscope. The implementation of the developed algorithm for automatic cell analysis,
which was produced as stand-alone tool, greatly facilitates DST procedure. It allows not
only efficiently detect cells and extract their features, that can be used later for detailed
analysis by a human expert, but is also capable of determining strain susceptibility and
its MIC without any user involvement. The tests, evaluating accuracy of the built algo-
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rithm on a dataset, containing 101 images for each one of 5 drugs, showed high accuracy.
The method was able to achieve a 97% accuracy, despite the fact, that rather straightfor-
ward image processing techniques were used. The developed software application has
been planned to supply with the device to hospitals, and other medical organisations to
facilitate rapid drug testing.

The second method was designed to solve the task of early-stage embryo segmenta-
tion into inner cell regions and membranes. This task has to be carried out in order to
extract various features of cells embryo consists of. Knowledge of cell characteristics
would allow building new models of cell specialization process, moving forward the field
of transplant medicine and genetic disorder diagnosis. Early techniques for achieving
embryo segmentation used HMC images, that due to the process of acquisition, make it
dramatically more complex to obtain correct results for embryos with high number of
cells. Fluorescene protein imaging procedure makes it possible to capture images with
marked cell components, such as membranes and nuclei. Exploiting this advantage, a
new 3D level set method for embryo segmentation from 2 Z-stacks (cell membrane and
nuclei) was introduced in this thesis. The 3D level set involves solving PDEs, derived
from definition of energy functions. The energy functions in the proposed methods were
designed to take into account intensity levels of cell membranes and internal morphologi-
cal structure. Instead of solving PDEs directly, an iterative two cycle technique was used,
significantly reducing computational burden. To visualize results, and stand-alone tool
was created, utilized to conduct qualitative and quantitative assessment of the accuracy
of the proposed algorithm. The accuracy of the method achieved 93% for 4-cell embryo,
gradually reduced with the increase of blastomeres, reaching 75% for 32-cell case.

More and more challenging tasks in the biomedical field are being automated with the
image processing methods. Automated systems, such as those presented in this thesis,
provide quick and effective solutions for performing high throughput quantitative anal-
ysis, alleviating the necessity in manual processing, which is without doubt beneficial
to the scientific community. Further improvements in image processing methods and
introduction of learning based algorithms can potentially increase the efficiency of the
proposed approaches.
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Appendix A

Implementation of the algorithm for DST with DSTM device

A.1 Implementation details

The goal of the conducted study was not only to design an algorithm for automatic anal-
ysis of input images of the DSTM device, but also to develop a stand-alone software tool,
that could be used not only by highly skilled experts, but also by those without significant
knowledge in the field of bacteriology.

The software application was created using the Java programming language. The
choice of this particular language was based on the fact that it is platform independent,
allowing to run code on any platform without modifications. Java is also a class-based,
object-oriented language, which simplifies designing and maintaining applications. In
addition, built-in libraries allow developing graphical user interfaces with ease.

There is a common misconception that a program written in Java cannot be as fast
as the one coded in C++. However, there is no inherent reason why an algorithm coded
in C++ will run significantly faster than the same algorithm coded in Java. The execu-
tion speed depends on how good a compiler is at optimizing the generated code, and
modern compilers, that translate Java byte code into machine code, can do a better job
of optimization because more information is available to them about the program being
compiled and about the machine that it is running on.

For convenience of processing microscopy images, the developed software has a graph-
ical user interface (GUI). The screenshot of the GUI is presented on Figure A.1. Panel on
the left side of the application window is used for browsing input files, manually selecting
areas occupied by microfluidic channels, specifying number of channels and parameters
for susceptibility prediction. Panel on the right displays a cumulative chart of cell fre-
quencies with particular lengths and a table of cell features, calculated for each channel.
The central area of the application window can display an input image with or without
detected channels and an image where detected cells are coloured with different colours.
The tools for processing input images one by one or in a batch mode are located in the
top toolbar of the application window.
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Figure A.1: A screenshot of the graphical interface of the developed software applica-
tions. The menu panels on the left side of the application allow to choose imported im-
ages, manually select channel areas, and specify processing parameters. The central area
is designated for displaying input and processed images. The panel of the right displays
a frequency chart and cell characteristics.

