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内容概要

監視制御システムとは，機器群の状態を計測し，必要に応じて制御することで，

機器群および機器群から構成されるシステムの稼働状態を安定に保つためのシス

テムである．監視制御システムの適用対象は様々であり，例えば，ビル，工場，プ

ラント，飛行機，鉄道，自動車などがある．監視制御システムは，監視制御対象の

安定性を保つためのシステムであるから，高い安定性が要求される．この場合の

安定性とは，稼働率と性能により定義される．

現在，多くの監視制御システムは，高い安定性を達成するために，専用のハード

ウェアを用いて構築されている．さらに，専用のオペレーティングシステム (OS;

Operating System)が用いられている場合もある．そのため，監視制御システムは

高価になる傾向があり，低コスト化が求められている．

監視制御システムを，クラウドコンピューティングを利用して構築することで，

監視制御システムの低コスト化を実現しようとする研究が注目されている．クラ

ウドコンピューティングにおいて，ベースとなる技術は計算機の仮想化技術であ

る．計算機の仮想化技術は，ソフトウェアによって仮想的な計算機 (VM; Virtual

Machine)を作成する．ここで，VM上で動作するアプリケーションの性能は低下

する傾向にあるため，求められる性能を達成できなくなる可能性が生じる．また，

既存のパブリッククラウドのプロバイダが保証するVMの稼働率は，監視制御シ

ステムに要求される稼働率に及ばない．そのため，単純にパブリッククラウドを

利用すると，要求される稼働率を達成できない．クラウドコンピューティングを

利用した監視制御システムにおいて安定性を実現するためには，これらの問題を

解決する必要がある．

そこで本論文では，監視制御システムにクラウドコンピューティングを適用し

た場合に，監視制御システムの高い安定性を保証するための方法について議論す

る．本論文ではまず，プライベートクラウド上で監視制御システムを構築するこ

とを想定し，監視制御アプリケーションをVM上で動作させた場合の性能への影

響を把握する．プライベートクラウドとは，企業や大学などの組織が，自組織で

使用するために構築するクラウドコンピューティング環境である．次に，監視制
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御アプリケーションをVM上で動作させた場合の性能を推定する手法を提案する．

次に，パブリッククラウド上で監視制御システムを構築することを想定し，その

稼働率を向上する手法を提案する．パブリッククラウドとは，多数の企業や大学

などに利用してもらうために構築されたクラウドコンピューティング環境であり，

プライベートクラウドと比べると，稼働率を保証することが難しい．

本論文は 5章から構成され，その内容は次の通りである．まず第 1章で序論を述

べる．第 2章では，プライベートクラウド上で監視制御システムを構築することを

想定する．プライベートクラウドであるから，監視制御システムに要求される高

い稼働率を，ハードウェアにより保証できる．一方，VM上で動作するアプリケー

ションの性能は低下する傾向にある．監視制御アプリケーションに要求される性

能を達成するためには，VMが監視制御アプリケーションの性能に与える影響を

把握することが重要である．第 2章では，VMに割り当てるリソース量や，複数の

VMの実行が性能に与える影響を評価する．また，物理マシンのCPUコアの一部

を仮想化ソフトウェアに占有させることによる性能への影響や，CPUスケジュー

リングの方法が性能に与える影響を評価する．評価結果から，VM間のCPU競合

や，仮想化ソフトウェアのCPU不足が，監視制御アプリケーションの性能を低下

させる主要因であることを確認した．

次に第 3章において，第 2章で得られた知見に基づき，VM上で動作する監視

制御アプリケーションの性能を推定する手法を提案する．この手法は，物理マシ

ンやVMの挙動をモデル化し，そのモデルに基づくシミュレーションにより，複

数の監視制御アプリケーション／VMを単一の物理マシン上で実行した場合の性

能を推定する．モデルにおける物理マシンの性能に依存するパラメータは，実機

をモニタリングした結果から値を求めることで，シミュレーションの精度を向上

する．複数のVMによるCPU競合を考慮して性能を推定する点と，仮想化ソフト

ウェアのCPU不足を考慮して性能を推定する点が，提案手法の特徴である．実機

を用いた性能評価と，提案手法による推定結果を比較し，提案手法の推定精度を

検証した．その結果，監視制御アプリケーションの性能が著しく低下する状況を

推定できることを確認した．

第 4章では，監視制御アプリケーションをパブリッククラウド上で実行する環
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境を想定し，その稼働率を向上させる手法を提案する．この手法では，各クラウ

ド上で実行される監視制御アプリケーションが，定期的にメッセージを交換する

ことで，互いに生存確認を行う．また，単に生存確認を行うだけでなく，それぞれ

が実施している監視制御処理の情報や，監視制御アプリケーションと監視制御対

象との間のネットワークの品質の情報を共有することで，障害発生時の制御品質

の低下を抑える．パブリッククラウドを使用した評価を行い，提案手法が制御品

質の低下を抑えられるかを検証した．その結果，提案手法は，監視制御処理の情

報やネットワーク品質を共有しない場合と比べて，制御品質の低下を抑えられる

ことを確認した．

第 5章では，本論文の成果を要約した後，今後の研究課題について述べる．
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第1章 序論

1.1 研究背景

監視制御システムとは，機器群の状態を計測し，必要に応じて制御することで，

機器群および機器群から構成されるシステムの稼働状態を安定に保つためのシス

テムである．監視制御システムの適用対象は様々であり，例えば，ビル，工場，プ

ラント，飛行機，鉄道，自動車などがある．例えばビルであれば，ビル管理システ

ムと呼ばれる監視制御システムが導入されている場合がある．ビル管理システム

は，ビル内の室温を計測し，室温を快適に保つために空調を制御したり，火災報

知機の状態を定期的に確認し，火災発生時に防火扉やスプリンクラーを制御した

りする．

監視制御システムは，監視制御対象の安定性を保つためのシステムであるから，

監視制御システム自身も高い安定性が要求される．この場合の安定性とは，稼働

率と性能により定義される．IEC 61508では，監視制御システムの稼働率の基準

(SIL; Safety Integrity Level)を定めている．例えば，連続動作するシステムの場

合，SIL1の稼働率は 99.999%，SIL2は 99.9999%，SIL3は 99.99999%である．こ

のように高い稼働率が要求される理由は，監視制御システムの障害は，人々を危険

にさらす可能性があるためである．性能に対する要件は，監視制御システムを構

成する監視制御アプリケーションごとに定義される．必ずしも，高い性能が求め

られるわけではない．ただし，要求される性能を達成し続けることが求められる．

現在，多くの監視制御システムは，高い安定性を達成するために，専用のハード

ウェアを用いて構築されている．さらに，専用のオペレーティングシステム (OS;

Operating System)が用いられている場合もある．そのため，監視制御システムは

高価になる傾向があり，低コスト化が求められている．
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一方，様々なシステムを構築／運用するためのプラットフォームとして，クラ

ウドコンピューティングが普及しており，企業のウェブサイトやシステムの運用，

アプリケーションの開発やテスト，様々なウェブサービスを提供するために用い

られている1．クラウドコンピューティングは，プライベートクラウドとパブリッ

ククラウドに分類できる．プライベートクラウドでは，ハードウェアコストの削

減や，運用の柔軟性の向上などが期待できる．パブリッククラウドでは，さらに，

システム運用のコスト削減や，システムのスケーラビリティの向上が期待できる．

このようなメリットから，クラウドコンピューティングは様々なシステムの構築

／運用に活用されている．

監視制御システムを，クラウドコンピューティングを利用して構築することで，

上述のメリットを享受できる．そのために，クラウドコンピューティングを利用

した監視制御システムの実現に向けた研究が行われている [28, 29]．ただしクラウ

ドコンピューティングは，監視制御システムの要件である安定性の実現を難しく

する．プライベートクラウドでもパブリッククラウドでも，ベースとなる技術は

計算機の仮想化技術である．計算機の仮想化技術は，ソフトウェアによって仮想

的な計算機 (VM; Virtual Machine)を作成する．VM上で動作するアプリケーショ

ンの性能は低下する傾向にあるため，求められる性能を達成できなくなる可能性

が生じる [5, 56]．また，既存のパブリッククラウドのプロバイダが保証するVM

の稼働率は 99.95%であり，SIL1で定義される 99.999%に及ばない．そのため，単

純にパブリッククラウドを利用すると，要求される稼働率を達成できない．クラ

ウドコンピューティングを利用した監視制御システムを実現するためには，これ

らの問題を解決する必要がある．

1.2 クラウドコンピューティング

クラウドコンピューティングとは，その利用者 (ユーザ)に対して，CPUやメモ

リなどの計算資源を，必要なときに必要なだけ簡単に使えるようにするためのア

プリケーション／システム実行環境である．従来のレンタルサーバと比べて，使

1https://www.rightscale.com/lp/2015-state-of-the-cloud-report
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図 1.2: パブリッククラウドの環境と，ユーザおよびプロバイダの関係

用する計算資源の量を柔軟に指定できる点や，使用した計算資源の量に応じて課

金する「従量課金制」を導入している点，計算資源を使用するための準備が短時

間で済む点が特徴である．

クラウドコンピューティングは，プライベートクラウドとパブリッククラウド

に分類される．プライベートクラウドとは，企業や大学などの組織が，自組織で

使用するために構築するクラウドコンピューティング環境である．図 1.1にプライ

ベートクラウドと，ユーザおよびプロバイダの関係を示す．プライベートクラウ

ドにおいては，ユーザとプロバイダは同一人物の場合がある．したがって，プライ

ベートクラウドにおいては，ユーザが自らの目的に応じてアプリケーション，オ

ペレーティングシステム，物理マシンなどの種類を指定できる．また，ユーザの

数や種類を想定しやすく，かつ，制限しやすい．したがって，ユーザがプライベー

トクラウドの稼働率や性能を調節することは，後述するパブリッククラウドと比

べると容易である．

一方，パブリッククラウドとは，多数の企業や大学などに利用してもらうために

構築されたクラウドコンピューティング環境である．例えばAmazonやGoogleはパ
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図 1.3: 計算機の仮想化の適用によるOSやアプリケーションの集約の一例

ブリッククラウドのプロバイダであり，それぞれAmazon EC2やGoogle Compute

Engineというパブリッククラウドを提供している．

図 1.2にパブリッククラウドと，ユーザおよびプロバイダの関係を示す．パブ

リッククラウドでは，プロバイダが物理マシンやネットワークなどから構成され

るシステムを設計し，構築する．ユーザはこれらを指定できない．オペレーティ

ングシステムも基本的にはプロバイダが指定する．ただし，複数のオペレーティ

ングシステムの中から，ユーザが選択できる場合もある．ユーザは，アプリケー

ションは指定できる．また，パブリッククラウドでは，他のユーザとハードウェア

を共有することになる．したがって，ユーザがパブリッククラウドの稼働率や性

能を調節することは，プライベートクラウドと比べると難しい．その代わり，プ

ライベートクラウドよりも低コストで利用できる．

プライベートクラウドであれパブリッククラウドであれ，クラウドコンピュー

ティングの基礎をなす技術は，計算機の仮想化技術である．計算機の仮想化技術

とは，仮想的な CPUやNICなどを備えたVMをソフトウェアとして実現する技

術である．図 1.3に，計算機の仮想化技術を物理マシンに適用した場合の例を示

す．このように，計算機の仮想化技術を使うことで，個別の物理マシン上で稼働

していたOSやアプリケーションを，単一の物理マシンに集約できる．仮想化ソフ

トウェアとは，VMを管理するソフトウェアである．Xen [10]やKVM [55]は仮想
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化ソフトウェアの一例である．仮想化ソフトウェアは，Virtual Machine Monitor

(VMM)やHypervisorと呼ばれる場合もある．

仮想化技術を適用した環境 (仮想化環境)において，各VMは個別のOSを実行

できるため，各VM上のアプリケーションは，他のVM上のアプリケーションを

意識せずに動作できる．ある OSやアプリケーションに障害が発生しても，別の

VM上のアプリケーションに影響が及ぶのを防ぐことができる．また，アプリケー

ションやOSの状態を保持したままVMのバックアップを取ることができるため，

障害発生後の復旧が容易になる．

単一の物理マシン上で複数のVMを実行し，それぞれのVM上でアプリケーショ

ンを実行すれば，アプリケーション群を実行するために必要な物理マシン数を削

減できる．物理マシンを減らすことは，クラウド環境の構築にかかる設備投資の

削減につながる．設備投資とは，物理マシンの購入費，物理マシンが消費する電

気，物理マシンを配置するための場所の確保である．設備投資を削減することは，

クラウドコンピューティングを利用するためのコストの削減につながる．しかし，

単一の物理マシン上で複数のVMを実行すると，VM間で物理マシンの計算資源

(CPUやメモリなど)を奪い合うことになる．そのため，VM上のアプリケーショ

ンの性能は，VMを使わない場合と比べて低下する傾向にある．したがって，クラ

ウドコンピューティングには，コストと性能のトレードオフが存在する．アプリ

ケーションの性能要件を満たしつつ，できるだけコストを下げる，すなわちでき

るだけ多くのVMを単一の物理マシン上で実行することは，クラウドコンピュー

ティングにおける重要な課題である．

1.3 研究内容

本論文では，監視制御システムにクラウドコンピューティングを適用した場合

に，監視制御システムの高い安定性を保証するための方法について議論する．具

体的には，以下の三つの研究課題に取り組む．最初の二つの研究課題は，プライ

ベートクラウド上で監視制御システムを構築するために解くべき課題である．三

つ目の研究課題は，パブリッククラウド上で監視制御システムを構築するために
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解くべき課題である．

本論文で想定する監視制御アプリケーションは，ビルに設置された空調や照明

の状態を監視制御するアプリケーションである．監視制御のための通信処理を一

定周期で繰り返すという単調なアプリケーションであるため，CPUやメモリの使

用量は一定であり，ディスク IOはほぼ発生しない．所定のタイミングで監視制御

の通信を実施する点と，IEC 61508の SIL1に準ずるために 99.999%の稼働率が要

求される点が特徴である．

1.3.1 仮想化が監視制御アプリケーションの性能に与える影響の評

価 (第2章)

最初の課題では，監視制御アプリケーションをプライベートクラウド上で実行

する環境を想定する．プライベートクラウドであるから，監視制御システムに要

求される高い稼働率を，ハードウェアにより保証できる．一方，1.2節で述べたよ

うに，VM上で動作するアプリケーションの性能は低下する傾向にある [5, 56]．監

視制御アプリケーションに要求される性能を達成するために，VMが監視制御ア

プリケーションの性能に与える影響を把握することが重要である [31, 57]．

VM上の監視制御アプリケーションの性能を評価した研究として，文献 [28, 62]

があるが，VMに割り当てるCPUなどのリソース量が性能に与える影響や，単一

の物理マシン上で複数のVMを実行することが性能に与える影響は評価していな

い．そこで，VMに割り当てるリソース量や，複数のVMを実行することが監視

制御アプリケーションの性能に与える影響を把握するための評価を行う．また，物

理マシンのCPUコアの一部を仮想化ソフトウェアに占有させることによる性能へ

の影響や，CPUスケジューリングの方法が性能に与える影響を把握するための評

価を行う．
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1.3.2 仮想化された監視制御アプリケーションの性能の推定 (第 3

章)

1.2節で述べたように，アプリケーションの性能要件を満たしつつ，できるだけ

多くのアプリケーション／VMを単一の物理マシン上で実行することは，クラウ

ドコンピューティングにおける重要な課題である．監視制御アプリケーションの

場合も，その性能要件を満たせる範囲で，できるだけ多くの監視制御アプリケー

ション／VMを単一の物理マシン上で実行できるとよい．これは，物理マシンの

購入費を減らすだけでなく，物理マシンを設置するための場所の節約や，電力消

費量の節約，運用にかかる手間の削減につながる．

アプリケーション／VMを物理マシンに追加する際に，アプリケーションの性

能要件を満たせるかを判断する手法として，リソースに基づく手法がある．リソー

スとは CPUやメモリ，ストレージ，ネットワークの一部または全部である．リ

ソースに基づく手法は，追加するアプリケーション／VMのリソース消費量の予

測値よりも，物理マシンのリソース残量が大きい場合に，VMの追加を許可する

[65, 87, 97]．しかし実際には，物理マシンのリソースが余っていても，複数のVM

によるリソースの奪い合いが生じることで，アプリケーションの性能は低下する．

この性能の低下により，監視制御アプリケーションの性能要件を満たせなくなる

場合がある [46]．

この問題を解決するために，VM上で動作する監視制御アプリケーションの性能

を推定する手法を提案する．提案手法は，物理マシンやVMの挙動をモデル化し，

そのモデルに基づくシミュレーションにより，複数の監視制御アプリケーション

／VMを単一の物理マシン上で実行した場合の性能を推定する．モデルにおける

物理マシンの性能に依存するパラメータは，実機をモニタリングした結果から値

を求めることで，シミュレーションの精度を向上する．複数のVMによるリソー

スの奪い合いを考慮して性能を推定する点と，すでに稼働している監視制御アプ

リケーションに影響を与えない点が，提案手法の特徴である．
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1.3.3 パブリッククラウドにおける監視制御アプリケーションの稼

働率の向上 (第4章)

1.3.1項と 1.3.2項で述べた課題を解くことで，プライベートクラウドで監視制

御システムを構築し，高い安定性を達成できるようになる．第 4章では，監視制

御アプリケーションをパブリッククラウド上で実行する環境を想定する．

1.2節で述べたように，パブリッククラウドでは，利用者が稼働率や性能を調節

することが難しい．パブリッククラウド上のある物理マシンを占有するサービス

を利用すれば，性能を調節することはできると考えられる．ただし，本論文で想定

する監視制御アプリケーションは，IEC 61508の SIL1に準ずるために 99.999%の

稼働率を必要とする．一方，パブリッククラウドのプロバイダが保証する典型的

なVMの稼働率は，99.95%である2．監視制御システムをパブリッククラウドで実

行するためには，この稼働率のギャップを解消する必要がある．

パブリッククラウドにおける監視制御アプリケーションの稼働率向上を目指し

た研究がある [36]．この研究では，監視制御アプリケーションを複製し，それぞ

れを異なるクラウド上で実行することで，稼働率を向上している．あるクラウド

上の監視制御アプリケーションに障害が発生したことは，監視制御対象のビルや

工場側に設置するゲートウェイを利用することで検出する．これらの手法は，ビ

ル側に設置するゲートウェイの機能に依存しており，ゲートウェイが単一障害点

となりうる．

この問題を解決するために，ゲートウェイに依存せずに，稼働率を向上する手

法を提案する．提案手法では，各クラウド上で実行される監視制御アプリケーショ

ンが，定期的に生存確認用のメッセージを交換することで，互いに生存確認を行

う．このメッセージ交換の通信は，パブリッククラウドでは課金の対象となるが，

そのコストは専用のゲートウェイを導入するよりも小さい．また，単に生存確認を

行うだけでなく，それぞれが実施している監視制御処理の状況や，監視制御アプ

リケーションと監視制御対象との間のネットワークの品質を共有することで，障

害発生時の監視制御処理の引継ぎを円滑に行う．

2https://aws.amazon.com/jp/ec2/sla/
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1.4 本論文の構成

