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1. Introduction

Let (ρ ρ) be an irreducible rational representation of (C) on a finite-
dimensional complex vector spaceρ such that the signature ofρ is (λ1 λ2 . . . λ ) ∈
Z with λ1 ≥ λ2 ≥ · · · ≥ λ ≥ 0. Let be a ρ-valued Siegel cuspform of typeρ
with respect to ( Z) (size 2 ). Suppose is an eigenform, i.e., a non-zero com-
mon eigenfunction of the Hecke algebra. Then we define the standard -function at-
tached to by

( St) :=
∏


(1− − )

∏

=1

(1− α ( ) − )(1− α ( )−1 − )





−1

(1.1)

where runs over all prime numbers andα ( ) (1 ≤ ≤ ) are the Satake -
parameters of . The right-hand side of (1.1) converges absolutely and locally uni-
formly for Re( )> + 1. We put

( St) := R( + ε)
∏

=1

C( + λ − ) ( St)

with

R( ) := π− /2
(

2

)
C( ) := 2(2π)− ( )

and

ε :=

{
0 for even,
1 for odd.

Then by Takayanagi [15], we expect the following:

Conjecture. ( St) has a meromorphic continuation to the whole -plane
and satisfies a functional equation.
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For ρ = det (cf. Andrianov and Kalinin [1], B̈ocherer [2] and Mizumoto [12]),
ρ = det ⊗ sym (cf. Takayanagi [15]),ρ = det ⊗ alt −1 (cf. Takayanagi [16]), this con-
jecture holds. In this paper, forρ = det ⊗ alt (1≤ ≤ −1), we show the conjecture
holds.

We note that the signature of det⊗ alt is ( + 1 . . . + 1︸ ︷︷ ︸ . . .︸ ︷︷ ︸
−

). Then the

main result of this paper is the following (cf. Piatetski-Shapiro and Rallis [14], Weis-
sauer [17]).

Theorem 1. Let ∈ Z>0, , ∈ 2Z, and 2 ≥ > 2. Let be a cuspidal
eigenform of typeρ. Then ( St) has a meromorphic continuation to the whole -
plane and satisfies the functional equation

( St) = (1− St)

Moreover, ( St) is holomorphic except for possible simple poles at= 0 and
= 1. If is odd, then ( St) is entire.

2. Preliminaries

Let ∈ Z>0. Let (ρ ρ) be a finite-dimensional irreducible representation of
( C). We fix a Hermitian inner product〈 · · 〉 on ρ such that

〈ρ( ) 〉 = 〈 ρ( ) 〉 for ∈ ( C), , ∈ ρ

Let := ( Z) be the Siegel modular group of degree , andH the Siegel upper

half space of degree . For =

( )
∈ and ∈ H , we put

〈 〉 := ( + )( + )−1 ( ) := det( + )

and for :H → ρ,

( |ρ )( ) := ρ(( + )−1) ( 〈 〉)

We write | for ρ = det and we omit subscriptsρ, when there is no fear of confu-
sion.

A ∞-function : H → ρ is called a ρ-valued ∞-modular form of typeρ
if it satisfies |ρ = for all ∈ . The space of all such functions is denoted by

( ρ)∞. The space of ρ-valued Siegel modular forms of typeρ is defined by

( ρ) := { ∈ ( ρ)
∞ | is holomorphic onH (and its cusps)}
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and the space of cuspforms by

( ρ) :=

{
∈ ( ρ)

∣∣∣∣ lim
λ→∞

(( 0
0 λ

))
= 0 for all ∈ H −1

}

If ρ = det , we write ∞, , and for ( ρ)∞, ( ρ), and ( ρ), respec-
tively.

For , ∈ ( ρ)∞, the Petersson inner product of and is defined by

( ) :=
∫

\H

〈
ρ
(√

Im( )
)

( ) ρ
(√

Im( )
)

( )
〉

det
(
Im( )

)− −1

if the right-hand side is convergent.
If (ρ ρ) is an irreducible rational representation,ρ is equivalent to an irreducible

rational representation ( ˜ρ ρ̃) satisfying the following condition: There exists a unique
one-dimensional vector subspaceC˜ of ρ̃ such that for any upper triangular matrix
of ( C),

ρ̃

(



11 ∗
. . .

