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1. Introduction

Let (p, V,) be an irreducible rational representation 6fL n, ) on a finite-
dimensional complex vector spadg such that the signature @fis (A1, A2, ..., A\,) €
Z" with Ay > X\p > --- > A\, > 0. Let f be aV,-valued Siegel cuspform of type
with respect toSp #, Z) (size 21 ). Supposg¢’ is an eigenform, i.e., a non-zero com-
mon eigenfunction of the Hecke algebra. Then we define thedatd L -function at-
tached tof by

-1
L1 L(s. £.8Y:=]] {(1 —p ) ]]A-a;(p)p A~ aj(P)_lp_S)} :

p j=1

where p runs over all prime numbers ang(p) (1 < j < n) are the Satake -
parameters off . The right-hand side of (1.1) converges atepl and locally uni-
formly for Re(s)> n +1. We put

A(S, f7§[) = FR(S +E)ﬁFC(S + Aj - j)L(S, f7 §t)
j=1
with
Tg(s) := 7 /2T (%) . To(s) = 2(20)°T(s),
and

. __{0 for n even,

1 for n odd.

Then by Takayanagi [15], we expect the following:

Conjecture. A(s, f, St) has a meromorphic continuation to the whale -plane
and satisfies a functional equation.
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For p = det (cf. Andrianov and Kalinin [1], Bcherer [2] and Mizumoto [12]),
p=def @ synl (cf. Takayanagi [15])p = def @ alt'~* (cf. Takayanagi [16]), this con-
jecture holds. In this paper, for=def @ alt (1<1 < n—1), we show the conjecture
holds.

We note that the signature of Getall is k+1...,k+1k, ..., k). Then the

N—— N——

1 n—I
main result of this paper is the following (cf. Piatetskigpiro and Rallis [14], Weis-
sauer [17]).

Theorem 1. Letn € Z-o, k, 1 € 2Z, and2k > n > 2. Let f be a cuspidal
eigenform of typep. ThenA(s, f, SY) has a meromorphic continuation to the whale -
plane and satisfies the functional equation

A(S, f,§t):A(l—S, f’g)

Moreover, A(s, f, St) is holomorphic except for possible simple polessat 0 and
s =1 If nis odd, thenA(s, f, St) is entire.

2. Preliminaries

Let n € Zso. Let (p, V,) be a finite-dimensional irreducible representation of
GL(n, C). We fix a Hermitian inner product-, -) on V, such that

(p(g)v, w) = (v, p("g)w) for g € GL(n,C), v, w € V,.

Let I'" :=Sp(n, Z) be the Siegel modular group of degree , amdthe Siegel upper

A B

half space of degree . Faw €C D) eI and Z € §,, we put

M(Z):=(AZ+B)(CZ+D)™t j(M,Z):=detCZ +D)
and for f 19, — V,,
(fl,M)(Z) = p((CZ + D)) f(M(Z)).

We write |, for p = det and we omit subscripts, k when there is no fear of confu-
sion.

A C*-function f : %, — V, is called aV,-valued C*-modular form of typep
if it satisfies f|,M = f for all M € T". The space of all such functions is denoted by
M"(Vv,)*°. The space ol ,-valued Siegel modular forms of typeis defined by

M"(V,):={f € M"(V,)™ | f is holomorphic on§), (and its cusps),
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and the space of cuspforms by

. Z 0\ _
AIlnoof((o M))_o foraIIZGYJn—l}.

If p=def, we writeM}>, M}, and S} formM" (,)>, M"(V,), and " (V,), respec-
tively.
For f, g € M"(V,)>, the Petersson inner product ¢f apd is defined by

S"(V,) = { fem(v,)

(f )= /r”\ﬁ (p(VIM(Z) £(2). p(\IM(2))8(2)) det(im(2)) " dz

if the right-hand side is convergent.

If (p, V,) is an irreducible rational representatignjs equivalent to an irreducible
rational representatiorp(V;) satisfying the following condition: There exists a unique
one-dimensional vector subspa@® of V; such that for any upper triangular matrix

811 *

of GL(n, C),
5( . )i}:(Hg;\jf) 7,
0

where Qq, Ao, ..., \,) € Z" and Ay > X\ > --- > \,. Then we call §1, Ao, ..., \,)
the signature op.
Now, we put

8nn

G*Sp(n, Q)
= {M € GL(2n, Q)

‘M <_(in 15) M = (M) (_l ]5) (M) > o} .

