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内容梗概

近年，半導体技術の発展により，スマートフォンやウェアラブルデバイスなど
の人々が身につけて持ち歩く携帯端末に，音や温度，湿度などの環境情報を生成
できるセンサが搭載されつつある．これらのセンサを搭載した携帯端末の普及に
伴い，一般ユーザがもつ端末が生成したモバイルセンサデータ（環境情報および
位置情報）を提供してもらい，都市部における環境モニタリングなどのサービス
に利活用するユーザ参加型センシングが注目されている．端末保持者がセンシン
グ領域を移動しながらデータを生成することで，従来の固定センサネットワーク
に比べて，より細かい地理的粒度でのデータ収集が可能となる．
収集されたモバイルセンサデータを参照し分析することで，センシング領域の

環境情報を調査できる．一般的に，検索を行うユーザは自身の興味に適合する少
数のデータにのみ関心がある．そこで，モバイルセンサデータの環境属性値から，
ユーザの興味に基づいて算出されるスコアを定義し，よりユーザが関心を示す高
いスコアをとる少数のデータを取得することが重要である．さらに，データ間の
空間距離を併せて考慮し，地理空間上で広く分散し，かつ高いスコアをとるデー
タの集合を考える．このようなデータの集合を取得することで，その時々のユーザ
の興味に基づいた注目すべき領域を，広大なセンシング領域から効果的に割り出
せる．高いスコアをとり，かつ地理空間上で分散するデータからなるデータ集合
を，本論文では多様集合と呼び，また多様集合を取得することを Top-k検索結果
の多様化と呼ぶ．モバイルセンサデータに対するTop-k検索結果の多様化は，広大
なセンシング領域の環境情報を調査する方法として有用であるが，大量のモバイ
ルセンサデータに対して多様集合を計算するための単純な手法を用いると，デー
タセット全体を複数回走査する必要があり，計算コストが極めて大きくなってし
まう．
そこで本論文では，モバイルセンサデータベースにおいて，ユーザの興味に適合

し地理空間上で分散した多様集合を短時間で計算する手法について議論する．本
論文ではまず，過去に収集されて蓄積されたモバイルセンサデータベースにおけ
る，効率的なTop-k検索結果の多様化手法を提案する．次に，モバイルセンサデー
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タの環境情報が高次元である場合の，計算効率の低下の影響を緩和するための手
法を提案する．また，モバイルセンサデータが時々刻々と到着するモバイルセン
サストリーム環境における，継続的な Top-k検索結果の多様化手法を提案する．
本論文は，5章から構成され，各章の内容は次の通りである．まず，第 1章にお

いて，序論として研究の背景と目的について述べる．
第 2章において，環境属性値の空間的相関性を考慮した，クラスタリングを用い

た効率的なTop-k検索結果の多様化手法を提案する．この手法では，クエリが到着
する前にオフラインでモバイルセンサデータのクラスタリング処理を行い，生成
されたクラスタの性質を利用した効率的なオンラインクエリ処理を行う．提案す
るオンラインクエリ処理手法では，作成したクラスタ構造の性質を利用し，デー
タセット全体と比較して少数のモバイルセンサデータのみを走査することで，計
算時間を短縮する．また，提案手法の性能評価のために行ったシミュレーション
実験の結果を示し，その有効性について検証する．その結果より，提案手法では，
すべてのデータを複数回走査する必要のある既存手法で得られる多様集合と同一
の検索結果を，短時間で取得できることを確認した．
次に第 3章において，第 2章の手法における環境情報が高次元である場合の問題

点に言及し，その問題点を緩和する手法を提案する．第 2章におけるクラスタリ
ングでは，モバイルセンサデータの環境属性値ベクトルの類似度に基づいてクラ
スタリングを行っている．そのため，モバイルセンサデータが高次元である場合，
クラスタの数が大幅に増加することでオンラインクエリ処理に要する時間が増加
してしまう．そこで，第 3章の手法では，階層的クラスタリング処理によりモバ
イルセンサデータを 2階層のクラスタに構造化する．上位クラスタはモバイルセ
ンサデータの空間位置の近接性のみを考慮して構成されるため，その数は環境属
性の次元数に依存しない．これにより，クラスタの性質を利用したオンラインク
エリ処理における，走査対象のデータの絞り込みのための計算コストを削減でき，
第 2章の手法よりも計算時間を短縮できる．また，提案手法の性能評価のために
行ったシミュレーション実験の結果を示し，その有効性について検証する．その
結果より，モバイルセンサデータの環境情報が高次元の場合でも，提案手法は第 2

章で提案した手法と比較してより短時間で多様集合を取得できることを確認した．
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第 4章では，ユーザの興味に基づいた注目すべき領域のリアルタイムの追跡を
目的とし，モバイルセンサストリーム環境における継続的な Top-k検索結果の多
様化手法を提案する．この手法では，新たに追加，削除されるモバイルセンサデー
タを短時間で構造化して管理するために，格子グリッドベースのデータ構造を用
いる．モバイルセンサデータの位置情報から割当て先の空間セルを決定し，さら
に空間セルの中で環境属性値に基づいて格納先のデータリストを決定する．格子
グリッドベースのデータ構造の空間セルの性質を利用し，モニタリングの対象の
データセット全体と比較して少数のモバイルセンサデータのみを走査することで，
計算時間を短縮する．また，提案手法の性能評価のために行ったシミュレーショ
ン実験の結果を示し，その有効性について検証する．その結果より，提案手法は
第 2章で提案した手法と比較して，より短時間で多様集合を更新できることを確
認した．
最後に，第 5章では，本論文の成果を要約した後，今後の研究課題について述

べる．
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第1章 序章

1.1 研究背景
近年，スマートフォンやウェアラブルデバイスなど，人々が身につけて持ち歩

く携帯端末に様々なセンサが搭載されつつある．これらのセンサを搭載した携帯
端末の普及に伴い，センサが生成する位置情報をはじめとした情報を定期的に取
得し，これを活用するライフログ12や位置情報連動型サービス34などの普及が進ん
でいる．また，上記のような端末に搭載されるセンサの多様化が進み，音や温度，
湿度などの環境情報を生成できる端末も普及しつつある．これらのセンサから取
得した環境情報は，ライフログなどのサービスがユーザに提供できる情報を豊富
にするだけでなく，多数の端末から収集することで，都市部における環境モニタリ
ングをはじめとしたサービスにも利活用できるものと考えられる．このような背
景のもと，一般ユーザが持つ端末が生成した環境情報を含むセンサデータを提供
してもらい，環境モニタリングをはじめとする様々なサービスへ利活用するユー
ザ参加型センシングが注目されている [30, 41, 45, 50, 68, 69]．ユーザ参加型セン
シングでは，センサデータを提供したユーザに，収集したセンサデータから得ら
れる有用な情報を提供するといったインセンティブを与えるなど，センサデータ
を提供しやすい環境を構築することで，多数のユーザからのセンサデータの収集
を実現している．
図 1.1に示すように，ユーザ参加型センシングでは，センサデータは町中を移

動するユーザによって生成され，LTEやWiMAXなど，インターネットに接続可

1Lifelog, http://www.d-healthcare.co.jp/products/moveband3/index.html
2MOVEBAND3, http://www.d-healthcare.co.jp/products/moveband3/index.html
3Growth Push, https://growthpush.com/
4popinfo, http://www.d-healthcare.co.jp/products/moveband3/index.html
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: モバイルセンサデータ

大気汚染検出

センサ

マイク（騒音）
位置情報

環境情報

携帯端末（モバイルセンサ） ID Long. Lat. Air Pol. Noise Radio

・
・
・

モバイルセンサデータベース

ガイガーカウンタ

（放射線量）

: 端末保持者の移動軌跡

図 1.1: ユーザ参加型センシングとモバイルセンサデータベース

能な通信インフラを介して，集中管理のデータベースに格納される．このような，
端末保持者が移動しながら生成するデータを本論文ではモバイルセンサデータと
呼び，モバイルセンサデータが格納されるデータベースをモバイルセンサデータ
ベースと呼ぶ．モバイルセンサデータは，観測時の位置情報，観測時刻，気温・湿
度・大気汚染指数・騒音指数といった複数の環境属性値からなる多次元データとし
てモバイルセンサデータベースに蓄積される．ユーザ参加型センシングでは，従
来の固定センサネットワークとは異なりセンサデバイスを新たに設置することな
く，多数の一般ユーザが持つ携帯端末を利用してセンシングすることで，より細
かい地理的粒度でのデータ収集が可能となる [64]．
収集されたモバイルセンサデータから注目するセンシング領域の環境情報を調

べるにあたって，まずは時空間範囲を指定し範囲内に存在するモバイルセンサデー
タのみを取得する，時空間範囲検索 [55, 60, 61, 66, 74, 75]が想定される．しかし，
センシング領域が広大であり収集されるモバイルセンサデータの量が膨大である
場合，有用な情報を得るために，検索のたびに範囲内のすべてのデータを調べる
ことは困難である．一方で，検索を行うユーザが注目する環境属性値が極端な値
は，特定の注目すべき物理現象の発生を示唆するものである．このようなデータ
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(b) スコアのみを考慮した検索結果

NOx

S
O

x

: ホットスポット : 検索結果に含まれるデータ

� � � 0.6���
�

� 0.4���
�

� 
 ⋅ �

(a) モバイルセンサデータのスコア

(c) スコアと空間的多様性を考慮した検索結果


. �: 検索範囲


. � 
. �

: 検索範囲内のデータ

図 1.2: データのスコアとホットスポット

が得られる領域を，本論文ではホットスポットと呼ぶ．ホットスポットはユーザ
が注目すべき領域であるため，広大なセンシング領域から効果的に検出すること
が重要である．
極端な値を示す個々のデータを取得するためには，Top-k検索 [14, 40]が有効で

ある．Top-k検索では，分析の目的に応じて，注目する環境属性値（気温，湿度，
騒音指数，大気汚染指数など）に重み付けをし（図 1.2(a)），データにスコアを割
り当てる．このスコアによってデータを順位付けし，上位 k個のデータを取得す
る．これまでに，固定センサネットワークにおける様々な Top-k検索に関する研
究が行われている [6, 42, 54, 72, 81, 82]．固定センサネットワークにおける Top-k

検索では，各センサが観測したデータはシンクへと集められ，シンクに対し検索
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要求を送信することで上位 k個のセンサが返される．一方，モバイルセンサデー
タベースにおける Top-k検索では，指定した時空間範囲内に存在するデータから
上位 k個のモバイルセンサデータが返される．しかし，一般的に環境情報は，空
間的に近くに位置するデータは互いに似た属性値をとる確率が高いという，空間
的自己相関 [17, 24, 38, 79]と呼ばれる特徴を有する．そのため，Top-k検索結果に
含まれる大部分のデータは，図 1.2(b)に示すように，ある特定の領域から得られ
たデータである可能性が高い．ここでは，各円形領域は高いスコアを示すデータ
が分布する領域であり，ホットスポットであるとする．図中の 4つのホットスポッ
トは，周辺と比較して十分に高いスコアをとる，ユーザにとって注目すべき領域
である．しかし，中央のホットスポットから生成されたデータのスコアが，他の 3

つのホットスポットから生成されたデータのスコアに比べて高いため，k = 4とし
た場合の上位 4個のデータは，中央のホットスポットからしか取得できない．こ
のように，Top-k検索では，しばしば得られる解の冗長性が問題となることが指摘
されている [15, 94]．

1.2 多様集合の利用
図 1.2(c)に示すように，ホットスポットにおいて生成されたデータをより効果的

に取得するためには，Top-k検索結果の多様化 [33, 76, 92]が有効である．この処
理は，ユーザのクエリとの関連度が高いデータで，かつ結果に含まれるデータ同
士ができる限り類似しないようなデータの組合せ，すなわち多様集合を取得する
ことを目的としている．Top-k検索結果の多様化は，Top-k検索結果の冗長性を解
消し，よりユーザに対して満足度の高い結果を返すことを目的として，Web文書
に対するキーワード検索 [15]，オンラインショッピングにおける商品検索 [78]，推
薦システム [12]など，多岐にわたって研究が行われている．文献 [18, 28, 31, 36]で
は，検索結果として選択されるデータの関連度および多様性の両者を用いて目的
関数をモデル化し，目的関数の最大化を目指す組合せ最適化問題に帰着して，検索
結果の多様化を行っている．この問題はNP困難であることが示されており，デー
タセットサイズが大きいとき，すべての部分集合を総当りで探索するのは，計算
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時間の観点から現実的ではない．そのため，最適化問題の解を得るために，何ら
かのヒューリスティックな手法を用いる必要がある．様々なヒューリスティックな
手法の中でも，グリーディアルゴリズムは得られる多様集合の質および計算時間
の観点から効果的であることが知られており，様々な目的関数に応じた手法が提
案されている [26, 31, 34]．
ここで，既存研究におけるデータのクエリに対する関連度，およびデータ間の

非類似度を，それぞれユーザの検索基準に基づいたデータのスコア，およびデータ
の位置情報から計算されるデータ間の空間距離と置き換えると，データのスコア
が高くかつ検索範囲内でより空間的に分散するデータの組合せを取得できる．従っ
て，Top-k検索結果の多様化をモバイルセンサデータベースに適用することで，上
述したホットスポットの検出に応用できる．
ここで，モバイルセンサデータに対して Top-k検索結果の多様化を適用する際

の課題について述べる．一般的に検索結果の多様化は，検索結果として選択され
るデータの関連度および多様性の両者を用いて目的関数をモデル化し，目的関数
を最大化することによって解かれる．図 1.2(c)に示すような地理空間上のホットス
ポットの検出を目的として，既存の多様化の枠組みをモバイルセンサデータベー
スに適用する場合，データの関連度は環境情報から算出されるデータのスコアに，
多様性は位置情報から算出されるデータ間の空間距離に相当する．よって，最適化
問題を解くためのグリーディアルゴリズムでは，データのスコアとデータ間の空
間距離から算出されるデータの評価値を計算し，最大の評価値をとるデータを探
索する必要がある．Top-k検索とは異なり，グリーディアルゴリズムにおけるデー
タの評価値の計算には，空間距離の計算のためにデータ間の比較が必要であるた
め，個々の単独のデータからは計算出来ない．既存の多様化手法は，検索範囲内
のすべてのデータと，すでに検索結果として選択されているデータを比較し，最
大の評価値をとるデータを繰り返し選択することで最終的な検索結果を算出する．
また，多くの手法はデータのスコアがすでに与えられている状態を仮定している．
一方で，本研究で想定している環境では，クエリごとにユーザの環境属性値に対
する関心は異なるため，クエリごとにデータのスコアは異なる．そのため，クエリ
が到着する前にデータのスコアは計算できず，検索範囲内のデータを取得した段
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階では，データのスコアは未知であると仮定している．これらの既存手法をモバ
イルセンサデータの検索に適用した場合，評価値が最大のデータを取得するため
に，クエリごとにすべてのデータのスコアを計算する必要がある．そのため，デー
タセット全体を走査することは避けられず，データセットサイズが極めて大きい
場合，計算コストも比例して大きくなる．

1.3 研究内容
本論文では，すべてのデータを複数回走査する必要のある既存手法で得られる

多様集合と同一の結果を，短時間で取得することを目的として，モバイルセンサ
データベースにおける Top-k検索結果の多様化手法について議論する．具体的に
は，以下の 3つの研究課題に取り組む．

1.3.1 過去に収集され蓄積されたモバイルセンサデータベースにお
けるTop-k検索結果の多様化（第 2章）

1.2節の後半で説明したように，既存の多様化手法をモバイルセンサデータの検
索に適用した場合，定義された目的関数のもとで評価値が最大のデータを取得す
るために，クエリごとにすべてのデータのスコアを計算する必要があり，データ
セット全体を走査する必要がある．また，従来のTop-k検索では，データのスコア
の計算は一度だけであるのに対し，Top-k検索結果の多様化では，すでに検索結果
として選択されているデータとの間の空間距離を繰り返し計算し直す必要がある．
このため，データセットサイズが極めて大きい場合，計算コストも比例して大き
くなる．
そこで，過去に収集され蓄積されたモバイルセンサデータに対し，事前にデー

タをクラスタ構造化することによって，短時間で多様集合を取得する手法を提案
する．提案手法は，少数のデータにのみアクセスすることで計算時間を短縮し，か
つ既存手法のようにすべてのデータを複数回走査することで得られる多様集合と
同一の結果を保証することを目的とする．提案手法は，オフライン事前クラスタ
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リング処理とオンラインクエリ処理からなる．データの空間位置が近く，かつデー
タの環境属性値が似ているデータは，互いに評価値が近い値となる．このような
データを 1つのクラスタにまとめることで，クラスタ内のデータの評価値の計算を
避けられる場合がある．このため，オフライン事前クラスタリング処理では，空間
位置が近く，かつ環境属性値が似ているデータ同士をクラスタ化し，クラスタ内
の特定のデータから中心データおよび代表データを 1つずつ選択する．環境属性
値の類似度を併せて考慮する理由は，センシング誤差により，空間的に互いに近
接するデータであっても，環境属性値が大きく異なる場合があるためである．こ
れらのクラスタは構造化してファイルに格納され，オンラインクエリ処理時に利
用される．オンラインクエリ処理では，各クラスタの中心データおよび代表デー
タのみを走査し，中心データのスコアとクラスタ半径の情報から，クラスタ内の
データが取りうる評価値の上界を計算する．空間位置および環境属性値の両面か
ら近接性を考慮してクラスタリングすることで，クラスタ内のデータが取りうる
評価値の上界を出来る限り小さく，短時間で計算できる．これにより，計算され
た評価値が十分に小さいクラスタ内のデータを走査対象から除外することで，多
様集合に追加すべき最適なデータを短時間で探索できる．結果として，走査する
データの数を大幅に削減しつつ，既存手法における検索結果と同一の検索結果を
取得できる．また，提案手法のアプローチは，多くの既存研究で対象とされてい
る，複数の種類の最適化問題に対して同様に適用可能である．

1.3.2 高次元なモバイルセンサデータへの対応（第 3章）

近年，ユーザ参加型センシングの取り組みが多数行われており [13, 37, 52, 67]，
収集される環境情報も多岐にわたっている．また，様々なセンサデバイスやセン
サネットワークを仮想化し，クラウド的にセンサデータを管理するセンサクラウ
ド [2, 53, 59]と呼ばれるフレームワークも注目を集めている．このような背景か
ら，モバイルセンサデータがより豊かな環境情報を持つようになり，モバイルセ
ンサデータの環境属性値ベクトルは，高次元化が進んでいる．このような状況で，
1.3.1項で説明したクラスタベースの手法を用いる場合，計算時間が増加する問題
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が生じる．これは，環境属性値ベクトルが高次元になるほどデータ間の類似度が
小さくなるため，球形クラスタの半径が大きく，かつクラスタの数も大幅に増加
してしまい，走査するデータの数を削減するための計算コストが大きくなるため
である．
そこで，事前クラスタリング処理において階層的クラスタリングを行うことで，

環境属性値ベクトルの次元数の増加にともなう計算効率の低下の影響を緩和する
手法を提案する．提案手法の階層的クラスタリングでは，空間的に近接するすべ
てのデータはある 1つの上位クラスタのメンバとし，上位クラスタの配下でメン
バデータの環境属性値の類似度に基いてさらに下位クラスタに分割する．空間的
に近接するデータからなる上位クラスタの数は，環境属性の次元数の増加に非依
存であり，小さく保たれる．提案手法のオンラインクエリ処理では，階層クラス
タ構造を利用し，上位クラスタ内のデータが取りうる評価値の上界を計算するこ
とで，下位クラスタをまとめて走査対象から除外できる．そのため提案手法では，
第 2章におけるクラスタベースの手法と比べて，走査対象のデータをより短時間
で絞り込める．

1.3.3 モバイルセンサストリーム環境における継続的なTop-k検索
結果の多様化（第 4章）

モバイルセンサデータが時々刻々と到着するモバイルセンサストリーム環境に
おいて，地理的多様性を考慮した多様集合をモニタリングすることで，ホットス
ポットの地理的分布の変化をリアルタイムに追跡できる．モバイルセンサストリー
ム環境において多様集合をモニタリングする場合，多様集合内のデータが一定時
間の経過により削除される場合や，よりスコアが大きい，もしくはより地理的に
分散するデータが生成された場合に，多様集合を更新する必要がある．過去に収
集され蓄積されたモバイルセンサデータベースにおける多様集合の計算と同様に，
単純な手法では多様集合の更新に要する計算コストは大きい．
一方で，モバイルセンサストリーム環境において，第 2章や第 3章の事前クラス

タリング処理手法を用いる場合，多様集合の更新の前に，到着するデータや削除
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されるデータに対するクラスタ構造の更新を行う必要がある．クラスタ構造を利
用することで多様集合の更新は短時間で可能となるものの，クラスタ構造の更新
にかかる時間が非常に大きくなるため，結果的に多様集合の更新時間が長くなっ
てしまう．
そこで，データの更新コストが小さい格子グリッドベースのデータ構造を用い

た，モバイルセンサストリーム環境における効率的な多様集合のモニタリング手
法を提案する．格子グリッドの空間セルは，環境属性ごとにデータのリストを保
持しており，それぞれのリストは環境属性値が一定の範囲内であるデータを管理
する．それぞれのデータを被覆する空間セルおよび管理するリストは定数時間で
決定できるため，提案データ構造はストリーム環境に適している．提案アルゴリ
ズムでは，最適なデータを探索する際，空間セル内のデータがとりうるスコアの
上界を計算できる．また，この上界は空間セル内のデータの走査が進むにつれて
減少し，これにより空間セル内のデータの走査を途中で打ち切り，次の空間セル
の走査に進める．結果として，走査するデータの数を大幅に削減しつつ，既存手
法のようにすべてのモニタリングの対象のデータを走査することで得られる多様
集合と同一の結果を取得できる．

1.4 本論文の構成
本論文は，5章から構成され，本章以降の内容は次の通りである．
第 2章では，モバイルセンサデータを空間的な近接性，および環境属性値の類

似度に基づいてクラスタリングし，効率的に Top-k検索結果の多様化を行う手法
を提案する．この手法では，1.3.1項で述べた通り，クエリが到着する前にオフラ
インでモバイルセンサデータのクラスタリング処理を行い，生成されたクラスタ
の性質を利用し，オンラインクエリ処理を行う．提案手法のオンラインクエリ処
理では，クラスタ内のデータの取りうる評価値の上界を計算し，最適なデータを
含み得ないクラスタを走査対象から除外することで，計算時間を短縮する．また，
提案手法の性能評価のために行ったシミュレーション実験の結果を示し，その有
効性について検証する．
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第 3章では，モバイルセンサデータの環境情報が高次元である場合を想定し，階
層的クラスタリングを用いた，クラスタの数の増加に伴う計算効率の低下を緩和す
る手法を提案する．この手法では，1.3.2項で述べた通り，空間的に近接するデー
タから上位クラスタを構築し，その配下で環境属性値の類似度に基づいて下位ク
ラスタに分割する．提案手法のオンラインクエリ処理では，階層クラスタ構造を
利用し，上位クラスタ内のデータが取りうる評価値の上界を計算することで，下
位クラスタをまとめて走査対象から除外することで，走査対象のデータの絞り込
みに要する計算コストを削減できる．また，提案手法の性能評価のために行った
シミュレーション実験の結果を示し，その有効性について検証する．
第 4章では，モバイルセンサデータが時々刻々と到着するモバイルセンサスト