0



)

˜ =


∏

=1

λ


 ˜

where (λ1 λ2 . . . λ ) ∈ Z and λ1 ≥ λ2 ≥ · · · ≥ λ . Then we call (λ1 λ2 . . . λ )
the signature ofρ.

Now, we put

+ ( Q)

:=

{
∈ (2 Q)

∣∣∣∣
(

0 1
−1 0

)
= µ( )

(
0 1

−1 0

)
µ( ) > 0

}

For ∈ + ( Q), let =
⋃

=1 be a decomposition of the double coset
into left cosets. For ∈ ( ρ) (resp. ( ρ), ( ρ)∞), we define the

Hecke operator ( ) by

|( ) :=
∑

=1

|

Let ∈ ( ρ) be an eigenform. We define the standard -function attached to
by (1.1). We also define the following series:

( ) :=
∑

∈T( )

λ( ) det( )−(2.1)
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where

T( ) :=








1 0
2

. ..

0




∣∣∣∣ ∈ Z>0(1 ≤ ≤ ) 1 | . . . |





and λ( ) is the eigenvalue on of the Hecke operator
( (

0
0 −1

) )
, ∈

T( ). By Böcherer [3], we have:

ζ( )
∏

=1

ζ(2 − 2 ) ( ) = ( − St)(2.2)

For ∈ 2Z>0, ∈ C and ∈ H , we define the Eisenstein series by

( ) := det(Im( ))
∑

∈ 0\
( )− | ( )|−2

where

:=

{( ∗ ∗
0( + − ) ∗

)
∈

}

Then ( ) converges absolutely and locally uniformly for + 2 Re( ) > + 1, and
( ) ∈ ∞. Moreover, we have the following:

Theorem 2 (Langlands [11], Kalinin [8] and Mizumoto [12, 13]).Let ∈ Z>0,
∈ 2Z>0. For ∈ H , we put

E ( ) :=
( + /2)

( )
ξ(2 )

[ /2]∏

=1

ξ(4 − 2 )

(
−

2

)

where

( ) :=
∏

=1

(
− − 1

2

)
ξ( ) := R( )ζ( )

ThenE ( ) is invariant under → ( + 1)/2− and it is an entire function in .

It is also known that every partial derivative (in the entries of ) of the Eisenstein
series ( ) is slowly increasing (locally uniformly in ).
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Theorem 3 (Mizumoto [13]). Let ∈ Z>0, ∈ 2Z>0.
(i) For each 0 ∈ C, there exist constantsδ > 0 and ∈ Z≥0, depending only on ,

and 0, such that

( − 0) ( )

is holomorphic in for| − 0| < δ, and is ∞ in (Re( ) Im( )).
(ii) Furthermore, for givenε > 0 and ∈ Z≥0, there exist constantsα > 0 and
β > 0 depending only on , , ,0, ε, δ and such that

∣∣∣∣( − 0)
∂

∂ µ1ν1 · · ·∂ µ ν
( )

∣∣∣∣ ≤ α det(Im( ))β

for Im( ) ≥ ε1 , | − 0| < δ, and 1 ≤ µ , ν ≤ .

The assertion above for the case = 0 has been proved by Langlands [11] and
Kalinin [8].

3. Differential operator and the pullback formula

Let be a finite-dimensional vector space. For a finite subset of Z>0, we define
by

:= ⊗ · · · ⊗︸ ︷︷ ︸
♯

Moreover for disjoint finite subsets , ofZ>0, we identify ∪ with ⊗ by
the following:

⊗ ∋ ( 1 ⊗ · · · ⊗ ) ⊗ ( 1 ⊗ · · · ⊗ ) 7→ 1 ⊗ · · · ⊗ + ∈ ∪

where ={ 1 . . . } with 1 < · · · < , = { 1 . . . } with 1 < · · · < , and
∪ = { 1 . . . + } with 1 < · · · < + .