For g € G*Sp(n,Q), let gl = U;‘:l I'g; be a decomposition of the double coset
I'"gI™ into left cosets. Forf < M"(V,) (resp.S" ,), M"(V,)*>), we define the
Hecke operatorI("gI'* ) by

£Irmerny =>" flg;.
j=1

Let f € §"(V,) be an eigenform. We define the standdrd -function attachef! t
by (1.1). We also define the following series:

(2.1) D(s, f):= Y M/, T)det)",

T €T
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where

T(n) = . tj€Z>o(1§j§n), t1|...|tn
0 n

and \(f, T) is the eigenvalue ory of the Hecke opera(d?” (g T01> F”), T €

T, By Bocherer [3], we have:
(2.2) o) ] ¢@s —2/)DGs. f) =L —n. £, SY.
j=1

Fork € 2Z~o, s € C and Z € $,,, we define the Eisenstein series by

E{(Z,s)=detim@)y Y j(M,z)*|j(M, 2)]7*,
MEP,o\I'"

— * * n
Prr =9 qusnan ) ET" ¢

Then E} (Z, s ) converges absolutely and locally uniformly for +Zfe> n+1, and
E}(Z,s) € M}°°. Moreover, we have the following:

where

Theorem 2 (Langlands [11], Kalinin [8] and Mizumoto [12, 13]).Let n € Z~o,
k € 2Z~. For Z € %, we put

[n/2]
2oy = PSP ] e - 20 (2055 )
n ]:1

where
Cu(s) == H r (s — j—;l), &(s) == Tr(s)C(s).
j=1

ThenE}(Z, s) is invariant unders — (n +1)/2 —s and it is an entire function iy .

It is also known that every partial derivative (in the erdrigf Z) of the Eisenstein
seriesE} £, s ) is slowly increasing (locally uniformly in ).
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Theorem 3 (Mizumoto [13]). Letn € Z~q, k € 2Z~o.
(i) For eachsg € C, there exist constants > 0 and d € Zxo, depending only om
k and sp, such that

(s — so)dEZ(Z, s)

is holomorphic ins for|s — so| < d, and isC*° in (Re(Z), Im(Z)).
(i) Furthermore, for givens > 0 and N € Zxq, there exist constanta > 0 and
£ > 0 depending only om &k ¢ so, £, 6 and N such that

3N

ENZ,s)| < adet(im@)y’
T2 aZMNVN

IRY
(s — s50) 3
for Im(Z) > €1,, |s —so| < ¢, and 1 < pj, v; <n.

The assertion above for the cade = 0 has been proved by Lalsglad] and
Kalinin [8].

3. Differential operator and the pullback formula

Let V be a finite-dimensional vector space. For a finite subsdtZ-@, we define
VI by
vi=ve.--oV.
————
#r
Moreover for disjoint finite subsets J &, we identify V// with V! @ vV’ by
the following:

ViV s, ® - @v,)@0 @, @ ®@v;)— vy @ @y, € VIV,

where I ={iy, ... i} with iy < -+ <i,, J ={j1,..., Js} with j; < --- < j;, and
1JuJ :{kl,...,kr+s} with k1 < -+ < kyay.

For a € Z~o, we define the isomorphism Y* : V — v{e} by (v)* := v. We omit
the tensor produck when there is no fear of confusion.

Now, we put

Vii=Ce1®--- @ Cep, er:=(e1,...,e),
Vo =Ceps1®--- B Cepy, € :=(ensts-- ., €n).

Let alt (V1) (resp. alt ¢2)) be the! -th alternating tensor product Bf (resp. V»), i.e.,

alt (v;) := spary > sgng)(e;'ar)’® - (ej'a)’® | a1, ... a1 € cc"} (j=12)

ce®;
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where &, is the ! -th symmetric group. For eaghe GL(n, C), p;(g) = def @ alt' (g)
acts on alty; ) { =1, 2) by

pi(®) > sane)(e;'ar)’ @ -- (e a)”®

geS

- det(gf‘ Z Sgn@)(ejg’al)"(l) S (ejgta[)o(l).

oed;

