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Preface

Thanks to the large bandwidth of optical fibers, optical networks have the potential to

support growing Internet traffic. However, the emergence of new network services with

wide range of required bandwidth has caused large traffic fluctuations. One approach for

the network operator to accommodate fluctuating traffic demand on an optical network is

to construct a virtual network (VN), and reconfigure a VN following traffic changes. When

traffic fluctuations cause temporal traffic congestion, the network operator resolves the

traffic congestion by reconfiguring the VN. Although typical VN reconfiguration methods

design an optimal VN using the end-to-end traffic demand matrix, they have difficulty in

adapting to traffic fluctuations.

Our research group has previously proposed a VN reconfiguration approach based on

attractor selection, which models the behavior where living organisms adapt to unknown

changes in their surrounding environment and recover their condition, that observes only the

service quality on a VN (i.e., link-level load information), which can be retrieved in a much

shorter time than the traffic demand matrix. Attractors correspond to VN candidates, and

this approach reconfigures a VN guided by the attractors, that is, this approach gradually

reconfigures a VN to have a network topology close to one of the VN candidates. However,

there are several problems to be solved in this approach. First, there is no guideline on

how to design attractors. It is crucial to design attractors properly since this approach

reconfigures a VN guided by the attractors. When the attractors are not designed properly,

it takes a long time to find a solution (i.e., a VN that can accommodate traffic demand).

Second, this approach cannot applied to elastic optical path networks, which have been
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shown to be a promising candidate for future resource-efficient optical networks. Although

elastic optical path networks can achieve higher utilization efficiency of spectrum resources

than traditional Wavelength Division Multiplexing (WDM)-based networks, it is essential

to tackle the problem of allocating spectrum resources to lightpaths under the spectrum

contiguity and continuity constraints. Third, simply applying this approach may over-

reconfigure a VN in nature, which disrupts network services accommodated on the VN.

In this thesis, to solve the above problems, we investigate an attractor-based VN recon-

figuration framework for optical networks. First, we propose a design method of attractors

(i.e., VN candidates). In this method, we design attractors with a wide variety character-

istics so that the attractor selection-based VN reconfiguration can quickly adapt to various

traffic fluctuations. Our basic approach is to prepare VN candidates which the bottleneck

links (lightpaths) are different from each other. However, our exhaustive algorithm based on

this approach has a problem of requiring large amounts of computational time for large-scale

networks. To solve this problem, we also propose a method that hierarchically contracts a

network topology so that our algorithm can be applied to large-scale networks. Evaluation

results show that the VN reconfiguration using attractors obtained by our design method

finds a solution in a shorter time.

Second, we propose an attractor selection-based VN reconfiguration method for elastic

optical path networks. We newly define the potential bandwidth as a metric that reflects the

bandwidth that can be additionally offered under the spectrum contiguity and continuity

constraints. Then, our method reconfigures a VN based on attractor selection so that both

the service quality on the VN and the potential bandwidth get improved. In addition, our

method adjusts the bandwidth according to the link utilization of lightpaths that form the

VN to provide the required bandwidth. Evaluation results show that the proposed method

can set aside about 50 % of resources for future use, while improving the service quality

on a VN to the same extent as the existing heuristic method, considering the spectrum

contiguity and continuity constraints.

Third, to reduce the number of VN reconfigurations, we introduce a cognitive mech-

anism that perceives current traffic situation and adapts to the situation. Specifically,
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we propose another VN reconfiguration method based on the Bayesian Attractor Model

(BAM), which models the human behavior of making appropriate decisions by recognizing

the surrounding situation, and we establish a VN reconfiguration framework that deals with

known traffic situations by the BAM-based method and deals with unknown traffic situa-

tions by the attractor selection-based method. The BAM-based method memorizes a set of

VN candidates, each of which works well for a pre-specified traffic situation, and identifies

the current traffic situation using the BAM, and then retrieves the most promising VN from

the set. We use certain patterns of incoming and outgoing traffic at edge routers as the

traffic situation, since this information can be obtained more easily than the traffic demand

matrix. However, for the case where the retrieved VN cannot accommodate traffic demand,

we apply the attractor selection-based method. Evaluation results show that the VN re-

configuration framework can reach a VN suitable for the current traffic situation with fewer

VN reconfigurations. Furthermore, we extend the above VN reconfiguration framework to

deal with the case where the identification of the current traffic situation fails. When the

identification fails, the BAM-based method cannot configure a promising VN. We therefore

propose a method that configures a promising VN when the identification fails, and incor-

porate this method into the above VN reconfiguration framework. The proposed method

utilizes a set of pre-specified traffic situations, and fits the current traffic situation by linear

regression, and then configures a VN using the obtained regression coefficients. Evaluation

results show that the linear regression-based method can configure a suitable VN in most

cases when failing to identify the current traffic situation. We also investigate how to select

and update the set of pre-specified traffic situations, and found that it is effective to select

a set of pre-specified traffic situations to have linear independence.
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Chapter 1

Introduction

1.1 Background

The Internet is indispensable to our society since it allows us to communicate with remote

areas, as well as provides an infrastructure for various businesses today. In recent years,

new network services and applications, such as video streaming and cloud computing, have

emerged one after another. This change of environments surrounding the Internet has led

to drastic growth in Internet traffic. Specifically, the volume of Internet traffic has grown by

20 times over the past decade [1]. Furthermore, various kinds of devices, such as personal

computers, mobile phones and sensing devices, have come to connect to the Internet. With

the development of new Internet technologies and services that utilize Internet of Things

(IoT) and Artificial Intelligence (AI), Machine-to-Machine (M2M) communications also

have more presence, and this trend will continue for the future.

Thanks to the large bandwidth of optical fibers, optical networks have the potential

to support this growing traffic demand. The development of optical communication tech-

nologies has enabled optical networks to offer much higher bandwidth [2–5]. However, the

emergence of new network services and applications with wide range of required bandwidth

has caused large fluctuations in traffic demand. This results in creating a gap between

the bandwidth provided by optical networks and the bandwidth required by network users.
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1.1 Background

Although network operators can support traffic fluctuations by providing larger bandwidth

than the bandwidth actually used, it leads to inefficient utilization of network resources.

Therefore, it is essential that optical networks have flexibility to accommodate such fluctuat-

ing traffic demand by dynamically providing the sufficient bandwidth with limited network

resources.

Network virtualization has attracted attention as a key technology to provide a flexible

network infrastructure [6–8]. Software-defined networking (SDN) is an emerging paradigm

that paves the way to realize the network virtualization [9]. One approach for the network

operator to accommodating traffic demand on an optical network is to construct a virtual

network (VN) and reconfigure a VN following traffic changes. Fig. 1.1 shows the outline of

the VN reconfiguration approach. In this approach, the network operator observes the traf-

fic information from the network, and calculates a suitable VN based on the collected traffic

information, and then configures the VN by slicing physical resources, such as wavelengths

in traditional Wavelength Division Multiplexing (WDM)-based networks or frequency slots

in elastic optical path networks. A VN consists of a set of lightpaths (i.e., virtual links)

and client nodes (e.g., IP routers), and provides the connectivity for network equipment

and the bandwidth to accommodate traffic demand. Traffic demand is transferred over the

VN in a multi-hop manner. When fluctuations in traffic demand cause temporal traffic

congestion, the network operator resolves the traffic congestion by reconfiguring the VN. In

this way, network operators accommodate fluctuating traffic demand on optical networks

and provide good service quality using limited network resources.

Many researches have been devoted to investigating methods to reconfigure a VN for

optical networks. Basically, the existing methods configure a VN that achieves some ob-

jectives, i.e., design an optimal virtual topology and allocate resources, by using mixed

integer linear programming (MILP) or heuristic algorithms, given the end-to-end traffic

demand matrix [10–25]. Refs. [10–22] propose VN reconfiguration methods that use di-

rectly observed information of the traffic demand matrix as an input. However, it requires

a large amount of computational resources to directly observe information about the traffic

demand matrix since traffic inspection is necessary to measure the traffic volume for each
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Chapter 1. Introduction

Figure 1.1: Virtual Network Reconfiguration

end-to-end node pair [26]. Therefore, in general, we obtain the information of the traffic

demand matrix by long-term packet sampling. As the network scale becomes larger, the

amount of information about the traffic demand matrix to be collected grows significantly,

which needs more time and effort to reconfigure a VN. Thus, existing VN reconfiguration

methods with the knowledge of the directly observed traffic demand matrix have difficulty

in following traffic fluctuations.

Refs. [23–25] propose methods to configure a VN using an estimated traffic demand

matrix. There are also many studies for estimating the traffic demand matrix, such as

Refs. [26–31]. However, since the approaches for estimating the traffic demand matrix fit

the collected traffic information to a specific traffic model or past traffic data, they cannot

deal with irregular traffic fluctuations. Although a variety of engineering techniques can

reduce estimation errors, they do not guarantee the accuracy of the estimation. That is,

estimation errors in the traffic demand matrix is inevitable. When a VN configured by using
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1.1 Background

an estimated traffic demand matrix including estimation errors cannot accommodate traffic

demand, we do not have a way for configuring the optimal VN because we have incorrect

knowledge of the traffic demand matrix. Therefore, it is difficult for the optimization

approaches that use the information of the traffic demand matrix to adapt to changing

traffic demand.

To adapt to fluctuations in traffic demand, our research group has previously proposed

a VN reconfiguration approach without using the traffic demand matrix [32, 33]. This ap-

proach observes only the service quality on a VN (i.e., link-level load information), and

reconfigures a VN based on attractor selection [34], which models the behavior where living

organisms adapt to unknown changes in their surrounding environment and recover their

condition. The service quality on a VN can be retrieved in a much shorter time, typically 5

minutes or less, than the traffic demand matrix. Fig. 1.2 shows the outline of the attractor

selection-based VN reconfiguration approach. In this VN reconfiguration approach, attrac-

tors, which are a subset of the equilibrium points in the solution space, correspond to VN

candidates. The basic mechanism of this approach can be described as follows:

dx

dt
= α · f(x) + η, (1.1)

where x is the shape of the virtual network topology, f(x) represents the deterministic

behavior, and η represents the stochastic behavior. Here, the deterministic behavior updates

x so that the potential function defined using f(x) decreases, i.e., reconfigures a VN to

have a network topology close to one of the VN candidates (attractors), and the stochastic

behavior makes random changes to the current VN. These behaviors are controlled by

activity α, which is simple feedback that reflects the service quality on a VN. In Refs. [32,33],

the simulation results targeting for traditional WDM-based networks have shown that this

approach can respond to traffic changes. However, there are several problems to be solved

in this VN reconfiguration approach.

First, there is no guideline on how to design attractors (i.e., VN candidates) in the

attractor selection-based VN reconfiguration approach. Since the deterministic behavior of
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Figure 1.2: Virtual Network Reconfiguration Based on Attractor Selection

the attractor selection-based approach reconfigures a VN to have a network topology close

to one of the VN candidates (attractors), it is crucial to design the attractors properly

so that the VN reconfiguration can adapt to various traffic fluctuations. When the VN

candidates are not designed properly, it takes a long time for the VN reconfiguration to find

a solution (i.e., a VN that can accommodate traffic demand). For example, assuming that

VN candidates are tuned for only a certain pattern of traffic demand, the attractor selection-

based approach may not quickly find a solution when faced with another pattern of traffic

demand since the search of a solution is guided by the attractors. An extreme approach is

to prepare all VN candidates as attractors. However, the number of VN candidates that

can be kept as attractors is limited to 10% to 15% of the number of possible lightpaths

according to the properties of the Hopfield Network [35]. Since the Hopfield Network is

one of well-known model to store and read bit-patterns using weighted matrix, we use the

properties of the Hopfield Network to estimate the limitation.

Next, the previous approach in Refs. [32,33] cannot applied to elastic optical path net-

works. Recently, there have been research efforts to breaking down the spectrum width

of optical fibers into finer-grained frequency slots [3, 4]. Especially, elastic optical path
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networks have been shown to be a promising candidate for future resource-efficient optical

networks. In elastic optical path networks, spectrum resources are divided into narrower

frequency slots such that sufficient spectrum resources can be allocated to provide the

fine-grained bandwidth. Elastic optical path networks thus achieve higher utilization effi-

ciency of spectrum resources than traditional WDM-based networks. However, to properly

reconfigure a VN and thereby provide sufficient bandwidth, it is essential to tackle the

problem of allocating spectrum resources to lightpaths under the spectrum contiguity and

continuity constraints. In elastic optical path networks, the frequency slots allocated to a

certain lightpath must be adjacent to each other to satisfy the spectrum contiguity con-

straint. Furthermore, the same frequency slots must be allocated on all optical fibers in

the end-to-end lightpath to satisfy the spectrum continuity constraint. The spectrum con-

tinuity constraint in elastic optical path networks corresponds to the wavelength continuity

constraint in traditional WDM-based networks. For example, when t units of spectrum

resources are required to establish a lightpath with sufficient bandwidth, t contiguous fre-

quency slots must be allocated to the lightpath due to the spectrum contiguity constraint,

and the same t contiguous frequency slots must be allocated on each optical fiber in the

lightpath due to the spectrum continuity constraint. Thus, these resource allocation con-

straints in elastic optical path networks are more difficult to satisfy than that of traditional

WDM-based networks.

By solving the above problems, we expect to establish an attractor selection-based

VN reconfiguration method for optical networks that quickly adapts to various traffic

fluctuations. However, simply applying the attractor selection-based approach may over-

reconfigure a VN in nature since the attractor selection-based VN reconfiguration approach

gradually reconfigures a VN in the process of searching for a solution. The attractor

selection-based approach gradually reconfigures a VN using the stochastic behavior, which

makes random changes to the current VN. This results in repeatedly reconfiguring a VN,

which may lead to over-reconfiguration. The over-reconfiguration disrupts network services

accommodated on the VN.
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In this thesis, to solve the above problems, we investigate an attractor-based VN recon-

figuration framework for optical networks that quickly adapts to various traffic fluctuations

with fewer VN reconfigurations.

1.2 Outline of Thesis

Scalable Design of Attractors for Virtual Network Reconfiguration Based

on Attractor Selection [36–40]

We first propose a method that designs attractors (i.e., VN candidates) for VN reconfig-

uration based on attractor selection. In this method, we design attractors with a wide

variety characteristics so that the attractor selection-based VN reconfiguration can adapt

to various traffic fluctuations. Our basic approach is to classify various VN candidates

into groups based on their characteristics and select an attractor from each group. We use

edge betweenness centrality, which is the number of shortest paths that go through the link

(lightpath), as a characteristic of the VN candidates. We then classify VN candidates that

have different bottleneck links from each other into different groups. The bottleneck link

is the link that has the largest value of edge betweenness centrality among the links that

form a VN candidate. However, our exhaustive algorithm based on this approach has a

problem of requiring large amounts of computational time for large-scale networks that have

more than 10 nodes. To solve this problem, we also propose a method that hierarchically

contracts a network topology so that our algorithm can be applied to large-scale networks.

Evaluation results show that our method can design VN candidates that achieve better

service quality on a VN than the randomly generated VN candidates, even when targeting

for a 1000-node network. As a result, the VN reconfiguration using attractors obtained by

our design method finds a solution in a shorter time against various traffic fluctuations.
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Virtual Network Reconfiguration Based on Attractor Selection for Elastic

Optical Path Networks [41,42]

Second, we propose an attractor selection-based virtual network reconfiguration method for

elastic optical path networks. We newly define the potential bandwidth as a metric that

reflects the bandwidth that can be additionally offered under the spectrum contiguity and

continuity constraints. Then, our method reconfigures a VN based on attractor selection

so that both the service quality on the VN and the potential bandwidth get improved. In

addition, our method adjusts the bandwidth according to the link utilization of lightpaths

that form the VN to provide the required bandwidth. Evaluation results show that the

proposed method can set aside about 50 % of resources for future use, while improving the

service quality on a VN to the same extent as the existing heuristic method, considering

the spectrum contiguity and continuity constraints.

Virtual Network Reconfiguration Based on Bayesian Attractor Model [43–

45]

Third, to reduce the number of VN reconfigurations, we introduce a cognitive mechanism

that perceives current traffic situation and adapts to the situation. Specifically, we propose

another VN reconfiguration method based on the Bayesian Attractor Model (BAM) [46],

which models the human behavior of making appropriate decisions by recognizing the sur-

rounding situation. The key idea of this method is to memorize a set of VN candidates,

each of which works well for a pre-specified traffic situation, and then retrieve a suitable

VN candidate for the current traffic situation from this set. We use certain patterns of

incoming and outgoing traffic at edge routers to characterize the traffic situation, as this

information can be obtained more easily than the traffic demand matrix. By identifying

the current traffic situation to the closest one among the stored traffic situations using

the BAM, this method retrieves and configures the most promising VN. However, for the

case where the retrieved VN cannot accommodate traffic demand, we apply the attractor

selection-based VN reconfiguration method. That is, we establish a VN reconfiguration
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framework that deals with known traffic situations by the BAM-based method and deals

with unknown traffic situations by the attractor selection-based method. Evaluation results

show that the BAM-based method can identify the current traffic situation by observing

the amounts of incoming and outgoing traffic at edge routers. As a result, our VN recon-

figuration framework can reach a VN suitable for the current traffic situation with fewer

VN reconfigurations.

Finally, we extend the above VN reconfiguration framework to deal with the case where

the identification of the current traffic situation fails. The BAM-based method can retrieve

the most promising VN when the identification of the current traffic situation succeeds.

However, when the identification fails, the BAM-based method cannot configure a promis-

ing VN. Although the BAM-based method can reduce failure of the identification by in-

creasing the number of pre-specified traffic situations, it takes a longer time to identify

more traffic situations. We therefore propose a method that configures a promising VN

when the identification fails, and incorporate this method into the above VN reconfigura-

tion framework. Our method utilizes a set of pre-specified traffic situations, and the current

traffic situation is fitted by linear regression when the identification fails. Then, our method

configures a VN using the obtained regression coefficients. Evaluation results show that the

linear regression-based method can configure a suitable VN in most cases when failing to

identify the current traffic situation, which leads to reduction of the number of VN recon-

figurations. We also investigate how to select and update the set of pre-specified traffic

situations, and found that it is effective to select a set of pre-specified traffic situations to

have linear independence.
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Chapter 2

Scalable Design of Attractors for

Virtual Network Reconfiguration

Based on Attractor Selection

2.1 Introduction

Wavelength-routed networks based on wavelength division multiplexing (WDM) technol-

ogy are flexible infrastructures that can reconfigure the connectivity of network equipment

and/or bandwidth in a dynamical manner. Many researches have investigated methods for

accommodating IP traffic over WDM networks [47–49]. IP over WDM networks consist of

two layers, the WDM network and IP network (Fig. 2.1). In the WDM network, optical

cross-connects (OXCs) are interconnected by optical fibers. A set of optical channels, called

lightpaths, are established between IP routers via OXCs. Lightpaths and IP routers form a

virtual network (VN) that accommodates the IP traffic on the WDM network. IP packets

in the form of electric signals are converted into optical signals and OXCs switch optical

signals in the WDM network. When fluctuations in traffic demand cause traffic congestion

temporarily, the traffic congestion is resolved by reconfiguring the VN according to the

traffic changes such that the VN can accommodate the changing traffic demand.
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Figure 2.1: IP over WDM network

Many studies have been devoted to developing methods for accommodating IP traffic

on a VN according to traffic changes [13–15]. Refs. [13–15] propose methods for configuring

a VN by solving a mixed integer linear program (MILP), which aims to minimize the

maximum link utilization of the VN, the packet delay, or the number of resources that

form the VN (e.g., wavelengths and router ports). These methods use traffic information in

the form of traffic demand matrices. The existing heuristic approaches such as I-MLTDA

and MLDA [16] also use the information of traffic demand matrices. However, it generally

takes a long time to retrieve the information of the traffic demand matrix. The methods

proposed in Refs. [13–16] therefore reconfigure the VN based on long-term measurements

of traffic demand.