For α ∈ Z>0, we define the isomorphism (· )α : → {α} by ( )α := . We omit
the tensor product⊗ when there is no fear of confusion.

Now, we put

1 := C 1 ⊕ · · · ⊕ C e1 := ( 1 . . . )

2 := C +1 ⊕ · · · ⊕ C 2 e2 := ( +1 . . . 2 )

Let alt ( 1) (resp. alt ( 2)) be the -th alternating tensor product of1 (resp. 2), i.e.,

alt ( ) := span

{
∑

σ∈S

sgn(σ)(e 1)σ(1) · · · (e )σ( )
∣∣∣ 1 . . . ∈ C

}
( = 1 2)
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whereS is the -th symmetric group. For each∈ ( C), ρ ( ) := det ⊗ alt ( )
acts on alt ( ) ( = 1, 2) by

ρ ( )
∑

σ∈S

sgn(σ)(e 1)σ(1) · · · (e )σ( )

:= det( )
∑

σ∈S

sgn(σ)(e 1)σ(1) · · · (e )σ( )

Let ι be the isomorphism from 1 to 2 defined byι( ) = + (1 ≤ ≤ ). It
induces the isomorphism (also denoted byι) from alt ( 1) to alt ( 2). For an alt ( 1)-
valued function onH and for ∈ H , we defineι( ) by

(
ι( )

)
( ) := ι

(
( )
)

For a symmetric matrix of size 2 andα, β ∈ Z>0, we define

αβ := (( 1)α . . . ( )α 0 . . . 0) (( 1)β . . . ( )β 0 . . . 0)
α
β := (( 1)α . . . ( )α 0 . . . 0) (0 . . . 0 ( +1)

β . . . ( 2 )β)

αβ := (0 . . . 0 ( +1)
α . . . ( 2 )α) (0 . . . 0 ( +1)

β . . . ( 2 )β)

Let Z = ( µν) be a variable onH2 . We put

∂

∂Z
:=

(
1 + δµν

2
∂

∂ µν

)

1≤µ ν≤2

where δµν is the Kronecker’s delta, and for ∞-functions, we define the differential
operatorD by

D :=
∑

σ∈S

sgn(σ)

(
∂

∂Z

)1

σ(1)

· · ·
(
∂

∂Z

)

σ( )

Then we have:

Proposition 1. Let , ∈ Z>0 and 2 ≥ .
(i) Let be anyC-valued ∞-function onH2 . Then for each 1, 2 ∈ and Z0 =(

( ) 0
0 ( )

)
∈ H2 , we get the following commutation relation:

((D )|ρ1( 1) |ρ2( 2) )(Z0) = (D( | ( ↑
1

↓
2 )))(Z0)

where ( ) (resp. ( ) ) denotes the action on (resp. ) and for =

( )
∈
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, we put

↑ :=




0 0
0 1 0 0

0 0
0 0 0 1




↓ :=




1 0 0 0
0 0
0 0 1 0
0 0




(ii) The operatorD sends modular forms to modular forms:

D : 2 ∞ −→ (alt ( 1))∞ ⊗ (alt ( 2))∞

Moreover,D is a holomorphic operator and it satisfies

D : 2 −→ (alt ( 1)) ⊗ (alt ( 2))

Proof. Let = ( ( )
µν) ( = 1, 2) be variables onC( 2 ). We put =

(
1

2

)
, and

( ) :=
∑

σ∈S

sgn(σ)( )1
σ(1) · · · ( )σ( )

Then the polynomial is pluri-harmonic for 1, 2, i.e., for each 1≤ µ, ν ≤ ,

2∑

κ=1

∂

∂ ( )
µκ

∂

∂ ( )
νκ

= 0 ( = 1 2)

Therefore, by Ibukiyama [7] (see also [16]), we get Proposition 1.