リーム環境における，継続的な Top-k検索結果の多様化手法を提案する．この手
法では，1.3.3項で述べた通り，新たに追加，削除されるモバイルセンサデータを
短時間で構造化して管理するために，格子グリッドベースのデータ構造を用いる．
提案手法のクエリ処理では，格子グリッドベースのデータ構造の空間セルの性質
を利用し，モニタリングの対象のデータセット全体と比較して少数のモバイルセ
ンサデータのみを走査するように，途中でデータの走査を打ち切ることで，計算
時間を短縮する．また，提案手法の性能評価のために行ったシミュレーション実
験の結果を示し，その有効性について検証する．
最後に第 5章では，本論文の成果を要約したのち，今後の研究課題について述

べる．
第 2章は文献 [85, 87, 90]で公表した結果に，第 3章は文献 [86]で公表した結果

に，第 4章は文献 [88, 89]で公表した結果に基づき論述する．



第2章 空間的相関性を考慮したクラ
スタリングを用いたTop-k検
索結果の多様化手法

2.1 まえがき
図 1.2(a)中の式 p(·)のように，注目する環境属性値に重み付けをして計算される

データのスコアが高く，かつ空間的に分散した多様集合を取得するためには，デー
タのスコアおよび空間的多様性の両者を用いて目的関数をモデル化し，目的関数
を最大化することによって解かれる，組合せ最適化問題を考えれば良い．
組合せ最適化問題を解くことによって多様集合を取得する既存研究は，文献 [18,

28, 31, 36]で提案されているものをはじめとして，これまでにもいくつか行われ
ている．1.3.1項で述べた通り，既存の多様化手法 [26, 34]は，検索範囲内のすべ
てのデータと，すでに検索結果として選択されているデータとの距離を計算する．
データのスコアとデータ間の空間距離で定義される目的関数のもと，個々のデー
タに対する評価値も同様に，データのスコアとデータ間の空間距離の重み付き和
で表される．計算したデータ間の距離とデータのスコアから，すべてのデータに
ついて評価値を計算し，最大の評価値をとるデータを繰り返し選択することで最
終的な検索結果を算出する．また，多くの手法はデータのスコアがすでに与えら
れている状態を仮定している．これらの既存手法をモバイルセンサデータの検索
に適用した場合，最適なデータを取得するためにデータセット全体を走査する必
要があるが，データセットサイズが極めて大きい場合，計算コストも比例して大
きくなる．
本章では，この問題を解決するために，事前にデータを構造化することによっ

11
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て，短時間で多様集合を取得する手法を提案する．提案手法は，少数のデータに
のみアクセスすることで計算時間を短縮し，かつすべてのデータを複数回走査す
ることで得られる多様集合と同一の検索結果を保証することを目的とする．提案
手法では，類似するデータは評価値も類似することに着目し，クエリ処理の前に
類似するデータをクラスタリングする．クエリ処理の際は，まず最初に各クラス
タを代表するデータについてのみ評価値を計算する．クラスタの中心座標からク
ラスタ内のほかのデータの評価値が取りうる値の上界を計算できるため，上界が
ほかのクラスタの代表データの評価値より小さく，走査する必要のないクラスタ
を走査の対象から除外できる．
具体的に，提案手法はオフライン事前クラスタリング処理とオンラインクエリ

処理からなる．オフライン事前クラスタリング処理では，空間位置が近く，かつ環
境属性値が似ているデータ同士をクラスタ化し，その際にクラスタの中心として
用いたデータを，そのクラスタの中心データおよび代表データとする．これらの
クラスタは構造化してファイルに格納され，オンラインクエリ処理の際に利用さ
れる．オンラインクエリ処理では，各クラスタの中心データおよび代表データの
みを走査し，中心データのスコアとクラスタ半径の情報から，クラスタ内のデー
タが取りうる評価値の上界を計算する．空間位置および環境属性値の両面から近
接性を考慮してクラスタリングすることで，クラスタ内のデータが取りうる評価
値の上界を出来る限り小さく，短時間で計算できる．これにより，計算された評
価値が十分に小さいクラスタ内のデータを走査対象から除外することで，多様集
合に追加すべき最適なデータを短時間で探索できる．結果として，走査するデー
タの数を大幅に削減しつつ，すべてのデータを複数回走査することで得られる多
様集合と同一の検索結果を取得できる．また，提案手法のアプローチは，本研究
で対象とする地理的な多様性だけではなく，検索結果の多様化に関する任意の最
適化問題に対して同様に適用可能である．
以下では，まず 2.2節で想定環境を紹介し，本章の問題を定義する．2.3節で単

純なグリーディアルゴリズムによるベースライン手法を紹介し，2.4節で提案手法
について説明する．その後，2.5節でシミュレーション実験の結果を示す．その後，
2.6節で本章の考察を行い，2.7節で関連研究について述べる．最後に，2.8節で本
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章のまとめと課題について述べる．

2.2 想定環境と問題定義
モバイルセンサ端末は，周期的に付近の大気汚染指数，気温，湿度などの物理現

象についてセンシングするものとする．ユーザの検索クエリを q，検索範囲を q.R

としたとき，検索範囲内に分布するデータ集合をOで表す．q.RはTop-k検索結果
の多様化を行う時空間範囲であり，図 1.2(b)および (c)における矩形領域が該当す
る．モバイルセンサデータベースがセンシング領域内で長期間にわたって収集さ
れたデータを管理する場合を想定し，空間だけでなく時間を考慮して検索範囲を
定義することで，ある限られた期間内に観測されたデータのみを取得できるよう
にする．データ o ∈ Oは，データ ID o.id，観測時刻 o.t，位置情報 o.loc，環境属
性値 o.zを保持している．o.locは，経度 o.xと緯度 o.yによって表される 2次元平
面内の点とし，o.zは d次元のベクトル o.zi(i = 1, ..., d)で表される．例えば，モ
バイルセンサ端末が，時刻 tnに位置 locの環境属性値 zをセンシングしデータ ID

が idのデータとして生成した後，別の位置 loc′に移動し時刻 tn+1にその位置の環
境属性値 z′をセンシングしデータ IDが id′の別のデータとして生成したとする．
このとき，データベースには 2つのタプル (id, tn, loc, z)および (id′, tn+1, loc

′, z′)

が格納され，各カラムの値は不変で更新は行われない．ただし，データの観測時
刻 o.tnは検索範囲内のデータを取得する際にのみ参照される．そのため，検索範
囲内のデータを取得した後，多様集合を計算する際には，データの観測時刻を無
視する．
各データのスコアは，クエリ qに基づいて決定される．ユーザはクエリ qに対し

て，各環境属性に対する興味の度合いを示す重み付け係数 q.wを付与する．クエ
リ qにおける，データ oのスコア p(q, o)は，以下の式に従って計算される．

p(q, o) =
d∑

i=1

q.wi · o.zi (2.1)

式 (2.1)中のwiは i番目の環境属性に対する重みを示す．高いスコアを示すデータ
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は，検索結果に含まれる可能性が高い．以降では文脈上明らかな場合は，p(q, o)を
p(o)のように略記する．2つのデータ間の多様性は dist : O×O → R+によって表
され，完全に一致する場合には値は 0となる．ここでは，単純に distを空間距離
とし，dist(u, v)はデータ u，vの位置情報から算出される u，v間のユークリッド
距離であり，以下の式に従って計算される．

dist(u, v) =
√

(u.x− v.x)2 + (u.y − v.y)2 (2.2)

上述した環境属性値から算出されるデータのスコア，およびデータ間の位置情報
から算出される空間距離に基づいて，モバイルセンサデータベースにおけるTop-k

検索結果の多様化問題を以下のように定義する．

定義 (Top-k検索結果の多様化問題). クエリ q = {R, k, λ,w}が与えられたとき，
データ集合Oを検索範囲内で観測されたデータ集合O = {oi | oi ∈ q.R}とする．
このとき，以下の式で与えられる最適化問題を解くことによって，多様集合 S∗が
得られる．

S∗ = arg max
S⊆O,|S|=k

f(S, q, p(·), dist(·, ·)) (2.3)

ここで，f(S, q, p(·), dist(·, ·))は目的関数である．以降では文脈上明らかな場合は，
f(S, q, p(·), dist(·, ·))を f(S)のように略記する．Top-k検索結果の多様化を達成す
るために，これまで様々な最適化問題が提案されている．例えば，MAXMIN[34]，
MAXSUM[26]，Maximal Marginal Relevance（MMR）[16, 31]の目的関数は，それ
ぞれ以下の各式で示される．

fmin(S) = min
u∈S

p(u) + λ min
u,v∈S

dist(u, v) (2.4)

fsum(S) = (k − 1)
∑
u∈S

p(u) + 2λ
∑
u,v∈S

dist(u, v) (2.5)

fmmr(S) = (1− λ)
∑
u∈S

p(u) + λ min
u,v∈S

dist(u, v) (2.6)

いずれの目的関数についても，多様集合 S内のデータのスコアが大きいほど目
的関数の値は大きくなり，また，多様集合 S内の任意のデータ間の距離が大きい
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ほど目的関数の値は大きくなる．目的関数中の λは，ユーザの検索における地理
的多様性についての重要度を表しており，λが大きいほど地理的多様性を重視し
てデータを要求し，地理的により分散した結果が得られる．特に，λ = 0のとき
はデータの地理的多様性を完全に無視し，データのスコアのみが考慮されるため，
最終的な多様集合は純粋な Top-k検索結果と等しくなる．
上記の組合せ最適化問題を解くことは，NP困難であることが示されており [26,

31, 34]，検索範囲内のデータセットサイズN が大きいときにすべての部分集合を
総当りで探索するのは，計算時間の観点から現実的ではない．そこで，本論文が
対象とするモバイルセンサデータベースのような大規模なデータセットにおける
最適化問題の解を得るために，何らかのヒューリスティックな手法を用いる必要
がある．様々なヒューリスティックな手法の中でも，グリーディアルゴリズムは得
られる多様集合の質および計算時間の観点から効果的であることが知られており，
様々な目的関数に応じた手法が提案されている [26]．そこで，本論文においても
グリーディアルゴリズムをベースラインとする．

2.3 ベースライン手法
本節では，ベースラインとなる単純なグリーディアルゴリズムについて説明す

る．グリーディアルゴリズムでは，すべてのデータの評価値を計算し，最大のデー
タを選択するという動作を繰り返すことで，多様集合を計算する．
具体的なアルゴリズムを，Algorithm 1に示す．文献 [26, 31]において，多様集

合の初期化処理は，得られる検索結果の質に対して大きな影響を与えないことが
確認されている．そこで，1，2行目の初期化処理は文献 [31]に従い，データセッ
ト内で最大のスコアをとるデータを多様集合に追加することとした．3行目から 6

行目の反復により，多様集合の大きさが kとなるまで，繰り返しデータを多様集
合に追加する．4行目の dr(·, S∗)は，データのスコアとデータ間の空間距離から算
出される評価値である．評価値は，それぞれの最適化問題について以下のように
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Algorithm 1 Algorithm for the Optimization Problem
Input: Data set O, diversified set size k, importance of spatial diversity λ, weight
vector w
Output: Set S∗(|S∗| = k) that maximizes f(S)

1: Initialize the set S∗ = ∅
2: Find o∗ = arg max

o∈O
p(o) and set S∗ = {o∗}

3: while |S∗| < k do
4: Find o∗ ∈ O\S∗ such that o∗ = arg max

o∈O\S∗
dr(o, S

∗)

5: Set S∗ = S∗ ∪ {o∗}
6: end while

定義される．

dmin
r (o, S∗) = min

u∈S∗
{1
2
(p(o) + p(u)) + λdist(o, u)} (2.7)

dsumr (o, S∗) =
∑
u∈S∗

{p(o) + p(u) + 2λdist(o, u)} (2.8)

dmmr
r (o, S∗) = min

u∈S∗
{(1− λ)p(o) + λdist(o, u)} (2.9)

以下の式に示すように，4行目で追加されるデータ o∗は，評価値 dr(·, S∗)を最大
化すると同時に，目的関数 f(S∗ ∪ o)を最大化する．

o∗ = arg max
o∈O\S∗

dr(o, S
∗) = arg max

o∈O\S∗
f(S∗ ∪ o) (2.10)

最大の評価値をとるデータ o∗は，グリーディアルゴリズムのもとで目的関数を最
大化するデータであるため，以降ではデータ o∗を最適なデータと呼ぶ．
このアルゴリズムの計算量は，データセットサイズN に依存する．初期化処理

は，データのスコアが最大のデータを探索するため，単純にデータセット全体の
走査が必要となり，計算量はO(N)である．また，3行目から 6行目の反復につい
ては，反復回数が k，各反復につき最大 k(N − k)回の評価値の計算が必要となる
ため，全体の計算量はO(k2N)となる．そのため，データセットサイズが大きく
なると計算時間が長くなってしまう．そこで本章では，効率的なTop-k検索結果の
多様化手法，すなわち走査するデータの数を削減し，かつベースライン手法と同
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一の多様集合を取得する手法を提案する．

2.4 提案手法
本節では，本章の提案手法について説明する．ベースライン手法では，アルゴ

リズム中の各反復で最適なデータを探索するために，多様集合に含まれないすべ
てのデータO\S∗を走査する必要があり，計算時間が長くなる．この際の計算コス
トを削減するために，提案手法では環境属性値に関する空間的自己相関と呼ばれ
る特徴 [17, 24, 38, 79]を利用する．この特徴を考慮すると，空間的に近くに存在す
るセンサデータは，互いに似た環境属性値を有する可能性が高い．そしてそのよ
うなデータは，ユーザの環境属性値に対する関心が異なる，すなわちスコアリン
グ関数の重み付け係数が異なる場合でも，互いに似たスコアをとる．また，空間
的に近くに存在するため，多様集合内のデータとの空間距離も近い値となる．よっ
て，空間的に近いデータは，評価値も互いに似た値となる可能性が高い．
以上を考慮し，オフライン事前クラスタリング処理では，空間的に近いデータ

をクラスタ化し，クラスタの中心のデータを，そのクラスタの中心データおよび
初期の代表データとする．オンラインクエリ処理では，最初にすべてのクラスタ
の中心データと代表データについてのみ，評価値を計算する．この際に走査する
データの数は，全体のデータセットサイズN に比べて大幅に少ない．クラスタ内
の他のデータの評価値について，その上界は中心データの評価値およびクラスタ
半径から計算できる．この時，中心データの評価値が十分に小さい場合，そのク
ラスタ内のデータは多様集合に追加され得ないと判断できるため，走査するデー
タの数を削減できる．
まず，2.4.1項において，オンラインクエリ処理で利用するクラスタを作成する

ためのオフライン事前クラスタリング処理，作成されたクラスタの管理方法，お
よびクラスタのメンテナンス方法について説明する．次に，2.4.2項において，作
成されたクラスタファイルセットを利用したオンラインクエリ処理について説明
する．
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2.4.1 オフライン事前クラスタリング処理

オフライン事前クラスタリングでは，最初に選んだクラスタの中心から，一定
の空間距離内に位置し，かつ環境属性値ベクトルが類似するデータをクラスタの
メンバとする．クエリパラメータである λやwに非依存なクラスタを生成するた
め，オンラインクエリ処理の際に任意のクエリパラメータに対して適用できる．こ
のようなクラスタリングは，canopyクラスタリング [56]を空間位置と環境属性値
の 2つの空間に同時に適用することで実現できる．ただし，クラスタ内のデータ
を走査する際，同じデータの評価値を重複して計算することを避けるため，クラ
スタ間データを共有しないよう，canopyクラスタリングを拡張する．
クラスタ半径 r1, r2は，中心データからの存在範囲を示すものであり，オンライ

ンクエリ処理の際にクラスタ内のデータが取りうる評価値の上界を計算するため
に用いられる．小さいクラスタ半径を用いてクラスタリングすると，評価値の上
界は小さくなるため，オンラインクエリ処理の際に多くのデータを走査の対象か
ら除外できるが，クラスタの数は大きくなる．オンラインクエリ処理ではクラス
タの代表データは必ず評価値を計算するため，クラスタの数の増大は計算効率を
低下させる．そのため，環境属性値の半径 r2は環境属性値の誤差を考慮し，小さ
な誤差でクラスタが分割されないよう設定する必要がある．また，空間位置の半
径 r1は空間的多様性の重要度 λによって最適な値が変わると考えられるため，ク
エリパラメータとして用いられる値の頻度に応じて設定する必要がある．
クラスタリングのためのアルゴリズムを，Algorithm 2に示す．3，4行目で，いず

れのクラスタにも属していないデータを見つけた場合，そのデータを新たなクラス
タの中心データかつ代表データとする．ここで，5行目の retrieveNeighbors(oi, r1, r2)

は，データ oiに空間位置が互いに近く，環境属性値が互いに似ているデータを返
す操作である．具体的には，データ oiの空間位置ベクトル oi.locを中心とした半
径 r1の円内に存在し，かつ，データ oiの環境属性値ベクトル oi.zを中心とした
半径 r2の超球内に存在するデータを返す．d次元の環境属性値について，半径 r2

の超球内に存在するデータ集合Oiは，ユークリッド距離を用いた以下の式で表さ
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Algorithm 2 Algorithm for Clustering
Input: Data set O, spatial radius r1, environmental attribute radius r2
Output: Set of clusters C = C1, C2, ..., Ck

1: clusterLabel = 1

2: for i = 1 to N do
3: if oi is not in any clusters then
4: Mark oi as the center and initial representative of the current cluster
5: X = retrieveNeighbors(oi, r1, r2)
6: for j = 1 to |X| do
7: if oi,j is not in any clusters then
8: Mark oi,j with current clusterLabel
9: end if

10: end for
11: clusterLabel++

12: end if
13: end for

れる．

Oi = {o |

√√√√ d∑
j=1

(oi.zj − o.zj)2 ≤ r2} (2.11)

retrieveNeighbors(oi, r1, r2)で取得したデータのうち，いずれのクラスタにも属して
いないデータに対し，現在作成中のクラスタのラベルを付与する．クラスタ間で
のデータの共有はないものとし，すべてのデータがいずれかのクラスタに割り当
てられるまでクラスタを生成する．
ここで，環境属性値が空間的自己相関の性質を有していたとしても，以下のよ

うな場合を想定し，環境属性値についてもデータの近接性を考慮する必要がある．
検索範囲の時間幅が大きい場合，同じ位置でも物理現象の出現，あるいは消滅に
よって，観測時刻間で環境属性値が大きく変わることが考えられる．例えば，ある
特定の位置の騒音指数について，朝の騒音指数に比べてものや人の動きが活発に
なる昼の騒音指数のほうが大きくなる場合が考えられる．また，観測した環境属
性値に誤差が含まれる場合，互いに空間位置が近くても，環境属性値が大きく異
なる可能性がある．そのようなデータは，空間位置は近いが，環境属性値に差が
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生じることでスコアが大きく異なり，互いに評価値も大きく異なる可能性がある．
このような場合に，空間位置の近接性のみを考慮してクラスタリングすると，クラ
スタに含まれる評価値の大きなデータがたとえ少数であっても，そのようなデー
タによってクラスタ内のデータがすべて走査の対象として選ばれてしまう．そこ
で，環境属性値に関して近接性を考慮することで，このようなデータを互いに別々
のクラスタに分割でき，オンラインクエリ処理の計算コストをより削減できる．
このアルゴリズムで最も計算量の大きい操作は，クラスタメンバの候補を取得す

る retrieveNeighbors(oi, r1, r2)である．ここでは，データセットサイズがNで，デー
タが空間位置や環境属性値による多次元インデックスなどによって構造化されてい
ない場合を考える．retrieveNeighbors(oi, r1, r2)では，oiとそれ以外のデータ間の空
間位置に基づく距離および環境属性値に基づく距離を計算する必要があり，合計
2(N − 1)回の距離計算が行われる．ここで最悪の場合は，すべてのデータが別々
のクラスタに分離されてしまう場合である．このとき retrieveNeighbors(oi, r1, r2)

はすべてのデータ oi ∈ Oに対して実行されるため，N 回実行される．よって，こ
のアルゴリズムの最悪計算量はO(N2)となる．クエリが到着する前にオフライン
で実行されることから，予めオフライン事前クラスタリング処理を実行するため
の時間は十分に確保できると考えられる．また，retrieveNeighbors(oi, r1, r2)による
クラスタメンバの候補の取得は，R*木 [7, 71]や k-d木 [9, 32]のような多次元イン
デックス構造を用いた範囲検索や，cover木 [10, 39]を利用した k最近傍検索によ
り効率化できる．

クラスタリング例

図 2.1(a)および (b)に示す具体例を用いて，環境属性の次元数 d = 2の場合の，
オフライン事前クラスタリング処理について説明する．まず，データ o1を中心と
してクラスタC1を生成する．データ o2はデータ o1を中心とした空間距離 r1の円
内に存在し，かつデータ o1を中心とした環境属性値空間で半径 r2の円内に存在す
る．よって，データ o2は，データ o1と同じクラスタに割り当てる．次に，データ
o3を中心としてクラスタC2を生成する．残りのクラスタに割り当てられていない
すべてのデータは，データ o3を中心とした空間距離 r1の円内に存在する．しかし，
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図 2.1: クラスタリングの例

環境属性値空間では，データ o3を中心とした半径 r2の円内に存在するのはデータ
o4とデータ o6の 2つのみである．よって，クラスタに割り当てられていないデー
タの内，データ o4とデータ o6のみをクラスタC2に割り当てる．同様に，データ
o5を中心としてクラスタC3を生成すると，残りのデータ o7およびデータ o8はク
ラスタC3に割り当てられる．このように，すべてのデータはそれぞれ 3つのクラ
スタの内のいずれかに割り当てられる．

2.4.2 クラスタを利用したオンラインクエリ処理

本項では，クラスタを利用したオンラインクエリ処理アルゴリズムについて説
明する．提案するアルゴリズムでは，走査対象のクラスタと走査する必要のない
クラスタを正しく振り分けることで，評価値を計算するデータの数を削減しつつ，
ベースライン手法と同一の多様集合を計算できる．
具体的なアルゴリズムをAlgorithm 3に示し，表 2.1に本項で用いる記号をまと

める．ここでは特に，走査するデータの数を削減する手続きを含む，Algorithm 3
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表 2.1: 2.4.2項で用いる記号のリスト

記号 意味
oi,rep クラスタCiの代表データ
oi,cen クラスタCiの中心データ
r1 クラスタの空間半径
r2 クラスタの環境属性値半径
C′ 走査対象のクラスタ集合
dr(Ci, S∗) クラスタCiの上界
vi クラスタCi内の仮想データ

Algorithm 3 Algorithm for Optimization Problem Leveraging Clusters
Input: Set of clusters C, diversified set size k, importance of spatial diversity λ,
weight vector w, spatial radius r1, environmental attribute radius r2
Output: Set S∗(|S∗| = k) that maximizes f(S)

1: Initialize the set S∗ = ∅
2: Find o∗ = arg max

o∈O
p(x) and set S∗ = {o∗}

3: while |S∗| < k do
4: Find o∗rep such that o∗rep = arg max

oi,rep∈Ci

dr(oi,rep, S
∗)

5: Initialize the set C′ = {C | o∗rep ∈ C}
6: for all i = 1 to |C| do
7: Estimate upper bound of each cluster dr(Ci, S∗) = maxvi∈Ci

dr(vi, S
∗)

8: if dr(o∗rep, S∗) ≤ dr(Ci, S∗) then
9: C′ = C′ ∪ {Ci}

10: end if
11: end for
12: Find o∗ ∈ C′\S∗ such that o∗ = arg max

o∈C′\S∗

dr(o, S
∗)

13: Set S∗ = S∗ ∪ {o∗}
14: if o is representative data of Ci then
15: Select new representative data for Ci

