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Abstract

Threat of global warming and catastrophic heat waves has recently triggered immense interest in heat

stroke. Guidelines on exercise in a hot environment are widely shared for heat stroke prevention,

but are still insufficient because of individually different resistance to heat stress. For reducing the

number of heat stroke patients, core body temperature monitoring is essential so as to individually

apply appropriate treatment such as fluid intake and intermission. The major precursor of heat stroke

is known as rise of core body temperature. When core temperature rises, a human body prevents it

by increasing sweat and skin blood flow. However, this thermoregulation capability may fail because

of dehydration under severely hot environment and/or heavy exercise.

To measure or estimate core temperature, there have been many devices and studies. Core tem-

perature can be measured as either rectal, tympanic, esophageal or pulmonary artery temperature.

Some wearable or ingestible devices are now on the market, which can measure core temperature by

various sensors (e.g., ingestible pills, thin probes with infrared thermometer and skin-mounted probes).

These devices are applicable to clinical environment, however they are usually disallowed in the wild

environment due to its high invasiveness or restriction of user activity. Motivated by the need of core

temperature estimation in the wild environments (e.g., outdoor environments and exercise), several

research efforts propose the estimation of core temperature. For instance, a study uses measured heart

rate and another combines human thermoregulation simulation and environmental simulation. The

major drawback of them is to require preliminary calibration by measuring actual core temperature

or comprehensive simulation in terms of air flow, solar radiation and shading. The other concern is

that these method may also require calibrations in each situation (e.g., fitness level and clothing),

leading to considerable cost. These challenges spark the need of seamlessly applicable and light-weight

calibration for any environment.

Dehydration is also a key precursor of heat stroke, and studied by many researchers. To ensure

user’s hydration, there have been emerging devices to keep track of fluid intake such as smart bottles

which connect to smartphones. Also bountiful research efforts use different sensing modalities (e.g.,

image, audio and motion sensors) for the purpose of drinking activity recognition. Despite these efforts,

a pervasive and mobile manner to unobtrusively keep record of daily fluid intake with scalability, does

not still emerge.

Our research goal is to make a novel paradigm for heat stroke prevention which satisfies wide
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applicability, little interference and scalability. For this, we leverage commercial-off-the-shelf wrist-

worn gadgets (forecasted to be shipped 161 millions in 2021) and propose two important methods to

prevent the risk of heat stroke in this dissertation.

Firstly, we design and evaluate a method to estimate core body temperature which can be con-

currently optimized for individuals with little effort. The method employs Gagge’s two-node model to

calculate changes of core and skin temperature based on physical heat equations by inputs given by

wrist-worn sensors and environmental sensors. The major drawback of the two-node model is lacking

consideration of individually different thermoregulation function, leading to incomplete accuracy for

core temperature estimation. To address this challenge, our method optimizes four parameters rep-

resenting differences of human thermoregulation capability (e.g., increasing speed of sweat and blood

flow on skin surface) by exhaustively comparing actually measured skin temperature and each of 3,200

simulated skin temperatures. This realizes the estimation of core temperature which can be seamlessly

deployed in any environment with minimal interference in user activity as well as wide scalability owing

to requiring only common devices on the market. Despite limited information was available during

exercise, we confirmed the method successfully estimated core temperature and it could choose an

effective set of four parameters in moderate exercise.

Secondly, we propose essential extensions for Gagge’s two-node model to realize core temperature

estimation in the wild. We have found Gagge’s two-node model can be optimized for exercises with

fixed workload, however its accuracy becomes worse in the exercise with variable workload. This is

mainly due to unexpected responses of core temperature during transient period (e.g., taking a break

and increase/decrease exercise workload). To explain this, we introduce two delay parameters which

approximate actual human responses. Our method is applicable to calibrate the two parameters as

well as the other parameters by observing actual human responses against variable exercise workload.

We also propose some extensions for the two-node model to appropriately consider the effect of solar

radiation, wind, and water ingestion. The method is evaluated through over 120 hours of walking,

running, biking, and tennis and achieves up to 0.30 degree Celsius error in each exercise. Further, we

developed a prototype of heat stroke caution to show its effectiveness in a real application.

Thirdly, we propose automated estimation of fluid intake by leveraging inertial sensors in wrist-

worn gadgets. Although Gagge’s two-node model assumes the human thermoregulation (i.e., sweat and

blood flow increase) properly operates, it may fail in the severely hot environment and/or heavy exercise

because of dehydration. This severely drops reliability of core temperature estimation, accordingly

dehydration must be prevented. To prevent dehydration, our approach leverages human hydration

context estimated from drinking episode and amount of fluid intake. We collected data in both of

laboratory and wild experiments and designed a novel algorithm to capture drinking episode from

noisy motion traces of the wrist. The algorithm recognizes human activities with macro and micro

scale classifiers so as to firstly separate a drinking activity from the other activities and then recognize

small gestures constituting a series of fluid intake. We also propose a robust model for estimating

4



amount of fluid intake which uses not only the duration of sipping gesture, but also the posture of the

arm. The method has been validated through rigorous datasets and shown 15% error for overall fluid

intake amount.

Through these contributions, commercial-off-the-shelf devices on the wrist will be utilized to assess

risk of heat stroke and appropriately encourage individuals to avoid it. The complete system will

appropriately notify the timing of taking breaks and fluid intake to users in real time, and keep all

the core temperature levels of users safe. This dissertation has established the foundation of pervasive

method for preventing heat stroke for all mankind.
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Chapter 1

Introduction

In recent decades, the threat of global warming and catastrophic heat waves has triggered immense in-

terest in heat stroke. Heat stroke causes severe health disorders such as heat cramps, heat syncope, and

heat exhaustion, worstly leading to death. World Health Organization (WHO) globally posts a health

manual to ensure how to deal with heat environment [4], where it suggests referring environmental heat

indices such as the wet bulb globe temperature (WBGT) and standard effective temperature (SET)

to assess the heat stress. These indices are composed of not only air temperature, but also humidity,

radiant heat and solar radiation, and provide reliable decisions to prevent over-exercise especially for

outdoor work and exercise. For example, a coach uses the combined heat index to organize exercise

duration, and the interval of breaks and water intake. However, these heat indices remain insufficient

for heat stroke prevention, as inferred by the number of heat stroke patients not decreasing in recent

years. The major drawback of the environment-based instruction is the lack of the consideration of

differently rising core temperature inside individual human bodies. High core body temperature is a

fundamental precursor of heat-related illness [5], but shows various individual differences caused by a

variety of human body characteristics such as speed of core temperature rise, resistance against heat

stress, and water supplement level. Therefore, deep insight of individual body context by human-

centric sensing technology is essential for reducing the number of heat stroke patients all over the

world.

Ideally, heat stroke is preventable by grasping the heat context which differs from person to person,

and then appropriately suggesting timings of breaks and water supplement. When core body temper-

ature rises according to the heat environment, a human body emits heat by increasing blood flow on

skin surface and sweating rate, then the temperature is usually reduced. However, core temperature

can be higher in the case of severe heat environment and heavy exercise, thus heat stroke can occur.

Hence, measuring core temperature is the most effective way to assess heat stroke risk. Sufficient water

supplement is also important to maintain human’s thermoregulation function (i.e., sweating and blood

flow increase). Dehydration symptoms arise when the body loses water in a rate higher than its intake

rate. Some people can sense the dehydration by feeling thirsty, dry or sticky mouth, but others (e.g.,
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children and elderly people) are sometimes not aware of their dehydration. Accordingly, it is essential

to capture individually different contexts of dehydration (i.e., fluid intake and water loss level) and

suggest appropriate timing and amount of fluid intake.

To address these challenges, many systems and studies have been proposed. For core temperature

assessing, some wearable and ingestible sensors are available [6, 7, 8], and some studies [9, 10] propose

methods of core temperature estimation leveraging non-invasive sensors. Core temperature is directly

monitored by either the ingestible pill-like sensor [6] or the infrared thermometer inserted into the

ear canal [7], and indirectly measured by the thermal probe attached on the skin [8]. These systems

provide individual monitoring of core temperature, however they have unacceptable drawbacks: in-

gestible sensors require highly invasive measurement and involve considerable cost for disposable pill

sensors; measurement probes are disallowed in situations such as contact sport, in which players col-

lide with each other; a skin-mounted probe does not scale well in the wild environment (e.g., daily life

and outdoor exercises) since it involves a wired control unit. To assess core temperature in outdoor

environments, Reference [9] proposes its estimation using heart rate observation. Although it requires

preliminary data collection to calibrate estimation model parameters, it achieves core temperature

estimation with 0.21 degree Celsius error. In Reference [10], the human thermal model is used to

assess the risk of heat stroke for outdoor workers. It provides the prediction of core temperature rise

based on the integrative use of comprehensive simulation of environment, solar radiation and human

thermal regulation. As suggested by these efforts, human core body temperature can be predicted by

observable contexts captured by environmental and/or wearable sensors. Meanwhile, these techniques

involve some preliminary calibration for considering each environment or each human’s thermoregula-

tion dynamics. This severely limits their wide applicability.

Supported by emerging devices such as sensorized gadgets and smarter wearables, tracking fluid

intake is also in deep interest recently. Smart bottles (e.g., Trago smart bottle [11] and Hidrate

Spark [12]) have been widely available which are capable to automatically keep record of user’s fluid

intake. The bottles are appropriate to track water intake in designated environments. However,

they are neither scalable nor ubiquitous since users have to buy them and bring to every drinking

context. Additionally, many researchers combine different sensor modalities for not only recognizing

ingestive activities, but also assessing amount of fluid intake. They use either image [13] , audio [14]

or wearable sensors [15, 16], however they have some limitations. For instance, vision-based systems

require capturing photos with constraints in terms of the view angle and quality. Audio analysis may

raise privacy concern and background noise may overlap with the collected audio. In other words,

these methods are not appropriate for continuous and daily tracking of fluid intake in terms of ease of

deployment, scalability and interference in user’s life.

Despite these considerable research efforts, there has not been a method for core temperature

estimation and fluid intake assessment which satisfies all the following requirements: (1) Ease of

deployments: leveraging existing infrastructure without installing special and expensive sensors. (2)
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Minimal interference: minimal burden and cost for calibration. (3) Scalability: seamlessly applicable

to different environments. To meet these criteria, we employ wrist-worn sensors as pervasive and

unobtrusive sensing modality, and propose methods for estimating both of core temperature and fluid

intake. In this dissertation, three primary contributions will be made toward preventing heat stroke

by wrist-worn devices.

Firstly, we design and evaluate a method to estimate core body temperature which can be con-

currently optimized for individuals with little effort. The method employs Gagge’s two-node model to

calculate changes of core and skin temperature based on physical heat equations by inputs given by

wrist-worn sensors and environmental sensors. The major drawback of the two-node model is lacking

consideration of individually different thermoregulation function, leading to incomplete accuracy for

core temperature estimation. To address this challenge, our method optimizes four parameters rep-

resenting differences of human thermoregulation capability (e.g., increasing speed of sweat and blood

flow on skin surface) by exhaustively comparing actually measured skin temperature and each of 3,200

simulated skin temperatures. This realizes the estimation of core temperature which can be seamlessly

deployed in any environment with minimal interference in user activity as well as wide scalability owing

to requiring only common devices on the market. Despite limited information was available during

exercise, we confirmed the method successfully estimated core temperature and it could choose an

effective set of four parameters in moderate exercise.

Secondly, we propose essential extensions for Gagge’s two-node model to realize core temperature

estimation in the wild. We have found Gagge’s two-node model can be optimized for exercises with

fixed workload, however its accuracy becomes worse in the exercise with variable workload. This is

mainly due to unexpected responses of core temperature during transient period (e.g., taking a break

and increase/decrease exercise workload). To explain this, we introduce two delay parameters which

approximate real human responses. Our method is applicable to calibrate the two parameters as well

as the other parameters by observing real human responses against variable exercise workload. We also

propose some extensions for the two-node model to appropriately consider the effect of solar radiation,

wind, and water ingestion. The method is evaluated through over 120 hours of walking, running,

biking, and tennis and achieves up to 0.30 degree Celsius error in each exercise. Further, we developed

a prototype of heat stroke caution to show its effectiveness in a real application.

Thirdly, we propose automated estimation of fluid intake by leveraging inertial sensors in wrist-

worn gadgets. Although Gagge’s two-node model assumes the human thermoregulation (i.e., sweat and

blood flow increase) properly operates, it may fail in the severely hot environment and/or heavy exercise

because of dehydration. This severely drops reliability of core temperature estimation, accordingly

dehydration must be prevented. To prevent dehydration, our approach leverages human hydration

context estimated from drinking episode and amount of fluid intake. We collected data in both of

laboratory and wild experiments and designed a novel algorithm to capture drinking episode from

noisy motion traces of the wrist. The algorithm recognizes human activities with macro and micro
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scale classifier so as to firstly separate a drinking activity from the other activities and then recognize

small gestures constituting a series of fluid intake. We also propose a robust model for estimating

amount of fluid intake which uses not only the duration of sipping gesture, but also the posture of the

arm. The method has been validated through rigorous datasets and shown 15% error for overall fluid

intake amount.

Our study overcomes the challenge of collecting huge amounts of data in modeling core temperature

estimation by integrating a model-based estimation method and a light-weight calibration method. We

also designed a novel method for calibration which is applicable in severely restricted environments

(i.e., during exercise). Further, our study makes a contribution for heat stroke prevention from the

perspective of information science through sensing individual contexts by lightweight sensing modal-

ities and suggesting individually optimal care. Through these contributions, commercial-off-the-shelf

devices on the wrist will be utilized to assess risk of heat stroke and appropriately encourage individ-

uals to avoid it. This dissertation has established the foundation of pervasive method for preventing

heat stroke for all mankind.

The rest of this dissertation is organized as follows. Chapter 2 reviews related work on core

temperature and fluid intake estimation. Chapter 3 explains the design and performance of core

temperature estimation method in the basic environment and exercise. Chapter 4 proposes the method

of lightweight and on-site calibration, and the extension of Gagge’s two-node model to suit complex

environment and exercise. Chapter 5 describes the novel method to estimate amount of fluid intake by

observing inertial sensor measurement, and the evaluation through laboratory and wild experiments.

Finally, Chapter 6 summarizes and concludes this dissertation.
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Chapter 2

Related Work

2.1 Heat Stroke Prevention

In recent decades, heat stroke has received considerable attention because of global warming and

catastrophic heat waves [17]. The mechanism of heat stroke is described in [5], where core temperature

rise is a fundamental factor. When core temperature rises, a human body emits heat by increasing

blood flow on skin surface and sweating rate. These thermoregulation functions usually decrease core

temperature and keep safe. However, severely heat environments and/or heavy exercise can overwrite

these resistance function, then core temperature exceeds beyond normal range and finally heat stroke

arises. In healthy adults under 40 years old, the upper limit of the normal oral (core) temperature range

is 37.7 ◦C [18]. In contrast, the measured oral temperatures of heat stroke patients exceed 39.5 ◦C [19].

Therefore, heat stroke is indicated when the core temperature exceeds 39.5 ◦C, and can be monitored

by core temperature measurements. Another major factor of heat stroke is dehydration which makes

the cardiovascular system difficult to suppress rise of core temperature. A study [20] revealed that

core temperature rises 0.3◦C for every 1% of fluid lost during exercise. Severe dehydration also causes

a failure of sweating, the most important heat emission function.

Accordingly, core temperature is the most important precursor of heat stroke. There have been

many thermometers to measure core temperature, however they have some limitations to be used in

the wild environments. Probe measurements of oral, rectal, tympanic, and esophageal temperatures

(as conducted in [21]) are generally used as core temperature in clinical situations, but they are not

available in almost all exercise situations due to their invasiveness. Tympanic thermometer such as [7]

has a potential to be used in daily life, yet it is still inadequate for core temperature monitoring during

interpersonal sports. Brain temperature can be estimated by measuring the forehead temperature

[22] due to its correlation with core temperature in indoor environments. However, the correlation

deteriorates under environmental effects such as solar radiation and wind. In addition, there are also

clinically-approved gadgets to measure core body temperature such as Cortemp [6] and 3M SpotOn

System [8]. The former provides continuous and reliable measurement of in-body temperature by
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Table 2.1: Guidance for athletic trainers [1]

WBGT(◦C) Alert Level Recommendation
> 31 Stop Exercise No outdoor exercise
> 28 Strict Warning Avoid hard exercise
> 25 Warning Frequent breaks and water intake
> 21 Attention Make sure water intake in the intervals
< 21 None Usually safe

leveraging pill-like sensors. The latter provides indirect measurement of core temperature through a

heater unit attached on the skin surface by equalizing its temperature to the inner body temperature.

However, these sensors are not appropriate for monitoring core temperature in daily and outdoor

exercise owing to its considerable cost for disposable and ingestible sensors, or slow response to changing

body temperature. In summary, there are still no sensors which can easily measure core temperature

in outdoor work and exercise despite many sensors are developed to measure it.

Therefore, environmental factors are now used for heat stroke prevention. WHO provides health

manuals for summer exercise [4], where the risk level of heat stroke is explained by heat-stress indicators

such as SET [23] and WBGT [24]. These indices are composed of multiple factors regarding ambient

environment (e.g., air temperature, humidity, solar radiation, etc.) and used as the measures for

decision making in outdoor working and exercise. For instance, Japanese Ministry of the Environment

introduces recommendations based on WBGT as shown in Table 2.1. However, many Japanese people

work or participate in sports during daytime even though many days in summer reach higher or

the highest alert level (e.g., Osaka observed 43 days with alert ”Stop Exercise” or ”Strict Warning”

(WBGT>28℃) in 2015). Even in those severe situation, some people can continue their activities as

they are accustomed to heat environment, but many others should stop their activities. Individual

difference of resistance to heat and fatigue degree also affect how the core temperature rises, and they

may vary everyday. Thus, these heat indices are useful for avoiding high-risk activities, yet they are

not suitable for individual risk assessment since they cannot account for the heterogeneous changes in

core temperature among individuals.