A.2 Importing data

The developed application supports importing a single image as well as all images located
in a specified folder in batch. Supported image formats are: JPEG, BMP and PNG. Each
imported imaged can be selected via the menu and viewed in the main window of the
application. It is possible to zoom in and out the displayed picture with the mouse or by
using zoom buttons, located on the toolbar, or accessible via the View menu.

A.3 Processing microscopy images

Imported images can be processed one by one or fully automatically in a batch mode. By
default execution of the algorithm is performed automatically, without user intervention.
Yet, in some cases it is not possible to detect all DSTM device channels on the input
image automatically. The created application provides tools that allow user to manually
select channels or channel areas for processing. To choose desired areas, it is necessary
to click the Select sample button, located on the toolbar, and click and drag the mouse
to select a rectangular area (see Figure A.4). Then the selected area can be added as
a control or test sample by using the corresponding buttons Add control sample or Add
sample located below the Sample detection method panel. The selected area can also be
moved (Move sample button), allowing selecting areas with same size.
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Figure A.2: A screenshot of the GUI of the application, where a channel area has been
manually selected by the user.

During the course of the development of the method and the application it was ob-
served that although the developed algorithm correctly detects channel borders, it often
detects the most left and the most right positions. Thus, if a channel area is selected
using this set borders it would often include dark lines, that in reality are parts of the
channels, yet are perceived as bacteria by the cell detection procedure. Hence, to avoid
miss-detection of cells it was decided to shrink the width of the obtained channels by
moving borders closer to each other by a pre-defined margin (see Figure A.3).

A.4 Examining the results

After computation is finished extracted cell characteristics and predicted susceptibility
labels are displayed in the table located in the right panel of the application window. To
visualize the distribution of cells with different lengths a cumulative histogram is built
(see Fig. A.1). The calculated cell characteristics can be saved in a CSV file by choosing
option Save output as located in the File menu.

There are two means of examining the output of the cell detection step of the algorithm.
One way to visualize the bacteria, is to display image with cells enclosed with bounding
boxes, while the other way displays colour coded bacteria. Both images can be saved,
using the Export tab of the File menu.

A.5 Processing speed

To evaluate the processing speed of the algorithm, described in Section 2.2.3, its imple-
mentation was executed on a machine that had the following characteristics: Intel Core
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Figure A.3: Top row displays an example of cell miss-detection that occurs due to channel
regions containing channel borders. Bottom row shows how shrinking of the channel area
prevents treating channel borders as cells.

Figure A.4: Two different ways of examining output of the cell detector: (left) cells
surrounded with bounding boxes; (right) colour coded cells.

i7-6700K, 4.0 GHz, 32 GB RAM. Since the cell detection step of the algorithm can be
carried out independently for each channel, a parallel procedure using thread technology
has been implemented.

The speed of processing varied, increasing with the number of cells. The longest time
was observed for channels with highly overlapped samples (see Table A.1).

Cell count 100 300 600
Without overlapped cells 21s 25s 32s
With overlapped cells 22s 27s 45s

Table A.1: Processing speed, given in seconds, of the implemented algorithm for different
average number of cells in a single channel.
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Appendix B

Implementation of the algorithm for embryo segmentation

B.1 Implementation details

The level set method has many advantages, yet its straightforward implementations that
involve direct computation of certain PDEs are significantly computationally expensive.
The implementation of the algorithm, described in this thesis, is based on fast level set
method that avoids direct computation of the PDE, as is described in Section 3.2.5.

The whole scheme of the algorithm, including pre-processing steps that are necessary
for computing sets Lin and Lout for each inner cell region and membranes is shown on
the Figure B.1.

Figure B.1: A scheme of the implemented algorithm. First the sets Lin and Lout are com-
puted for each inner cell region and membrane. Then the two cycle iterative algorithm is
executed.