However, when traffic demand fluctuates rapidly, it is difficult for methods that design

the VN based on traffic demand matrices to reconfigure the VN following traffic changes.

Changes in the environment surrounding the Internet in recent years, such as advances in
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personal Internet-enabled devices and the emergence of new Internet services, cause large

fluctuations in traffic demand. For example, Refs. [50, 51] note that flash crowds of traffic

have recently become more likely to occur. A flash crowd is a phenomenon where traffic to

a certain web server rapidly increases within a short period of time. A traffic engineering

method that does not retrieve traffic demand matrix information has been proposed in

Ref. [23]. This method reconfigures the VN by estimating the traffic demand matrices.

However, estimation errors in traffic demand matrices are unavoidable in general when there

are large fluctuations in traffic demand. As a result, the method based on traffic estimation

does not always reconfigure the VN such that the VN can accommodate changing traffic

demand. It is therefore important to devise a method for adaptively reconfiguring the VN

in response to traffic changes that occur over a short period of time.

Our research group has proposed a VN reconfiguration method that is adaptive to traf-

fic changes and accommodates IP traffic effectively [32, 33]. This method is based on a

dynamical system, called the attractor selection, which models the behavior by which liv-

ing organisms adapt to unknown changes in their surrounding environment and recover

their condition. In our VN reconfiguration method, attractors, which are a subset of the

equilibrium points in the solution space, correspond to VN candidates. The basic mech-

anism of this VN reconfiguration comprises deterministic and stochastic behaviors. Here,

the deterministic behavior represents a VN reconfiguration directed to attractors, and the

stochastic behavior represents a randomized factor to change VN configurations. These

behaviors are controlled by feedback indicating a condition of the IP network. Here, the

condition can be a service quality of IP network such as, for example, maximum utilization

of virtual links. That is, our VN reconfiguration method does not collect the traffic demand

matrices, but instead collects the condition of the network and reconfigures the VN based

on the feedback. Although it is necessary to collect information about the condition of the

IP network, such as load information on all links (lightpaths) in the IP network, this can

be retrieved in a much shorter time, typically 5 minutes or less, than the traffic demand

matrices used by existing VN reconfiguration methods. When there are large fluctuations

in traffic demand, our VN reconfiguration method searches for a solution: a VN that can
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accommodate the traffic demand. The search for a solution is not made purely randomly

by the stochastic behavior; it is also guided to attractors by the deterministic behavior. We

have shown in Refs. [32, 33] that this method can reconfigure a VN adaptively in response

to fluctuations in the network environment such as traffic changes and node failure.

In our VN reconfiguration method based on attractor selection, it is crucial to design

attractors properly since attractors define the attractive states of the VN reconfiguration.

In Refs. [32, 33], we used randomly generated VN candidates. However, if the VN candi-

dates are not designed properly, it takes a long time for the VN reconfiguration method

to find a solution. For example, assuming that VN candidates are tuned for only certain

patterns of traffic demands, our VN reconfiguration method may not quickly find a solution

when faced with unknown traffic changes since the search for a solution is guided by the

attractors. Thus, a remaining challenge is how to design attractors that can handle fluctu-

ations in the network environment. An extreme approach is to prepare all VN candidates

as attractors. However, the number of VN candidates that can be kept as attractors is lim-

ited to 10% to 15% of the number of possible lightpaths according to the properties of the

Hopfield Network [35]. The Hopfield Network is one of well-known model to store and read

bit-patterns using weighted matrix. So, we use the properties of the Hopfield Network to

estimate the limitation. We therefore propose a new method for designing VN candidates.

Our approach classifies various VN candidates into groups based on their characteristics

and selects an attractor from each group. However, an exhaustive algorithm based on this

approach requires a large amount of computational time for large-scale networks, which

consist of more than about 10 nodes. We therefore also propose a method for hierarchi-

cally contracting the network topology so that the algorithm can be applied to large-scale

networks. By preparing a limited number of VN candidates that can accommodate various

patterns of traffic demand, various kinds of VNs can be searched by the attractor selection.

Our VN reconfiguration method can thus find a solution within a short period of time. In

other words, this makes our VN reconfiguration method more adaptive to traffic changes.

The rest of this chapter is organized as follows. In Section 2.2, we explain our VN recon-

figuration method based on attractor selection. We then propose a method for designing
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VN candidates and evaluating our algorithm in Section 2.3. We also propose a method for

hierarchically designing VN candidates for large-scale networks in Section 2.4. In Section

2.5, we evaluate the method for hierarchically designing VN candidates and the VN recon-

figuration method using the attractors obtained by this method. We conclude this chapter

in Section 2.6.

2.2 Virtual Network Reconfiguration Based on Attractor Se-

lection

We will start by explaining the VN reconfiguration method based on attractor selection

proposed in [32, 33]. In this chapter, traffic is assumed to flow between IP routers via the

shortest path of the VN. We simply refer to link utilization on the VN as link utilization.

2.2.1 Overview of VN Reconfiguration Based on Attractor Selection

Dynamic systems that are driven by the attractor selection adapt to unknown changes in

their surrounding environments [34]. In the attractor selection, attractors are a subset of

the equilibrium points in the solution space where the system conditions are preferable.

The basic mechanism of the attractor selection comprises both deterministic behavior and

stochastic behavior. The behavior of a dynamic system driven by attractor selection is

described as follows:

dx

dt
= α · f(x) + η. (2.1)

The state of the system is represented by x = (x1, ..., xi, ..., xn) (where n is the number of

state variables). f(x) represents the deterministic behavior and η represents the stochastic

behavior. These behaviors are controlled by activity α, which is simple feedback of the

system conditions. When the current system conditions are suitable for the environment

and the value of α is large, the deterministic behavior drives the system to the attractor.

When the current system conditions are poor, that is, when the value of α is small, the
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stochastic behavior dominates the control of the system. While the stochastic behavior

dominates over the deterministic behavior, the state of the system fluctuates randomly due

to noise η and the system searches for a solution where the system conditions are preferable.

In this way, attractor selection adapts to environmental changes using both deterministic

behavior and stochastic behavior based on the activity.

Our VN reconfiguration method considers the state of the system x as the state of

all possible lightpaths that form the VN and uses the condition of the IP network as the

activity. Our VN reconfiguration method then configures the VN so that the condition

of the IP network improves when the condition of the IP network becomes poor due to

fluctuations in traffic demand.

2.2.2 Dynamics of VN Reconfiguration

Our VN reconfiguration method decides whether or not to set up a lightpath li based on a

state variable xi(∈ X). The dynamics of the state variable xi are defined by

dxi
dt

= α ·

(
ς

(∑
j

Wijxj

)
− xi

)
+ η. (2.2)

The activity α indicates the condition of the IP network. The term ς(ΣjWijxj)− xi repre-

sents the deterministic behavior where ς(z) = tanh(µ2 z) is a sigmoidal regulation function,

where µ indicates the parameter of the sigmoidal function. The first term is calculated

using a regulatory matrix Wij . The second term η represents the stochastic behavior and

is white Gaussian noise with a mean value of zero. After xi is updated on the basis of Eq.

(2.2), we decide whether or not to set up the lightpath li. Specifically, we set the threshold

to zero and if xi is greater than or equal to the threshold, we set up the lightpath li and

otherwise tear down the lightpath li.

– 16 –



Chapter 2. Scalable Design of Attractors

Activity

Our VN reconfiguration method uses maximum link utilization on the IP network as a

performance metric. Although it is necessary to collect load information on all links (light-

paths) in the IP network, this can be retrieved in a much shorter time than the traffic

demand matrices used by existing VN reconfiguration methods. We convert the maximum

link utilization on the IP network, umax, into the activity α using the following expression

Eq. (2.3). The activity is in the range of [0, γ]. The constant number θ is the threshold for

the VN reconfiguration. When the maximum link utilization is more than the threshold

θ, the activity rapidly approaches zero and our VN reconfiguration method searches for a

solution that improves the condition of the IP network. The constant δ determines the

gradient of the function.

α =
γ

1 + exp(δ · (umax − θ))
(2.3)

Regulatory Matrix

We set the regulatory matrix so that it has a set of VN candidates as attractors. That

is, we set the regulatory matrix W so that dx/dt in Eq. (2.1) is equal to zero when the

VN configured by our VN reconfiguration method x = (x1, · · · , xi, · · · , xn) is one of the

attractors. To store attractors in the regulatory matrix, we use a method to decide the

regulatory matrix using the pseudo inverse matrix, which is shown in Ref. [52]. Specifically,

assuming that we setm VN candidates as attractors and one of the candidates is represented

by x(k) = (x
(k)
1 , · · · , x(k)i , · · · , x(k)n )(1 ≤ k ≤ m), the regulatory matrix that has m attractors

is

W = X+X, (2.4)

where X is a matrix that has x(1),x(2), ...,x(m) in each row and X+ is the pseudo inverse

matrix of X.
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2.3 Attractor Design Method

2.3.1 Attractor Design Problem

We suppose that we are designing attractors (i.e., VN candidates) for a network with n

nodes. Although the size of the solution space is 2n
2
, the number of VN candidates that can

be kept as attractors is limited to about 10% to 15% of the number of possible lightpaths,

n2 [35]. Moreover, VN candidates should be diverse enough to allow them to adapt to

various fluctuations in traffic demands. Therefore, the problem of properly designing the

VN candidates to use as attractors comes down to the problem of selecting 0.1n2 VN

candidates that have a wide diversity from within the solution space.

For this problem, we focus on the characteristics of the VN candidates. Since the VN

configured by our VN reconfiguration method based on attractor selection finally converges

to one of the attractors, one of the attractors should accommodate the current traffic

demand. In other words, the traffic demand that can be accommodated should differ

among the VN candidates. It is important that the attractors have different characteristics

in order to produce a diverse range of VN candidates. We therefore take the approach

of classifying VN candidates into groups based on their characteristics and selecting one

attractor from each of the VN candidate groups. By preparing a limited number of VN

candidates with diverse characteristics, attractor selection is able to search various kinds of

VNs. As a result, our VN reconfiguration method finds a solution quickly, making our VN

reconfiguration method more adaptive to traffic changes.

2.3.2 Exhaustive Algorithm for Designing Attractors with

Different Characteristics

We develop an algorithm that selects attractors for our VN reconfiguration method. The

goal of our algorithm is to select 0.1n2 attractors with a diverse range of characteristics

from the 2n
2
solution space. An outline of our algorithm is as follows.

1. Enumerate isomorphic VN candidates of the VN g.
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Figure 2.2: An example of isomorphic VNs

2. Classify the enumerated VN candidates based on their characteristics.

3. Select an attractor from each group of VN candidates.

In this algorithm, a VN g is given in advance. We use a heuristic method to configure the

VN g based on the traffic demand matrix T . Note that although we use the traffic demand

matrix T to design VN candidates, we do not use the traffic demand matrix T in our VN

reconfiguration method. The detail of the algorithm is described below.

Enumeration of VN candidates

We enumerate isomorphic VNs of g. The isomorphic VNs are generated by exchanging all

the nodes of the VN g. Fig. 2.2 illustrates examples of isomorphic VNs. In Fig. 2.2, the

VN g1 consists of five nodes N0, N1, ..., N4 and the VNs g2 and g3 are isomorphic VNs of

g1. The isomorphic VN g2 is generated by shifting N0 of the VN g1 to N1, N1 to N2, N2

to N3, N3 to N4, N4 to N0. The isomorphic VN g3 is generated by shifting N0 of the VN

g1 to N4, N4 to N3, N3 to N2, N2 to N1, N1 to N0. However, VN candidates that do

not meet restrictions on resources in a physical network, such as the number of router ports

of each node, are excluded. Thus, the number of enumerated VN candidates is at most n!.
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In Fig. 2.2, we assume that the VN g1 is configured by a heuristic method based on the

traffic demand matrix T1 and that the traffic load is highest on the red-lined link between

nodes N3 and N4. Since the VN g1 is configured by a heuristic method based on the traffic

demand matrix T1, the VN g1 can accommodate T1. Let us assume that a traffic demand

matrix T2 is generated by exchanging all the rows of T1 and exchanging all the columns of

T1. Specifically, T2 is generated by shifting the first row of T1 to the second row, the second

row of T1 to the third row, . . ., and finally the last row of T1 to the first low of T2, and

shifting each column of T1 similarly. Since we shift N0 of the VN g1 to N1, N1 to N2, N2

to N3, N3 to N4, N4 to N0 to generate the isomorphic VN g2, the traffic load on the link

between the nodes N2 and N3 becomes the highest and the VN g2 can accommodate T2.

That is, it is expected that any of the isomorphic VNs can accommodate changing traffic

demand unless all of the values in the traffic demand matrix become too large. Hereafter,

we denote G as the set that includes the VN g and the enumerated VN candidates.

Classification of VN candidates

We classify the VN candidates that belong to G into groups on the basis of their character-

istics. We use edge betweenness centrality, which is the number of shortest paths that go

through the link, as a characteristic of the VN candidates. We then classify VN candidates

that have different bottleneck links from each other into different groups, as shown in Fig.

2.3. The bottleneck link is the link that has the largest value of edge betweenness centrality

among the links that form a VN candidate. When each of the VN candidates that have

been selected as attractors have different bottleneck links, it is expected that any of VN

candidates selected as attractors will be able to accommodate various patterns of traffic

demand. Note that in our VN reconfiguration method based on attractor selection, the

maximum link utilization indicates the condition of the IP network. It is likely that a link

with high link utilization also has a high value of edge betweenness centrality. Therefore,

we classify the VN candidates that have the same bottleneck links into the same group.

The following gives a formal definition of the VN candidate groups.
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Figure 2.3: Classification of VN candidates

• p = (s, d): The identifier for a node pair that has a source node s and a destination

node d

• lp: A link (lightpath) established between the node pair p

• C(gi, lp): The value of edge betweenness centrality for the link lp in the VN candidate

gi

Using the above notation, the VN candidate group Gp that is expected to have the bottle-

neck link lp is given by

Gp = {gi|gi ∈ G,C(gi, lp) = max
q

C(gi, lq)}. (2.5)

In this way, we divide the set of the VN candidates into groups. The number of groups

is at most n2 since the number of possible lightpaths is n2. However, since the number of

VN candidates that can be kept as attractors is 0.1n2, we further merge the VN candidate

groups.
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We merge VN candidate groups if the traffic loads of their bottleneck links are highly

correlated. The condition is satisfied when the correlation of the traffic loads is high between

two links connected via a node of low degree. Fig. 2.4 illustrates the condition used to

merge VN candidate groups. When traffic flows from a source node s to a destination node

d via a node a whose degree is low, part of the traffic that flows on link l(s,a) also flows on

link l(a,d). That is, if link l(s,a) is a bottleneck link, it is likely that the traffic load on link

l(a,d) is also high. We therefore treat VN candidates that belong to groups G(s,a) and G(a,d)

as having similar characteristics. Based on this heuristic, we merge the VN candidates

groups as follows

G(s,d) ← G(s,a) ∪G(a,d) ∪G(s,d), (2.6)

where the degree of node a is low. In Eq. (2.6), we also treat the VN candidates in the

group G(s,d), which has the bottleneck link l(s,d), as having similar characteristics to the

groups G(s,a) and G(a,d). The reason is that it is likely that the traffic load on the link l(s,d)

is high when the links l(s,a) and l(a,d) are bottleneck links. We select the nodes a, s and d

in ascending order of degree, since the correlation of the traffic loads on the links l(s,a) and

l(a,d) is high when the degree of the node a is low. However, since each group has different

VN candidates, we select nodes a, s and d based on the average value of degree among all

the VN candidates in the group. We repeatedly merge the VN candidate groups until the

number of VN candidate groups is about 0.1n2.

Selection of attractors from VN candidate groups

We finally select one attractor from each of the VN candidate groups. We select the VN

candidate that has the lowest maximum value of edge betweenness centrality among the VN

candidates group to use as the attractor, since the smaller the value of edge betweenness

centrality, the more likely it is that the maximum link utilization is reduced.
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Figure 2.4: Merger of VN candidates groups

2.3.3 Effect of Design Approach: Engineered or Random

In this section, we evaluate the performance of the VN candidates obtained by the algorithm

described in Section 2.3.2. We evaluate the effect of our approach to designing attractors,

using a 10-node network that has a ring topology for the physical network topology. Each

node has five router ports, comprising five transmitters and five receivers. We configure

the VN candidates using I-MLTDA [16] as the heuristic method with a traffic demand

matrix with elements that follow a log-normal distribution. We obtain 10 VN candidates

by following the algorithm in Section 2.3.2. For the evaluation, we use 1,000 patterns of

traffic demand between each node pair according to a log-normal distribution. We compare

this to a method that constructs VN candidates by establishing lightpaths between node

pairs chosen in a uniformly random manner. This is because we used randomly generated
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Figure 2.5: Distribution of maximum link utilization: 10 nodes, 5 ports

VN candidates in Refs. [32,33]. The number of VN candidates is the same for all methods.

Fig. 2.5 shows the distribution of maximum link utilization for each traffic pattern.

Here, we see the lowest value of the maximum link utilization among the VN candidates

for each traffic pattern. The horizontal axis shows the maximum link utilization of the VN

candidates by our method and the vertical axis shows that of the VN candidates by the

method for comparison. In Fig. 2.5, we can see that the maximum link utilization of the

VN candidates by our method is lower for more traffic patterns than the other method.

Specifically, the VN candidates by our method make the maximum link utilization lower

than the ones by the other method for 991 traffic patterns. That is, our algorithm can

design VN candidates that reduces traffic load for a wider variety of traffic demand than

the other method. Thus, our approach allows us to design better attractors by classifying

VN candidates into groups based on their characteristics and selecting an attractor from

each group.
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2.4 Scalable Design Method of Attractors

2.4.1 Scalability Problem of Exhaustive Algorithm

Although we can design better attractors based on our approach, as shown in Section 2.3.3,

the algorithm described in Section 2.3.2 requires a large amount of computational time for

large-scale networks. This is because the number of enumerated VN candidates increases

explosively as the number of nodes n increases. Using an ordinary PC, we can design VN

candidates for 10-node networks within 10 minutes calculation. However, the calculation

time increases exponentially as the number of nodes increases. The calculation time is

two hours for a 11-node network, and 24 hours for a 12-node network. We therefore take

the approach of contracting the physical network topology and applying the algorithm in

Section 2.3.2 to the contracted network topology. Specifically, we divide a physical network

topology into clusters where each cluster has several nodes, as shown in Fig. 2.6. We

reduce the number of nodes in the network topology by treating the clusters as nodes

while properly covering the entire solution space, and design attractors with sufficiently

diverse characteristics by applying the algorithm in Section 2.3.2 to the contracted network

topology. Note that we can guarantee the diversity of attractors since we consider the

characteristics of VN candidates diverse when the VN candidates have different bottleneck

links.