本論文は 5章から構成され，本章以降の内容は次の通りである．

第 2章では，監視制御アプリケーションをVM上で実行した場合の性能を把握す

るための評価を行う．1.3.1項で述べた通り，VMに割り当てるリソース量や，並列

実行するVM数が監視制御アプリケーションの性能に与える影響を評価する．ま

た，物理マシンのCPUコアの一部を仮想化ソフトウェアに占有させることによる

性能への影響や，CPUによる性能への影響を評価する．評価結果に基づき，監視

制御アプリケーションの性能に影響を与える要因を分析する．

第 3章では，監視制御アプリケーションをVM上で実行する場合の性能を推定

する手法を提案する．1.3.2項で述べた通り，物理マシンやVMの挙動をモデル化

し，そのモデルに基づくシミュレーションを実施することで，複数の監視制御アプ

リケーション／VMを単一の物理マシン上で実行した場合の性能を推定する．実

機評価により得られた性能の実測値と，提案手法により推定された性能を比較し，

提案手法の推定精度を検証する．

第 4章では，監視制御アプリケーションをパブリッククラウド上で実行する場

合を想定し，稼働率の向上手法を提案する．この手法では，1.3.3項で述べた通り，

各クラウド上で実行される監視制御アプリケーションが，定期的に生存確認用の

メッセージを交換し，互いに生存確認を行う．パブリッククラウドを用いた実験に

より，提案手法により，ある監視制御アプリケーションに障害が発生した場合に，

別の監視制御アプリケーションに処理が引き継がれることを検証する．

最後に第 5章では，本論文の成果を要約したのち，今後の研究課題について述

べる．

第 2章は文献 [46, 49, 50]で公表した結果に，第 3章は文献 [47, 51, 52]で公表し

た結果に，第 4章は文献 [45, 48]で公表した結果に基づき論述する．
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第2章 仮想化が監視制御アプリケー

ションの性能に与える影響の

評価

2.1 まえがき

ビルの空調や照明などの設備機器を管理するシステムとして，ビル管理システ

ムがある．ビル管理システムは，設備機器の状態を監視し，異常を発見した場合

にはビル管理者に通知したり，電力消費量を削減するための制御を実施したりす

る．ビル管理システムは，そのシステムを構成するサーバなどを設置するための

専用の監視室を必要とする．そのため，大規模ビルへの導入は進んでいるが，中

規模／小規模ビルへの導入は進んでいない．

中小ビルの管理を効率的に行うためのシステムとして，遠隔ビル管理システムが

ある．遠隔ビル管理システムは，インターネットなどのWide Area Network (WAN)

を経由して，複数のビルに設置された設備機器を管理する [9, 15, 38, 77]．従来の

ビル管理システムのようにビル内に専用の監視室を設ける必要がないため，中規

模／小規模のビルへの適用が進んでいる．遠隔ビル管理システムの管理対象は，空

調や照明などの設備機器の稼働状態や，室内の温度や湿度などである．以降，こ

れらの管理対象のことを「監視点」，また監視点から得られるデータのことを「監

視点データ」と呼ぶ．

遠隔ビル管理システムの監視制御機能は通常のビル管理システムと類似してお

り，例えば以下である．

• 可視化機能: 監視点データを，ビル管理者にわかりやすく表示する機能．最

新値を表示したり，値の推移をグラフとして表示したりする．
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• 警報機能: 設備機器が異常であると判断した場合に，警報を発行する機能．

例えば，ビル管理者向けの監視画面に警告を表示したり，ビル管理者にメー

ルで通知したりする．

• 課金機能: 監視点データから設備機器の稼働時間を計算し，ビルのテナント

に対する課金額を計算する機能．

• フィードバック制御機能: ある設備機器に対してフィードバック制御を行う

機能．例えば，水の流量を調節するバルブを，ある開閉度に維持する場合な

どがある．

• 機器異常診断機能: 監視点データの推移から，機器に異常が発生していない

かを診断する機能．

遠隔ビル管理システムには，ビル群の監視点データを計測し，上記の監視制御機能

に提供するための機能が存在する [17, 74, 85, 43, 53]．以降，本機能のことを「ク

ローラ」と呼ぶ．上述の監視制御機能は，クローラが計測するデータに基づいて

動作するため，クローラは重要な機能である．

遠隔ビル管理システムが管理する各ビルにはオーナー（ビルオーナー）が存在

する．ビルオーナーごとにクローラを実行することで，あるクローラに障害が発

生しても，他のビルオーナーへの監視制御機能の提供を継続しやすくなる．障害

とは，例えば，あるビルのネットワークや機器の異常により，クローラの動作が

遅れたり停止したりすることである．また，管理対象のビルを追加する際に，誤っ

たビル情報などを設定することにより，クローラが正しく動作しなくなることで

ある．

ビルオーナーごとにクローラを実行するための構成として，ビルオーナーごと

に物理マシンを用意し，各物理マシン上で 1つのクローラを実行する構成が考え

られる．クローラごとに専用の物理マシンを用意するため，あるクローラの障害

が，他のクローラの動作に影響を与えることを避けられる．しかしこの構成は，ビ

ルオーナーが保有するビルが 1棟だとしても，専用の物理マシンを用意すること

になる．そのため，遠隔ビル管理システムの運用者にとって設備投資の増加が問
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題となる．ここで設備投資とは，物理マシンの購入費，物理マシンの運用にかか

る電気料金，物理マシンを設置するための場所の確保／整備などである．

単一の物理マシンかつ単一のオペレーティングシステム (OS; Operating System)

上で，複数のクローラを実行する構成も考えられる．この構成は，ビルオーナー

ごとに物理マシンを用意する構成と比べて物理マシンを減らせるため，設備投資

が増加する問題を解決できる．しかし，各クローラは，OSが提供するファイルシ

ステムやネットワークなどの機能を共有することになるため，クローラ間の干渉

が生じやすい．例えば，複数のクローラが同じポート番号を使用して通信を試み，

通信に失敗する場合が考えられる．

設備投資が増加する問題を解決しつつ，各クローラの実行環境の独立性を保証

するための方法として，計算機の仮想化技術がある [10, 55]．以降，単に「仮想化

技術」と記載する場合は，計算機の仮想化技術のことを指す．仮想化技術は，仮想

的なCPUやネットワークインターフェースカードなどを備えた仮想マシン (VM;

Virtual Machine)を，ソフトウェアで模擬する．各VMでは個別のOSを実行する

ことが可能であり，その上でクローラを実行できる．あるクローラやOSにおける

障害は，それを実行するVM内に閉じるため，他のVM上で動作するクローラへ

の影響を制限できる．また，各クローラは，個別のファイルシステムやネットワー

クを使用できる．そのため，例えば，共通のポート番号を使用して通信できるた

め，クローラ間の干渉を避けられる．さらに，VMのメモリやデバイスの状態な

どを保存するスナップショット機能を使えば，クローラのバックアップとリストア

も容易になる [12]．

ただし，VM上で動作するアプリケーションの性能は，仮想化によるオーバーヘッ

ドや，複数のVMを単一の物理マシン上で実行することにより低下する [5, 56]．ク

ローラを含め，監視制御アプリケーションは高い信頼性が要求されるため [31, 57]，

VMの利用がクローラの性能に与える影響を把握することは重要である． VM上

の監視制御アプリケーションの性能を評価した研究として文献 [28, 62]があるが，

VMに割り当てる CPUなどのリソース量が性能に与える影響や，並列実行する

VM数が性能に与える影響は評価していない．

本章では，VMに割り当てるリソース量や，並列実行するVM数がクローラの



14 第 2章 仮想化が監視制御アプリケーションの性能に与える影響の評価

性能に与える影響を評価する．本章が明らかにする知見を以下にまとめる．

1. 物理マシンのCPUリソースに余裕がある状況でも，VM数が増えると，CPU

競合により，クローラの性能が低下する．

2. VM群が多くの CPUリソースを消費すると，VMを管理する仮想化ソフト

ウェアがCPUを使えなくなり，クローラの性能が低下する．

これらの知見に基づき，3章で，監視制御アプリケーションをVM上で実行する場

合の性能を推定する手法を提案する．

以降，2.2節で本章で想定する遠隔ビル管理システムを，2.3節で仮想化技術の

概要を説明する．2.4節で関連研究について述べる．2.5節で評価の内容を説明し，

2.6節では，監視制御アプリケーションを実行するVMの管理における課題を述べ

る．最後に 2.7節でまとめる．

2.2 遠隔ビル管理システム

本節では，本章で想定する遠隔ビル管理システムの概要とクローラの要件につ

いて説明する．

2.2.1 クローラによる機器状態の計測

図 2.1は，遠隔ビル管理システムとビル群のシステム構成である．遠隔ビル管理

システムの事業者は，プライベートクラウド上に遠隔ビル管理システムを構築す

る．遠隔ビル管理システムはクローラや，監視点データを保存するデータベース

(DB)，監視制御機能を実行するサーバ，ビル管理者用の操作端末である Human

Machine Interface (HMI)を備える．図の見やすさを考慮して，それぞれ 1つしか

書いていないが，実際には複数個が存在しうる．遠隔ビル管理システムとビル群

はWANで接続される．本章ではこのWANとして，インターネットのようなベス

トエフォート型のネットワークではなく，通信品質が保証されたネットワークを

想定する．
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図 2.1: 遠隔ビル管理システムとビル群のシステム構成

クローラのデータ取得処理のシーケンスを図 2.2に示す．クローラとゲートウェ

イは，BACnet/WS [7]や IEEE1888 [40]，oBIX [71]などの遠隔監視制御向けの通

信プロトコルを使う [44, 79]．クローラは，監視点データを取得するため，ビルに

設置されたゲートウェイにデータ要求を送信する．ゲートウェイはデータ要求を

受けると，ローカルコントローラ (LC; Local Controller)にデータ要求を送信する．

ゲートウェイとローカルコントローラは，ビル内の監視制御用プロトコルである

BACnet [6]などを使い通信する [69]．ローカルコントローラは，データ要求とは

関係なく，自身が収容する監視点の値を計測しており，データ要求を受けた時点

で自身が把握している最新の監視点データを，データ応答としてゲートウェイに

返す．ゲートウェイはデータ応答をクローラに返し，クローラは監視点データを

データベースに蓄積する．このように，クローラの処理は主にゲートウェイとの

通信である．

監視点データを計測した時刻 (計測時刻)は，ゲートウェイが打刻することを想

定する．ローカルコントローラや機器は，計測時刻を打刻する能力を持たない場

合があるためである．例えば，BACnetのReadPropertyというサービスにより得

られる監視点データには，計測時刻が付加されない．また，機器が計測時刻を打
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クローラ GW LC 機器
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図 2.2: データ取得処理のシーケンス．T1やT2はタイムスタンプを，v1や v2は

監視点データを表す．

刻する方法も考えられるが，多数の機器間で時刻同期を取る必要が発生する．他

種多用かつ多数の機器間で時刻同期を行うことは，コストの観点から現実的では

ない．

図 2.2ではゲートウェイが 2つの計測時刻T1とT2を，機器の状態 v2と v7に，

それぞれ打刻している．ゲートウェイが監視点データに打刻する計測時刻と，機器

がその監視点データの状態であった時刻との間には誤差が生じる．しかし，ゲー

トウェイとローカルコントローラは専用のLocal Area Network (LAN)により接続

されるため，誤差のばらつきはマイクロ秒オーダーであり，監視制御機能の品質

に影響を与えない．

また本論文では，クローラから通信を開始するリクエスト／レスポンス型の通

信パターンを想定する．ビル側から遠隔ビル管理システムに対して監視点データ

を自律的に送信する通信パターンも考えられるが，両者は一長一短である．リク

エスト／レスポンス型の通信パターンの長所は，いつ，どの監視点データを計測

するかという設定情報を集中管理できる点である．そのため，設定情報の変更が

容易であり，ゲートウェイやローカルコントローラなどのビル側の装置を簡素化

できる．これらの長所は遠隔ビル管理システムの適用を容易にすることにつなが
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ると考え，リクエスト／レスポンス型を想定する．

2.2.2 クローラの要件

クローラは，事前に定められた時刻に監視点データを計測し，監視制御機能に

提供する必要がある．以降，事前に定められた時刻と，実際の計測時刻との差を，

計測時刻誤差と呼ぶ．

データ要求が送信されてから監視点データが計測されるまでには，クローラと

ビルの間のWANにおける通信遅延のばらつきや，ビル側の装置における処理時

間のばらつきが発生しうる．しかし，通信品質を保証可能なWAN回線を利用す

れば，通信遅延のばらつきは抑えられる．また，ビル側の装置は，監視制御シス

テムで使用される機器であるから，そもそも処理時間のばらつきは小さい．以上

より本章では，計測時刻誤差に影響を与える箇所として，クローラを実行する物

理マシン上の仮想化環境のみに着目する．

計測時刻誤差は小さいほうがよい．以下にその理由を述べる．

• 可視化機能は，監視点データが一定間隔で計測されていれば，ビル管理者に

とって見やすいグラフ，すなわち，値が等間隔でプロットされたグラフを作

成できる．

• 課金機能は監視点データから機器の稼働時間を計算し，テナントへの課金額

を計算する．そのため，公正に課金額を計算するためには，一定間隔で稼働

または非稼働を判定することが重要である．

• 監視点データが所定の時刻に計測されないと，フィードバック制御機能の品

質が低下する．例えば，制御対象の機器の状態が不安定になる．

許容できる計測時刻の誤差は，監視制御機能の種類や，目指す品質に依存する．

典型的には，空調や照明の状態を 1秒間隔で計測する場合であれば，計測時刻誤

差を 50ミリ秒以下に抑えたい．また，火災報知機は 100ミリ秒間隔で計測する場

合があり，この場合，計測時刻誤差を 5ミリ秒以下に抑えたい．このように，計測

時刻誤差を許容範囲内で抑えることが，クローラの性能要件である．
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またクローラは，性能要件を高い確率で達成する必要がある．本章では，IEC

61508で定義される Safety Integrity Level (SIL)の連続動作モードのレベル 1に基

づき，99.999%以上の確率で性能要件を達成することを目標とする．SIL1は「故

障しない確率」を 99.999%以上と定義しているが，本論文では「性能要件を満た

せない状態」も「故障」とみなす．監視制御システムでは，性能要件を満たせな

いことは，異常事態と同等だからである．以上より，99.999%以上の確率で，計測

時刻誤差を許容範囲内で抑えることを，クローラの要件とする．

2.3 仮想化ソフトウェア

本章では，仮想化ソフトウェアの概要と，本章で使用するXenの概要を説明す

る．仮想化ソフトウェアとは，VMの作成／削除／実行／停止などを行う機能を

備えたソフトウェアのことである．近年，Docker1をはじめとするコンテナ技術が

注目されているが，本論文では高可用性に関する機能が充実しているVMを利用

する．VMとコンテナの比較は 2.4節で論じる．

2.3.1 仮想化ソフトウェアの種類

仮想化ソフトウェアには，OS上のアプリケーションとして動作するスタンドア

ロン型の仮想化ソフトウェアと，OSの一機能またはOSと物理マシンの間で動作

するハイパーバイザ型の仮想化ソフトウェアが存在する．ハイパーバイザ型の仮

想化ソフトウェアは，複数のVMを同時に実行できるため，本章ではハイパーバ

イザ型の仮想化ソフトウェアを想定する．

ハイパーバイザ型の仮想化ソフトウェアは，2種類に分類できる．1つは，VM

を管理する機能のみに特化した仮想化ソフトウェア (仮想化特化型)である．例え

ばXen [10]やVMware ESXi2がこれに相当する．もう 1つは，LinuxやWindows

などのOSに，VMを管理する機能を追加した仮想化ソフトウェア (OS一体型)で

ある．例えば LinuxのKVM [55]がこれに相当する．

1https://www.docker.com/
2https://www.vmware.com/products/esxi-and-esx.html
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図 2.4: Xenのアーキテクチャ

仮想化特化型とOS一体型の構成の比較を図 2.3に示す．仮想化特化型の上で動

作するプロセスは，全てVMである．一方，OS一体型の場合は，VMだけでなく，

一般的なアプリケーションも実行できる．仮想化特化型は，その機能をVMの管

理に限定しているため，ソフトウェアを小さく維持することができ，ソフトウェ

アの信頼性を高めやすい．この特徴は，安定性を重視する監視制御アプリケーショ

ンに適していると言える．そこで本章では，仮想化特化型のハイパーバイザであ

るXenを使用することとする．

2.3.2 仮想化ソフトウェア Xen

Xenは Xen Projectにより開発されている仮想化ソフトウェアである．オープ

ンソースであり，GoogleやAmazon Web Service，Intel，AMDなどが開発に協力
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している3．Xenをベースとした商用の仮想化ソフトウェアも存在する4．図 2.4に

Xenのアーキテクチャを示す．

完全仮想化と準仮想化

Xenは，完全仮想化 (Full Virtualization)と準仮想化 (Para Virtualization)の両

方に対応している．完全仮想化とは，物理マシンのCPUなどのハードウェアをソ

フトウェアにより模擬する仮想化の手法である．完全仮想化の場合，VM上のOS

(ゲストOS)は，自身がVM上で動いていることを知らずに動く．そのため，ゲス

トOSがハードウェア (例えばCPU)を使おうとしたときに，その動作を仮想化ソ

フトウェアで検知し，本当の物理マシンのハードウェアを使うための命令に変換す

る必要がある．この変換処理によりアプリケーションの性能が低下するため，完

全仮想化は，CPUの仮想化支援機能 (例: Intel VT)に依存する場合が多い．また，

仮想化ソフトウェア向けにOSを修正する必要がないため，Windowsのようにソー

スコードが公開されていないOSを，ゲストOSとしてVM上で実行できる．

準仮想化は，ゲスト OSが仮想化ソフトウェアの存在を意識して動作すること

で，ハードウェアを使うための命令を変換することによるオーバヘッドを削減す

る手法である．すなわち，ゲストOSは，仮想化ソフトウェアがゲストOS向けに

提供している準仮想化用のAPIを使用して動く．完全仮想化の場合と異なり，仮

想化ソフトウェアはゲストOSが発行するハードウェア使用のための命令を検知／

変換する必要はない．そのため，準仮想化は完全仮想化よりも性能が高くなる傾

向にある．ただし，仮想化ソフトウェアが提供するAPIを使用するように，ゲス

トOSを修正する必要がある．例えば本章の評価で使用する Linux 3.13.0は，Xen

の準仮想化用のAPIに対応しているため，準仮想化の環境で動作できる．

準仮想化は完全仮想化と比べて，計算処理や通信処理の性能が高く，VM数に

対するスケーラビリティも高いことが知られている [14, 16, 18, 84]．

3https://www.xenproject.org/users/why-the-xen-project.html
4http://xenserver.org
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Dom0とDomU

Xenは 2種類のVMを実行する．1つはDom0と呼ばれるVMである．Dom0は

Xen上に 1つだけ存在するVMであり，DomUと呼ばれる他のVMの作成／起動

／停止や，ハードウェアにアクセスするデバイスドライバを実行する権限を持つ．

DomUは，Dom0により作成されるVMのことである．Xenのユーザは，一般的

に，アプリケーションをDomU上のOS上で実行する．

図 2.4の点線の矢印は，DomU上のアプリケーションがデータの送信を行う場合

のデータの流れを表している．アプリケーションが送信したデータは，DomUの

frontend driverからDom0の backend driverへと渡される．そしてDom0が，物

理マシンに搭載されているネットワークインターフェースカードのデバイスドラ

イバを実行し，データをネットワークへ送信する．

デバイスドライバはDom上のOSに実装されており，Xen自身はデバイスドライ

バを含まない．そのため，Xenはその実装を小さく，単純に保ちやすい．また，デ

バイスドライバの障害が発生したとしても，その影響がHypervisorや他のDomU

に波及することを防ぎやすい．例えば，デバイスドライバの障害を検出して，初

期化することが可能である [26]．安定性を重視しているという点で，監視制御ア

プリケーションに適した設計と言える．

CPUスケジューラ

CPUスケジューラとは，どの仮想CPUを，どれだけの時間，どの物理CPUで

実行するかを計算する機能である．Xenは複数の CPUスケジューラを備えてい

る．本章の評価で使用するXenバージョン 4.6のデフォルトのCPUスケジューラ

は creditスケジューラである．

creditスケジューラは定期的に，各VMの仮想CPUに一定量のクレジットを付

与する．付与するクレジットは，weightというパラメータに応じて決定する．そ

してクレジット残量が 0より大きい仮想CPUに優先的に，物理CPUコアをラウ

ンドロビンで割当てる．各仮想CPUは物理CPUを使用した時間に応じて，クレ

ジットを消費する．そのため，あまり物理CPUを使用しない仮想CPUのクレジッ
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ト残量は増加していく．クレジット残量が所定の閾値まで増加した場合，creditス