Now we prove Theorem 1 according to Böcherer’s method in [2]. For this, we
prove the following:

Proposition 2. Let ∈ Z>0, ∈ 2Z>0, ∈ C and + 2 Re( )> 2 + 1. Suppose

that 2 ≥ > 2. For Z0 =

(
( ) 0
0 ( )

)
∈ H2 , we get

(D 2 )(Z0 ) =
∏

=1

(
− − +

− 1
2

)∑

=0

∑

∈T( )

P ( )

where

P ( ) :=
∑

2∈ \

∑

′
2∈ \

∑

˜1∈

∑

˜ ′1∈ ( )\

·
{

det(Im( )) det(Im( ))
∣∣det(1 − ˜ ˜ )

∣∣−2
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·ρ1((1 − ˜ ˜ )−1)
∑

σ∈S

sgn(σ)

(∗ ˜
˜ ∗

)1

σ(1)

· · ·
(∗ ˜

˜ ∗

)

σ( )

}

|( ˜ ′1) |( ˜1) |( ′
2) |( 2)

:=








1 − 0 0 0
0 ( ) 0 ( )

0 0 1 − 0
0 ( ) 0 ( )


 ∈





and for ∈ T( ),

( ) :=

{
∈

∣∣∣∣
(

0 −1

0

) (
0 −1

0

)
∈

}
and ˜ ( ) =

(
0 0
0 ( )

)

Proof. By Garrett [5], the left coset 2 0\ 2 has a complete system of repre-
sentatives ˜ ˜↑1

↑
2 ˜ ′1

↓ ′
2
↓ with

˜ =




1 0 0 0
0 1 0 0
0 ˜ 1 0
˜ 0 0 1


 ∈ T( ) (0 ≤ ≤ )

˜1 ∈ 2 ∈ \ ˜ ′1 ∈ ( )\ ′
2 ∈ \

Therefore, it follows from Proposition 1 that

(D 2 )(Z0 ) =
∑

=0

∑

∈T( )

∑

2∈ \

∑

′
2∈ \

∑

˜1∈

∑

˜ ′1∈ ( )\

{D(det(Im(Z)) | ˜ )|Z=Z0}|( ˜ ′1) |( ˜1) |( ′
2) |( 2)

If for each ˜ we put ˜ =

( ∗ ∗
C(2 ) D(2 )

)
, we get

D(det(Im(Z)) | ˜ )|Z=Z0 = det(CZ0 + D)− D(det(CZ + D)− − det(Im(Z)) )|Z=Z0

by the form ofD and ((1/2 )(Im(Z0))−1)σ( ) = 0,

= det(CZ0 + D)− det(Im(Z0)) D(det(CZ + D)− − )|Z=Z0

To computeD(det(CZ + D)− − ), we prove the following lemma.
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Lemma 1. We putδ := det(CZ + D) and := (CZ + D)−1C. For λ ∈ C,

∑

σ∈S

sgn(σ)

(
∂

∂Z

)1

σ(1)

· · ·
(
∂

∂Z

)

σ( )

δλ = δλ
∏

=1

(
λ +

− 1
2

) ∑

σ∈S

sgn(σ) 1
σ(1) · · · σ( )

Proof of Lemma 1. We use induction on . Since

∂

∂Z
δλ = δλλ

for = 1, the lemma holds. Let> 1.

∑

σ∈S

sgn(σ)

(
∂

∂Z

)1

σ(1)

· · ·
(
∂

∂Z

)

σ( )

δλ(3.1)

=
∑

σ∈S

sgn(σ)

(
∂

∂Z

)1

σ(1)

{
δλ

−1∏

=1

(
λ +

− 1
2

)
2
σ(2) · · · σ( )

}

= δλ
−1∏

=1

(
λ +

− 1
2

){
λ
∑

σ∈S

sgn(σ) 1
σ(1) · · · σ( )

− 1
2

∑

σ∈S

sgn(σ)
∑

κ=2

2
σ(2) · · · κ̂

σ(κ) · · · σ( )(
1κ

σ(1)σ(κ) + 1
σ(κ)

κ
σ(1))

}

We note
∑

σ∈S

sgn(σ) 2
σ(2) · · · κ̂

σ(κ) · · · σ( )
1κ

σ(1)σ(κ) = 0(3.2)

and
∑

σ∈S

sgn(σ) 2
σ(2) · · · κ̂

σ(κ) · · · σ( )
1
σ(κ)

κ
σ(1) = −

∑

σ∈S

sgn(σ) 1
σ(1) · · · σ( )(3.3)

Thus by (3.1), (3.2) and (3.3), the lemma holds.