2.4.2 Algorithm for Designing Attractors Hierarchically

This section gives an outline of our method for designing VN candidates hierarchically (see

Fig. 2.7).

Step.1 Divide the physical network topology into clusters and set the clusters in multiple

layers.

Step.2 Construct VN candidates in the clusters in the bottom layer

Step.3 Construct VN candidates in the upper layers by following the algorithm in Section

2.3.2.
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Figure 2.6: Contraction of the physical network topology

Step.4 Connect lightpaths between clusters and nodes in the clusters.

We explain the detail of the algorithm below.

Step.1 Cluster division of a physical network topology

We divide a physical network topology into c clusters. When the number of vertexes in a

cluster is more than c, we divide the cluster into clusters recursively until the number of

vertexes in the cluster is less than or equal to c; in other words, we decide the clusters in

multiple layers. An upper layer consists of clusters that have nodes in the lower layer. For

example, in a three-layer network, the top layer consists of clusters that have nodes in the

middle layer. Nodes in the middle layer are then clusters that have nodes in the bottom

layer (Fig. 2.8). We decide clusters based on the physical network topology. That is, we

decide clusters so that nodes in a cluster are densely connected by optical fibers and nodes

– 26 –



Chapter 2. Scalable Design of Attractors

Figure 2.7: Outline of the method for designing attractors hierarchically

between clusters are sparsely connected by optical fibers.

Step.2 Construction of VN candidates inside clusters in the bottom layer

We construct VN candidates inside clusters in the bottom layer. We construct a VN

candidate that has a full-mesh topology or a star topology with several hub nodes in the

clusters in the bottom layer. This is because clusters can adapt to traffic changes in the

cluster and can maintain connectivity when a network failure occurs.

Step.3 Construction of VN candidates in upper layers

We design VN candidates with a diverse range of characteristics in the upper layers, which

has c nodes (clusters), by following the algorithm in Section 2.3.2. However, we do not
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apply the merge procedure of the algorithm since the number of VN candidate groups in

an upper layer is at most c(c−1)/2, which is much smaller than 0.1n2, and is small enough

to be kept as attractors. When we consider bidirectional lightpaths between nodes in the

upper layer, the number of VN candidate groups is at most c(c−1)/2, which is the number

of combination of nodes in the upper layer. We construct VN candidates in the upper layers

as follows.

Step.3-1 Calculate VN candidates using a heuristic method and enumerate isomorphic

VN candidates.

Step.3-2 Classify the enumerated VN candidates into at most c(c − 1)/2 groups based

on the edge betweenness centrality.

Step.3-3 Select an attractor from each group of VN candidates.

Step.4 Connection between clusters

We connect lightpaths between clusters to nodes in the clusters. That is, we map lightpaths

between nodes in the upper layers to lightpaths between the corresponding clusters in the

lower layers. We establish lightpaths between clusters from the kth layer to the (k + 1)th

layer, that is, from an upper layer to a lower layer. We decide the number of lightpaths

mapped to a lower layer so that we can maximally utilize the router ports. We establish

lightpaths between nodes in the clusters as follows.

• Ck
x : The xth cluster in the kth layer

• V k
x : Nodes that belong to Ck

x

• lki,j : A lightpath bidirectionally established between Ck
i and Ck

j

• ku: The number of lightpaths connected to a node u (the degree of node u)

The probability of establishing a lightpath lki,j between u(∈ V k
i ) and v(∈ V k

j ) is given by

Pu,v = (kukv)
−1. (2.7)
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Eq. (2.7) is intended to balance the traffic loads. Since it is likely that a larger amount of

traffic flows via a node as the degree of the node increases, we connect nodes that have a

low degree.

2.5 Evaluation of Scalable Design Method

2.5.1 Performance of VN Candidates Obtained by Scalable

Design Method

In this section, we evaluate the performance of the VN candidates by the method in Section

2.4. We first consider a 100-node network where each node has 32 router ports. We consider

the three-layer network as shown in Fig. 2.8(a), where clusters in the same layer have the

same number of nodes. This is because we intended to evaluate the effectiveness of our

method by eliminating the influence of structural differences in physical topologies. The

topology in the top layer and the topology in each cluster in the middle layer are treated as

consisting of five nodes with three router ports, and we obtain seven VN candidates. The

reason why the number of VN candidates is seven is that the enumerated VN candidates

are classified into seven groups; only seven lightpaths become bottleneck links among the

enumerated VN candidates. In the middle layer, since there are seven VN candidates in

each cluster and the number of clusters is five, the maximum number of VN candidates in

the middle layer becomes 75, counting all combinations. However, the number is too large to

be kept as attractors. Therefore, we use the same VN candidate in all clusters in the middle

layer. As a result, we take seven VN candidates for the middle layer. The VN candidates in

each cluster in the bottom layer have a full-mesh topology. When a lightpath is established

between two nodes in an upper layer, five bidirectional lightpaths are established between

the corresponding clusters in the lower layer. In this way, we connect seven VN candidates

in the top layer, seven VN candidates in the middle layer, and one VN candidate in the

bottom layer. Finally, we obtain 49 VN candidates.

Table 2.1 shows the number of ports used in each layer in the VN candidates. In the

top layer, ports are used to establish lightpaths between nodes that belong to different
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(a) 100-node network (b) 1000-node network

Figure 2.8: Clusters in the networks

clusters in the middle layer. Each of the VN candidates in the top layer has 14 lightpaths.

When a lightpath is established between two nodes in the top layer, five bidirectional

lightpaths are established between the corresponding clusters in the middle layer. Moreover,

we map lightpaths in the middle layer to the bottom layer in the same way. Thus, we

use 14 × (5 × 2)2 = 1400 ports in the top layer. In the middle layer, ports are used to

establish lightpaths between nodes that belong to different clusters in the bottom layer.

Each of the VN candidates in a cluster in the middle layer has 14 lightpaths. When a

lightpath is established between two nodes in the middle layer, five bidirectional lightpaths

are established between the corresponding clusters in the bottom layer. The number of

clusters in the middle layer is five. Therefore, we use 14 × (5 × 2) × 5 = 700 ports in the
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Table 2.1: Number of ports used in each layer: 100-node network
Layer Number of ports

0th layer 1400

1st layer 700

2nd layer 300

middle layer. In the bottom layer, ports are used to establish lightpaths between nodes

inside the same clusters. In bottom layer, there are 25 clusters and each cluster consists of

four nodes. The VN candidates in a cluster in the bottom layer have a full-mesh topology.

Therefore, we use 25× 12 = 300 ports in the bottom layer. We can see that the number of

ports in the middle layer is about twice that of the bottom layer, and the number of ports

in the top layer is twice that of the middle layer.

For evaluation, we use 1,000 patterns of traffic demand between each node pair according

to a log-normal distribution. We assume that the transmission capacity of each lightpath

is equal in all the evaluation. Therefore, since the total traffic demand is excessive for the

100-node network, we use one third of the traffic demand used in Section 2.3.3. We make

a comparison with the method of constructing VN candidates by establishing lightpaths

between node pairs chosen in a uniformly random manner, because we used randomly

generated VN candidates in Refs. [32, 33]. The number of VN candidates is the same for

all methods.

Fig. 2.9 shows the distribution of maximum link utilization for each traffic pattern. This

figure shows the lowest value of the maximum link utilization among the VN candidates for

each traffic pattern. In Fig. 2.9, we can see that the maximum link utilization of the VN

candidates by our method is less than that of the VN candidates by the other method for

all traffic patterns. This shows that the method in Section 2.4 can design VN candidates

that better reduce traffic loads in response to various traffic demand conditions, compared

with the other method. That is, the method in Section 2.4 can design better VN candidates

than the other method for larger networks where we cannot apply the algorithm in Section

2.3.2.
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Figure 2.9: Distribution of maximum link utilization: 100 nodes, 32 ports

Note that establishing more lightpaths between clusters than inside clusters, that is,

using more ports in the upper layer than in the lower layer, leads to reduction of the

maximum link utilization. Assuming that the number of lightpaths between clusters is

small, traffic loads on the lightpaths are high due to traffic aggregation. Traffic loads on

links in upper layers are generally higher than in lower layers since a node in an upper layer

consists of a larger number of nodes in the bottom layer (i.e., IP routers). For example, in

the 100-node network in Fig. 2.8(a), each node at the top layer has 20 routers, while each

node at the middle layer has four routers. Thus, traffic loads on links in upper layer become

high in general. Actually, in obtaining Fig. 2.9, we use more lightpaths in upper layers, as

shown in Table 2.1. When the number of lightpaths between clusters is high enough, the

traffic demand that is transferred between clusters becomes more distributed, and the traffic

load on each lightpath between clusters is reduced. By establishing more lightpaths between

clusters, VN candidates obtained by our method can accommodate traffic effectively.

Further, we evaluate the performance of VN candidates when applying our method to

larger-scale networks. We use a 1,000-node network where each node has 64 router ports.
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We consider the three-layer network as shown in Fig. 2.8(b), where clusters in the same

layer have the same number of nodes. The topology in the top layer and the topology in

each cluster in the middle layer are treated as consisting of 10 nodes with five router ports,

and we obtain 26 VN candidates. In the middle layer, since there are 26 VN candidates

in each cluster and the number of clusters is 10, the maximum number of VN candidates

in the middle layer becomes 2610, counting all combinations. However, the number is too

large to be kept as attractors. Therefore, we use the same VN candidate in all clusters in

the middle layer. As a result, we take 26 VN candidates for the middle layer. The VN

candidates in each cluster in the bottom layer have a star topology with four hub nodes.

When a lightpath is established between two nodes in an upper layer, 14 bidirectional

lightpaths are established between the corresponding clusters in the lower layer. In this

way, we connect 26 VN candidates in the top layer, 26 VN candidates in the middle layer

and one VN candidate in the bottom layer. Finally, we obtain 676 VN candidates.

Table 2.2 shows the number of ports used in each layer in the VN candidates. In the

top layer, each of the VN candidates has 50 lightpaths. We map a lightpath in an upper

layer to 14 bidirectional lightpaths in a lower layer recursively from an upper layer to a

lower layer. Moreover, we additionally map a lightpath in the top layer to 48 lightpaths in

the bottom layer in order to use the remaining router ports effectively. Thus, we use 50×

((14×2)2+(48×2)) = 44000 ports in the top layer. Each of the VN candidates in a cluster

in the middle layer has 50 lightpaths. When a lightpath is established between two nodes

in the middle layer, 14 bidirectional lightpaths are established between the corresponding

clusters in the bottom layer. The number of clusters in the middle layer is 10. Therefore,

we use 50× (14× 2)× 10 = 14000 ports in the middle layer. In the bottom layer, there are

100 clusters and each cluster consists of 10 nodes. The VN candidates in a cluster in the

second layer have a star topology with four hub nodes. Therefore, we use 100× 60 = 6000

ports in the bottom layer. We can see that the number of ports in the middle layer is about

twice that in the bottom layer, and the number of ports in the top layer is about three

times that in the middle layer .

For evaluation, we use 100 patterns of traffic demand between each node pair according
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Table 2.2: Number of ports used in each layer: 1000-node network
Layer Number of ports

0th layer 44000

1st layer 14000

2nd layer 6000

to a log-normal distribution. We assume that the transmission capacity of each lightpath

is equal in all the evaluation. Therefore, since the total traffic demand is excessive for the

1,000-node network, we use half the traffic demand used in the 100-node network. The

comparison method is the same as used in the evaluation of the 100-node network.

Fig. 2.10 shows the distribution of maximum link utilization for each traffic pattern.

In Fig. 2.10, we can see that the VN candidates by our method make the maximum link

utilization lower than by the other method for all traffic patterns. We find that our method

can design better VN candidates for 1,000-node networks, and we believe that our method

can design better VN candidates for even larger-scale networks. Comparing Fig. 2.9 and

Fig. 2.10, we can see that the variance of the lowest value of the maximum link utilization

among the VN candidates for each traffic pattern for the 1,000-node network is much less

than that of the 100-node network. This is because that the plotted value in Fig. 2.10 is

most likely to be the suboptimal value for each traffic pattern with the same distribution.

The number of VN candidates for the 1,000-node network is much larger than that of 100-

node network. Specifically, the number of VN candidates is 676 for the 1,000-node network,

and is 49 for the 100-node network. When the number of VN candidates is large, there

is a high possibility that any of them shows the suboptimal value of the maximum link

utilization. Moreover, we believe that each of the suboptimal value for each traffic pattern

with the same distribution is close to each other. Therefore, the variance of the plotted

values for the 1,000-node network is much less.

We now focus on the number of ports used in each layer, that is, the number of lightpaths

established in each layer, in the networks used for the evaluation. Comparing the 100-node

network with the 1,000-node network, although the number of layers is the same, the cluster
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Figure 2.10: Distribution of maximum link utilization: 1000 nodes, 64 ports

size (i.e., the number of nodes in a cluster), and the number of clusters in each layer in

the latter network is larger. As the number of nodes in the network increases, the cluster

size and/or the number of clusters increases. The larger the cluster size, the larger the

amount of traffic demand that is transferred between clusters. As a result, the traffic load

on lightpaths between clusters becomes higher. However, by using more ports to establish

lightpaths between clusters, the traffic demand transferred between clusters becomes more

distributed, and the traffic load on each lightpath between clusters is reduced. Therefore,

as the number of nodes in the network increases, we should use more ports (i.e., establish

more lightpaths) in the upper layer. We actually use more ports in the upper layer than in

the lower layer as the number of nodes in the network increases. In the 100-node network,

the number of ports used in the upper layer is twice that used in the lower layer, as shown

in Table 2.1. In the 1,000-node network, the number of ports used in the upper layer is two

or three times that of the lower layer, as shown in Table 2.2.
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2.5.2 Adaptability of VN Reconfiguration Based on Attractor Selection

In this section, we evaluate the adaptability of our VN reconfiguration method based on the

attractor selection described in Section 2.2 using VN candidates obtained by our method

as attractors. We use the term “adaptability” to represent smaller number of VN recon-

figurations until convergence, i.e., a shorter time until VN reconfiguration finds a solution.

When VN reconfiguration requires a shorter time to find a solution, the VN reconfigura-

tion is more “adaptive” in response to traffic changes. We set the target maximum link

utilization θ in Eq. (2.3) to 0.5, and consider our VN reconfiguration to have succeeded

when the maximum link utilization is reduced to less than 0.5 within 10 successive steps

of the VN reconfiguration. We assume that traffic fluctuations occur at time zero, and

evaluate the number of steps in VN reconfiguration until convergence, which is required for

success of the VN reconfiguration. At each step, our VN reconfiguration method collects

load information on all lightpaths, calculates the activity α, and reconfigures the VN. We

set µ of the sigmoidal function ς(z) in Eq. (2.2) to 20, and set γ to 1 and δ to 50 in Eq.

(2.3).

Fig. 2.11 shows the distribution of the number of steps until convergence in the 100-node

network. The traffic demand and VN candidates used as attractors are similar to those

described in Section 2.5.1. The horizontal axis shows the number of steps until convergence

and the vertical axis shows the complementary cumulative distribution function (CCDF) of

the number of steps. This shows that VN reconfiguration using the VN candidates given by

our method as attractors requires fewer steps until convergence. Since the VN candidates

from our method can reduce the maximum link utilization, as shown in Section 2.5.1, our

VN reconfiguration method is guided by better attractors and finds a solution, that is, a

VN that can accommodate traffic, within a shorter time.

When we evaluate the VN reconfiguration method based on attractor selection in the

1,000-node network by using the VN candidates from our method as attractors, we expect to

obtain similar results to the above on the basis of the results we have already obtained. The

VN candidates from our method in the 100-node network can better reduce the maximum
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Figure 2.11: Distribution of the number of steps until convergence: 100-nodes, 32-ports

link utilization than the candidates from the other method, as shown in Fig. 2.9, and the

VN reconfiguration using the VN candidates given by our method as attractors requires

fewer steps until convergence, as shown in Fig. 2.11. Since the VN candidates from our

method in the 1,000-node network can also better reduce the maximum link utilization, as

shown in Fig. 2.10, it is expected that the VN reconfiguration using the VN candidates

in the 1,000-node network given by our method as attractors requires fewer steps until

convergence.

2.5.3 Effect of Physical Network Topology on Adaptability of VN Re-

configuration

In this section, we design VN candidates by dividing a large-scale network into clusters

based on the physical network topology. We then evaluate the adaptability of our VN

reconfiguration method using the VN candidates as attractors. We use the JPN25 model

and USNET as physical network topologies. We use the method in Section 2.4 to design
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Table 2.3: Number of ports used in each layer: JPN25 model
Layer Number of ports

0th layer 140

1st layer 70

the VN candidates for the two networks. The Louvain method [53] is used to divide the

physical networks into clusters such that nodes inside clusters are densely connected by

optical fibers and nodes that belong to different clusters are sparsely connected.

Evaluation using the JPN25 model

The JPN25 model has 25 nodes and each node has 10 ports. We divide the physical network

into five clusters, as shown in Fig. 2.12. The nodes surrounded by circles belong to the

same cluster: one cluster has six nodes, three clusters have five nodes, and one cluster

has four nodes. We treat the JPN25 model as a two-layer network consisting of the top

layer in which the nodes are the clusters, and the bottom layer which is equivalent to the

original network. The topology in the top layer is treated as comprising five nodes with

three router ports and we obtain seven VN candidates by following Step 3 of our method.

The VN candidates in each cluster in the bottom layer have a star topology with two hub

nodes. When a lightpath is established between two nodes in the top layer, five bidirectional

lightpaths are established between the corresponding clusters in the bottom layer. In this

way, we connect seven VN candidates in the top layer and one VN candidate in the bottom

layer. Finally, we obtain seven VN candidates.

Table 2.3 shows the number of ports used in each layer in the VN candidates. We can

see that the number of ports in the top layer is twice that in the bottom layer.

Fig. 2.13 shows the distribution of the number of steps until convergence. The traffic

demand and method of comparison are the same as in Section 2.5.2. The horizontal axis

shows the number of steps until convergence and the vertical axis shows the CCDF of the

number of steps. This shows that our VN reconfiguration using VN candidates from our

method as attractors requires fewer steps until convergence. Since our VN reconfiguration
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Figure 2.12: Clusters in JPN25 model

method using the VN candidates from our method as attractors finds a solution within a

shorter time, this shows that our method can design better VN candidates than the other

method, even when we decide clusters on the basis of the physical network topology.