16: end if
17: end while
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の反復部分について説明する．まず，すべてのクラスタの代表データを走査し，評
価値の最大値をとる代表データ o∗repを探索する（4行目）．以降，この代表データ
o∗repを基準データと呼ぶ．またこのときに，中心データの評価値も計算し，記憶
しておく．これは，本項の後半で説明するように，クラスタ内のデータが取りう
る評価値の上界を計算する際に必要となるためである．基準データ o∗repを含むク
ラスタは，多様集合に追加すべき最適なデータを含む可能性が高い．よって，こ
のクラスタを走査対象のクラスタ集合C′に追加する．次に，すべてのクラスタに
ついて，各クラスタ内のデータの評価値が取りうる値の上界（以降では，単にク
ラスタの上界と略記）dr(Ci, S∗)を計算する（7行目）．各クラスタの上界と，最
初に計算した基準データの評価値 dr(o

∗
rep, S

∗)を比較し，上界のほうが大きい場合，
C′に追加する．ここで，以下の定理が示す通り，C′に含まれないデータは最適な
データとはならないため，走査する必要はない．

定理. 最適なデータは走査対象のクラスタ集合C′内に存在する．すなわち，arg max
o∈O

dr(o, S
∗) =

arg max
o∈C′

dr(o, S
∗)である．

証明. 背理法により証明する．最適なデータは走査対象のクラスタ集合外O\C′に
存在すると仮定する．最適なデータ o∗を含むクラスタをC∗とする．データ o∗は，
候補となるデータの集合の中で最大の評価値をとるため，その評価値は少なくと
も基準データの評価値以上となる．ゆえに，dr(o

∗, S∗) ≥ dr(o
∗
rep, S

∗)である．ここ
で，クラスタC∗の評価値の上界について，明らかに dr(C∗, S∗) ≥ dr(o

∗, S∗)とな
る．これらの不等式およびAlgorithm 3の 8行目から 10行目より，クラスタC∗は
走査対象のクラスタ集合C′に追加される．すなわち，C∗ ∈ C′である．これは，
最適なデータ o∗が走査対象のクラスタ集合外O\C′に存在するという仮定に矛盾
する．

最後に，走査対象のクラスタ集合C′に含まれるすべてのデータを走査し，最大
の評価値をとるデータを最適なデータとして，多様集合 S∗に追加する．追加され
たデータがいずれかのクラスタの代表データであった場合，クラスタ内のデータ
からランダムに新たな代表データを選択する（15行目）．空間的相関性が弱く，ク
ラスタが細かく分割される場合でも，評価値が最大のデータを含んでいる可能性
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のあるクラスタは必ず走査されるため，提案手法によりベースライン手法と同じ
多様集合を取得できる．

クラスタの上界の計算

ここで，Algorithm 3の 7行目における，各クラスタ内のデータが取りうる評価
値の上界の計算方法について説明する．クラスタが含むデータの分布の詳細は不
明なため，クラスタ内に存在しうる仮想的なデータ viを考え，データ viが取りう
る最大の評価値を，可能な限り正確に計算する．評価値は，データ間の空間距離
と，環境属性値に基づくスコアの 2つの指標から算出される．ここで，それぞれ
の最適化問題における評価値を，多様集合内のデータに非依存の項と依存する項
に分解する．

dmin
r (vi, S

∗) =
1

2
p(vi) + min

u∈S∗
{1
2
p(u) + λdist(vi, u)} (2.12)

dsumr (vi, S
∗) = |S|p(vi) +

∑
u∈S∗

{p(u) + 2λdist(vi, u)} (2.13)

dmmr
r (vi, S

∗) = (1− λ)p(vi) + min
u∈S∗
{λdist(vi, u)} (2.14)

まず，多様集合内のデータに非依存の項（第 1項）が取りうる最大値を計算す
る．スコアは，重みベクトル q.wと環境属性値ベクトル o.zの内積として捉える
と，それぞれのベクトルのなす角を θとした時，以下の式で計算できる．

p(q, o) =
d∑

i=1

q.wi · o.zi

= q.w · o.z

= |q.w||o.z|cosθ (2.15)

よって，クラスタ内に存在しうる仮想データ vi(vi.z = oi,cen.z+ ϵ)を考えた時，第



2.4. 提案手法 25

�

�

0
1.0

1.0

0.5

0.5

�. ��

�. ��

��,���

0

1.0

0.5

1.00.5

��
�.�

��,���. ��

� ∈ 	∗


��

�	

����,���,
�����,���

(a) 第1項の上界の計算 (b) 第2項の上界の計算

��

����

�

��

図 2.2: クラスタの上界の計算

1項の最大値は以下の式で与えられる（図 2.2(a)）．

max
vi∈Ci

{p(vi)} = max
|ϵ|≤r2,0≤θ≤2π

{(q.w · (oi,cen.z + ϵ))}

= p(oi,cen) + max
|ϵ|≤r2,0≤θ≤2π

(|q.w||ϵ|cosθ)

= p(oi,cen) + |q.w|r2 (2.16)

次に，多様集合内のデータに依存する項（第 2項）が取りうる最大値を計算す
る．MAXMIN問題およびMMR問題それぞれについて，クラスタの中心データと
多様集合内のデータとの，各データのスコアを加味した距離を計算し，その時の
最小の値を取る多様集合内のデータをuNN ∈ S∗とする．中心データとデータuNN

を直線で結んだ時，2つの交点が存在する（図 2.2(b)）．ここで，データ uNN から
最も離れる位置は，2つの交点の内，データ uNNから遠い方の点である．仮想デー
タ viがこの点に位置するとき，多様集合 S∗からの距離も最大化される．そのた
め，MAXMIN問題およびMMR問題における第 2項が取りうる最大値は，以下の
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式で与えられる．

max
vi∈Ci

{min
u∈S∗
{1
2
p(u) + λdist(vi, u)}} =

1

2
p(uNN) + λ{dist(oi,cen, uNN) + r1} (2.17)

max
vi∈Ci

{min
u∈S∗
{λdist(vi, u)}} = λ{dist(oi,cen, uNN) + r1} (2.18)

また，MAXSUM問題において，仮想データ viの位置として，多様集合内のそれぞ
れのデータ u ∈ S∗から最も離れた点を仮定する．勿論このような，仮想データが
複数の位置情報を有する仮定は成り立ち得ないが，この場合に計算される仮想デー
タの評価値は，明らかに上界となる．よって，MAXSUM問題における第 2項が取
りうる最大値は，以下の式で与えられる．

max
vi∈Ci

{
∑
u∈S∗

{p(u) + 2λdist(vi, u)}} =
∑
u∈S∗

{p(u) + 2λ(dist(oi,cen, u) + r1)} (2.19)

これらの式から，MAXMIN問題，MAXSUM問題，MMR問題におけるクラスタ
の上界を，それぞれ以下のように計算できる．

dmin
r (Ci, S∗) =

1

2
{p(oi,cen) + |q.w|r2}+

1

2
p(uNN) + λ{dist(oi,cen, uNN) + r1}

= {1
2
(p(oi,cen) + p(uNN)) + λdist(oi,cen, uNN)}+

1

2
|q.w|r2 + λr1

= dmin
r (oi,cen, S

∗) +
1

2
|q.w|r2 + λr1 (2.20)

dsumr (Ci, S∗) = |S∗|{p(oi,cen) + |q.w|r2}+
∑
u∈S∗

{p(u) + 2λ(dist(oi,cen, u) + r1)}

= {|S∗|p(oi,cen) +
∑
u∈S∗

(p(u) + 2λdist(oi,cen, u))}+ |S∗||q.w|r2 + 2|S∗|λr1

= dsumr (oi,cen, S
∗) + |S∗|(|q.w|r2 + 2λr1) (2.21)
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dmmr
r (Ci, S∗) = (1− λ){p(oi,cen) + |q.w|r2}+ λ{dist(oi,cen, uNN) + r1}

= {(1− λ)p(oi,cen) + λdist(oi,cen, uNN)}+ (1− λ)|q.w|r2 + λr1

= dmmr
r (oi,cen, S

∗) + (1− λ)|q.w|r2 + λr1 (2.22)

これらの式より，上界の計算はクラスタの中心データの評価値と，クラスタ半
径およびクエリパラメータのみで簡単に計算できる．特に，中心データの評価値
はアルゴリズムの上界の計算の前に計算し記憶されている．1，2行目の初期化処
理についても，式 (2.16)からクラスタ内のデータの取りうるスコアの上界が計算
できるため，同様の手順で走査するデータの数を削減できる．

オンラインクエリ処理例

図 2.3を用いて，走査するデータの数を削減する方法を例示する．図 2.3(a)は，
初期化処理が完了し，|S∗| = 1となっている状態である．基準データ o∗repは探索済
みで，かつ各クラスタの中心データの評価値は計算済みとする．ここでは簡単の
ために，基準データ o∗repを含むクラスタを C1，それ以外のクラスタの IDを中心
データの評価値の降順に割り当てている．次に，各クラスタの中心データの評価
値から，クラスタの上界を計算する．
図2.3(b)に，計算されたそれぞれの値の分布を示す．このとき，クラスタC4 ∼ C8

は，計算された上界が基準データ o∗repの評価値を下回っているため，走査対象の
クラスタ集合C′に追加されない．よって，クラスタC4 ∼ C8内のデータは走査す
る必要はない．

クラスタのファイル管理方法

ここで，作成されたクラスタのファイル管理方法について説明する．ベースラ
イン手法は，データのスコアを計算するために，検索範囲内のデータをすべてファ
イルから読み込まなければならない．しかし，提案手法では，以下で説明するファ
イル管理方法を用いることで，大部分のクラスタ内のデータをディスクから読み



28第2章 空間的相関性を考慮したクラスタリングを用いたTop-k検索結果の多様化手法

基準データの評価値 : �������
∗ , �∗�

�
�� �� �� �� �� �� �� ��

�	��	
�
∗ , �∗�

�	�⋅, �
∗�

クラスタの上界 : �����, �
∗�

中心データの評価値 : �����,��� , �
∗�

�

�

0
1.00.5

� ∈ �∗

��

1.0

0.5

(b) �∗ =1におけるクラスタ毎の評価値の上界(a) �∗ =1におけるクラスタの空間分布

��

��

��

��
��

��

��

図 2.3: オンラインクエリ処理の例

込むことなく多様集合が得られるため，アルゴリズム全体におけるディスク IOコ
ストを削減できる．
オンラインクエリ処理では，まず最初にクラスタの中心データおよび代表デー

タのみが走査される．詳細は後述するように，クラスタの代表データの評価値が
十分に小さい場合，そのクラスタは最適なデータを含み得ない．そのため，中心
データと代表データを除き，そのようなクラスタのデータはディスクから読み込
む必要はない．一方，初期状態では中心データと代表データは一致しているため，
ディスクから読み込むデータは各クラスタにつき 1つのみとなる．
構造化されたクラスタは，図 2.4に示されるようなインデックスファイルと，関

連するクラスタの数分のクラスタファイルとして保存される．インデックスファ
イルは，各クラスタの中心データ（代表データ）からなる．インデックスファイ
ルの各レコードは，代表データの位置情報，環境属性値，そして当該クラスタファ
イルへのポインタからなる．これらのポインタを用いることで，最適なデータを
含んでいると考えられるクラスタのクラスタファイルを読み込み，走査できる．
検索の対象のデータセットが一度構造化されれば，たとえユーザごとに環境属

性に関する興味が異なり，クエリのスコアリング関数が変化したとしても常に効



2.4. 提案手法 29

クラスタ 代表データ

（中心データ）

クラスタメンバ

�� �� ��, ��

�� �� ��, ��, ��

�� �� ��, ��, ��

���. �, ��.�, ��. ��,… , ��. �	
 ��. �

インデックスファイル クラスタファイル

���. �, ��.�,��. ��,… , ��. �	


���.�, ��.�, ��. ��,… , ��. �	
 ��. �
���. �, ��. �,��. ��,… , ��. �	


���. �, ��.�,��. ��,… , ��. �	

���.�, ��.�, ��. ��,… , ��. �	
 ��. �

���. �, ��. �,��. ��,… , ��. �	


���. �, ��.�,��. ��,… , ��. �	


図 2.4: クラスタファイル集合

率的に対応できる．また，クエリの時間範囲内のデータが構造化されていれば，ど
のようなクエリにも提案するオンラインクエリ手法が適用できる．

計算量分析

クラスタを利用したオンラインクエリ処理の時間計算量について分析する．多
様集合の計算には，はじめは空集合の S∗に最適なデータをサイズが kとなるまで
繰り返し追加するために，k回のデータおよびクラスタの走査を繰り返す．この際
のループ変数を i（i = |S∗|+1）とする．また，クラスタの数を cとする．ここで，
1回あたりの反復における計算量を考える．まず，走査対象のクラスタ集合C′を
決定するために，すべてのクラスタの代表データの評価値の計算，およびクラス
タの上界の計算が必要となる．データの評価値の計算には，1回のデータのスコア
の計算に加え，|S∗| = i − 1個のデータとの距離の計算が必要となる．よって，c

個の代表データの評価値の計算の計算量は，c · {1 + (i− 1)} = ciとなる．さらに，
基準データの評価値を上界が下回るクラスタを除外するために，c個のクラスタの
走査が必要となる．よって，走査対象のクラスタ集合C′の決定の計算量はこれら
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の合計であり，ci + c = c(i + 1)となる．最後に走査対象のクラスタ集合C′内の
すべてのデータの評価値の計算が必要となる．走査対象のデータの数を n∗

i とする
と，計算量は n∗

i · {1 + (i − 1)} = n∗
i iとなる．また，各反復における走査対象の

データの数の最大値を，max1≤i≤k{n∗
i } = n∗とする．オンラインクエリ処理の全

体の計算量は，k回の反復の合計であるため，次式で表される．

k∑
i=1

{c(i+ 1) + n∗
i i} ≤ (c+ n∗)

k∑
i=1

i+
k∑

i=1

c

=
1

2
(c+ n∗)k(k + 1) + ck

=
1

2
k2(c+ n∗) +

1

2
k(c+ n∗) + kc (2.23)

よって，オンラインクエリ処理の計算量は，O(k2(c+n∗))である．また，2.3節の
末尾で述べた通り，データセットサイズをN としたとき，ベースライン手法の計
算量はO(k2N)である．多くの場合，クラスタの数 cや各反復において走査される
データの数の最大値 n∗は，N に比べ大幅に小さい．このため，提案手法の計算量
は，ベースライン手法の計算量に比べて小さくなる．

2.5 性能評価
Top-k検索結果の多様化における，提案手法の性能を評価する．表 2.2は各パラ

メータの値を示し，太字はデフォルト値とする．
オフライン事前クラスタリング処理は，クエリが到着する前に一度だけ実行さ

れればよく，データを公開する前に十分な時間が確保できると考えられる．一方，
オンラインクエリ処理は複数のユーザからクエリを受け取るたびに繰り返し実行
されるため，高速化が求められる．そこで本節における評価では，オンラインク
エリ処理に伴う計算時間およびディスク IOコストを求めた．
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表 2.2: パラメータの値

パラメータ 値
データセットサイズ N 1M, 5M, 10M, 50M
要求するデータの数 k 5, 10, 15, 20, 25, 30
クラスタの空間半径 r1 0.01∼0.15
クラスタの環境属性値半径 r2 0.1∼2.0
wの各要素 0.0∼1.0
λ (MAXMIN, MAXSUM) 0.0∼5.0
λ (MMR) 0.0∼1.0
環境属性の次元数 d 1, 2, 3, 4

2.5.1 データセット

データの位置情報を，各次元の値が区間 [0, 1]上の一様分布に従う，2次元ベク
トルで与えた．また，データの環境属性値は，図 2.5に示すような空間的自己相関
の特徴を有する分布に従う値とし，1次元から 4次元まで設定した．図中の各矩形
領域がクエリの検索範囲 q.Rであり，横軸および縦軸がそれぞれデータ位置の x座
標，y座標を表す．具体的な環境属性値は，データの位置情報から決定される．ま
た，センシング時の誤差を考慮して，位置情報から決定される環境属性値に対し，
N(0, 0.3)の正規分布に従う正規乱数を加算した．

2.5.2 比較手法

提案手法（以降のグラフ中では ‘P-cluster’と表記）を，2.3節で説明したベース
ライン手法（‘Naive’）および空間位置の近接性のみを考慮して作成されたクラス
タを利用する手法（‘C-cluster’）と比較した．この比較手法は，クエリ処理のアル
ゴリズムは提案手法と同じだが，環境属性値空間における半径が r2 = ∞であり，
式 (2.16)においてクラスタ内のデータのスコアについて上界を計算するための情
報を持たない．そのため，最初にすべてのデータをディスクから読み込みすべて
のデータのスコアを計算し，クラスタ毎に最大のスコアとそのデータを記憶する．
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(a) 第1属性値 (b) 第2属性値

(c) 第3属性値 (d) 第4属性値
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図 2.5: 環境属性値の分布

以降，評価値の上界の計算にはこの最大のスコアを用いることで，他の手法と同
一の多様集合が取得できる．

2.5.3 設定

すべてのアルゴリズムを Java7で実装し，Intel(R) Core(TM) i7-4790K CPU @

4.00GHz with 24.0 GB RAMを搭載するWindows7 Enterpriseで動作する計算機上
で実験した．
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実験においては，オンラインクエリ処理でセンサデータおよびクラスタデータ
を RAMに読み込んだ時点から，検索結果を取得するまでの計算時間を測定した．
また，RAMに読み込んだデータの数としてディスク IOコストを示す．ここで，提
案手法以外の手法は，データのスコアを計算するためにすべてのデータをRAMに
読み込む必要がある．そのため，これらの手法（以降のディスク IOコストを示し
たグラフ中では ‘Others’と表記）におけるディスク IOコストは，常にデータセッ
トサイズN に等しくなる．さらに，比較手法と提案手法について，それぞれのオ
フライン事前クラスタリング処理によって生成されたクラスタの数を示す．
実験で用いたクエリは，q.wと q.λがそれぞれ表2.2に示す一定範囲内でランダム

に設定されたものである．文献 [43, 73]に従い，q.wの各要素の値の範囲は0.0∼1.0，
かつ各要素の和が 1.0となるように設定した．MAXMIN問題およびMAXSUM問題
における q.λについては，文献 [34]に従い最小値を 0.0とした．一方で最大値は，
MAXMIN問題およびMAXSUM問題における目的関数（式 (2.4),(2.5)）では，デー
タ間の空間距離の項に対してのみ λが乗じられていることを考慮して，独自に設
定した．上述した q.wの設定のもとで，データのスコアは図 2.5に示す各ホットス
ポットの中心で最大 5.0程度の値を取る．一方で，データ間の空間距離の最大値は
検索範囲の対角線の距離である

√
2 ≈ 1.4である．今回想定するクエリは，ホット

スポットの検出を目的としたTop-k検索結果の多様化であり，評価においては目的
関数でデータのスコアと地理的多様性が同程度に重要視される必要がある．よっ
て，MAXMIN問題およびMAXSUM問題における q.λの最大値を 5.0とした．一方，
MMR問題における q.λの範囲は，文献 [16, 31]に従い 0.0∼1.0とした．
作成されたランダムな 100個のクエリを処理した際の，計算時間とディスク IO

コストの平均値を調べた．なお，比較手法と提案手法では，100個のクエリの処理
にそれぞれ同一のクラスタファイルセットを用いた．そのため，クラスタの数は
クエリと無関係であり，用いたクラスタファイルセットのクラスタの数をそのま
ま示している．
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図 2.6: 空間半径 r1の影響

2.5.4 空間半径 r1の影響

クラスタの空間半径 r1を変化させた場合の，計算時間を図 2.6(a)に，ディスク
IOコストを図 2.6(b)に，クラスタの数を図 2.6(c)に示す．図 2.6(a)から，空間半径
が大きい場合，比較・提案手法ともに計算時間が長くなっていることがわかる．こ
れは，クラスタ内のデータが広い地理範囲に存在しうるため，クラスタ内のデー
タの評価値の上界を過大に計算しており，走査対象から除外できたクラスタの数
が少ないためである．このことは，属性値が急激に変化している領域におけるク
ラスタで顕著である．特に，0.1 ≤ r1 ≤ 0.15の場合の比較手法は，クラスタの中
心データおよび代表データの評価値の計算が余分に必要なため，ベースライン手
法よりも計算時間がわずかに長くなっている．一方，空間半径が小さい場合も，比
較・提案手法ともに計算時間が長くなっていることがわかる．これは，図 2.6(c)に
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示されるように，空間半径が小さくなると生成されるクラスタの数が増加するこ
とによる．走査対象のクラスタの数を削減できても，クラスタの上界を計算する
ためにすべてのクラスタの中心データを走査しなければならず，結果として全体
の計算時間は長くなってしまう場合がある．
提案手法における最短の計算時間は，すべての最適化問題に関して，比較手法

より短くなっている．また，さらに注目すべき点として，提案手法はディスク IO

コストを最高で 100分の 1に削減できている点が挙げられる．比較手法では，中
心データから空間半径 r1の円内のデータはすべて同一のクラスタに割り当ててし
まうため，センシング誤差により周辺のデータの環境属性値と大きく異なるデー
タが含まれる場合がある．その結果，クラスタ内の他のデータに比べ非常に高い
スコアを有するデータがクラスタに含まれる場合，そのようなデータによりクラ
スタの上界が引き上げられてしまう．よって，最適なデータを探索する際，この
ようなクラスタの存在により多くの余分なデータの走査が必要となり，計算時間
が長くなる．
以降の実験では，比較・提案手法それぞれで計算時間を最短にした r1を用いて

いる．

2.5.5 環境属性値半径 r2の影響

次に，クラスタの環境属性値半径 r2を変化させた場合の，計算時間を図 2.7(a)

に，ディスク IOコストを図 2.7(b)に，クラスタ数を図 2.7(c)に示す．図 2.7(a)か
ら，環境属性値半径が大きい場合，提案手法における計算時間が長くなっている
ことがわかる．これは，空間半径を大きくした場合と同様に，クラスタ内に存在
しうるデータのスコアを大きく見積もることで評価値の上界も過大に計算してし
まい，走査対象から除外できたクラスタの数が少ないためである．一方，環境属
性値半径が小さすぎる場合も，提案手法における計算時間が長くなっていること
がわかる．これも空間半径を小さくした場合と同様，図 2.7(c)に示されるように，
環境属性値半径が小さくなると生成されるクラスタの数が増加し，走査が必要な
データの数も増加してしまうためである．
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図 2.7: 環境属性値半径 r2の影響

以降の実験では，提案手法において計算時間を最短にした r2を用いている．

2.5.6 その他のパラメータの影響

データセットサイズN の影響

一般的に，ユーザはモバイルセンサデータの地理的分布を事前に知り得ない．そ
のため，検索範囲内に存在するデータの数が大きい場合においても，検索結果を
短時間で取得できることが重要である．そこで，データセットサイズN を変化さ
せた場合の，計算時間を図 2.8(a)に，ディスク IOコストを図 2.8(b)に，クラスタ
の数を 2.8(c)に示す．いずれのデータセットサイズの場合も，提案手法はすべての
最適化問題に関して，計算時間およびディスク IOコストを大幅に削減している．
図 2.8(c)は，比較手法におけるクラスタの数が，データセットサイズN が変化し
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図 2.8: データセットサイズN の影響

てもほぼ一定であることを示している．このことから比較手法では，データセッ
トサイズN が大きい場合，クラスタに含まれるデータの数の平均値が大きくなる
ため，アルゴリズムにおける走査対象のデータの数を削減する効果が小さくなる
ことがわかる．一方，提案手法は，センシング誤差や環境属性値の変化に応じて
クラスタを適切に分割できる．よって，データセットサイズN の増加とともにク
ラスタの数も増加し，走査対象のデータの数を削減するための計算コストは大き
くなるものの，全体として計算時間およびディスク IOコストは削減される．