To estimate core temperature, Buller et al. proposes core temperature estimation with heart rate

observation and Kalman filter [9]. They designed and evaluated their method with multiple datasets

collected by soldiers wearing personal protective equipment with different exercise, and showed 0.21◦C

root mean squared error. The method realizes core temperature estimation relying on only heart rate

which can be captured by commercial-off-the-shelf devices, but it must involve calibration of a model

by measuring heart rate and actual core temperature with ingestible pills in advance. They also infer

the model parameter has to be optimized according to a variety of fitness level, ages, environments and

clothes. Yabuki et al. proposes a heat stroke alert system for outdoor workers that integrates compu-

tational fluid dynamics (CFD), sun and shade simulations, and a core temperature estimation model

[10]. The method provides the prediction of core temperature rise based on the integrative use of com-
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prehensive simulation of environment, solar radiation and human thermal regulation. Their method

is appropriate to forecast the risk of heat environment for designated workload and environment, yet

it always requires 3-D model building and comprehensive simulation for each environment. Thus, the

method does not scale well in terms of deployment cost for different environments and workloads.

Despite these research efforts, to our knowledge, there are no methods to measure or estimate core

temperature in exercise with low cost and minimal interference in user’s life. We address this problem

by employing the wrist-worn devices forecasted to be shipped 161 millions in 2021 [25], and introducing

a lightweight method for individual calibration.

2.2 Human Thermal Models for Core Temperature Estima-
tion

The heat dynamics of human body can be represented by equations of thermodynamics, accordingly

a variety of human thermal models [26, 27, 28, 29] are proposed. In those models, human body is

approximated as multiple nodes, and then the heat production, transfer and emission are calculated

between neighboring nodes per unit time. Despite different complexity of those model, each model

can reproduce standard thermoregulation function of humans such as increasing blood flow on skin

surface and sweat production as response to rising core temperature. Gagge’s two-node model [26]

regards a human body as a combination of core and skin nodes. In Stolwijk’s 25-node model [27], a

human body is composed of 25 nodes arranged in four layers (core, muscle, fat, and skin). Smith also

proposes 15-node model with blood vessels along with almost all borders of nodes [28]. These nodes

can be further divided for a detailed thermal simulation [29], although accurate simulations of such

detailed models require a large number of inputs and a long computational time. Subsequently, there

have been other advanced models such as Fiala model [30] and JOS-2 model [31]. Fiala et al. propose

15-node models which consists of passive system to consider thermal energy exchange in the body and

active system to explain vascular dilation and constriction, sweating, and shivering [30]. Kobayashi et

al. propose JOS-2 model considering detailed vascular system [31]. Yabuki et al. use Gagge’s two-node

model to predict core temperature rise of outdoor workers in hot environment [10]. Their method is

supported by comprehensive simulation of air temperature distribution, solar radiation, sun shading

and metabolic heat production. Nevertheless, their method does not focus on the precise estimation

of individual subject’s core temperature, but assesses heat risks in multiple working scenarios.

To represent individual difference of thermal responses in hot and cold environments, Takada et

al. [32] introduced six parameters into the Gagge’s two-node model. The method calibrates these

parameters by comparing the measured rectal temperature and skin temperature (i.e., a mean skin

temperature calculated by Hardy-Dubois formula [33]) with the simulated core and skin temperatures

over 120 minutes. Their approach achieves more accurate simulations than the original Gagge’s model,

but requires long and invasive measurements of the core temperature, suggesting the method is unsuit-
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able for most exercises. Another concern is the diversity of human conditions which alters the optimal

parameter set even in the same subject. For example, sweating and blood flow work efficiently under

normal conditions, but may be less effective if the subject is exhausted.

Compared to their research effort, this dissertation focuses on developing practical calibration

method of Gagge’s two-node model. In other words, we design and evaluate the method to launch

human thermal simulation on the model with available inputs even in the exercise scenario, and individ-

ually optimize with use of additional context. Additionally, we introduce the reasonable modifications

for Gagge’s model to suit the model to complex exercise and real environment.

2.3 Assessment of Energy Consumption in Exercise

In this dissertation, we use heart rate as a clue for assessing metabolic heat production. The major

advantage of using heart rate is that our method can seamlessly suit to wide variety of environments

by using commercial-off-the-shelf devices. In contrast, its drawback is that heart rate may involve

errors caused by not physical load, but psychological load (e.g., getting nervous in competitions). To

assess the calorie consumption in exercise, there have been many studies as follows. Choi et al. utilize

accelerometers to estimate energy expenditure in physical activities [34, 35]. Lester et al. combine

accelerometer, barometer and geographic information for assessing calorie expenditure with use of only

one accelerometer [36]. Zhan et al. propose a method of calorie expenditure estimation in biking which

combines cadence sensor, heart rate and geographic information [37]. Tsou et al. leverage Microsoft

Kinect [38] to capture skeleton for estimating calorie burned in aerobics [39]. These research efforts

ensure our method for core temperature estimation to improve its accuracy even in wide variety of

exercise (e.g., biking and aerobics) due to more precise input (i.e., heat energy production and energy

loss by exercise). Also the advanced device such as Kinect makes our method free from wearing

accelerometers and heart rate sensors, leading to high scalability.

2.4 Advanced Activity Recognition Considering Hidden Con-
texts

Activity recognition has been deeply studied in recent decades. Its fundamental idea is to extract

meaningful contexts from the sensor readings (e.g., waveform generated by accelerometer). Machine

learning algorithm has made great contributions for activity recognition due to its capability to firstly

identify features of potential mechanisms and then predict new data using the identified pattern.

Basically, many of machine learning algorithms simply find the potential relationships between given

feature values and true states. Further, advanced machine learning models such as Hidden Markov

Model (HMM) [40] and Conditional Random Field (CRF) [41] are widely utilized and show promising

results for activity recognition since they can consider the relationship among hidden states as well as

the relationship between the observed feature and a true state behind the feature. CRF showed higher
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performance than HMM in the use case of human activity recognition [42], sentence recognition [43]

and human mobility recognition [44]. Accordingly, we employ CRF to infer the potential relationship

among ingestion-related activities in this dissertation.

2.5 Activity Recognition for Capturing Ingestive Contexts

To log daily dietary records, there have been many research works to recognize the eating moments

and detect the food type as well as estimate the amount of food consumed. These systems leverage

either dedicated body-worn sensors or smartwatches-equipped sensors. Some systems leverage acoustic

sensors to detect eating-related activities [45, 46, 47]. For instance, [45, 46], employ an earbud to

capture characteristic sounds such as chewing, thus classifying some food types based on the chewing

pattern. Another system [47] leverages a throat microphone to recognize the swallow pattern which

can be used to classify 4 food types (cookie, apple, bread, banana). Additionally, wrist-worn inertial

sensors embedded in smartwatches can recognize eating moments (i.e., meals time [48, 49, 50]). These

inertial sensors can also be used to estimate the biting count [51] and predict the medical adherence

[52] by applying machine learning to distinguish higher order gestures from raw motion sensor waves.

Inertial sensors on ears also showed high performance in the detection of eating episodes in very

challenging unconstrained environments [53]. Finally, the fusion of different sensing modalities proved

successful to provide deep context recognition of the eating-related activities. For example, the fusion

of acoustic and motion features can estimate the family meal time [54]; eating, drinking activities and

the exercise workload [55]; and food type and the consumed amount of food [15, 56].

2.6 Techniques for Hydration

In recent years, applications for human hydration have been on increasing interest. There are some

applications released to the market [57, 58], in which the users manually register their fluid intake to

the app, then the application generates daily records of overall fluid intakes. The manual application

is suitable for enthusiastic users, however the motivation of the other users easily decreases due to the

burden to measure or guess each weight of fluid intake. Hence, the automated method of fluid intake

tracking is essential for continuously monitoring human health.

For this, several studies propose the automated fluid intake estimation using different sensing

modalities: accelerometer [59, 60], capacitive sensor [61] and RFID tags [62] are attached on the

container and they can catch drinking event when they are used. These sensors can provide rich

context regarding fluid intake due to direct attachment on a container used for drinking and help to

recognize drinking episodes. Further, there have been nowadays commercial smart bottles such as

[11, 12, 63] which automatically track fluid intake by leveraging fluid level sensor embedded in the

bottle. These sensor-assisted containers are appropriate for tracking of fluid intake in a designated

environment (e.g., using same bottle during sports), yet they do not scale well as they require buying
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a special device or attaching accelerometer on the container, and always using the sensor-assisted

container. In addition, mobile sensing modalities have been also used to keep track of fluid ingestion

[16, 15, 13]. Amft et al. [16] combines a wrist-worn motion sensor and a magnetic coupling sensor

on the shoulder and the arm to capture wrist motion, 3-D orientation of the wrist and the distance

between the shoulder and the wrist. They can recognize nine types of containers with 75% average

accuracy and three levels of fluid in each container achieving an accuracy that ranges from 58% to

83% on average. However, their method does not provide a fine-grained estimation of the fluid intake

amount while using dedicated wearable sensors, and all experiments are conducted in the laboratory

only. By combining acoustic features with motion features, Mirtchouk et al. [15] can estimate the fluid

type as well as the consumed amount. They concluded that it is still difficult to recognize the fluid type,

but they can estimate the weight of consumed fluid with 47.2% mean absolute error. However, they

fused many sensors including an earbud, two smartwatches, and a smart eyeglass. This hinders the

scalability of their solution. Mengistu et al. [55] also suggest that drinking activities can be captured

by the fusion of acoustic signals from throat microphone and motion signals from smartwatch sensors.

Similarly, their method does not scale well and it does not provide an estimation of the fluid intake

amount. Image processing based techniques have also been proposed to recognize the hand grasping

posture when a person is drinking by applying Haar-like feature on the input image [13]. However, it

is intrusive, raises privacy issues, and the estimation of fluid intake amount is still limited.

These seminal systems and works have demonstrated feasibility of fluid intake monitoring by per-

vasive sensing modalities, however they are still far away from eligibility to keep record of daily fluid

intake in terms of cost for deployment and interference in user’s life. Our novel idea breaks through the

challenges of usability and deployment cost by leveraging inertial sensors embedded in state-of-the-art

smartwatches.
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Chapter 3

Core Temperature Estimation
During Exercise by Leveraging
Wearable Vital Sensors

3.1 Introduction

For preventing heat stroke, core temperature is important to evaluate the effect of heat environment

and/or exercise on human body. Under heat environment and hard exercise, core temperature grad-

ually rises, then our body transfers the heat to the air for decreasing the temperature by thermal

regulation systems such as sweating and increase of skin blood flow. These thermal regulation systems

usually work efficiently, therefore we can keep core temperature safe. However, a failure of the system

can occur in severe environments. Especially in early summer, people are not accustomed to heat

stress leading to heat stroke.

Generally, core temperature is measured as rectal or tympanic temperature, although their measure-

ment is difficult due to its invasiveness. Inserting a measurement probe into those parts is dangerous

during exercise and burdensome in daily life. Instead, axillary temperature or oral temperature is

generally used as a reference of core temperature since they are easy to measure. However, we cannot

use these temperature during activities because of the following reasons. First, we need to keep resting

and closing an armpit and wait about 4 minutes in order to measure axillary temperature [64]. Second,

it is dangerous to keep a measurement probe in a mouth during exercise.

Alternatively, a wireless ingestible thermometer called CorTemp [6] can be used to directly measure

core temperature during exercise. However, the receiver is expensive and the thermometer is disposable

leading to a considerable cost. An alternative is H.O.T. system which measures skin temperature [65]

by a heat sensor inside a helmet used for military, public safety (firefighters, SWAT), HAZMAT,

industrial, and racing. It displays alert if skin temperature rises over a threshold because extreme

skin temperature is caused by abnormalities. Nevertheless, skin temperature does not always quickly
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reflect changes in a human body including core temperature because it is affected by environmental

factors such as wind and solar radiation. In addition, there is a 3M SpotOn System [8] which indirectly

measures core temperature by a probe on a forehead, which is not appropriate to exercise since it needs

a wired control unit assuming clinical use.

In this chapter, we propose a method to estimate core temperature by using Gagge’s two-node

model [26]. The two-node model is one of human thermal models [26, 27, 29] that represents a human

body as two nodes: a core node and a skin node. It simulates changes of core and skin temperature

by calculating heat production in a human body and heat exchange between the core node, the skin

node and the ambient air. For this calculation, we leverage a wrist-worn gadget to obtain heart rate

and skin temperature, and environmental sensors to measure the air temperature, humidity and the

solar radiation. Interestingly, a previous study [32] proposes six individual parameters of the two-

node model and optimizes them based on measurement of rectal and seven-point skin temperatures.

Their parameters are related to individual thermoregulation function and physical conditions, such

as a perspiration rate and a skin blood flow rate. The study confirms that appropriately setting

these individual parameters is essential for accurate estimation of core temperature. Nevertheless,

their method is not capable to assess core temperature in the exercise scenario since their method

requires intrusive calibration in terms of measurement effort. To address this challenge, we propose an

unobtrusive method for calibrating these parameters in the wild scenario (e.g., daily lives and exercise).

Our method optimizes the number of parameters and ranges, and compares the change of measured

skin temperature and 3,200 instances of skin temperature simulated by all the possible combinations

of four parameters. We also introduced an extensional equations to the model in order to consider the

effect of solar radiation.

We have evaluated our method through totally 52 hours of walking in heat environment by seven

subjects. The results show that our method improves the accuracy by 12% at most compared to the

default individual parameter set.

3.2 Core Temperature Estimation Method

This section presents our proposal of a method to estimate core body temperature during exercise.

We note that our method leverages Gagge’s two-node model to estimate the temperature, however we

abstractly describe the model in this section to focus on the method of model calibration, and the

detail will be described in the next section.

3.2.1 Overview

Figure 3.1 illustrates the overview of Gagge’s two-node model. The model approximates a human body

as a sphere composed of the core node and the surrounding skin node. It simulates the temperatures

of these nodes by calculating the heat energy transfer between the core node, the skin node and

24



s!
M!

Metabolism!

Skin Temp. Tskin!

Core Temp. Tcore!

Skin Node!

Core Node!

Conduction qcond!

Respiration qres!

Kinetic Energy W!

Blood Flow qblo!

Water Evaporation qdiff!

Convection qconv 
Radiation qrad!

Sweating qrsw!

Figure 3.1: Gagge’s two-node model overview

the ambient air. Accordingly, it is the most simple model due to its the minimum number of nodes

compared to the other multi-node models [29]. Nevertheless, the study [32] proved its high accuracy

when the optimal parameters were appropriately set. Therefore, we employ their method with a small

extension to suit our scenario where we use the two-node model for outdoor exercise.

Figure 3.2 depicts the overall process of the method, where the essential inputs are given to the

two-node model, and the model generates exhaustive simulation of skin temperatures, and then the

best parameter set is obtained from comparing actually measured skin temperature and the simulated

temperatures. The method basically requires three types of input as follows. (1) Static information to

assess the physical parameter of the two-node model (i.e., body characteristics). This information is

manually given to the model. (2) Environmental information consists of temperature, humidity, and

solar radiation to evaluate the environmental effect on the human body. These values are measured

by commodity devices deployed in the exercise environment, and given to the model in each unit time.

(3) Biological information, namely the skin temperature for our calibration, and continuous heart rate

measurements for assessing the heat production by metabolism. The heart rate is finally translated

into the metabolic heat production rate in each unit time. We also measure the initial core temperature

as tympanic temperature before exercise. The tympanic temperature can be easily measured by using

some infrared thermometers on the market.

3.2.2 Core Temperature Estimation and Parameter Calibration

Suppose t unit time elapses since a user starts exercise. Firstly, the static information and the initial

temperature of the skin node (Tskin
0) and the core node (Tcore

0) are given to the model. Then,

environmental and biological sensor readings from time 0 to t− 1 are input to the model. After that,

given a set θi of individual parameter values, the two-node model calculates the following sequences
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Figure 3.2: Exhaustive simulation for parameter optimization

Tskin
t(θi) and Tcore

t(θi) of the skin and the core temperature at each unit time.

Tskin
t(θi) = {Tskin

0, Tskin
1(θi), Tskin

2(θi), . . . , Tskin
t(θi)},

Tcore
t(θi) = {Tcore

0, Tcore
1(θi), Tcore

2(θi), . . . , Tcore
t(θi)},

where Tskin
t(θi) and Tcore

t(θi) denote the skin and the core temperature at time t for a given individual

parameter set θi, respectively. The details of the parameters are described in the next section.

Figure 3.2 depicts the determination process of the optimal individual parameter set. We determine

the optimal parameter set θopt by selecting the parameter set which minimizes the squared error

between the simulated skin temperature and the measured skin temperature as below.

θopt = arg min
θi

t∑

j=1

|Tskin
j(θi)− ˆTskin

j |2.

In the above equation, ˆTskin
j indicates the measured skin temperature at time j. Finally, the corre-

sponding Tcore
t(θopt) is our estimation result at time t. We note that θopt at time t is determined

independently of the previous θopt determined at time t − 1 in order to fully utilize all the given

information.

26



Table 3.1: Range of individual parameters
α1 5.04 5.67 6.3 6.93 7.56 (5 factors)
α2 22.5 · · · 45 · · · 75 (8 factors)
α3 75 · · · 150 · · · 250 (8 factors)
α4 30 · · · 100 110 120 (10 factors)

3.2.3 Two-node Model Parameters of Different Thermal Regulation

In hot environment, the human body usually widens blood vessels to emit heat from skin surface

(vasodilation). It also increases sweat production to cool skin surface by swear evaporation. These

responses are general reactions which occur when the core body temperature rises, but their capabilities

(e.g., speed of response, amount of sweating) are widely different from person to person. In the study

[32], Takada et al. replace some constants in the Gagge’s two-node with the variables to explain the

difference of human thermal responses. We further modify their proposal to suit our scenario and

define two equations related to vasodilation and sweating responses during exercise in hot environment

as below.

Vblo
t = α1 + α2 · (Tcore

t − Tcore
0), (3.1)

mrsw
t = {α3 · (Tcore

t − Tcore
0) + α4 · (Tcore

t − Tcore
0) · (Tskin

t − Tskin
0)} · 10−3. (3.2)

Vblo
t and mrsw

t mean the blood flow rate and the amount of sweat productiom at time t. In these

equations, α1,α2,α3 and α4 are the variable parameters. α1 and α2 are the initial value of skin blood

flow and the vasodilation coefficient, respectively. α3 represents the sweat coefficient for exercise and

α4 means the coefficient of basic sweating response. These equations indicate that the skin blood flow

and sweating amount increase according to the rise of core and skin temperatures represented as the

gradients against their initial values (Tcore
0, Tskin

0). Note that these gradient values are regarded as

zero if they are negative.