Using Lemma 1, we obtain

D(det(Im(Z)) | ˜ )|Z=Z0 =
∏

=1

(
− − +

− 1
2

)
det(Im(Z0)) |det(CZ0 + D)|−2

· det(CZ0 + D)−
∑

σ∈S

sgn(σ)((CZ0 + D)−1C)1
σ(1) · · · ((CZ0 + D)−1C)σ( )

Since det(Im(Z0)) = det(Im( )) det(Im( )), det(CZ0 + D) = det(1 − ˜ ˜ ), and

(CZ0 + D)−1C =

(∗ (1 − ˜ ˜ )−1 ˜

∗ ∗

)
, Proposition 2 is proved.
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4. Proof of Theorem 1

Theorem 4. Let ∈ Z>0, , ∈ 2Z>0, and 2 ≥ > 2. If ∈ (alt ( 2)) is
an eigenform,

(
(DE2 )

((− ( )
0

0 ∗

)
+
2

))

= 21− π(− 2+ε)/2(π ) + γ( ) ( St)(ι−1( ))( )

where

γ( ) :=
(( + )/2)

−1(( − 1)/2) (( + ε)/2)
= γ(1− )

Proof of Theorem 4. It follows from Theorem 3 that
(

(D 2 )
((− ( )

0
0 ∗

) ))

converges absolutely and locally uniformly for + 2 Re( )> 2 + 1. We consider that
the Petersson inner product (P (− ∗ )). For < , by the same reason as that
Klingen [10, Satz 2],

( P (− ∗ )) = 0

Therefore we only consider that (P (− ∗ )).
Now, we have

P ( ) = det( )− −2 · P( )
∣∣∣
( (

0
0 −1

) )

where

P( ) =
∑

˜1∈

{
det(Im( )) det(Im( )) |det( + )|−2

·ρ1(( + )−1)
∑

σ∈S

sgn(σ)

( ∗ 1
1 ∗

)1

σ(1)

· · ·
( ∗ 1

1 ∗

)

σ( )

}∣∣∣∣∣ ( ˜1)

Since the Hecke operators are Hermitian operators and is an eigenform, we have

( P (− ∗ )) = λ( ) det( )− −2 ( P(− ∗ ))

If we compute the integral ( P(− ∗ )) according to Klingen [9,§1] (see also [2],
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[4], [15]), we obtain

( P(− ∗ )) = 2 ( +1−2 )+1(2−1 ) + ( − − 1 ρ1)(ι−1( ))( )

and

( − − 1 ρ1) id =
∫

det(1 − ) − −1ρ1(1 − )

where :={ ∈ C( ) | = 1 − > 0}. Thus, by Proposition 2, (2.1) and (2.2),

(
(D 2 )

((− ( )
0

0 ∗

)
+ −

2

))
(4.1)

= 2 (1− + )+1(2−1 ) +

(
+ −

2
− − 1 ρ1

)
(−2−1)

( + + + 1)
( + + + 1− )

· ζ( + )−1
∏

=1

ζ(2 + 2 − 2 )−1 ( St)(ι−1( ))( )

To compute
(
( + − )/2− − 1 ρ1

)
, we prove the following lemma.

Lemma 2. Let (ρ ρ) be an irreducible rational representation of ( C)
whose signature is(λ1 λ2 . . . λ ) ∈ Z with λ1 ≥ λ2 ≥ · · · ≥ λ ≥ 0. For ∈ C
such thatRe( )> −λ − 1, we put

ψ( ρ) :=
∫

det(1 − ) ρ(1 − )

Then there exists a constant( ρ) satisfyingψ( ρ) = ( ρ) id, and

( ρ) =
2 π ( +1)/2

∏
1≤µ≤ν≤ (λµ + λν + 2 + 2 + 2− µ− ν)

(4.2)

Proof of Lemma 2. The lemma is proved in the same way as that by Hua [6,
§2.3] (see also [2], [4], [9], [15]).