ケジューラはその仮想CPUのクレジットの一部を破棄し，他の仮想CPUに優先

して物理 CPUを割り当てようとする．また，creditスケジューラは timesliceと

いうパラメータを持つ．timesliceの単位は「ミリ秒」である．仮想 CPUは，最

大で，timesliceで設定されている時間まで物理 CPUを連続して使い続けられる．

timesliceのデフォルト値は 30ミリ秒である．

credit2スケジューラは，creditスケジューラとは異なる方針で各仮想CPUにク

レジットを付与するスケジューラである [22]．credit2スケジューラは，仮想CPU

のクレジット残量が閾値に達しても，破棄せず，閾値に留める．そして，クレジッ

ト残量が多い仮想 CPUに優先し物理 CPUを割当てる．そのため，credit2スケ

ジューラは creditスケジューラと比べて，処理量が少ないアプリケーションに対

して優先して物理CPUを割り当てる傾向にある．

他には，実験段階の CPUスケジューラとして，Real-Time Deferrable Server

(RTDS)スケジューラがある [92, 93]．RTDSスケジューラは，リアルタイム性を

重視したスケジューラであり，各VMの動作時間を厳密に制御することを目指し

ている．

CPU affinity

どの物理CPUでどの仮想CPUを実行するかは，基本的に，CPUスケジューラ

の方針に依存して決まる．しかし，CPU affinityという機能を使用することで，仮

想CPUを実行する物理CPUを明示的に指定できる．

Xenでは hard affinityと soft affinityを使用できる．hard affinityを使用すると，

ある仮想CPUを実行する物理CPUを指定できる．これにより，あるVMに特定

の物理 CPUを占有させることが可能となる．soft affinityを使用すると，ある仮

想CPUが，特定の物理CPUで実行されやすくなる．これにより，物理CPU間の

負荷を緩く調整できる．
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表 2.1: 可用性の観点におけるVMとコンテナの比較 (文献 [60]から抜粋)

機能 VMware Citrix XenServer Docker/LXC OpenVZ

冗長化 あり あり (実験段階) なし なし

ライブマイグレーション あり あり なし あり

チェックポイント あり あり なし あり

障害検知 あり あり なし なし

フェイルオーバー あり あり なし なし

2.4 関連研究

計算機の仮想化，すなわちVMは，クラウドコンピューティングの基礎をなす

技術であり，WebサーバやDBサーバなどを中心に幅広く利用されている5．VM

を利用することで物理マシン数を減らし，障害の波及を制限しつつ，物理マシン

により消費される電力やスペースを削減することが目的である．VMの性能や安

定性の向上に伴い，近年は，監視制御システムに適用するための研究が行なわれ

ている [29]．監視制御システムのレガシーなハードウェアを仮想化することでシ

ステムの延命を図る取り組みや [12]，テスト時に活用しようとする取り組みがあ

る [13]．Programmable Logic Controller (PLC)やCANデバイスなどの具体的な

監視制御アプリケーションを仮想化する取り組みもある [28, 54, 80]．

仮想化を実現するソフトウェアとしてはXen [10]やKVM [55]，VMware ESXi

などがある．2.3.2項で述べたように，安定性を重視した設計であることから，本

章ではXenを使用する．

計算機の仮想化技術と類似する技術として，近年，Dockerをはじめとするコン

テナ技術が注目されている [21]．コンテナはVMと比べて性能に対するオーバー

ヘッドが小さいことが知られている [24, 86]．しかし，ライブマイグレーションや

チェックポイントなどの高可用性に関する機能が充実している VMのほうが，監

視制御システムの仮想化には適していると考える [60]．

5https://www.f5.com/pdf/reports/enterprise-virtualization.pdf
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監視制御アプリケーションをVM上で実行する場合の懸念の一つは性能である．

VMはCPUをはじめとするハードウェアをソフトウェアで模擬するため，処理性

能が低下する．仮想化がアプリケーションの性能に与える影響は広く研究されてお

り，最大スループットに注目しているものが多い．例えば，文献 [5]は iPerf6を用

いて，Xenの通信スループットを評価している．また，文献 [8, 56]はCachebench7

やUnixBench8などのベンチマークツールを用いて，計算処理のスループットを評

価している．いずれもの文献も，複数のCPUコアを利用すると，L1キャッシュに

おけるキャッシュミスが増えるため，1CPUコアの場合と比べてCPUコアあたり

の性能が低下することを示している．WebサーバやDBサーバ，IP電話などのア

プリケーションレベルの性能の評価も行われている [4, 64, 75, 90]．

スループットは重要な性能指標であるが，監視制御アプリケーションの場合，処

理のスループットよりもタイミングが重要である．文献 [28]は監視制御アプリケー

ションの 1つである PLCを仮想化した場合の処理のタイミングを評価している．

文献 [62]は，監視制御アプリケーションを想定してVMの通信遅延を評価してい

る．しかし，どちらの文献も，VMに割り当てるリソース量や，単一の物理マシン

で同時に実行するVM数が処理のタイミングに与える影響を評価していない．ま

た，同時に実行するVM数が，物理マシンのCPUコア数を大きく超える状況にお

ける評価も実施していない．同時に実行するVM数がアプリケーションの性能に

与える影響は文献 [39, 56, 83]などで示されているが，ベンチマークツールを使用

した評価であり，監視制御アプリケーションの性能への影響は評価していない．

本章では，監視制御アプリケーションの具体例としてクローラ [43]を想定し，

監視点データの計測時刻誤差を評価する．そして，VMに割り当てるCPUリソー

ス量や，単一の物理マシン上で同時に実行するVM数が計測時刻誤差に与える影

響を評価する．また，credit2スケジューラやCPU affinityを使用した評価も実施

する．credit2スケジューラを使用した性能評価は文献 [37, 88]で行われているが，

credit2スケジューラを使用して監視制御アプリケーションの性能を評価した研究

は，本論文が初めてである．

6https://iperf.fr/
7http://icl.cs.utk.edu/llcbench/cachebench.html
8https://www.ostechnix.com/unixbench-benchmark-suite-unix-like-systems/
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2.5 仮想化されたクローラの性能評価

本節では，VM上で動作するクローラの性能評価について述べる．

2.5.1 評価の目的

遠隔ビル管理システムの運用者は，単一の物理マシン上で，できるだけ多くの

クローラ／VMを実行することで，ビル群を管理するために必要な物理マシン数

を減らし，設備投資を抑えたい．ただし，各クローラは 2.2.2項で述べた要件を満

たす必要がある．各物理マシンの性能や各クローラの処理負荷は同一とは限らな

いため，運用者が各クローラをどの物理マシンに配置するかを考えることは手間

である．そのため，各クローラの性能要件を満たしつつ，物理マシンのリソース利

用率を最大化してくれるVM管理手法があることが望ましい．このようなVM管

理手法は，WebサーバやDBサーバを対象として研究されている [19, 33, 67, 68]．

しかし，クローラのような監視制御アプリケーションを対象としたものは存在し

ない．本評価では，クローラを対象としたVM管理手法の実現に向けて，クロー

ラの性能に影響を与える要因を明確にすることを目的とする．

2.5.2 評価の環境

図 2.5に，仮想化せずにクローラを実行する評価環境（ネイティブ環境）と，VM

上でクローラを実行する評価環境（仮想化環境）を示す．評価には 2つの物理マ

シンを用いる．一方でクローラを動かし，もう一方でビル群のゲートウェイを模

擬する．2つの物理マシンは 1000BASE-Tで接続する．以降，単に「VM」と述べ

る場合はDomUのことを指す．

クローラは，事前に与えられた計測スケジュールに基づき，データ要求を送る．

計測スケジュールとは，いつ，どの監視点データを計測するかを定義した情報で

ある [43]．データ要求にはBACnet/WS [7]の getValuesリクエストを使う．BAC-

net/WSはHTTPをベースとするビル管理システム向けの通信プロトコルである．
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物理マシン1

クローラ
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(a) 仮想化を使わない環境 (ネイティブ環境)
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クローラ
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(b) 仮想化を使う環境 (仮想化環境)

図 2.5: 評価環境

BACnet/WSにおける全てのリクエストとレスポンスは Extensible Markup Lan-

guage (XML)により表現される．

ビル群のゲートウェイは，Apache HTTPサーバで模擬する．クローラとゲー

トウェイの間の通信には，ビルごとに片道 10ミリ秒の遅延をエミュレーションす

る．10ミリ秒という値は，神奈川県にある研究所と，Amazon EC2の東京リージョ

ンとの間の通信遅延の平均値と同等の値である．この通信遅延は，pingコマンド

を使用して計測した．2つの物理マシン間の時刻同期にはNetwork Time Protocol

(NTP)を使用する．

仮想化用の物理マシンは Intel(R) Xeon(R) 1.80GHz CPU (8コア)，32GBメモ

リを備える．仮想メモリアドレスと物理メモリアドレスの変換処理を効率化する

Extended Page Tables (EPT)機能は有効化する．また，ビルゲートウェイ用の物

理マシンは Intel(R) Xeon(R) 2.60GHz CPU (32コア)，80GBメモリを備える．物

理マシンの OSとして Ubuntu 16.04 (Linux 4.4.0)を，VMの OSとして Ubuntu

14.04 (Linux 3.13.0)を使用する．Xenのバージョンは 4.6.0とする．Apache HTTP

サーバはバージョン 2.4.10を使用する．

クローラの実装言語はC言語である [43]．実際の環境では，クローラは計測し

た監視点データを，データベースや監視制御機能に渡す．しかし，データベース
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表 2.2: 予備実験の結果のまとめ

予備実験の内容 結果

完全仮想化と準仮想化の性能比較 準仮想化が優位

creditスケジューラとRTDSスケジューラの性能比較 RTDSスケジューラが劣位

クローラのリソース消費の傾向 CPUバウンド
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図 2.6: 完全仮想化と準仮想化の計測時刻誤差の比較

サーバなどの性能に起因するクローラの計測時刻への影響を除外するため，本評

価で用いるクローラは，計測した監視点データを破棄する．

2.5.3 予備実験の結果

本章で考察すべき対象を絞り込むために実施した予備実験の内容と結果をまと

める．予備実験の結果を表 2.2に示す．

完全仮想化と準仮想化の性能比較 Xenは仮想化の方法として完全仮想化と準仮

想化をサポートしているため，両者におけるクローラの計測時刻誤差を比較した．

本評価ではクローラ／VMは 1つとして，監視点データの計測頻度 (rps; Request
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図 2.7: creditスケジューラとRTDSスケジューラの比較

per Second)を変化させた．計測時刻誤差の 99.999パーセンタイル値を計算するた

めに，評価期間は 20分とし，10万回以上の通信処理をクローラに行わせた．

図 2.6に，評価結果を示す．計測頻度が 600rps以上の場合に差が生じた．準仮

想化のほうが，計測時刻誤差を数十ミリ秒ほど小さく抑えられたため，以降は準

仮想化を使用する．

creditスケジューラとRTDSスケジューラの性能比較 Xenバージョン 4.6にお

けるデフォルトのCPUスケジューラである creditスケジューラと，実験段階のリ

アルタイムCPUスケジューラであるRTDSスケジューラの性能を比較した．本評

価ではクローラ／VMは 1つとして，監視点データの計測頻度を変化させた．計

測時刻誤差の 99.999パーセンタイル値を計算するために，評価期間は 20分とし，

10万回以上の通信処理をクローラに行わせた．

図 2.7に，評価結果を示す．図から，RTDSスケジューラは creditスケジューラ

よりも，計測時刻誤差が不安定であることがわかる．例えば，計測頻度が 300rps

や 500rpsの場合に，計測時刻誤差が約 100ミリ秒に増大している．また，1000rps

の場合に，計測時刻誤差が約 1秒になっている．RTDSは実験段階の CPUスケ

ジューラであり，特にDom0やDomUが複数の仮想 CPUを持つ場合の実装が未
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図 2.8: 平均CPU使用率 (1秒計測)

成熟である．具体的には，あるドメイン (Dom0またはDomU)の仮想CPU群が，

互いに互いが使用している物理CPUを奪い合い，それにより処理が遅延する状況

が生じる．この状況は，各仮想CPUが，現在使用している物理CPUを使用し続

ければ避けられるが，そのような実装になっていない．以上より，以降の評価で

はRTDSスケジューラは使わない．

クローラのリソース消費の傾向 クローラを実行するVMのリソース消費の傾向

を分析した．本評価では，クローラ／ VMは 1個とし，VMの仮想 CPUは 4個，

Dom0の仮想CPUは 8個とした．CPUスケジューラは creditスケジューラとし，

CPU affinityは設定せずに評価した．xentopコマンドを使用し，VMのCPU使用

率を 1秒ごとに計測した．計測時刻誤差の 99.999パーセンタイル値を計算するた

めに，評価期間は 20分とし，10万回以上の通信処理をクローラに行わせた．

図 2.8に計測したCPU使用率を示す．図中のエラーバーは，計測期間 (1分)に

おけるCPU使用率の最大値と最小値である．図に示すように，クローラを実行す

るVMのCPU使用率はデータ要求の計測頻度に比例することや，CPU使用率の

ばらつきは 20%程度であることを確認した．また，クローラ停止時のVMのCPU

使用率は約 0.1%であることを確認した．つまり，クローラが停止している時，VM
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はほとんどCPUを使用していない．CPU以外のリソースであるネットワークやメ

モリの使用量も，計測頻度に比例する傾向を示した．ただし，CPU以外のリソー

スの使用量は，絶対値としては小さかった．例えば，計測頻度が 1000rpsの時点の

通信量は約 600Kbpsであった．また，クローラのディスク IOは，起動直後の計測

スケジュールの読み込み処理と，動作ログをファイルに出力する際の書き込み処

理のみであり，小さかった．したがって，クローラの処理はCPUバウンドである

と言える．以降，CPUリソースに着目して評価および考察する．

2.5.4 性能評価の結果

本項では，まず仮想化によるオーバーヘッドを評価し，次に複数VMを同時に実

行することが性能に与える影響を評価する．そして，creditスケジューラと credit2

スケジューラを比較し，最後にCPU affinityが性能に与える影響を評価する．

仮想化によるオーバーヘッド

仮想化がクローラの性能に与える影響を評価する．クローラ／VMは 1個とし，

VMの仮想 CPUは 1個から 4個とする．仮想 CPUが少ないほどクローラの性能
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は低下すると予想できるが，その低下の度合いを把握するために，仮想CPUの数

を変化させる．また，Dom0が通信処理のボトルネックとならないよう，Dom0の

仮想 CPUは 8個とする．CPUスケジューラはデフォルトの creditスケジューラ

とする．CPU affinityは使用しない．

監視点の数は 100から 1000とし，計測周期は 1秒とする．すなわち，クローラ

の計測頻度は 100rpsから 1000rpsとなる．中小規模ビルが備える監視点数は数十

点から数百点であり，かつ，BACnet/WSの getValuesリクエストは，1リクエス

トでN個の監視点データを取得できる9．したがって 1000rpsは数棟から数百棟の

中小規模ビルの監視に相当し，評価の設定として十分に現実的だと考える．クロー

ラは 99.999%以上の確率で正しくデータを計測する必要があるため，計測時刻誤

差の 99.999パーセンタイル値を評価軸とする．99.999パーセンタイル値を計算す

るために，評価期間は 20分とし，10万回以上の通信処理をクローラに行わせる．

図 2.9に評価結果を示す．縦軸は計測時刻誤差の対数軸である．いずれの場合

も，計測頻度の増加にともない計測時刻誤差が増加する傾向にある．単位時間あ

たりの通信回数が増えることで，計画通りのタイミングで通信を行なえる確率が

減るためである．また，仮想CPUが 4個の場合の仮想化環境における性能と，ネ

イティブ環境における性能に大差はないことから，本評価で用いたクローラにとっ

て 4個の仮想CPUは十分なCPUリソースであると言える．一方，仮想CPUが 1

個の場合は，700rpsの時点で誤差が増大した．図 2.8から，700rpsの時点でVMの

CPU使用率は 100%を超えることがわかる．つまり，1個の仮想CPUでは 700rps

の通信処理を行いきれず，誤差が増大した．

仮想CPUが 2個の場合は，1000rpsの時点で誤差が約300ミリ秒となった．図2.8

によれば，1000rpsの場合の平均CPU使用率は約 140%であり，2個の仮想CPU，

すなわち 200%の CPUリソースは十分なように思える．しかし図 2.8に示した値

は，xentopコマンドを用いて 1秒間隔で計測した平均値であり，1秒よりも短い

期間において 200%以上の CPUを消費している可能性がある．これを明らかに

するため，VMの CPU使用率をミリ秒間隔で計測するツールを実装した10．本

9IEEE1888 [40]も同様の機能を備える．
10xentopコマンドは，ミリ秒間隔で CPU使用率を計測できない．
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ツールはミリ秒単位の計測間隔を引数に取る．そして，指定された間隔でXenの

xc domain get cpu usage関数を呼び出すことで各 VMの CPU消費時間を取得

し，CPU消費時間と計測間隔からCPU使用率を計算する．

実装したツールで，VMのCPU使用率を 100ミリ秒間隔で計測した．VMが真

に必要とする CPUリソースを把握するため，十分な CPUリソース，すなわち 4

個の仮想CPUをVMに割り当てた．結果を図 2.10に示す．実線は計測期間中の最

大CPU使用率を，点線はCPU使用率が 200%を超えた時間の割合を示している．

計測頻度が 400rpsの時点で最大 CPU使用率は 200%を超えている．つまり，100

ミリ秒単位で見ると，200%以上のCPUリソースが必要な時間帯が生じている．そ

の時間帯において，仮想CPUが 2個では，CPUリソースが足りないため，クロー

ラの処理が遅れ，計測時刻誤差が増加する．CPUリソースが足りない時間帯の割

合は，1000rpsの場合でも 1%以下だが，計測時刻誤差の 99.999パーセンタイル値

は増加する．

本項の評価により，十分なCPUリソースをVMに割り当てれば，ネイティブ環

境と同等の性能を達成できることを確認できた．一方，VMに割り当てるCPUリ

ソースを，1秒間隔で計測したCPU使用率に基づいて決定すると，計測時刻誤差

が数百ミリ秒まで増加する場合があることがわかった．監視点を 1秒間隔で計測
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図 2.11: 複数VMを同時実行した場合のVM数と計測時刻誤差の関係