We change the four parameters within the ranges shown in Table 4.2, where the total number of

parameter combination is 3,200. The range is slightly modified from that proposed in the previous

study [32] for the purpose of reducing the number of candidates. This aims to eliminate unnecessary

parameters for representing the response in exercise under hot environment.

3.2.4 Consideration of Solar Radiation

Since Gagge’s two-node model does not have an equation to represent the heat energy received via

solar radiation despite its importance for assessing human body temperature in hot environment, we

combine an extensional equation to the heat balance calculation in the skin node . We designed

the received heat energy qdn based on the reference [66]. Figure 3.3 illustrates the overview of heat

absorption in the two-node model by direct solar radiation. In our case, the energy qdn is defined as:

qdn = a ·Ap · Jdn, (3.3)
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Figure 3.3: Consideration of solar radiation

where a is a coefficient of solar absorption in the skin surface and Ap is the projected area of the human

body to a plane perpendicular to the direct solar radiation. We used a = 0.4 based on Reference [67].

Jdn denotes the measured solar radiation. Since Ap is difficult to be assessed on the real human body,

we approximate the human body as a sphere by respecting Gagge’s proposal. Thus, the projected area

Ap is regarded as a quarter of the total area of human body surface as Abody (illustrated as Figure

3.3). Therefore, given measured solar radiation Jdn in each unit time, we consider the effect of solar

radiation by combining the heat energy qdn into the equation (3.7) in the next section, which represents

the heat balance in the skin node.

3.3 Gagge’s Two-node Model

This section elaborates on the detail of Gagge’s two-node model, the method to give the sensor value,

and its parameters representing difference of thermal response.

3.3.1 Detail of Two-node Model

Our method uses the two-node model originally proposed by Gagge et al. [26]. As indicated by its

name, the model regards a human body as a combination of two nodes: the core and the skin node.

The human body generally produces heat inside body (i.e., the core node), and then it emits heat from

its surface (i.e., the skin node) to the ambient air by increase of skin blood flow and sweat evaporation.
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General Equations in the Two-node Model

The model denotes the temperature of the core node as Tcore, and that of the skin node as Tskin. With

two fundamental equations as below, it simulates these body temperatures which chronologically vary

by the environmental factors and/or exercise workload.

Tcore
t = Tcore

t−1 +∆Tcore
t−1, (3.4)

Tskin
t = Tskin

t−1 +∆Tskin
t−1. (3.5)

Here, ∆Tcore and ∆Tskin indicate changes of core and skin temperatures per unit time (we use 1

minute). The model repeats these calculation of ∆Tcore and ∆Tskin for each time unit, and estimates

the continuous changes of both temperatures. We note that we set the measured tympanic and skin

temperatures to Tcore
0 and Tskin

0 as the initial values instead of fixed values (36.6◦C, 34.1◦C) used

in the Gagge’s proposal. Temperature changes of each node are defined as below.

∆Tcore =
M −W − qres − (qcond + qblo)Abody

mcore · ccore
, (3.6)

∆Tskin =
(qcond + qblo − qrsw − qdiff − qconv − qrad)Abody

mskin · cskin
. (3.7)

In these equations, the change of temperature is calculated by dividing the sum of received and released

heat energy by the product of the node weight and its specific heat. In short, the heat is produced by

metabolism, then some of the heat is transferred to the skin node via blood flow and direct conduction,

thereafter the remaining heat energy is used for rise of temperature in the core node (equation (3.6)).

Similarly, the received heat in the skin node is emitted to the ambient air by the convection, radiation,

sweat evaporation and water diffusion from skin surface, and remained heat energy is used for rise of

temperature in the skin node (equation (3.7)). Hereafter, we further describe each component in these

equations. We note that we highlight the given values and we omit the superscript t indicating time

for simplicity, whenever it is unnecessary .

Heat Energy Calculation in the Core Node

The heat energy in the core node consists of (1) heat gain by metabolic heat production M , (2) energy

used for physical activity W , (3) heat emission to the ambient air by respiration qres, (4) heat transfer

to the skin node by direct conduction qcond, (5) heat transfer to the skin node via blood flow qblo. The

heat production M and the energy used for exercise W are the values to be given manually, accordingly

we describe them in the next section. The other factors are defined as follows.

The heat loss by respiration qres :

qres = 0.0023 ·M(44− φair · Pair), (3.8)

where the humidity φair is given by the sensor measurement and the saturated vapor pressure of the

ambient air Pair is calculated with use of the air temperature (see the next section).
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The heat loss by direct conduction qcond :

qcond = Kmin · (Tcore − Tskin). (3.9)

Here Kmin means the minimum thermal conductance of the skin node. This equation indicates the

heat transfer increases according to large gradient of the temperatures for the both nodes.

The heat loss by blood flow qblo :

qblo = cblo · Vblo · (Tcore − Tskin), (3.10)

Vblo =
6.3 + 75 · (Tcore − Tcore

0)

1 + 0.5 · (Tskin
0 − Tskin)

. (3.11)

where the heat loss is represented as the product of the specific heat of blood, the volume of skin

blood flow, and the gradient of the temperatures of the two nodes. The amount of skin blood flow

Vblo increases according to the rise of core temperature. Note that increase of Tskin does not affect

Vblo by regarding (Tskin
0 − Tskin) as zero if (Tskin ≥ Tskin

0). These equations mean the blood flow

rate increases according to rise of core temperature, then the increase of the skin blood flow makes

large heat transfer from the core node to the skin node. In summary, the heat energy increases by

metabolism (e.g., intense exercise), then the heat energy is transferred to the skin node due to the

gradient of the temperatures of the both nodes. At the same time, the human body increases its blood

flow on the skin surface to efficiently emit the heat energy from the core node to the skin node.

Heat Energy Calculation in the Skin Node

The heat energy calculation in the skin node is composed of (1) heat transfer from the core node by

direct conduction qcond, (2) heat transfer from the core node via blood flow qblo, (3) heat emission

by sweat evaporation qrsw, (4) heat emission by water diffusion on the skin surface qdiff , (5) heat

exchange with the ambient air qconv, (6) heat emission from the skin surface to the air by radiation

qrad. The components (1) and (2) were already described in the above, we describe the rest as below.

The heat loss by sweating qrsw :

qrsw = min(q′rsw, 0.94 · Emax), (3.12)

q′rsw = 0.7 ·mrsw · 2(Tskin−Tskin
0)/3, (3.13)

mrsw = {250(Tcore − Tcore
0) + 100(Tcore − Tcore

0)(Tskin − Tskin
0)} · 1

1000
, (3.14)

Emax = 2.2 · hconv · (Pskin − φair · Pair) · Fpcl. (3.15)

Where q′rsw and Emax are ideal heat loss by sweating and theoretical maximum heat loss by water

evaporation on the skin surface, respectively. This means the sweating is capable to make much

heat lost from skin surface, meanwhile its capability is limited if the skin surface becomes entirely wet.

Whenever q′rsw does not exceed 0.94·Emax, the actual heat loss qrsw by sweat is equal to q′rsw, otherwise

the sweat evaporation rate saturates and the heat loss never exceeds 0.94 ·Emax. q′rsw is calculated by
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Table 3.2: Constants

description variable value

skin specific heat capacity cskin 0.97

core specific heat capacity ccore 0.97

blood specific heat capacity cblo 1.163

minimum skin thermal conductance Kmin 5.28

convective heat transfer coefficient hconv 4.3

radiation heat exchange coefficient hrad 5.23

efficiency for the passage of dry heat Fcl 0.53

permeation efficiency factor Fpcl 0.73

observing the amount of sweat mrsw and the balance of the skin temperature against its initial value.

The amount of sweat mrsw becomes larger when the core temperature and the skin temperature make

large gradient against their initial values. In equation (3.14), the first term indicates sweat increase by

exercise and the second means basic sweat increase. Emax is assessed by the environmental contexts,

where hconv means the efficiency of heat transfer by convection between the skin and the air, Fpcl is a

permeation efficiency factor, and Pskin denotes saturated vapor pressure on the skin surface.

The heat loss by insensible water-diffusion qdiff :

qdiff = 0.06 · Emax. (3.16)

This is the heat loss due to moisture always lost from the skin surface.

The combined heat transfer by convection and radiation qconv, qrad :

qconv + qrad = htotal · (Tskin − Tair) · Fcl, (3.17)

htotal = hconv + hrad. (3.18)

The first equation means the heat is transferred from the skin to the air by observing the combined

efficiency of convection and radiation, and the gradient of the tempeature between the skin surface

and the air. Fcl indicates efficiency for the passage of dry heat from the skin surface through clothing

to the air. We note that both of Fpcl and Fcl depend on the clothing insulation, but these values are

fixed in our experiments in which we used similar types of clothing.

In these equations, we used the constant values defined in Table 3.2.

3.3.2 Manual Inputs to the Model

Here we elaborate on the essential inputs for the model described above. All the essential input values

are summarize in Table 3.3 to 3.5.

Firstly, we give user’s physical characteristics: the total area of the skin surface Abody, the body
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mass of the core node mcore, that of the skin node mskin as follows.

Abody = weight0.425 · height0.715 · 71.84
10000

, (3.19)

mcore = weight · 0.95, (3.20)

mskin = weight · 0.05. (3.21)

The total surface area Abody is assessed based on the subject’s height and weight manually given [68].

The mass of each node is calculated from the total body mass [32].

Secondly, using measured heart rate (heartrate), the metabolic heat production is defined as

following. Metabolic heat production M in equation (3.6) is estimated based on oxygen consumption

V O2 derived from heart rate.

M = V O2 ·weight · 5

1000
· 1000 · 4.186

60
, (3.22)

V O2 = V O2max · %V O2R

100
, (3.23)

V O2max = 15 · maxHR

restHR
, (3.24)

%V O2R = 0.95 ·%HRR+ 6.8, (3.25)

maxHR = 208.7− 0.7 · age, (3.26)

%HRR =
heartrate− restHR

maxHR− restHR
· 100. (3.27)

M is basically a product of mass-specific oxygen consumption V O2 and body weight (weight). The

rest of equation (3.22) indicates unit conversion: firstly transferred from milliliter/minute to kilo-

calorie/minute by multiplying 5
1000 according to reference [69], then converted kilocalorie/minute to

Watt by multiplying 1000·4.186
60 . The mass-specific oxygen consumption V O2 is calculated by equations

(3.23) and (3.24) where the maximum oxygen consumption V O2max derived from [70] is multiplied by

%V O2R. %V O2R indicates the oxygen consumption rate against its maximum value and is approxi-

mated by using the heart rate reserve %HRR as (3.27). %HRR is derived from the current heart rate

(heartrate), the maximum heart rate maxHR (3.26), and resting heart rate restHR according to

[71, 72, 73].

Thirdly, the kinetic energy used for exercise W in equation (3.6) is calculated as the production of

the metabolic heat energy M and kinetic energy efficiency ∆eff :

W = M ·∆eff . (3.28)

∆eff is a specific value for each exercise, for instance, 0.40 in walking, 0.44∼0.54 in running, and 0.23

in biking [74, 75].

Finally, the saturated vapor pressure due to skin temperature Pskin and ambient air temperature

Pair are calculated by reference [76] as below.

Pskin = 6.11 · 10(7.5·Tskin/(Tskin+237.3)), (3.29)

Pair = 6.11 · 10(7.5·Tair/(Tair+237.3)). (3.30)
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Table 3.3: Manual input

variable description

weight Subject’s Body Weight

height Subject’s Body Height

restHR Measured Resting Heart rate

age Subject’s Age

Tcore
0 Initial Core Temperature (measured by [7] or [77])

∆eff Kinetic Energy Efficiency of Exercise

Table 3.4: Input by wearable sensors [2]

variable description

Tskin
0 Initial Skin Temperature

heartrate Measured Heart rate

Table 3.5: Input by environmental sensors [3]

variable description

Tair Measured Air Temperature

φair Measured Air Humidity

3.3.3 Thermal Response Parameters

For more precise simulation of human thermoregulation, Takada et al. have introduced individual

parameters to some equations of Gagge’s model [32]. They replaced constant values defined in equa-

tions (3.11) and (3.14) to variable parameters in order to represent the difference of the thermal

regulation system (i.e., sweating and blood flow increase) for each person. Given the parameters

pr1, pr2, pr3, pr4, pr5, pr6, equations (3.11) and (3.14) are redefined as below.

mrsw = pr3 · (Tcore − pr1) · (Tskin − pr2) ·
1

1000
, (3.31)

Vblo =
pr4 + pr5 · (Tcore − pr1)

1 + pr6 · (pr2 − Tskin)
. (3.32)

However, these equations are not suitable for our scenario (i.e. exercise in hot environment) because of

the following reasons: (1) the term in equation (3.31) describes only the sweat production during rest;

(2) the denominator of equation (3.32) represents vasoconstriction response in cold environment, which

never happens in hot environment; (3) the parameters pr1, pr2 mean the initial values of core and skin

temperature, however they are given by measuring these temperatures before exercise. Therefore, we

do not use their original proposal, rather refine their equations to suit our scenario by using parameters
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Table 3.6: Details of outdoor walking

Date August 13-21, September 1-5 (10 Days)

Time 1 hour between 13:00-15:00

Subject 6 males and 1 female

Location Sidewalk around Expo’70 Commemorative Park

Exercise Walking at 5km/hour

Measured data
Wrist skin temperature, Heart rate, Core temperature (eardrum)

Ambient temperature, Ambient humidity, Solar radiation

Weather 5 Days of Sunny and 5 Days of Cloudy

Temperature 31.2± 3.9 [℃] (Mean±SD)

Humidity 61.0± 13.1 [% ] (Mean±SD)

Table 3.7: Subject information

ID Age Height[cm] Weight[kg] Gender
A 23 178 78 male
B 22 172 80 male
C 24 163 63 male
D 22 179 80 male
E 24 160 48 female
F 23 177 80 male
G 23 174 98 male

α1,α2,α3,α4 and measured initial temperatures Tcore
0, Tskin

0 as below.

Vblo = α1 + α2 · (Tcore − Tcore
0), (3.33)

mrsw = {α3 · (Tcore − Tcore
0) + α4 · (Tcore − Tcore

0) · (Tskin − Tskin
0)} · 1

1000
. (3.34)

We here added α3 in the same manner as α4 to reproduce the sweating response during exercise

as described in Gagge’s model [26]. Also we simplified equation (4.5) by omitting vasoconstriction

response. As described in Section 3.2, these four parameters will be optimized by observing a change

of the skin temperature during exercise.

3.4 Performance Evaluation

3.4.1 Environment and Settings

We have evaluated the proposed method through real experiments where totally 52 exercise instances

were collected in heat environment. Seven participants collected 1-hour walking exercise under the

condition described in Table 3.6. The subjects consist of six males and one female as summarized in
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Table 3.7. They wore Basis [2] smartwatch on their wrists to measure both skin temperature and heart

rate and performed exercise for 60 minutes. Also they wore a tympanic thermometer DBTL-2 [7] to

measure their tympanic temperature as the ground truth of core temperature. Note that we can safely

measure the tympanic temperature by an infrared thermometer during walking since the exercise does

not involve body contacts, despite the sensor requires to insert a measurement probe into an ear. They

wore the similar clothes to set clothing-related parameters in the two-node model, and one of them

bring an environmental sensor WBGT-203B[3] to measure temperature and humidity of the ambient

air and a solar radiation sensor ML-01[78] to measure actual solar radiation during walking.

We used the absolute error averaged over time as a metric of performance to represent error at

time t as:
1

t
·

t∑

i=1

|Tcore
i(θopt)− ˆTcore

i|,

where ˆTcore
i indicates the core temperature actually measured at time i. This metric means the

similarity of the core temperature curve over time to the ground truth. In other words, it represents

how well the estimation reproduces the real human response.

Hereafter, we name our method as PROP for simplicity. For comparing PROP with other methods

of parameter calibration, we introduce these two methods: (1) DEF: using standard parameters of the

model (i.e., using default values as proposed by Gagge et al.), (2) OPT: using the optimal parameters

based on actual core temperature (i.e., this shows the minimum error against ground truth), We

note that OPT is the case of determining individual parameter set which achieves the minimum error

against actual core temperature, despite the core temperature cannot be measured in the real scenario.

Therefore, OPT indicates the theoretical minimum error achievable with the two-node model and its

parameters. We introduce DEF to show the effectiveness of our method (i.e., the effect of calibrated

parameters against using the their original values).

Finally, we measured the computation time for parameter calibration throughout 3,200 candidates

of parameter set for 60-minute exercise using a workstation with Intel Xeon 2.66 GHz and 23.6 GB

memory. It proves the average computation time for parameter calibration is about 1 second, high-

lighting our method is enough for the usage in real-time.

3.4.2 Result

We firstly evaluate the final performance of the method, namely the average error after 60-minute

exercise finished. Figure 3.4 illustrates mean absolute error of PROP, OPT and DEF for subject A.

This indicates PROP can reduce overall error by detecting better parameter set than DEF. It also

shows an instance (2 Sept.) in which PROP gets worse than DEF. This infers our method may fail

to find the better parameter set when the optimal parameter set is almost equivalent to default one.

Nonetheless, the effect of wrongly determined parameter set is limited. We confirmed that PROP have

worked better than DEF through almost all instances of seven subjects.

35



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8/13 8/18 8/19 8/20 8/21 9/1 9/2 9/3 9/4 9/5

PROP
OPT
DEF

!"#$!

%
$"
&'
"(

)*
+,
#$
'$
--
*-
'."