The detailed description of the fast two cycle method, written in pseudocode is given
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below. The execution of the algorithm starts with initialization of two setsLin andLout for
each inner cell region Ωi in a loop, then the same sets are computed for cell membranes.

Algorithm 1: The main evolution procedure, that describes two main cycles of
the level set implementation.

// initialize level set functions for cell regions
foreach cell region Ωi do

initialize φi(x, y, z), corresponding Lin(n), and Lout(n)

// initialize level set function for membrane
initialize ψ(x, y, z), corresponding Lin(n), and Lout(n)

// main loop
for t = 1, ..., Tmax do

stop = false
// evolution cycle
for k = 1, ..., K do

// evolve cell regions
foreach cell region Ωi do

UpdateCellRegion(Ωi)
// evolve membrane region
UpdateMembraneRegion()
if stopping condition is met then stop = true, exit cycle

// regulation cycle
for u = 1, ..., U do

// evolve cell regions
foreach cell region Ωi do

RegularizeCellRegion(Ωi)
// evolve membrane region
RegularizeMembraneRegion()

if stop then
exit main loop

The main loop, that contains two cycles (evolution and regulation) is executed until
stop condition is not met or until the maximum number of iterations Tmax is reached. In-
side the evolution cycle the first part updates all boundaries of inner cell regions invoking
procedure UpdateCellRegion() (see Algorithm 2), then the similar procedure Update-
MembraneRegion() (see Algorithm 3) is executed for membranes.

In both procedures, first, the corresponding approximation of the speed function F̂
is computed in each point, that belong to the sets Lin and Lout. Then for each point in
set Lout the sign of the speed function is checked. And, if it is more than zero, then an
operation SwitchIn(x,y,z) is performed (see Algorithm 4), that removes point from Lout
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Algorithm 2: Procedure UpdateCellRegion

foreach (x, y, z) ∈ Lin(n) ∪ Lout(n) do compute F̂ (x, y, z)
foreach (x, y, z) ∈ Lout(n) do

if F̂ (x, y, z) > 0 then SwitchIn(x,y,z)
UpdateInterior(Lin(n))
foreach (x, y, z) ∈ Lin(n) do

if F̂ (x, y, z) < 0 then SwitchOut(x,y,z)
UpdateExterior(Lout(n))

Algorithm 3: Procedure UpdateMembraneRegion

foreach (x, y, z) ∈ Lin(n) ∪ Lout(n) do compute F̂ (x, y, z)
foreach (x, y, z) ∈ Lout(n) do

if F̂ (x, y, z) > 0 then SwitchIn(x,y,z)
UpdateInterior(Lin(n))
foreach (x, y, z) ∈ Lin(n) do

if F̂ (x, y, z) < 0 then SwitchOut(x,y,z)
UpdateExterior(Lout(n))

and adds it into Lin, thus expanding the boundary surface. Then it checks neighbouring
points, and adds them to Lout, initializing the level set function with the corresponding
value.

Algorithm 4: Procedure SwitchIn
foreach (x, y, z) ∈ Lout(n) do

remove (x, y, z) from Lout(n) and add it to Lin(n)
foreach (x∗, y∗, z∗) ∈ N(x, y, z) with φi(x∗, y∗, z∗) = 3 do

add (x∗, y∗, z∗) to Lout(n); φi(x∗, y∗, z∗) = 1

The procedure SwitchOut(x,y,z) (see Algorithm 5) is similar to the SwitchIn(x,y,z),
however it is responsible for shrinking the boundary by checking the sign of the speed
function and removing point from Lin and adding them to Lout.

Subroutines UpdateInterior() and UpdateExterior are necessary for cleaning the used
sets Lin and Lout and removing all points that are not belong to these two sets.