要求するデータの数 kの影響

ユーザごとに，要求するデータの数は異なる．そこで，要求するデータの数 k

を変化させた場合の，計算時間を図 2.9(a)に，ディスク IOコストを図 2.9(b)に示
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図 2.9: 要求するデータの数 kの影響

す．提案手法の効果は，検索範囲内に存在するホットスポットの数に依存する．す
なわち，各ホットスポットにおけるデータがすべて探索されるまで，走査対象の
データの数を削減する効果は大きく働く．ホットスポットにおけるデータを探索
する過程においては，提案手法はすべての最適化問題に関して，計算時間および
ディスク IOコストともに効果的に削減できる．

環境属性の次元数 dの影響

ユーザごとに，注目する環境属性の次元数は異なる．また，次元の増大を考慮す
ると，最適な環境属性値半径 r2は大きく変化すると考えられる．そこで，まず最
初に，それぞれの環境属性の次元数 dについて，提案手法における環境属性値半径
r2を変化させた場合の，計算時間を図 2.10(a)に，ディスク IOコストを図 2.10(b)

に，クラスタの数を図 2.10(c)に示す．ここではグラフの可読性のため，MAXMIN

問題の結果のみを示している．図 2.10(a)および (b)より，最適な環境属性値半径
はそれぞれの次元数によって異なる．これは，高次元空間においては，データ間の
距離の観点からデータ同士が類似しにくいためである．結果として，高次元空間
で環境属性値半径 r2を小さくするとクラスタの数が急激に増加し，性能が低下し
てしまう．よって，以降の実験では，各次元数 dにおいて最適な r2を用いている．
次に，環境属性の次元数 dを変化させた場合の，計算時間を図 2.11(a)に，ディ



2.6. 考察 39

1

10

100

1000

10000

0 0.5 1 1.5 2

計
算
時
間

[m
se

c
]

環境属性値半径

Maxmin (d=1) Maxmin (d=2)

Maxmin (d=3) Maxmin (d=4)

1

10

100

1000

10000

100000

1000000

0 0.5 1 1.5 2

ク
ラ
ス
タ
数

環境属性値半径

d=1 d=2 d=3 d=4

1

10

100

1000

10000

100000

1000000

0 0.5 1 1.5 2

デ
ィ
ス
ク

IO

環境属性値半径

Maxmin (d=1) Maxmin (d=2)

Maxmin (d=3) Maxmin (d=4)

(a) 計算時間

(c) クラスタ数(b) ディスクIO
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スク IOコストを図 2.11(b)に，クラスタの数を図 2.11(c)に示す．いずれの次元数
の場合も，すべての最適化問題に関して，提案手法が計算時間およびディスク IO

コストを大幅に削減していることがわかる．

2.6 考察

2.6.1 オフライン事前クラスタリング処理の計算時間について

本項では，オフライン事前クラスタリング処理に要する計算時間について考察
する．本研究では，2.4.1項で説明した最悪計算量がO(N2)のAlgorithm 2を，空
間位置や環境属性値による多次元インデックスを用いずに実行している．図 2.12

に，表 2.2のデフォルトのパラメータのもとで環境属性値半径 r2を変化させた場
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合の，クラスタリングに要した計算時間を示す．図 2.12より，計算時間はクラス
タリング半径が小さくなるほど大きくなっていることが分かる．これは，クラス
タ半径が小さい場合 1つのクラスタに含まれるデータの数が小さく，多くのデー
タがクラスタに割り当てられない状態で残るため，以降のクラスタの生成のため
に必要なデータ間の距離を計算する回数が大きいためである．図 2.7(a)より，提案
手法のオンラインクエリ処理時間は r2が 0.7のとき約 0.03秒であり，このときの
クラスタリング処理時間は約 28秒である．一方，ベースライン手法ではオンライ
ンクエリ処理時間は約 1秒であるため，29回以上クエリを処理することで，全体
の計算時間は提案手法のほうが小さくなる．
本研究では，データを公開する前にオフライン事前クラスタリング処理のため

の十分な時間が確保できると想定している．また，クエリパラメータを逐一変化
させながら広大なセンシング領域を調査する場合を想定し，ユーザビリティ向上
のためには，ユーザに即座に検索結果を返すことが重要であると考え，オンライ
ンクエリ処理の高速化に主眼を置いている．しかし，データのクラスタリングを
完了させユーザに提供できるまでの時間は短いほうが望ましい．オフライン事前
クラスタリング処理の計算コストを小さくするためには，2.4.1項で述べたように，
空間位置や環境属性値による多次元インデックスを用いる方法が考えられる．ま
た，データ公開時にはクラスタリングに用いる半径を大きく設定し，その後シス
テムの裏側でよりクエリ処理に適した小さいクラスタ半径を用いてクラスタリン
グし，完了した段階で新しいクラスタに差し替える方法なども考えられる．

2.6.2 検索エンジンにおけるTop-k検索結果の多様化との相違点に
ついて

検索エンジンにおける多様化とモバイルセンサデータベースにおける多様化で
は，幾つか前提が異なっている点があるため，分野間の相違点について説明する．
文献 [16, 26, 34]は，検索エンジンにおける Top-k検索結果の多様化を対象とし

ている．これらの既存研究では，まず最初にユーザがクエリキーワードを指定し，
キーワードに関連する文書の集合を取得する．その後，取得した文書のうち関連度
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が上位の文書集合内で多様化を行い，文書間の類似度が小さくなるような多様集
合を計算する．これらの既存研究における多様化の対象となる文書の集合は，ユー
ザのクエリキーワードに対して一定の関連度を示す文書である．そのため，多様
集合の計算の際に文書のスコア，すなわち関連度は考慮せず，しばしば目的関数
を文書間の非類似度の最小値（MAXMIN問題）や和（MAXSUM問題）のみで定義
している．ただし，文献 [5, 31]のように，文書間の非類似度に加えて文書の関連
度も目的関数に含まれ，また実際の検索のように関連度順にソートされたリスト
が利用可能であると仮定している研究もある．
次に，本研究で対象とするモバイルセンサデータベースにおける Top-k検索結

果の多様化では，まず最初にユーザが指定する時空間の検索範囲内に存在するセ
ンサデータの集合を取得する．その後，取得したセンサデータの集合内で，環境
属性値から算出されるデータのスコアと，位置情報から算出されるデータ間の空
間距離を考慮し，高スコアを示し，かつ地理的に分散するデータからなる多様集
合を計算する．目的関数がデータのスコアとデータ間の空間距離で定義される点
において，先述した文献 [5, 31]における多様化問題と類似しているが，時空間範
囲検索の結果を取得した段階では，データのスコアは計算されていない点が異なっ
ている．そこで，時空間範囲検索でデータ集合を取得した後，データのスコアを
計算することで，文献 [5, 31]における既存研究と，入力となるデータセットにつ
いての前提が類似する．一方で，検索範囲内のデータのスコアを計算し，スコア
が上位のデータのみを対象として，データ間の空間距離のみを考慮した多様化問
題を考えることで，文献 [16, 26, 34]における既存研究の前提に近づけられる．本
章における提案手法では，クエリパラメータをλ = 0と設定することで，データ間
の空間距離を無視し，データのスコアのみを考慮した Top-k検索についても効率
的に計算できるため，文献 [16, 26, 34]の多様化問題についても踏襲できる．しか
し，このような多様化問題では，スコアが上位のデータを取得するために，ユー
ザは新たに閾値を設定する必要があり，また試行錯誤的に閾値を変化させながら
検索を繰り返す必要があると考えられる．本研究では，ユーザの指定する検索範
囲内で，ユーザの興味に基づいたデータのスコアが高く，かつ地理的に分散する
データ集合を取得するクエリを直感的に定義できることを目指し，文献 [5, 31]に
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おける既存研究を参考とし，多様化問題を定義している．

2.6.3 クラスタリング手法について

本研究では，グリーディアルゴリズムで得られる多様集合を効率的に計算する
ことを目的として，センサデータをクラスタリングする．提案手法におけるオフ
ライン事前クラスタリング処理では，クラスタ間でデータを共有しないように拡
張した canopyクラスタリング [56]を，空間位置と環境属性値の 2つの空間に同時
に適用することで，クラスタを生成している．
一方，k-means法 [44]や凝集型クラスタリング [8]をはじめとして，データマイ

ニングを目的としたクラスタリング手法は，これまでに数多く提案されている．し
かし，提案アルゴリズムでは任意のクエリパラメータのもとでクラスタの上界を
計算する必要があることを考慮すると，このようなデータマイニングを目的とし
たクラスタリング手法は，提案アルゴリズムには適さないと考えられる．例えば，
k-means法や凝集型クラスタリングでは，データの分布に依存してクラスタが生成
されるため，生成されるクラスタの形状を制御することは困難である．このよう
なクラスタリングのもとで任意の λやwに対応するためには，生成されたクラス
タに対し中心座標，および中心座標から最も遠いデータの座標との間の距離を事
前に計算する必要がある．しかし，クラスタの形状によってはこのような中心から
最遠点までの距離が大きく，クラスタの上界が大きくなる場合が考えられる．ク
ラスタの上界が大きい場合，走査対象から除外される可能性が低くなるため，計
算コストが削減されない可能性が高くなる．
一方，提案手法のようにクラスタ半径を事前に設定した上でクラスタリングす

ることで，クラスタの上界は制御できる．本研究では，システム管理者の観点か
ら，クラスタ半径によって提案アルゴリズムの計算コストを制御できる手法が望
ましいと考え，オフライン事前クラスタリング手法を提案している．
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2.6.4 実環境への適用可能性について

本章の性能評価では，大規模なデータセットに対して提案手法が有効に機能す
るかを調べるため，人工データを用いたシミュレーション実験を行った．実験では
環境属性値の空間的自己相関の性質を仮定し，ホットスポットの中心で最も環境
属性値が大きく，中心から離れるほど環境属性値が小さく減衰するような分布の
もとで，人工データは生成されている．使用した人工データのように空間的自己
相関の性質が仮定される場合，クラスタの数が過剰に大きくなることはなく，走
査対象のクラスタを絞り込むための計算コストは抑えられる．また，ホットスポッ
トが存在する場合は，ホットスポット付近のクラスタのみが走査対象となるため，
短時間で多様集合を計算できる．
しかし，実環境では地理空間上に建物などの遮蔽物が存在するため，環境属性値

の分布はより複雑になると考えられる．多くの環境情報は空間的自己相関の性質
を有すると考えられるが，遮蔽物の影響などで相関性の性質が弱くなる場合，ク
ラスタの数の増加による性能の低下を防ぐためにクラスタ半径を大きくする必要
がある．また，検索範囲内のホットスポットの減衰の度合いが小さく，中心から
距離が離れるにつれてなだらかに環境属性値が小さくなるような分布では，走査
対象のデータの数が大きくなり，性能が低下する場合が考えられる．
このように，シミュレーションでは考慮されていない事項が，提案手法の性能

に影響を与える可能性がある．このため，より実環境に近い環境を再現したシミュ
レーション実験や，実データを用いた実験については，今後検討すべき課題である．

2.7 関連研究
センシング領域の中からホットスポットを検出するための手段として，集約ク

エリの利用が有効であると考えられる．集約クエリによって検索範囲の環境属性
値を集約することで，その範囲における物理現象に関する主要な情報は，平均や
合計，分散といった代表的な統計量によって表現される．このため，例えば検索
範囲の平均値から，環境属性値が極端な値を示す領域を発見できる可能性がある．
文献 [19, 49, 51, 65, 70, 77]では，様々なフレームワークが提案され，このような
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集約処理を効率化している．しかし，検索範囲が大きい場合，集約によって範囲
内の環境属性値は平均されてしまい，ホットスポットの検出が難しくなることが
予想される．また，検索範囲を小さくすることで，平均値はホットスポットを検
出する上でより信頼できる値となるが，一般的にユーザはモバイルセンサデータ
の時空間分布を事前に知り得ない．このため，検索範囲に対してセンシング領域
が広大である場合，ホットスポットを捉えるために繰り返し検索せざるを得ない
恐れがある．そこで本論文では，この問題に対処するため，Top-k検索結果の多様
化を環境モニタリングを目的としてモバイルセンサデータベースに適用する．
組合せ最適化問題を解くことによって多様集合を取得する方法について，いく

つか研究が行われている [5, 18, 28, 31, 36]．多くの既存手法では，キーワード検索
によって得られるデータセットの多様化を対象としているため，検索範囲内の対
象データに関するデータのスコアはすべて既知である状態を仮定している．さら
に，文献 [5, 31]では，データのスコアによってソートされたデータリスト，およ
び任意の空間位置からの距離によってソートされたデータリストが利用可能であ
ると仮定している．しかし，この仮定を満たすためには，検索範囲内のデータを
すべてファイルから読み込み，さらに初期処理としてすべてのデータのスコアを
計算し，ソートしなければならない．モバイルセンサデータベースのように大規
模なデータセットに対するこのような前処理のコストは，多様集合の計算以上に
計算負荷が大きくなってしまう．そこで，本章の提案手法では，オンラインクエ
リ処理に要する計算コストを削減するために，クエリが到着する前に任意のクエ
リパラメータに対応可能なデータの構造化をオフライン処理として実行する．

2.8 むすび

2.8.1 発展：クラスタのメンテナンス方法

オフライン事前クラスタリング処理の後にも，クラスタの中心データの観測時
刻付近で生成されたデータが，新たにサーバにアップロードされる場合がある．例
えば，データの送受信は電力消費が激しいため，携帯端末がセンサデータを取得し



46第2章 空間的相関性を考慮したクラスタリングを用いたTop-k検索結果の多様化手法

Algorithm 4 Algorithm for Maintenance of Clusters
Input: Set of clusters C, spatial radius r1, environmental attribute radius r2, new
data item onew

1: C∗ = retrieveNeighbors(onew, r1, r2)
2: if C∗ is not NULL then
3: C∗ = random(C∗)
4: Mark onew with C∗.clusterLabel
5: else
6: Mark onew as the center and initial representative of the new cluster
7: end if

たとしても直ちにサーバにアップロードせず，電源が確保できた後アップロードす
る場合などが考えられる．このような遅延を伴って到着したデータを既存のクラス
タに組み込むことで，クラスタのメンテナンスが可能である．ここで，新たにアッ
プロードされたデータを onewとする．クラスタのメンテナンスのアルゴリズムを，
Algorithm 4に示す．2.4.1項冒頭で述べた通り，中心データの空間位置ベクトルを
中心とした半径 r1の円内に存在し，かつ，中心データの環境属性値ベクトルを中心
とした半径 r2の超球内に存在するデータをクラスタメンバとして，各クラスタは構
成されている．よって，既存のクラスタの中から，onewがクラスタメンバとして適
切なクラスタを探索すれば良い．このようなクラスタ集合は，既存のクラスタの中
心データの集合を対象として，Algorithm 2で用いた retrieveNeighbors(onew, r1, r2)

を実行することで取得できる（1行目）．取得したクラスタ集合C∗内のクラスタ
は，いずれも onewをクラスタメンバとすることができるため，集合内でランダム
に選ばれたクラスタC∗のクラスタファイルに onewを挿入する（3，4行目）．onew

がクラスタメンバとして適切なクラスタが存在しない場合は，onewを新たなクラス
タの中心データかつ代表データとし，インデックスファイルに挿入する（6行目）．
一般的に，環境属性値の分布が大きく変化しなければ，すでに環境属性値が似

たデータが存在するため，新たにアップロードされたデータの多くは既存のクラ
スタに組み込まれる．環境属性値の分布が変化したとしても，次第にその分布に
応じた新しいクラスタが生成されるため，以降にアップロードされるデータの多
くはそれらの新しいクラスタに組み込まれる．
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2.8.2 まとめ

本章では，モバイルセンサデータベースにおける Top-k検索結果の多様化につ
いて取り組み，効率的なクエリ処理手法を提案した．単純なグリーディアルゴリ
ズムでは，すべてのデータについて評価値を計算し，多様集合のサイズが kにな
るまで最適なデータを多様集合に追加する必要があるため，計算コストが非常に
大きい．一方，提案手法では，環境属性値の空間的自己相関と呼ばれる特徴を利
用し，グリーディアルゴリズムの評価値が互いに近いデータ同士を事前にクラス
タリングする．評価値の計算をクラスタ単位で行い，クラスタの半径情報を利用
することで，最適なデータを含み得ないクラスタを走査対象から除外する．その
結果，走査するデータの数を大幅に削減できる．
シミュレーション実験により，提案手法はすべてのデータを走査する単純なグ

リーディアルゴリズムと比較して，同一の多様集合をより短時間で取得できるこ
とを確認した．さらに，要求するデータの数 kやデータセットサイズN を変化さ
せた場合も，提案手法は比較手法に比べ，計算時間およびディスク IOコストを削
減できることを確認した．特に，データセットサイズが大きくなっても短時間で
多様集合を計算できるため，センシングに参加する端末保持者が増加した場合も，
効率的に Top-k検索結果の多様化を行える．
一方，2.5.6項における評価結果より，環境属性の次元数 dが大きい場合には，ク

ラスタの数が大幅に増加することで提案手法の性能が低下してしまうという問題
が生じることが分かった．このような，クラスタの増加による計算効率の低下の
影響を緩和する手法については，第 3章で取り組む．また，本章では過去に収集
されて蓄積されたモバイルセンサデータベースにおけるスナップショットクエリ
を想定しており，継続的な Top-k検索結果の多様化を行う場合は考慮していない．
時々刻々とモバイルセンサデータが到着するモバイルセンサストリーム環境にお
いて，継続的な Top-k検索結果の多様化を行うために提案手法を用いた場合，ク
ラスタ構造をオンラインで更新する必要があり，クラスタの数が大きい場合に計
算時間が増加してしまうという問題がある．この問題を解決するためには，到着
するデータによる更新が短時間で可能な別のデータ構造によってモバイルセンサ
データを管理する必要がある．第 4章では，この問題について取り組む．
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また，2.5.4項および 2.5.5項における評価結果より，提案手法はクラスタ半径に
よって性能が大きく左右される．重みベクトルや空間的多様性の重要度といった
クエリパラメータや，環境属性値の分布によって最適値は変化すると考えられる．
そのため今後は，クエリ処理の統計情報からクラスタ半径を自動的に設定する方
法などについて検討する予定である．



第3章 階層的クラスタリングを用い
たTop-k検索結果の多様化手法

3.1 まえがき
2.5.6項における環境属性の次元数 dを変化させた場合の評価結果より，第 2章

におけるクラスタベースの手法では，モバイルセンサデータの環境情報の次元数
が大きくなると，計算時間が増大することがわかった．これは，環境属性値ベク
トルが高次元になるほどデータ間の類似度が小さくなり，球形クラスタの半径が
大きく，かつクラスタの数が大幅に増加することで，走査対象のデータの数を削
減するための計算コストが大きくなってしまうためである．近年，様々な環境情
報が参加型センシングによって観測，収集されているため，環境属性値ベクトル
の次元数が大きい場合でも検索結果をより短時間で取得できることが望ましい．
そこで本章では，階層的クラスタリングを行うことで，環境属性値ベクトルの

次元数の増加にともなう計算効率の低下の影響を緩和する手法を提案する．提案
手法の階層的クラスタリングでは，空間的に近接するすべてのデータはある 1つの
上位クラスタのメンバとし，上位クラスタの配下でメンバデータの環境属性値の
類似度に基いてさらに下位クラスタに分割する．提案手法のオンラインクエリ処
理では，階層クラスタ構造を利用し，上位クラスタ内のデータが取りうる評価値
の上界を計算することで，下位クラスタをまとめて走査対象から除外できる．空
間的に近接するデータからなる上位クラスタの数は，環境属性数の増加に非依存
であり，第 2章におけるクラスタベースの手法におけるクラスタの数よりも少な
くなる．そのため，提案手法ではクラスタベースの手法と比べて，走査対象のデー
タを短時間で絞り込める．
以下では，まず 3.2節で関連研究について述べる．3.3節で提案手法について説

49
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明した後，3.4節でシミュレーション実験の結果を示す．最後に，3.5節で本章の
まとめと課題について述べる．

3.2 関連研究
データの次元の増加に伴うデータ間の類似度の低下は，クラスタリングを始め

として多くのデータマイニング手法に対して，性能の低下を引き起こす．このた
め，主成分分析 [25]やランダムプロジェクション [11]といった手法によって，情
報損失量をできる限り小さくしつつ特徴の数を削減する，次元削減がしばしば行
われる．また，文献 [91]では，高次元空間におけるTop-k検索を効率的に行うため
に，次元削減を行った低次元空間におけるデータセット（サブスペース）を複数保
持し，クエリごとに適切なサブスペースの組み合わせを用いて上位 k個のデータ
を計算する手法が提案されている．さらに文献 [91]では，次元削減によってデー
タセットが変化することから，得られる結果は近似解であるものの，誤差範囲の
制御が可能であることが示されている．一方，本研究で対象とする多様化問題は
NP困難であることからグリーディアルゴリズムによって多様集合を計算するため，
誤差範囲は計算できない．また，主成分分析のような次元削減を施した後のデー
タセットに対して，直接グリーディアルゴリズムを適用し多様集合を計算した場
合，ユーザの興味や意図に反した予期せぬ結果が返される場合がある．そのため，
次元削減を行わずに計算効率の低下の影響を緩和する，別の手法が必要となる．

3.3 提案手法
本節では，本章の提案手法について説明する．モバイルセンサデータのデータ

モデルやシステムモデル，および Top-k検索結果の多様化についての問題定義は，
2.2節で述べたものと同じである．モバイルセンサデータの環境属性値ベクトルは
最大で 20次元程度を想定するが，本節の提案手法の説明では，簡単のために 2次
元の場合を想定している．
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第 2章のクラスタベースの手法における，クラスタの数の増加による計算効率
の低下は，以下の 2つの処理の計算コストの増加に起因する．

• クラスタの代表データを走査し，基準データを決定する．

• クラスタ毎に評価値の上界を計算し，走査対象のクラスタ集合を決定する．

この 2つの処理は，走査するデータの数を削減するために行う追加の処理である
が，クラスタの増加とともに計算コストが大きくなる．
そこで，提案手法ではこれらの追加の処理の計算コストを削減しつつ，最終的に

走査するデータの数を削減することを目指す．提案手法におけるオフライン事前
階層的クラスタリング処理では，まず最初にデータの位置情報のみを考慮し，空
間的に近接するデータをある 1つの上位クラスタとしてまとめる．第 2章におけ
るクラスタベースの手法では，位置情報に加えて環境属性値ベクトルの類似度も
考慮してクラスタが生成されるため，環境属性値ベクトルの次元数が大きくなる
ほどクラスタの数も大きくなる．一方で，提案手法における上位クラスタは位置
情報のみを考慮して生成されるため，上位クラスタの数は第 2章のクラスタベー
スの手法におけるクラスタの数と比べて小さくなる．また，位置情報の次元数は
環境属性値ベクトルの次元数によらず一定であるため，環境属性値ベクトルの次
元数が大きくなっても上位クラスタの数は一定である．上位クラスタを形成した
後，各上位クラスタの配下で，環境属性値ベクトルの類似度に基づいたクラスタ
リングを行い，下位クラスタに分割する．そして，提案手法におけるオンライン
クエリ処理では，上位クラスタの代表データの中から基準データを決定し，上位
クラスタ毎に走査対象のデータの絞り込みを行う．次に，走査対象として残った
上位クラスタについて，その配下の下位クラスタに対し，さらに走査対象の絞り
込みを行う．このように，上位クラスタを走査対象から除外できると，除外され
た上位クラスタの配下の下位クラスタを走査する必要はないため，短時間で走査
対象のデータを絞り込める可能性がある．中心データのスコアが小さく，多様集
合内のデータに近接する上位クラスタは，走査対象から除外される可能性が高く，
短時間での走査対象のデータの絞り込みが見込める．また，上位クラスタの配下
の下位クラスタの数が大きい場合ほど，このような走査対象のデータを 2段階で
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絞り込むことの効果は大きくなる．
まず，3.3.1項において，オンラインクエリ処理で利用する階層クラスタを作成す