/!
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Figure 3.5: Average estimation error vs. calibration time

Next, we discuss the relationship between the time-course for calibration and the estimation error

while varying the length of dataset used for calibration. Figure 3.5 illustrates the relationship between

the averaged absolute error and 10- to 60- minute data length. We find the average error of DEF

increases over time, despite the parameter set is fixed. It is also expectable that the error of DEF will

be further greater in over 60-minute exercise. This is due to the two-node model itself which could not

reproduce the actual transition of core temperature well. Evidently, OPT also shows inevitable error

(0.18 ◦C) between the two-node model and ground truth. Nevertheless, each method shows different

error according to time course due to different capability of parameter calibration. The error of PROP
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is larger than DEF immediately after exercise start due to wrongly calibrated parameters by small

instances. In contrast, PROP shows that the error converges to 0.24 ◦C after 40 minutes, suggesting

PROP could choose better parameter set than using default values. When 60 minutes elapsed, PROP

shows error as 0.24 ◦C which is 12% error mitigation against that of DEF. Consequently, PROP

achieves the smaller error compared to DEF, when the longer dataset is given for calibration. We also

confirmed that the overall performance (i.e., average error after 60 minutes elapsed) of PROP, OPT

and DEF were 0.04 ± 0.38◦C, 0.03 ± 0.25◦C and −0.22 ± 0.36◦C. From these results, we confirmed

the advantage of PROP for online parameter calibration by observing the change of skin temperature.

3.5 Conclusion

This chapter described our proposal to estimate human core body temperature based on the two-node

model. Our method employs wrist-worn devices to measure the skin temperature and heart rate, and

then observes the change of skin temperature to determine the optimal parameter set of the two-node

model. The optimal parameter set is determined by comparing the measured skin temperature and

each of exhaustively generated 3,200 skin temperatures. The evaluation results show our method is

capable to improve the performance by 12% at most compared with using the default parameter set

in 60-minute outdoor walking exercise. It also proved our method could find the best combination the

parameter within 1 minute, highlighting capability for usage in real-time. We note that some contents

in this chapter refer our previous publications [79, 80, 81].
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Chapter 4

Core Temperature Estimation in
Complex Environment and Exercise

4.1 Introduction

In recent decades, the threat of global warming and catastrophic heat waves has triggered immense

interest in heat stroke. Heat stroke causes severe health disorders that sometimes lead to death.

To prevent heatstroke, health manuals are provided by World Health Organization (WHO) [4]. En-

vironmental heat indices such as the wet bulb globe temperature (WBGT) and standard effective

temperature (SET) can also evaluate the heat stress and provide guidelines for outdoor work and

exercise. However, these approaches remain insufficient, thus the number of heat stroke patients has

not decreased in recent years.

These methods fail mainly because environmental indicators cannot account for the rising core

temperature inside human bodies. High core temperature is a fundamental precursor of heat stroke

[5], but cannot be measured during exercise because core temperature is usually measured as the rectal,

tympanic or esophageal temperature. In other words, it requires invasive thermometers and clinical

authorization. Sensors that measure core temperature without clinical authorization have been recently

released. For instance, CorTemp [6], a wireless ingestible thermometer, can continuously measure the

core temperature, and the 3M SpotOn System [8] measures the core temperature indirectly by a probe

placed on the forehead. However, CorTemp uses disposable sensors that are costly to replace, and

3M SpotOn System requires a wired control unit. Therefore, neither of these sensors are suitable for

daily core-temperature monitoring. DBTL-2 [7] measures the tympanic temperature by an infrared

thermometer probe, but continuous insertion of a measurement probe is disallowed in situations such

as contact sports, in which players collide with each other.

Therefore, the core temperature during exercise should be estimated only from the available in-

formation. Several recent methods have estimated the core temperature using non-invasive sensors.

Combining heart rate observations with a Kalman filter, Buller et al. estimated core temperatures
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as hidden states [9]. The root mean squared error of their algorithm (over multiple datasets) was

0.21 ◦C. However, as acknowledged by the authors, this algorithm must overcome several challenges.

First it must measure the actual core temperature by ingestible pills to determine the optimal bias (a

model parameter). The bias must then be calibrated to suit the subject’s age and fitness level. Yabuki

et al. proposed a heat stroke alert system for outdoor workers that integrates computational fluid

dynamics (CFD), sun and shade simulations and a core temperature estimation model [10]. Neverthe-

less, the three-dimensional CFD, sun and shade model must be constructed and simulated beforehand.

Although these approaches estimate the core temperature with non-invasive sensors, they inevitably

require preliminary investigation of the bias or the environment.

To solve the above problems, we have proposed a core temperature estimation method that inte-

grates a Gagge’s two-node model with wearable and environmental sensor measurements [79, 80, 81].

The method does not calibrate four parameters in advance. Instead, it instantly calibrates the four

parameters by comparing the actual and simulated skin temperatures. We found the method could

reasonably estimate the core body temperature during simple exercise, but the skin temperature for

the calibration had to be measured for over 40 minutes and the parameters were difficult to estimate

during complex exercise with variable intensity (e.g., ergometer exercise with variable intensity).

To address these challenges, we propose a novel method for core temperature estimation that sat-

isfies the following requirements: (1) the core temperature is estimated by non-invasive sensors and

minimal measurements; (2) on-site and lightweight calibration; (3) applicability to complex exercises

involving warming up, practice, games, breaks, and other activities. Our method is based on Gagge’s

model and computes the core and skin temperature from the measurements of wearable and envi-

ronmental sensors. For reproducing the human thermal response to variable exercise intensity, we

represent the different thermal responses (i.e., the speed of sweating and blood flow response, and the

delay of heat transfer between core and skin nodes) by two parameters. The effort for calibration is

reduced by an on-site calibration method that samples the actual core temperature during breaks.

Our method was evaluated in real experiments conducted over more than 120 hours. The experi-

mental activities included walking, running, biking, and tennis. Throughout rigorous evaluation using

these datasets, we confirmed our method successfully estimated the core temperature with an average

absolute error between 0.20 and 0.30 ◦C. We also developed a prototype of heat stroke caution sys-

tem which notifies high core temperature in a particular threshold. It is evaluated through walking,

running and biking datasets, and the performance of its notification (allowing 5-minute error against

the actual timing) is proven as 0.514 precision and 1.0 recall in biking, 0.965 precision and 0.899 recall

in running and walking.

Our contributions are summarized as below.

(1) The difference between the actual and simulated core temperatures is represented by two pa-

rameters. Our core temperature estimation method is applicable to complex exercise (interval

running and walking, biking with variable exercise intensities and tennis practice).
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(2) Our parameter calibration method is suitable for real exercise, which requires quick measurement

of core temperature during breaks. The measurement is carried out within 15 seconds by a

commercial-off-the-shelf infrared thermometer.

(3) To adapt Gagge’s model to our scenario, we carefully integrate the effects of solar radiation,

wind, and water ingestion into the original Gagge’s model.

(4) The prototype of a heat stroke alert system shows moderate precision and recall even for com-

plicated exercise data sets including walking, running and biking with interval breaks.

The rest of this chapter is structured as follows. We describe the method for instant calibration of six

parameters in section 4.2. Various extensions to Gagge’s two-node model are presented in section 4.3.

Section 4.4 evaluates our proposed method in real experiments extending over 120 hours. A prototype

of heat stroke alert system will be demonstrated in Section 4.5. Finally, section 4.6 concludes the

chapter.

4.2 Improved Method for Core Temperature Estimation

In this section, we firstly describe the core temperature estimation and parameter calibration in our

scenario. Then we briefly describe the fundamentals of Gagge’s two-node model used in the core

temperature simulation. Thereafter, we describe the parameters representing the thermoregulation

differences. Finally, we describe the calibration method for the model parameters.

4.2.1 Use Scenario

Figure 4.1 illustrates the overall flow of our core temperature estimation during exercise, based on

Gagge’s two-node model with parameter calibration. In our scenario, subjects exercise with wearable

sensors that measure their heart rates and skin temperatures. The ambient temperature, humidity

and solar radiation are measured by environmental sensors deployed in the exercise field. To start

the temperature simulation, we input the static information of the subjects (age, height, weight, and

resting heart rate) and other information (clothing insulation, initial core temperature, and kinetic

energy efficiency of the exercise) as described in Section 3.3.

After launching the simulation, we continuously input the sensor measurements (i.e., air tempera-

ture, humidity, solar radiation and heart rate) to Gagge’s model for sequential prediction of the core

temperature. These steps constitute the whole procedure of core temperature estimation. We also

propose several extensions to Gagge’s model. Specifically, we add three important heat transfer fac-

tors: solar radiation which increases the skin temperature, wind which assists heat transfer from the

skin surface to the ambient air, and cold water intake which reduces the core temperature. We note

that consideration of solar radiation is more precisely than that proposed in Chapter 3, namely we

here consider the effect of human posture and clothing.
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Figure 4.1: Scenario

4.2.2 Temperature Simulation by Gagge’s Two-node Model

We here briefly summarize the essential equations in Gagge’s two-node model. As previously described

in Figure 3.1, the model approximates the human body as a sphere composed of the core node and

the skin node. The skin and core node temperatures are simulated by calculating the heat transferred

between two nodes and the ambient air. The two-node model is simpler than other multi-node models,

as it contains fewer nodes [29]. The model updates the initial core and skin temperatures (which must

be given in advance) based on the heat transfer between two nodes and the ambient air per unit time.

The details of Gagge’s model and the application procedure of the sensor data are provided in Section

3.3. We here show the fundamental equations as below.

∆Tcore =
M −W − qres − (qcond + qblo)Abody

mcore · ccore
, (4.1)

∆Tskin =
(qcond + qblo − qrsw − qdiff − qconv − qrad)Abody

mskin · cskin
. (4.2)

Equations (4.1) and (4.2) respectively calculate the change of core temperature ∆Tcore and skin tem-

perature ∆Tskin per unit time. The core and skin temperatures at time t are computed as follows:

Tcore
t = Tcore

t−1 +∆Tcore
t−1, (4.3)

Tskin
t = Tskin

t−1 +∆Tskin
t−1. (4.4)

By repeating these calculations, the model simulates the continuous changes of both temperatures.
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4.2.3 Parameters Representing Difference of Thermoregulation

Despite its simplicity, Gagge’s two-node model performs accurately when the individual parameters

are appropriately given. Takada et al. introduced six parameters in two equations that account

for individual differences in thermoregulation function [32]. In our study [80, 81], we modified their

equations to suit our scenario: the initial core and skin temperatures are measured and the sweating

response to exercise is represented by a new parameter. The refined equations are follows.

Vblo
t = α1 + α2 · (Tcore

t − Tcore
0), (4.5)

mrsw
t = {α3 · (Tcore

t − Tcore
0) + α4 · (Tcore

t − Tcore
0) · (Tskin

t − Tskin
0)} · 10−3. (4.6)

In these equations, the volume of skin blood flow and the amount of sweat increase when the core and

the skin temperatures rise due to exercise and/or hot environment. The four parameters α1,α2,α3,α4

represent the difference in the increasing speed of blood flow and sweat. Although this approach

achieved performance improve on the core temperature estimation in the exercise with constant load,

it did not showed performance improve in complex exercises.

To address this challenge, we propose two additional parameters that reproduce the actual core

temperature response during complex exercise with variable intensity. With new parameters β1 and β2,

we define the equations of skin blood flow Vblo
t, sweat amount mrsw

t, and metabolic heat production

M t at time t as below.

Vblo
t = α1 + α2 · (Tcore

t−β2 − Tcore
0), (4.7)

mrsw
t = α3 · (Tcore

t−β2 − Tcore
0) + α4 · (Tcore

t−β2 − Tcore
0) · (Tskin

t−β2 − Tskin
0), (4.8)

M t =
1

β1
·

t∑

j=t−β1+1

M j (4.9)

The detail of these equations and parameters β1,β2 is described in section 4.3.1. These parameters are

calibrated using occasional measurements of actual core temperature, as described in section 4.2.4.

4.2.4 Parameter Calibration

The parameter calibration method improves the accuracy of the estimation. In our previous studies

[79, 80], we proposed a calibration method that is suitable for exercise. The calibration criterion is

the actual skin temperature. However, we found two shortcomings in the method: (1) the calibration

requires over 40-minute measurements of skin temperature and (2) an effective parameter set is not

always found, because the skin and core temperatures respond differently to the various phases of

complex exercise.

To address these issues, this chapter proposes a new calibration method requiring only occasional

measurements of core temperature. During warm-ups and breaks, the core temperature can be mea-

sured by an infrared tympanic thermometer such as [77]. The infrared thermometer provides quick and
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easy measurements. To minimize the burden to users, our approach calibrates all parameters using a

single measured core temperature. The parameters are calibrated as follows. Suppose that unit time t

has elapsed since the start of an exercise session. The static information and the sensor measurements

at times 0 to t − 1 are input to the model. Then, given a set θi of individual parameter values, the

two-node model estimates the following sequence Tcore(θi) of core temperatures at each unit time.

Tcore(θi) = {Tcore
0, . . . , Tcore

t(θi)}, (4.10)

where Tcore
j(θi) denotes the estimated core temperature at time j for a given individual parameter set

θi . The optimal parameter set θopt minimizes the squared error between the simulated and measured

core temperatures:

θopt = arg min
θi

∑

j∈tmeasure

(Tcore
j(θi)− ˆTcore

j)2. (4.11)

In this equation, ˆTcore
j means the actual core temperature measured at time j, and tmeasure is a set of

times at which the core temperature is measured. Note that the number ∥tmeasure∥ of measured core

temperatures can vary in different situations. We used only one measurement through our experiments

for minimizing user’s effort. Tcore
t(θopt) is the estimation result.

4.3 Extended Two-node Model

This section proposes various modifications to Gagge’s two-node model. These modifications correct

for several factors that deviate the simulated core temperature from the real one. The extended model

includes (1) the delay of thermal response and heat transfer, (2) solar radiation, (3) wind, and (4)

water ingestion. These extensions, along with the modifications to equations (4.1), (4.2), (4.5), and

(4.6) of Gagge’s two-node model, are summarized in Table 4.1. Equations (A-1), (B-1), (B-2), (C-1),

and (D-1) in Table 4.1 are newly included in our extended model.

4.3.1 Representing Delay of Thermal Response

Figure 4.2 depicts the core temperatures (1) measured by the infrared sensor, (2) simulated by the

original Gagge’s model, and (3) simulated by our extended Gagge’s model. The core temperatures

in cases (1) and (2) deviate markedly, especially when subjects were resting. In Gagge’s model, the

subject’s metabolism is indicated by heart rate; therefore, it immediately decreases at the start of a

rest period. The core temperature also immediately decreases because the heat production declines.

However, the human body does not respond in this way. Instead, it maintains a high temperature

and sweats for a few minutes after the exercise is finished. Figure 4.2 also shows the initial fall of the

actual core temperature, which was earlier reported in [82]. The authors of [83] argued that the core

temperature initially falls by reflux blood from muscle, whose temperature is regularly lower than that

of central blood. However, the initial fall was absent in some of our samples. Therefore, we conclude
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Table 4.1: Equations of extended two-node model

Delay of Response (Sec.4.3.1)

(4.1′) ∆Tcore =
1

mcoreccore
· {M ′ −W − qres − (qcond + qblo) ·Abody − qwater}

(A-1) M ′ =
1

β1
·

t∑

j=t−β1+1

M j

(4.5′) Vblo
t = α1 + α2 · (Tcore

t−β2 − Tcore
0)

(4.6′) mrsw
t = {α3 · (Tcore

t−β2 − Tcore
0) + α4 · (Tcore

t−β2 − Tcore
0) · (Tskin

t−β2 − Tskin
0)} · 1

1000

Solar Radiation (Sec.4.3.2)

(4.2′) ∆Tskin =
1

mskincskin
· {(qcond + qblo − qrsw − qdiff − qconv − qrad) ·Abody + qsolar}

(B-1) qsolar = a ·Ap · Jsolar
(B-2) Ap = feff · fp · fcl ·Abody

Wind (Sec.4.3.3)

(C-1) hconv = 13.36 · v0.6

Water Ingestion (Sec.4.3.4)

(D-1) qwater = mwater · cwater · (Tcore
t − Twater)

that our model is not easily modified by a biological approach. Instead, we introduce a flexible and

simple delay model that accounts for the initial fall and the discrepancy between the real and modeled

data as described above. The delay model includes two delay parameters, β1 and β2. β1 is the window

size that delays the heat production M of the body. This parameter ensures the correct response when

a subject starts to rest.

The heat production is delayed by a sliding window of size β1. The larger the parameter, the

greater the delay of thermal response of metabolism (see Eqs. (4.1′) and (A-1) in Table 4.1). The

parameter β2 considers the delay of the subject’s thermal response (sweating and blood flow increase;

see Eqs. (4.5′) and (4.6′)). In Gagge’s two-node model, the subject’s sweating and blood flow rate

are computed from the increments in core and skin temperatures from their initial values. This model

responds quickly to a temperature rise, but the response is much faster than the actual response.

Hence, we simply delay the calculation of the sweating mrsw
t and blood flow rate Vblo

t parameters at

time t using the core and skin temperatures β2 minutes ago. Namely, we calculate Vblo
t, mrsw

t based

on the core temperature Tcore
t−β2 and the skin temperature Tskin

t−β2 as described in Eqs. (4.5′) and

(4.6′). Note that Tcore
j (j < 0) equals Tcore

0 .

These parameters, and the other parameters (α1, α2, α3, α4 in Eqs. (4.5′) and (4.6′)), depend

on the physical conditions, which vary on a daily basis. Hence, we optimize these parameters in
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Figure 4.2: Discrepancy between simulated and measured core temperatures during a running exercise
with breaks

our calibration. To determine the appropriate parameter ranges, we experimentally investigate the

distributions of the calibrated β1 and β2 based on the dataset described in section V-B. The initial

ranges of β1 and β2 were 1–15 and 0–10, respectively. We conducted exhaustive thermal simulations

of 165 parameter combinations. The other individual parameters (α1 to α4) were fixed at their default

values. The cumulative distributions of the optimal delay parameters β1 and β2 were calculated by

Eq. (4.11) and are plotted in Figure 4.3. To balance accuracy and complexity (number of parameter

candidates), we adjusted the range to 1–12 for β1 and 0–5 for β2. Both ranges cover 85% of the optimal

parameters, but reduce the parameter combination size to 72. These delay parameters, and the four

individual parameters described in section 4.2.4, were calibrated in the evaluation.