する場合，数百ミリ秒の計測時刻誤差は許容できない．許容される計測時刻の誤

差と同等の間隔でCPU使用率を計測し，その結果に基づいて割り当てるCPUリ

ソース量を決定すべきである．

VM数が計測時刻誤差に与える影響

複数のVMを実行する場合の性能を評価する．多くのVMを実行して評価する

ために，各クローラ／VMの計測頻度は小さく設定する．ここでは，各クローラが

数棟のビルを監視する状況を想定し，計測頻度として 100rpsと 200rpsの二通りを

設定して評価する．各VMには 1個の仮想CPUを割り当てる．Dom0の仮想CPU

は 8個とする．CPUスケジューラは creditスケジューラとする．CPU affinityは

使用しない．

図 2.11にVM数と計測時刻誤差の関係を示す．どちらの場合も，VM数が 8個の

時点で計測時刻誤差が増大している．各クローラの計測頻度は100rpsまたは200rps

であるから，図 2.8によれば，各VMが必要とするCPUリソースは 50%以下であ

る．本評価に用いた物理マシンは 8コア，すなわち 800%の CPUリソースを備え

るから，8個のVMに対しては十分だと思える．
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図 2.12: 複数VMを同時実行した場合のVM数とCPU競合時間の関係

この結果の原因を明確にするために，xentraceと xenalyzeを使用して，各VM

の CPU競合状態を分析した．CPU競合状態とは，VMの仮想 CPUが物理 CPU

を使用したいのに，使用できずに待機している状態である．分析時の計測頻度は

100rpsとした．

分析の結果を図 2.12に示す．縦軸はCPU競合状態が継続した時間 (CPU競合時

間)の 99.999パーセンタイル値である．Dom0は 8個の仮想CPUを持つため，そ

の一部がCPU競合状態であった時間と，全ての仮想CPUが競合状態であった時

間をそれぞれ示している．図 2.12から，VM数が 8個の時点からCPU競合時間が

増加していることがわかる．特に，Dom0の一部の仮想CPUがCPU競合状態で

あった時間が約 10ミリ秒まで増加している。XenにはVM (DomU)以外にDom0

が存在する．評価で使用した物理マシン 1は 8コアであるため，Dom0と 8個の

VMの全てを同時に実行できない．つまり，CPU競合時間が生じる．CPU競合状

態の間，クローラ／VMは動作できないため，計測時刻誤差は増加する．

Dom0の全ての仮想CPUがCPU競合状態であった時間は，約 30ミリ秒以下に

留まっている．本項の評価では，creditスケジューラの timesliceパラメータの値は

デフォルトの 30ミリ秒としたため，Dom0やVMは物理CPUを最大で 30ミリ秒
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図 2.13: 複数VMを同時実行した場合のDom0のCPU使用率の最小値

間占有する11．また，本項の評価ではDom0に 8個の仮想CPUを割り当てたため，

Dom0はVMと比べて物理CPUを取得しやすい．したがって，連続する timeslice

においてDom0が物理CPUを取得できないという状況は発生しづらく，Dom0の

CPU競合時間は timesliceの設定値である 30ミリ秒よりも長くならなかったもの

と考える．

各クローラの計測頻度が 200rpsの場合は，VM数が 19個の時点で再び計測時刻

誤差が増大し，1秒を超えた (図 2.11)．VM数が 19個のとき，全VMとDom0の

CPU使用率の平均値の合計は 722%であった．平均で約 78%の余裕があるにもかか

わらず，計測時刻誤差が増大した理由は，Dom0がCPUを使用できない時間帯が

増えたためである．図 2.13は，評価期間中の，Dom0のCPU使用率の最小値であ

る．このCPU使用率は xentopを用いて 1秒間隔で計測した．計測頻度が 100rps

の場合，Dom0のCPU使用率は常に増加傾向を示している．図 2.4に示すように，

全ての通信処理はDom0を経由して行われるため，Dom0のCPU使用率がクロー

ラ／VM数に比例する結果は妥当である．一方，200rpsの場合は，VM数が 17個

の時点で減少に転じ，VM数が 19個と 20個の時点で約 6%となった．この結果は，

11実行するべき処理がない場合は，30ミリ秒に達する前に，他の VMに物理 CPUを引き渡す

可能性はある．
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図 2.14: 単一VMを creditスケジューラと credit2スケジューラで実行した場合の

性能比較

VM群の処理の総量が増加すると，Dom0がCPUをほぼ利用できない時間帯が発

生し，その影響で通信処理のタイミングが乱れ，計測時刻誤差が増大することを

示している．

本項の評価結果から，複数のVMを実行する環境では，計測時刻誤差が増大す

る箇所が 2点存在することがわかった．1点は，VM群の処理に必要なCPUリソー

スの総量が増え，Dom0に十分なCPUリソースを割り当てられなくなったときで

ある．Dom0は全ての通信処理に関与するため，計測時刻誤差が増大する．もう 1

点は，VM群により使用される仮想CPUの数が，物理CPUの数を超えたときで

ある．この時点から CPU競合が発生し，計測時刻誤差が増大する．CPU競合時

間は数十ミリ秒に及ぶため，監視制御機能の品質に影響を与えうる．複数の VM

を実行する場合は，各 VMの処理量が小さい場合でも，CPU競合時間を推定し，

監視制御機能の品質に影響が生じるか判断すべきである．
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図 2.15: 複数VMを creditスケジューラと credit2スケジューラで実行した場合の

性能比較

CPUスケジューラが計測時刻誤差に与える影響

仮想化によるオーバーヘッドや，VM数が計測時刻誤差に与える影響について，

creditスケジューラと credit2スケジューラを比較する．

図 2.14は，単一VMを実行した場合の計測時刻誤差の比較である．計測頻度や

仮想 CPU数を変化させて比較したが，両者に大きな差は見られなかった．仮想

CPU数が 1個かつ 600rpsの場合は，約 60ミリ秒の差が生じているが，この差は

スケジューラの違いによるものではないと考える．計測頻度が 600の場合，CPU

使用率はときに 100%を超えるため (図 2.8)，仮想CPUが 1個では計測時刻誤差が

ばらつきやすく，かつ，計測時刻誤差の 99.999パーセンタイル値を比較している

ため生じた差であると考える．したがって，CPUリソースに余裕がある状況では，

両スケジューラの差はないと言える．

図 2.15は，複数VMを実行した場合の計測時刻誤差の比較である．前項で述べ

たように，creditスケジューラの timesliceパラメータのデフォルト値は 30ミリ秒

であり，これがCPU競合時間の増加につながっている．そこで，timesliceを 1ミ

リ秒とした creditスケジューラの性能も合わせて評価した．各クローラの計測頻度
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図 2.16: 複数VMを同時実行した場合のVM数とCPU競合時間の関係 (timeslice

は 1ミリ秒)

は 200rpsとした．各VMには 1個の仮想CPUを割り当てた．Dom0の仮想CPU

は 8個とした．CPU affinityは使用しなかった．

図 2.15から，timesliceが 1ミリ秒の場合は，VM数が 8個の時点でも，計測時

刻誤差を 10ミリ秒以下に抑えられることがわかる．これは，想定通り，timeslice

を短くすることで CPUスケジューリングを頻繁に実施するようになり，CPU競

合時間を短縮できたためである．xenalyzeでCPU競合時間を分析した結果を図

2.16に示す．全体の傾向は timesliceが 30ミリ秒の場合 (図 2.12)と同じだが，絶

対値が減少していることを確認できた．

VM数が 14個以上になると，timesliceパラメータの値による計測時刻誤差の差

はなくなった．timesliceを小さくすると，CPUスケジューリングの実行頻度が増

すため，CPUスケジューリングによるオーバーヘッドが増える．VM数が 8個の

ときは，物理マシンのCPUリソースに余裕があるため，オーバーヘッドが増えて

も，CPU競合時間の短縮による効果が大きく，計測時刻誤差を抑えられた．しか

し，VM数が増えると，CPUスケジューリングに必要な処理量は増加する．各VM

の情報を forループで走査しながら確認する処理が含まれるためである．情報とは，

例えば，各VMの仮想 CPUのクレジット残量である．つまり timesliceが小さい
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ほど，VM数が増えたときの，CPUスケジューリングによるオーバーヘッドの増

加率が高くなる．その分，CPUを通信処理に使用できる時間が減るため，通信処

理が遅れる．このような理由から，VM数が増えた場合に，timesliceによる計測

時刻誤差の差がなくなったと考える．

credit2スケジューラのCPUスケジューリングの間隔は，500マイクロ秒から 2

ミリ秒の間である．そのため，credit2スケジューラの性能は，timesliceを 1ミリ秒

に設定した creditスケジューラの性能と似ている．ただ，credit2スケジューラの場

合は，VM数が 16個の時点まで，計測時刻誤差の増大を抑えられた．xenalyzeで

分析したところ，各VMのCPU使用時間は，credit2スケジューラのほうが 10%ほ

ど大きかった．2.3.2項で述べたように，credit2スケジューラは，使い切れなかっ

たクレジットを破棄しない．これにより，クレジットを破棄された影響でCPUを

使用できない状況がなくなるため，各VMのCPU使用時間が長くなる．つまりク

ローラはより多くの処理を行えるようになるため，creditスケジューラよりも計測

時刻誤差を抑えられる．一方，クローラ／VMが 18個以上においては，creditス

ケジューラよりも計測時刻誤差が大きくなった．credit2スケジューラは，creditス

ケジューラよりもクローラ群に多くのCPUリソースを与えるため，Dom0がCPU

を使用できなくなりやすいのだと考える．

本項の評価結果から，CPUスケジューリングの頻度が高いほど，計測時刻誤差

を抑えられることがわかった．creditスケジューラの場合は timesliceの値を変更す

る必要がある．credit2スケジューラは，CPUスケジューリングの頻度が高く，さ

らに仮想CPUのクレジットを破棄しないため，creditスケジューラよりも誤差を

抑えられる．ただし，頻繁なCPUスケジューリングはCPU切り替え処理のオー

バーヘッドを増加させるため，監視制御機能が許容する計測時刻誤差に応じて，適

切にCPUスケジューリングの頻度を設定すべきである．

CPU affinityが計測時刻誤差に与える影響

CPU affinityが性能に与える影響を評価する．まず soft affinityによる影響を評

価し，次に hard affinityによる影響を評価する．

soft affinityを使用した評価では，各VMの仮想CPUが，特定のCPUソケット
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図 2.17: CPU hard affinityの有無の比較

に含まれるCPUコアにより優先して実行されるよう設定して評価する．評価に用

いた物理マシンAは，2個のCPUソケット (4コアずつ)を備えており，それぞれ

が L3キャッシュを備えている．そこで，各VMの仮想CPUが，どちらか一方の

CPUソケットを優先するように soft affinityを設定した．このとき，各ソケットに

割り当てる仮想CPUの数がなるべく均等になるように設定した．評価の結果，soft

affinityの適用有無による性能の変化は見られなかった．クローラの処理はデータ

取得のための通信のみであり，その性能はキャッシュに大きく依存しないため，妥

当な結果だと考える．

hard affinityを使用した評価では，1個の物理CPUをDom0に占有させるよう

に設定する．また，VM群は残り 7個の物理CPUを共有するよう設定する．CPU

スケジューラは credit2スケジューラとし，各VMの計測頻度は 200rpsとする．

図 2.17に結果を示す．hard affinityを使用したほうが計測時刻誤差が小さいこと

がわかる．Dom0に専用の物理CPUを割り当てることで，VMとDom0との間で

CPU競合が発生しなくなり，その結果，VMのCPU競合時間が減少した．逆に言

えば，Dom0に 8個の仮想CPUを割り当てた場合は，VMとDom0がCPUを奪い

合う状況が多く発生していたと言える．そのため，VM数が 8個の時点から，hard

affinity適用の効果により，計測時刻誤差が小さくなっている．ただし hard affinity
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を適用した場合でも，VM数が 19個の時点で計測時刻誤差が増大した．xenalyze

で分析したところ，VMが 19個の時点で，VMの CPU競合の割合が増大してい

た．VM群の処理の総量が増加し，VM間のCPU競合が頻繁に生じるようになっ

たため，計測時刻誤差が増大したと考える．

この評価結果から，クローラにとっては soft affinityの効果がないこと，hard

affinityを適切に設定することで誤差を削減できることを確認できた．また，VM

群による処理の総量が一定値を超えると，hard affinityを使用しても誤差の増大は

避けられないことを確認できた．hard affinityによりDom0に占有させるべき物理

CPUの数は，各VMの処理や，各VMの処理により生じるDom0の処理を考慮し

て決定すべきであるが，その組み合わせごとに性能評価を行うことは手間である．

監視制御機能の性能が最大となるように，自動的に hard affinityを設定する仕組

みがあるとよい．

2.6 VM管理手法の実現に向けた課題

評価実験で得られた知見に基づき，クローラを実行するVMの管理手法の実現

に向けた課題を述べる．VM管理手法は，1) VMに割り当てるリソース量の決定

と 2) VMを実行する物理マシンの決定，を実施する必要がある．

クローラのCPU使用率は監視点データの計測頻度，すなわち rpsに比例する (図

2.8)．計測頻度は，クローラが監視する監視点の数と，各監視点の計測周期から求

められる．今回の評価で使用した物理マシンとは異なる物理マシンを使用したと

しても，計測頻度とCPU使用率の関係を導くことは容易であろう．ただし，CPU

使用率を計測する場合，その間隔を適切に設定する必要がある．1秒間のCPU使

用率の平均値に基づいて仮想CPUを割り当てると，計測時刻誤差が増加する場合

があるためである．一方で，細かい間隔 (例えば 1ミリ秒)でCPU使用率を計測す

ることは，オーバーヘッドを増加させるし，CPU計測の精度を低下させる．許容

される計測時刻誤差と同等の間隔でCPU使用率を計測すべきである．

VMに割り当てるリソース量を決定したら，VMを実行する物理マシンを決定す

る．各VMが必要とするCPUリソースの合計が，物理マシンのCPUリソースを
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超えると，計測時刻誤差が急増する．そのような状況を避けるためには，複数の

物理マシンのCPUの利用状況を把握し，その情報に基づいてVMの配置先を選ぶ

必要がある．また，単一物理マシン上に 2つ以上のVMを配置する場合は，CPU

競合に注意すべきである．VM群が使用する仮想CPUの数が，物理CPUの数を

超えた時点で，CPU競合状態が発生する．CPU競合が発生すると，物理マシンの

CPUリソースに余裕が存在したとしても，計測時刻誤差は増加する (図 2.11)．同

時に実行する VM数とその処理負荷から，生じうる CPU競合時間を予測した上

で，VMを実行する物理マシンを決定すべきである．また，CPUスケジューリン

グの頻度や物理CPUの占有数は，適切に設定しないと性能が低下する可能性があ

るため，監視制御機能の性能を最大化できるよう設定すべきである．

2.7 むすび

本章では，監視制御アプリケーションの 1つであるクローラを仮想化した場合

の性能を評価した．物理マシンが備える CPUコア数以上の VM数を実行した場

合や，CPUコアの一部を仮想化ソフトウェアに占有させた場合の性能を評価した．

評価の結果，VMに割り当てる CPUリソース量や，VM数の増加による CPU競

合，CPUスケジューリングの頻度が，クローラの性能に影響を与える要因である

ことを明らかにした．第 3章では，本章で得られた知見に基づき，クローラを実

行するVMの性能を推定する方法を検討する．
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第3章 仮想化された監視制御アプリ

ケーションの性能の推定

3.1 まえがき

第 2章では，監視制御アプリケーションの一例としてクローラを取り上げ，仮想

化環境におけるクローラの性能を評価した．本章では，第 2章の評価により得ら

れた知見に基づき，仮想化環境における監視制御アプリケーションの性能を推定

する手法を提案する．本推定手法を用いることで，遠隔ビル管理システムの運用

者は，クローラの性能要件を満たせる範囲で，できるだけ多くのクローラ／ VM

を単一の物理マシン上で実行できる．これは遠隔ビル管理システムに対する設備

投資を削減することに寄与する．また，物理マシン数を減らすことは，物理マシ

ンの管理にかかる人的コストの削減にもつながる．

本章で提案する手法は，シミュレーションにより仮想化環境における監視制御

アプリケーションの性能を推定する．シミュレーションであるから，すでに稼働

を開始しているクローラの性能に影響を与えない．また，第 2章の評価で判明し

た，クローラの計測時刻誤差を増加させる 2要因である 1) VM間のCPU競合と，

2) Dom0のCPUリソース不足を再現する点に留意している点が特徴である．

以降，3.2節で想定環境について述べ，3.3節で関連研究を説明する．次に，3.4

節で提案手法を説明する．3.5節で提案手法による推定の結果を実機評価の結果と

比較し，提案手法の推定精度を評価する．最後に 3.6節でまとめる。

3.2 想定環境

本節では，本章で想定する遠隔ビル管理システムとクローラについて説明する．
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図 3.1: 遠隔ビル管理システムとビル群のシステム構成 (再掲)

3.2.1 遠隔ビル管理システム

本章では，第 2章と同様に，図 3.1に示す遠隔ビル管理システムを想定する．ク

ローラの挙動や要件についても，第 2章と同様の挙動を想定する．

3.2.2 クローラを追加する際の運用

クローラは，ビルオーナーと遠隔ビル管理システム事業者との間でビル管理契

約が締結された場合に追加される．クローラを追加する手順を以下に記す．

1. ビルのゲートウェイの IPアドレスや，ゲートウェイが対応している通信プ

ロトコル，各監視点の識別子や計測時刻などをデータベースに登録する．こ

れらの情報は，後にクローラが参照する．

2. クローラを追加する物理マシンを選択する．このときに，遠隔ビル管理シス

テムの運用者は，クローラを追加した後も，すでに稼働しているクローラを

含めた全てのクローラの性能要件が満たされることを目指す必要がある．ク
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ローラの性能要件を満たせそうな物理マシンが見つからない場合は，新たに

物理マシンを購入し，その物理マシンを選択する．

3. 選択した物理マシン上にクローラ／VMを追加する．

4. クローラを実行する．

上記の手順 2において，物理マシンごとに，クローラを追加した場合の計測時刻

誤差を推定できれば，性能要件を満たせる物理マシンを適切に選択できる．

ビル管理契約の締結には人が介在するため，遠隔ビル管理システムの運用者は，

クローラ／VMを追加するタイミングを調節できる．仮に同時に複数のビル管理

契約が成立したとしても，クローラの追加は逐次的に行える．別の言い方をするな

ら，クローラを同時に追加することはない．また，一度追加したクローラを，別の

物理マシンに移動することは考えない．仮想化ソフトウェアのライブマイグレー

ション機能を使えば，クローラを停止することなく別の物理マシンへ移動できる

が，移動中はクローラの性能が低下するためである．

3.3 関連研究

本節では，仮想化環境におけるアプリケーションの性能を推定する既存の手法

について説明する．いずれの手法も，何らかの方法で，アプリケーション／ VM

を追加した後の性能を推定し，その結果，それでもアプリケーションの性能要件

を満たせると判断できた場合に限り，物理マシンにVMを追加する．

3.3.1 リソースに基づく性能推定手法

物理マシンのリソース残量に基づいて，アプリケーションの性能要件を満たせる

かを判断する手法がある．このリソースに基づく手法は，追加するVMのリソー

ス消費量の予測値よりも，物理マシンのリソース残量が大きい場合に，VMの追

加を許可する [65, 87, 97]．つまり，物理マシンのリソースが余っていれば，アプ

リケーションの性能は低下しないという想定に基づいている．
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これらの手法は，主にウェブアプリケーションを想定しており，物理マシンのリ