Let « be the isomorphism fronVy to V, defined byu(e;) = e (1< j < ). It
induces the isomorphism (also denoted dpyfrom alf (V1) to alf (V»). For an aft {1)-
valued functionf onf, and for Z € $,, we define.(f) by

(UN)(Z) = (£ (2)).
For a symmetric matrixA of sizen2 and, 8 € Z~o, we define

AP = ((e)™, ..., (€)™, 0, ..., 0)A ((en)?, ..., (ex)?, 0, ...,0),
A% = ((e)™, ..., (€)™, 0,...,0A"(0,..., 0, (ewr1)”, ..., (e20)"),
Aap = (0,...,0, (ens)®, -, (e2n)®)A' (0, ..., 0, (ensn)”, - . ., (e2n)?).

Let 3 = (z,,,) be a variable orfy,,. We put

0 <1+5W 0 )
2 Oz l§p,,l/§2n’

93"
where ¢, is the Kronecker's delta, and fa¢°°-functions, we define the differential
operatorD by

o\*! o\
D= sgne) <—) <—) .
02, 93/, \93/ 50

Then we have:

Proposition 1. Letn, k € Z-o and 2k > n.
() Let F be anyC-valued C*°-function on$),,. Then for eachg;, g> € I'" and 3¢ =

zZ® . . :
< 0 Wo(n)) € $7,, we get the following commutation relation

(DF)| 5, (81) 2] p» (82)w)(30) = (D(F k(21 83))(30),

where( )z (resp.( )w) denotes the action oZ (resp. W) and for M = <2 g) €
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', we put

1

=

O o» o

0
B

M=
0
D

o oo

0
0
0
(i) The operatorD sends modular forms to modular forms
D: MY — M (alt (V)™ @ M"(alt (V2))>.

Moreover, D is a holomorphic operator and it satisfies

D: M — M"(alt (V1)) @ M"(alt (V2)).
Proof. LetX; =¢\)) (j =1, 2) be variables of£™%), We putX = X1 , and
J g X2

Q(X'X) = sgne)(X' X)bqy - - (X' X))

ced;

Then the polynomialQ is pluri-harmonic fax,, X, i.e., for each K u, v <n,

2k
o 0

—~ = 0 j = l, 2
2 5l U=t

Therefore, by Ibukiyama [7] (see also [16]), we get Propositl. O

Now we prove Theorem 1 according todéherer's method in [2]. For this, we
prove the following:
Proposition 2. Letn € Z+g, k € 2Z~¢, s € C and k + 2Ref )> 2n + 1L Suppose

()
that 2k > n > 2. For 3¢ = <ZO W%) € 92y, We get

l . n
(DEZ)(30.5) = [ | <—k —s+? ;l) SN Pz W.T.s),

=1 r=0 T€T0)

where

PZ.W.T.s):= > > > 3

€2EP, \I" g5€P, \I" 81€Gs B, €T (T)\Gor

.{det(lm(Z )) det(im@ )) |det(3, — TwTz)|™*
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1

(L = TWT2)™) ) sane) (; i) U(l)... (;

oced

1

>U(l)}

* Mt

(EDwl(81)z](82)w(g2)z,
,, 0 0 O
. 0 A® o B0 R
Gr=9l 0 01, 0T
0 ¢ o pv

and for T e T,

or or ~ 00
r (n) —
<T 0>g<T o)er} and 7 ‘(orW)'

Proof. By Garrett [5], the left coseP,, o\I'** has a complete system of repre-
sentativesg; 1 g1 2, g5' with

I (T) := {g er’

1, 0 0 O
01, 00 o
. = ! r <r<
g7 0710 TeT (0<r<n),
T 0 0 1,
81€Gnr, 82€ P\, 2L €T (TN\Guyr, 85 € Puy\I'.

Therefore, it follows from Proposition 1 that

CENGD=Y Y Y Y Y %

r=0 TET®) g2€ P, ,\I" g4€ Py, \[" 81€Go, 3T (T)\Gor
{D(det(ImB))* k7)1 3=30 (€D w|(&1) 2 (82)w

(82)z-
~ * *
If for eachT we putg; = (Q:(z”) 9(2,1)), we get

D(det(Im@))"|eg7)|3=3, = det@3o + D) " D(det@3 + D) * det(ImB3))")[3=3,

by the form of D and ((/2i)(Im(30))~* =0,

U(])
= det@30 +D) * det(ImB3o))' D(det@3 + D) ¥ *)[3=3,.