4.3.2 Consideration of Solar Radiation

Gagge’s two-node model excludes the heat input from solar radiation, which significantly raises the

skin temperature. To ensure that our model is applicable to both indoor and outdoor exercise, we

integrate the amount of heat qsolar absorbed by the skin nodes under direct solar radiation into the

two-node model. We note that we tried to combine the energy received by solar radiation to Gagge’s

model in our previous study [80], however the method could not consider the human attitude and

worn clothing covering the skin surface. In contrast, we here consider the effect of solar absorption

with original human shape wearing clothing. The heat energy qsolar of solar radiation was defined in

[66], and is given by Eqs. (B-1) and (B-2) in Table 4.1. The variables a, Ap, and Jsolar in Eq. (B-1)

represent the solar absorption coefficient of skin, the projected area of the original human surface,
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Figure 4.3: Distribution of optimal delay parameters

and the solar radiation power (measured by solar sensors), respectively. a is defined as in [84]. In

Eq. (B-2), the projected area Ap is derived from the total surface area Abody of the human body, and

the coefficients feff , fp, and fcl. During standing, the effective radiation area factor feff has been

inferred as 0.725 [66], and the projected area factor fp has been reported as 0.85 [85]. Considering the

clothing worn by participants in our experiments, the ratio fcl of unclothed skin surface (relative to

total skin surface area) was set to 0.4.

4.3.3 Wind Effect

Although Gagge’s model includes a sweating function, our experiments confirmed that it insufficiently

models the heat lost by sweating during exercise. In the actual dataset described in section 4.4.2, the

simulated heat loss by sweating saturated in over 48% of our outdoor experimental samples. However,

this result is unnatural because it ignores the wind in real environments. Wind enhances the heat

exchange between the skin surface and ambient air. Gagge’s model represents the heat exchange by a

fixed convection coefficient hconv, although it depends on the wind velocity v [m/sec] (see [86] and Eq.

(C-1) in Table 4.1). However, the speed of natural wind is difficult to measure as it largely depends on

location and the surrounding buildings. Therefore, we consider the relative wind during the subject’s

movement (e.g., walking and running). The subject’s speed is easily estimated from the distance

traveled in a given time. Based on our experimental settings (section 4.4.2), we set v to 1.4 m/sec
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Figure 4.4: Detailed consideration of solar radiation

for walking and 2.5 m/s for running. After this modification, hconv during walking and running was

improved by 386% and 547%, respectively, over the default value. The relative wind velocity increases

the maximum heat loss of sweating.

4.3.4 Decreasing Temperature by Drinking Water

In hot environments, we usually reduce our skin and core temperatures by drinking water and taking

a rest. The authors of [87] compared the core temperatures of water-drinking and non-water-drinking

subjects during exercise. By considering the temperature difference between water and the core nodes,

they inferred that water intake encourages heat emission by sweat production, and that cold water

ingestion reduces the core body heat. As Gagge’s model assumes a continuously active sweating

function, we consider only the heat lost by cold water ingestion. This heat transfer is described by

a thermal energy formula as Eq. (D-1), in which cwater, mwater and Twater denote the specific heat

of water, the amount of water ingestion and the water temperature, respectively. To alter the core

temperature by this mechanism, we added the heat loss by cold water ingestion qwater as Eq. (4.1′).
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4.4 Evaluation

4.4.1 Settings

Sensors

The proposed method was evaluated in walking, running, biking, and tennis practice experiments. In

all exercises, the initial skin temperatures and heart rates of the subjects were measured by a Basis

Peak [2] sensor worn on the wrist. The core temperature was assumed as the tympanic temperature

measured by a DBTL-2 [7] or MC-510 [77]. During walking, running, and biking (which involve no body

contacts), the tympanic temperature was continuously measured by a DBTL-2 measurement probe

with an infrared thermometer. In tennis practice, subjects were requested to occasionally measure

their tympanic temperature by an MC-510, because the continuous insertion of measurement probes is

not appropriate in this exercise. The environmental information was measured by an ambient sensor

WBGT-203B [3]. We also deployed a solar radiation sensor ML-01 [78] for measuring the solar radiation

intensity.

Methods

As described in section 4.2.4, our method of six-parameter calibration requires at least one measurement

of the subject’s core temperature. Therefore, each sample was divided into two durations; one for

calibration, the other for evaluation. The former and latter durations are denoted as [0, t1] and

[t1, t2], respectively, where t1 is the time of measuring the core temperature by an infrared tympanic

thermometer. Using Eq. (4.11) and the parameter candidates in Table 4.2, the calibrated parameter

set θPROP in the proposed method is calculated as

θPROP = arg min
θi

(Tcore
t1(θi)− ˆTcore

t1)2. (4.12)

where Tcore
j and ˆTcore

j respectively denote the estimated core temperature at time j and the actual

core temperature measured at time j. Since we assume a single core temperature measurement at time

t1 in [0, t1], the actual core temperature is single-valued ( ˆTcore
t1). Hereafter, the proposed method is

named PROP. We also introduce two additional methods. First is the OPT method, which uses the

best parameter set determined by all core temperature measurements. This parameter set is given by

θOPT = arg min
θi

t2∑

j=0

(Tcore
j(θi)− ˆTcore

j)2. (4.13)

θOPT performs best because it uses all measured core temperatures in the calibration. Therefore, it

indicates the theoretical limit of the core temperatures estimated by the extended two-node model

with six parameters and calibration techniques. The other method, DEF, uses the default parameter

set proposed by Gagge et al. [26], which assesses the baseline performance of the core temperature

estimated by Gagge’s two-node model. Note that our Gagge’s two-node model integrates the extensions

proposed in section 4.3.
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Table 4.2: Ranges of individual parameters

Parameter Range # of candidates
α1 5.04 5.67 6.3 6.93 7.56 5
α2 22.5 · · · 45 · · · 75 8
α3 75 · · · 150 · · · 250 8
α4 30 · · · 100 110 120 10
β1 1 · · · 6 · · · 12 12
β2 0 · · · 3 · · · 5 6

Table 4.3: Details of walking and running experiments

Date July 28 - September 2 (10 Days)

Subject 6 males

Time 110 minutes between 12:00 and 15:00

Exercise 7.5 km Walking at 5km/hour & 10 km Running at 9km/hour

Measured data
Skin temperature, Heart rate, Core temperature (tympanic)

Ambient temperature, Ambient humidity, Solar radiation

Temperature 33.3± 2.9 [◦C] (Mean±SD)

Humidity 45.6± 15.7 [% ] (Mean±SD)

Error

As the performance metric, we employ the mean absolute error (MAE) of the core temperature in

[t1, t2]. This metric, given by

1

t2 − t1
·

t2∑

i=t1+1

|Tcore
i(θ)− ˆTcore

i|, (4.14)

computes the average distance between the estimated and measured core temperature curves.

4.4.2 Result in Walking and Running Experiments

We first evaluated the proposed method in real experiments conducted over 60 hours. In these experi-

ments, 34 datasets were collected in a warm environment. The details of the experiment are shown in

Table 4.3. The subjects were six males with average age, height, and weight of 22.8±0.8 y, 173.5±4.1

[cm] and 68.7± 8.1 [kg], respectively (where ± denotes standard deviation). Participants chose either

running or walking according to their condition, as shown in Figure 4.5. The highlighted lines in this

figure are the calibration durations. Figure 4.6 shows the route over which subjects were instructed

to walk 7.5 km (3 rounds × 3 sets = 9 rounds) with 2 breaks or run 10 km (3 rounds × 4 sets = 12

rounds) with 3 breaks. During each 10-minute break, subjects were allowed to drink up to 250 ml

of water at room temperature (= 30 ◦C) if needed. Based on [74], the kinetic energy efficiency ∆eff

was set to 0.40 for walking and 0.44–0.54 for running. ∆eff represents the ratio of metabolic energy
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consumed in exercise, relative to the total metabolic energy (Eq. (3.28) in Section 3.3).

Table 4.4 shows the overall errors in the walking and running experiments, along with their standard

deviations. The PROP method more successfully reduced the mean absolute error and standard

deviation than DEF, meaning that the calibrated parameters better reproduced the actual response

of the core temperature. The error of OPT in running was already satisfactory (0.20 ◦C), but the

accuracy of the proposed method is expected to improve with more measurements of core temperatures.

The error is larger in running than in walking because running raises the core temperature earlier and

higher than walking. Relative to DEF, the MAE of PROP was 13% (0.23–0.20 ◦C) lower in walking

and 30% (0.43–0.30 ◦C) lower in running. The errors in DEF confirm that Gagge’s model and

the default parameters are reasonable during walking (i.e., moderate exercise), but incur large error

(> 0.4◦C) during running (i.e., heavy exercise).

To reveal the details, we present the MAEs of each session in Tables 4.5 and 4.6. For example,
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Table 4.4: Mean absolute errors in walking and running datasets

Exercise PROP[◦C] OPT[◦C] DEF[◦C] # of dataset
Walk 0.20±0.16 0.14±0.12 0.23±0.16 9
Run 0.30±0.24 0.20±0.18 0.43±0.36 25
Overall 0.28±0.23 0.19±0.17 0.39±0.34 34

Table 4.5: Mean absolute error changes in walking dataset [◦C]

Method walk2 break2 walk3
PROP 0.19±0.15 0.16±0.12 0.21±0.18
OPT 0.14±0.12 0.12±0.08 0.14±0.13
DEF 0.19±0.14 0.31±0.14 0.25±0.16

Table 4.6: Mean absolute error changes in running dataset [◦C]

Method run2 break2 run3 break3 run4
PROP 0.33±0.24 0.20±0.17 0.33±0.26 0.25±0.21 0.33±0.25
OPT 0.21±0.18 0.20±0.17 0.19±0.17 0.21±0.18 0.21±0.18
DEF 0.30±0.24 0.56±0.43 0.47±0.38 0.53±0.38 0.41±0.34

walk3 in Table 4.5 means the third walking period, and break2 in Table 4.6 means the second break.

Note that walk1, rum1, and break1 are excluded because these durations are used in the calibration.

Tables Tables 4.5 and 4.6 confirm that the error is larger in DEF than in PROP and OPT, especially

during breaks. These results highlight the limitation of Gagge’s two-node model. The largeDEF errors

were successfully reduced by PROP and OPT, because the delay parameters reproduce the actual

core temperature response. However, the errors are larger in PROP than in OPT, especially during

exercise. This indicates the difficulty of estimating the core temperature rise from single measurements

of the actual core temperature.

4.4.3 Result in Biking

Next, the proposed method was evaluated on the dataset of seven subjects performing an indoor

ergometer exercise. The experimental details are presented in Table 4.7. The subjects were six males

and one female with average age, height and weight of 23.0 ± 0.8 y, 171.9 ± 7.5 [cm] and 75.3 ±
15.7 [kg], respectively (where ± denotes standard deviation). All participants performed the one-hour

ergometer exercise on six days, yielding 42 datasets. As shown in Figure 4.7, the exercise intensity

varied between 2.4 and 7.2 [W] in each five-minute interval. Note that no breaks were taken throughout

this experiment. Therefore, the first 25 minutes were used in calibration (highlighted lines in Figure

4.7), and the following 35 minutes were dedicated to evaluation. As this experiment was conducted

indoors, the solar radiation and wind were not considered. Water ingestion was also ignored as the

subjects took no drinks throughout the experiment. Based on [75], the kinetic energy efficiency ∆eff

of biking was set to 0.23.
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Table 4.7: Details of biking experiment

Date Jan 14-30 (15 Days)

Subject 6 males and 1 female

Time 1 hour

Location Air-conditioned room

Exercise Cycling with an ergometer as shown in Figure 4.7

Measured data
Initial skin temperature, Heart rate, Core temperature (tympanic)

Ambient temperature, Ambient humidity

Temperature 26.9± 0.9 [◦C] (Mean±SD)

Humidity 25.5± 4.8 [%] (Mean±SD)

0! 30!
[min]!

2.4 [W]!

60!

4.8 [W]!

7.2 [W]!

Figure 4.7: Schedule of biking experiment

Table 4.8: Mean absolute errors in biking dataset

Exercise PROP[◦C] OPT[◦C] DEF[◦C] # of dataset
Bike 0.20±0.21 0.14±0.21 0.27±0.25 42

Table 4.8 shows the mean absolute errors of the biking experiment and their standard deviations.

PROP estimated the core temperature to within 0.20 ◦C of the measured value, and outperformed

DEF. This improvement is attributable to the calibration, which observes the core temperature re-

sponse to variable exercise intensity even when no breaks are taken, and hence selects a superior

parameter set. Comparing Tables 4.4 and 4.8, we find that the overall performance was higher in

walking and biking than in running. Therefore, Gagge’s model is appropriate for moderate exercises

such as walking and biking.

4.4.4 Result in Tennis Practice

In this experiment, we collected a 20-hour dataset of two days’ tennis practice. The details are

presented in Table 4.9 and Figure 4.8. The six subjects were amateur players with at least five years of
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Table 4.9: Details of tennis experiments

Day 1 (Aug. 1) Day 2 (Aug. 2)

Subject 1 male and 1 female 4 females

Time 13:30 - 16:30 13:00 - 16:30

Temperature 39.1± 2.3 [◦C] (Mean±SD) 38.3± 4.0 [◦C] (Mean±SD)

Humidity 34.6± 4.0 [% ] (Mean±SD) 38.4± 9.0 [%] (Mean±SD)

Location An Outdoor Tennis court in Osaka University, Suita, Japan

Measured data
Skin temperature, Heart rate, Core temperature (tympanic)

Ambient temperature, Ambient humidity, Solar radiation

0! 50! 100! 150! 200![min]!

Day 1!

Day 2!

Practice!

Practice! Game! Game!

Game! Game!

Figure 4.8: Schedule of tennis experiment

tennis experience. On Day 1, the average age, height, and weight of the competitors (2 participants)

were 21.5 ± 0.7 y, 167.5 ± 12.0 cm, and 56.0 ± 17.0 kg, respectively. On Day 2, the age, height, and

weight of the competitors (4 participants) were 51.3 ± 1.0 y, 160.5 ± 4.2 [cm], and 52.8 ± 3.9 [kg],

respectively. Figure 4.8 illustrates the timetable of the both days, where participants freely organized

their schedule of practice, game, breaks and beverage intake. On average, participants drank 1475 ml

of water per day.

Although ∆eff is required in simulations of Gagge’s model, a standard value of ∆eff is unavailable

for tennis because this sport involves various motions. Hence, the motions of tennis were approximated

as combined running and standing motions, which were switched as the subject’s speed altered. If the

player’s speed exceeded 5 km/h, the motion was assumed as running; otherwise, it was assumed as

standing. The speed was obtained by Adidas Speed Cell [88], which measures the average speed every

five seconds. Following [74], the average speed over five seconds was translated into kinetic energy

efficiency (∆eff = 0.44–0.54), which is zero during standing. Finally, we estimated the average kinetic

energy efficiency ∆eff in each unit time.

Figure 4.8 depicts the schedule on both days. The practice periods (highlighted) were assigned as

calibration durations, and the games were used for evaluation. During their breaks in the evaluation
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Table 4.10: Mean absolute error in tennis dataset
Day PROP[◦C] OPT[◦C] DEF[◦C] # of participants
1 0.28±0.25 0.26±0.22 0.67±0.30 2
2 0.30±0.30 0.24±0.29 0.52±0.34 4
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Figure 4.9: Examples of core temperature estimation in tennis practice

periods, participants were requested to occasionally measure their own core temperatures using the

MC-510 sensor [77]. Cross marks in the figure means timings of core temperature measurement. The

first and second measurements were used in model initialization and calibration, respectively. The

remainder were reserved for evaluation. Table 4.10 depicts the mean absolute error on each day.

On both days, PROP estimated the measured core temperature to within 0.30 ◦C. According to

these results, our method determines a reasonable parameter set even in real sports environments.

Meanwhile, the errors in DEF were the largest among our experiments. This indicates the difficulty

of estimating core body temperature by DEF during real sports with complicated movements.

Figure 4.9 presents two examples of core temperature estimation. All methods simulated the actual

trend of the players’ core temperature, but PROP and OPT yielded more accurate values than DEF.
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We infer that DEF can usefully determine the rough trend, but parameter optimization ensures a more

accurate estimation.

4.5 Application Prototype of Heat Stroke Caution

This section demonstrates the prototype of our system for heat stroke alert.

4.5.1 Motivation

There are some studies of heat stroke sensing. Reference [89] proposes a sensor-equipped headgear

to monitor in-hardhat temperature. It shows relationship between temperature inside headgear and

core temperature. The major limitation of the method is that users have to wear headgears during

sports. In the other study, a heat stroke alert application is developed on smartphones [90]. Although

the method suits almost all situation since it relies on the air temperature and humidity, the heat

risk assessment with environmental contexts is not capable to individually notify the heat stroke risk.

Another study [91] proposes a wearable shirt with integrated e-textiles to prevent heat stroke for

firefighters. It integrates heart rate with the air temperature and humidity.

Despite these efforts, there has not been a system which satisfies following criteria. (1) Minimum

interference: the system has to be easily installed and does not interfere in user’s activity. (2) Scalabil-

ity: the system has to seamlessly expand in terms of device, environment and exercise. (3) Accuracy:

the system has to precisely assess the body heat context and to individually detect heat stroke risk.

To meet these criteria, our system leverages commercial-off-the-shelf smartwatches to measure heart

rate and body surface temperature, then it estimates core body temperature based on the individually

different heat context. The method fairly considers the effect of different environments and exercises

as proved in Section 4.4, leading to precise assessment of heat stroke risk.