ソースの利用率向上を重視している．2章の評価により，物理マシンのリソースが

余っていても，VM間のCPU競合により性能が低下する場合があることがわかっ

ている．この性能低下は，処理のタイミングが数ミリ秒から数十秒ずれる程度で

あるから，ウェブアプリケーションでは無視できるかもしれないが，監視制御ア

プリケーションでは無視できない場合がある．そのため，リソースに基づく手法

を監視制御アプリケーション向けに使うことは難しいと考える．

3.3.2 実際の負荷に基づく性能推定手法

実際に負荷を発生させることで，アプリケーションの性能を推定する手法があ

る．DeepDive [70]は，「追加する予定のVMによる負荷」と類似する負荷を物理マ

シンに与えることで，その物理マシン上で稼働中のアプリケーションの性能が低

下するかを確認する方法である．稼働中の物理マシンに実際に負荷を与えるため，

アプリケーションの性能の変化を正確に推定できる．しかし，稼働中のアプリケー

ションの性能を低下させるリスクが生じるため，監視制御アプリケーション向け

に使うことは難しい．また，追加するVM上のアプリケーションの性能は推定で

きない．

文献 [96]で提案されている手法は，製品環境で稼働中のVMをコピーすること

で製品環境と同じテスト環境を構築する．ウェブアプリケーションを想定してお

り，製品環境に対して送られてきたHTTPリクエストを，テスト環境に対してコ

ピーすることで，テスト環境でウェブアプリケーションの性能を評価する．この

手法は，VMをコピーしている時間は，稼働中のアプリケーションの性能に影響

を与える．また，テスト用のサーバやネットワーク機器が必要となるため，製品

環境と同等の設備投資がテスト環境に必要となる可能性がある．

文献 [11]で提案されている手法は，事前に実機を用いた性能評価を実施し，そ

の結果に基づいて，アプリケーション追加時に性能が低下するかを判断する．こ

の手法は，稼働中のアプリケーションに影響を与えない．また，製品環境をコピー

する必要がないため，文献 [96]で提案されている手法と比べて設備投資を抑えら
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れる．しかし，この手法が判断できることは「性能が低下するかどうか」だけで

あり，どのくらい性能が低下するかは推定できない．

3.3.3 VM間の干渉を考慮した性能推定手法

文献 [95]で提案されている手法は，VM間の性能干渉を考慮して，VMの性能変

化を定式化している．文献 [95]では，円周率演算の速度を性能として，提案の式

の正しさを検証している．しかし，本論文が想定するクローラの性能 (計測時刻の

正確さ)の変化は，文献 [95]で定義されている式に当てはまらなかった．クローラ

の挙動は通信処理を含み，通信処理はVM群を管理する仮想化ソフトウェアにも

負荷を与えるため，処理がVM内で完結する円周率演算と比べて，性能の定式化

が難しいと考える．本章で提案する手法は，クローラやVMの処理をシミュレー

ションにより模擬することで，クローラの計測時刻誤差を推定する．

3.4 提案手法

提案手法は，クローラやVM，物理マシンのモデルに基づくシミュレーションに

より，計測時刻誤差を推定する．

3.4.1 提案手法に基づくクローラ追加時の運用

提案手法を用いた場合の，クローラの追加の手順を説明する．図 3.2にクローラ

を追加する運用のフローチャートを示す．

ビル管理契約を締結した後，まず，新しく追加するクローラ (新規クローラ)が

監視することになる監視点の数と，監視点ごとの計測頻度を把握する．この情報

に基づいて，新規クローラの計測スケジュールを作成する [43]．計測スケジュール

が決まれば，計測頻度が決まる．2章の評価から，クローラの負荷の傾向はCPU

バウンドであり，そのCPU使用率は計測頻度に対し線形であることがわかってい
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図 3.2: クローラを追加する運用フローチャート

る．すなわち，計測頻度 (r)とCPU使用率 (Ucpu)の関係は以下の一次式で表すこ

とができる．

Ucpu = ar + b (3.1)

aと bは係数であり，実機を用いた評価により得られる計測頻度とCPU使用率の

組を用い，残差のユークリッドノルムに関して最小二乗法を用いることで求めら

れる．この式に基づき，計測頻度から新規クローラに割り当てるべき仮想CPUの

数を求める．

新規クローラの計測スケジュールと仮想CPUの数が決まったら，物理マシンご

とに，新規クローラを追加した状態を想定してシミュレーションを実施する．こ
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図 3.3: クローラの監視点データの計測処理の流れ

のシミュレーションにより，物理マシン上で動作する全クローラの計測時刻誤差

を推定する．そして，推定した計測時刻誤差に基づき，クローラの性能要件を満

たせるかを判定する．

新規クローラを追加したとしても，実行中のクローラ群の性能要件を満たせる

物理マシンが見つかった場合は，その物理マシンに新規クローラを追加する．ク

ローラ群の性能要件を満たせる物理マシンが複数見つかる場合も考えられる．こ

の場合は，何らかの規則に基づき，新規クローラを追加する物理マシンを一つに

絞る必要がある．例えば，ランダムで選択してもよいし，物理マシンのCPUやメ

モリなどのリソース残量が最も大きい物理マシンを選択してもよい．

クローラ群の性能要件を満たせる物理マシンが見つからなかった場合は，新規

に物理マシンを購入する．そして，その物理マシンに新規クローラを追加する．最

後に，追加した新規クローラを実行する．提案手法を用いることで，このような

手順に基づいて新規クローラを追加することで，クローラ群の性能要件を満たす

ことを目指す．

3.4.2 シミュレーションのモデルの概要

提案するシミュレータは，クローラの計測処理をシミュレートする．図 3.3に，

クローラの実際の計測処理の流れを示す．
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1. クローラはデータ要求を送信する．データ要求はBACnet/WSの getValues

メッセージである．BACnet/WSはHTTPベースの通信プロトコルであるか

ら，クローラによる送信は，ゲストOSが提供するTCPのAPIを使用する

ことで行われる．

2. ゲストOSは，クローラから受けとったデータ要求を，Dom0のゲストOSに

送信する．

3. Dom0は，物理マシンのネットワークインターフェースカードを介して，ビ

ルのゲートウェイに対してデータ要求を送信する．

4. ビルのゲートウェイは，データ要求に対してデータ応答を返す．

5. Dom0のゲストOSはデータ応答を受信する．

6. Dom0のゲストOSは，受信したデータ応答をDomUのゲストOSに渡す．

7. クローラは，ゲストOSからデータ応答を受け取る．

上記のクローラの計測処理は，クローラのデータ要求の生成処理，DomU上の

ゲストOSのプロセススケジューリングやTCP通信の輻輳制御，同じくDom0上

のゲストOSのプロセススケジューリングやTCP通信の輻輳制御，ハイパーバイ

ザによるCPUスケジューリングなど，様々な処理を内包する．これらのそれぞれ

を詳細にモデル化することで，シミュレーションの精度は向上すると考えられる．

しかし，シミュレーションのモデルが，OSやハイパーバイザの実装へ強く依存度

するようになるため，実装ごとにモデルを作成する必要が生じる．また，シミュ

レーションにかかる時間が長くなる．

そこで，提案するシミュレータでは，通信処理をOSやハイパーバイザに依存し

ないように抽象化する．これにより，OSやハイパーバイザの実装への依存度を低

くし，かつ，シミュレーションにかかる時間を短くする．ただし，監視制御アプ

リケーションは，監視や制御の信号を他の機器とやりとりするタイミングが重要

である．クローラであれば，計測時刻誤差が小さいことが重要である．そこで，2
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図 3.4: シミュレーションのモデルの全体像

章の評価で判明したクローラの計測時刻誤差を増加させる 2要因である 1) VM間

のCPU競合と，2) Dom0のCPUリソース不足の再現性には留意する．

図 3.4に，シミュレーションのモデルの全体像を示す．以下，図 3.4の各要素を

説明する．

物理マシン

物理マシンは，1個以上の物理CPUを持つ．物理CPUは，VMの仮想CPUと

関連付けられる場合がある．この関連付けは 1対 1である．詳細は 3.4.4項で説明

する．

クローラの処理負荷はCPUバウンドであるため，メモリやストレージなどの他

の要素は考慮しない．
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VM

VMは，1個以上の仮想CPUと 1個のクローラを持つ．仮想CPUは，物理CPU

と 1対 1で関連付けられる場合がある．また，その関連付けは，時間の経過により

変化する．物理CPUと関連付けられた場合，仮想CPUは，対応するクローラを

実行できる．VMの数が増えると，仮想CPUの数も増えるため，物理CPUと関

連付けられていない仮想CPUが発生する．物理CPUと関連付けられていない仮

想CPUは，クローラを実行できない．このように物理CPUと仮想CPUの関連付

けをモデル化することで，クローラを実行できない時間帯，すなわちCPU競合状

態を再現する．詳細は 3.4.4項で説明する．

クローラ

クローラは，計測スケジュールとタスクキューを持つ．計測スケジュールは，い

つ，どの監視点データを計測するかを定義している情報である．クローラの計測

処理は「タスク」としてモデル化する．タスクはタスクキューに格納され，仮想

CPUにより処理される．タスクの詳細は 3.4.3項で説明する．

通信プロセス

通信プロセスは，物理マシンのネットワークインターフェースカードを使用し，

別の物理マシンとの通信を行うプロセスである．実際には仮想化ソフトウェアの

一部として実装される場合もあり，例えばXenのDom0や，KVMのホストOSに

相当する．通信プロセスは 1個以上の仮想CPUを持つ．また，VMごとに有限サ

イズのタスクキューを持つ．この有限サイズのタスクキューが，未処理のタスクで

あふれた場合が，Dom0の CPUリソース不足の状態に相当する．詳細は 3.4.3項

で説明する．
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ネットワーク

ネットワークは，データ要求をビルに送信してから，データ応答が返ってくる

までの応答時間を模擬するためのタスクプールである．タスクプールのサイズに

上限はない．

シミュレーション時間

提案のシミュレータにおいて，時間は離散的に進む．離散的に進む時間の最小

単位を，「シミュレーション単位時間」と呼ぶ．

3.4.3 監視点データの計測処理のモデルの詳細

3.4.2項で述べたように，クローラの計測処理は，様々な複雑な処理を内包する．

提案手法では，これを以下の 5種類のタスクとしてモデル化する．

• VM送信タスクは，クローラがデータ要求を作成する処理や，ゲストOSが

データ要求を通信プロセスに渡す処理に相当する．VM送信タスクを処理す

るために必要な時間を，Tvmと記述する．

• VM受信タスクは，ゲストOSがデータ応答を通信プロセスから受け取る処

理や，クローラがデータ応答を解析する処理に相当する．VM受信タスクを

処理するために必要な時間を，Tvmと記述する．

• 通信プロセス送信タスクは，通信プロセスがデータ要求をゲートウェイに送

信する処理に相当する．通信プロセス送信タスクを処理するために必要な時

間を，Tcpと記述する．

• 通信プロセス受信タスクは，通信プロセスがデータ応答をゲートウェイから

受信する処理に相当する．通信プロセス受信タスクを処理するために必要な

時間を，Tcpと記述する．



54 第 3章 仮想化された監視制御アプリケーションの性能の推定

• ネットワークタスクは，データ要求やデータ応答がネットワークを流れてい

る時間や，ビルのゲートウェイがデータ応答を作成する処理に相当する．ネッ

トワークタスクを処理するために必要な時間を，Tnetと記述する．

このように，監視点データの計測処理は，VM送信タスク，通信プロセス送信タ

スク，ネットワークタスク，通信プロセス受信タスク，VM受信タスクの 5つのタ

スクで表わされる．これらのタスクは，以下のように処理される．

1. クローラの計測スケジュールに従い，VM送信タスクが作成され，タスク

キューに格納される．

2. タスクキューに格納されたVM送信タスクは，VMの仮想CPUにより処理

される．処理された時間が Tvmに達すると，VM送信タスクの処理は完了す

る．すなわち，クローラが作成したデータ要求が通信プロセスに渡されたこ

とを意味する．

3. VM送信タスクの処理が完了したら，通信プロセスのタスクキューに通信プ

ロセス送信タスクを格納する．前述のとおり，通信プロセスはVMごとにタ

スクキューを持つため，対応するタスクキューに格納する．ただし，通信プ

ロセスのタスクキューがタスクで一杯の場合は，タスクが処理されて，タス

クキューに空きが生じるまで待つ必要がある．通信プロセス送信タスクを格

納できたら，VM送信タスクを削除する．

通信プロセスがタスクを処理する速度よりも速く，クローラ群がタスクを処

理すると，通信プロセスのタスクキューは一杯になる．これは，通信プロセ

ス (Dom0)の CPUリソースが不足している状況である．このようなモデル

化により，Dom0のCPUリソース不足を模擬する．

4. 通信プロセス送信タスクは，通信プロセスの仮想CPUにより処理される．処

理された時間が Tcpに達すると，通信プロセス送信タスクの処理は完了する．

すなわち，データ要求がビルのゲートウェイに対して送信されたことを意味

する．
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5. 処理が完了した通信プロセス送信タスクはタスクキューから削除される．そ

して，ネットワークタスクが，ネットワークのタスクプールに格納される．

6. ネットワークタスクは，シミュレーション単位時間ごとに処理される．処理

された時間が Tnetに達すると，ネットワークタスクの処理は完了する．すな

わち，データ応答がゲートウェイから返ってきたことを意味する．

7. ネットワークタスクは削除される．そして，通信プロセス受信タスクが，通

信プロセスのタスクキューに格納される．

8. 通信プロセス受信タスクは，通信プロセスの仮想 CPUにより処理される．

処理された時間が Tcpに達すると，通信プロセス受信タスクの処理は完了す

る．すなわち，データ応答をVM上のゲストOSに対して送信したことを意

味する．

9. 処理が完了した通信プロセス受信タスクを削除する．そして，VM受信タス

クを，対応するVMのタスクキューに格納する．

10. VM受信タスクは，VMの仮想 CPUにより処理される．処理された時間が

Tvmに達すると，VM受信タスクの処理は完了する．すなわち，データ応答

の受信および解析が完了したことを意味する．

11. 処理が完了したVM受信タスクを削除する．

以上が，シミュレーション上の監視点データの計測処理である．

3.4.4 物理CPUと仮想CPUのモデルの詳細

物理マシンのリソースが余っていても，VM間のCPU競合が生じれば，アプリ

ケーションの性能は低下する．CPU競合とは，物理CPUを使用したいVMの仮

想CPUが，物理CPUを使用できない状態のことである．ある時点において，「物

理CPUを使用したい仮想CPUの数」が「物理マシンが備える物理CPUの数」を
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図 3.5: シミュレーションにおける仮想CPUの状態遷移

超えると，CPU競合が生じる．CPU競合はクローラの計測時刻誤差の主要因であ

るため，これを模擬できるように物理CPUと仮想CPUをモデル化する．

図 3.5はシミュレーションにおける仮想CPUの状態遷移図である．仮想CPUの

初期状態は「待機状態」である．1つ以上のVM送信タスクまたはVM受信タスク

がクローラのタスクキューにあるとき，そのクローラを実行するVMの仮想CPU

は，待機状態から「実行可能状態」に遷移する．同様に，1つ以上の通信プロセス

送信タスクまたは通信プロセス受信タスクがタスクキューにあるとき，通信プロ

セスの仮想CPUは，待機状態から「実行可能状態」に遷移する．

仮想CPUと関連付けられていない物理CPUは，実行可能状態である仮想CPU

をランダムで 1つ選ぶ．物理CPUに選ばれた仮想CPUは，「実行状態」へと遷移

し，「物理 CPU使用可能時間」が割り当てられる．物理 CPU使用可能時間とは，

物理CPUを解放することなく使用し続けられる時間である．仮想CPUに割当て

る物理CPU使用可能時間の量は，稼働中の物理マシンをモニタリングした情報に

基づいて決定する．詳細は 3.4.5項で述べる．

実行状態のVMの仮想CPUは，シミュレーション単位時間ごとに，クローラの

タスクキューからFirst-In First-Out (FIFO)でタスク (VM送信タスクまたはVM

受信タスク)を選び，処理する．これにより，タスクの「処理された時間」が，シ

ミュレーション単位時間分だけ増加する．また，仮想CPUの物理CPU使用可能

時間は，シミュレーション単位時間分だけ減少する．前項で述べたように，処理

された時間が Tvmに達すると，タスクは処理完了となる．

同様に，実行状態の通信プロセスの仮想CPUは，いずれかのタスクキューから，
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FIFOでタスク (通信プロセス送信タスクまたは通信プロセス受信タスク)を取得

し，処理する．タスクキューはランダムで選択する．

実行状態の仮想CPUは，以下のいずれかの条件を満たした場合に，使用中の物

理CPUを解放する．

• タスクキューにタスクが存在しない場合

• 自身に割当てられた物理CPU使用可能時間が 0以下になった場合

物理CPUを解放した仮想CPUは，タスクキューにタスクがあるなら実行可能状

態に，タスクがないなら待機状態に遷移する．解放された物理CPUは，再び，実

行可能状態の仮想CPUを選ぶ．

物理CPUに選ばれなかった仮想CPUは，タスクキューにあるタスクを処理で

きない．いずれかの物理CPUが解放され，次に自身が選ばれることを待つ必要が

ある．この待ち時間が，CPU競合時間となる．

3.4.5 モニタリング情報に基づくパラメータの決定

3.4.3項で述べたタスクの処理にかかる時間や，3.4.4項で述べた物理CPU使用

可能時間は，物理マシンの性能やCPUスケジューリングのアルゴリズムに依存す

る．物理マシンのスペックやCPUスケジューリングの詳細をモデル化することは，

提案手法の汎用性を低下させることになる．一方，これらのパラメータは，クロー

ラの性能に影響するCPU競合状態を再現するために重要である．そこで提案手法

では，実際にビル群に対して稼働している物理マシン (製品環境の物理マシン)を

モニタリングして得られる情報を用いて，これらのパラメータを決定する方針と

する．これにより，物理CPUやOSの実装に依存することなく，CPU競合の再現

性を高めることを目指す．

タスクの処理時間の決定

Tvmと Tcpを決定するために，クローラを稼働している物理マシンにて，ある期

間Dにおいて，以下のデータを計測する．
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• Uvm: 物理マシン上のVM群のCPU使用時間の合計 (秒)

• Ucp: 通信プロセスのCPU使用時間 (秒)

• N : 物理マシン上のクローラ群が実施した計測処理の回数

VM群のCPU使用時間は，仮想化ソフトウェアが提供するコマンドにより計測

できる．例えばXenであれば xentopコマンドや xlコマンドで計測できる．KVM

であれば psコマンドや topコマンドで計測できる．

VM送信タスクとVM受信タスクを処理するために必要な時間 Tvmは，Uvmと

N から計算する．

Tvm =
Uvm

2N
(3.2)

Uvm

N
は，一回の計測処理にかかる時間を表している．提案手法は，VM送信タスク

とVM受信タスクの処理にかかる時間は等しいという前提を置く．そのため，Uvm

N

を 2で割った値を Tvmとする．

実際には，クローラの送信処理にかかる時間と受信処理にかかる時間は異なる

と考えられる．両方の処理にかかる時間の比率を正確に分析するためには，アプ

リケーション (クローラ)をより詳細にプロファイリングする必要がある．アプリ

ケーションごとに詳細なプロファイリングを行うことは手間である．そこで本章

では，送信と受信の処理時間が等しいという単純な前提のもとで，どれだけの精

度で性能を推定できるかを検証する．このモデルであれば，異なるアプリケーショ

ンでも，そのまま適用できる．

同様に，通信プロセス送信タスクと通信プロセス受信タスクを処理するために

必要な時間 Tcpは，UcpとN から計算する．

Tcp =
Ucp

2N
(3.3)

ここでも，通信プロセス送信タスクと通信プロセス受信タスクの処理にかかる時

間は等しいという前提を置く．

Tnetは，監視点データを計測するごとに，ビルのゲートウェイの応答時間を計

測し，その平均値を計算することで求める．
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図 3.6: 実機評価の環境