To computeD(det@3 + D)~*—*), we prove the following lemma.
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Lemma 1. We puté := det€3 +®) and A := (€3 +D)~1¢. For A € C,

o\* 9\ : j—1
> sgne) (@) (1)'“ <£) =] ()\+ J 5 > > sgnE)Ala - ALy,
o j=1

cEG o(l) cEQ

Proof of Lemma 1. We use induction dn . Since
0
5 =5M\A

93 ’

for [ = 1, the lemma holds. Let> 1.

(3.1) > sgne) <%):m... (%)l 5

ced; a(l)

8 -1 -
o0 (8 (1045 e )
j=1

oeS; o(1)

-1 .

- j—1

= ] ()\+ 5 > {)\ > sgnE)ALyy- - ALy,
j=1

oced;

1

)
1 e K K
=5 > 80n0) Y | A2y Ak Al (A Agye(e) + A},(,{)Ag(l))}.

ge, k=2

We note

(3.2) D SgNE) ALy Ay A AT As(ayots) =0
e

and

2 O _
(3.3) Z SgNE)AG ) Aby - ALY AL DS = — Z SgNE)Asay - Aby.
ceB) ce®;

Thus by (3.1), (3.2) and (3.3), the lemma holds. O

Using Lemma 1, we obtain

I

D(det(ImB3))*[eg7)l3=3, = | | (—k _s+dZ 1) det(Im(30))* |det@30 + D)~

. 2
Jj=1

-det@30+D) D sgne)((€30+D) 1)k -+ (€30 + D) 1),

geS

Since det(Imgo)) = det(Im())det(Im@¥ )), det(3o + ©) = det(d, — TWTZ), and
mie )) aet
(€30 +D) te = (i (L —TWTZ)"T

*

), Proposition 2 is proved. ]
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4. Proof of Theorem 1

Theorem 4. Letn € Zwg, k, | € 270, and 2k > n > 2. If f € §"(alt (Vo)) is

an eigenform,
(DE2) ( 7" 0\ s+ n)
fa k 0 % ) 2

= QUL (=) 2kt (Y A (s, f, S H(F))(Z),

where

Lu((s +n)/2)
Tu_a((s —1)/2T((s +€)/2)

v(s) = =v(1-s).

Proof of Theorem 4. It follows from Theorem 3 that

[romi(377) )

converges absolutely and locally uniformly fer +2Ref)2n +1. We consider that
the Petersson inner product, (°.(—Z, %, T, 5)). Forr < n, by the same reason as that
Klingen [10, Satz 2],

(fv 7),(—7, *, T’ E)) = O

Therefore we only consider thay,(P,(—Z, *, T, 5)).
Now, we have

PuZ, W, T,s)=det Y* 2 .P(Z,W,s)

(Fn (g T(zl) Fn>w’

where

Pz W)=Y {det(lm(Z))’ det(Img )) |det@ +w )%

g1em

p(Z+W)T) D sane) <1*n l*n)flf(l) - (1*'1 l*n>;(1)}

ced;

(81)z.

Since the Hecke operators are Hermitian operators and  isganferm, we have
(fv PI’!(_Z’ *, T’ E)) = A(f’ T) det(T )_k_zv(f’ ,P(_f’ *, E))

If we compute the integralf{ P(—Z, ,5)) according to Klingen [9§1] (see also [2],
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[4], [15]), we obtain
(f. P(=Z, ,5)) = 2020424yt e(s —n = 1, p)(H((Z)
and

c(s—n—1,pp)id = / det(1, — SS)* " 1pi(1, — SS)dS,
SVl

where §* ={S € C® | §s="'S, 1, — S§ > 0}. Thus, by Proposition 2, (2.1) and (2.2),

VAR st+n—
o (soen((52)-25)

+n— I's+n+k+1
— 2/1(lfs+k)+l(271l-)nk+lc (S n—k —n—1, /)1> (_271)1 (S n+k )

Fs+n+k+1-1)

2

s +n) ][ ¢@s + 20 = 2)) 7 LGs, £ SHEHNN(D).

=1
To computec((s +n — k)/2—n — 1, p1), we prove the following lemma.