Evaluation using USNET

USNET has 24 nodes and each node has 10 ports. We divide the physical network into five

clusters, as shown in Fig. 2.14. The nodes surrounded by circles belong to the same cluster:

one cluster has seven nodes, two clusters have five nodes, one cluster has four nodes, and

one cluster has three nodes. We treat USNET as a two-layer network comprising a top

layer in which the nodes are clusters and a bottom layer that is equivalent to the original

network. The topology in the top layer is treated as consisting of five nodes with three
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Figure 2.13: Distribution of the number of steps until convergence: JPN25 model, 10 ports

Table 2.4: Number of ports used in each layer: USNET
Layer Number of ports

0th layer 102

1st layer 100

router ports and we obtain seven VN candidates by following Step 3 of our method. The

VN candidates in each cluster in the bottom layer have a full-mesh topology. When a

lightpath is established between two nodes in the top layer, four bidirectional lightpaths

are established between the corresponding clusters in the bottom layer. In this way, we

connect seven VN candidates in the top layer and one VN candidate in the bottom layer.

Finally, we obtain seven VN candidates.

Table 2.4 shows the number of ports used in each layer in the VN candidates. We can

see that the number of ports in the top layer is about the same as in the bottom layer.

Fig. 2.15 shows the distribution of the number of steps until convergence. The traffic

demand and method of comparison are the same as in Section 2.5.2. The horizontal axis
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Figure 2.14: Clusters in USNET

shows the number of steps until convergence and the vertical axis shows the CCDF of the

number of steps. This shows that our VN reconfiguration using VN candidates from our

method as attractors requires fewer steps until convergence. That is, our VN reconfiguration

method using VN candidates from our method as attractors finds a solution within a shorter

time. Our method can design better VN candidates than the other method for another

physical network.

As mentioned in Section 2.5.1, using more ports in an upper layer than a lower layer

leads to reduction of the maximum link utilization. However, the number of ports used

in the top layer is about the same as in the bottom layer in USNET, while the number

of ports used in the top layer is twice that in the bottom layer in the JPN25 model. The

number of clusters is the same in both networks. Therefore, difference in cluster size causes

the difference in the number of ports used in each layer. The cluster size in USNET varies

widely since its cluster size ranges from three to seven, while the cluster size in JPN25
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Figure 2.15: Distribution of the number of steps until convergence: USNET, 10 ports

model ranges from four to six. When the cluster size is large, a lightpath inside the cluster

can be a long-distance link. That is, establishing more lightpaths inside clusters contributes

to reduction of the average hop length. In general, the smaller the average hop length, the

smaller the maximum link utilization of the VN. Increasing the number of lightpaths inside

clusters, that is, the number of ports used in the bottom layer, results in assigning about

the same number of ports in each layer. Therefore, it is necessary to adjust the number

of ports used in each layer depending on the physical network topology, specifically, the

cluster size and number of clusters. We can adjust the number of ports used in each layer

by changing the topology in each cluster in the bottom layer, such as a full-mesh topology

or a star topology with several hub nodes. When we change the topology in each cluster

in the bottom layer from a full-mesh to a star, we can use the remaining ports to establish

lightpaths between clusters. Actually, we use a star topology with two hub nodes in each

cluster in the bottom layer for the JPN25 model to establish more lightpaths between

clusters. We then use a full-mesh topology for USNET to establish more lightpaths inside

clusters.
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2.6 Conclusion

In this chapter, we proposed a method for designing attractors for our VN reconfiguration

method based on attractor selection. Our basic approach is to prepare a limited number

of attractors with a diversity of characteristics by classifying VN candidates into groups

based on their characteristics and selecting an attractor from each group. In order to design

attractors for large-scale networks, we also proposed a method that hierarchically contracts

the network topology so that we can apply our approach to large-scale networks. We showed

that the VN candidates obtained by our method can accommodate various traffic demand

patterns, so that our VN reconfiguration method can find a solution, that is, a VN that

can accommodate IP traffic, within a shorter time when guided by the attractors.

One future direction for this work is to investigate how to update the attractors. Since

our approach selects a limited number of attractors from the solution space, it is likely that

attractors that are not selected can adapt to certain changes in traffic demand. Therefore,

we could update the attractors to discard certain attractors and keep new attractors, de-

pending on the traffic demand situation. By establishing a method to update attractors, it

is expected that our VN reconfiguration method based on attractor selection will become

even more adaptive to traffic changes.
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Chapter 3

Virtual Network Reconfiguration

Based on Attractor Selection for

Elastic Optical Path Networks

3.1 Introduction

Changes in the environment surrounding the Internet in recent years, such as advances in

personal Internet-enabled devices and the emergence of new Internet services, has led to

rapid growth in traffic demand. Thanks to the large bandwidth of optical fibers, optical

networks have the potential to support this growing traffic demand. Recently, elastic optical

networks based on orthogonal frequency division multiplexing (OFDM) technology have

been shown to be a promising candidate for future cost-efficient optical networks [3–5].

In elastic optical networks, spectrum resources are divided into narrow frequency slots

such that sufficient number of frequency slots can be allocated to provide the fine-grained

bandwidth. Elastic optical networks therefore offer higher spectrum utilization efficiency

than traditional wavelength-routed networks based on wavelength division multiplexing

(WDM) technology. This is because WDM networks require all of wavelengths in a light-

path to be assigned even when the traffic demand between end nodes is not sufficient to
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fill the entire bandwidth, whereas elastic optical networks have the potential to assign

spectrum resources based on traffic volumes or clients’ bandwidth requirements of through

fine-grained frequency slots.

Many studies have been devoted to developing methods for accommodating traffic de-

mand over an elastic optical network [17–22, 54]. One approach to accommodating traffic

demand over an elastic optical network is for the network operator to offer leased lightpaths

in response to requests from service providers. In Ref. [54], routing and spectrum assign-

ment (RSA) algorithms that offer lightpaths for each individual request are proposed. In

this approach, the network operator can respond to a wide variety of requests from service

providers with sufficient spectrum resources to provide the required bandwidth. Allocating

sufficient frequency slots to lightpaths can lead to a reduction in power consumption. How-

ever, it is difficult to offer connections for all requests for end-to-end lightpaths since the

number of transponders at each optical switch is limited. Therefore, a realistic approach for

the network operator is not only to offer a certain number of leased lightpaths in response

to requests, but also to configure a virtual network (VN) that accommodates other con-

sumer traffic demand [17–22]. A VN consists of a set of lightpaths and client nodes (e.g.,

IP routers), with traffic demand transferred over the VN in a multi-hop manner. When

fluctuations in traffic demand cause temporary traffic congestion, it is necessary to recon-

figure the VN so that the traffic congestion is resolved and the VN can accommodate the

changing traffic demand. Furthermore, it is essential for the network operator to be able

to configure the VN using a limited set of resources (i.e., frequency slots and transponders

at optical switches) by using resources effectively in order to set aside resources for leased

lightpaths and accommodating increased traffic demand on the VN.

Refs. [17–22] propose methods for configuring a VN over an elastic optical network.

These methods first collect traffic demand information and then configure the VN. How-

ever, it generally takes a long time to retrieve information of the traffic demand matrix.

Thus, when there are large fluctuations in traffic demand, these methods have difficulty

in reconfiguring the VN following traffic fluctuations. It is therefore essential to develop a

method for adaptively reconfiguring a VN in response to traffic changes that occur over a
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short period of time. Refs. [32, 36] propose a VN reconfiguration method over traditional

WDM networks that is adaptive to traffic changes and accommodates IP traffic effectively.

This method is based on attractor selection [34], which is a model of the behavior by

which living organisms adapt to unknown changes in their surrounding environment. This

method can reconfigure a VN using a small amount of information about the service quality

on the IP network, such as load information on all lightpaths, which can be retrieved in a

much shorter time, typically 5 min or less, than traffic demand matrices. However, optimal

utilization of elastic optical networks cannot be achieved by simply adopting this method

because the method focuses on reducing traffic loads. That is, this approach assigns all

of the wavelengths in order to accommodate current traffic demand, which leads to a lack

of resources for accommodating future traffic demand. Therefore, applying this method to

elastic optical networks results in missing the opportunity to accommodate future traffic

demand.

From the above discussion, the requirements for a VN reconfiguration method for elastic

optical networks are as follows:

• Reconfigure the VN to accommodate changing traffic demand

• Set aside resources to use for leased lightpaths and to accommodate increased traffic

demand on the VN

• Reconfigure the VN in a shorter time period

In this chapter, we newly propose a VN reconfiguration method for elastic optical net-

works that can achieve these requirements. To achieve the second requirement, we newly

define the potential bandwidth as a metric that reflects the bandwidth that can be offered

for leased lightpaths and for increased traffic demand on the VN. Specifically, our method

reconfigures the VN based on attractor selection using both information about the service

quality on the VN and the potential bandwidth, and adjusts the bandwidths of the light-

paths that form the VN. Our method is based on the observation of the service quality on

the VN and the potential bandwidth. Therefore, measurement of traffic demand matrices
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is no longer necessary in our method. Note that, since the service quality on the VN de-

pends on the traffic demand, the information on traffic demand is indirectly utilized in our

method. This is the essential difference between our method and the previous methods.

The rest of this chapter is organized as follows. In Section 3.2, we first describe our target

network model and related work. We then explain the concept of the attractor selection

and propose the VN reconfiguration method for elastic optical networks in Section 3.3. In

Section 3.4, we evaluate the performance of our method, and we conclude this chapter in

Section 3.5.

3.2 Network Model and Related Work

In this section, we describe the network model that we use in this chapter and also briefly

describe existing VN reconfiguration methods for elastic optical networks.

3.2.1 Network Model

Fig. 3.1 shows the network model considered in this study. Elastic optical networks can

flexibly assign spectrum resources according to changing traffic demand by introducing

hardware components such as bandwidth-variable transponders (BVTs) and bandwidth-

variable wavelength cross-connects (BV WXCs). Elastic optical networks employing these

hardware components have been modeled as spectrum-sliced elastic optical path (SLICE)

networks [5]. In SLICE networks, BV WXCs are interconnected by optical fibers. A BVT

converts electric signals from a client node (e.g., an IP router) into optical signals by using

sufficient spectrum resources (i.e., frequency slots). Every BV WXC on the route switches

the optical signals to establish an end-to-end lightpath with the sufficient bandwidth. When

the bandwidth utilization of the lightpath increases, the BVT can assign more spectrum re-

sources to the lightpath in order to expand its bandwidth. In contrast, when the bandwidth

utilization of the lightpath decreases, the BVT can release some spectrum resources to re-

duce the bandwidth. Adjustment of the bandwidth of lightpaths according to the situation

leads to reduction in the number of active frequency slots. As a result, SLICE networks

– 48 –



Chapter 3. Virtual Network Reconfiguration for Elastic Optical Path Networks

Figure 3.1: SLICE network model and operation approach

have the potential to reduce power consumption since power consumption depends on the

number of active frequency slots [21,55].

The network operator accepts requests for lightpaths from service providers. When there

are sufficient resources to provide a leased lightpath in response to a request, the network

operator establishes a leased lightpath with the required bandwidth under the spectrum

contiguity and continuity constraints. For example, when an event is held that spans

more than one venue, a service provider may request dedicated lightpaths of the desired

bandwidth between the venues. Furthermore, the network operator also constructs a VN to

accommodate the traffic demand of other consumers. The network operator reconfigures the

VN according to changes in traffic in order to maintain the service quality of network services
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accommodated on the VN while setting aside resources for the leased lightpaths. In this

way, the network operator accepts various sources of traffic demand that are accommodated

on the elastic optical network.

3.2.2 Related Work

There are many works for configuring a VN over an elastic optical network. Basically, they

aim to solve routing and spectrum assignment problem for elastic optical networks using

mixed integer linear programming (MILP) or using a heuristic algorithm.

Ref. [17] proposes an approach to configuring a spectrum assignment of VN over an

elastic optical network. The topology of VN is assumed to be a full-mesh topology, and the

algorithm adjusts the bandwidth of lightpaths based on traffic demand measurement. The

method aims to minimize the packet delay and consumed capacity by MILP.

Refs. [18–20] investigate VN configuration schemes over elastic optical networks. Ref.

[18] points out the advantage of BVT on total equipment costs which include the costs of slot

cards, transponders, and optical switches. The routing and spectrum assignment problem is

solved under static traffic demands. Ref. [19] proposes a heuristic algorithm for configuring

a couple of VNs over a multi-domain elastic optical network. Using the information of

traffic demands for each VN, the algorithm minimizes the total network cost, including the

costs of transponders, regenerators, and spectrum resources. Ref. [20] considers modulation

level assignment problem in addition to the routing and spectrum assignment problem. The

heuristic algorithm in Ref. [20] jointly solves the routing, modulation level, and spectrum

assignment problem. Using the traffic demand information, the algorithm tries to minimize

the total network costs such as the costs of transponders and routers.

Ref. [21] presents minimal-power-consumption designs to minimize the total power con-

sumption in elastic optical networks. The authors develop an MILP formulation and its

heuristic algorithm. The traffic demand of each node pair is necessary to solve the problem.

Ref. [22] proposes an MILP formulation for several schemes of protection in cases where

multiple VNs run over an elastic optical network.
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These previous methods [17–22] aim to configure a VN over an elastic optical network

that achieves some objective by MILP or using a heuristic algorithm, based on long-term

measurement of traffic demand. However, when there are large fluctuations in traffic de-

mand, it is difficult for these methods to reconfigure the VN following traffic changes. It is

therefore important to develop a method for adaptively reconfiguring a VN in response to

traffic fluctuations that occur over a short period of time.

3.3 Virtual Network Reconfiguration Based on Attractor Se-

lection for Elastic Optical Path Networks

In this section, we first briefly explain the attractor selection and then explain our VN

reconfiguration method in elastic optical networks.

3.3.1 Attractor Selection

Dynamic systems driven by the attractor selection can adapt to unknown changes in their

surrounding environments [34]. In the attractor selection, attractors are a subset of the

equilibrium points in the solution space where the system conditions are preferable. The

basic mechanism of the attractor selection consists of both deterministic behavior and

stochastic behavior. The behavior of a dynamic system driven by attractor selection can

be described as follows:

dx

dt
= α · f(x) + η. (3.1)

The state of the system is represented by x = (x1, ..., xi, ..., xn), where n is the number of

state variables. f(x) represents the deterministic behavior and η represents the stochastic

behavior. The behavior is controlled by activity α, which is simple feedback of the system

conditions. When the current system conditions are suitable for the environment and the

value of α is large, the deterministic behavior drives the system to the attractor. When

the current system conditions are poor, that is, when the value of α is small, the stochastic
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behavior dominates the control of the system. While the stochastic behavior is dominant,

the state of the system fluctuates randomly due to noise η and the system searches for a

solution where the system conditions are preferable. In this way, attractor selection adapts

to environmental changes using both deterministic behavior and stochastic behavior based

on the activity.

When we investigate a method for VN reconfiguration over an elastic optical network,

the method is expected to reconfigure the VN to improve the service quality on it and/or

to set aside resources by properly defining the state of the system x and the activity α.

3.3.2 Outline of the VN Reconfiguration Method

We have developed a method for reconfiguring a VN for elastic optical networks. Our

method reconfigures the virtual topology and adjusts the bandwidth of the lightpaths that

form the VN in order to improve service quality on the VN while keeping some resources

unused. Given a current stage of VN configuration, i.e., the virtual topology and the

configuration of frequency slots, our method observes the link utilization on the VN and

determines the next stage of VN configuration. The method repeatedly executes these

controls based on the measured link utilization on the VN, as shown in Fig. 3.2. Here,

traffic is assumed to flow between client nodes via the shortest path in the VN. We refer to

link utilization on the VN as simply link utilization. The following gives an outline of our

method.

(Phase 1) Reconfigure the virtual topology.

(Phase 1-1) Calculate the activity based on both the service quality on the VN

and information about resource utilization.

(Phase 1-2) Configure the virtual topology based on attractor selection.

(Phase 1-3) Allocate frequency slots to newly established lightpaths.

(Phase 2) Adjust the bandwidth of lightpaths that form the VN.
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Figure 3.2: Outline of the VN reconfiguration method

The method repeatedly reconfigures a VN in response to traffic changes. As inputs,

the method uses the information of link utilization on all lightpaths, the current virtual

topology, and the current configuration of frequency slots. Then, the method reconfigures a

VN, i.e., reconfigures the virtual topology and reallocates frequency slots, as outputs. The

outputs of an execution are used as inputs for the next execution.

Detail on the VN reconfiguration in each of these phases is given in the following sections.

3.3.3 (Phase 1) Reconfiguration of the Virtual Topology

(Phase 1-1) Calculation of the activity

We calculate the activity based on both the service quality on the VN and information

about resource utilization. Specifically, we use the following two performance metrics to

calculate the activity.

• umax: Maximum link utilization
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• Bpotential: Potential bandwidth

The maximum link utilization umax represents the service quality on the VN. We then

define the potential bandwidth Bpotential to reflect the bandwidth that can be offered for

leased lightpaths and for accommodating increased traffic demand on the VN. Although our

proposed method aims to set aside resources (i.e., frequency slots and BVTs) for requests

for leased lightpaths and increased traffic demand, this approach to keeping as many unused

resources as possible has the same goal as the approach of maximizing the traffic volume

that can be accommodated in the future. Strategies for allocating resources for future

traffic demand have been discussed in Ref. [56]. In Ref. [56], the authors compare two

approaches: one approach is to maximize the smallest value of the bandwidth that can be

added to lightpaths between every node pair, the other is to maximize the total volume

of the bandwidth that can be added to end-to-end lightpaths. The latter approach was

found to give lower blocking ratios for lightpath requests. That is, by introducing the latter

approach, the network operator can accept more traffic demand to be accommodated in

the network. We therefore also determine the potential bandwidth which reflects the total

volume of bandwidth that can be additionally offered to every node pair. We define the

potential bandwidth as follows:

Bpotential =
∑
s,d∈V

Bsd
potential , (3.2)

where V represents the set of nodes in the network, and Bsd
potential represents the potential

bandwidth for the node pair (s, d). We introduce different definitions of Bsd
potential depending

on whether a lightpath is established between s and d or not:

• When a lightpath is established between s and d, we define Bsd
potential as the bandwidth

size that can be added to the lightpath (s, d). Fig. 3.3 shows an example of Bsd
potential

in this case. The BVTs at nodes s and d can offer up to 40 Gbps of bandwidth,

while the lightpath between s and d currently has a bandwidth of 20 Gbps. That

is, the BVTs can offer an additional 40 − 20 = 20 Gbps bandwidth. The number
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B B B B B B

Figure 3.3: Example of the potential bandwidth for a node pair (s,d): Case where a light-
path is established between s and d

of frequency slots that can be allocated to the lightpath between s and d under the

spectrum contiguity and continuity constraints is one, which gives a bandwidth of

10 Gbps. Therefore, we calculate the potential bandwidth for a node pair (s, d),

Bsd
potential, as follows: B

sd
potential = min(20, 10) = 10 Gbps.