4.5.2 Heat Stroke Warning Algorithm

Rise of human core body temperature is known as a fundamental precursor of heat-related illness

[5]. A study reveals that over 39.5◦C core temperature is commonly observed among heat stroke

patients [19]. Meanwhile, our goal is not detecting heat stroke patients but preventing users from

heat stroke, accordingly we set a threshold for heat stroke warning to 38.0◦C based on WMO (World

Meteorological Organization) guideline [92]. We note that this threshold should be lower that the level

of hyperthermia (39.5 ◦C) for safer notification, and optimized based on the feedback from users (e.g.,

a higher threshold may be suitable for well-trained athletes). In the following evaluation, we evaluate

precision and recall of heat stroke warning that arises when the core temperature exceeds 38.0◦C.
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Table 4.11: Confusion matrix in
ergometer exercise (PROP)

Notification
True Warning
Yes No

Yes 55 120
No 3 2425

Table 4.12: Confusion matrix in
ergometer exercise (OPT)

Notification
True Warning
Yes No

Yes 57 100
No 1 2445

Table 4.13: Confusion matrix in
ergometer exercise (DEF)

Notification
True Warning
Yes No

Yes 55 149
No 3 2396

Table 4.14: Confusion matrix in
running and walking (PROP)

Notification
True Warning
Yes No

Yes 311 88
No 121 3085

Table 4.15: Confusion matrix in
running and walking (OPT)

Notification
True Warning
Yes No

Yes 286 62
No 146 3111

Table 4.16: Confusion matrix in
running and walking (DEF)

Notification
True Warning
Yes No

Yes 159 40
No 273 3133

4.5.3 Result

We here use the dataset presented in Section 4.4.2 and 4.4.3 for evaluating the performance of our

prototype system. We note that we do not use the dataset collected in tennis practice (Section 4.4.4)

due to its lack of continuous measurement of ground truth. In order to evaluate precision and recall,

we initially classified all the estimated core temperature and measured core temperature into two

categories: (1) 38.0◦C or greater and (2) less than 38.0◦C. To clarify the effect of core temperature

estimation error on the performance of heat stroke alert system prototype, we compare the confusion

matrixes of heat stroke cautions generated by PROP, OPT and DEF. The results are summarized

in Tables 4.11 to 4.16, where the rows show the number of warnings produced by our algorithm and

the columns show the number of true warnings. We note that the numbers on the tables are the total

time duration in minutes when core temperature is 38.0◦C or grater / less than 38.0◦C. In ergometer

exercise, only 58 out of 2,603 minutes are over the threshold (i.e., 38.0◦C). This is because the room

temperature was not so high (< 30◦C) and there was no solar radiation which constantly heats up

human body in outdoor. Tables 4.11 to 4.13 indicate that {precision, recall} of PROP, OPT and

DEF in ergometer exercise are {0.314, 0.948}, {0.363, 0.983}, and {0.270, 0.948}. This suggests each
algorithm of core temperature estimation can alert with very high recall, however the precision is still

low. The major reason of low precision is overestimation, namely we find our method tends to estimate

core temperature higher than groundtruth. Nevertheless, PROP can reduce false positives compared

to DEF, accordingly our method of parameter calibration slightly improves the performance of heat

stroke alert.

Tables 4.14 to 4.16 denote that {precision, recall} of PROP, OPT and DEF through running and

walking dataset are {0.779, 0.720}, {0.822, 0.662}, and {0.799, 0.368}. These results suggest PROP

is most likely to estimate core temperature higher than the groundtruth, leading to the highest recall

measure. DEF also shows moderate performance on precision, however its recall is too small due to
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Figure 4.10: An example of core temperature estimation

underestimation of core temperature. This severely drops reliability of heat stroke alert. Although

PROP and OPT show moderate performance in severely hot environments, our application requires

higher recall for human safety. We consider the average error up to 0.30 ◦C proved in Section 4.4 is

the major reason to deteriorate both precision and recall. Another reason is the fact that there are

some subjects whose actual core temperature exceeds 38.0℃ for only a few minutes. In that case,

correct notification becomes more difficult due to estimation error.

Figure 4.10 illustrates an example of core temperature estimation and heat stroke alert. It shows

core temperature estimation is still challenging, namely reproducing actual response is a difficult task.

On the other hand, the estimation result is useful for detecting whether the temperature reaches 38.0
◦C or not. In this case, our algorithm can correctly alert it with a few false positives.

4.5.4 Result with acceptable error ∆T

We consider some error of timing should be acceptable because core temperature estimation is still

difficult by limited sensors and we assume the threshold must be much lower than 39.5℃ (dangerous

level) for safety. Therefore, we introduce acceptable error ∆T and evaluate precision and recall while

changing the range of∆T . For example, ∆T = 3 means that we regard warnings which error of warning

timing within three minutes as correct. Also, we introduce an offset value to improve reliability by

incorporating the error caused by core temperature estimation to heat stroke caution. We note that

the error for each trial is unexpectable because of individual difference, and daily difference in even

the same subject, thus we mechanically give the offset as from 0.0 to 0.3 ◦C. Figure 4.11 depicts

the relationship between precision and recall, and acceptable error ∆T and the offset value in the

ergometer data set. The results basically illustrates the trade-off between precision and recall which
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varies according to offset value. In almost all cases, OPT shows the best performance on precision

and recall due to its minimum error compared to PROP and DEF. Nevertheless, each algorithm can

achieve around 0.5 precision and 1.0 recall if 5-minute error is accepted (∆T = 5) with zero offset

(Figure (4.11(a))). Accordingly, we confirm adding offset does not dramatically improve reliability

of the system in ergometer exercise. Precision is still challenging, however we believe that we can

improve accuracy of notification by considering continuous alerts (i.e., raise warning in the case that

the algorithm continuously detects high temperature) since our current algorithm detects high-core

temperature at that moment.

Figures 4.12 to 4.15 illustrate precision and recall with ∆T in running and walking while changing

the offset value. The upper row on each figure depicts precision and the lower shows recall. In these

results, we find recall of each method in walking is almost 1.0 even if we disallow any delay of detection

timing. This result is as same as the result proved in ergometer exercise (Figure 4.11), meaning core

temperature estimation usually gives overestimation in walking exercise. In contrast, precision and

recall of PROP and OPT in running is moderate when ∆T = 0 and gradually rise according to

evolution of ∆T . This is because reproducing human body response in complicated exercise is difficult.

Nevertheless, precision and recall of PROP in running improve with the increase of ∆T and exceeds

0.9 with ∆T = 8 and no offset (Figure 4.12). Further, DEF shows lower recall in running, meaning

default parameter set usually makes underestimation on core temperature estimation. In other words,

parameter calibration is essential for heat stroke caution in running exercise. However, Figure 4.12

shows there are some false negatives even if we applied parameter calibration in core temperature

estimation.

Figures 4.13 to 4.15 demonstrate the number of false negatives decreases according to higher offset.

Also, Figure 4.14 shows recall of PROP and OPT in both exercises reach 1.0 by expecting 0.2 ◦C

error as the offset. Namely, 0.2 ◦C offset successfully makes heat stroke caution for human safety in

our dataset. It is true that precision decreases when 0.2 ◦C offset is given, however it is still over

0.7 when we allow 30-minute error of notification timing. We note that 0.2 ◦C offset can be defined

as the best preference for safer caution, while 0.1 ◦C offset shows the best performance in terms of

balance between precision and recall. Consequently, we recommend 0.2 ◦C or larger offset for heat

stroke caution in hot environments and consider 0.1 ◦C also works well in the other environments.

4.6 Conclusion

We proposed a method that estimates the core body temperature during exercise. The method extends

Gagge’s two-node model, and improves the accuracy of the estimation by optimizing the parameter

set representing the different thermoregulation responses. To this end, it compares the occasionally

measured core temperatures with the simulation output of the extended Gagge’s model. A single

tympanic temperature measured during an exercise break is sufficient for optimizing the parameter
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set. Moreover, our method successfully estimated the core temperature (within 0.3 ◦C error) during

walking, running, biking, and tennis practice. Finally, we developed a prototype of heat stroke alert

system, revealed our method can instantly detect high core temperature exceeding 38.0◦C with over

0.7 recall in running, walking and ergometer exercise, and confirmed precision and recall dramatically

increase when we accept some error of warning timing. The results suggest expecting 0.2 ◦C error

successfully removes false negatives of heat stroke alert in our datasets. We note that some contents

in this chapter refer our publication [93, 94].
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Figure 4.11: Precision and recall in ergometer exercise with ∆T
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Figure 4.12: Precision and recall in running and walking with ∆T (no offset)
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Figure 4.13: Precision and recall in running and walking with ∆T (offset = 0.1◦C)
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Figure 4.14: Precision and recall in running and walking with ∆T (offset = 0.2◦C)
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Figure 4.15: Precision and recall in running and walking with ∆T (offset = 0.3◦C)
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Chapter 5

Fluid Intake Estimation by
Wrist-worn Inertial Sensors for
Dehydration Prevention

5.1 Introduction

Water accounts for about 60% of the human body, and when the body loses it in higher rate than

its intake rate (through drinking), dehydration symptoms occur. The dehydration causes many severe

health problems like organ and cognitive impairment, accordingly it is critical for the human to drink

water in a sustained manner to avoid dehydration. Some people can sense the dehydration by feeling

thirsty, dry or sticky mouth, then they can prevent it by correspondingly taking water immediately.

However, many others (children, elderly people, athletes, busy people, etc.) are sometimes not aware

of their dehydration, leading to many symptoms like anorexia, cramp, headache, nausea, and uncon-

sciousness. Also the lack of in-body water causes rise of core body temperature, as the study reported

that 1% water loss against body weight triggers 0.3 ◦C rise of core body temperature. These prob-

lems spark the need for a system that automatically tracks fluid intake as well as encourages users to

appropriately drink water in order to prevent dehydration.

To approach this goal, many systems to track human fluid intake have started to emerge recently.

Firstly smarter gadgets are developed for the purpose of keeping record of daily fluid intake such as

Hidrate Spark [12], Trago [11], which always observe fluid level they own and encourage the user to

drink more fluids to catch daily hydration goals. Also respective studies propose smart containers

[59, 60, 61, 62] equipped with either accelerometer, capacitive sensor or RFID tags. These containers

can capture deep context of user’s fluid intake, namely both of fluid intake timing and each amount

of intake. Nonetheless, these solution are neither scalable nor ubiquitous since the user has to buy as

special container for tens of dollars or install a dedicated sensor in the container used for fluid intake.

Further, they can track only the water consumed by the designated container, meaning the user has
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to bring the container everywhere. This severely limits their wide applicability. To provide seamless

estimation for multiple drinking scenarios, several studies propose methods of fluid intake estimation

based on vision [13], audio [14] and wearable sensors [15, 16]. These approaches indirectly measure

the amount of fluid intake by observing arm posture captured by camera, swallowing activity caught

by audio analysis, and arm gestures grasped by inertial sensors embedded in smart watches. Never-

theless, these solutions still have some limitation: vision-based approach requires photos adequately

captured with desirable angle and quality; audio analysis in the noisy environment is challenging and

sometimes raises privacy concern; smart watches are not used alone, but combined with other sensing

modalities. In summary, to our knowledge, there are no systems which meet following criteria for

pervasive monitoring of fluid intake: (1) Accuracy: a fairly good estimation is essential; (2) Ease of

distribution: leveraging existing sensor modalities or bootable on commodity sensors; (3) Scalability:

applicable for recent commercial-off-the-shelf devices with minimal configuration or seamlessness; (4)

Less interference: minimal intervention to the user while preserving accuracy, anonymity, and privacy.

To satisfy these requirements, we propose a ubiquitous and unobtrusive system to track the amount

of human daily fluid intake by leveraging the inertial sensors embedded in commodity smart watches.

The key idea is to firstly recognize the drinking moments and thereafter gauge the amount of fluid

intake in every drinking episode. For precise recognition of drinking moments, our method combines

two classifiers with different time-scale windows and extracts fine-grained drinking gesture following

coarse-grained activity recognition. Inertial sensor readings are translated into motion features and

then given to Conditional Random Field (CRF) to infer the sequence of high-level activities behind the

sensor readings. Macro-scale CRF mainly segments drinking episode through daily human activities

such as eating, walking and running. Further, micro-scale CRF infers sequential gestures carried out

during each drinking episode: (1) lift the container, (2) sip and consume beverage, and (3) release the

container. Finally, the system estimates the amount of fluid intake by observing the posture of user’s

arm during the sip period and the duration of sip gesture recognized by the previous step.

All the essential components of the system and the whole system have been evaluated over 80-hour

dataset collected through five different situations and extra scenarios. Firstly, drinking moment could

be segmented with 84% precision and 87% recall by macro-scale classifier, and sip gesture was detected

with average precision and recall of 91% and 96% through 1615 drinking episodes. Further, our method

estimated the amount of fluid intake for 1615 episode with 59% absolute error, but reduced it to 29.1%

by considering individual difference of drinking manners with use of training dataset. The overall error

(i.e., mean relative error which does not use absolute value) was proved limited to around 15% for

1615 fluid intakes. Finally, our system has been validated in the rigorous environments of either office

or a whole day in weekend. The result showed the system could detect sip moments with more than

moderate precision and recall, and the overall fluid intake (i.e., daily error of fluid intake amount) was

assessed with the worst error -23%.

The rest of this chapter is organized as follows. Section 5.2 describes our dataset collected to
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design and evaluate our method. Section 5.3 presents detailed design of the proposed method of fluid

intake estimation. Sections 5.4 and 5.5 provide performance evaluation through our laboratory and

wild experiments, respectively. Then we generalize our method with the extra datasets in Section 5.6,

and discuss some important topics in Section 5.7. Finally, Section 5.8 concludes this chapter.

5.2 Datasets

For developing our algorithm to recognize drinking moments from noisy traces of wrist motion and to

estimate fluid intake amount, a group of 22 subjects of different ages ad genders collected the necessary

data. They were incentivized to collect datasets by either receiving money, given free beverages or

voluntary contribution. We totally collected five datasets with different drinking environments in

terms of used containers, consumed beverage types, location, and groundtruth collection method. The

datasets are composed of over 80 hours traces of human activities and 1316 episodes of fluid intake

through five different scenarios. We note that we also collected the other dataset for important remarks

in Sections 5.6 and 5.7.

Through almost all experiments, the participants wore a smart wristband [95] on their dominant

hands to capture the 6 axes motion of the gyroscope and accelerometer as illustrated in Figure 5.1,

then they drank various types of beverages (e.g., water, green tea, etc.). We found a few lefty subjects

wore the gadget on their left hand, accordingly we inverted the sensor readings of their y-axis and

z-axis. We summarize the essentials of our five datasets in Table 5.1, where we introduce our datasets

as Lab-macro, Lab-micro, Lab-micro+, Wild-office, Wild-day dataset, respectively. In this section, we

elaborate on the methodology of collecting the data for each dataset.

x!

y!

z!

Figure 5.1: A smart band on the dominant hand (indicating three axes of a inertial sensor)
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Table 5.1: The datasets collected for the evaluation at glance

Dataset Scenario Groundtruth Amount
(1) Lab-macro perform 8 different

activities for 20 min-
utes/activity in the lab
and outside the laboratory

hand-crafted by event buttons on
Android App

22 hours

(2) Lab-micro drink fixed amount of
different beverages using
bottles and cups in the
laboratory

hand-crafted by event buttons on
Android App

180
episodes

(3) Lab-micro+ drink free amount of
different beverages using
bottles in the laboratory

hand-crafted by event buttons on
Android App and weight the bot-
tle before and after the episode
and submit to the same App

1069
episodes

(4) Wild-office unobtrusively drink differ-
ent beverages in the lab-
oratory while participants
are doing research work

wearable camera [96] and smart
bottle [11]

27 hours &
40 episodes

(5) Wild-day unobtrusively drink bever-
age in real-life while par-
ticipants are in a weekend

wearable camera [96] and smart
bottle [11]

31 hours &
27 episodes

5.2.1 Datasets in the Lab-environment

Firstly we conducted three preliminary studies in our laboratory to develop the basic theory of our

algorithm composed of the drinking activity recognition and the amount of fluid intake estimation

algorithms. All the datasets were collected by predefined manners controlled by the subjects them-

selves. Groundtruth of each context (i.e., macro-activity class, micro-gesture or amount of fluid intake)

was exactly recorded by using two Android applications that we have developed (Figures 5.2(a) and

5.2(b)). The details of each dataset follows below.

Lab-macro dataset

The nine subjects were hired by $30/subject to collect 20 minutes of each of the following activities:

(move, stand, sit, lie, work, eat, drink, other). We asked subjects to collect at least 30 instances of

fluid intake for drink class. The other activity class includes a mix of the following activities (driving,

cycling, being on a train, being in an elevator, etc.). We ended up collecting totally 1325 minutes of

these activities as shown in Table 5.2. Despite we asked them to collect 20 minutes for each activity,

the collected dataset is not completely balanced since the real activity cannot be performed in a fixed

time units.

Groundtruth collection: The subjects manually tagged their activity classes by clicking on of

the eight buttons on the groundtruth app installed in their smartphones (Figure 5.2(a)).
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fluid weight App

Figure 5.2: Android applications to tag the ground truth activities and amount of fluid intake

Table 5.2: Lab-macro dataset activities
Activity Duration [min.]
drink 64
move 185
stand 207
sit 203
lie 165

work 199
eat 179
other 122
Σ 1325

Lab-micro dataset

This dataset is collected for the purpose of building the model to recognize the three micro-activities

(lifting a container, sip, releasing a container) that constitute the drinking activity as well as the

fluid intake amount of each drinking episode. 10 participants were offered free beverages to collect

datasets and groundtruth labels. We here prepared 50, 100 and 150 grams of beverages in cups and

plastic bottles to fairly compare the difference caused by individual subjects and container types. Each

subject provided 18 instances of fluid intake (with 3 different fluid levels × 2 container types × 3 times),

accordingly we collected totally 180 drinking episodes using plastic bottles and paper cups.

Groundtruth collection: The participants manually tagged four key events for each drinking
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Table 5.3: Statistics of drinking activities of each subject in Lab-micro+ dataset

Subject # of drinking Duration (mean ± SD) [sec.]
1 76 6.90 ± 1.45
2 108 3.02 ± 0.84
3 79 4.01 ± 0.87
4 90 3.20 ± 0.96
5 77 5.61 ± 1.34
6 36 8.55 ± 2.31
7 62 5.22 ± 1.99
8 39 7.10 ± 1.93
9 86 3.74 ± 1.01
10 91 4.64 ± 1.22
11 67 5.47 ± 1.66
12 74 3.94 ± 1.14
13 32 5.87 ± 1.45
14 52 6.23 ± 1.32
15 43 7.32 ± 2.61
16 57 6.77 ± 1.72

Overall 1069 5.06 ± 2.09

activity to assign groundtruth labels to the three primary gestures (Lift, Sip, Release) that take place

during drinking by operating buttons on the groundtruth app on their smartphones (Figure 5.2(b)).

Note that the participants did not tag the amount of consumed beverage due to designated amount of

each intake (50, 100 or 150 grams).