るためのオフライン事前階層的クラスタリング処理について説明する．次に，3.3.2

項において，作成された階層クラスタ構造を利用したオンラインクエリ処理につ
いて説明する．

3.3.1 オフライン事前階層的クラスタリング処理

階層的なクラスタを構築するために，まず最初にいずれのクラスタにも属して
いないデータについて空間的に近接するデータ集合を取得し，これらをすべて上
位クラスタのメンバとする．次に，上位クラスタ内のあるメンバに着目したとき，
環境属性値ベクトルが類似しているメンバを下位クラスタのメンバとする．上位
クラスタのメンバがすべて，いずれかの下位クラスタに割り当てられるまで，上
述した処理を繰り返すことで，階層クラスタが構築される．また，クラスタ半径
r1, r2は第 2章と同様な方針で設定する．
具体的な階層的クラスリングアルゴリズムを，Algorithm 5に示す．3，4行目で，

いずれのクラスタにも属していないデータ oiを見つけた場合，oiの空間位置ベク
トルを中心とした上位クラスタを生成する．5行目で，全体のデータ集合Oから，
上位クラスタの中心データ oiの空間位置ベクトルを中心とした半径 r1の円内に存
在するデータを取得する．ここで，retrieveNeighbors(oi, r1,∞, O)は，データ集合
Oから，データ oiに空間位置が互いに近いデータを返す操作である．取得したデー
タのうち，ラベルが付与されていないデータはすべてこの上位クラスタのメンバ
であり，これらのデータをさらに環境属性値に基づきクラスタリングする．8，9

行目で，上位クラスタのメンバのうち，いずれのクラスタにも属していないデータ
oijを見つけた場合，そのデータを新たな下位クラスタの中心データかつ代表デー
タとする．10行目で retrieveNeighbors(oij,∞, r2, X)により，上位クラスタのメン
バから，データ oij の環境属性値ベクトルを中心とした半径 r2の超球内に存在す
るデータを取得する．取得したデータのうち，ラベルが付与されていないデータ
に対し，現在作成中の上位クラスタおよび下位クラスタのラベルを付与する．こ
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Algorithm 5 Algorithm for Hierarchical Clustering
Input: Data set O, spatial radius r1, environmental attribute radius r2
Output: Set of upper clusters UC = UC1, UC2, ..., UCl

1: upperClusterLabel = 1

2: for i = 1 to |O| do
3: if oi is not in any clusters then
4: Mark oi as the center of the current upper cluster
5: X = retrieveNeighbors(oi, r1,∞, O)
6: for j = 1 to |X| do
7: lowerClusterLabel = 1

8: if oij is not in any clusters then
9: Mark oij as the center and initial representative of the current lower-level

cluster
10: X ′ = retrieveNeighbors(oij,∞, r2, X)
11: for all o ∈ X ′ do
12: if o is not in any clusters then
13: Mark o with current lowerClusterLabel and upperClusterLabel
14: end if
15: end for
16: end if
17: lowerClusterLabel++

18: end for
19: upperClusterLabel++

20: end if
21: end for

こで，上位クラスタUCiがm個の下位クラスタを配下に含むとき，上位クラスタ
および下位クラスタの関係を以下のように表現する．

UCi = LCi = {LCi1, LCi2, ..., LCim} (3.1)

第 2章のクラスタベースの手法と同様，クラスタ間でのデータの共有はないもの
とし，すべてのデータがいずれかのクラスタに割り当てられるまでクラスタを生
成する．

2.4.1項における議論と同様に，このアルゴリズムの最悪計算量は，すべてのデー
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図 3.1: 階層的クラスタリングの例

タが別々の上位クラスタに分離されてしまう場合であり，O(N2)となる．

階層的クラスタリング例

図 3.1(a)および (b)に示す具体例を用いて，環境属性の次元数 d = 2の場合の，
オフライン事前階層的クラスタリング処理について説明する．まず，データ o1を
中心として上位クラスタ UC1を生成する．データ o2はデータ o1を中心とした空
間距離 r1の円内に存在するため，上位クラスタUC1のメンバとする．次に，上位
クラスタ UC1の配下で下位クラスタの分割を行うため，データ o1を中心として
下位クラスタLC1,1を生成する．データ o2はデータ o1を中心とした環境属性値空
間で半径 r2の円内に存在するため，下位クラスタLC1,1のメンバとする．続いて，
データ o3を中心として上位クラスタUC2を生成する．残りのクラスタに割り当て
られていないすべてのデータは，データ o3を中心とした空間距離 r1の円内に存在
するため，これらのデータをすべて上位クラスタ UC2のメンバとする．同様に，
上位クラスタUC2の配下で下位クラスタの分割を行うと，データ o3を中心とした
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下位クラスタ LC2,1およびデータ o5を中心とした下位クラスタ LC2,2が生成され
る．このように，すべてのデータは 2つの上位クラスタに割り当てられ，それぞ
れの上位クラスタの配下で合計 3つの下位クラスタに割り当てられる．

3.3.2 階層クラスタを利用したオンラインクエリ処理

第 2章のクラスタベースの手法では，すべてのクラスタを探索し基準データを選
択していたが，本章の提案手法では上位クラスタのみを探索し，上位クラスタの
代表データの中から基準データを選択する．上位クラスタの配下の下位クラスタ
のうち，評価値の大きいデータを含む下位クラスタを記憶しておくことで，評価
値の大きい基準データをより短時間で選択できる．また，上位クラスタの評価値
の上界を計算することで，まず最初に走査対象のデータの絞り込みを上位クラス
タ単位で行う．上位クラスタ内のデータの評価値が取りうる値の上界が基準デー
タの評価値を上回る場合は，下位クラスタ内のデータの評価値が取りうる値の上
界を計算し基準データの評価値と比較することで，より細かい粒度で走査対象の
データの絞り込みを行う．本項では，この提案アルゴリズムを実現する上で重要
な，上位クラスタの評価値の上界および下位クラスタの上界を計算する方法につ
いても新たに示す．
具体的なアルゴリズムをAlgorithm 6に示し，反復部分（3～25行目）について

説明する．まず，すべての上位クラスタを走査し，基準データを選択する（5行
目）．基準データの評価値は高いほど望ましいため，上位クラスタ内の下位クラス
タの代表データをすべて走査し，スコアが最大のものを選択する．各上位クラス
タごとに，スコアが最大の下位クラスタの代表データを記憶しておき，以降の反
復ではこれら |UC|個のデータの中から基準データを選択する．次に，すべての
上位クラスタについて，各上位クラスタ内のデータの評価値が取りうる値の上界
（以降では，単に上位クラスタの上界と略記）dr(UCi, S∗)を計算する（7行目）．各
上位クラスタの上界と，基準データの評価値 dr(o

∗
rep, S

∗)を比較し，上界のほうが
大きい場合，走査対象の上位クラスタ集合UC′に追加する．一方，上界のほうが
小さい場合，少なくともこの上位クラスタ内のすべてのデータよりも，基準デー
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Algorithm 6 Algorithm for Optimization Problem Leveraging Hierarchical Clusters
Input: Set of upper-level clusters UC, diversified set size k, importance of spatial
diversity λ, weight vector w, spatial radius r1, environmental attribute radius r2
Output: Set S∗(|S∗| = k) that maximizes f(S)

1: Initialize the set S∗ = ∅
2: Find o∗ = arg max

o∈O
p(o) and set S∗ = {o∗}

3: while |S∗| < k do
4: Initialize the sets UC′ = LC′ = ∅
5: Find o∗rep such that o∗rep = arg max

oi,rep∈UCi

dr(oi,rep, S
∗)

6: for all i = 1 to |UC| do
7: Estimate upper bound of each upper cluster dr(UCi, S∗)

8: if dr(o∗rep, S∗) ≤ dr(UCi, S∗) then
9: UC′ = UC′ ∪ {UCi}

10: end if
11: end for
12: for all i = 1 to |UC′| do
13: for all j = 1 to |UCi| do
14: Estimate upper bound of each lower-level cluster dr(LCij, S∗)

15: if dr(o∗rep, S∗) ≤ dr(LCij, S∗) then
16: LC′ = LC′ ∪ {LCij}
17: end if
18: end for
19: end for
20: Find o∗ ∈ LC′\S∗ such that o∗ = arg max

o∈LC′\S∗

dr(o, S
∗)

21: if o∗ is representative data of LCij then
22: Select new representative data for LCij

23: end if
24: Set S∗ = S∗ ∪ {o∗}
25: end while

タ o∗repのほうが多様集合に追加するデータとして適しているため，以降の走査か
らは除外する．すべての上位クラスタをチェックした後，走査対象の上位クラスタ
集合UC′に含まれる下位クラスタについて，走査対象をさらに絞り込む（12～19

行目）．ここでは，上位クラスタの絞り込みと同様，各下位クラスタの上界と基準
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データの評価値を比較し，走査対象の下位クラスタ集合LC′に該当する下位クラ
スタを追加する．最後に，LC′内のすべてのデータの評価値を計算し，最大の評
価値を取るデータを多様集合 S∗に追加する．

上位クラスタおよび下位クラスタの上界の計算

ここで，Algorithm 6の 7行目における，上位クラスタ内のデータが取りうる評
価値の上界 dr(UCi, S∗)および 14行目における下位クラスタ内のデータが取りう
る評価値の上界（以降では，単に下位クラスタの上界と略記）dr(LCij, S∗)の計算
方法について説明する．まず，上位クラスタの上界について，上位クラスタが含む
データの分布の詳細は不明なため，上位クラスタ内に存在しうる仮想的なデータ
viを考え，データ viが取りうる最大の評価値を計算する．上位クラスタ内のデー
タは，環境属性値の類似度を考慮してさらに下位クラスタに分割される．そのた
め，上位クラスタの上界は，配下の下位クラスタの上界のうち最大のものとして，
以下の式で与えられる．

dr(UCi, S∗) = max
LCij∈UCi,1≤j≤m

{dr(LCij, S∗)} (3.2)

次に，下位クラスタ内のデータが取りうる評価値の上界 dr(LCij, S∗)の計算方法
について説明する．下位クラスタ内に存在しうる仮想的なデータ vijを考え，デー
タ vijが取りうる最大の評価値を，可能な限り正確に計算する．第 2章のクラスタ
ベースの手法のクラスタの上界と同様，評価値を多様集合内のデータに非依存の
項と依存する項に分解し，別々に上界を計算することで求める．多様集合内のデー
タに非依存の項（第 1項）の上界は，下位クラスタの中心データ oij,cenを用いて，
以下の式で計算できる（図 3.2(a)）．

max
vij∈LCij

{p(vij)} = p(oij,cen) + |q.w|r2 (3.3)

次に，多様集合内のデータに依存する項（第 2項）の上界を計算する．MAXMIN

問題およびMMR問題それぞれについて，上位クラスタの中心データと多様集合
内のデータとの，各データのスコアを加味した距離を計算し，その時の距離が最
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図 3.2: 階層クラスタの上界の計算

小となる多様集合内のデータを uNN ∈ S∗とする．中心データとデータ uNN を直
線で結んだ時，2つの交点が存在する（図 3.2(b)）．ここで，データ uNN から最も
離れる位置は，2つの交点の内，データ uNN から遠い方の点である．仮想データ
viがこの点に位置するとき，多様集合 S∗からの距離も最大化される．そのため，
MAXMIN問題およびMMR問題における第 2項が取りうる最大値は，以下の式で
与えられる．

max
vij∈LCij

{min
u∈S∗

(
1

2
p(u) + λdist(vij, u))} =

1

2
p(uNN) + λ{dist(oi,cen, uNN) + r1} (3.4)

max
vij∈LCij

{min
u∈S∗

(λdist(vij, u))} = λ{dist(oi,cen, uNN) + r1} (3.5)

MAXSUM問題において，仮想データ vij の位置として，多様集合内のそれぞれの
データ u ∈ Sから最も離れた点を仮定する．勿論このような，仮想データが複数
の位置情報を有する仮定は成り立ち得ないが，この場合に計算される仮想データ
の評価値は，明らかに上界となる．よって，MAXSUM問題における第 2項が取り
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うる最大値は，以下の式で与えられる．

max
vij∈LCij

{
∑
u∈S∗

(p(u) + 2λdist(vij, u))} =
∑
u∈S∗

{p(u) + 2λ(dist(oi,cen, u) + r1)} (3.6)

これらの式から，MAXMIN問題，MAXSUM問題，MMR問題における下位クラ
スタの上界を，それぞれ以下のように計算できる．

dmin
r (LCij, S∗) =

1

2
{p(oij,cen) + |q.w|r2}+

1

2
p(uNN) + λ{dist(oi,cen, uNN) + r1}

= {1
2
(p(oij,cen) + p(uNN)) + λdist(oi,cen, uNN)}+

1

2
|q.w|r2 + λr1

= dmin
r (oij,axis, S

∗) +
1

2
|q.w|r2 + λr1 (3.7)

dsumr (LCij, S∗) = |S|{p(oij,cen) + |q.w|r2}+
∑
u∈S∗

{p(u) + 2λ(dist(oi,cen, u) + r1)}

= {|S∗|p(oij,cen) +
∑
u∈S∗

(p(u) + 2λdist(oi,cen, u))}+ |S∗||q.w|r2 + 2|S∗|λr1

= dsumr (oij,axis, S
∗) + |S∗|(|q.w|r2 + 2λr1) (3.8)

dmmr
r (LCij, S∗) = (1− λ){p(oij,cen) + |q.w|r2}+ λ{dist(oi,cen, uNN) + r1}

= {(1− λ)p(oij,cen) + λdist(oi,cen, uNN)}+ (1− λ)|q.w|r2 + λr1

= dmmr
r (oij,axis, S

∗) + (1− λ)|q.w|r2 + λr1 (3.9)

ここで oij,axisは，上位クラスタUCiの中心データ oi,cenの空間位置ベクトルと，下
位クラスタLCijの中心データ oij,cenの環境属性値ベクトルからなり，以下の式で
与えられる．

oij,axis = (oi,cen.x, oi,cen.y, oij,cen.z1, ..., oij,cen.zd) (3.10)

このデータの評価値 dr(oij,axis, S
∗)は，Algorithm 6の 5行目の基準データを探索す

る際に計算でき，この値を下位クラスタごとに記憶しておくことで，以降の反復
で継続して用いることができる．また，式 (3.7)，(3.8)，(3.9)から下位クラスタの
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図 3.3: オンラインクエリ処理の例

上界は，下位クラスタ内のデータが取りうるスコア（第 1項）の上界にのみ依存
する．よって，上位クラスタの上界は，スコアの上界が最大の下位クラスタの上
界となる（図 3.2(a)）．スコアの上界は，多様集合内のデータに非依存であるため
一度だけ計算されればよく，以降は上位クラスタごとに記憶した値を用いる．

オンラインクエリ処理例

図 3.3を用いて，走査するデータの数を削減する方法を例示する．図 3.3(a)は，
初期化処理が完了し，|S∗| = 1となっている状態である．基準データ o∗repは探索済
みで，かつ各クラスタの中心データの評価値は計算済みとする．次に，各クラス
タの中心データの評価値から，クラスタの上界を計算する．
図 3.3(b1)に，計算されたそれぞれの値の分布を示す．このとき，上位クラス

タ UC4 ∼ UC8は，計算された上界が基準データ o∗repの評価値を下回っているた
め，走査対象の上位クラスタ集合 UC′ に追加されない．よって，上位クラスタ
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UC4 ∼ UC8内のデータは走査する必要はない．次に，上位クラスタ UC1 ∼ UC3

それぞれの配下の下位クラスタの上界を調べる．図 3.3(b2)に，計算されたそれぞ
れの値の分布を示す．このとき，下位クラスタLC2,2, LC3,1, LC3,2, LC3,3は，計算
された上界が基準データ o∗repの評価値を下回っているため，走査対象の下位クラ
スタ集合LC′に追加されない．よって，上位クラスタLC2,2, LC3,1, LC3,2, LC3,3内
のデータは走査する必要はない．

階層クラスタのファイル管理方法

作成された階層クラスタのファイル管理方法について説明する．第 2章と同様，
提案手法では，以下で説明するファイル管理方法を用いることで，大部分のクラ
スタ内のデータをディスクから読み込むことなく多様集合が得られるため，アル
ゴリズム全体におけるディスク IOコストを削減できる．
オンラインクエリ処理では，まず最初に上位クラスタ，下位クラスタの中心デー

タおよび代表データのみが走査される．詳細は後述するように，上位クラスタや
下位クラスタの代表データの評価値が十分に小さい場合，そのクラスタは最適な
データを含み得ない．そのため，中心データと代表データを除き，そのようなク
ラスタのデータはディスクから読み込む必要はない．
構造化された階層クラスタは，図 3.4に示されるような上位・下位インデックス

ファイルと，関連する下位クラスタの数分の下位クラスタファイルとして保存さ
れる．上位インデックスファイルは，各上位クラスタの中心データの位置情報お
よび下位インデックスファイルへのポインタからなる．また，下位インデックス
ファイルは，各下位クラスタの中心データ（代表データ）の位置情報，環境属性
値，そして当該下位クラスタファイルへのポインタからなる．これらのポインタ
を用いることで，最適なデータを含んでいると考えられる下位クラスタの下位ク
ラスタファイルを読み込み，走査できる．
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図 3.4: クラスタファイル集合

計算量分析

階層クラスタを利用したオンラインクエリ処理の時間計算量について分析する．
多様集合の計算には，はじめは空集合の S∗に最適なデータを追加するために k回
のデータおよびクラスタの走査を繰り返す．この際のループ変数を i（i = |S∗|+1）
とする．また，上位クラスタの数を u，各上位クラスタの配下に存在する下位クラ
スタの総数を lとする．ここで，1回あたりの反復における計算量を考える．
まず，1回目の反復においては，上位クラスタ単位でのデータの絞り込みは出来

ない．このために，すべての下位クラスタの代表データのスコアの計算，および
下位クラスタの上界の計算，走査対象の下位クラスタ集合の決定のための下位ク
ラスタの走査が必要となる．これらの一連の処理の計算量は，2lである．次に，走
査対象の下位クラスタ集合中のすべてのデータのスコアの計算が必要となる．こ
のデータの数を n∗

i とすると，計算量は n∗
1となる．よって，1回目の反復の計算量

は，2l + n∗
1である．

次に，2回目以降の反復について考える．まず，走査対象の上位クラスタ集合を
決定するために，すべての上位クラスタの代表データの評価値の計算，および上位
クラスタの上界の計算が必要となる．データの評価値の計算には，1回のデータの
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スコアの計算に加え，|S∗| = i−1個のデータとの距離の計算が必要となる．よって，
u個の上位クラスタの代表データの評価値の計算の計算量は，u · {1+(i− 1)} = ui

となる．さらに，基準データの評価値を上界が下回る上位クラスタを除外するた
めに，u個のクラスタの走査が必要となる．よって，走査対象の上位クラスタ集合
を決定するための計算量はこれらの合計であり，ui + u = u(i + 1)となる．走査
対象の上位クラスタ集合を決定した後，次に走査対象の下位クラスタ集合を決定
する．このための計算量は，走査対象の上位クラスタの配下に存在する下位クラ
スタの総数を l∗i とすると，走査対象の上位クラスタ集合を決定するための計算量
と同様に求められ，l∗i (i + 1)となる．最後に，走査対象の下位クラスタ集合中の
すべてのデータの評価値計算が必要となり，この計算量は n∗

i iである．ここで，各
反復における走査対象の下位クラスタの総数 l∗i の最大値をmax2≤i≤k{l∗i } = l∗，走
査対象の下位クラスタ集合内のデータの総数 n∗

i の最大値をmax1≤i≤k{n∗
i } = n∗と

する．
オンラインクエリ処理の全体の計算量は，k回の反復の合計であるため，次式で

表される．

(2l + n∗
1) +

k∑
i=2

{u(i+ 1) + l∗i (i+ 1) + n∗
i i}

≤ (2l + n∗) + (u+ l∗ + n∗)
k∑

i=2

i+
k∑

i=2

(u+ l∗)

= 2l + n∗ + (u+ l∗ + n∗){1
2
k(k + 1)− 1}+ (u+ l∗)(k − 1)

≤ 1

2
k(k + 1)(u+ l∗ + n∗) + 2l + n∗ + (u+ l∗)k (3.11)

よって，オンラインクエリ処理の計算量は，O(k2(u+ l∗ + n∗) + l)である．
2.4.2項の末尾で述べたとおり，第 2章のクラスタベースの手法におけるクラス

タの数を cとしたとき，クラスタベースの手法の計算量は O(k2(c + n∗))である．
ここで，提案手法とクラスタベースの手法で空間半径 r1が同じ値の場合，上位ク
ラスタの数 uは，下位クラスタの数 lや cに比べ小さい値となる．また，提案手法
とクラスタベースの手法で環境属性値半径 r2が同じ値の場合，lおよび cは近い値
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表 3.1: パラメータの値

パラメータ 値
データセットサイズ N 1M, 5M, 10M
要求するデータの数 k 5∼50 (25)
多様性の重要度 λ 0.0∼1.0 (0.5)
wの各要素 0.0∼1.0
環境属性の次元数 d 4, 10, 20

となる．さらに，最終的な走査対象のデータの総数 n∗もまた，それぞれの手法に
おいて近い値となる．ここで，環境属性の次元数 dが大きくなると，データ同士が
類似しにくいため，lおよび cはともに大きな値となる．一方で，提案手法では多
くの場合，大部分の上位クラスタが走査対象から除かれるため，走査対象の下位
クラスタの総数 l∗は，cに比べ小さい値となる．以上のことから，空間半径 r1お
よび環境属性値半径 r2が同じ値の場合，提案手法の計算量はクラスタベースの手
法の計算量に比べて小さくなる．また，クラスタベースの手法において，環境属
性値半径 r2を大きくするとクラスタの数 cは小さくなるが，クラスタの上界が大
きくなることから，走査対象から除外されるクラスタの数は小さくなる．このた
め，クラスタベースの手法で環境属性値半径 r2を大きくすると，最終的な走査対
象のデータの数 n∗は大きくなってしまう．よって，それぞれの手法において適切
な環境属性値半径 r2を用いた場合においても，提案手法の計算量はクラスタベー
スの手法の計算量に比べて小さくなる．

3.4 性能評価
本節では，本章における提案手法の性能を評価する．表 3.1は各パラメータの値

を示し，太字はデフォルト値とする．
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(a) 第1属性値 (b) 第2属性値
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(d) 第20属性値
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図 3.5: 環境属性値の分布

3.4.1 データセット

データの位置情報を，各次元の値が区間 [0, 1]上の一様分布に従う，2次元ベク
トルで与えた．また，データの環境属性値は，図 3.5に示すような空間的自己相関
の特徴を有する分布に従う値とし，1次元から 20次元まで設定した．図中の各矩
形領域がクエリの検索範囲 q.Rであり，横軸および縦軸がそれぞれデータ位置の x

座標，y座標を表す．具体的な環境属性値は，データの位置情報から決定される．
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また，センシング時の誤差を考慮して，位置情報から決定される環境属性値に対
し，N(0, 0.05)の正規分布に従う正規乱数を加算した．