• When a lightpath is not established between s and d, we define Bsd
potential as the

bandwidth size that can be offered if a lightpath is established between s and d. Fig.

3.4 shows an example of Bsd
potential in this case. The BVTs at the nodes s and d can

offer up to 40 Gbps of bandwidth. If we establish a lightpath between s and d we

can allocate three frequency slots to this lightpath under the spectrum contiguity

and continuity constraints, giving 10× 3 = 30 Gbps. We thus calculate the potential

bandwidth for the node pair (s, d), Bsd
potential, as follows: B

sd
potential = min(40, 30) = 30

Gbps.

We get the activity α by calculating

α = αmlu · αpb, (3.3)
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B B B B B B

Figure 3.4: Example of the potential bandwidth for a node pair (s,d): Case where a light-
path is not established between s and d

where αmlu indicates the condition of the VN in terms of the service quality on the VN, and

αpb indicates the condition in terms of preservation of resources. We convert the maximum

link utilization on the VN umax into αmlu by using Eq. (3.4) below. The value of αmlu is

in the range [0, 1] and the constant value umaxth is the target value of the maximum link

utilization. When the maximum link utilization is less than the threshold umaxth, αmlu

rapidly approaches 1. The constant number δmlu determines the gradient of the function.

The conversion equation is

αmlu =
1

1 + exp(δmlu · (umax − umaxth))
. (3.4)

We also convert the potential bandwidth Bpotential into αpb by using Eq. (3.5) below. The

value of αpb is in the range [0, 1] and the constant number θpb is the target value of the

potential bandwidth. When the potential bandwidth is more than the target value θpb, αpb

rapidly approaches 1. The constant value δpb determines the gradient of the function. The
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conversion equation is

αpb =
1

1 + exp(δpb · (θpb −Bpotential))
. (3.5)

The reason why we multiply αmlu and αpb together is that we aim to configure the VN to

achieve the objectives for both the service quality on the VN and preservation of resources;

in other words, we aim to configure a VN that can accommodate traffic demand on the VN

while keeping some resources unused. The activity α takes a large value if and only if the

both objectives are achieved; that is, αmlu and αpb take large values.

(Phase 1-2) Configuration of the virtual topology

We consider the state of the system x in the attractor selection as the state of all possible

lightpaths that form the VN. That is, we decide whether or not to set up a lightpath li

based on a state variable xi(∈ x). The dynamics of the state variable xi are defined by

dxi
dt

= α ·

(
ς

(∑
j

Wijxj

)
− xi

)
+ η. (3.6)

The activity α indicates the condition of the VN, which is calculated in Phase 1-1. The term

ς(ΣjWijxj)−xi represents the deterministic behavior where ς(z) = tanh(µ2 z) is a sigmoidal

regulation function and µ is the parameter of the sigmoidal function. The first term is

calculated using a regulatory matrix Wij . The second term η represents the stochastic

behavior and is white Gaussian noise with a mean value of zero. After xi is updated based

on Eq. (3.6), we decide whether or not to set up the lightpath li. Specifically, we set the

threshold to zero and if xi is greater than or equal to the threshold, we set up the lightpath

li and otherwise remove the lightpath li.

We set the regulatory matrix so that it has a set of virtual topology candidates as at-

tractors. That is, we set the regulatory matrix W so that dx/dt in Eq. (3.1) is equal to zero

when the virtual topology reconfigured by our VN reconfiguration method x = (x1, · · · , xn)

is one of the attractors. For the attractors that are stored in the regulatory matrix, we use
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a method to decide the regulatory matrix using the pseudoinverse matrix, which is shown

in Ref. [52]. Specifically, assuming that we set m VN candidates as attractors and one of

the candidates is represented by x(k) = (x
(k)
1 , · · · , x(k)n )(1 ≤ k ≤ m), the regulatory matrix

that has m attractors is

W = X+X, (3.7)

where X is a matrix that has x(1),x(2), ...,x(m) in each row and X+ is the pseudoinverse

matrix of X.

In these dynamics, the VN is reconfigured so that the activity α takes a large value. In

other words, it is expected that our method can reconfigure a VN to improve the service

quality on the VN while keeping some resources unused. Note that we can extend the

definition of the activity α by using multiple performance metrics.

(Phase 1-3) Allocation of frequency slots

We now allocate frequency slots to the lightpaths we established in Phase 1-2. We set the

bandwidth of these lightpaths to the maximum bandwidth a BVT can provide, and allocate

the number of frequency slots corresponding to that bandwidth. For example, assuming

that the bandwidth a BVT can offer is 100 Gbps and the bandwidth per frequency slot is

10 Gbps, the number of frequency slots we allocate to the lightpath in this phase is 10. At

this point, we introduce an existing heuristic algorithm for allocating frequency slots for

simplicity. We use the longest path first ordering algorithm [57] to determine the order of

lightpaths to which frequency slots are allocated. We sort the lightpaths by the number

of links on the shortest path in the physical topology (i.e., the number of physical hops),

and allocate frequency slots first to the lightpath with the largest number of physical hops.

We also use the first-last fit algorithm [58] for allocating frequency slots to the lightpath.

An outline of this algorithm is shown in Fig. 3.5. In this algorithm, all frequency slots

of each optical fiber are divided into a number of partitions, and we allocate a lightpath

frequency slots from the partition that has the largest number of available frequency slots.
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Figure 3.5: First-last fit algorithm

In even-numbered partitions, we select the lowest indexed slots from the list of available

frequency slots, and in odd-numbered partition, we select the highest indexed slots from

the list of available frequency slots.

3.3.4 (Phase 2) Adjustment of Lightpath Bandwidth

We adjust the bandwidth of each lightpath based on its link utilization. The link utilization

of each lightpath is expected to be in the range [uminth, umaxth], where uminth is the lower

limit of the target value of the link utilization and umaxth is the upper limit of the target

value of the link utilization. When the link utilization of a lightpath is lower than the lower

limit value uminth, it is considered that excessive allocation of frequency slots has caused

degradation of spectrum utilization efficiency. Poor spectrum utilization efficiency causes

increased power consumption, and decreases the amount of bandwidth that can be offered

for leased lightpaths and for accommodating increased traffic demand on the VN. When

the link utilization of a lightpath is higher than the upper limit umaxth, it is considered that

a high-loaded lightpath has caused degradation of the service quality on the VN. Therefore,

we adjust the bandwidth of each lightpath li as follows:

• When the link utilization of the lightpath li, denoted by ui, is less than uminth, we

reduce the number of frequency slots allocated to li so that ui is higher than uminth.

• When ui is greater than umaxth, we increase the number of frequency slots allocated

to li so that ui is lower than umaxth. However, we consider spectrum contiguity and

continuity constraints when adding frequency slots, and the number of frequency slots

allocated to one lightpath does not exceed the number of slots corresponding to the
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Figure 3.6: USNET

maximum bandwidth the BVT can provide.

When we adjust the number of frequency slots, we fix the central frequency (CF) and

symmetrically allocate or release the slots following the Semi-Elastic scheme proposed in

Ref. [59].

3.4 Performance Evaluation

In this section, we evaluate the performance of the VN reconfiguration method proposed in

Section 3.3.

3.4.1 Evaluation Using USNET

We first evaluate the performance of our method using the USNET topology shown in Fig.

3.6. Table 3.1 shows the parameters related to the physical network topology. The number

of nodes (i.e., BV WXCs) is 24, and the number of links (i.e., bidirectional optical fibers)
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Table 3.1: Physical network topology-related parameters (USNET)
Parameter Value

Number of nodes 24

Number of links 43

Number of BVTs 10

Bandwidth of each BVT 100 Gbps

Table 3.2: Target values for VN reconfiguration (USNET)
Parameter Target value

uminth 0.2

umaxth 0.8

θpb 11040

is 43. Each BV WXC has 10 BVTs that can offer up to 100 Gbps of bandwidth. When

we calculate the activity in Phase 1-1, we set δmlu, δpb to 50 in Eqs. (3.4) and (3.5). Table

3.2 shows the target values for VN reconfiguration. We set the target value of the link

utilization to the range [0.2, 0.8] and the target value of the potential bandwidth θpb to

24× (24−1)×100×0.2 = 11040, since we intend to set aside 20% of the bandwidth a BVT

can offer between every node pair on average. When we reconfigure the virtual topology

based on Eq. (3.6) in Phase 1-2, we set µ of the sigmoidal function ς(z) to 20. We also

set the regulatory matrix W such that it contains virtual topology candidates designed by

the method [36] as attractors. At the beginning of computer simulation, we configure one

of the candidates as the initial virtual topology, and allocate frequency slots by following

the procedure at Phase 1-3. Table 3.3 shows the parameters related to frequency slot

allocation. We assume that the available spectrum width of each optical fiber is 4.75 THz

and set the spectrum width of each frequency slot to 12.5 GHz. That is, the number of

available frequency slots per optical fiber is 380. Each frequency slot has a bandwidth of

10 Gbps. When we use the first-last fit algorithm in Phase 1-3, we divide the spectrum

width of each optical fiber into 4 partitions, so each partition has 95 frequency slots. We

set the guard band between occupied frequency slots of adjacent lightpaths to 12.5 GHz,
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Table 3.3: Frequency slot allocation-related parameters (USNET)
Parameter Value

Spectrum width of each optical fiber 4.75 THz

Spectrum width of each frequency slot 12.5 GHz

Bandwidth of each frequency slot 10 Gbps

Number of partitions 4

Guard band 12.5 GHz

which corresponds to one frequency slot.

For the evaluation, the initial traffic demand between each node pair is chosen in the

range [0.0, 1.5] Gbps from a uniform random distribution. We then increase the traffic

demand of each node pair by a capacity chosen in the range [0.0, 0.01] Gbps from a uniform

random distribution at each step of VN reconfiguration. We compare our method to a

method that configures the VN to accommodate only the current traffic demand using all

information of traffic demand between every node pair. Specifically, we introduce the most

subcarriers first (MSF) algorithm [57] in order to determine the virtual topology, and the

first-last fit algorithm in order to allocate frequency slots to the lightpaths that form the VN.

The MSF algorithm establishes lightpaths between node pairs selected in ascending order

of number of requested frequency slots. In this evaluation, the reference method collects

information about the traffic demand between each node pair by long-term measurements.

The method then sets up lightpaths and allocates frequency slots to lightpaths between node

pairs in ascending order of traffic volume. The bandwidths of the lightpaths established

by this reference method are the maximum bandwidth a BVT can provide. That is, this

reference method does not adjust the bandwidths of the lightpaths.

Fig. 3.7 shows the potential bandwidth at each step of VN reconfiguration. The hor-

izontal axis shows the number of steps of VN reconfiguration and the vertical axis shows

the potential bandwidth at each step. The dotted line indicates the target value of the

potential bandwidth θpb. At each even-numbered step, our proposed method enters Phase

1 (i.e., reconfigures the virtual topology), and at each odd-numbered step, it enters Phase 2

(i.e., adjusts the bandwidths of the lightpaths). The reference method, which is denoted by
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Figure 3.7: Potential bandwidth (USNET)

“MSF+First-last fit” in the figure, reconfigures the VN every 20 steps based on information

about traffic demand between every node pair. Fig. 3.7 shows that the potential bandwidth

in our method is kept higher than the target value until around step 900. The reason for the

gradual decrease in the potential bandwidth is that our method expands the bandwidths

of the lightpaths (i.e., adds frequency slots to lightpaths) in accordance with increases in

traffic demand. In contrast, the potential bandwidth in the reference method takes a very

small value. This is because the reference method establishes as many lightpaths as possible

and does not adjust the bandwidths of the lightpaths in order to accommodate the current

traffic demand. The above suggests that our method can set aside resources for leased

lightpaths and to accommodate increased traffic demand on the VN until around step 900.

In terms of the direct effects of the high potential bandwidth maintained by the proposed

method, Fig. 3.8 shows the number of resources used (i.e., frequency slots and BVTs).

Fig. 3.8(a) shows the number of occupied (i.e., active) frequency slots at each step of VN

reconfiguration. The horizontal axis shows the number of steps of VN reconfiguration and
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the vertical axis shows the total number of occupied frequency slots at each step. We

can see that the number of occupied frequency slots with the proposed method is smaller

than half of that with the reference method until step 900. This is because the proposed

method adjusts the bandwidth of each lightpath based on the link utilization in Phase 2

in order to accommodate the current traffic demand, whereas the reference method does

not. The reason for the gradual increase in the number of occupied frequency slots with the

proposed method is that additional frequency slots are allocated to the lightpaths adaptively

in response to increases in traffic demand. Fig. 3.8(b) shows the number of lightpaths that

form the VN (i.e., the number of used BVTs) at each step of VN reconfiguration. The

horizontal axis shows the number of steps of VN reconfiguration and the vertical axis

shows the total number of lightpaths at each step. The dotted line indicates the maximum

number of lightpaths that can be established to configure the VN. Fig. 3.8(b) shows that

the number of lightpaths established by the proposed method is consistently lower than that

by the reference method. In other words, the proposed method configures the VN by using

fewer BVTs. This is because the proposed method reconfigures the virtual topology by using

the potential bandwidth as the activity in Phase 1 in order to keep more resources unused.

By keeping a high potential bandwidth, the proposed method can set aside resources for

leased lightpaths and to accommodate increased traffic demand on the VN (i.e., reduce the

number of resources used to configure the VN).

Fig. 3.9 shows the maximum link utilization at each step of VN reconfiguration. The

horizontal axis shows the number of steps of VN reconfiguration and the vertical axis shows

the maximum link utilization of the VNs configured at each step. The upper dotted line

indicates the upper limit value umaxth and the lower dotted line indicates the lower limit

value uminth. In Fig. 3.9, we can see that the maximum link utilization by our method rises

at first, but is kept below the upper limit value by VN reconfiguration. That is, our method

can reconfigure the VN so that it can accommodate changing traffic demand. Note that the

potential bandwidth takes a higher value than the target value θpb, as shown in Fig. 3.7,

when our method reconfigures the VN to accommodate the traffic demand. The maximum

link utilization by the reference method rises gradually as the traffic demand increases. At
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Figure 3.8: Number of used resources (USNET)
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Figure 3.9: Maximum link utilization (USNET)

about step 900, the maximum link utilization by the reference method reaches almost the

same value as the proposed method. That is, the VN configured by the proposed method

can improve the service quality on the VN to the same degree as the VN configured by the

method that uses all information of the traffic demand matrix.

Fig. 3.10 shows the distribution of the number of VN reconfiguration steps until con-

vergence by the proposed method for 1,000 patterns of traffic demand. We generated these

traffic demand patterns by increasing the demand between each node pair until the maxi-

mum link utilization by the reference method rose above the upper limit value umaxth. We

consider the proposed VN reconfiguration method to have succeeded if the VN reconfigu-

ration meets the target values for both maximum link utilization and potential bandwidth

(i.e., the VN reconfiguration finds a solution) within 10 successive steps of VN reconfigura-

tion. We assume that the traffic demand is given at time zero, and evaluate the number of

steps of VN reconfiguration required until the VN reconfiguration successfully converges.

The horizontal axis shows the number of steps until convergence and the vertical axis shows

the frequency of the number of steps until convergence. From Fig. 3.10, we can see that our
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Figure 3.10: Distribution of the number of steps until convergence (USNET)

method can find a solution within 20 steps for 992 traffic patterns. Our method can thus

achieve target values of both maximum link utilization and potential bandwidth for a wide

variety of traffic demand without all of the information from the traffic demand matrices.

The above evaluation shows that the proposed method can configure a VN that im-

proves the service quality on the VN while setting aside resources for leased lightpaths and

accommodating increased traffic demand on the VN.

3.4.2 Evaluation Using the Simple CAIS Internet

We next evaluate the performance of our method using the Simple CAIS Internet topology,

shown in Fig. 3.11. This topology has bottleneck links in terms of the allocation of frequency

slots, such as the link between nodes 2 and 5. Table 3.4 shows the parameters of the

physical network topology. The number of nodes is 16 and the number of links is 23. Each

BV WXC has 8 BVTs that can offer up to 100 Gbps of bandwidth. Table 3.5 shows the

target values for VN reconfiguration. We set the target value of the potential bandwidth
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Figure 3.11: Simple CAIS Internet

Table 3.4: Physical network topology-related parameters (Simple CAIS Internet)
Parameter Value

Number of nodes 16

Number of links 23

Number of BVTs 8

Bandwidth of each BVT 100 Gbps

θpb to 16 × (16 − 1) × 100 × 0.2 = 4800, with the intention of setting aside 20% of the

bandwidth a BVT can offer between every node pair on average. The other target values

and parameters for reconfiguring the VN in Phase 1 are the same as in Section 3.4.1. The

parameters related to frequency slot allocation are also the same as in Section 3.4.1 (shown

in Table 3.3). For the evaluation, we generated 1,000 patterns of traffic demand in the same

way as in Section 3.4.1, and compared our method to the same method as in Section 3.4.1.

Fig. 3.12 shows the distribution of the number of VN reconfiguration steps until con-

vergence by the proposed method for 1,000 patterns of traffic demand. The horizontal axis

shows the number of steps required until the VN reconfiguration successfully converges and
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Table 3.5: Target values for VN reconfiguration (Simple CAIS Internet)
Parameter Target value

uminth 0.2

umaxth 0.8

θpb 4800

the vertical axis shows the frequency of the number of steps. This figure shows that our

method can find a solution within 20 steps for 910 traffic patterns. That is, our method can

reconfigure the VN to improve the service quality on the VN while keeping unused resources

for fewer traffic patterns than the evaluation in Section 3.4.1. This is because it is difficult

for the proposed method to find a solution due to the bottleneck links in the allocation of

frequency slots. When the proposed method removes some lightpaths and tries to newly

establish lightpaths between other node pairs in Phase 1, it is likely that the method cannot

set up new lightpaths because of restrictions on resources. Therefore, although our method

reconfigures a VN to set aside resources, there are cases where it takes a long time to find

a VN configuration that uses fewer resources. Note that our method can find a solution

within 180 steps for a further 22 traffic patterns.

The above evaluation shows that our method can reconfigure the VN to improve the ser-

vice quality on the VN while keeping unused resources for a wide variety of traffic demand.

However, it is likely that it will take a long time for our method to find a solution when

the physical network topology has bottleneck links in the allocation of frequency slots.

3.4.3 Effect of the Granularity of Frequency Slots

In this section, we evaluate the effect of the granularity of frequency slots. Specifically,

we evaluate the performance of our method using USNET when the granularity of the

frequency slots is coarser.

Table 3.6 shows the parameters related to frequency slots allocation. We assume that

the available spectrum width of each optical fiber is 4.75 THz and set the spectrum width

of each frequency slot to 25.0 GHz. That is, the number of available frequency slots per
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Figure 3.12: Distribution of the number of steps until convergence (Simple CAIS Internet)

Table 3.6: Frequency slot allocation-related parameters (USNET: coarse frequency slots)
Parameter Value

Spectrum width of each optical fiber 4.75 THz

Spectrum width of each frequency slot 25.0 GHz

Bandwidth of each frequency slot 20 Gbps

Number of partitions 4

Guard band 25.0 GHz

optical fiber is 190, which is half of the number in Section 3.4.1. Each frequency slot has

a bandwidth of 20 Gbps. We also set the guard band between occupied frequency slots to

25.0 GHz, which corresponds to one frequency slot. The other parameters related to the

physical network topology and reconfiguration of the VN, and the target values, are similar

to those in Section 3.4.1. For the evaluation, we use the same pattern of traffic demand

and the reference method as in Section 3.4.1.