物理CPU使用可能時間の決定

クローラを稼働している物理マシンにて，仮想CPUが物理CPUを解放するま

での時間をモニタリングする．Xenであれば xentraceコマンドを使用すること

で，この時間をモニタリングできる．仮想CPUが物理CPUを解放するまでの時

間は，一定ではない．例えば，Xenの creditスケジューラのデフォルトの設定を

用いた場合は，数マイクロ秒から 30ミリ秒の間で変化する．そこで，モニタリン

グ結果から，仮想CPUが物理CPUを解放するまでの時間と，その発生頻度の組

み合わせを取得し，それを線形補間したものを，物理CPU使用可能時間の割り当

て量を決定するための確率密度関数とする．

3.5 評価

提案手法の有効性を検証するために，実機の計測時刻誤差と，提案手法により

推定した計測時刻誤差を比較する．

3.5.1 実機評価の環境

実機評価の環境を図 3.6に示す．評価には 2つの物理マシンを用いる．1つはク

ローラ群を実行するために，もう 1つはビルのゲートウェイ群を模擬するために

用いる．2つの物理マシンは 1000BASE-Tで接続する．クローラ用の物理マシン

は Intel(R) Xeon(R) 1.80GHz CPU (8コア)，32GBメモリを備える．仮想メモリ

アドレスと物理メモリアドレスの変換処理を効率化するExtended Page Tables機
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表 3.1: 実機評価のパラメータ

パラメータ 値

クローラ/VMの数 1から 20

クローラ/VMの追加間隔 (分) 10

各クローラの計測頻度 (rps) 100,200,300

各VMの仮想CPU数 1

クローラ/VM群が使用できる物理CPUの数 7

試行回数 10

能は有効化する．ビルGW用の物理マシンは Intel(R) Xeon(R) 2.60GHz CPU (32

コア)，80GBメモリを備える．物理マシンとVMのOSとしてUbuntu 16.04 LTS

(Linux 4.4.0)を使用する．

仮想化ソフトウェアとしてバージョン 4.6.0のXenを使用し，デフォルトのスケ

ジューラである creditスケジューラを使用する．creditスケジューラの timeslice

パラメータは，デフォルト値である 30ミリ秒を使用する．capパラメータによる

CPU使用量の制限は行わない．また，weightパラメータによるクレジット割り振

りの重みづけは行わない．2章の評価から，Dom0 (通信プロセス)に物理CPUを

占有させることで，性能が向上することがわかっている．そこで，CPU affinity

(Hard affinity)を使い，Dom0に物理 CPUを 1つ占有させる．つまり，VM群は

7個の物理CPUを共有する．また，完全仮想化よりも準仮想化のほうが性能が高

いこともわかっているため，準仮想化を使用する．

本評価で用いるクローラは，2章で使用したクローラと同一である．

3.5.2 実機を用いた評価

実機を用いた評価を実施した．表 3.1に実機評価のパラメータを示す．実機評価

では，クローラ／VMを，10分ごとに 1個ずつ追加し，20個まで追加した．各ク

ローラが管理する監視点数は 100, 200, 300のいずれかとし，各監視点の計測周期

は全て 1秒とした．つまり各クローラの計測頻度 (rps; Request per Second)は 100,
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200, 300のいずれかとした．100rpsは，ビル数棟分の計測に相当する頻度である．

また，各クローラの計測頻度が同じ場合と，異なる場合を評価した．計測頻度が

異なる場合として，以下を評価した．

• 100rpsのクローラと 300rpsのクローラを交互に追加する場合

• 200rpsのクローラと 300rpsのクローラを交互に追加する場合

• 100rpsのクローラ, 200rpsのクローラ, 300rpsのクローラを順番に追加する

場合

各 VMの仮想 CPUは 1個とした．1個の仮想 CPUは，VMが 1個であれば，

300rpsの計測処理に対して十分な計算リソースである．

評価では計測時刻誤差の 99.999パーセンタイル値を計測した．ただし，クロー

ラ／VMを追加している時間帯は除いて，計測時刻誤差の 99.999パーセンタイル

値を計測した．クローラ／VMを追加している時間帯は，通常とは異なる負荷が

物理マシンに加わるため，すでに稼働中のクローラの計測時刻誤差が乱れる可能

性があるが，一時的な乱れだと考えられるためである．以降，単に計測時刻誤差と

記述する場合は，計測時刻誤差の 99.999パーセンタイル値を意味する．実機評価

で得られた計測時刻誤差は，3.5.5項でシミュレーションによる推定値と比較する．

実機評価の際，3.4.5項で述べた方法に基づき，タスクの処理に必要な時間を求

めた．Tvmと TcpはVM数や計測頻度に応じて変化した．その様子を図 3.7に示す．

Tvmと Tcpは，計測頻度が大きくなると小さくなった．Dom0と各VMは，専用の

メモリ領域を使用してデータを交換する．計測頻度が大きくなると，一度のメモ

リコピーで複数のデータ要求／データ応答のデータが交換されるようになるため，

タスクあたりの処理時間は減少する．TcpがVM数に対して反比例する理由も同様

であり，ネットワークに対して送受信するデータが増加するに従い，Dom0とネッ

トワークインターフェースカードの間のデータ交換の効率が上がるためである．

また，3.4.5項で述べた方法に基づき，ネットワークタスクの処理にかかる時間

Tnetの値を求めた．Tnetの値は表 3.2に記す．

また，3.4.5項で述べた方法に基づき，物理CPU使用可能時間の確率密度関数を

求めた．仮想CPUが物理CPUを解放するまでの時間は，xentraceコマンドを用
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いて計測した．計測結果の累積分布関数 (CDF)を図 3.8に示す．Xenの creditス

ケジューラの timesliceパラメータを 30ミリ秒としたため，物理CPU解放までの

時間の最大値はほぼ 30ミリ秒となった．この「物理CPUを開放するまでの時間」

を，物理CPU使用可能時間とする．

3.5.3 シミュレーションによる評価

次に，シミュレーションによる評価を実施した．シミュレーション評価のパラ

メータを表 3.2に示す．VMの数は 2個から 20個までとした．1個目のVMを追加

する時点では，稼働中の物理マシンのモニタリング情報が存在しない．したがっ

て，タスクの処理にかかる時間 (Tvmと Tcp)やネットワークタスクの処理にかかる

時間 Tnetを計算できず，よって計測時刻誤差を推定できないためである．

Tvmと Tcpは計測頻度とVM数に応じて変化したため (図 3.7)，最新の値を用い

てシミュレーションを実施した．例えば，X個目のクローラ／VMを追加した場

合の計測時刻誤差を推定する場合は，すでにX − 1個のクローラが稼働中である

から，クローラ／VMがX − 1個のときの Tvmと Tcpを使用してシミュレーショ

ンを実施した．通信プロセスが VMごとに備えるタスクキューのサイズは，Xen
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のDom0とVMがデータ交換するためのリングバッファのサイズと同じ 256とし

た．シミュレーションによる推定結果は，3.5.5項で述べる．

3.5.4 指数関数の近似式による評価

提案手法に対する比較手法として，近似式による推定を実施した．実機評価の

結果，計測時刻誤差の実測値は指数的に増加することがわかった．そこで，実測値

を最小二乗法を用いて以下の指数関数にフィッティングすることで近似式を求め，

その近似式を用いて計測時刻誤差を推定した．

y = aebx (3.4)

xがクローラ／VMの数，yが計測時刻誤差である．aと bは係数である．

VMを追加するごとにフィッティングをやりなおし，推定した．すなわち，実行

中のVM数がXのとき，VM数が 1からXまでの計測時刻誤差の実測値から近似

式を求め，VM数が (X +1)のときの計測時刻誤差を推測した．この指数関数近似

による推定結果は，3.5.5項で述べる．
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表 3.2: シミュレーションのパラメータ

パラメータ 値

クローラ／VMの数 2から 20

クローラ／VMが使用できる物理CPUの数 7

通信プロセスが占有する物理CPUの数 1

各VMの仮想CPU数 1

計測スケジュール 実機評価と同じスケジュール

Tvm (マイクロ秒) 図 3.7の値

Tcp (マイクロ秒) 図 3.7の値

Tnet (マイクロ秒) 660.855

通信プロセスのタスクキュー長 256

シミュレーション期間 (秒) 30

シミュレーションの単位時間 (マイクロ秒) 1

3.5.5 実機評価とシミュレーション評価の比較

本節では，実機評価で得られた計測間隔誤差と，シミュレータにより推定した

計測時刻誤差と，指数関数近似により推定した計測時刻誤差とを比較した結果に

ついて述べる．

各クローラの計測頻度が等しい場合

図 3.9から図 3.11は，各クローラの計測頻度が等しい場合の，計測時刻誤差の

実測値と推定値の比較結果をまとめる．

計測時刻誤差の実測値は，VM数が物理CPUコア数である 8個に達するまでは

ほぼ横ばいであり，さらにVMが増えると，指数的に増加している．計測頻度が

100rpsの場合は，クローラ／ VM数が 20個の時点でも計測時刻誤差は約 5ミリ

秒だが (図 3.9)，計測頻度が 300rpsの場合は，クローラ／VM数が 18個の時点で

100秒を大きく超えた (図 3.11)．そのため，VMが 17個の時点から，グラフがほ

ぼ真上に伸びている．この計測時刻誤差の増大は，Dom0がクローラ群から受信
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図 3.9: 全クローラの計測頻度が 100rpsの場合

したデータ要求と，ビルのゲートウェイから受信したデータ応答を処理しきれな

くなったため，生じている．

提案手法による推定値は，実測値と同様に，VM数に対して指数的に増加して

いるが，実測値の計測時刻誤差の増加率を正確に再現できていない．計測頻度が

100rpsと 200rpsの場合は，クローラ／VMが 12個以上の場合において，実測値よ

りも大きく推定している．100rpsの場合は約 20ミリ秒，200rpsの場合は約 35ミ

リ秒，大きく推定している．一方，計測頻度が 300rpsの場合は，クローラ／VM

が 15個から 17個の場合において，実測値よりも小さく推定している．つまり，実

測値のほうが推測値よりも，計測頻度の増加に対する計測時刻誤差の増加率が高

い．ただし，計測頻度が 300rpsの場合において，クローラ／VM数が 18個の時点

で計測時刻誤差が増大する傾向は再現できた (図 3.11)．提案手法は，通信プロセ

ス (Dom0)にVMごとの有限長のタスクキューを設けたが，このキューがタスク

で一杯になることで，Dom0のボトルネック状態を再現できたと考える．

指数関数近似式による推定は，実測値よりも低く推定する結果となった．また，

計測頻度が 300rpsの場合は，実測値との差が大きく，計測時刻誤差が増大するVM

数の推定に失敗している．計測時刻誤差を実測値よりも低く推定する場合，「新た

にクローラを追加しても，クローラの性能要件を満たせる」とビル管理システム
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図 3.10: 全クローラの計測頻度が 200rpsの場合

の運用者が判断してしまい，本当は計測時刻誤差が大きくなるにも関わらず，ク

ローラを追加してしまう可能性が生じる．また，Dom0がボトルネックとなり計測

時刻誤差が増大する状況は，監視制御機能への影響が大きいことから，推定に失

敗することは避けたい．したがって，提案手法は指数関数近似式による推定より

も実運用において役立つと言える．

各クローラの計測頻度が異なる場合

図 3.12から図 3.14に，各クローラの計測頻度が異なる場合の，計測時刻誤差

の実測値と推定値の比較結果をまとめる．計測頻度が 100rpsと 300rpsのクロー

ラが混在する場合 (図 3.12)の，各クローラの計測頻度の平均値は 200rpsである1．

Dom0の処理量は，各クローラの計測頻度が 200rpsの場合 (図 3.10)と同等のはず

だが，クローラ／VMが 20個の時点で計測時刻誤差の実測値が増大した．計測頻

度が 100rpsと 200rpsと 300rpsのクローラが混在する場合も同様の傾向であり，ク

ローラ／VMが 20個の時点で，計測時刻誤差の実測値が増大した (図 3.14)．

1ただし，クローラ／ VMの数が奇数の場合は，各クローラの計測頻度の平均値は 200rpsでは

ない．
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図 3.11: 全クローラの計測頻度が 300rpsの場合

今回，Xenの creditスケジューラをデフォルトの状態で使用した．capパラメー

タによる CPU使用量の制限や，weightパラメータによるクレジット割り振りの

重みづけは行っていない．つまり，クローラ／VMの処理負荷の大きさによらず，

各VMに均等にCPUリソースが配分される．そのため，各クローラの計測頻度が

200rps均一の場合よりも，計測頻度が 100rpsのクローラと 300rpsとクローラが混

在している場合のほうが，300rpsのクローラのCPUリソースが不足しやすく，動

作が不安定になりやすい．その影響が，クローラ／VMが 20個の時点で発生した

結果，計測時刻誤差の実測値が増大したと考える．

一方で提案手法のシミュレータは，Xenの creditスケジューラのCPUリソース

の配分アルゴリズムを模擬していない．VMの負荷に応じてCPUリソースが配分

されるアルゴリズムとなっているため，CPUリソース不足によりクローラの動作

が遅れるという状況が，実機よりも起こりづらい．そのため，図 3.14において，提

案手法はクローラ／VMが 20個の時点でも計測時刻誤差が増大していない．また，

図 3.12においても，クローラ／VMが 20個の時点で，実測値よりも小さく推定し

ている．ただし、クローラ群の計測頻度が同じ場合 (図 3.9～図 3.11)と同様に，指

数関数近似式による推定値と比べると，提案手法による推定値の方が計測時刻誤

差の増加傾向を再現できている．



68 第 3章 仮想化された監視制御アプリケーションの性能の推定

 0

 20

 40

 60

 80

 100

 2  4  6  8  10  12  14  16  18  20

計
測

時
刻

誤
差
の

9
9
.
9
9
9
t
h
 
(
m
s
)

クローラ／VMの数

実測値
提案手法

指数関数近似

図 3.12: 計測頻度が 100rpsと 300rpsのクローラが混在する場合

図 3.13は，計測頻度が 200rpsと 300rpsのクローラが混在している場合の結果

である．この場合，クローラ／VM数が 19個の時点で，Dom0がボトルネックに

なり，計測時刻誤差が増大している．このように，Dom0がボトルネックになる状

況が発生している場合は，提案手法は計測時刻誤差が増大するVM数を推定でき

ている．

指数関数近似式による推定は，実測値よりも低く推定する結果となった．また，

Dom0がボトルネックとなり計測時刻誤差が増大するVM数の推定に失敗した．各

クローラの計測頻度が異なる場合でも，提案手法は指数関数近似式による推定よ

りも実運用において役立つと言える．

提案手法の効果

2.2.2項で述べたように，空調や照明の状態を 1秒間隔で計測する場合であれば，

典型的な計測時刻誤差の許容限界は 50ミリ秒である．この条件に基づいて，提案

手法の効果を分析する．

国土交通省の資料に基づき，日本における中小規模ビルの総数を 54万棟とする2．

2国土交通省 平成 25年法人土地・建物基本調査 付表 3-7-2 建物の延べ床面積別建物件数から計

算．住宅以外の建物で，延べ床面積が 500m2 以上／ 10000m2 以下の建物を中小規模ビルとした．



3.5. 評価 69

 0

 20

 40

 60

 80

 100

 2  4  6  8  10  12  14  16  18  20

計
測

時
刻

誤
差
の

9
9
.
9
9
9
t
h
 
(
m
s
)

クローラ／VMの数

実測値
提案手法

指数関数近似

図 3.13: 計測頻度が 200rpsと 300rpsのクローラが混在する場合

各ビルの監視点数を 100個とすると，監視点の総数は 540万点となる．この全て

を，1秒間隔で計測する状況を想定する．各クローラの計測頻度を 200rpsとすると，

27000個のクローラが必要である．仮に，本章の評価で用いた物理マシン (8CPU

コア)を用いて，単純に 1コアあたり 1クローラ／VMとした場合，27000
8

= 3375

台の物理マシンが必要となる．一方，図 3.10に示すように，提案手法を用いるこ

とで，クローラが 18個までであれば，計測時刻誤差は 50ミリ秒以下であると判

定する．つまり提案手法を用いた場合は，27000
18

= 1500個の物理マシンで，国内の

中小ビル群を管理できる．1コアあたり 1クローラとした場合と比べて，半分以下

の物理マシン数で抑えられるため，設備投資を削減できると言える．

評価のまとめ

本評価を通じて，提案手法は，指数関数近似による推定よりも計測時刻誤差の

増加の傾向を再現できることがわかった．一方で，推定の精度には改善の余地が

あることもわかった．特に，クローラごとの計測頻度が異なる場合に，計測時刻

誤差が増大するVM数をより正確に推定できる必要がある．

仮想化ソフトウェアのCPUリソースの配分アルゴリズムをシミュレーションの
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図 3.14: 計測頻度が 100rpsと 200rpsと 300rpsのクローラが混在する場合

モデルに組み込むことで，推定の精度を高められる可能性がある．仮想化ソフト

ウェアの挙動を正確にモデル化するほど，推定精度は向上すると考えられるが，そ

れは特定の仮想化ソフトウェアに対する提案手法の依存度を高め，汎用性を低下さ

せることを意味する．複数の仮想化ソフトウェアに共通するCPUリソースの配分

アルゴリズムを抽象化して，それをシミュレーションのモデルとする必要がある．

3.6 むすび

本章では，監視制御アプリケーションの 1つであるクローラを想定し，VM上

で動作するクローラの計測時刻の誤差を推定する手法を提案した．実機を用いた

評価結果と，提案手法による推定結果と，指数関数の近似式による推定結果を比

較した結果，提案手法は指数関数による推定よりは有用であることがわかったが，

その推定精度には改善の余地があることもわかった．

今後は，推定精度を改善するために，シミュレーションのモデルを修正し，Xen

以外の仮想化ソフトウェアや，異なる物理マシンを使用した場合の推定精度も評

価する．また，図 3.4に示したモデルの VMとDom0のタスクキューを待ち行列

と捉え，待ち行列理論に基づく解析的アプローチによる計測時刻誤差の推定手法
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も検討する．
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第4章 パブリッククラウドにおける

監視制御アプリケーションの

稼働率の向上

4.1 まえがき

第 3章では，仮想化環境における監視制御アプリケーションの性能を保証する

ことを目指し，その性能を推定する手法を提案した．これにより，プライベート

クラウドにおいて監視制御アプリケーションを構築し，安定して稼働させること

が可能となる．本章では，パブリッククラウドにおいて監視制御アプリケーショ

ンを実行することを想定する．パブリッククラウドでは，プライベートクラウド

と異なり，ユーザが物理マシンなどのハードウェアを自由に選定できない．すな

わち，ユーザがハードウェアの性能や稼働率を調節することが難しい．

一部のパブリッククラウドのプロバイダは，パブリッククラウド上の物理マシン

を占有するサービスを提供している．このサービスを利用すれば，性能を調節す

ることはできると考えられる．一方，パブリッククラウドのプロバイダが保証する

典型的な稼働率は，99.95%である．これは，IEC 61508の Safety Integrity Level 1

(SIL1)で定義される監視制御システムの稼働率 99.999%に及ばない値である．監

視制御システムをパブリッククラウドで実行するためには，この稼働率のギャップ

を解消する必要がある．

アプリケーションの稼働率を向上させるための方法は広く研究されている．Web

サーバのように，状態を保持しなくても動作を継続できるアプリケーションであれ

ば，冗長化は容易であり，それによって稼働率を向上できる．例えば，Keepalived
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という冗長化のためのオープンソースのソフトウェアが存在する1．2章や 3章で