3.4.2 設定

提案手法（以降のグラフ中では ‘Proposed’と表記）を，第 2章で説明したクラ
スタベースの手法（‘Compared’）と比較した．すべてのアルゴリズムを Java8で
実装し，Intel Xeon E5-2643 v2 @ 3.50GHz with 48.0GB RAMを搭載する Ubuntu

14.04.5 LTSで動作する計算機上で実験した．
実験においては，オンラインクエリ処理でセンサデータおよびクラスタデータ

を RAMに読み込んだ時点から，検索結果を取得するまでの計算時間を測定した．
また，RAMに読み込んだデータの数としてディスク IOコストを示し，比較手法
と提案手法について，それぞれのオフライン事前クラスタリング処理によって生
成されたクラスタの数，下位クラスタの数，および上位クラスタの数を示す．さ
らに，各手法の走査対象のデータの絞り込みの効果を調べるために，多様集合を
計算するまでに走査したデータの数を示す．
実験で用いたクエリは，q.wが表 3.1に示す一定の範囲内でランダムに設定され

たものである．作成されたランダムな 100個のクエリを処理した際の，各評価指
標の平均値を調べた．なお，比較手法と提案手法では，100個のクエリの処理にそ
れぞれ同一のクラスタファイルセットを用いた．そのため，クラスタの数はクエ
リと無関係であり，用いたクラスタファイルセットのクラスタの数をそのまま示
している．

3.4.3 空間半径 r1および環境属性値半径 r2の影響

環境属性の次元数 dが 20の場合における，クラスタの空間半径 r1を変化させた
ときの，計算時間，ディスク IOコスト，走査したデータの数，クラスタの数を図
3.6に示す．ここでは，MMR問題のみの評価指標を計測している．図 3.6(a)より，
空間半径が大きい場合，比較・提案手法ともに計算時間が長くなることが分かる．
これは，2.5.4項の議論と同様，クラスタ内のデータの評価値の上界を過大に計算
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(a) 計算時間 (b) ディスクIO

(c) 走査データ数 (d) クラスタ数
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図 3.6: 空間半径 r1の影響

することで，走査対象から除外できたクラスタの数が小さいためである．この事
実は，図 3.6(c)より，空間半径が大きいほど，走査したデータの数が大きいことか
らも確認できる．一方，空間半径が小さい場合も，比較・提案手法ともに計算時
間が長くなることが分かる．これは，2.5.4項の議論と同様，図 3.6(d)より空間半
径が小さくなると生成されるクラスタの数が増加することによる．クラスタ半径
が小さい場合，図 3.6(c)より，走査対象のクラスタの数が削減されることで，走
査対象のデータの数は削減される．一方で，走査対象のクラスタ集合を絞り込む
ための計算コストが大きくなってしまうため，計算時間は増加してしまう．また，
図 3.6(b)より，提案手法のディスク IOコストは比較手法のディスク IOコストに
比べてわずかに大きいことが分かる．これは，図 3.6(d)が示すように，下位クラ
スタの数がクラスタの数に比べてやや大きいため，下位インデックスファイルの
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図 3.7: 環境属性値半径 r2の影響

合計サイズも大きくなり，初期状態で読み込むデータ量が大きいためである．
次に，環境属性の次元数 dが 20の場合における，クラスタの環境属性値半径 r2

を変化させたときの，計算時間，ディスク IOコスト，走査したデータの数，クラ
スタの数を図 3.7に示す．図 3.7(a)より，環境属性値半径が大きい場合，比較・提
案手法ともに計算時間が長くなることが分かる．これは，空間半径を大きくした
場合と同様に，クラスタ内に存在しうるデータのスコアを大きく見積もることで
評価値の上界も過大に計算してしまい，走査対象から除外できたクラスタの数が
少ないためである．一方，環境属性値半径が小さい場合も，比較・提案手法とも
に計算時間が長くなることが分かる．これも，空間半径を小さくした場合と同様，
環境属性値半径が小さくなると生成されるクラスタの数が増加し，走査対象のク
ラスタ集合の絞り込みのための追加の処理の計算コストが大きくなるためである．
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図 3.8: d = 4, 10, 20における結果

しかし，提案手法は比較手法に比べて，空間半径が小さい場合の計算時間の増加
の度合いが小さいことが分かる．このことから，提案手法は比較手法よりもクラ
スタの数が増加した場合に，走査対象のデータを絞り込むための計算コストを削
減でき，クラスタの増加の影響を緩和できていることが確認できる．
ここで，環境属性の次元数が d = 4, 10, 20のそれぞれの場合について，比較・

提案手法の計算時間を最短にした r1，r2を用いたときの結果を図 3.8に示す．図
3.8(a)より，それぞれの次元数において，提案手法の計算時間は比較手法の計算時
間の半分程度まで削減されていることが分かる．これは，比較手法よりも提案手
法のほうが，走査対象のデータを絞り込むための計算コストが小さく，かつ走査
対象のデータの数も小さいためである．図 3.8(d)より，提案手法の下位クラスタ
の数は比較手法のクラスタの数よりもやや大きいが，上位クラスタの数は環境属
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性の次元数に依存せず一定の小さい値に保たれている．このため，走査対象のク
ラスタ集合を絞り込む際，上位クラスタごとに絞り込むことで計算コストを小さ
くできている．また，図 3.7(a)より，提案手法では比較手法よりも環境属性値半径
を小さく設定できることが分かる．上述したように，環境属性値半径を小さくす
るとクラスタの数が増加するが，提案手法では上位クラスタごとのデータの絞り
込みにより，クラスタの増加の影響を緩和できる．一方で，比較手法ではクラス
タの数を小さくするために環境属性値半径を大きく設定する必要がある．このた
め，図 3.8(c)に示されるように，比較手法は提案手法に比べて走査対象のデータ
の数が大きくなってしまい，計算時間が増加してしまう．一方で，図 3.8(b)に示さ
れるように，比較手法のクラスタの数に比べて提案手法の下位クラスタの数はや
や大きくなるため，最初に読み込むインデックスファイルのサイズが大きくなる
ことから，ディスク IOコストは比較手法に比べてわずかに大きくなる．
以降の実験では，比較・提案手法それぞれにおいて計算時間を最短にした r1お

よび r2を用いている．

3.4.4 その他のパラメータの影響

多様性の重要度 λの影響

MAXMIN，MAXSUM，MMR問題において多様性の重要度 λを変化させた場合
の計算時間，ディスク IOコスト，走査したデータの数，クラスタの数を図 3.9に
示す．λはクエリパラメータでありクラスタ構造に影響を与えないため，図 3.9(d)

が示す通り，比較・提案手法におけるそれぞれのクラスタの数は一定である．図
3.9(a)，(b)，(c)より，MAXMIN，MAXSUM問題では，λが大きくなるほど，各手
法の計算時間，ディスク IOコスト，走査対象のデータの数が大きくなることが分
かる．これは，λが大きくなるほど目的関数におけるデータ間の距離の重要度が
大きくなり，走査対象となるデータの分布する領域が大きくなるためである．走
査対象のデータの数が大きくなるため，これにともないディスク IOコストも大き
くなる．特に，MMR問題では λの影響が他の問題よりも大きく，λ = 0.6より大
きい値で各手法において計算時間が大幅に増加し，λ = 0.9, 1.0の場合は，提案手
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図 3.9: 多様性の重要度 λの影響

法の計算時間が比較手法の計算時間をやや上回っている．MMR問題において λを
大きく設定すると，データのスコアに対してデータ間の空間距離が支配的になり，
データのスコアがほとんど考慮されずに多様集合が計算される．このような多様
集合は，ユーザの興味に適合するとは限らないデータから構成されるため，モバイ
ルセンサデータベースにおける Top-k検索結果の多様化で想定されるアプリケー
ションの 1つである，ユーザが注目すべき領域であるホットスポットの検出には
適さない．一般的に，ユーザの興味に適合した有用な結果を得るためには，λをあ
る程度小さく設定し，データ間の距離だけでなくデータのスコアに対しても重み
付けする必要があり，この場合は提案手法の計算時間は各問題について，比較手
法の計算時間よりも短くなっている．
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図 3.10: 要求するデータの数 kの影響

要求するデータの数 kの影響

要求するデータの数 kを変化させた場合の計算時間，ディスク IOコスト，走査
したデータの数，クラスタの数を図 3.10に示す．λと同様に kもクエリパラメー
タであるため，図 3.10(d)が示す通り，比較・提案手法におけるそれぞれのクラス
タの数は一定である．図 3.10(a)より，kが小さい場合は，比較・提案手法におけ
る計算時間にほとんど差がないことが分かる．これは，提案手法では最初に多様
集合に追加するスコアが最大のデータを探索する際に，すべての下位クラスタの
代表データを走査するためである．kが小さい場合はこのような初期化処理の計
算コストが大きいため，各手法の計算時間は各問題についてほぼおなじ値となる．
一方，kが大きい場合は，提案手法は比較手法よりも走査対象のデータを絞り込む
ための計算コストが小さく，かつ走査対象のデータの数を削減できるため，各問
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図 3.11: データセットサイズN の影響

題について計算時間を比較手法の半分程度まで削減できている．

データセットサイズN の影響

データセットサイズNを変化させた場合の計算時間，ディスク IOコスト，走査
したデータの数，クラスタの数を図 3.11に示す．図 3.11(a)より，いずれのデータ
セットサイズの場合においても，各問題について提案手法の計算時間は，比較手
法の計算時間よりも短くなることが分かる．また，図 3.11(d)より，データセット
サイズが大きくなるほど，比較・提案手法におけるクラスタの数および下位クラス
タの数は大きくなることが分かる．これにより，各手法の走査対象のデータの絞
り込みのための計算コストも大きくなる．しかし，図 3.11(b)，(c)が示す通り，提
案手法は比較手法よりもディスク IOコストおよび走査対象のデータの数を削減出
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来ており，多様集合の計算時間は比較手法よりも 40 ∼ 50%程度小さくなっている．

3.5 むすび

3.5.1 発展：階層クラスタのメンテナンス方法

オフライン事前階層的クラスタリング処理の後にも新たにデータはアップロー
ドされるが，これらのデータを既存の階層クラスタに組み込むことで，階層クラ
スタのメンテナンスが可能である．ここで，新たにアップロードされたデータを
onew とする．階層クラスタのメンテナンスアルゴリズムを，Algorithm 7に示す．
3.3.1項の冒頭で述べた通り，上位クラスタは上位クラスタの中心データの空間位
置ベクトルを中心とした半径 r1の円内に存在するデータから，下位クラスタは下
位クラスタの中心データの環境属性値ベクトルを中心とした半径 r2の超球内に存
在するデータから構成されている．よって，既存の上位・下位クラスタの中から，
onewがクラスタメンバとして適切なクラスタを探索すれば良い．
まず，onewが適合する上位クラスタの集合は，既存の上位クラスタの中心デー

タの集合を対象として，Algorithm 5で用いた retrieveNeighbors(onew, r1,∞,UC)

を実行することで取得できる（1行目）．取得した上位クラスタの集合UC∗の上
位クラスタは，いずれも onewをクラスタメンバとすることができるため，集合内
でランダムに選ばれた上位クラスタ UC∗

i のクラスタメンバとする（3行目）．次
に，上位クラスタ UC∗

i の配下に存在する下位クラスタLCiの中から，onewが適
合する下位クラスタの集合を，下位クラスタの中心データの集合を対象として，
retrieveNeighbors(onew,∞, r2,LCi)を実行することで取得する（4行目）．取得し
た下位クラスタの集合LC∗

i の下位クラスタは，いずれも onewをクラスタメンバ
とすることができるため，集合内でランダムに選ばれた下位クラスタLC∗

ijのクラ
スタメンバとし，LC∗

ijのクラスタファイルに onewを挿入する（6，7行目）．onew

が適合する上位クラスタおよび下位クラスタが存在しない場合は，onewを新たな
クラスタの中心データかつ代表データとし，インデックスファイルに挿入する（9，
12行目）
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Algorithm 7 Algorithm for Maintenance of Hierarchical Clusters
Input: Set of upper-level clusters UC, spatial radius r1, environmental attribute
radius r2, new data item onew

1: UC∗ = retrieveNeighbors(onew, r1,∞,UC)
2: if UC∗ is not NULL then
3: UC∗

i = random(UC∗)
4: LC∗

i = retrieveNeighbors(onew,∞, r2,LCi)
5: if LC∗

i is not NULL then
6: LC∗

ij = random(LC∗
i )

7: Mark onew with LC∗
ij .lowerClusterLabel and LC∗

ij .upperClusterLabel
8: else
9: Mark onew as the center and initial representative of the new lower-level cluster

10: end if
11: else
12: Mark onew as the center of the new upper-level and lower-level cluster
13: end if

3.5.2 まとめ

本章では，高次元な環境情報を扱うモバイルセンサデータベースにおける，効
率的なTop-k検索結果の多様化手法を提案した．提案手法では，事前にモバイルセ
ンサデータに対し階層的クラスタリングを行う．オンラインクエリ処理では，上
位クラスタおよび下位クラスタの上界を計算し，それぞれのクラスタ単位で走査
対象のデータの絞り込みを行う．また，基準データの候補を上位クラスタごとに
記憶することで，短時間で評価値の高い基準データを取得できる．
シミュレーション実験により，提案手法は第 2章で提案した手法と比較して，モ

バイルセンサデータが高次元の場合でも多様集合をより短時間で取得できること
を確認した．さらに，提案手法は比較手法よりも，環境属性値半径を小さくした
場合のクラスタの増加に伴う計算コストの増加を緩和できることを確認した．
参加型センシングに参加する各モバイルセンサは非同期でセンシングを行うこ

とから，検索範囲を指定する際は一定の時間幅を指定した時空間範囲を指定する
必要がある．しかし，第 2章および本章では，多様集合を計算する際に空間的多
様性のみを考慮して計算を行っており，時間属性を考慮していなかった．このた
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め，特定の時刻付近に生成されたデータが多様集合に含まれる可能性があり，時
間的に冗長な結果が得られる場合がある．空間的および時間的に分散した多様集
合を計算することで，検索範囲内のホットスポットをより効果的に検出できると
考えられる．このような要求に対応するために，多様集合を計算するための最適
化問題の再定義，およびその際の効率的な Top-k検索結果の多様化手法の設計に
ついて検討する予定である．



第4章 格子グリッドベースのデータ
構造を用いた継続的なTop-k

検索結果の多様化手法

4.1 まえがき
1.3.3項で述べた通り，モバイルセンサデータが時々刻々と到着するモバイルセ

ンサストリーム環境において，地理的多様性を考慮した多様集合をモニタリング
することで，ホットスポットの地理的分布の変化をリアルタイムに追跡できる．モ
バイルセンサストリーム環境において多様集合をモニタリングする場合，多様集
合内のデータが一定時間経過し削除される場合や，よりスコアが大きい，もしく
はより地理的に分散するデータが生成された場合に，定期的に多様集合を更新す
る必要がある．しかし，前述の過去に収集され蓄積されたモバイルセンサデータ
ベースにおける多様集合の計算と同様に，単純な手法では多様集合の更新に要す
る計算コストは大きい．
一方で，モバイルセンサストリーム環境において，第 2章や第 3章で説明した

事前クラスタリング処理を行う手法を用いる場合，到着するデータや削除される
データに対し，多様集合の更新の前に，クラスタ構造の更新を行う必要がある．ク
ラスタ構造を利用することで多様集合の更新は短時間で可能であるものの，クラ
スタ構造の更新にかかる時間が非常に大きくなるため，結果的に多様集合の計算
時間は短縮できない．
そこで本章では，データの更新コストが小さい格子グリッドベースのデータ構

造を用いた，モバイルセンサストリーム環境における効率的な多様集合のモニタ
リング手法を提案する．格子グリッドの空間セルは，環境属性ごとにデータのリ

77
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ストを保持しており，それぞれのリストは環境属性値が一定の範囲内であるデー
タを管理する．それぞれのデータを被覆する空間セルおよび管理するリストは定
数時間で決定できるため，提案データ構造はストリーム環境に適している．提案
アルゴリズムは，データを走査する途中で，データの走査をする必要が無いと判
断した空間セルを枝刈りし，走査するデータの数を削減する．具体的には，最適な
データを走査する際，空間セル内のデータがとりうるスコアの上界を計算し，こ
れを用いて空間セル内のデータの評価値が取りうる値の上界を計算する．その際
に保持している評価値が最大のデータと評価値の上界を比較し，上界の方が小さ
い場合は，その空間セル内のほかのデータは走査する必要はない．また，空間セ
ル内のデータのスコアについて，取りうる値が単調に減少するような順番で空間
セル内のデータを走査することで，評価値の上界は減少する．これにより，空間セ
ル内のデータの走査を途中で打ち切り，次の空間セルの走査に進める．結果とし
て，走査するデータの数を大幅に削減しつつ，単純にモニタリングの対象のすべ
てのデータを走査することで得られる多様集合と，同一の検索結果を取得できる．
以下では，まず 4.2節で関連研究について述べる．4.3節で想定環境を紹介し，本

章の問題を定義する．4.4節でベースライン手法を紹介し，4.5節で提案手法につ
いて説明する．その後，4.6節でシミュレーション実験の結果を示す．最後に，4.7

節で本章のまとめと今後の課題について述べる．

4.2 関連研究
多次元データストリーム環境において，Top-k検索や k最近傍検索の結果を効率

的に計算する手法に関する研究は，これまでに多数行われている [46, 47, 62, 63, 83,

93]．文献 [62]ではスコアが上位 k個のデータを効率的にモニタリングするために，
属性値空間を多次元グリッドに分割する．そして，各セル内のデータのスコアが
取りうる上界を計算し，上界の大きさによってセルを走査する順序，データの走
査を打ち切るタイミングを決定する．また，文献 [63]では指定された地点に対す
る k個の最近傍データを効率的にモニタリングするために，属性値空間を多次元
グリッドに分割する．Top-kデータのモニタリングと同様に，各セル内のデータと
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指定された地点との間の距離の上界を計算し，上界の大きさに基づいてデータを
走査する．これらの研究で提案されているデータ構造は，それぞれデータのスコ
アかデータ間の距離のいずれか一方のみの上界しか計算できない．しかし，多様
化問題ではデータのスコアおよびデータ間の距離の両方からデータの評価値が決
定されるため，これらの既存手法はそのままでは多様化問題に適用できない．こ
こで，文献 [62]における多次元グリッドインデックスを環境属性値の多次元イン
デックスとして，文献 [63]における多次元グリッドインデックスを位置情報の 2

次元グリッドインデックスとして多様化問題に適用する場合を考える．この場合，
各多次元グリッドセル内のデータが取りうる評価値の上界を計算できるため，走
査対象となるデータの絞り込みが可能となり，短時間で多様集合が計算できる可
能性がある．しかし，文献 [62]における多次元グリッドインデックスは，多次元
グリッドセルの数が環境属性値の次元数に対し指数的に増加するため，環境属性
値ベクトルの次元数が大きい場合メモリサイズが非常に大きくなる．またこのと
き，データの追加は短時間で可能である一方で，データの削除については多数の
多次元グリッドセルを巡回する必要があり，データ構造の更新コストが大きくな
る．文献 [62]では最大で 6次元程度を想定しているが，本研究では，第 3章で想定
したように様々な環境情報を観測する，より高次元なモバイルセンサデータを対
象としている．そこで，データのスコアとデータ間距離の両方の上界を計算でき，
かつ高次元のモバイルセンサデータについても適用可能なデータ構造と，データ
構造を利用した検索結果の更新アルゴリズムが必要となる．
これまでに，継続的な Top-k検索結果の多様化に関する研究がいくつか行われ

ている [4, 20, 28, 29, 58]．文献 [28]では，MAXMIN問題における多様集合を継続
的にモニタリングするための，木構造インデックスが提案されている．また，文献
[4]では，分散ストリーム環境において，サーバ間の通信コストおよび計算コスト
の削減を目的とした，多様集合のモニタリング手法が提案されている．これらの
研究における多様集合モニタリング問題は，本章における問題定義と類似してい
る．しかし，文献 [28]における木構造インデックスはデータの更新コストが大き
く，データ更新が高頻度である場合に計算時間が爆発的に増加してしまうことが
文献 [4]にて指摘されている．文献 [4]では，各サーバは自身が管理する検索範囲
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内のデータセットから評価値が最大のデータを取得し，まとめ役となるマスター
サーバに送信する．マスターサーバは，各サーバから受信したデータの中で評価
値が最大のデータを選択し，これを多様集合に追加することで更新を行う．一方，
本章では集中管理のシステムを想定している．文献 [4]において各サーバが管理す
るデータセットをすべて単一のサーバで管理し，管理するデータセットから評価値
が最大のデータを取得することで，文献 [4]における多様集合と同一の結果が得ら
れる．そのため本章では，文献 [4]における手法を集中管理のシステムに適用し，
ベースライン手法として用いている．このベースライン手法では，多様集合に新
たにデータを追加する場合や多様集合内の既存のデータと別のデータを交換する
場合に，モニタリングの対象のデータセット全体を走査しなければならない．そ
の結果，管理するデータ量が大きい場合，集中管理のシステムでは計算時間が大
きくなってしまう．

4.3 想定環境と問題定義
本節では，本章の想定環境と問題定義について説明する．

4.3.1 システムおよびデータモデル

本章におけるストリーム環境では，単一の集中管理のサーバを想定する．サー
バはデータストリームを受信し，現在時刻 tcからW 以内に発生したデータを保持
する．ここで，W はウィンドウサイズである．つまり，サーバは tc−W よりも以
前に発生したデータをすべて削除する．
モバイルセンサ端末は第 2，3章と同様に，周期的に付近の大気汚染指数，気温，

湿度などの物理現象についてセンシングするものとする．ユーザの検索クエリを q，
検索範囲を q.Rとしたとき，検索範囲内に分布し，かつサーバが保持するデータ
集合をOで表す．データ o ∈ Oは，データ ID o.id，観測時刻 o.t，位置情報 o.loc，
環境属性値 o.zを保持している．位置情報 o.locは，経度 o.xと緯度 o.yによって表
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される 2次元平面上の点とし，環境属性値 o.zは d次元のベクトル o.zi(i = 1, ..., d)

で表される．
また，データ oのスコア p(o)，および 2つのデータ u, v間の多様性 dist(u, v)は

第 2，3章と同様に，それぞれ式 (2.1)，(2.2)に基づいて計算される．

4.3.2 問題定義

上述した環境属性値から算出されるデータのスコア，およびデータ間の位置情
報から算出される空間距離に基づいて，モバイルセンサストリーム環境における
多様集合モニタリング問題を定義する．

定義 (多様集合モニタリング問題). 多様集合の大きさ k，検索範囲 q.R，およびサー
バが保持している q.R上のデータ集合Oが与えられた時，この問題は，Oの部分
集合 S∗

tcを継続的に計算する．また，Oの部分集合 S∗
tcは式 (4.1)を満たす．

S∗
tc = arg max

Stc⊆O,|Stc |=k

f(Stc) (4.1)