Fig. 3.13 shows the potential bandwidth at each step of VN reconfiguration. The

horizontal axis shows the number of steps of VN reconfiguration and the vertical axis
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shows the potential bandwidth at each step. The dotted line indicates the target value

of the potential bandwidth θpb. At each even-numbered step, the proposed method enters

Phase 1 (i.e., reconfigures the virtual topology) and at each odd-numbered step, it enters

Phase 2 (i.e., adjusts the bandwidths of the lightpaths). The method for comparison,

which is denoted by “MSF+First-last fit” in the figure, reconfigures the VN every 20 steps

based on the traffic demand information between every node pair. Fig. 3.13 shows that

the potential bandwidth by the proposed method is kept higher than the target value until

around step 700. However, after around step 700, the potential bandwidth is lower than the

values in Fig. 3.7, which shows the potential bandwidth in the case where the granularity

of frequency slots is finer. In other words, when the granularity of the frequency slots is

coarser, it is more difficult to keep a high potential bandwidth in cases where the traffic loads

are large. Our method expands the bandwidths of the lightpaths (i.e., adds frequency slots

to lightpaths) according to the increased traffic demand. However, since the granularity of

frequency slots is coarse, the potential bandwidth that can be additionally offered is sharply

reduced. That is, coarser granularity of frequency slots makes it more difficult to set aside

resources for leased lightpaths and accommodating increased traffic demand on the VN in

cases where the traffic loads are large.

Fig. 3.14 shows the distribution of the number of VN reconfiguration steps until con-

vergence by the proposed method for 1,000 patterns of traffic demand. We generated these

traffic demand patterns by increasing the demand between each node pair until the maxi-

mum link utilization by the reference method rose above the upper limit value umaxth. The

horizontal axis shows the number of steps required until the VN reconfiguration successfully

converges and the vertical axis shows the distribution of the number of steps. This shows

that our method can find a solution within 20 steps for 991 traffic patterns. That is, our

method can reconfigure the VN to improve the service quality on the VN while keeping

unused resources for slightly fewer traffic patterns than the evaluation in Section 3.4.1. This

is because it is difficult for the proposed method to find a solution, particularly one that

keep the potential bandwidth high, because of the coarse granularity of the frequency slots.
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Figure 3.13: Potential bandwidth (USNET: coarse frequency slots)

From the above evaluation, we find that a coarser granularity of frequency slots makes it

more difficult for the proposed method to keep a high potential bandwidth while maintaining

service quality on the VN. In other words, it is easier for our method to achieve the objectives

when the granularity of frequency slots is finer. Since there are efforts to breaking down

the spectrum width of optical fiber into even more frequency slots [3,4], this tendency suits

our method.

3.5 Conclusion

In this chapter, we proposed a resource-efficient VN reconfiguration method. Our method

reconfigures a virtual topology based on attractor selection using only information about

the traffic loads on every lightpath and the potential bandwidth, which we define in this

chapter as a metric that reflects the bandwidth that can be additionally offered, and then

the method adjusts the bandwidth of the lightpaths that form the VN. We showed that

our method can configure a VN with less resources (i.e., frequency slots and BVTs) while
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Figure 3.14: Distribution of the number of steps until convergence (USNET: coarse fre-
quency slots)

improving the service quality on the VN to almost the same degree as a VN configured

by using all information of the traffic demand matrix. By reconfiguring a VN with less

resources, the network operator can provide more bandwidth to meet future requests for

leased lightpaths and accommodate increased traffic demand on the VN.

One future direction for this work is how to design the physical networks (i.e., elastic

optical networks) and how to enhance the network equipment. As shown in Section 3.4.2, it

is likely that bottleneck links in terms of allocation of frequency slots will make it difficult to

rapidly configure a VN that can accommodate traffic demand while setting aside resources.

It is therefore expected that our method will be able to find a solution in a shorter time

period if the physical network is better designed.
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Chapter 4

Virtual Network Reconfiguration

Based on Bayesian Attractor

Model

4.1 Introduction

Changes in the environment surrounding the Internet in recent years, such as advances in

personal Internet-enabled devices and the emergence of new Internet services, has led to

rapid growth and large fluctuations in Internet traffic. Specifically, Ref. [1] points out that

the volume of Internet traffic has grown by 20 times over the past decade, and will increase

further in the future. Thanks to the large bandwidth of optical fibers, optical networks

have the potential to support this growing traffic demand.

Network virtualization [6] is one of key technologies that allows network operators to

make full use of network infrastructures, such as optical networks. In response to requests

from service providers, network operators construct a virtual network (VN) in a dynamical

manner by slicing physical resources such as wavelength in Wavelength Division Multiplex-

ing (WDM)-based networks or frequency slots in elastic optical networks. A VN consists of

a set of optical connections (i.e., lightpaths) and client nodes (e.g., IP routers), and provides
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Figure 4.1: Network Virtualization in Optical Networks

the connectivity for network equipment and the bandwidth to accommodate traffic demand.

That is, the VN accommodates network services, such as video-on-demand services or cloud

computing services, offered by the service providers, and the network users enjoy the net-

work services (see Fig. 4.1). When fluctuations in traffic demand cause temporary traffic

congestion, it is necessary to reconfigure the VN so that the congestion is resolved and the

VN can accommodate the new traffic demand.

A typical approach for constructing or reconfiguring a VN is to design an optimal

virtual topology and allocate resources using knowledge of the end-to-end traffic demand

matrix [19–22, 24, 25]. The methods for configuring a VN proposed in Refs. [19–22] use

directly observed information about the traffic demand matrix as an input. However, it

generally takes a long time and requires a large amount of CPU resources to directly retrieve

information about the traffic demand matrix. As a result, the optimization approach has

– 76 –



Chapter 4. Virtual Network Reconfiguration Based on Bayesian Attractor Model

difficulty in reconfiguring a VN to follow short-term changes in traffic demand. Refs. [24,25]

therefore proposed methods to configure a VN using an estimated traffic demand matrix.

Many researches also have been devoted to investigating methods to estimate the traffic

demand matrix, such as Refs. [26–31]. However, estimation errors in the traffic demand

matrix are inevitable. When we configure a VN using the estimated traffic demand matrix

including estimation errors and the VN cannot accommodate traffic demand, we do not

have a way to configure the optimal VN because we have incorrect knowledge of the traffic

demand matrix. Therefore, it is difficult for the VN reconfiguration approach using the

information of the traffic demand marix to adapt to traffic fluctuations.

We previously have proposed an attractor selection-based VN reconfiguration method

[41] that does not use the traffic demand matrix. The attractor selection-based method

observes only the service quality, such as load information on all lightpaths that form a

VN, and searches for “good” VNs (i.e., VNs that can accommodate traffic demand) by

repeatedly making random changes to the current one. The link-level load information can

be retrieved in a much shorter time, typically 5 minutes or less, than the end-to-end traffic

demand matrix. We have shown in Ref. [41] that, in principle, the attractor selection-

based method can effectively accommodate changing traffic demand. However, in practice,

the attractor selection-based method repeatedly reconfigures a VN, which leads to over-

reconfiguration. The over-reconfiguration disrupts network services accommodated on the

VN. Therefore, it is desirable to minimize the number of VN reconfigurations needed to

adapt to traffic changes.

In this chapter, we propose a VN reconfiguration method without using the traffic de-

mand matrix that adapts to traffic fluctuations yet avoids over-reconfiguration with its

consequent disruption of network services accommodated on the VN. Our basic idea is to

follow the human behavior of making appropriate decisions by recognizing the surrounding

situation. Current consensus in cognitive science states that the brain accumulates sen-

sory information over a period of time, and makes a perceptual decision (i.e., categorizes

observed information) once enough information has been collected [46,60,61]. That is, hu-

mans recognize their surroundings as belonging to one of several environmental types and
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make appropriate decisions. We employ the Bayesian Attractor Model (BAM) [46], which

models this behavior using the concept of Bayesian inference [62], in our VN reconfigura-

tion method. In our VN reconfiguration method, we define a set of pre-specified traffic

situations using certain patterns of incoming and outgoing traffic at edge routers, which

can be obtained more easily than all information of the traffic demand matrix [26]. We also

prepare a set of VN candidates, each of which works well for a certain traffic situation. The

VN reconfiguration method updates the probabilities for taking each specified situation as

we observe the amounts of incoming and outgoing traffic at edge routers, and identifies

the best representation of the current traffic situation using the BAM. When identification

of the current traffic situation succeeds, the corresponding VN candidate suitable for the

identified traffic situation is retrieved and configured. However, the retrieved VN may not

be able to accommodate the actual traffic demand. In preparation for that eventuality, we

incorporate the attractor selection-based method [41] into our VN reconfiguration frame-

work in order to search for good VNs. Our VN reconfiguration framework is more stable

than using the attractor selection-based method alone, since the retrieved VN will not be

changed unless it cannot accommodate traffic demand.

Furthermore, we extend the above VN reconfiguration framework in order to deal with

the case where identification of traffic situations fails. Although the BAM-based method

can retrieve a VN suitable for the current traffic situation when the identification of traffic

situations succeeds, there is no choice but to apply the attractor selection-based VN re-

configuration method when the identification fails, which leads to over-reconfiguration. We

therefore propose a VN reconfiguration method to deal with the case where the identifi-

cation fails, and incorporate this method into our VN reconfiguration framework. In this

method, we use a set of pre-specified traffic situations, and the current traffic situation is

fitted by linear regression, and then our method calculates and configures a VN using the

obtained regression coefficients. Similar to the above VN reconfiguration framework, we

apply the attractor selection-based method when the configured VN cannot accommodate

traffic demand. However, by introducing this method, it is expected that the number of VN

reconfiguration to accommodate traffic demand can be reduced even when the identification
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of traffic situations fails, since we calculate a VN that is suitable to some extent using the

information obtained by fitting the current traffic situation. We also investigate how to

select and update the set of pre-specified traffic situations.

The rest of this chapter is organized as follows. In Section 4.2, we first describe related

work. We describe the BAM in Section 4.3, and explain the VN reconfiguration framework

based on the BAM in Section 4.4, and then we discuss the advantages and behavior of

our VN reconfiguraiotn framework in Section 4.5. Furthermore, we explain the extend VN

reconfiguration framework based on the BAM with linear regression in Section 4.6, and

evaluate its effectiveness in Section 4.7. We discuss how to select and update a set of

pre-specified traffic situations in Section 4.8, and we give our conclusions in Section 4.9.

4.2 Related Work

There are many studies for constructing or reconfiguring a VN for optical networks. Ba-

sically, given the traffic demand matrix, they aim to configure a VN that achieves some

objectives by using mixed integer linear programming (MILP) or a heuristic algorithm. For

example, Refs. [19–22] investigate VN reconfiguration methods over elastic optical networks.

Ref. [19] solves the routing and spectrum assignment (RSA) problem using a heuristic al-

gorithm for configuring a couple of VNs over a multi-domain elastic optical path network.

Using information about the traffic demand for each VN, the algorithm tries to minimize

the total network cost, including the costs of transponders, regenerators, and spectrum

resources. Ref. [20] considers the modulation level assignment problem in addition to the

RSA problem. The heuristic algorithm proposed in Ref. [20] jointly solves the routing,

modulation level, and spectrum assignment problems. Using traffic demand information,

the algorithm minimizes total network costs, such as the costs of transponders and routers.

Ref. [22] proposes a MILP formulation for several schemes of protection in cases where

multiple VNs run over an elastic optical network.

However, these methods have difficulty in reconfiguring a VN following changes in traffic

demand. This is because that they use directly observed information of the traffic demand
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matrix as an input, and in general, it takes a long time and requires a large amount of

CPU resources to directly retrieve this information since traffic inspection is necessary to

measure the volume for each source-destination pair.

Refs. [24, 25] therefore propose methods to configure a VN using a predicted traffic

demand matrix. Ref. [24] uses a set of past traffic demand matrices as inputs, and predicts

the traffic demand matrix in the near future by using the autoregressive integrated moving

averages (ARIMA) technique. A multi-objective algorithm then reconfigures a VN using

the predicted traffic demand matrix to minimize congestion, OPEX, and reconfiguration

disruption. Ref. [25] proposes a VN reconfiguration method that aims to adapt to current

and predicted traffic demand. This algorithm observes and stores the end-to-end traffic

volume, and then predicts the traffic demand matrix using an artificial neural network

(ANN)-based model.

Many researches have also been devoted to investigating methods to estimate the traffic

demand matrix, such as Refs. [26–31]. Ref. [26] estimates the traffic demand matrix by

fitting link-level load information, which is easy to collect, to a specific traffic model. In

order to reduce the estimation errors in the traffic demand matrix, Ref. [29] proposes several

methods to obtain additional information for estimation, such as both long-term and short-

term traffic variability, and the variance of the end-to-end traffic volume. Ref. [31] proposes

a method for estimating the traffic demand matrix in IP-over-WDM backbone networks

using the traffic demand data in the optical layer as well as the link-level load information

in the network layer. Ref. [30] estimates the traffic demand matrix by using a neural network

that has learned the past traffic demands.

However, it is difficult for the optimization approach that uses an estimated traffic

demand matrix to reconfigure a VN so that it can accommodate changing traffic demand.

Since the approaches for estimating traffic demand matrices fit the collected information to a

specific traffic model or past traffic data, they cannot deal with irregular traffic fluctuation.

Although a variety of engineering techniques can reduce estimation errors, they do not

guarantee the accuracy of the estimation: that is, estimation errors in the traffic demand

matrix are inevitable. When we configure a VN with the traffic demand matrix including
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estimation errors and the VN cannot accommodate traffic demand, we do not have a way

to configure the optimal VN because we have incorrect knowledge of the traffic demand

matrix.

4.3 Bayesian Attractor Model

In this section, we explain the Bayesian Attractor Model (BAM) [46] that represents the

human behavior of recognizing their surroundings and make appropriate decisions.

4.3.1 Outline of the Bayesian Attractor Model

The Bayesian Attractor Model (BAM) models the behavior of a human brain that accu-

mulates sensory information over a period of time, and makes a perceptual decision (i.e.,

categorizes observed information) once enough information has been collected. For exam-

ple, when a traffic light turns green at an intersection, we recognize that we see a green

light and make the decision to proceed. More precisely, the color categories of traffic lights

are retained in our brains, and we judge which category the observed sensory information

belongs to. Even when the sensory information contains a large amount of noise, e.g.,

it is hard to see a traffic light due to bad weather or backlight, the brain takes time to

accumulate evidence extracted from this noisy sensory information and make appropriate

perceptual decisions.

Fig. 4.2 illustrates the outline of the BAM. The BAM has a state variable, z, that

eventually settles into a fixed point, ϕ, that is defined by the attractor dynamics [63], (i.e.,

the winner-take-all dynamics) as evidence is accumulated. Internally, the BAM has several

fixed points ϕi each of which corresponds to a choice for the long-term average, µi, of an

observed value. At a time t, the model infers the posterior distribution of the state variable

zt, denoted by p(zt|X1:t), given observations up to time t, denoted by X1:t = {x1, · · · ,xt}.

Eventually, the model chooses µi as soon as a confidence criterion such as

p(zt = ϕi|X1:t) ≥ λ, (4.1)
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Figure 4.2: Outline of the Bayesian Attractor Model

is satisfied. Here, Ref. [46] introduces the posterior belief p(zt = ϕi|X1:t) as the confidence

measure for making a decision for the choice µi; in the VN reconfiguration framework, we

use a different confidence measure. Thus, the BAM accumulates observation values and

makes a decision when the confidence for the decision is large enough.

4.3.2 Inference Mechanism for Decision Making by the BAM

The BAM has a generative model for Bayesian inference by the decision maker (i.e., the

brain). The generative model calculates the likelihood of observations under all possible

choices that the decision maker considers. More precisely, the generative model predicts a

probability distribution over observation values based on the current state variable and its
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attractor dynamics.

The generative model defines a change in the state variable from one time step to the

next as

zt − zt−∆t = ∆t · f(zt−∆t) +
√
∆t ·wt, (4.2)

where zt is the D-dimensional state variable at a time t and f(z) is the attractor dynamics

[63]. The noise termwt follows the normal distributionN(0,Q), whereQ = (q2/∆t)·I is the

variance-covariance matrix of the noise and q is “dynamical uncertainty”. This represents

the amount of noise with which the decision maker expects the state variable to be changed,

which is interpreted as the tendency for state variables to switch between fixed points.

The generative model predicts a probability distribution over observation values, given

the state variable z. The equation for the prediction is

x = M · σ(z) + v (4.3)

= [µ1, · · · ,µD] · σ(z) + v

= σ(z1) · µ1 + σ(z2) · µ2 + · · ·+ σ(zD) · µD + v,

where M = [µ1, · · · ,µD] contains the averages of observation values that correspond to

choices and σ(z) is the sigmoid function that maps all valuables zj ∈ z to values between 0

and 1. Due to the winner-take-all dynamics of z, the fixed point ϕi is mapped to a vector

σ(ϕi) where one element is approximately 1 and the other elements are approximately 0.

Thus, the linear combination M · σ(z) associates each fixed point ϕi with the choice (the

average of observations) µi. The noise term v follows the normal distribution N(0,R),

whereR = r2·I is the variance-covariance matrix of the noise and r is “sensory uncertainty”.

This represents the amount of noise on observations that the decision maker expects. In

contrast, the actual amount of noise by which observations deviate from the average values

is denoted by s. We summarize the key parameters of the BAM in Table 4.1.

At a time t, the BAM infers the posterior distribution of the state variable zt, denoted

by p(zt|X1:t), using the generative model and the unscented Kalman filter (UKF) [64].
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Table 4.1: Key Parameters of the BAM
Parameter Explanation

s (noise level) the actual amount of noise
on observation values

q (dynamics uncertainty) the tendency for state variables
to switch between fixed points

r (sensory uncertainty) the amount of noise on observation values
the decision maker expects

The UKF is a statistical sampling method that approximates the posterior distribution

p(zt|X1:t) with a normal distribution. In the following, we briefly describe the flow of the

Bayesian inference in the BAM. First, the generative model predicts the posterior distri-

bution of the state variable at a time t using Eq. (4.2) and approximates it with a normal

distribution N(ẑt, P̂t), where P̂t represents the variance-covariance matrix of the predicted

state variable, ẑt. Second, the generative model predicts the possibility distribution of the

corresponding observation values using Eq. (4.3) and approximates it with a normal dis-

tribution N(x̂t, Σ̂t), where Σ̂t represents the variance-covariance matrix of the predicted

observation values, x̂t. Finally, the BAM calculates the observation residual between the

predicted observation values x̂t and the actual observation values xt,

ϵt = xt − x̂t, (4.4)

and updates the estimation of the state variable z̄t and its posterior variance-covariance

matrix P̄t via a Kalman gain Kt as follows.

z̄t = ẑt +Kt · ϵt, (4.5)

P̄t = P̂t −KtĈ
T
t . (4.6)

The Kalman gain represents the relative importance of the observation residual and is given
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by

Kt = ĈtΣ̂
−1
t , (4.7)

where Ĉt is the covariance matrix between the predicted state variable ẑt and the predicted

observation values x̂t. In this way, the BAM approximates the posterior distribution of the

state variable p(zt|X1:t) with a normal distribution N(z̄t, P̄t).