Lemma 2. Let (p, V,) be an irreducible rational representation ofL(n, C)
whose signature igh\1, Ao, ..., Ay) € Z" with Ay > Ao > - > )\, > 0. Fors € C
such thatRe()> —\, — 1, we put

W(s, p) = /S det(l, - )’ p(L, — SS)dS.

Then there exists a constanfs, p) satisfying (s, p) = ¢(s, p)id, and

2n7rn(n+l)/2

4.2 = .
(4.2) c(s, p) ngugygn()‘/t tA,+25+2n +2— pu—v)

Proof of Lemma 2. The lemma is proved in the same way as that Uy [,
§2.3] (see also [2], [4], [9], [15]).

For any unitary matrixU € U(n), we haveiy(s, p) = p(U YU (s, p)p(U). Sincep
is an irreducible representation of n ( (s, p) is a homothety by Schur's lemma, i.e.,
there exists a constaats,(p) satisfyingvy (s, p) = c(s, p)id.

We computec , p). Let v € V, be the highest weight vector witfo, v) = 1.
Then,

c(s, p) = (Y(s, p)v, v)
= / det(d, — SS)*{p(L, — SS)v, v)dS.
S”
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Let po be an irreducible representation 6fL n, C) such thatp = det" ®po and the
signature ofpg is (A1 — A\uy A2 — Ay ooy A1 — Ay, 0). Then,

c(s,p)= [ det(l, — S5y (po(Ly — SS)v, v)dS.
Sn

§=1) 1y, g0
We setS :< 1v ) and pp(g ) = po(< >) by Hua [6, Theorem 2.3.2],
Z

01
(s. ) s / det(1,_, — SlS_l — ’vﬁ)”)‘"
c(s,p) = ——— —
r s+ )‘l’l +1 1,-1—8151—'vo>0 (1 +U(1n71 - Slsl - tvv)—ltv)s+)\,,+2

{po(Ly—1 — S181 — "vV)v, v)d S1dv

m J—
0 det(]n_j_ _ Slsl)x+)\,,+l
stAt+1l /11—1515_1>0

' / (1 — @5 o)™ p(T (1,1 — "uotto) T)v, v)duod Sy,
1—ug'uo>0
whereug = (11, ..., u,—1) and T = 1,_, — $1.51. We put
o(s, p) = / A —7u)'p, —"uw)du, u=(1,...,u,).
1-u'u>0

Using Schur's lemma again, there exists a constant p)( satisfying ¢(s, p) =
d(s, p)id. Therefore,

s

(4.3) c(s.p) = 7/ det(d, 1 — S187)" "
st +1 /1 sss0

~p(2(s + An + 1), po)(po(Ln—1 — S181)v, v)d St

/ /
ST ol T A+ Lo (s + A+ 1), ).

We computed  p).

d(s, p) = / @ —@'u) ™ (po(1, — "umt)v, v)du
1—u'u>0

= (a- ﬁ’u)”’\”dun) (po(Li—1 — "uouto)v, v)duo,

1—uglug>0
Jup | <1—ig'ug
whereu = {1, ...,u,) andug = (uq, ..., u,—1). Since
— s _
/ (1 _ u'u)sw‘"du,, - 7(1 _ uoruo)x+)\,,+1’
Jup | <1—ug'uo s+ )\n +1

— ™ ot s+\,+1/ 1/ I
d(s, p) = P e 1/1wu0>0(1 1o Uo) (po(L,—1 — "uouo)v, v)dug
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= ﬁd(s + M + 1, pp).
Therefore
s
(4.4) d(s, p) = oG+ bt )
By (4.3) and (4.4), we get (4.2). ]
Since the signature of; is (k+1...,k+1k,..., k), it follows from Lemma 2
that l "
s+n—k 2npnln+l)/2
¢ (T T 1’pl) - i< coca@Put A ts+n—k—p—v)
= onn(n+1)/2 I(s+n+k+1-1)
Is+n+k+1-—2)
li[ T(s+k+1—j) H T(s+k — j)
= I(s+n+k+3— 2j)j:l+1F(s+n +k+1-2j)
Then, by (4.1), we obtain Theorem 4. ]

It follows from Theorem 2 and Theorem 4 that the functionaluamn of
A(s, f, Sf). Moreover using the same way that by Mizumoto [12] (see al&])[1he
holomorphy is proved. Hence Theorem 1 holds.
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