ここで，f(Stc)は目的関数である．MAXMIN，MAXSUM，Maximal Marginal Rele-

vance（MMR）における目的関数は，第 2，3章と同様に，それぞれ式 (2.4)，(2.5)，
(2.6)で表される．
サーバは，保持するデータ集合Oから多様集合S∗

tcを計算し，クエリを発行した
ユーザに提供するために最新の多様集合を保持する．また，最新の多様集合を取
得するために，更新の具体的な処理として，一定時間が経過したデータの削除，削
除されたデータの分を補填するためのデータの追加，より評価値の高いデータと
多様集合内のデータの交換などを行う．サーバが保持する最新の多様集合は，ユー
ザからの要求を受け取ったときや，多様集合の構成が変化したときに，ユーザに
送信される．これにより，ユーザは多様集合をモニタリングできる．
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図 4.1: k = 2において，S∗
tc+1 ∩ S∗

tc = ∅となる例

要件の補足

以下の例 1に示すように，多様集合モニタリング問題では，モニタリングの対
象のデータ集合Oが変わると（ウィンドウがスライドすると），多様集合が完全
に異なるデータ集合となる（S∗

tc ∩ S∗
tc−1 = ∅）可能性がある．

例 1. 図 4.1を用いて，多様集合の変化の例を示す．2次元のユークリッド空間に
おけるデータ集合O = {(0.9, 0.6), (0.8, 0.4), (0.7, 0.3), (0.5, 0.7)}を考え，MMR問
題において k = 2, λ = 1.0，すなわちデータのスコアを無視し，空間的多様性の
みを考慮した多様集合を計算する．このとき，S∗

tc = {(0.8, 0.4), (0.5, 0.7)}であ
る．ここで，データ (0.1, 0.1)が発生し Oに追加された場合を考える．このとき，
S∗
tc+1 = {(0.9, 0.6), (0.1, 0.1)}となり，S∗

tc+1 ∩ S∗
tc = ∅となる．

例 1から，Oの変化が小さい場合でも，S∗
tcの構成が大きく変化する場合がある

ことがわかる．この現象が頻繁に起こる場合，多様集合の変化を追跡することは
ユーザにとって困難である．そのため，S∗

tc に含まれるデータのうちいくつかは，
スライディングウィンドウ上に存在する限り多様集合に残り続けることが望まし
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い．このような要求は，文献 [4, 27, 28, 80]においても支持されている．そこで，
多様集合 S∗

tc−1および S∗
tc間の差分の制限 δ(0 ≤ δ ≤ k)を導入する．ユーザがパラ

メータ δを指定することにより，差分の制限を実現できる．

制限 1 (差分の制限). ユーザが指定するパラメータ δが与えられた時，多様集合S∗
tc

は式 (4.2)を満たす．
|S∗

tc \ S
∗
tc−1| ≤ δ (4.2)

ここで，S∗
tc−1内でウィンドウから削除されるデータの数が δを超える場合，制限

1が満たされない．これに対応するため，以下の制限を追加する．

制限 2 (制限 1の例外処理). S∗
tc−1内でウィンドウから除かれるデータの数を eとす

る．δ < eである場合，多様集合 S∗
tcは式 (4.3)を満たす．

|S∗
tc \ S

∗
tc−1| = e (4.3)

以上の制限を考慮し，本章で扱う δ-多様集合モニタリング問題を定義する．

定義 (δ-多様集合モニタリング問題). 多様集合の大きさ k，差分の制限 δ，サーバ
が保持するデータ集合Oが与えられた時，この問題は，Oの部分集合 S∗

tc を継続
的に計算する．また，Oの部分集合 S∗

tcは式 (4.1)，制限 1および 2を満たす．

以降では文脈上明らかな場合は，δ-多様集合を多様集合のように略記する．
差分の制限を設けた δ-多様集合モニタリング問題もNP困難であるため，近似解

を計算するヒューリスティックアルゴリズムが必要である．そこで，本章において
もグリーディアルゴリズムをベースラインとする．

4.4 ベースライン手法
本節では，多様集合の初期化および更新のベースラインアルゴリズムについて

説明する．これらのアルゴリズムは，文献 [4]の提案アルゴリズムを参考にしてい
る．ただし，文献 [4]の提案アルゴリズムは分散ストリーム環境を想定して設計さ
れているため，本節では集中管理システムを想定した設計に修正したアルゴリズ
ムを用いる．
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Algorithm 8 Initialization
1: S∗

tc ← ∅
2: o∗ ← arg max

o∈O
p(o)

3: S∗
tc ← S∗

tc ∪ {o
∗}

4: while |S∗
tc| < k do

5: o∗ ← arg max
o∈O\S∗

tc

dr(o, S
∗
tc) (FindNextObject)

6: S∗
tc ← S∗

tc ∪ {o
∗}

7: end while

4.4.1 初期化アルゴリズム

多様集合の初期化アルゴリズムを Algorithm 8に示す．初期化アルゴリズムは，
第 2，3章の多様集合の計算と同様な手順で，サーバが保持する多様集合の初期化
を行う．具体的には，データのスコアとデータ間の空間距離から算出される評価値
が最大のデータを，サイズが kとなるまで多様集合に繰り返し追加する．よって，
MAXMIN問題，MAXSUM問題およびMMR問題における評価値は，それぞれ式
(2.7)，(2.8)，(2.9)により定義される．以降は，このようなグリーディアルゴリズム
において追加するデータとして最適なデータ o∗を取得する操作を，FindNextObject

と呼ぶ．

4.4.2 更新アルゴリズム

Algorithm 8を実行し多様集合を初期化した後，各時刻でS∗
tcを更新する必要があ

る．ここで，多様集合を更新するベースラインアルゴリズムをAlgorithm 9に示す．
現在時刻 tcにおいて，S∗

tc−1に含まれており，かつスライディングウィンドウか
ら除かれるデータの数を eとする．まず最初に，4行目から 7行目の反復により，
FindNextObjectを繰り返し実行し e個のデータを追加する．これにより，e = kの
場合は S∗

tc を構築し直すこととなるため，Algorithm 9は Algorithm 8を実行する
（19行目）．以下では，e < kの場合における更新の手順を説明する．

1，2行目より，まずはじめに S∗
tcは，S∗

tc−1に含まれており，かつ現在時刻のス
ライディングウィンドウ上に存在するデータから構成される．e個のデータを追加
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Algorithm 9 Update
1: Delete expired data items from S∗

tc−1

2: S∗
tc ← S∗

tc−1, e← k − |S∗
tc−1|, δ′ ← δ − e

3: if e < k then
4: while |S∗

tc| < k do
5: o∗ ← FindNextObject
6: S∗

tc ← S∗
tc ∪ {o

∗}
7: end while
8: while δ′ > 0 do
9: o∗∗ ← arg min

o∈S∗
tc

dr(o, S
∗
tc \ {o})

10: S∗
tc ← S∗

tc \ {o
∗∗}

11: o∗ ← FindNextObject
12: S∗

tc ← S∗
tc ∪ {o

∗}
13: if o∗ is equal to o∗∗ then
14: break
15: end if
16: δ′ ← δ′ − 1

17: end while
18: else
19: Initialization
20: end if

した後は，目的関数の値 f(S∗
tc)を向上させるために，最大 δ′ = δ− e個のデータを

交換できる．ここで，δ′ ≤ 0の場合は，すでに差分の制限以上の数のデータが変
化しているため，データの交換は行われない．8行目から 17行目の交換の手続き
では，多様集合への貢献の度合いで交換の対象となるデータを決定する．具体的
には，S∗

tc中のデータで最小の評価値をとるデータ o∗∗であり，以下の式を満たす．

o∗∗ = arg min
o∈S∗

tc

dr(o, S
∗
tc \ {o}) (4.4)

データ o∗∗ を S∗
tc から削除し，この状態で FindNextObjectを再び実行し，新しい

データ o∗を追加する．ここで，o∗と o∗∗が一致する場合，交換の手続きによって
目的関数の値はこれ以上向上しないため，更新アルゴリズムは終了する．これら
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の交換の手続きは，最大で δ′個のデータが交換されるまで繰り返される．

4.4.3 計算コスト

このアルゴリズムの計算量は，スライディングウィンドウ上のデータの数 |O|に
依存する．初期化処理は，データのスコアが最大のデータを探索するため，単純
にスライディングウィンドウ上のデータセット全体の走査が必要となり，計算量
はO(|O|)である．FindNextObjectの操作に関しては，アルゴリズム実行時の多様
集合のサイズを |S∗

tc | = k′とすると，k′(|O| − k′)回のデータ間の空間距離の計算が
必要となるため，計算量はO(k′|O|)となる．このため，スライディングウィンド
ウ上のデータの数が大きくなると計算時間が長くなってしまう．

4.5 提案手法
本節では，本章の提案手法について説明する．ベースライン手法では，各反復

において最適なデータを取得するために，O \ S∗
tc内のすべてのデータを走査する

必要があり，計算コストが大きくなってしまう．この計算コストを削減するため，
第 2章ではクラスタベースのデータ構造を利用する手法を提案した．この手法で
は，オフライン事前処理によって，空間的に近接し，かつ環境属性値ベクトルが
類似するデータをクラスタ化する．オンラインクエリ処理では，クラスタ内の他
のデータの評価値について，その上界はクラスタ半径から計算できる．これによ
り，最適なデータを含んでいる可能性のあるクラスタのみ走査すればよく，走査
するデータの数を削減できる．
しかし，本章のようなストリーム環境にこの手法を適用する場合，各時刻でス

ライディングウィンドウに対し追加，削除されるデータについて，クラスタベース
のデータ構造の更新が必要となる．クラスタの数が大きいほどクラスタの更新コ
ストは大きくなるため，更新が頻繁に発生するストリーム環境ではクラスタベー
スのデータ構造は適さないと考えられる．そこで，多次元データストリームを扱
う既存手法 [47, 62, 63, 83, 93]を踏襲し，提案手法ではスライディングウィンドウ
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上のデータを格子グリッドベースのデータ構造で管理する．格子グリッドベース
のデータ構造では，複雑な木構造インデックスやクラスタ構造に比べて，短時間
でデータの追加，削除が可能である．また，提案データ構造を利用した効率的な
FindNextObjectのアルゴリズムを提案する．

4.5.1項では格子グリッドベースのデータ構造について，4.5.2項では提案データ
構造を利用した効率的なデータ探索方法について説明する．

4.5.1 格子グリッドベースのデータ構造

提案する格子グリッドベースのデータ構造を図4.2に示す．この例では簡単のため
に，環境属性の次元数を 2（o.z = (o.z1, o.z2)）とし，それぞれの値は [0.0, 1.0]の範
囲で正規化されているものとする．空間セルのx次元およびy次元の範囲は∆xyであ
る．このため，列 cx，行 cyの空間セルG(cx, cy)は，o.xが範囲 [cx·∆xy, (cx+1)·∆xy)，
o.yが範囲 [cy ·∆xy, (cy + 1) ·∆xy)内の値をとるすべてのデータを包含する．逆に，
位置情報 (o.x, o.y)を有するデータ oが与えられた時，このデータを包含する空間
セルG(o.cx, o.cy)は，o.cx = ⌊ o.x

∆xy
⌋および o.cy = ⌊ o.y

∆xy
⌋として定数時間で決定で

きる．各空間セルは，環境属性ごとのデータリストを保持する．各データリスト
は，環境属性値が一定の範囲内の値をとるデータを管理する．ziにおけるデータ
リストの範囲は∆z である．このため，czi番目のデータリスト G(cx, cy).L(i, czi)

は，o.ziが範囲 [czi ·∆z, (czi +1) ·∆z)内の値をとるすべてのデータを包含する．逆
に，o.ziを有するデータ oが与えられた時，このデータを管理するデータリスト
G(o.cx, o.cy).L(i, o.czi)は，o.czi = ⌊o.zi∆z

⌋として定数時間で決定できる．加えて，各
環境属性についてデータを 1つ以上含むデータリストの番号 cziの最大値を以下の
ように計算し各空間セルで記憶する．

G(cx, cy).czi = max{czi | |L(i, czi)| > 0} (4.5)

これらの値は，後述するように空間セル内のデータが取りうる評価値の上界を計
算するために用いられる．また，スライディングウィンドウ上で追加，削除される
データについて，データリストにおいて効率よく追加，削除するために，データ
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図 4.2: 格子グリッドベースのデータ構造

リストは先入れ先出し（First In First Out）方式で管理する．新しく到着したデー
タはリストの末尾に配置され，ウィンドウから削除されるデータはリストの先頭
から除外されるため，データリストにおける追加，削除の操作はデータ 1つにつ
きO(1)で可能である．
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データ追加例

提案データ構造にデータが追加される様子を図 4.2に例示する．例では，範囲
∆xyおよび∆zはともに0.25である．(o.x = 0.62, o.y = 0.31)に位置し，環境属性値
(o.z1 = 0.8, o.z2 = 0.12)を有するデータ oは，G(2, 1).L(1, 3)およびG(2, 1).L(2, 0)

（o.cx = ⌊0.62
0.25
⌋ = 2, o.cy = ⌊0.31

0.25
⌋ = 1, o.cz1 = ⌊ 0.8

0.25
⌋ = 3, o.cz2 = ⌊0.120.25

⌋ = 0）に挿入
される．

更新アルゴリズム

提案データ構造の更新アルゴリズムをAlgorithm 10に示す．各時刻にシステム
に到着するデータおよびスライディングウィンドウから削除されるデータが存在
する．データ集合Oinsをシステムに到着するデータの集合とし，2行目から 8行目
において各データが割り当てられる空間セルおよびデータリストを決定する．次
に，11行目から 13行目において，各空間セルのすべてのデータリストを先頭から
走査し，スライディングウィンドウから当該データを削除する．データリスト内
で，データは到着した時刻順に配置されているため，スライディングウィンドウ
上のデータを見つけた時点で次のデータリストの走査に進む．最後に，14行目に
おいて，各環境属性についてG(cx, cy).cziを更新する．

計算量分析

格子グリッドベースのデータ構造の空間計算量について分析する．空間セルの
数を cxy，各属性のデータリストの数を cz とすると，各空間セルは合計 dcz 個の
データリストを持つ．よって，データを格納する土台となるデータ構造の空間計
算量は，dcxyczとなる．また，各データは環境属性値に応じてそれぞれの環境属性
のデータリストに配置されるため，データ 1つにつき d個のポインタが張られる．
よって，スライディングウィンドウ上のデータの数を nとすると，合計 nd個のポ
インタが必要となる．以上より，格子グリッドベースのデータ構造の空間計算量
は，O(d(cxycz + n))となる．
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Algorithm 10 Update Grid Structure
1: Oins ← set of arriving data items
2: for data item o ∈ Oins do
3: o.cx ← ⌊ o.x

∆xy
⌋, o.cy ← ⌊ o.y

∆xy
⌋

4: for i = 1 to d do
5: o.czi ← ⌊o.zi∆z

⌋
6: Insert o into G(o.cx, o.cy).L(i, o.czi)

7: end for
8: end for
9: for every spatial cell G(cx, cy) do

10: for i = 1 to d do
11: for every data list G(cx, cy).L(i, czi) do
12: Delete expired data o from G(cx, cy).L(i, czi)

13: end for
14: G(cx, cy).czi ← max{czi | |L(i, czi)| > 0}
15: end for
16: end for

4.5.2 グリッド構造を利用した効率的な計算手法

本項では，提案データ構造を利用した効率的な FindNextObjectのアルゴリズム
について説明する．提案アルゴリズムをAlgorithm 11に示す．提案アルゴリズム
では，空間セルおよびヒープH が主要なデータ構造であり，ヒープH は空間セ
ルの走査する順序を決定する．まず，ヒープH，暫定の最適なデータ o∗，暫定の
最適なデータの評価値 dr(o

∗, S∗
tc)を初期化する（1行目）．次に，各空間セルにつ

いて，空間セル内のデータが取りうる評価値の上界（以降では，単に空間セルの
上界と略記）を計算する（3 行目）．各空間セルG(cx, cy)は，その評価値の上界
dr(G(cx, cy), S∗

tc)をソートキーとし，ヒープに挿入される（4行目）．
6行目から 19行目の反復において，ヒープHの各エントリを走査する．空間セ

ルの上界が，暫定の最大の評価値 dr(o
∗, S∗

tc)を上回っている場合，空間セルは最適
なデータを含んでいる可能性があるため，空間セル内のデータを走査する（8行
目）．データを走査する際にはまず，走査する環境属性 iをNextAttributeを実行す
ることで決定する（9行目）．NextAttributeは 1から dの値をラウンドロビン方式
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Algorithm 11 FindNextObject Leveraging Grid Structure
1: H ← ∅, o∗ ← NULL, dr(o

∗, S∗
tc)← −∞

2: for every spatial cell G(cx, cy) do
3: Compute dr(G(cx, cy), S∗

tc)

4: Enheap in H entry ⟨dr(G(cx, cy), S∗
tc), G(cx, cy)⟩

5: end for
6: while H.top is not NULL do
7: Deheap from H entry ⟨dr(G(cx, cy), S∗

tc), G(cx, cy)⟩
8: while dr(o

∗, S∗
tc) < dr(G(cx, cy), S∗

tc) do
9: i← NextAttribute

10: o← G(cx, cy).L(i, czi).next()
11: if o is not NULL then
12: Compute dr(o, S

∗
tc)

13: Update o∗ and dr(o
∗, S∗

tc)

14: else
15: G(cx, cy).czi ← G(cx, cy).czi − 1

16: dr(G(cx, cy), S∗
tc)← dr(G(cx, cy), S∗

tc)−∆r

17: end if
18: end while
19: end while
20: return o∗

で返す．環境属性値が大きく，評価値が大きい可能性の高いデータを優先的に走
査するために，データリストG(cx, cy).L(i, czi)から走査する．データリストから
データ oが得られた場合は oの評価値を計算し（12行目），この評価値が暫定の
最大値であった場合は，o∗および dr(o

∗, S∗
tc)を更新する（13行目）．一方，データ

リストからデータが得られなかった場合は，G(cx, cy).L(i, czi)内のデータはすべて
走査済みであるため，G(cx, cy).cziをデクリメントし次のデータリストの走査へ進
む（15行目）．この際，環境属性値の上界が減少するため，これにともない評価
値の上界も各問題に応じた値だけ減少する．（16行目）．
次の反復において，dr(G(cx, cy), S∗

tc) < dr(o
∗, S∗

tc)が満たされる場合，空間セル
G(cx, cy)内の他のデータの評価値はデータ o∗の評価値より大きくなりえない．こ
のため，空間セルの走査を打ち切ることができ，結果として走査対象のデータの
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数を削減できる．また，重みベクトルの各重みが負の場合においても，データリ
ストを逆順に走査することで同様の手続きが可能となる．

空間セルの上界の計算

ここで，Algorithm 11の3行目における，空間セルの評価値の上界dr(G(cx, cy), S∗
tc)

の計算方法について説明する．空間セルが含むデータの分布の詳細は不明なため，
空間セル内に存在しうる仮想的なデータ viを考え，データ viが取りうる最大の評
価値を，可能な限り正確に計算する．評価値は，データ間の空間距離と，環境属
性値に基づくスコアの 2つの指標から算出される．ここで，それぞれの最適化問
題における評価値を，多様集合内のデータに非依存の項と依存する項に分解する．

dmin
r (vi, S

∗
tc) =

1

2
p(vi) + min

u∈S∗
tc

{1
2
p(u) + λdist(vi, u)} (4.6)

dsumr (vi, S
∗
tc) = |S

∗
tc |p(vi) +

∑
u∈S∗

tc

{p(u) + 2λdist(vi, u)} (4.7)

dmmr
r (vi, S

∗
tc) = (1− λ)p(vi) + min

u∈S∗
tc

{λdist(vi, u)} (4.8)

まず，多様集合内のデータに非依存の項（第1項）が取りうる最大値maxvi∈Ci
{p(vi)} =

p(G(cx, cy))を計算する．ここでは，重みベクトルの各重みは正の値であると想定
する．図 4.3 (a)に示すように，各環境属性値の上界G(cx, cy).ziは，4.5.1項で説明
したG(cx, cy).czi を用いることでG(cx, cy).zi = ∆z · (G(cx, cy).czi + 1)のように計
算できる．式 (2.1)から，データのスコアは環境属性値の重み付き和によって計算
される．このため，p(G(cx, cy))は以下のようにG(cx, cy).ziの重み付き和によって
計算される．

max
vi∈G(cx,cy)

{p(vi)} = p(G(cx, cy))

=
d∑

i=1

q.wi ·G(cx, cy).zi (4.9)

重みベクトルの各重みが負の値である場合も，G(cx, cy).cziの代わりに，データを
1つ以上含むリストの番号 cziの最小値を用いることで計算できる．
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図 4.3: 空間セルの上界の計算

次に，多様集合内のデータに依存する項（第 2項）が取りうる最大値を計算す
る．MAXMIN問題およびMMR問題のそれぞれについて，空間セルの中心座標と
多様集合内のデータとの，各データのスコアを加味した距離を計算し，値が最小
となる多様集合内のデータを oNN ∈ S∗

tc とする．図 4.3 (b)に示すように，第 2項
の上界は空間セルG(cx, cy)の各頂点と oNN との間の空間距離のうち最大のもので
計算できる．このときの仮想データ vi，データ oNN 間の取りうる最大の空間距離
を dist(G(cx, cy), oNN)とすると，MAXMIN問題およびMMR問題における第 2項
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が取りうる最大値は，以下の式で表される．

max
vi∈G(cx,cy)

{min
o∈S∗

tc

{1
2
p(o) + λdist(vi, o)}} =

1

2
p(oNN) + λdist(G(cx, cy), oNN) (4.10)

max
vi∈G(cx,cy)

{min
o∈S∗

tc

(λdist(vi, o))} = λdist(G(cx, cy), oNN) (4.11)

また，MAXSUM問題において，仮想データ viの位置として，多様集合内のそれぞ
れのデータ o ∈ S∗

tc から最も離れた点を仮定する．勿論このような，仮想データ
が複数の位置情報を有する仮定は成り立ち得ないが，この場合に計算される仮想
データの評価値は，明らかに上界となる．よって，MAXSUM問題における第 2項
が取りうる最大値は，以下の式で与えられる．

max
vi∈G(cx,cy)

{
∑
o∈S∗

tc

{p(o) + 2λdist(vi, o)}} =
∑
o∈S∗

tc

{p(o) + 2λdist(G(cx, cy), o)} (4.12)

これらの式から，MAXMIN問題，MAXSUM問題，MMR問題における空間セル
の上界を，それぞれ以下のように計算できる．

dmin
r (G(cx, cy), S∗

tc) =
1

2
p(G(cx, cy)) +

1

2
p(oNN) + λdist(G(cx, cy), oNN) (4.13)

dsumr (G(cx, cy), S∗
tc) = |S

∗
tc|p(G(cx, cy)) +

∑
o∈S∗

tc

{p(o) + 2λdist(G(cx, cy), o)} (4.14)

dmmr
r (G(cx, cy), S∗

tc) = (1− λ)p(G(cx, cy)) + λdist(G(cx, cy), S∗
tc) (4.15)

次に，Algorithm 11の 16行目における，評価値の上界の減少量について説明す
る．環境属性 iのデータリストG(cx, cy).L(i, czi)のデータをすべて走査すると，次
のデータリストを走査するためにG(cx, cy).cziがデクリメントされる．この際，環
境属性 iの上界が減少するため，式 (4.9)から，p(G(cx, cy))は∆z · q.wiだけ減少す
る．これにともない，式 (4.13)，(4.14)，(4.15)から，各問題における評価値の上
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界 dr(G(cx, cy), S∗
tc)もまた，それぞれ以下に示す式の値だけ減少する．

∆min
r =

1

2
·∆z · q.wi (4.16)

∆sum
r = |S∗

tc | ·∆z · q.wi (4.17)

∆mmr
r = (1− λ) ·∆z · q.wi (4.18)