4.3.3 Challenges for BAM-based VN Reconfiguration

Ref. [46] examines the behavior of the BAM focusing on two-alternative forced choice tasks,

which are most commonly employed when investigating perceptual decision-making. Specif-

ically, Ref. [46] considers random dot motion (RDM) tasks in which subjects have to identify

the direction that a randomly moving cloud of dots moves on average. Based on that anal-

ysis, it is clear that several problems need to be solved in order to apply the BAM-based

approach to a VN reconfiguration method.

How to set the parameters r and q

The parameter r is the sensory uncertainty which represents the amount of noise on ob-

servations the decision maker expects. Thus, it is obvious that r should be the empirical

standard deviation, s, of observations. In fact, Ref. [46] shows that the optimal Bayesian

decision maker should have a generative model in which r is ideally equal to s.

The parameter q is the dynamical uncertainty which controls the propensity of the

decision maker to change its decision and affects the balance between flexibility and stability

in decision-making [46]. When q is small, the state valuable z is too stable to switch between

fixed points. That is, it is difficult for the decision maker to change its decision even when

the actual choice (i.e., the average of observation values) changes, since the decision maker

explains away evidence for another choice as noise. When q is large, although the decision

maker can change its decision rapidly, the decision maker sometimes changes its decision

due to sensory noise. Therefore, it is necessary to set q to an appropriate value with which

the decision maker can make fast and accurate decisions. By examining effects of the
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parameters r and q on the BAM-based approach in advance by off-line simulations, we can

obtain appropriate parameter sets {r, q}.

In summary, we set r to the empirical standard deviation of observation values, and

choose an appropriate value q corresponding to r obtained by off-line simulation of the

BAM.

How to determine a criterion for decision making

We should use a criterion for decision-making that is suitable for a VN reconfiguration

method. Ref. [65] introduces several definitions of confidence for decision-making: 1) the

posterior belief itself, 2) the logarithm of the posterior belief, 3) the log change in the

posterior belief. In our case, we use the third definition. This is because we use traffic

information as observation values, and large fluctuations in traffic information make the

posterior belief unstable, which makes decision-making difficult when we use the posterior

belief itself as the confidence. However, a confidence measure based on a difference between

posterior beliefs is more stable, which enables more stable decision-making. We give the

detailed definition of the confidence in Section 4.4.2.

Calculation time of the BAM-based approach

The BAM-based approach should infer the posterior distribution of the state variable

p(zt|X1:t) in a realistic calculation time. Ref. [46] only examines the behavior of the BAM

with a two-dimensional state variable zt. However, since the BAM infers the posterior

distribution using the UKF whose computational complexity is O(D3) [64], where D is the

dimension of the state variable zt, the BAM-based approach operates with realistic calcula-

tion time even when D is large. Using an ordinary PC and our MATLAB implementation,

we can actually estimate the posterior distribution within 4.0×10−3 sec even when D is 30,

which means the calculation time is short enough. We discuss the effect of the dimension of

the state variable (i.e., the number of choices) on our VN reconfiguration method in Section

4.5.4 in detail.
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Figure 4.3: Application of the Bayesian Attractor Model to VN reconfiguration

4.4 Virtual Network Reconfiguration Framework Based on

the Bayesian Attractor Model

4.4.1 Overview of the VN Reconfiguration Framework

We have developed a BAM-based VN reconfiguration method. Fig. 4.3 briefly illustrates

how to apply the BAM-based approach to the VN reconfiguration problem. In our method,

when the traffic situation is identified as µi given the observation values X1:t, the corre-

sponding VN gi suitable for the identified traffic situation µi is retrieved and configured.

More precisely, we select the VN gi when the confidence in decision making for the choice

µi is sufficiently large. We use the amounts of incoming and outgoing traffic at edge routers

as the observation values X1:t. Note that the VN gi is prepared in advance such that the

VN works well for the traffic situation µi.

Applying only the BAM-based approach is insufficient for a VN reconfiguration frame-

work because the retrieved VN gi may not be able to accommodate traffic demand even

though the identification succeeds. To deal with this case, we incorporate the attractor
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selection-based method [41] into our VN reconfiguration framework in order to find good

VNs. That is, we prepare a set of control phases and change the control phase based on

both the confidence from the BAM-based approach and the service quality on the VN.

More precisely, our VN reconfiguration framework is an on-line algorithm that reconfigures

a VN by following the steps below, based on observation of the amounts of incoming and

outgoing traffic at edge routers and the service quality on the VN (here, maximum link

utilization on the VN).

(Step 1) Calculate the confidence from the BAM-based approach using the measured

amounts of incoming and outgoing traffic at edge routers.

(Step 2) Change the control phase based on the confidence from the BAM-based ap-

proach and the service quality on the VN, and execute the control.

Note that the amounts of incoming and outgoing traffic at edge routers and the link uti-

lization on the VN can be retrieved more easily than information of the end-to-end traffic

demand matrix. The control phases are the following.

(Phase 1) Stay until a new traffic situation is identified.

• We do not reconfigure a VN until the current traffic situation is identified.

(Phase 2) Reconfigure the VN based on the identified traffic situation.

• We select the VN candidate gi that works well for the identified traffic situation

µi (Phase 2-1).

• If VN gi cannot accommodate the traffic demand, we search for a good VN using

the attractor selection-based method [41] (Phase 2-2).

In summary, our VN reconfiguration framework first identifies traffic situations using the

BAM-based approach (Phase 1) and immediately changes the VN after the identification

succeeds (Phase 2-1). Then, we observe the service quality on the VN, and reconfigure the

VN if necessary (Phase 2-2). Note that, this VN reconfiguration framework does not cover
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the case where the identification of traffic situations fails, that is, where the confidence is

stable at a small value. We investigate ways to deal with the case where the identification

fails in Section 4.6.

4.4.2 VN Reconfiguration Algorithm

We explain the details of the VN reconfiguration framework in the following.

Preparation

We prepare VNs gi that work well for traffic situations µi in advance. Examples of VN

preparation are:

• We extract from a control history of VN configurations which show adequate perfor-

mance in the specific traffic situations.

• We calculate VNs using traffic demand matrices that can be predicted from past

traffic fluctuations.

We also prepare sets of the parameters {r, q} of the BAM with which the traffic situation

can be successfully identified by off-line simulations.

(Step 1) Calculate the confidence using the BAM-based approach

At a time t, we observe the amounts of incoming and outgoing traffic at edge routers, and

calculate the confidence in decision making for the various choices.

First, we determine the parameters r and q used for the inference. Specifically, we

calculate the empirical standard deviation st using the observations up to time t, X1:t, and

set r to st. Then, we set q to the value corresponding to r obtained at the above preparatory

phase. Here, we sequentially update the empirical standard deviation st using Welford’s

method [66] since it is not necessary to hold the past observation values from time 1 to

time t− 1.
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Second, we infer the posterior distribution of the state variable, p(zt|X1:t), and calculate

the posterior belief for each choice, p(zt = ϕi|X1:t).

Finally, we calculate the confidence for decision that the current traffic situation is

identified as µi. Here, following Ref. [65], we use as the confidence the left side of Eq. (4.8),

which represents the difference between logarithms of posterior beliefs. That is, we identify

the current traffic situation as µi when

log10
p(zt = ϕi|X1:t)

p(zt = ϕj |X1:t)
≥ λ, (4.8)

where the posterior belief in the choice µi, p(zt = ϕi|X1:t), is the largest among all the

choices, and the posterior belief in the choice µj , p(zt = ϕj |X1:t), is the second largest.

(Step 2) Change the control phase and execute the control

We change the control phase based on the confidence obtained at Step 1 and the service

quality on the VN, and execute the control. The state transition diagram of the control

phases is shown in Fig. 4.4. The label at each edge represents the transition condition,

which consists of the confidence from the BAM-based approach and the service quality on

the VN. The confidence becomes “stable at a large value” when Eq. (4.8) is satisfied for c

consecutive times. The details of each control phase are the following.

(Phase 1) Stay until a new traffic situation is identified.

• This phase is the initial state of our VN reconfiguration framework. The control

phase also changes to this phase when the confidence falls below the threshold

λ.

• We do not reconfigure a VN in this phase.

(Phase 2-1) Configure the VN candidate that works well for the identified traffic

situation.

• The control phase changes from Phase 1 to this phase when the confidence

becomes stable at a large value.
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Figure 4.4: State transition diagram for the VN reconfiguration framework

• We configure one of VN candidates gi that works well for the traffic situation µi

at this phase.

(Phase 2-2) Reconfigure the VN using the attractor selection-based method.

• The control phase changes to this phase when the confidence takes a large value

and the service quality on the VN is low.

• We search for a good VNs using the attractor selection-based method [41] in this

phase.

(Phase 0) Stay. (The VN shows good performance.)

• The control phase changes to this phase when the service quality on the VN is

improved.

• We do not reconfigure the VN in this phase.
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Table 4.2: Parameters of the USNET physical network topology
Parameter Value

Number of nodes 24

Number of links 43

Number of BVTs 10

Bandwidth of each BVT 100 Gbps

4.5 Evaluation of the VN Reconfiguration Framework

In this section, we first investigate the characteristics of our VN reconfiguration framework,

and then evaluate the advantages of our VN reconfiguration framework over an elastic

optical network in environments where traffic demand fluctuates. In such environments,

it is expected that optimization approaches that use the end-to-end traffic demand matrix

will have difficulty in reconfiguring a VN in response to traffic changes, as we mentioned in

Section 4.1. We therefore evaluate the advantage of our VN reconfiguration framework by

comparing it with an approach using the attractor selection-based method [41] alone since

neither method uses traffic demand matrix information. Thus, we refer to the attractor

selection-based method as the reference method.

4.5.1 Evaluation Environments

We use an elastic optical network that has the USNET topology. Table 4.2 shows the

parameters of the physical network topology. The number of nodes, each of which consists

of an IP router and a bandwidth-variable wavelength cross-connect (BV WXC), is 24, and

the number of links (i.e., bidirectional optical fibers) is 43. Here, all the IP routers are

edge routers. Each BV WXC has 10 bandwidth-variable transponders (BVTs) that can

offer up to 100 Gbps of bandwidth. The goal of the control is to make the maximum link

utilization on a VN less than 0.5. We generate traffic demand matrices T1, · · · ,T5 which

follow a log-normal distribution. We denote the amounts of incoming and outgoing traffic at

edge routers by E1, · · · ,E5, which are pre-specified traffic situations µ1, · · · ,µ5, when the

traffic demand matrices are T1, · · · ,T5, and calculate the configurations of VN candidates
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Figure 4.5: State transition diagram for the attractor selection-based method

g1, · · · , g5, which can accommodate T1, · · · ,T5. Specifically, we determine the virtual

topology using the most subcarriers first (MSF) algorithm [57], and allocate frequency slots

to lightpaths using the first-last fit algorithm [58]. We set c to 3, and set λ to 10.

For the evaluation, at every unit time step, the end-to-end traffic demand matrix is

generated based on the normal distribution N(T1,Σ) until time 100; then it is generated

based on the normal distribution N(T2,Σ) until time 200, where Ti = (Ti,11, · · · , Ti,NN )

and Σ = CV 2diag(T 2
i,11, · · · , T 2

i,NN ). N is the number of nodes, and CV is the coefficient of

variation that represents the degree of traffic fluctuation. Refs. [67, 68] analyze real traffic

data and fit the data to a traffic fluctuation model that follows a normal distribution. From

these results, we find that the CV of real traffic is approximately within the range [0.5, 1.5].

The reference method changes its control phase based on the service quality on a VN, as

shown in Fig. 4.5; the method searches for good VNs at Phase 2-2, then changes to Phase

0 when the performance of the VN gets improved.

4.5.2 Characteristics of the VN Reconfiguration Framework

Fig. 4.6 shows the transitions between control phases for each method when CV is 0.5.

The figure clearly shows the behavior of our framework. Our method starts in Phase 1

and continues to stay in Phase 1 until the traffic situation is identified. At time 5, the
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Phase 0.

Phase 1.

Phase 2-1.

Phase 2-2.

 0  50  100  150  200

Time

Proposed method
Reference method

Figure 4.6: Transition of the control phase (CV = 0.5)

method shifts to Phase 2-1, and reconfigures a VN to the most promising one among the

pre-prepared VN candidates. After that, the method enters Phase 0 since the VN can

accommodate the traffic. Since the confidence in the identification of the current traffic

situation becomes small at time 101, the method returns to Phase 1. At time 104, the

method shifts to Phase 2-1 having detected the change of traffic situation. Note that

our method can detect the change of traffic situation even though it accumulates past

observations. After that, the method returns to Phase 0 since the VN can accommodate the

traffic. Even when the method shifts to Phase 2-2 due to a traffic fluctuation (time 137), it

is immediately returned to Phase 0 by the attractor selection-based method. This is because

the VN is reconfigured to the most promising candidate and thereby the attractor selection-

based method requires a little effort to find a good VN. In contrast, the reference method

repeatedly changes control phase between Phase 2-2 and Phase 0. That is, although the

reference method searches for a suitable VN for the current traffic situation and temporarily

finds one, the VN cannot adapt to traffic changes after that.
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4.5.3 Advantages of the VN Reconfiguration Framework

In this section, we evaluate the advantages of our VN reconfiguration framework. In op-

eration, our VN reconfiguration framework aims to detect changes of traffic situation and

configure a VN suitable for the current traffic situation. We therefore evaluate the advan-

tages of our framework by considering performance after the traffic situation changes (i.e.,

after time 100). We executed 100 trials with different seeds to generate different traffic

demand matrices.

First, we evaluate the required time for identification of the traffic situation. Fig. 4.7

shows the distribution of the required time for identification of the traffic situation. Here,

we define the required time as the time from when the traffic situation changes (i.e., time

100) until the time when the confidence become stable at a large value and the control phase

changes to Phase 2-1 for the first time. In Fig. 4.7, we can see that our VN reconfiguration

framework can identify the traffic situation within 10 time steps in all the trials. Note that

we confirmed that our framework had identified the current traffic situation as µ2 in all

trials. That is, our framework can correctly identify the traffic situation since the traffic

demand matrix is generated by following N(T2,Σ). We also find that the required time

increases as the CV becomes larger. This is because it takes a longer time to accumulate

evidence for the choice when the traffic demand fluctuates more largely and the observations

are more likely to deviate from the pre-specified traffic situation.

Second, we evaluate the performance of the VN configured in Phase 2-1. Fig. 4.8 shows

the distribution of the maximum link utilization of the VN configured in Phase 2-1 after the

traffic situation changed (i.e., after time 100). We see that the VN configured in Phase 2-1

can, in most trials, achieve the goal of the control of making the maximum link utilization

less than 0.5. However, the maximum link utilization of the VN tends to increase as the CV

becomes larger. That is, although our VN reconfiguration framework can adapt to changes

in traffic situations by configuring the most promising VN among the candidates in Phase

2-1 when the traffic fluctuation is small, our VN reconfiguration framework requires the

search for a good VN in Phase 2-2 when the traffic fluctuation is large.
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Figure 4.7: Cumulative distribution of the required time for identification of the traffic
situation

Finally, we evaluate the stability of our VN reconfiguration framework. Fig. 4.9 shows

the average of the total elapsed time spent in Phase 2-2 for each method after the traffic

situation changed (i.e., after time 100). The horizontal axis shows the CV of the new traffic

situation, and the vertical axis shows the average of the total elapsed time. In Fig. 4.9,

we can see that the total elapsed time of our method is shorter than that of the reference

method for all situations. That is, our method successfully decreases the number of VN

reconfigurations needed to reach a VN suitable for the traffic situation. We also find that

the total elapsed time of our method increases as CV becomes larger. This is because

the VN configured in Phase 2-1 can adapt to traffic changes when the traffic fluctuation

is small, and our VN reconfiguration framework requires the search of good VNs when the

traffic fluctuation is large.

We also evaluated the advantages of our VN reconfiguration framework using the Simple

CAIS Internet topology, which is used in Ref. [41], and obtained similar results to those

shown in this section: that is, our VN reconfiguration framework can identify the traffic
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Figure 4.8: Distribution of the maximum link utilization of the VN configured in Phase 2-1

situation using the amounts of incoming and outgoing traffic at edge routers, and reduce

the number of VN reconfigurations needed to reach a VN suitable for the traffic situation.

4.5.4 Effect of the Number of Choices

In this section, we discuss the effect of the number of choices (i.e., the number of pre-specified

traffic situations). It is expected that our VN reconfiguration framework can adapt to more

traffic situations when it can identify them. However, it is likely to be more difficult to

distinguish between traffic situations as the number of them becomes larger. Thus, we

evaluate the effect of the number of choices on our VN reconfiguration framework.

We denote the number of choices (i.e., the number of pre-specified traffic situations) by

D, which is the parameter of evaluation in this section. That is, we generate traffic demand

matrices T1, · · · ,TD which follow a log-normal distribution. Then, we denote the amounts

of incoming and outgoing traffic at edge routers by E1, · · · ,ED, which is the traffic situation

µ1, · · · ,µD, when the traffic demand matrix is T1, · · · ,TD, and calculate configurations of
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Figure 4.9: Average of the total elapsed time spent in Phase 2-2

the VN candidates g1, · · · , gD that can accommodate the traffic demands T1, · · · ,TD. We

calculate the configuration of these VN candidates in the same way as in Section 4.5.1. For

the evaluation, CV is 0.5, and the other parameters are similar to those in Section 4.5.1.

We consider the maximum time taken to identify the traffic situation for various numbers

of choices. Fig. 4.10 shows the maximum time required to identify the traffic situation over

100 trials with different seeds used to generate different traffic demand matrices. We can see

that it takes longer to identify traffic situations as their number becomes larger. Specifically,

although the required time is about 10 time steps at most when the number of choices is

15 or less, the required time becomes longer when the number of choices becomes larger

than 20. That is, there is a trade-off between the ability to identify more traffic situations

and the ability to adapt to traffic changes in a shorter-time period. Thus, it is desirable

to limit the number of pre-specified traffic situations to deploy our VN reconfiguration

framework effectively in order to accommodate changing traffic demand; in this evaluation

environment, the limit is 15 or less.