Lab-micro+ dataset

We uses this dataset for validating our method. We offered 16 participants free beverages sealed in

plastic bottles, then they collected large and diverse dataset in our laboratory. They were instructed

to freely drink something by bottles during their daily research work, namely they drank free amount

of fluid whenever they wanted. This made widely distributed duration and amount of each drinking

activity. Finally, the subjects have minimum and maximum numbers of drinking episodes of 32 and 108

as shown in Table 5.3, and totally generated 1069 drinking instances with groundtruth labels. Figure

5.3 also shows the box plot of the amount of fluid intake in drinking instances for each subject. These

insights indicate the sip duration and fluid intake amount vary from person to person, highlighting the

existence of personal differences regarding the drinking behavior.

Groundtruth collection: We similarly collected the groundtruth of drinking micro-activities by

Android app in Figure 5.2(b). The subjects additionally registered the groundtruth of fluid intake for

each drinking episode by weighting the container in grams unit before and after the intake using a

digital weight scale (Figure 5.4(a)).
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Figure 5.3: Statistics of the amount of fluid intake for each subject (Lab-micro+ dataset)

(a) Weight scale (laboratory experiments) (b) Trago smart bottle
(wild)

(c) Mofily YoCam (wild)

Figure 5.4: Gadgets used for the groundtruth collection

5.2.2 Datasets in the Wild-environment

To validate our method with rigorous scenarios, we carried out two experiments by uncontrolled

manners (i.e., collected dataset without interfering the subject’s life). Here subjects just wore a smart

band to track arm motion and carried the dedicated gadgets to unobtrusively record groundtruth of

their activity and fluid intake.
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Wild-office dataset

This dataset is collected in our office by an unobtrusive manner. We collected this dataset through

the whole day across three different days which include all office-related activities as well as drinking

activities. The average durations of the stay hours, count of fluid intakes, and amount of each fluid

intake were revealed as 9.1 hours, 13.3 times and 71.1 grams, respectively. The total amount of fluid

intake in each dataset were 1242, 892 and 789 grams.

Groundtruth collection: We used a neck-worn camera (Mofily YoCam [96]) and a smart bottle

(Trago smart bottle [11]) for groundtruth collection without any interference. The camera took a

picture every 5 seconds to provide clues about the current user activity. The smart bottle could

automatically keep track of amount of each fluid intake.

Wild-day dataset

This dataset composed of two full tracks of wrist motion during a whole day in the weekend (i.e.,

datasets from getting up to going to bed). Two inexperienced subjects (a male and a female) voluntarily

collected datasets, in which they consumed beverages 18 and 9 times (totally 1250 and 759 grams),

respectively.

Groundtruth collection: Similarly, we collected the groundtruth by using the neck camera

and the smart bottle. We note that the subject used a portable weight scale and his neck camera

automatically recorded the weight scale reading when the subject could not use the smart bottle (e.g.,

dinner in a restaurant).

5.3 Algorithm Design

Figure 5.5 illustrates the overview of our proposal for fluid intake estimation which is composed of

the following three consecutive modules. (1) macro-scale activity recognition for separating drinking

moments from other daily activities (by Macro-scale Activity Classification Module), (2) micro-

scale activity recognition to capture the sip gesture through inferring the sequential micro-activities (by

Micro-scale Activity Classification Module), and (3) estimation of fluid intake amount for each

sip gesture period based on the arm posture observation (by Amount of Fluid Intake Estimation

Module). We describe the detail of each module in the rest of this section.

5.3.1 Macro-scale Activity Classification Module

This module works as the initial filter to separate drinking activities from other activities (move,

stand, sit, lie, work, eat, other). The human activities are intrinsically connected seamlessly and

some activities have implicit rules of inter-activity transition (e.g., eating class follows to sitting class).

To represent connection and transition rules of activities, we employ the Conditional Random Field

(CRF) to recognize eight classes. CRF is a discriminative model for inferring a consistent sequence of

70



!"#$%&"#'()*+,
-."//)0#"'%1!

!)#$%&"#'()*+,
-."//)0#"'%1!

23%41*,%5,6.4)7,
81*"9:,;/'3"'%1,

! ! " ! # # # # " !

"$%&'! "$%&'!

( ) ) * * * * + + +

)%,! *%-! +./.0!.!

"$%&'! "$%&'! ( ) ) * * * * + + +

!"#$%&'()"*)+*',,-*.*
!"#$%&'()"*)+*',,-*/*

0123&45265%&40'.!
78$2!92-.!

099./.$21.4.$!

Figure 5.5: An overview of our algorithm consisting of three modules

labels (i.e., activities) by observing the whole sequence of given features. It represents the relationship

between observables (i.e., features extracted from sensors) and the unobservable sequence of actual

states by unary potential function φi and the relationship between hidden states by pairwise potential

function ψij to indicate chronological dependencies among hidden states. These assumption help the

model to learn the natural connection of human activities and reject unexpected activity transitions.

With these potential functions, the model defines the conditional probability distribution p(y|x) and
standardization term Z(x) as below.

p(y|x) = 1

Z(x)

∏

i∈S

φi(yi|x)
∏

i∈S

∏

j∈Ni

ψij(yi, yj |x), (5.1)

Z(x) =
∑

y

{
∏

i∈S

φi(yi|x)
∏

i∈S

∏

j∈Ni

ψij(yi, yj |x)}. (5.2)

Here, x, y, yi, S, N are the sequence of observable features, the transaction of actual activity classes,

the state on the site i, the set of all sites, and the set of neighbor sites. Figure 5.6 illustrates the structure

of CRF we use, where the activities in the sequence line up. In our case, x means the features extracted

from the inertial sensor readings and y indicates the sequence of user activity yi which belongs to one

of the primary eight classes (move, stand, sit, lie, work, eat, drink, other). Neighbor N represents

the sites yi−1 and yi+1 in the case of Chain-CRF (Figure 5.6). We generated this CRF model with

PyStruct library [97] and the model was trained by the block-coordinate Frank-Wolfe algorithm [98].

Model parameter selection: To leverage CRF, the inertial sensor readings and groundtruth

labels are segmented into sliding windows with fixed length, then features are extracted in each window

and the representative label of the window is determined by finding the most frequently appeared labels

among expected classes (eight classes in macro-activity classification phase). The window length and

overlap rate are variable and affect the performance of activity classification. Thus, we observed

the average duration of drinking instances, and then carefully defined candidates of the length and

overlap rate of sliding windows as presented in Table 5.4. The best combinations of these parameters

is empirically chosen by the grid-search algorithm [99] over all possible combinations so as to get the
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Figure 5.6: The Conditional Random Field (CRF) model

Table 5.4: Candidates of feature-extraction window parameters

classifier parameter value

macro activities
window length [sec.] 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0
window overlap [%] 0, 25, 50

micro activities
window length [sec.] 0.5, 1.0, 1.5, 2.0
window overlap [%] 0, 25, 50

highest performance for recognizing drink class. We finally found 8 seconds and 0% overlap rate were

the best parameters for sliding window used to recognize macro-scale drinking episodes.

Feature extraction and selection: We defined the following 28 different statistical features us-

ing 3-axis acceleration values indicated as ax, ay, az and 3-axis gyroscope values indicated as gx, gy, gz:

The average and standard deviation for each of the 3 axes of the accelerometer and gyroscope val-

ues, correlation coefficients for each pair of the 6 axes, and manipulation (the ratio of magnitude

3-axis gyroscope to that of acceleration which means complexity of hand movement [49]). Since the

gyroscope and accelerometer values vary to different ranges, accordingly we scale each feature value

before applying the classifier for the fair comparison among features. We applied the standardization

to scale each feature to follow a Gaussian distribution with zero mean and unit variance. Despite

the performance of the classifier using all the extracted features (i.e., 28) is good, it is known that

high dimensional features often cause over-fitting and increase the computational cost. To reduce the

dimension of the feature space, we apply the backward-feature selection method [100] to empirically

remove any unnecessary features. Further, to balance the performance and computational cost, we

pick the feature combination that satisfies both the minimal dimension and the reduction of the clas-

sification performance by 1% at most compared to the best case. We finally got 6 features as the

most effective combination of feature for the macro-activity classifier as represented in Table 5.6.
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Table 5.5: The candidate features for the macro- and micro- activity classifiers

feature description number
avg average value of readings within the window 6
dev standard deviation of value within the window 6
corr correlation coefficient for each pair of value in the window 15

manipulation
average ratio of gyro norm to acceleration norm:

1
1

W

W∑ |gx|+ |gy|+ |gz|
|ax|+ |ay|+ |az|

Table 5.6: The optimized features for the macro- and micro- activity classifiers

Classifier Selected features
Macro-activity avg(ax), avg(ay), corr(ax, ay), corr(gx, gy), corr(gy, gz),manipulation
Micro-activity avg(ax), avg(ay), avg(gy), avg(gz), corr(ax, ay), corr(gy, gz),manipulation

5.3.2 Micro-scale Activity Classification Module

The goal of this module is to recognize the three consecutive micro-activities: (lift the container,

sip, release the container) that constitute the drinking activity. Figure 5.7 illustrates an instance

of drinking activity, where three micro-activities are sequentially conducted and generate the unique

pattern of the waveforms. Based on this property, we define the three consecutive gestures of drinking

as {Lift, Sip, Release} and additionally introduce the Other gesture to represent gestures associated

with drinking sequence (e.g., opening a cap of a bottle, fetching the container). To represent the flow

of these activities, we use CRF as a classifier and infer the sequential transitions of gestures by given

input features extracted from inertial sensor readings. The parameters of sliding window are defined

and optimized by the same way as macro-scale activity classification module, then we got 0.5 second

and 50% as the best combination for this module. The input are also chosen from 28 candidates in

Table 5.5 and scaled by the standardization algorithm. Then, the best feature set was determined by

balancing the classification performance and the lowest dimension of feature vector. Finally, we ended

up using only 7 features for the micro-activity classifier in Table 5.6.

5.3.3 Amount of Fluid Intake Estimation Module

This module aims to estimate the amount of fluid intake for each drinking episode. It uses the Sip

moments from the result in the previous module, then it extracts some features from the moment

in order to estimate the amount of fluid intake. We firstly attempted to leverage the length of the

Sip duration for the estimation since the volume of fluid intake is intuitively proportional to the Sip

duration. It worked well in some cases, but gave bad results in many other cases. Figure 5.8 shows the

box plot of the Sip duration at different amounts of fluid intake using a bottle or a cup (i.e., Lab-micro

dataset), in which we find drinking the same amount of fluid takes a different duration that spans a

large range of values (i.e., large variance), especially when using a bottle. This is mainly due to the
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Figure 5.7: Drinking micro-activities sequence and their inertial sensor patterns

difference in the arm posture during drinking (i.e., tilt or the inclination of the container) which affects

the speed of flow of the fluid. Additionally, the arm posture during the Sip period depends on the

amount of fluid in the container. The container inclination increases when it has a small amount of

fluid and vice-versa.

Key insights: These problems suggest a duration of the Sip gesture is insufficient to explain the

amount of fluid intake. To address this challenge, we use the acceleration values. Our intuition is

that the 3 axes of the acceleration can represent 3-D arm posture since the accelerations have gravity

components which represent the 3-D orientation of arm when the user drinks at stand-still. In other

words, the continuous change of 3-D orientation of the arm decides the shape of waveform and peak

values of X- and Y- axis accelerations as illustrated in Figure 5.7. As supporting this hypothesis, Figure

5.9 shows the different shapes of waveforms of X- and Y- accelerations at five different instances with

different amount of remained fluid in a bottle, suggesting the acceleration values have potential to

finely estimate the amount of fluid intake.

Further, we integrate the container inclination (i.e., acceleration values) along with the Sip duration

for the estimation of the amount of fluid intake. We used the integration of primary axes of acceleration
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Figure 5.8: The average Sip duration against the fluid intake amount of 180 drinking episodes using a
bottle or a cup

(i.e., X and Y) to represent both the width (Sip duration) and magnitude of the peak area (i.e.,

container inclination) as the feature for the estimation of fluid intake amount. Note that the integration

values also capture the change of posture during the Sip gesture and Z-axis is not used due to its

perpendicular to the orientation of the drinking gesture.

The estimation model: Figure 5.10 illustrates the relationship between the Sip duration, the

integration value of x and y accelerations and fluid intake through 1069 instances in Lab-micro+

dataset. We find the Pearson correlation coefficients among these features and the fluid intake amount

are R = 0.69,−0.60,−0.55, which highlight that the Sip duration, integration values of x and y

accelerations have a good positive or negative correlation with fluid intake amount. Therefore, we

build a linear regression model to predict the fluid intake amount based on the integration of the x

and y acceleration. With predictor variables {Iax , Iay}, we propose a novel model for the estimation

of the fluid intake amount M [g] as:

M = p1 ∗ Iax + p2 ∗ Iay + p3, (5.3)

where p1, p2, p3 represent linear regression parameters, namely two coefficients for each predictor vari-

able and the intercept. We also define a simple model that employs only one predictor variable dSip

(i.e., duration of the Sip gesture):

M = p4 ∗ dSip + p5, (5.4)

This is referred as the benchmark model later. The two models performance are quantified in Section

5.4 .
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Figure 5.9: Waveforms of X and Y accelerations for different five amounts of fluid intake
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(b) Integration of X-acceleration
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Figure 5.10: Relationship between the Sip duration and integration value of X and Y accelerations
against the fluid intake using 16 subjects data

5.4 Performance Evaluation

In this section, we evaluate the performance of the different system modules using the three controlled

datasets collected in the laboratory. We use the leave-one-subject-out (LOSO) cross-validation method

which validates an unseen subject using the trained model through other known subjects.
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Table 5.7: Confusion matrix of the macro-scale activity classification

move stand sit lie work eat drink other Precision Recall
move 989 96 18 3 30 244 14 12 57.0% 70.3%
stand 94 1246 39 14 47 101 7 11 63.7% 79.9%
sit 158 290 392 17 236 281 55 97 26.4% 25.7%
lie 69 168 450 14 212 287 29 18 12.3% 1.1%

work 138 100 407 61 505 251 11 24 40.6% 33.7%
eat 27 6 28 0 77 1153 52 8 43.0% 85.3%

drink 10 1 3 0 0 85 1328 94 83.6% 87.3%
other 249 50 148 5 137 282 93 209 44.2% 17.8%

5.4.1 The Macro-scale Activity Classification

Table 5.7 shows the precision and recall of macro-activity classifier generated by applying 9-fold LOSO

cross-validation on the Lab-macro dataset. The rows mean true labels and the columns mean predicted

labels. It shows that our system can accurately detect the drinking activity achieving 83.6% precision

and 87.3% recall. Many of the drinking false negative samples are classified as eating activities given

that both have a bit similar arm movement patterns. Since we are targeting the detection of the

drinking activity, the extracted features are picked to mainly capture the arm movement during these

activities. Therefore, some activities that do not impact the arm posture greatly like (sit, lie, work)

are usually misclassified. On the other hand, the eating activity which has a bit similar arm movement

to the drinking activity has a high recall rate, however, its precision is low as many activities are

misclassified as eating. Consequently, macro-scale classification results of our system (precision =83.6%

and recall=87.3%) are comparable to the results achieved by [55] (86.5% precision and 84.3% recall)

which fuses dedicated inertial sensors and a throat microphone (i.e., not scalable).

5.4.2 The Micro-scale Activity Classification

Table 5.8 shows the precision and recall of the drinking micro-activities recognition generated by

applying 16-fold LOSO cross-validation on the Lab-micro+ dataset. The table indicates that Sip

gesture can be recognized with higher precision and recall rates (90.7% precision and 96.3% recall)

than other gestures due to the unique arm posture (i.e., the arm is inclined and suspended) during the

Sip period. The high recall rate of the Sip gesture guarantees reliable tracking of fluid intake. However,

the 9.3% of false positives may cause overestimation of the intake amount. Nevertheless, the effect of

false negatives detection of Sip may partially balance the overestimation caused by the false positives

as discussed in details in the next section. Our Sip gesture classification accuracy is comparable to

that achieved by the method in [16] which reports 84% precision and 94% recall. However, they fused

dedicated wearable inertial sensors worn on the wrist with a couple of magnetic distance sensors that

are worn on the shoulder and the wrist.
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Table 5.8: Confusion matrix of the micro-scale activity recognition

Other Lift Sip Release Precision Recall
Other 8635 1708 622 2680 68.9% 63.3%
Lift 1526 13480 786 395 84.9% 83.3%
Sip 3 462 21534 369 90.7% 96.3%

Release 2372 221 791 17241 83.4% 83.6%

5.4.3 The Amount of the Fluid Intake Estimation

We evaluated the performance of the fluid intake amount estimation by training the parameters of

estimation model in Equations (5.3) and (5.4), and validating them through 16-fold LOSO cross-

validation on the Lab-micro+ dataset. During training, the data of all unknown subjects are aggregated

(i.e., aggregated training). Figure 5.11 depicts scatter plots of the estimated fluid intake amount

and ground-truth amount using the proposed model (using the Sip duration and the acceleration

integration) and the benchmark model (using the Sip duration only). We use the mean absolute

percentage error (MAPE) of the estimated amount of fluid intake against the groundtruth amount to

evaluate the performance. The resultant MAPE of the proposed and benchmark models are 58.9%

and 59.2%, respectively. This large deviation between the estimated and groundtruth amounts was

expected given the fewer sensors used by our system (Mirtchouk et al. used dedicated four sensors and

showed 47.2% MAPE).

It should be noted that the MAPE measures the error in the amount of fluid intake of each episode.

On the other hand, the overall amount of fluid intake error reflects the average deviation between the

totally estimated amount of fluid intake of a subject and the groundtruth amount of the total fluid

intake of the same subject. Based on the current training models, the average overall fluid intake

errors for a subject using the proposed and benchmark models are 34.6% and 34.9% respectively. The

overall error is smaller than MAPE since overestimation samples cancel out the underestimation.