扱ってきたクローラも，Webサーバと同様，冗長化は容易である．一方，状態を

保持することが重要なアプリケーションの場合は，冗長化のために，主系 (プライ

マリ)と従系 (バックアップ)との間で，状態の同期を取る必要がある．監視制御シ

ステムにおいては，フィードバック制御を行うコントローラが，この種類のアプ

リケーションに相当する．

監視制御システムにおいて，フィードバック制御コントローラを対象とした稼

働率向上の研究は存在する [57, 81]．しかし，これらの研究は，フィードバック制

御コントローラと制御対象の機器が，物理的に近くに存在する環境を想定してい

る．そのため，フィードバック制御コントローラ間で機器の制御の状態を共有す

ることが容易である．パブリッククラウドにてフィードバック制御コントローラ

を実行する前提で，稼働率を向上する手法を提案している文献もある [36, 94]．こ

れらの手法では，複数のフィードバック制御コントローラを別々のクラウド上で

実行し，いずれか一つのフィードバック制御コントローラをプライマリとして選

択する．プライマリコントローラの故障の検出は，ビル／工場に設置した専用の

ゲートウェイを通じて行う．

本章では，パブリッククラウドにおけるフィードバック制御コントローラの稼

働率を向上するための手法を提案する．提案手法は，既存手法と同様に，複数の

フィードバック制御コントローラを異なるクラウド上で実行する．ただし，異常

の検出や，新たなプライマリコントローラの選択に，専用のゲートウェイを利用

しない．フィードバック制御コントローラ同士がハートビートを交換することで，

互いの異常を検出し，新たなプライマリコントローラを選択する．

以降，4.2節で想定環境について説明する．次に 4.3節にて関連研究をまとめる．

4.4節にてパブリッククラウドの性能の安定性について調査した結果を述べる．4.5

節にて提案手法を説明し，4.6節にて評価結果を述べる．4.7節でパブリッククラ

ウドを利用した場合の設備投資の削減効果について考察し，最後に，4.8節で本章

のまとめを述べる．

1http://www.keepalived.org
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図 4.1: 本章で想定する環境

4.2 想定環境

本章では，第 2章や第 3章と同様に，遠隔ビル管理システムを想定する．ただ

し，本章で注目する監視制御アプリケーションは，クローラではなく，フィード

バック制御コントローラである．

図 4.1に，本章で想定する遠隔ビル管理システムを示す．本章では，遠隔ビル管

理システムの事業者が，遠隔ビル管理システムをパブリッククラウド上で構築する

ことを想定する．クローラの挙動は 2章や 3章と同様である．フィードバック制御

コントローラは，遠隔ビル管理システムのサーバ上で動作し，クローラが計測した

監視点データを受け取り，制御値を計算し，ビルのゲートウェイに送り返す．制御

信号のやりとりは，クローラと同様に，BACnet/WS [7]や IEEE1888 [40]，oBIX

[71]などの遠隔監視制御向けの通信プロトコルを使う．図では，クローラやフィー

ドバック制御コントローラは，左側のビルのみと通信しているが，実際には複数

のビルと通信する可能性がある．
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4.3 関連研究

本章では，関連研究としてパブリッククラウドの性能の安定性に関する研究と，

監視制御アプリケーションの冗長化に関する研究について述べる．

4.3.1 パブリッククラウドの性能の安定性

パブリッククラウドの性能の安定性は，広く研究されている．多くの研究にお

いて，パブリッククラウドの性能は不安定であると述べられている．性能とは，具

体的には以下である．

• VMを作成する時間

パブリッククラウドでは，まずユーザはVMを作成する．作成にかかる時間

が短く，安定しているほど，ユーザは自身のシステムを運用しやすくなる．

文献 [73]は，Amazon EC2において，VMの作成にかかる時間がばらつくこ

とを検証している．

• VMを起動する時間

ユーザは，VMを作成した後に，そのVMを起動する．起動にかかる時間が

短く，安定しているほど，ユーザは自身のシステムを運用しやすくなる．文

献 [42, 63]は，Amazon EC2や Google Compute Engine，Microsoft Azure

において，VMを起動する時間がばらつくことを検証している．

• 計算性能

文献 [1]は，Amazon EC2において，HadoopのMap/Reduceジョブを完了

するまでの時間がばらつくことを検証している．

• ストレージアクセスの性能

文献 [42, 61, 89]は，Amazon EC2とGoogle Compute Engineにおいて，ス

トレージのアクセス性能がばらつくことを検証している．

上記の性能の不安定さは，パブリッククラウドならでの，以下の要因によるも

のと考えられている．
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• VM間の干渉

パブリッククラウドでは，ユーザが作成したVMは，一般的には「共有ホス

ト」に配置される．共有ホストとは，他のユーザが作成したVMも配置され

る可能性がある物理マシンである．単一の物理マシン上で複数のVMを実行

した場合，VM間の干渉により，互いの性能が低下することが知られている

[39, 56, 76, 83]．

• ライブマイグレーション

パブリッククラウドのプロバイダが，ユーザが作成したVMに対して「ライ

ブマイグレーション」を実行している可能性がある．ライブマイグレーショ

ンとは，ある物理マシン上で稼働しているVMのメモリや仮想デバイスの状

態を，別の物理マシンに転送する技術である．これにより，稼働状態のVM

上のOSやアプリケーションを，稼働状態のまま，別の物理マシンに移動で

きる．ライブマイグレーションを実行中のVMの性能は低下することが知ら

れている [2, 35]．

パブリッククラウドのプロバイダがライブマイグレーションを実行する理由

は 2つ考えられる．1つ目の理由は，メンテナンスのためである．ある物理

マシンをメンテナンスするためには，その物理マシンを停止する必要がある．

物理マシンを停止する前に，その物理マシン上で稼働しているVMを，ライ

ブマイグレーションにより別の物理マシンに移動する．もう 1つの理由は，

物理マシンのリソースの利用率向上のためである．パブリッククラウドのプ

ロバイダとしては，稼働している物理マシンの数を減らしたい．そのほうが，

物理マシン群のための電気料金を減らせるためである．そのためには，物理

マシンのリソース利用率が最大になるように，VMを適切に物理マシンに配

置する必要がある．VMが消費するリソース量は一定とは限らないため，リ

ソース消費量の変動に応じてライブマイグレーションを実行することで，物

理マシンのリソース利用率を向上できる．

• Dynamic Voltage and Frequency Scaling (DVFS)

パブリッククラウドのプロバイダが，DVFSと呼ばれる技術により，物理マ
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シンのCPUクロックを動的に調整している可能性がある．クロックを落と

したほうが，消費電力を抑えられるためである．一方で，クロックを落とす

と，VMの性能は低下する．

一部のパブリッククラウドのプロバイダは，ユーザに物理マシンを占有させる

サービスを開始している．この物理マシン占有サービスを利用することで，上述

の性能変動の要因を避けることができると考えられる．しかし，物理マシン占有

サービスを利用した場合の性能評価を実施している研究は存在しない．そこで本

章では，4.4節で占有サービスの性能を調査する．

4.3.2 監視制御アプリケーションの冗長化

フィードバック制御コントローラの冗長化手法は，フィードバック制御コント

ローラと制御対象機器が物理的に近接している環境であれば，実用レベルに到達

している [57, 81]．フィードバック制御コントローラと制御対象機器が近接してい

るため，冗長化構成にあるコントローラ同士も近接している．したがって，監視制

御の状況を共有することや，フィードバック制御コントローラに異常が発生した

ことを検出することが容易である．また，監視制御を正確に行うためには，フィー

ドバック制御コントローラと制御対象機器間の通信遅延を考慮する必要があるが，

両者が近接していれば，通信遅延は無視できるほど小さくなる．したがって，各

フィードバック制御コントローラが，自身と制御対象機器との間の通信遅延を把

握する必要がない．

クラウド上で冗長化する場合，フィードバック制御コントローラ同士や，フィー

ドバック制御コントローラと制御対象機器が近接するとは限らない．したがって，

冗長構成にあるフィードバック制御コントローラ間で，監視制御の状況や，異常が

発生したことを，どのように共有するかが重要となる．また，フィードバック制御

コントローラと制御対象機器の間の通信遅延を無視できなくなるため，フィード

バック制御コントローラごとに制御対象機器との間の通信遅延を把握する必要が生

じる．通信遅延を考慮して遠隔地から監視制御を行うNetworked Control System

(NCS)の研究は多く存在する [3, 20, 27, 28, 30, 32, 41, 59, 91]．ただし，これらの



4.3. 関連研究 79

研究では，制御の品質は考慮しているが，フィードバック制御コントローラの冗

長化は考慮していない．

Hegazyらは文献 [36]にて，ビル側に「制御情報」を記憶するゲートウェイを設

置することで，フィードバック制御コントローラの冗長化を実現する手法を提案

している．本手法では，クラウド上で複数のフィードバック制御コントローラを稼

働させ，そのうちの 1つを主系 (プライマリコントローラ)とする．プライマリコ

ントローラは制御を行なう．ゲートウェイは制御情報として，いつ，どのフィード

バック制御コントローラから制御信号を受けたかを記憶する．全てのコントロー

ラは，ゲートウェイを経由して機器の状態と制御情報を取得する．制御情報を取

得することで，各コントローラは，プライマリコントローラが最後に制御を実施

した時刻を把握できる．そして，プライマリコントローラによる制御が一定時間

行われてない場合に，プライマリコントローラを切り替える．この切り替え処理

をフェイルオーバーと呼ぶ．各コントローラには固定の優先度が設定されており，

その優先度に基づいて次のプライマリコントローラを決定する．

文献 [36]の手法は，ビル側に設置されるゲートウェイの機能に依存しており，

ゲートウェイが Single Point Of Failure (SPOF)となりうる．ゲートウェイを冗長

化することで SPOFではなくなるが，その場合は，ゲートウェイ間で制御情報の

一貫性を維持する仕組みが必要となる．また，文献 [36]では論じられていないが，

実際にはゲートウェイは数百から数万の監視点を収容する可能性がある．また，監

視制御を行うフィードバック制御コントローラは複数存在する．よってゲートウェ

イは最大で数万点分の制御情報を維持し，どの制御情報をどのコントローラに返

すべきかを判断しなければならない．これらの要件は，ゲートウェイの実装を複

雑化させるし，またゲートウェイに必要な計算資源を増加させる．よって，設備

投資の削減や，システムの修正・更新が容易になるというクラウドコンピューティ

ングのメリットを低減させる．

文献 [94]は，各フィードバック制御コントローラが自身の情報をブロードキャ

ストし，その情報に基づいて，管理ノードがプライマリコントローラを選択する

方法である．自身の情報として，CPU使用状況を告知する点が特徴である．管理

ノードはCPUに余裕があるフィードバック制御コントローラをプライマリコント
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図 4.2: 共有ホストを用いたApache HTTPサーバの性能評価の環境

ローラとして選択する．文献 [94]の手法は，管理ノードが SPOFとなりうる．ま

た，少なくとも管理ノードは全てのフィードバック制御コントローラのブロード

キャストを受信し，状態を管理する必要があるため，管理ノードに処理負荷が集

中する．さらに，全フィードバック制御コントローラが，同一のブロードキャス

トドメインに存在する必要がある．よって，ブロードキャストが届く範囲内でし

か，フィードバック制御コントローラを冗長化できないという制約が生じる．

4.4 パブリッククラウドにおける性能の安定性の調査

本節では，パブリッククラウドにおける性能の安定性を調査する．パブリック

クラウドとしてAmazon EC2を使う．性能を計測するためのアプリケーションと

して，ウェブサーバを用いる．

4.4.1 共有ホストを用いた性能評価

ウェブサーバの性能を，共有ホストを用いて計測する．図 4.2は，共有ホストを

使用した場合の実験環境を表している．この環境では，評価対象のVMと，テス

ター用のVMを，異なる共有ホストにて起動する．どちらのVMも，共有ホスト

にて起動しているため，その性能は，別のVMの動作により干渉を受ける．評価
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図 4.3: 共有ホスト上で稼働するウェブサーバの平均応答時間の推移

対象のVMのインスタンスタイプはm3.large，テスター用のVMのインスタンス

タイプはm4.xlargeとする．また，どちらのVMもOSはUbuntu 14.04.4 LTSと

する．また，どちらのVMも東京リージョンのアベイラビリティゾーンCにて起

動する．アベイラビリティゾーンは，複数のデータセンターから構築される．2つ

のVMは，アベイラビリティゾーンC内のプライベートネットワークにより接続

される．

ウェブサーバとしてApache HTTPサーバ (バージョン 2.4.7)を使用する．BAC-

net/WSや IEEE1888は機器の状態をXMLでやりとりするため，それを想定した

XMLファイルを用意する．XMLファイルのサイズは 3KBとする．

テスターにはApache HTTPサーバに付属するベンチマークツールである abコ

マンドを用いる．abコマンドは，毎分 100個のコネクションを接続し，コネクショ

ンごとに 3000個のHTTP GETリクエストを送信する．つまり，30万個のHTTP

GETリクエストを送信する．HTTP GETリクエストの対象は前述のXMLファイ

ルとする．そして，30万回のファイル取得における平均応答時間を計測する．こ

の評価を 30日間，続けて実施する．

図 4.3に共有ホスト上で稼働するウェブサーバの，平均応答時間の推移を示す．

図 4.3から，多くの時間において，平均応答時間が 10ミリ秒から 11ミリ秒になっ
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図 4.4: 占有ホスト上で稼働するウェブサーバの平均応答時間の推移

ていることがわかる．一方で，平均応答時間が 15ミリ秒を超える場合や，20ミリ

秒を超える場合も存在した．この結果から，共有ホスト上のアプリケーションの

性能は，一時的に低下する場合があると言える．

4.4.2 占有ホストを用いた性能評価

ウェブサーバの性能を，占有ホストを用いて計測する．図 4.4は，占有ホストを

使用した場合の実験環境を表している．この環境では，評価対象のVMは占有ホス

トにて起動し，テスター用のVMを共有ホストにて起動する．したがって，評価対

象のVMの性能は，別のVMの動作により干渉は受けないが，テスター用のVM

の性能は，別のVMの動作により干渉を受ける．評価対象のVMのインスタンス

タイプはm3.large，テスター用のVMのインスタンスタイプはm4.xlargeとする．

また，どちらのVMもOSはUbuntu 14.04.4 LTSとする．また，どちらのVMも

東京リージョンのアベイラビリティゾーン Cにて起動する．2つのVMは，アベ

イラビリティゾーンC内のプライベートネットワークにより接続される．Apache

HTTP Serverや abコマンドの使い方は，4.4.1項と同じである．

図 4.5に占有ホスト上で稼働するウェブサーバの，平均応答時間の推移を示す．

図 4.5から，多くの場合において，平均応答時間が約 11ミリ秒になっていること

がわかる．平均応答時間が 12ミリ秒を超えた回数は 16回であり，約 0.03%の確率

であった ( 16
60×24×30

)．



4.4. パブリッククラウドにおける性能の安定性の調査 83

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500  600  700

平
均

応
答

時
間

 
(
m
s
)

経過時間 (時)

図 4.5: 占有ホスト上で稼働するウェブサーバの平均応答時間の推移

表 4.1: 共有ホストと占有ホストの平均応答時間の統計値 (単位はミリ秒)

最小値 平均値 最大値 標準偏差値

共有ホスト 8.999 10.719 21.991 1.141

占有ホスト 10.169 10.639 18.889 0.191

4.4.3 共有ホストと占有ホストの性能の比較

図 4.6に，共有ホストを使用した場合と占有ホストを使用した場合の平均応答時

間のCumulative Distribution Function (CDF)を示す．また，表 4.1に平均応答時

間の統計値を示す．占有ホストを使用した場合の平均応答時間の多くは，10ミリ

秒から 12ミリ秒の間であり，共有ホストを使用した場合の平均応答時間と比べて

ばらつきが小さい．4.4.1項と 4.4.2項で実施した 2つの評価では，テスターは共有

ホスト上の同一のVMを使用した．そのため，平均応答時間のばらつきの差は，共

有ホストと占有ホストの違いにより生じていると考えられる．共有ホストの場合

は，別のユーザのVMが稼働する可能性があり，別のユーザのVMの挙動によっ

ては，ウェブサーバの応答処理速度が低下する．一方で占有ホストの場合は，別

のユーザのVMが稼働することはない．
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本節の評価から，共有ホストと占有ホストの性能の安定性には差があることを

確認できた．監視制御アプリケーションは性能の安定性を要求するため，監視制

御アプリケーションをパブリッククラウドにおいて実行する場合は占有ホストを

利用することが望ましいと言える．

4.5 提案手法

本節では，フィードバック制御コントローラを冗長化することで，その稼働率

を向上させる方法を説明する．

4.5.1 提案手法の概要

提案手法を適用したシステム構成の一例を図 4.7に示す．HMIやDBサーバな

どは省略している．また，データ要求の矢印も省略している．文献 [36]で提案さ

れている手法と同様に，複数のクラウドのリージョンを利用してフィードバック

制御コントローラを冗長化する．各リージョンのクラウドのプロバイダは同一で
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図 4.7: 提案手法を適用したシステムの構成図

よい．VMの稼働率を個別に保証できればよい．例えばAmazon EC2はリージョ

ンごとに稼働率を保証するため，複数のリージョンを利用すればよい．

図 4.7において，C1やC2はフィードバック制御コントローラであり，個別のVM

上で稼働する．C1’とC1”はC1の，C2’とC2”はC2のバックアップ用のフィード

バック制御コントローラである．各リージョンにはクローラが動作しており，全て

のフィードバック制御コントローラはクローラから監視点データを受け取る．そ

して，プライマリコントローラだけが制御を行う．

提案手法では，フィードバック制御コントローラ間で生存確認用のメッセージ

(ハートビート)を定期的にユニキャストで交換することで，他のコントローラが

正常に動作しているかを把握する．例えば，図 4.7では，C1とC1’とC1”がハー

トビートを交換する．そして，プライマリコントローラの異常や，プライマリコン

トローラとゲートウェイの間のネットワーク異常を検出したらフェイルオーバー

する．例えばWANやコントローラ C1に障害が発生したら，C1の代わりに C1’

またはC1”が監視制御を引き継ぐ．また，各フィードバック制御コントローラは，

自身とゲートウェイの間のネットワーク (制御用ネットワーク)の通信遅延などを

把握しておき，それをハートビートに含めて他のコントローラと共有する．通信
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遅延を考慮して新しいプライマリコントローラを選択することにより，フェイル

オーバー時の制御品質の低下を抑える．

このように提案手法では，フィードバック制御コントローラ同士の通信のみで

フェイルオーバーが可能であるため，ゲートウェイが制御情報を記録しなくてよ

い．これにより，ゲートウェイは単なるルータまたはプロトコル変換装置でよく

なり，KeepalivedやVirtual Router Redundancy Protocol (VRRP) [66]などの既

存手法により冗長化できる．よって，システムから SPOFを除外できる．

4.5.2 フィードバック制御処理

各フィードバック制御コントローラは，スミス予測器 [82]を用いたPID制御を

行う．図 4.8に，制御ロジック図を示す．RIはReference Inputの略で，制御で目

指すべき状態 (目標値)を意味する．スミス予測器は，通信遅延が制御品質に与え

る悪影響を除外するために，制御対象の機器の状態推移モデルと，通信遅延の値

を必要とする．各コントローラは，フィードバック制御処理として，以下の処理

を定期的に行う．

1. 監視点データの取得

監視点データは，クローラが計測してくれているため，それを取得する．ク

ローラから直接取得してもよいし，データベースを介して取得してもよい．

最新の監視点データを取得できなければ，正確な制御は行えない．そこで，

Ndata回連続で監視点データを取得できない場合に，フィードバック制御コ
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ントローラは自身を異常だと判定することとする．プライマリコントローラ