オンラインクエリ処理の例

図 4.4を用いて Algorithm 11における，|S∗
tc | = 1の状態における空間セル内の

データの走査の例を説明する．ここではw1 = w2 = 0.5，λ = 0.5のMMR問題を考
え，Algorithm 11の 5行目においてすべての空間セルがヒープに挿入された直後の
状態を想定し，dmmr

r (o∗, S∗
tc)は初期値−∞であるとする．最初にヒープから取り出

された空間セルG(0, 0)について，データが図4.4(a)のように格納されているとする．
多様集合内のデータに依存する項が取りうる最大値は，dist(G(0, 0), oNN) = 0.7と
する．この値は，データを走査する過程で一定である．
まず，環境属性1のデータを含むリストのうち最大のものである，リストG(0, 0).L(1, 3)

からデータ o1を取得する．現時点では，o∗ = o1であり，データ o1の評価値0.575を
記憶しておく．また，空間セルの上界は式 (4.9)，(4.11)，(4.15)からdmmr

r (G(0, 0), S∗
tc) =

0.725であり，依然として空間セルG(0, 0)内にデータ o1より評価値の高いデータ
が存在する可能性があるため，データの走査を続ける．次に，環境属性 2のデータ
を含むリストのうち最大のものである，リストG(0, 0).L(2, 1)からデータ o3を取得
し，評価値を計算する．ここで，dmmr

r (o3, S
∗
tc) = 0.625 > dmmr

r (o1, S
∗
tc)であるため，

o∗を o3に更新する．再びリストG(0, 0).L(1, 3)からデータ o2を取得し，評価値を
計算する．ここで，G(0, 0).L(1, 3)のデータがすべて走査されたため，環境属性 1

の次の走査データリスト番号 cz1がデクリメントされる．それと同時に，式 (4.18)

によって算出される値だけ空間セルの上界は減少し，dmmr
r (G(0, 0), S∗

tc) = 0.6625

となる．さらに，リストG(0, 0).L(2, 1)からデータ o4を取得し評価値を計算する
と，次のリストG(0, 0).L(2, 1)も空となるため，上界が dmmr

r (G(0, 0), S∗
tc) = 0.6に

更新される．ここで，上界0.6が最大の評価値0.625を下回るため，o3よりも評価値
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図 4.4: 空間セル内のデータの走査の例

の大きいデータは空間セルG(0, 0)内には存在しないと判断でき，空間セルG(0, 0)

の探索を打ち切ることができる．よって，空間セルG(0, 0)内に残っているデータ
o5, o6は走査する必要はない．

計算量分析

格子グリッドベースのデータ構造を利用した FindNextObjectアルゴリズムの時
間計算量について分析する．アルゴリズム実行時の多様集合のサイズを |S∗

tc | = k′，
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空間セルの数を sとする．まず最初に，すべての空間セルの評価値の上界を計算
する．このためには，空間セル内のデータが取りうるスコアの上界，および空間
セル内のデータと多様集合内のデータとの距離の取りうる上界の計算が必要であ
り，この処理の計算量は s · {1 + (k′ − 1)} = sk′となる．次に，すべての空間セル
について評価値の上界をキーとしたヒープソートを行う必要があり，この処理の
計算量は slog(s)である．最後に，すべての空間セルの評価値の上界が暫定の最大
の評価値を下回るまで，走査するデータについて評価値の計算が必要となる．こ
のとき走査するデータの数を n∗とすると，計算量は n∗k′となる．よって，格子グ
リッドベースのデータ構造を利用した FindNextObjectアルゴリズムの時間計算量
は，O(k′(s+ n∗) + slog(s))である．

4.4.3項で述べた通り，モニタリングの対象のデータ集合をOとしたとき，ベー
スライン手法における FindNextObjectアルゴリズムの計算量は O(k′|O|)である．
多くの場合，空間セルの数 sや走査されるデータの数 n∗は，|O|に比べ大幅に小
さい．このため，提案手法の計算量は，ベースライン手法の計算量に比べて小さ
くなる．

4.6 性能評価
本節では，本章における提案手法の性能を評価する．表 4.1は各パラメータの値

を示し，太字はデフォルト値とする．

4.6.1 データセット

本実験では，ウィンドウサイズがW の時間ベースのスライディングウィンドウ
を想定する．各時刻にN 個のデータがシステムに到着するものとし，スライディ
ングウィンドウを 100回スライドさせる．データの位置情報は，各次元の値が区間
[0.0, 1.0]上の一様分布に従う，2次元ベクトルで与えた．また，データの環境属性
値は，図 4.5に示すような空間的自己相関の特徴を有する分布に従う値とし，4次
元から 10次元まで設定した．これらの環境属性値の分布は，スライディングウィ
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表 4.1: パラメータ

パラメータ 値
k（多様集合の大きさ） 5∼50 (25)
δ（差分の制限） 0∼25 (5)
λ（多様性の重要度） 0.0∼1.0 (0.5)
W（ウィンドウサイズ） 10∼100 (10)
d（環境属性の次元数） 4∼10 (4)
N（各時刻に到着するデータの数） 10K∼200K (50K)
wi (wの各要素) 0.0∼1.0

時刻 1~10 時刻 11~20 時刻 21~30

…

…

…

�

�

��

��

図 4.5: 環境属性値の分布

ンドウが 10回スライドするたびに変化する．具体的な環境属性値は，データの位
置情報から決定される．また，センシング時の誤差を考慮して，位置情報から決
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定される環境属性値に対し，N(0, 0.03)の正規分布に従う正規乱数を加算した．

4.6.2 比較手法

提案手法（以降のグラフ中では ‘Grid-based’と表記）を，4.4節で説明したベースラ
イン手法（‘Baseline’）および4.5節の冒頭で説明したクラスタベース手法（‘Cluster-

based’）と比較した．

4.6.3 設定

すべてのアルゴリズムを Java8で実装し，Intel Xeon E5-2643 v2 @ 3.50GHz with

48.0 GB RAMを搭載するUbuntu 14.04.5 LTSで動作する計算機上で実験した．
実験においては，各時刻における多様集合，比較手法におけるクラスタベースの

データ構造および提案手法における格子グリッドベースのデータ構造の更新に要し
た計算時間の平均値を測定した．各実験で，重みベクトル q.wの各重みを [0.0, 1.0]

の範囲からランダムに設定した 50個のクエリを作成し，結果の平均値を示す．

4.6.4 k, δ, λの影響

はじめに，提案手法におけるグリッドベースのデータ構造，および比較手法に
おけるクラスタベースのデータ構造の更新に要する計算時間を図 4.6に示す．k，δ

および λはすべてクエリパラメータであり，スライディングウィンドウ上のデー
タ集合に対して影響を及ぼさない．このため，これらのデータ構造を更新するの
に要する計算時間は，k，δおよび λの変化に対して一定である．図 4.6から，グ
リッドベースのデータ構造の更新時間は約 20ミリ秒，クラスタベースのデータ構
造の更新時間は約 900ミリ秒と，提案データ構造の更新時間は比較手法に比べて
大幅に小さいことが分かる．これは，4.5節の冒頭で説明したように，提案手法で
は新たに到着したデータを包含する空間セルを定数時間で決定できるためである．
しかし比較手法では，新たに到着したデータを包含するクラスタを決定する計算
コストは，クラスタの数に比例して大きくなってしまう．
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図 4.6: 各データ構造の更新時間

1

10

100

1000

10000

5 15 25 35 45

計
算
時
間

[m
se

c
]

Baseline (min) Baseline (sum)

Baseline (mmr) Cluster (min)

Cluster (sum) Cluster (mmr)

Grid (min) Grid (sum)

Grid (mmr)

�

1

10

100

1000

10000

5 15 25 35 45

計
算
時
間

[m
se

c
]

Baseline (min) Baseline (sum)

Baseline (mmr) Cluster (min)

Cluster (sum) Cluster (mmr)

Grid (min) Grid (sum)

Grid (mmr)

�

(a) 多様集合の更新時間 (b) 更新の総計算時間

図 4.7: 多様集合の大きさ kの影響

次に，kおよび δを変化させた場合の多様集合の更新に要する時間を，それぞれ
図 4.7 (a)および 4.8 (a)に示す．また，比較手法および提案手法で用いるデータ構
造の更新に要する時間も含めた総計算時間を，それぞれ図 4.7 (b)および 4.8 (b)に
示す．図 4.7，4.8より，すべての手法および各問題において，kおよび δが大きく
なるほど計算時間が増加していることが分かる．これは，kおよび δが大きくなる
ほど，多様集合を改善するために新しいデータの追加，および既存のデータとの
交換を行う回数が増加するためである．提案手法および比較手法は走査するデー
タの数を削減できるため，ベースライン手法に比べて多様集合の更新時間は大幅
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図 4.8: 差分の制限 δの影響
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図 4.9: 多様性の重要度 λの影響

に小さくなる．しかし，図 4.6に示すようにクラスタベースのデータ構造の更新時
間は大きく，結果として kが小さい場合，比較手法における総計算時間はベース
ライン手法の計算時間を上回っている．一方で，提案手法は提案データ構造およ
び多様集合の更新時間がともに小さい．結果，総計算時間はベースライン手法で
は最大で約 1900ミリ秒，比較手法では最大で約 660ミリ秒であるのに対し，提案
手法では最大でも約 110ミリ秒と他の手法に比べて大幅に小さいことが分かる．
最後に，λを変化させた場合の計算時間を図 4.9に示す．図 4.9より，すべての
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手法および各問題において，λが大きくなるほど計算時間が増加していることが
分かる．特に，提案手法および比較手法における λの影響は，ベースライン手法
に比べて大きいことが分かる．提案手法および比較手法では，空間セルおよびク
ラスタ内のデータが取りうるスコアの上界を計算することで走査するデータの数
を削減でき，結果として効率的に多様集合を更新できる．そのため，λが大きくな
り空間的多様性の重要度が大きくなる一方で，データのスコアの重要度が小さく
なるほどこれらの手法の有効性は小さくなる．特に，MMR問題においては λの影
響が大きく，λ = 0.6より大きな値で多様集合の更新に要する計算時間が増加し，
λ = 0.9, 1.0の場合はやや小さくなっている．しかしながら，総計算時間はベース
ライン手法では最大で約 1200ミリ秒，比較手法では最大で約 1100ミリ秒である
のに対し，提案手法では最大でも 200ミリ秒と他の手法に比べて大幅に小さいこ
とが分かる．

4.6.5 W,d,Nの影響

パラメータW，dおよびN はシステムが管理するスライディングウィンドウ上
のデータセットに関連するパラメータであるため，これらが変化すると，提案手
法および比較手法におけるデータ構造の更新に要する時間は変化する．本項では，
それぞれのパラメータを変化させた場合のデータ構造の更新に要する時間を示す．
まず，ウィンドウサイズW を変化させた場合の計算時間を図 4.10に示す．図

4.10 (a)から，すべての手法および各問題において，W が大きくなるほど多様集合
の更新時間は増加することが分かる．これは，スライディングウィンドウ上のモ
ニタリングの対象のデータの数が増加すると，新しいデータを追加もしくは交換
するために走査するデータの数が増加するためである．また，図 4.10 (b)から，W

が大きくなるほどクラスタベースのデータ構造の更新時間が増加することが分か
る．これは，スライディングウィンドウ上のモニタリングの対象のデータの数が
増加すると，クラスタの数も増加し，結果として各データを包含するクラスタを
決定するための計算コストが大きくなるためである．一方で，W が大きくなって
もグリッドベースのデータ構造の更新時間は一定である．これは，各データを包
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図 4.10: ウィンドウサイズW の影響

含する空間セルを決定するための計算コストが一定のためである．さらに，各時
刻に到着するデータの数は一定であるため，結果としてグリッドベースのデータ
構造の更新時間は変化しない．
次に，環境属性の次元数 dを変化させた場合の計算時間を図 4.11に示す．図 4.11

(a)から，比較手法においてのみ，dが大きくなるほど多様集合の更新時間が増加
することが分かる．これは，高次元空間においては，データ間の距離の観点から
データ同士が類似しにくいためである．結果として，図 4.11 (b)に示すように，ク
ラスタの数が急激に増加し，クラスタベースのデータ構造の更新時間もまた増加
してしまう．ここで，クラスタの数を小さく抑制するためにクラスタ半径を大き
くした場合，クラスタの数が減少することでデータ構造の更新コストは削減され
る．しかしこの場合は，第 2，3章の性能評価で示した通り，クラスタ半径が大き
いためクラスタの上界が大きくなることにより，クラスタの数が大きい場合より
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図 4.11: 環境属性の次元数 dの影響

も走査の対象となるデータの数が増え，多様集合の更新コストが増大する．
最後に，各時刻に到着するデータの数N を変化させた場合の計算時間を図 4.12

に示す．図 4.12 (a)から，すべての手法および各問題において，N が大きくなる
ほど多様集合の更新時間は増加することが分かる．さらに，図 4.12 (b)から，比較
手法および提案手法におけるデータ構造の更新時間もまた増加することが分かる．
これは，N が大きくなると，スライディングウィンドウ上のモニタリングの対象
のデータが増加するほか，各時刻に到着するデータの数および削除されるデータ
の数もまた，それぞれ増加するためである．
以上のように，すべてのパラメータ設定および各問題において，提案手法にお

ける総計算時間は他の手法に比べて大幅に小さく，一貫して最も効率的であるこ
とが確認できる．具体的には，総計算時間はベースライン手法では最大で約 3200
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(a) 多様集合の更新時間

(c) 更新の総計算時間

(b) データ構造の更新時間
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図 4.12: 各時刻に到着するデータの数N の影響

ミリ秒，比較手法では最大で約 26000ミリ秒であるのに対し，提案手法では最大
でも 200ミリ秒と他の手法に比べて大幅に小さい．

4.7 むすび
本章では，モバイルセンサストリーム環境における継続的な Top-k検索結果の

多様化について取り組み，効率的な多様集合の更新手法を提案した．ベースライ
ン手法では，各時刻にスライディングウィンドウ上のすべてのデータについて評
価値を計算し，最適なデータを探索する必要があるため，計算コストが非常に大
きい．一方，提案手法では，スライディングウィンドウ上のデータは更新が容易
な格子グリッドを用いて構造化される．各空間セルごとに評価値の上界を計算し，
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上界が暫定の最大の評価値を下回った段階で空間セル内のデータの走査を打ち切
ることができる．結果として，走査するデータの数を大幅に削減できる．
シミュレーション実験により，提案手法における格子グリッドベースのデータ

構造は比較手法におけるクラスタベースのデータ構造と比較して，より短時間で
更新できることを確認した．さらに，多様集合の更新処理について，提案アルゴ
リズムはクラスタベースのアルゴリズムと同程度の計算効率を達成でき，結果的
に短時間で多様集合を更新できることを確認した．特に，単位時間あたりに到着
するデータの数が大きくなっても短時間で多様集合を更新できるため，センシン
グに参加する端末保持者が増加した場合も，効率的に多様集合をモニタリングで
きる．
本章における多様集合モニタリング問題では，スライディングウィンドウ上の

すべてのモバイルセンサデータを平等に扱っている．しかし，地理空間上のホッ
トスポットの出現をいち早く検出するために，データの評価値がモニタリングの
対象のデータセット内で最大ではなくても，優先的に検索結果に含めるほうが望
ましい場合がある．このような要求は，文献 [1, 21, 23, 84, 95]で扱われているよ
うな，データの評価値に対して経過時刻に対する減衰係数で重み付けし，現在時
刻から時間的に離れたデータほど評価値を小さく見積もることで実現できる．そ
こで，このような減衰係数を用いた最適化問題を再定義し，その際の効率的な多
様集合の更新手法を設計する予定である．
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5.1 本論文のまとめ
本論文では，モバイルセンサデータベースにおける Top-k検索結果の多様化手

法について議論した．
まず，第 1章では，近年注目されているユーザ参加型センシングと，ユーザ参

加型センシングによって収集されるセンサデータからなるモバイルセンサデータ
ベースについて述べた．また，モバイルセンサデータから，ユーザが注目すべき
地理空間上の領域であるホットスポットを効果的に検出するために，モバイルセ
ンサデータベースにおける Top-k検索結果の多様化が重要であることを明らかに
し，クエリ処理における問題点について述べた．
第 2章では，過去に収集され蓄積されたモバイルセンサデータベースにおいて，

事前にクラスタリング処理を施すことによって，短時間で多様集合を計算する手
法を提案した．提案手法は，オフライン事前クラスタリング処理とオンラインク
エリ処理からなる．オフライン事前クラスタリング処理では，空間的に近接し，か
つ環境属性値が似ているデータ同士をクラスタ化し，クラスタ内の特定のデータ
から中心データおよび代表データを 1つずつ選択する．オンラインクエリ処理で
は，各クラスタの中心データおよび代表データのみを走査し，中心データのスコ
アとクラスタ半径から，クラスタ内のデータが取りうる評価値の上界を計算する．
これにより，計算された評価値が十分に小さいクラスタ内のデータを走査対象か
ら除外することで，最適なデータを短時間で探索できる．提案手法の有効性を示
すために，シミュレーション実験による性能評価を行った．その結果より，提案
手法はすべてのデータを走査する単純なグリーディアルゴリズムと比較して，同
一の多様集合をより短時間で取得できることを確認した．さらに，要求するデー

107
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タの数 kやデータセットサイズN を変化させた場合も，提案手法は比較手法に比
べ，計算時間およびディスク IOコストを削減できることを確認した．
第 3章では，第 2章の手法における，環境情報が高次元である場合の計算効率

の低下の影響を緩和する手法を提案した．提案手法のオフライン事前階層的クラ
スタリングでは，空間的に近接するすべてのデータはある 1つの上位クラスタの
メンバとし，上位クラスタの配下でメンバデータの環境属性値の類似度に基いて
さらに下位クラスタに分割する．空間的に近接するデータからなる上位クラスタ
の数は，環境属性の次元数の増加に非依存であり，一貫して小さく保たれる．提
案手法のオンラインクエリ処理では，階層クラスタ構造を利用し，上位クラスタ
内のデータが取りうる評価値の上界を計算することで，上位クラスタごとに走査
対象のデータを絞り込める．そのため提案手法では，第 2章で提案した手法と比
べて，走査すべきデータをより短時間で絞り込める．提案手法の有効性を示すた
めに，シミュレーション実験による性能評価を行った．その結果より，提案手法
は第 2章で提案した手法と比較して，モバイルセンサデータが高次元の場合でも
多様集合をより短時間で取得できることを確認した．さらに，提案手法は比較手
法よりも，環境属性値半径を小さくした場合のクラスタの増加に伴う計算コスト
の増加を緩和できることを確認した．
第 4章では，モバイルセンサデータが時々刻々と到着するモバイルセンサスト

リーム環境において，効率的に多様集合をモニタリングする手法を提案した．提
案手法では，スライディングウィンドウ上のデータを格子グリッドベースのデー
タ構造で管理する．格子グリッドの空間セルは，環境属性ごとにデータのリスト
を保持しており，それぞれのリストは環境属性値が一定の範囲内であるデータを
管理する．それぞれのデータを被覆する空間セルおよび管理するリストは定数時
間で決定できるため，提案データ構造は追加・削除されるデータについて短時間
で更新できる．提案アルゴリズムでは，最適なデータを探索する際，空間セル内
のデータがとりうるスコアの上界を計算できる．また，この上界は空間セル内の
データの走査が進むにつれて減少し，これにより空間セル内のデータの走査を途
中で打ち切り，次の空間セルの走査に進める．結果として，走査するデータの数
を大幅に削減しつつ，モニタリングの対象のすべてのデータを走査することで得
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られる多様集合と，同一の検索結果を取得できる．提案手法の有効性を示すため
に，シミュレーション実験による性能評価を行った．その結果より，提案手法にお
ける格子グリッドベースのデータ構造は，第 2章で提案した手法におけるクラス
タベースのデータ構造と比較して，より短時間で更新できることを確認した．さ
らに，多様集合の更新処理について，提案アルゴリズムは第 2章で提案したアル
ゴリズムと同程度の計算効率を達成でき，結果的に短時間で多様集合を更新でき
ることを確認した．
データのスコアとデータ間の多様性を考慮した多様集合の計算は，従来のTop-k

検索に対して指摘されている検索結果の冗長性を解決する手法であり，これまで
数多くの研究が行われている．しかし，環境モニタリングを目的として Top-k検
索結果の多様化をモバイルセンサデータベースに適用した研究は，筆者が知る限
りこれまでに存在しなかった．本論文で提案した手法は，すべてのデータを複数
回走査する必要のある既存手法で得られる多様集合と同一の結果を，より短時間
で計算できる．本論文の提案手法は，任意の環境属性値に対する興味，地理的多
様性の重要度に対応できる．さらに同様のアプローチを用いて，任意の最適化問
題において短時間で多様集合を計算できる．従って本研究の成果は，1.1節で例示
したようなアプリケーションを，一般ユーザが所持する端末のセンサデータを用
いて実現することに向けて，大きな進展をもたらすものである．

5.2 検討課題
本論文における提案手法について，さらなる応用や，実環境への適用を考慮す

ると，各章のむすびで述べたものに加え，解決しなければならない課題がいくつ
か残されている．本節では，多様化問合せの可用性を向上するため，また，想定
するアプリケーションに対して良質な多様集合を取得するために考慮すべき技術
課題について述べる．
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5.2.1 適切な多様性の重要度λの自動設定

Top-k検索結果の多様化問合せのクエリパラメータである多様性の重要度 λは，
多様集合の地理的な分散度合いを決定するもので，ユーザが任意の値を設定でき
る．本論文では，λを変化させることで異なる多様集合が得られるため，ユーザが
λを手動で変えながら繰り返し多様化クエリを発行することで，ユーザの目的に
合致した結果を得ることを想定している．しかし，モバイルセンサデータやホッ
トスポットの空間的な分布によって適切な λは異なり，手動での λの設定はユー
ザにとって難しいと考えられる．
一方，文献 [5, 35]では，それぞれWeb文書検索，商品検索において，多様化の

対象となるデータ集合の分布や，暫定的な多様集合の構成から多様性の重要度を
自動で調整する手法を提案している．モバイルセンサデータの空間的分布や属性
値の分布，および暫定的な多様集合の構成から，クエリパラメータ λを自動で設
定できる枠組みは，本研究においても適用できる．例えば，すべてのデータのスコ
アの最大値と，すべてのデータ間の距離の最大値は一般的に等しくないため，こ
れらが等しく評価されるような λをシステム側で計算することで，ユーザの興味
と地理的な分散度合いをバランス良く考慮した多様集合が取得できると考えられ
る．今後，具体的な自動設定のアルゴリズムの設計について検討する予定である．

5.2.2 外れ値を考慮した多様化問題の定義

ユーザ参加型センシングでは，ユーザが普段通りの生活をしながらセンシング
を行う場合があるため，例えば携帯端末を鞄の中に入れたままセンシングすると
いった状況が想定される．このような場合，センシングしたい環境情報が正しく
計測できず，ある環境属性値について誤差の大きい外れ値が観測される可能性が
ある．このような状況では，外れ値によってデータのスコアが引き上げられ，多
様集合が外れ値をとるデータを含みやすくなる．外れ値に起因して，本来注目す
べきホットスポットではない領域で生成されたデータが検索結果に含まれること
は，想定するアプリケーションにおいて好ましくない．
一方，データセットから外れ値を示すデータを検出する研究はこれまでに多数
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行われている [3, 22, 48, 57]．これらの研究で提案されている手法を検索の前処理
として実行し，データごとに得られた外れ値と判定される確率や確信度は，多様
集合の計算の際に利用できる．例えば，前処理の段階で外れ値ではないと判定さ
れたデータについては，クエリ処理の際に外れ値の判定を行う必要はなく，計算
コストの削減が見込まれる．今後，外れ値を考慮した多様集合の計算手法の具体
的なアルゴリズムの設計について検討する予定である．
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