To enhance the amount of fluid intake estimation, we constructed a tailored training of model

parameters for each subject (i.e., individualized training). Particularly, 10-fold cross validation is used

for training and validating each subject own data. Figure 5.12 plots the scatter of estimated fluid intake

amount against the groundtruth amount by the individually-trained model. The MAPE value of the

proposed model dropped to 29.1% and increased to 64.8% using the benchmark model. This result

shows that individual training based on our proposed model of the fluid intake amount estimation

gives better result compared to that obtained using the aggregated training as it captures the personal

differences in the drinking habits (e.g., arm posture during the Sip period). However, the benchmark

model result gets worse for two reasons. First, the sip duration is not a personal-based quantity as

it mainly depends on the human’s thirst level. Second, generally the number of samples used in the

individual training is lesser than those in the aggregated training. The overall amount of fluid intake

error for a subject using the proposed and the benchmark models are 15.1% and 42.5% respectively.
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(a) 2-D acceleration model (Eq.(5.3))
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(b) benchmark model (Eq.(5.4))

Figure 5.11: Scatter plot of the estimated amount and groundtruth amount of fluid intake (generalized
model)

This means that our method can consistently estimate the amount of fluid intake of a subject with an

average overall error of 15%. Later, we discuss how many training instances are need to construct an

individualized model for a subject.

5.5 In-situ Evaluation

This section aims to validate that our system can consistently estimate the amount of fluid intake in

real-life scenarios. We use the data collected in the wild either in the office work (Wild-office dataset)

or through daily life outside the office (Wild-day dataset). In this section, we used the pre-trained

models for macro and micro activity classifiers, and fluid intake estimation constructed by LOSO cross

validation in Section 5.4.

5.5.1 Validation using Data Collected During Office Work

To validate our system, we estimate the accumulative amount of fluid intake of 3 participants while they

are doing daily research work for 3 different days. The {precision, recall} of the drinking recognition

for each subject are {100%, 94.1%}, {100%, 92.3%} and {100%, 100%}. This high accuracy (achieved

even when they are behaving naturally) is due to the introduction of the Other gesture as one of

the micro-activities of the drinking activity which helps to remove outlier segments of the extracted

drinking traces. Note that we find that some drinking activities in this challenging environment have

the following sequence of micro-activities: Other → Lift → Sip → Release → Other due to the error
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(a) 2-D acceleration model (Eq.(5.3))
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(b) benchmark model (Eq.(5.4))

Figure 5.12: Scatter plot of estimated amount and groundtruth amount of fluid intake (individually
optimized model)

in extracting the exact drinking moments, presenting some noise in the start and end of the extracted

drinking traces. Given that subjects almost used bottles for drinking and given the restricted subject

activities in the laboratory, these factors further contributed to the good accuracy.

Figure 5.13 visualizes the discrete time instants during the day working hours on the x-axis and

the accumulation of the fluid intake on the y-axis. The figures illustrate the deviation between the

estimated and ground truth amounts in 3 different days. The overall errors of daily fluid intake

amount estimations are -20.7%, -22.9% and -14.2%. This underestimation of the groundtruth fluid

amounts is mainly owing to the false negatives in the drinking recognition, thus missing some fluid

intake opportunities. These results suggest that the amount of fluid intake can be captured in real-life

scenarios with small underestimations using smartwatches. Generally, underestimation is preferable

than overestimation in health support applications.

5.5.2 Validation Using Data Collected in Real-life in a Weekend

To validate that our system archives its goal of estimating the amount of fluid intake in very challenging

scenarios, two subjects (male and a female) were asked to collect data during a weekend from waking

up to bedding time. During the day, they performed many indoor activities (cooking, walking, taking

a nap, etc.) and outdoor activities (shopping, eating at a restaurant, cycling, etc.). The precision and

recall of the drinking activity recognition for both subjects are {100%, 66.6%} and {53.8%, 77.8%}. The
male subject has a low recall rate (i.e., many false negatives), because he had dinner in a restaurant

where he used cups for drinking despite the micro-activity classifier has been trained by a dataset
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(c) Day 3

Figure 5.13: Accumulative amounts of daily fluid intake for 3 different working days (Wild-office
dataset)

collected through fluid intake with bottles. On the other hand, the female subject has low precision

rate (many false positives) because she used her hand for eating at lunch time, thus many eating

moments are misclassified as drinking moments.

Figure 5.14 visualizes the discrete time instants over a weekend day on the x-axis and accumulation

of the fluid intake on the y-axis using a generalized training model. The overall errors of the daily

fluid intake amount for the two subjects are -40.9% and -17.1%, respectively. This underestimation

is mainly due to the high false negatives in the Sip gesture recognition of the male subject. Figure

5.14(a) shows that the gap between the estimated and groundtruth amounts starts to widen from

7:00pm when the male subject was in a restaurant and used cups to drink water and other alcoholic

beverages. However, the gap between the estimated and groundtruth amount is small for the female

subjects as she almost used a bottle to drink fluids (Figure 5.14(b)). It should be noted that no

individualized training models are applied to get an insight of the system performance for first-hand

users.

By applying an individualized training models where each subject estimation model is trained by
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Figure 5.14: The accumulative fluid intake amount over a weekend of two subjects (Wild-day dataset-
generalized training)
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Figure 5.15: The accumulative fluid intake amount over a weekend of two different subjects (Wild-day
dataset- individual training)

his/her own data collected after this experiment, the overall errors of the daily fluid intake amount

estimations fall to -20% and -7.6% for the male and female subjects respectively. Figure 5.15 clarifies

that the error of fluid intake amount estimation drops for both subjects after using only self data for

training.

5.6 Generalization of the system

This section aims to demonstrate that our method could generalize over various user groups, bever-

ages/container types, and smartwatch models.
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Figure 5.16: Statistics of the ”Nombe Challenge” experiment

5.6.1 Users Generalization

To validate that our system could generalize over users of different ages and genders with different

drinking manners, we carried out ”Nombe Challenge” (”nombe” means a drunk person in Japanese)

in a demonstration session held in an academic conference in Japan. Totally, 29 subjects participated

by drinking different beverages using multiple container types. Figure 5.16 shows the statistics of

participants gender, the used hand of drinking, and the beverage and the fluid container types. We

used leave-one-sample-out cross-validation due to lack of enough samples for each class. The precision

and recall of the Sip gesture recognition are 87.3% and 94.9%, and the average overall error of the

amount of fluid intake is 4.7%. This highlights the ability of our system to track the fluid intake

amount consistently for different user groups.
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Table 5.9: 240 intake episodes of 17 beverages using 10 container types

17 beverages 10 containers
type # of episodes type # of episodes

apple juice 6 beer glass 16
beer 2 plastic bottle 42
cider 15 can 55

coffee latte 2 steel bottle 2
coke 10 glass 25

drinkable jerry 5 mug 37
green smoothie 4 paper bottle 6

green tea 20 paper cup 31
hot cocoa 5 straw 23
hot coffee 26 Trago bottle [11] 3
iced coffee 25
lemonade 15

milk 7
energy drink 29
still water 10
wheat tea 49

drinkable yogurt 10
Σ 240 Σ 240

5.6.2 Beverage and Container Generalization

To validate the generalization nature of our system over different beverage and container types, we

collected an extra dataset of the authors’ daily life totaling 240 drinking episodes comprising 17 bever-

age types and 10 container types (Table 5.9). Due to the limited size of data, we trained the classifier

for 6 major container categories using leave-one-sample-out cross-validation. Table 5.10 summarizes

the performance of the Sip micro-activity recognition and the error of fluid intake amount estimations

for each container type. Evident from the table, the Sip gesture recognition precision and recall values

are over 94% for five major container types except using the straw because it does not need to lift the

fluid container. Overall, drinking using bottles achieved the worst accuracy (not worse than straw)

as many types of bottles are used. Finally, the system can consistently achieve an overall fluid intake

amount estimation error less than 30% for all container/beverage types except drinking with straw.

5.6.3 Smartwatches

Nowadays, there are many commodity smartwatches with different limitations on the maximum fre-

quency of sensors sampling. To demonstrate that our system could generalize to different smartwatch

models having different sampling rates, we asked a subject to wear both Microsoft Band 2 and Sony

Smartwatch 3 at the same time. She is instructed to perform each of the 8 macro-activity classes for

10 minutes/class and 30 episodes of fluid intake. We used the pre-trained CRF classifier (based on

the controlled dataset) for the macro and micro activity recognition, and the fluid intake estimation
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Table 5.10: The performance of Sip gesture recognition and the fluid intake amount estimation using
6 different container types

glass bottle can mug paper cup straw

container type

precision 94.8% 94.5% 97.7% 94.2% 95.9% 77.0%
recall 95.4% 97.3% 99.1% 97.5% 98.9% 88.0%
overall error (proposed) -11.7% -29.7% 8.6% 16.8% 6.8% 35.3%
overall error (benchmark) 21.3% -46.8% 10.7% 18.8% 6.2% 36.3%
# of instances 41 53 55 37 31 23

Table 5.11: Comparing the system performance using two smartwatches at different sensor sampling
rates

Device Frequency
drink activity recognition Sip gesture recognition Overall error of intake amount
Precision Recall Precision Recall Proposed model Benchmark Model

62 Hz 92.5% 80.4% 91.0% 93.9% 24.6% 25.2%
Microsoft 31 Hz 92.5% 80.4% 91.0% 94.1% 24.5% 25.3%
Band 2 16 Hz 93.0% 80.6% 90.6% 93.7% 24.0% 25.9%

8 Hz 92.9% 80.6% 88.4% 93.8% 23.2% 31.4%
62 Hz 92.1% 87.0% 71.4% 89.7% 33.3% 64.3%

Sony 31 Hz 92.1% 87.2% 73.5% 90.5% 33.5% 59.5%
SmartWatch 3 16 Hz 91.4% 87.6% 72.2% 87.6% 27.6% 56.7%

8 Hz 92.1% 87.2% 74.2% 86.8% 26.9% 45.3%

models. Table 5.11 compares the performance of our system using the two smartwatches at different

sensor sampling rates. It shows that the performance does not deviate much either between different

smartwatches or different sampling rates. This suggests that our system can work well on differ-

ent smartwatches, even those who have restrictions on sensors sampling rates for the power saving

preference.

5.7 Discussion

In this section, we discuss the limitations, some practical considerations, and potential applications of

our proposed method.

Limitations: Our system builds on two hypotheses: The user wears the smartwatch on the

dominant hand that she usually uses to drink and she usually drinks while being at standstill. The

first hypothesis cannot be relaxed but the user could be asked during the app setup to wear the watch

in her dominant hand. Although the second hypothesis is applicable in many cases, we are currently
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Figure 5.17: Performance of individual’s fluid intake amount estimation at different number of her
training instances

working to relax it to allow for the estimation of the fluid intake amount while the user is moving which

may happen in some cases (e.g., during exercise). We note that these limitations are also common in

the previous studies [16, 15, 55].

Energy consumption: Smartwatch inertial sensors are naturally sampled all the time to track

the user daily exercises and to be aware of her arm movement to automatically turn the display on

or off. Therefore, the proposed system virtually does not consume any excess energy to operate. The

only energy footprint of our system is the real-time processing of sampled sensors to estimate the fluid

intake amount. This footprint, however, is similar to that of other smartwatch health-related apps

(e.g., pedometer).

Adopting individual models: We have shown that adopting individual models for training the

regression models can refine the user’s amount of fluid intake estimation. However, it is critical to know

how much data is enough for our algorithm to build an individualized model that can enhance the

system performance. Figure 5.17 quantifies the effect of the number of individual’s training instances

on the error of the amount of one’s fluid intake estimation. We used Lab-micro+ dataset for this

and picked up subjects whose counts of fluid intake were over 60. Then, we trained and validated

individual models through 10-fold cross-validation for each subject. The figure shows that initially

the error drops significantly when the number of training instances increases. Later on, it saturates

quickly after tens of instances. The key takeaway is that small number of individual training instances

are enough to calibrate the models of one’s fluid intake estimation.

Container type: During the previous evaluations (except in wild scenarios), we have assumed

86



trained model
Confusion error

bottle cup
validation bottle 40.9% 43.3% +2.4%

data cup 42.8% 31.0% +11.8%

Table 5.12: The effect of container type confusion on the estimation error of fluid intake amount

that the system is aware of container type and accordingly use the corresponding model to estimate

the fluid intake. To quantify the effect of wrongly applied model on the accuracy of fluid intake amount

estimation, we used the trained bottle model to estimate the amount of fluid intake using cup and

vice-versa. To remove the personal effect, we picked some drinking episodes of the same subject to form

two datasets: one contains drinking episodes using bottles while the other contains drinking episodes

using cups. Thereafter, we applied 10-fold cross validation where the fluid intake estimation model is

trained with 90% of samples of a given container (e.g., bottle) dataset and validated by 10% of sample

in both containers (bottle and cup) dataset.

Table 5.12 shows the performance of fluid intake amount estimation model using different mixes

of trained and validation data. The diagonal values shows the MAPE of the fluid intake using the

same container dataset for both training and validation. The off diagonal values shows the MAPE of

the fluid intake amount estimation using different container datasets for training and validation. The

last column shows the error in the fluid intake estimation that emanated when the container type is

confused (i.e., the system used a trained model of a given container type to estimate the amount of

fluid intake using other container type). It confirms that confusing the container type does not have a

large impact on the fluid intake amount estimation. Finally, this experiment verifies that our system

can maintain a good accuracy of the estimation of the amount of fluid intake using different containers,

when the system confuses the container type or when the estimation model is not yet build for a given

container.

Potential applications: Our method has many potential applications like hydration notification,

automated generation of fluid intake log, and alcoholic avoidance system. It can be integrated with an

exercise tracking app to estimate the amount of fluid intake and outtake respectively, thus notifying

the user of potential dehydration risks when the accumulative outtake amount is much higher than the

intake amount. Additionally, tracking the amount of the daily fluid intake can be integrated with the

daily food intake estimated by other apps to generate health monitoring logs (e.g., how much sugar

was ingested, how much caffeine the user took). Finally, It can be used with a minor modification

to track the individual alcohol intake rate to avoid alcohol overdose which may cause severe health

problems like cancer.
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5.8 Conclusion

We presented a novel, ubiquitous and unobtrusive system for fluid intake estimation that leverages only

the commodity smartwatches embedded sensors. It first recognizes drinking moments by the macro-

scale activity classification. Thereafter, it extracts the Sip micro-activity that takes place during the

drinking activity. Finally, it estimates the amount of fluid intake based on the Sip duration and

the arm posture during the Sip period. We evaluated the system by collecting large and diverse

datasets in different environments (indoor and outdoor, controlled and uncontrolled) that spans for

more than 80 hours by 51 participants of different genders and experiences using different container

and beverage types. Our results show that the system can detect the drinking activity accurately

(with 84% precision and 87% recall) as well as identify the Sip micro-activity accurately (with 91%

precision and 96% recall). Based on this, it can estimate the amount of daily fluid intake in grams

with an error limited to 15%. Finally, the system can be generalized over different user groups and

is robust to different smartwatch models and container types. We note that we have submitted the

journal version of this chapter to IPSJ journal and ACM IMWUT and they are currently under review

[101, 102].
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Chapter 6

Conclusion

This dissertation has presented a novel approach to heat stroke prevention using core temperature

estimation and fluid intake monitoring by smart wrist-worn devices. The primary goal of this dis-

sertation is to realize a pervasive method of core temperature estimation with wide applicability and

high accuracy. We have designed a method which relies on the well-known human thermal model and

common sensors on the market, and addressed the trade-off between accuracy and its cost in terms of

calibration effort and interference in user activity. Also, we have coped with a challenge of the human

thermal model in complex exercise and environment by introducing both of a novel parameter set to

enhance representation capability of the model and extensional equations leading to wide applicability

to a variety of environments. The other goal is to actualize dehydration prevention to maintain the

reliability of the human thermal model. The major challenge is to precisely estimate drinking moments

and amount of fluid intake by using sensing modalities embedded in the state-of-the-art smart watches.

We have addressed this by using two activity classifiers with different time scales and observing the

duration as well as the posture in drinking episodes. Through this dissertation, we have elaborated on

three primary contributions to catch these goals as follows.

Firstly, we design and evaluate a method to estimate core body temperature which can be con-

currently optimized for individuals with little effort. The method employs Gagge’s two-node model

for core temperature simulation as well as the optimization of four parameters representing differences

of human thermoregulation capability. This realizes the estimation of core temperature which can

be seamlessly deployed in any environment with minimal interference in user activity as well as wide

scalability owing to requiring only common devices on the market. Despite limited information was

available during exercise, we confirmed the method successfully estimated core temperature and it

could choose an effective set of four parameters in moderate exercise.

Secondly, we propose essential extensions for Gagge’s two-node model to realize core temperature

estimation in the wild. To suit the two-node model to exercises with variable workload, we propose two

delay parameters which approximate potential delays of human responses. The model is also extended

to consider the effect of solar radiation, wind, and water ingestion. The method is evaluated through

89



over 120 hours of walking, running, biking, and tennis and achieves up to 0.30 degree Celsius error in

each exercise. Further, a prototype of heat stroke caution has been developed and showed effectiveness

in a real application.

Thirdly, we propose automated estimation of fluid intake to prevent dehydration by leveraging

inertial sensors in wrist-worn gadgets. We collected data in both of laboratory and wild experiments

and designed a novel algorithm to capture drinking episode from noisy motion traces of the wrist. The

algorithm recognizes human activities with macro and micro scale classifiers so as to firstly separate

drinking activity from the other activities and then recognize small gestures constituting a series of

fluid intake. We also propose a robust model for estimating amount of fluid intake which uses not

only the duration of sipping gesture, but also the posture of the arm. The method has been validated

through rigorous datasets and shown 15% error for overall fluid intake amount.

Through these contributions, commercial-off-the-shelf smart devices on the wrist have been uti-

lized to assess rise of core temperature and amount of fluid intake. Our study leaves potentials of

further studies for reinforcing performance of core temperature estimation and fluid intake assessment.

For instance, we expect the estimation of core temperature to be enhanced by either precisely con-

sidering energy production and expenditure in sports using unique information for each sport (e.g.,

measuring the kicking power in soccer), or employing additional sensing modalities such as a thermog-

raphy to finely measure skin temperature. The performance of gauging fluid intake is also foreseen to

be improved by considering deep circumstance regarding each drinking episode (e.g., container type

used, fluid type consumed, location and time of drinking). Fusing smart wrist-worn devices with

smartphones, infrastructures, and other sensorized gadgets will help these extensions. Consequently,

this dissertation has established the foundation of pervasive method for preventing heat stroke for all

mankind.
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