When the execution of the evolution cycle is finished. The computations specified
in the regulation cycle are carried out. In its core the steps performed in the regulation
cycle are similar to the evolution cycle, described in UpdateCellRegion() and Update-
MembraneRegion(). Yet there is one major difference: instead of checking the sign of the
speed function, the sign of convolution of the level set function with a gaussian filter G
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Algorithm 5: Procedure SwitchOut
foreach (x, y, z) ∈ Lin(n) do

remove (x, y, z) from Lin(n) and add it to Lout(n)
foreach (x∗, y∗, z∗) ∈ N(x, y, z) with φi(x∗, y∗, z∗) = −3 do

add (x∗, y∗, z∗) to Lin(n); φi(x∗, y∗, z∗) = −1

Algorithm 6: Procedure UpdateInterior points for the level set function
φi(x, y, z)

foreach (x, y, z) ∈ Lin(n) do
if φi(x∗, y∗, z∗) < 0, ∀(x∗, y∗, z∗) ∈ N(x, y, z) then

remove (x, y, z) from Lin(n); φi(x, y, z) = −3;

Algorithm 7: Procedure UpdateExterior points for the level set function
φi(x, y, z)

foreach (x, y, z) ∈ Lout(n) do
if φi(x∗, y∗, z∗) > 0, ∀(x∗, y∗, z∗) ∈ N(x, y, z) then

remove (x, y, z) from Lout(n); φi(x, y, z) = 3

(see Algorithms 8 and 9).

Algorithm 8: Procedure RegularizeCellRegion
foreach (x, y, z) ∈ Lout(n) do

if (G ∗ φi)(x, y, z) > 0 then SwitchIn(x,y,z)
UpdateInterior(Lin(n))
foreach (x, y, z) ∈ Lin(n) do

if (G ∗ φi)(x, y, z) < 0 then SwitchOut(x,y,z)
UpdateExterior(Lout(n))

Algorithm 9: Procedure RegularizeMemebraneRegion
foreach (x, y, z) ∈ Lout(n) do

if (G ∗ ψ)(x, y, z) > 0 then SwitchIn(x,y,z)
UpdateInterior(Lin(n))
foreach (x, y, z) ∈ Lin(n) do

if (G ∗ ψ)(x, y, z) < 0 then SwitchOut(x,y,z)
UpdateExterior(Lout(n))

79



Figure B.2: The graphical user interface of the application, that implements the 3D level
set method.

Thus the strength of the smoothness regulations is controlled by the size of the gaus-
sian filter G and the number of iterations U done in the regulation cycle. Following
suggestions given in [103] the size of the gaussian kernel was set up to 5x5x5, and for
each 3 iterations of the evolution cycle one regulation was performed.

B.2 Visualization of the segmentation

To make it easier to visualize processing steps of the developed algorithm an implemen-
tation was coded in Java, with 3D rendering of the segmentation results done with the
OpenGL library. The graphical user interface of the developed software application is
presented on the Figure B.2.

With the graphical interface it was possible not only render the reconstructed segmen-
tation in 3D space, but also depict it in each one of the input cross-sections of the input
images.

The results of the segmentations can be viewed not only after all computations are
done, but also examined after each iteration, since the 3D and 2D renders are updated
dynamically (see Figure B.3).

B.3 Processing speed

The processing speed of the designed algorithm was measured using a machine with the
following specifications: Intel Core i7-6700K, 4.0 GHz, 32 GB RAM. The Table B.1
presents the average time, required to perform segmentation for embryos with different
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steps = 5 steps = 10 steps = 15 steps = 20 steps = 25

Figure B.3: Results of the segmentation, displayed on a cross-section, after several itera-
tion steps.

Figure B.4: Several images of the 3D renders of the segmentation results captured from
different angles.

number of cells. In attempt to reduce computation time, the a version of the fast two cycle
algorithm has been implemented, that avoids computation of the speed function at those
points that have not been moved from set Lin and Lout, or vice versa, for 5 of iterations
(reached stability). This approached allowed slightly increase processing speed.

Cell count 4 8 16 24 32
Without boosting (s) 102 321 730 1621 2294

With boosting (s) 95 298 523 1501 2050

Table B.1: Processing speed, measured in seconds, for embryos with different number of
cells.

The bottleneck of the algorithm is the calculation of the speed function, since each
one of the speed function depends on each other. Further improvements of the processing
speed could be achieved by using parallel processing, splitting sets Lin and Lout into
batches.
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