For any unitary matrix ∈ ( ), we haveψ( ρ) = ρ( −1)ψ( ρ)ρ( ). Sinceρ
is an irreducible representation of ( ),ψ( ρ) is a homothety by Schur’s lemma, i.e.,
there exists a constant (ρ) satisfyingψ( ρ) = ( ρ) id.

We compute ( ρ). Let v ∈ ρ be the highest weight vector with〈v v〉 = 1.
Then,

( ρ) = 〈ψ( ρ)v v〉

=
∫

det(1 − ) 〈ρ(1 − )v v〉
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Let ρ0 be an irreducible representation of (C) such thatρ = detλ ⊗ρ0 and the
signature ofρ0 is (λ1 − λ λ2 − λ . . . λ −1 − λ 0). Then,

( ρ) =
∫

det(1 − ) +λ 〈ρ0(1 − )v v〉

We set =

( ( −1)
1

)
and ρ′0( ( −1)) = ρ0

(( 0
0 1

))
, by Hua [6, Theorem 2.3.2],

( ρ) =
π

+ λ + 1

∫

1 −1− 1 1− >0

det(1 −1 − 1 1 − ) +λ

(1 + (1 −1 − 1 1 − )−1 ) +λ +2

· 〈ρ′0(1 −1 − 1 1 − )v v〉 1

=
π

+ λ + 1

∫

1 −1− 1 1>0
det(1 −1 − 1 1) +λ +1

·
∫

1− 0 0>0
(1− 0 0)

2( +λ +1)〈ρ′0( (1 −1 − 0 0) )v v〉 0 1

where 0 = ( 1 . . . −1) and = 1 −1 − 1 1. We put

ϕ( ρ) :=
∫

1− >0
(1− ) ρ(1 − ) = ( 1 . . . )

Using Schur’s lemma again, there exists a constant (ρ) satisfying ϕ( ρ) =
( ρ) id. Therefore,

( ρ) =
π

+ λ + 1

∫

1 −1− 1 1>0
det(1 −1 − 1 1) +λ +1(4.3)

· ϕ(2( +λ + 1) ρ′0)〈ρ′0(1 −1 − 1 1)v v〉 1

=
π

+ λ + 1
( + λ + 1 ρ′0) (2( +λ + 1) ρ′0)

We compute ( ρ).

( ρ) =
∫

1− >0
(1− ) +λ 〈ρ0(1 − )v v〉

=
∫

1− 0 0>0

| |<1− 0 0

(
(1− ) +λ

)
〈ρ′0(1 −1 − 0 0)v v〉 0

where = ( 1 . . . ) and 0 = ( 1 . . . −1). Since

∫

| |<1− 0 0

(1− ) +λ =
π

+ λ + 1
(1− 0 0)

+λ +1

( ρ) =
π

+ λ + 1

∫

1− 0 0>0
(1− 0 0)

+λ +1〈ρ′0(1 −1 − 0 0)v v〉 0
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=
π

+ λ + 1
( + λ + 1 ρ′0)

Therefore

( ρ) =
π∏

=1( + λ − +1 + )
(4.4)

By (4.3) and (4.4), we get (4.2).

Since the signature ofρ1 is ( + 1 . . . + 1︸ ︷︷ ︸ . . .︸ ︷︷ ︸
−

), it follows from Lemma 2

that
(

+ −
2

− − 1 ρ1

)
=

2 π ( +1)/2
∏

1≤µ≤ν≤ (λµ + λν + + − − µ− ν)

= 2 π ( +1)/2 ( + + + 1− )
( + + + 1− 2 )

·
∏

=1

( + + 1− )
( + + + 3− 2 )

∏

= +1

( + − )
( + + + 1− 2 )

Then, by (4.1), we obtain Theorem 4.

It follows from Theorem 2 and Theorem 4 that the functional equation of
( St). Moreover using the same way that by Mizumoto [12] (see also [15]), the

holomorphy is proved. Hence Theorem 1 holds.
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