– 98 –



Chapter 4. Virtual Network Reconfiguration Based on Bayesian Attractor Model

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30

M
a

x
im

u
m

 T
im

e
 R

e
q

u
ir
e

d
 t

o
 

 I
d

e
n

ti
fy

 T
ra

ff
ic

 S
it
u

a
ti
o

n
s

# of choices

Figure 4.10: Maximum time required to identify the traffic situation

4.6 Virtual Network Reconfiguration Based on the Bayesian

Attractor Model with Linear Regression

4.6.1 Overview of the Extended VN Reconfiguration Framework

We extend the VN reconfiguration framework in Section 4.4 to deal with the case where the

identification of traffic situations fails. When the identification of traffic situations by the

BAM-based method fails, we calculate and configure a new VN using linear regression [69]

by following the steps below. Fig. 4.11 shows the outline of the VN reconfiguration method

based on the BAM with linear regression.

Step 1 Fit the current traffic situation, denoted by µnew, by linear regression using a set

of pre-specified traffic situations µ1, · · · ,µD.

Step 2 Calculate and configure a new VN, denoted by gnew, using the obtained regression

coefficients w1, · · · , wD.
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…

Figure 4.11: Outline of the VN reconfiguration based on the BAM with linear regression

Applying only the liner regression-based approach is not sufficient when the identification of

traffic situations fails because the VN gnew may not be able to accommodate traffic demand.

In this case, we apply the attractor selection-based VN reconfiguration method [41] to find

a good VN. However, by introducing the linear regression-based method, it is expected that

the number of VN reconfiguration to accommodate traffic demand can be reduced even when

the identification of traffic situations fails, since we calculate the VN gnew that is suitable

to some extent using the information obtained by fitting the current traffic situation. Note

that, since this linear regression-based method utilizes only the information used in the

above VN reconfiguration framework, such as observed amounts of incoming and outgoing
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traffic at edge routers and a set of pre-specified traffic situations µ1, · · · ,µD, there is no

information to be additionally observed to configure the VN gnew. We incorporate this

linear regression-based method into the VN reconfiguration framework proposed in Section

4.4.

4.6.2 VN Reconfiguration Algorithm with Linear Regression

We explain the details of the linear regression-based VN reconfiguration algorithm.

(Step 1) Fit the traffic situation by linear regression

The BAM as a state-space representation has the output equation Eq. (4.3), where the

observation value (observed amounts of incoming and outgoing traffic at edge routers in

our VN reconfiguration framework) is represented by a linear sum of pre-specified traffic

situations. We apply this equation to the approach for dealing with the case where the

identification of traffic situations fails. That is, we fit the current traffic situation µnew

by linear regression using a set of pre-specified traffic situations µ1, · · · ,µD to satisfy the

equation

µnew = w1µ1 + · · ·+ wDµD + ϵ =
D∑
i=1

wiµi + ϵ, (4.9)

where w1, · · · , wD are regression coefficients and ϵ represents the error term. More precisely,

we calculate regression coefficients w1, · · · , wD so that the residual sum of squares (RSS)

defined by the equation,

RSS(wi) = ϵT ϵ = (µnew − µ̂new)
T (µnew − µ̂new) (4.10)

=
(
µnew −

∑D
i=1wiµi

)T (
µnew −

∑D
i=1wiµi

)
,

is minimized by the least squares method. In the BAM-based approach, the coefficient of

each traffic situation µi, which is denoted by w′
i = σ(zi), is defined to satisfy 0 ≤ w′

i ≤ 1.

However, there are no constraints on the coefficient wi when we fit the current traffic

situation µnew by linear regression. Even when the traffic volume increases and thereby
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the coefficient wi is greater than 1, it is not a problem in calculating a new VN gnew since

we can consider that the traffic pattern, which is the relationship among the traffic volume

at every edge routers, dose not change. Note that, in this study, we do not cover the

case where the traffic volume increases so that the enhancement of the physical network

equipment becomes necessary for accommodating traffic demand.

(Step 2) Calculate a new VN

Utilizing the obtained regression coefficients w1, · · · , wD, we calculate a new VN gnew and

configure it. In our algorithm, since the current traffic situation µnew is fitted by a linear

sum of pre-specified traffic situations µ1, · · · ,µD, we represents the current traffic demand

matrix Tnew as a linear sum of the corresponding traffic demand matrices T1, · · · ,TD, as

shown in this equation

Tnew = w1T1 + · · ·+ wDTD =

D∑
i=1

wiTi. (4.11)

We can use the information of the traffic demand matrices T1, · · · ,TD because we retain

this information to calculate VN candidates in the BAM-based method. Then, we calculate

a new VN gnew by the heuristic algorithms [57,58] using the obtained traffic demand matrix

Tnew as an input.

When gnew cannot accommodate traffic demand, we apply the attractor selection-based

VN reconfiguration method [41] to find a good VN. However, by introducing the linear

regression-based method, it is expected that the number of VN reconfiguration to accom-

modate traffic demand can be reduced even when the identification of traffic situations

fails, since we calculate the VN gnew that is suitable to some extent using the information

obtained by fitting the current traffic situation.
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4.7 Evaluation of the Extended VN Reconfiguration Frame-

work

In this section, we evaluate the effectiveness of configuring a new VN gnew calculated by

the linear regression-based method when the identification of traffic situations fails.

4.7.1 Evaluation Environments

The parameters of the physical network topology, the goal of the control, and the retained

information by the BAM-based method, such as the pre-specified traffic demand matrices

T1, · · · ,T5, and the corresponding traffic situations µ1, · · · ,µ5, and the VN candidates

g1, · · · , g5, are the same as shown in Section 4.5.1.

We generate 1,000 patterns of traffic demand matrix information T′ with different

seeds assuming unknown traffic fluctuations. Note that, the generated traffic demand ma-

trices T′ are different from the retained ones T1, · · · ,T5. For the evaluation, at every

unit time step, the end-to-end traffic demand matrix is generated based on the normal

distribution N(T1,Σ) until time 50; then a traffic fluctuation occurs and the traffic de-

mand matrix is generated based on the normal distribution N(T′,Σ) until time 100, where

Ti = (Ti,11, · · · , Ti,NN ) and Σ = 0.52diag(T 2
i,11, · · · , T 2

i,NN ).

4.7.2 Evaluation Results

We have evaluated the effectiveness of the linear regression-based method when the identi-

fication of traffic situations fails. Fig. 4.12 shows the breakdown of the simulation results,

i.e., whether the identification of traffic situations succeeds or not, and whether the config-

ured VN can accommodate traffic demand or not for 1,000 trials using different T′. In Fig.

4.12, we can see that the identification of traffic situations succeeds in 30.9(=12.5+18.4) %

of trials, and fails in 69.1 % of trials. To investigate the effectiveness of the linear regression-

based method when the identification of traffic situations fails, we focus on the latter 69.1

% of trials below. In Fig. 4.12, we find that we can accommodate traffic demand in 65.7 %

of trials when the identification of traffic situations fails, whereas we cannot accommodate
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Figure 4.12: Breakdown of the simulation results

traffic demand in 3.4 % of trials. Thus, the linear regression-based method can configure

a suitable VN in most cases when the identification of traffic situation fails. When we

apply only the BAM-based method, we need to use the attractor selection-based method

in 81.6(=100-18.4) % of trials. By incorporating the linear regression-based method into

our VN reconfiguration framework, we need the attractor selection-based method only in

15.9(=12.5+3.4) % of trials. This indicates that we can effectively reduce VN reconfigura-

tion necessary to reach a suitable VN for the current traffic situation.

4.8 Guideline to Select and Update a Set of Pre-specified

Traffic Situations

4.8.1 Approach for Selecting a Set of Pre-specified Traffic Situations

To effectively deploy our linear regression-based method, it is important to appropriately

select and update a set of pre-specified traffic situations. It is expected that we can obtain

better VNs when the linear sum of pre-specified traffic situations expresses wider variety
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of traffic situations and makes the residuals smaller. Therefore, it is one of the guidelines

to select D traffic situations µ1, · · · ,µD so that the liner sum of these traffic situations

improve the ability to expresses various traffic situations. One way to improve the ability

to express various traffic situations is to select a set of pre-specified traffic situations so that

they have linear independence when we consider each traffic situation as a vector. This is

because the dimension of the space spanned by the pre-specified traffic situation vectors

becomes maximum when the set of selected traffic situation vectors has linear independence.

Whether the set of selected traffic situation vectors has linear independence or not can be

easily judged by checking whether the rank of the matrix M = [µ1, · · · ,µD] matches D or

not.

Here, we evaluate the relationship between the ability to express various traffic situations

and the performance of the linear regression-based VN reconfiguration method. Although

the parameters for the evaluation are the same as shown in Section 4.7.1, we use 3 sets of

pre-specified traffic situations below.

• 1st set: {µ1,µ2,µ3,µ4,µ5}

• 2nd set: {µ1,µ2,µ3,µ4, (µ1 + µ2)/2}

• 3rd set: {µ1,µ2,µ3, (µ1 + µ2)/2, (µ2 + µ3)/2}

The number of pre-specified traffic situation of each set is 5. The rank of the matrix M

with each traffic situation as a column is 5 for the first set, 4 for the second set, 3 for the

third set. That is, the first set has linear independence, the second and the third set is

linear dependent. The first set is the same as used for the evaluation in Section 4.7.

Fig. 4.13 shows the ratio of trials where the identification of traffic situations fails

and the configured VN by the linear regression-based method cannot accommodate traffic

demand out of 1,000 trials, which we call failure rate, when using each set of pre-specified

traffic situations. In Fig. 4.13, we can see that the failure rate is reduced by using the first

set of traffic situations. Moreover, we can find that the failure rate is smaller in the case

of using the second set with rank 4 than in the case of using the third set with rank 3.
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Figure 4.13: Effects of linear independence of a set of pre-specified traffic situations

In other words, the failure rate decreases as the rank of the matrix M with each selected

traffic situation as a column becomes larger.

From the above evaluation, it is effective to maximize the rank of the matrix M with

each selected traffic situation as a column, that is, it is effective to select a set of pre-specified

traffic situations so that is has linear independence.

4.8.2 Approach for Updating a Set of Pre-specified Traffic Situations

We believe that it is effective to dynamically update a set of pre-specified traffic situations

in order to accommodate changing traffic demand for the future by applying our VN re-

configuration framework. When the identification of traffic situations fails and our linear

regression-based method can configure a VN suitable for the current traffic situation, it is

not necessary to update the set of pre-specified traffic situations since our VN reconfigu-

ration framework can deal with the traffic fluctuation using the retained traffic situations.

In the case where the VN configured by the linear regression-based method cannot accom-

modate traffic demand, we apply the attractor selection-based method to find a good VN.

– 106 –



Chapter 4. Virtual Network Reconfiguration Based on Bayesian Attractor Model

When a solution (i.e., a VN that can accommodate traffic demand) is found, we add the

traffic situation at that time to the set of pre-specified traffic situations. However, since

it takes a longer time to identify the traffic situations as the number of pre-specified traf-

fic situations becomes larger, as shown in Section 4.5.4, it is not desirable the number of

pre-specified traffic situations is too large. Therefore, it is necessary to delete some of pre-

specified traffic situations from the set properly. We believe that it is sufficient to delete

some of traffic situations from the set with a longer time period than to add new traffic

situations. We therefore can use information of the current traffic demand matrix Tnow

when we delete some of traffic situations from the set. We denote the corresponding traffic

situation bv µnow when the traffic demand matrix is Tnow. One guideline is to delete some

of traffic situations from the set that can be represented by a linear sum of the pre-specified

traffic situations µ1, · · · ,µD,µnow.

4.9 Conclusion

We have developed a virtual network reconfiguration framework based on the Bayesian

Attractor Model (BAM), which does not use the end-to-end traffic demand matrix. Our

VN reconfiguration framework first identifies the current traffic situation to the closest one

among several pre-specified traffic situations using the BAM, and immediately changes the

VN to the most suitable candidate for the identified traffic situation. Then, the framework

observes the service quality on the VN and reconfigures the VN if necessary by the attractor

selection-based method. Evaluation results showed that our framework can identify the

traffic situation using the amounts of incoming and outgoing traffic at edge routers, which

are more easily obtained than the traffic demand matrix, and reduces the number of VN

reconfigurations needed to reach a VN suitable for the actual traffic situation.

Furthermore, we extended the above VN reconfiguration framework to deal with the case

where the identification of traffic situations fails. When the identification fails, the extended

framework fits the current traffic situation by linear regression using a set of pre-specified

traffic situations, and calculates and configures a new VN using the obtained regression
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coefficients. Then, the extended framework observes the service quality on the VN and

reconfigures the VN if necessary by the attractor selection-based method. Evaluation results

showed that the linear regression-based method can configure a suitable VN in most cases

when failing to identify the current traffic situation, which leads to reduction of the number

of VN reconfiguration. We also investigate how to select and update a set of pre-specified

traffic situations, and found that it is effective to select a set of pre-specified traffic situations

so that the set has linear independence when we consider each of traffic situation as a vector.

In the future we will investigate how to select and update a set of pre-specified traffic

situations that optimizes the performance of VNs configured by the extended VN reconfig-

uration framework. By updating the pre-specified traffic situations, it is expected that we

can configure VNs that are suitable for more traffic situations and require fewer reconfigu-

rations.
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Conclusion

The emergence of new network services and applications with wide range of required band-

width has caused large traffic fluctuations. One approach for the network operator to

accommodate traffic demand on an optical network is to construct a virtual network (VN)

and reconfigure a VN following traffic changes. Our research group has previously proposed

a VN reconfiguration approach based on attractor selection, which models the behavior

where living organisms adapt to unknown changes in their surrounding environment and

recover their condition, to adapt to traffic fluctuations. In this thesis, following the at-

tractor selection-based VN reconfiguration approach, we proposed an attractor-based VN

reconfiguration framework that quickly adapts to various traffic fluctuations with fewer VN

reconfigurations.

First, we proposed a design method of attractors (i.e., VN candidates) in the attractor

selection-based VN reconfiguration approach. In the attractor selection-based approach,

since a VN is reconfigured guided by attractors, that is, a VN is reconfigured to have a

network topology close to one of the VN candidates, it is crucial to design the attractors

properly. The proposed method designs attractors with a wide variety characteristics so

that the attractor selection-based VN reconfiguration can adapt to various traffic fluctua-

tions. Our basic design approach is to prepare VN candidates which the bottleneck links

(lightpaths) are different from each other. However, our exhaustive algorithm based on this
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approach has a problem of requiring large amounts of computational time for large-scale

networks that have more than 10 nodes. To solve this problem, we also proposed a method

that hierarchically contracts a network topology so that our algorithm can be applied to

large-scale networks. Evaluation results showed that our method can design VN candidates

that achieve better service quality on a VN than the randomly generated VN candidates,

even when targeting for a 1000-node network. As a result, the VN reconfiguration using

attractors obtained by our design method finds a solution in a shorter time against various

traffic fluctuations.

Second, we proposed an attractor selection-based VN reconfiguration method for elastic

optical path networks. Elastic optical path networks have been shown to be a promising

candidate for future resource-efficient optical networks. Although elastic optical path net-

works can achieve higher utilization efficiency of spectrum resources by dividing spectrum

resources into narrower frequency slots and providing the sufficient bandwidth, it is essen-

tial to tackle the problem of allocating spectrum resources under the spectrum contiguity

and continuity constraints. We newly defined the potential bandwidth as a metric that

reflects the bandwidth that can be additionally offered under the spectrum contiguity and

continuity constraints. Then, our method reconfigures a VN based on attractor selection

so that both the service quality on the VN and the potential bandwidth get improved. In

addition, our method adjusts the bandwidth according to the link utilization of lightpaths

that form the VN to provide the required bandwidth. Evaluation results showed that the

proposed method can set aside about 50 % of resources for future use, while improving the

service quality on a VN to the same extent as the existing heuristic method, considering

the spectrum contiguity and continuity constraints.

By proposing the above methods, we established an attractor selection-based VN recon-

figuration method for optical networks that quickly adapts to various traffic fluctuations.

However, since the attractor selection-based VN reconfiguration approach gradually recon-

figures a VN in the process of search for a solution (i.e., a VN that can accommodate traffic

demand), simply applying the attractor selection-based approach may over-reconfigure a

VN in nature, which disrupts network services accommodated on the VN. Thus, to reduce
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the number of VN reconfigurations, we introduced a cognitive mechanism that perceives

current traffic situation and adapts to the situation. Specifically, we proposed another VN

reconfiguration method based on the Bayesian Attractor Model (BAM), which models the

human behavior of making appropriate decisions by recognizing the surrounding situation.

The key idea of this method is to memorize a set of VN candidates, each of which works

well for a pre-specified traffic situation, and then retrieve a suitable VN for the current

traffic situation from this set. We used certain patterns of incoming and outgoing traffic

at edge routers as the traffic situation, since this information can be obtained more easily

than the traffic demand matrix. By identifying the current traffic situation using the BAM,

this method retrieves the most promising VN. However, for the case where the retrieved

VN cannot accommodate traffic demand, we applied the attractor selection-based VN re-

configuration method. That is, we established a VN reconfiguration framework that deals

with known traffic situations by the BAM-based method and deals with unknown traf-

fic situations by the attractor selection-based method. Evaluation results showed that the

BAM-based method can identify the current traffic situation by observing the amounts of in-

coming and outgoing traffic at edge routers. As a result, our VN reconfiguration framework

can reach a VN suitable for the current traffic situation with fewer VN reconfigurations.

Finally, we extended the above VN reconfiguration framework to deal with the case

where the identification of the current traffic situation fails. When the identification fails,

the BAM-based method cannot configure a promising VN. We therefore proposed a method

that configures a promising VN when the identification fails, and incorporate this method

into the above VN reconfiguration framework. Our method utilizes a set of pre-specified

traffic situations, and the current traffic situation is fitted by linear regression when the

identification fails. Then, our method configures a VN using the obtained regression coef-

ficients. Evaluation results showed that the linear regression-based method can configure a

suitable VN in most cases when failing to identify the current traffic situation. We also in-

vestigated how to select and update the set of pre-specified traffic situations, and found that

it is effective to select a set of pre-specified traffic situations to have linear independence.

In summary, we proposed an attractor-based VN reconfiguration framework for optical
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networks in this thesis. The VN reconfiguration framework observes the amounts of incom-

ing and outgoing traffic at edge routers and identifies the current traffic situation using the

BAM-based method. When the identification succeeds, the BAM-based method retrieves

and configures the most promising VN from a set of VN candidates. When the identifi-

cation fails, the linear regression-based method fits the current traffic situation by linear

regression and configures a promising VN using the obtained regression coefficients. In the

case where the configured VN is not suitable for the current traffic situation, the attractor

selection-based method searches for a solution. In the process of search of a solution, the

VN is reconfigured so that both service quality on the VN and the potential bandwidth

get improved, guided by the attractors obtained by the design method. In this way, the

attractor-based VN reconfiguration framework quickly adapts to various traffic situations

with fewer VN reconfigurations. One of our future research topics is to prove that our VN

reconfiguration framework also adapts to network failures. Another future direction is to

find an approach to reconfiguring multiple VNs, each of which is assigned to one network

service and coordinates with other VNs using a BAM-based mechanism.

We believe that the above discussion in this thesis will contribute to the management

of future optical networks.
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