が，自身を異常だと判定した場合，プライマリコントローラの選択処理を行

う．プライマリコントローラの選択処理は 4.5.4項で述べる．

Ndataの値が小さいと，ネットワークの不調やアプリケーションの動作の乱

れに対して敏感になる．フェイルオーバーを素早く開始するため，異常によ

る制御品質の低下を抑えやすい．しかし，異常が一時的なものである場合は，

フェイルオーバーしないほうが，制御品質の低下を抑えられる可能性もある．

一時的な異常に対してフェイルオーバーしないためには，Ndataの値を大き

くすればよいが，フェイルオーバーを開始するまでの時間が遅くなる．制御

品質の低下をできるだけ抑えられるよう，Ndataの値を適切に定める必要が

ある．

2. 通信遅延の取得

スミス予測器は現在の通信遅延の値を使用して制御値を調整するため，通信

遅延を取得する必要がある．通信遅延を取得する方法はいくつか考えられる．

クローラが通信遅延を計測して，それをフィードバック制御コントローラに

伝える方法がある．フィードバック制御コントローラが制御値を送信する際

に，通信遅延を計測してもよい．また，pingコマンドなどを用いた計測を，

別途実行してもよい．

3. 制御値の計算

自身がプライマリコントローラであれば，取得した監視点データと通信遅延

から，制御値を計算する．そして，制御値をゲートウェイに送信する．

4.5.3 生存確認処理

各フィードバック制御コントローラは，生存確認処理として，以下の処理を一

定間隔 Thbで実施する．

1. ハートビートの送信

フィードバック制御コントローラは，他のフィードバック制御コントローラ
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群に，ハートビートを送信する．ハートビートには，タイムスタンプや自身

の識別子，自身の役割，自身の状態を含める．自身の役割とは，プライマリ

コントローラまたはバックアップコントローラのどちらかである．自信の状

態とは，正常か異常かのどちらかである．また，フェイルオーバー時の制御

品質の低下を抑えるため，自身の制御用ネットワークの通信遅延や，制御の

情報もハートビートに含める．制御の情報とは，「制御の目標値」と「制御対

象機器の状態」の差の積算値である．

2. ハートビートの受信

ハートビートを受信したフィードバック制御コントローラは，ハートビート

に含まれている情報を参照し，記憶する．ハートビートの送信元がプライ

マリコントローラで，かつ，異常状態であると記されている場合は，プライ

マリコントローラの選択処理を行う．プライマリコントローラの選択処理は

4.5.4節で述べる．

3. 受信確認の返信

ハートビートを受信したフィードバック制御コントローラは，ハートビート

の送信元に受信確認を返す．

4. 受信確認の受信

ハートビートを送信したフィードバック制御コントローラは，受信確認を受

信することで，相手のコントローラが正常であることを確認する．一方，Nack

回連続で受信確認を得られない場合は，相手のコントローラが異常であると

判定する．ハートビートを送信してからタイムアウト時間 Tackが経過しても

受信確認が返信されてこない場合に，受信確認を得られないと判断する．

4.5.4 プライマリコントローラの選択処理

各コントローラは，プライマリコントローラ自身の異常や，プライマリコント

ローラの制御用ネットワークの異常を検知した場合に，次のプライマリコントロー

ラ (新プライマリコントローラ)の選択処理を行う．状態が正常なフィードバック
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表 4.2: 新プライマリコントローラを決定するための式 4.1の変数

変数 説明

Dc 候補のコントローラの制御用ネットワークの平均通信遅延

Dp 現在のプライマリコントローラの制御用ネットワークの平均通信遅延

Sc 候補のコントローラの制御用ネットワークの通信遅延の標準偏差

Ec 候補のコントローラの制御用ネットワークにおける通信エラー率

a, b, c チューニング用の係数

制御コントローラが，新プライマリコントローラの候補となる．プライマリコン

トローラの候補が複数存在する場合は，通信品質を考慮して，新プライマリコン

トローラを決定する．通信品質は，フィードバック制御の品質に影響を与えるため

である．各コントローラの通信品質は，ハートビートに付加することで共有する．

各フィードバック制御コントローラは，自身も含めた全てのコントローラに対

して，スコア Sを計算する．そしてスコア Sが最も小さいコントローラを，新プ

ライマリコントローラとして決定する．スコア Sは以下の式で計算する．

S = a|Dc −Dp|+ bSc + cEc (4.1)

式 (4.1)の変数の説明を表 4.2に示す．第一項は，現在のプライマリコントロー

ラと，候補のコントローラの制御用ネットワークの平均通信遅延の差である．第

二項は，候補のコントローラの制御用ネットワークの通信遅延の標準偏差値を考

慮する．第三項は通信エラー率である．いずれの項も，小さいほうが，フィード

バック制御の品質はよくなる．通信エラーについては，アプリケーションレベル

で観測してもよいし，OSIの 7階層におけるトランスポートレイヤにて観測して

もよい．例えば，Transmission Control Protocol (TCP)の再送が発生した頻度か

ら計算してもよい．



90第 4章 パブリッククラウドにおける監視制御アプリケーションの稼働率の向上

表 4.3: 提案システムの稼働率に関わる変数

変数 説明

Pr パブリッククラウドのプロバイダが保証する，リージョンの稼働率

Pw WANの稼働率

Dr リージョンの冗長度

4.5.5 提案システムの稼働率

本項では図 4.7で示した提案システムの稼働率について述べる．2章や 3章では，

WANの信頼性は非常に高いという環境を想定したが，本節ではその稼働率を具体

的に想定する．

稼働率の計算に関連する変数を表 4.3にまとめる．リージョンの稼働率の定義は

パブリッククラウドのプロバイダにより異なるが，ここではAmazon EC2の定義

である「月間使用可能時間の割合」を採用する2．すなわち，リージョンに対して

外部からアクセスできる時間に基づいて稼働率を計算する．

ビル内の機器やネットワークの稼働率は従来と同じであるから，ここでは，そ

れらの稼働率は十分に高いとする．したがって，提案手法を適用した場合，いず

れかのリージョンと，WANが稼働していれば，システム全体として動作できると

言える．いずれかのリージョンが稼働している確率は 1− (1−Pr)
Drである．よっ

てシステム全体の稼働率 Psは式 (4.2)で計算できる．

Ps = (1− (1− Pr)
Dr)Pw (4.2)

リージョンの冗長度として1から3，リージョンの稼働率として99.95%と99.99%，

WANの稼働率として 99.9990%と 99.9995%と 99.9999%を想定し，Psを試算した．

その結果を表4.4に示す．各リージョンとビルはWANを介して接続されるため，Ps

はPwよりも小さくなる．つまりPwが 99.999%よりも大きくなければ，99.999%を

達成することはできない．今回の試算結果では，Pw が 99.9995%で，かつ，リー

ジョンの冗長度が 2であれば 99.999%を達成できた．

2https://aws.amazon.com/jp/ec2/sla/ (2017年 10月時点)
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表 4.4: システム全体の稼働率 (99.999%以上の稼働率は太字で表記)

Dr Pr Pw

0.999990 0.999995 0.999999

1 0.9995 0.999490 0.999495 0.999499

2 0.9995 0.999989 0.999994 0.999998

3 0.9995 0.999989 0.999994 0.999998

1 0.9999 0.999890 0.999895 0.999899

2 0.9999 0.999989 0.999994 0.999998

3 0.9999 0.999989 0.999994 0.999998

99.9995%の稼働率を保証するWANのサービスは，本論文の執筆時点では，我々

が調べた限りでは見つからなかった．ただし信頼性の向上に向けた研究開発は進め

られている．例えば，Internet Engineering Task Force (IETF)で標準化が進めら

れているDeterministic Networking (DetNet) [25, 31]は，PCE [23]やMPLS [78]

などの経路制御および帯域予約の手法を活用して，ビル管理システムや電力系統

網監視システムに使用できる品質のWANを実現しようとしている．そのため，将

来的には 99.9995%や 99.9999%の稼働率を保証するWANサービスが実現されると

考える．そのWANサービスと提案手法を組み合わせることで，パブリッククラウ

ドを利用した稼働率 99.999%以上の監視制御システムを実現できると考える．

4.6 評価

本節では，提案手法の評価について述べる．

4.6.1 評価の環境

提案手法を用いた場合のフェイルオーバー時の制御品質を評価するために，フィー

ドバック制御コントローラと機器を試作した．評価環境を図 4.9に示す．フィード

バック制御コントローラと監視制御対象の機器は，ソフトウェアで実装した．パ
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表 4.5: 評価における各パラメータの値

値 概要

計測周期 1 監視点データの計測周期 (秒)

目標値 1 フィードバック制御の目標値

Ndata 3 制御用ネットワークを異常だと判断する連続計測失敗数

Nack 5 コントローラを異常だと判断する受信確認の連続受信失敗数

Thb 1 ハートビートの送信間隔 (秒)

Tack 1 受信確認が得られないと判断するまでのタイムアウト時間 (秒)

実験室

C1

リージョンA

ルータ

C1'

リージョンB

C1''

リージョンC

インターネット

機器

(ソフトウェアで模擬)

図 4.9: 評価環境

ブリッククラウドとしてAmazon EC2を使用し，フィードバック制御コントロー

ラは t2.microインスタンス上で実行した．VM上で実行するOSはUbuntu 14.04.3

とした．機器は，神奈川県にある実験室にて設置および実行した．

試作したフィードバック制御コントローラは，機器の状態を目標値に維持するよ

う，PID制御を行う．PID制御のチューニングにはAMIGO法 [34]を用いる．本

来であればクローラが監視点データを計測し，フィードバック制御コントローラ

は制御のみを行うが，本評価では監視点データの計測機能をフィードバック制御

コントローラに組み込む．コントローラは監視点データを計測するたびに通信遅

延を測定し，都度，AMIGO法によるチューニングを行う．

プライマリコントローラを選択するための式式 4.1の a，b，cは全て 1とした．
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表 4.6: ゲートウェイと各リージョンの Round Trip Time (RTT)の統計値 (ミリ

秒)

宛先のリージョン 最小値 平均値 最大値 標準偏差

東京 20.921 22.439 43.021 0.888

北カリフォルニア 115.249 117.586 152.450 3.167

フランクフルト 292.482 294.305 321.668 1.491

表 4.7: ゲートウェイと各リージョンの通信路の信頼性

宛先のリージョン 正常に ICMPエコー応答が得られた確率

東京 99.9977%

北カリフォルニア 99.9945%

フランクフルト 99.9701%

そのほかの評価におけるパラメータは表 4.5に示す．

機器は，水冷式の空調の水流を調整するバルブを想定した．水流調整バルブの

制御モデルは，以下の伝達関数で表される 1次遅れ系とした．

G(s) =
K

1 + sT
(4.3)

Kはゲイン，T は時定数である．評価において，K = 0.7，T = 20とし，10ミリ

秒で離散化した．

4.6.2 評価の結果

本項では，評価結果について述べる．
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各リージョンとゲートウェイの間の通信品質

提案手法の評価を行う前に，まず，ゲートウェイとAmazon EC2の各リージョ

ンとの間の通信品質を調査した．ここでの通信品質とは，通信遅延と通信エラー

率である．いずれも，フィードバック制御の品質に影響を与える要因である．

リージョンとしては，東京リージョン，北カリフォルニアリージョン，フラン

クフルトリージョンの 3リージョンを選定した．各リージョンでVMを実行した

状態で，pingコマンドを使用し，ゲートウェイからVMに ICMPエコー要求を送

信し，Round Trip Time (RTT)を計測した．また，ICMPエコー応答を受け取れ

なかった場合を通信エラーとした．ICMPエコー要求は 1秒間隔で送信し，評価期

間は一週間とした．すなわち，ICMPエコー要求を 604800回送信した．

評価により得られたRTTの統計値を表 4.6に示す．このように，各リージョン

とゲートウェイとの間の通信遅延には，差があることがわかった．ゲートウェイ

は神奈川に設置されているため，物理的に近い東京リージョンとの間の通信遅延

が最も小さく，そのばらつきも最も小さかった．また，ICMPエコー応答を受信で

きた確率を表 4.7に示す．通信遅延が小さいリージョンのほうが，ICMPエコー応

答を受信できた確率も高かった．

制御情報の共有が制御品質に与える影響

PID制御やスミス予測器の情報 (制御情報)の共有が，フェイルオーバー時の制

御品質に与える影響を評価する．これらの状態は，制御値の計算に使用されるた

め，制御品質に影響すると考えられる．この評価では，プライマリコントローラ

を東京リージョンに，バックアップコントローラを北カリフォルニアリージョン

とフランクフルトリージョンに配置した．そして，評価開始から 10秒後に，プラ

イマリコントローラとゲートウェイの間の通信を故意に遮断した．コントローラ

間の通信は遮断しないため，ハートビートは正しく送受信できる．監視点データ

の計測間隔は 1秒，Ndata = 3であるから，約 13秒の時点でプライマリコントロー

ラが自身を異常と判断し，そのあとにフェイルオーバーが発生すると想定される

(4.5.2項)．
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図 4.10: 制御情報の共有の有無による，フェイルオーバー時の機器状態の変動の

比較

図 4.10は評価時の制御対象機器の状態の推移を表している．図中の「理想の推

移」とは，プライマリコントローラに異常が発生しない場合の，機器の状態推移

である．この状態推移に近いほど，制御品質が高いと言える．

評価では，まず，約 13秒の時点で東京リージョンのプライマリコントローラが

自身を異常だと判定した．そして，プライマリコントローラの選択処理を開始し

た．プライマリコントローラからのハートビートを受けた北カリフォルニアリー

ジョンとフランクフルトリージョンのバックアップコントローラも，プライマリコ

ントローラの選択処理を開始した．式 4.1を用いたスコア計算を行った結果，北カ

リフォルニアリージョンのバックアップコントローラがプライマリコントローラ

として選択された．北カリフォルニアリージョンはフランクフルトリージョンよ

りも，ゲートウェイとの間の通信遅延の値が，東京リージョンに近いためである．

制御情報を共有しない場合は，バックアップコントローラがプライマリコント

ローラに昇格した直後に，制御対象機器の状態が大きく変化した．一方，制御情

報を共有することで，制御対象機器の状態推移を，理想の推移に近づけることが

できた．制御情報を共有することで，新しいプライマリコントローラが，これま

での制御の経緯を考慮して制御値を計算できたためである．本結果から，制御情
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図 4.11: 東京リージョンから別のリージョンにフェイルオーバーする場合の機器

の状態

報を共有しておくことで，フェイルオーバー時の機器状態の変動を軽減できると

言える．

通信遅延が制御品質に与える影響

表 4.6で示したように，Amazon EC2の各リージョンとゲートウェイとの間の通

信遅延には差がある．この遅延の差が，フェイルオーバー時の制御品質に影響を

与えるかを評価する．

本評価では，評価開始から 10秒後に、プライマリコントローラとゲートウェイ

の間の通信を故意に遮断した．図 4.11に，東京リージョンから北カリフォルニア

リージョンにフェイルオーバーした場合の機器状態の推移と，フランクフルトリー

ジョンにフェイルオーバーした場合の機器状態の推移を示す．どちらの場合も、目

標値に収束させることはできているが，北カリフォルニアリージョンにフェイル

オーバーした場合のほうが速く収束させられている．

図 4.12に，フランクフルトリージョンから北カリフォルニアリージョンにフェ

イルオーバーした場合の機器状態の推移と，東京リージョンにフェイルオーバー
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図 4.12: フランクフルトリージョンから別のリージョンにフェイルオーバーする

場合の機器の状態

した場合の機器状態の推移を示す．どちらもフェイルオーバー直後の機器状態の

変動は大きいが，北カリフォルニアリージョンにフェイルオーバーした場合のほ

うが変動が小さいことがわかる．今回，PID制御のパラメータチューニングには

AMIGO法 [34]を使用している．AMIGO法は，通信遅延が小さいほどゲインパ

ラメータが大きくなる特徴がある．そのため，通信遅延が小さいリージョンにフェ

イルオーバーした直後は，フェイルオーバー前よりも制御値を大きく設定する傾

向にあり，機器状態の大きな変化につながると考える．図 4.11と図 4.12の結果か

ら，フェイルオーバー先は，制御対象機器までの通信遅延が小さい場所よりも，現

状と比べて，制御対象機器までの通信遅延の変化が小さい場所が適切であると言

える．

プライマリコントローラの異常停止が制御品質に与える影響

これまでの評価では，プライマリコントローラと制御対象機器の間の通信は遮

断されているが，プライマリコントローラのハートビートはバックアップコント

ローラに届く状況を想定した．そのため，プライマリコントローラのハートビー
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図 4.13: プライマリコントローラの異常停止時が制御品質に与える影響

トを受信することで，バックアップコントローラはプライマリコントローラの異

常を知ることができた．この評価では，プライマリコントローラそのものが異常

となり，ハートビートを送信できなくなる状況を想定する．そこで，評価開始か

ら 10秒後に，プライマリコントローラを故意に停止する．北カリフォルニアリー

ジョンにフェイルオーバーする場合と，フランクフルトリージョンにフェイルオー

バーする場合を評価する．

図 4.13に評価結果を示す．Thbを 1秒，Tackを 1秒，Nackを 5としたため，想定

通り，約 19秒の時点で，5回目の受信応答待ちのタイムアウトとなり，フェイル

オーバーが行われた．図 4.11と比べて，異常が発生してからフェイルオーバーを

実行するまでの時間が長い．その間，制御信号は送られないため，理想の状態推

移との乖離が大きくなっていく．そのため，フェイルオーバーを完了した直後の

制御による機器状態の変動が大きい．4.5.2項で述べたように，ネットワークやプ

ライマリコントローラを異常だと判定するための閾値 (NdataやNack)を適切に設

定することで，制御品質の低下を抑えることが重要である．
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4.7 設備投資の削減効果の検証

クラウドコンピューティングを利用するメリットの 1つは，設備投資の削減で

ある．設備投資の削減は定量化しやすく，わかりやすいメリットである．そこで

本節では，Amazon EC2を使用した場合に，本当に設備投資が減るかを試算する．

なお，Amazon EC2の料金はドルで計算されるため，試算はドルを基準通貨とし

て行う．また 1ドル 100円とする．

4.7.1 設備投資のモデル

コストのモデルを説明する．パブリッククラウドを用いたビル管理システムに

おいて，一年間に発生するコスト Callは，VMを実行することで発生するコスト

Cav，VMが通信することにより発生するコストCac，WANを利用することにより

発生するコストCawの合計となる．

Call = Cav + Cac + Caw (4.4)

総設備投資Callの試算に必要となる変数を表 4.8にまとめる．Cdhは，占有ホス

トの使用により発生するコストである．Amazon EC2の課金モデルに従い，一時

間ごとにコストが発生するモデルとする．Amazon EC2の占有ホストのコストは，

占有ホスト上で稼働するVM数に依存しないが，占有ホスト上で実行できるイン

スタンス数には上限がある3．Cexは，Amazon EC2からビルに対して通信した際

に発生するコストである．Amazon EC2からインターネットに出ていくトラヒッ

ク量に対してのみ課金される．ビルあたりのフィードバック制御コントローラ数

や監視点データの計測間隔は，実際にはビルや監視点ごとに異なる可能性がある

が，ここでは単一の値とする．

表 4.8の変数に基づき，Cavは以下の式で計算される．

Cav = 365× 24NdhCdh (4.5)

3インスタンスの種類ごとに，上限は異なる．
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表 4.8: コストの試算に使用する変数

変数 説明

Nb 管理するビルの数

Ncpb ビルあたりのフィードバック制御コントローラ数

Nc フィードバック制御コントローラの総数 (NbNcpb)

Ns 各フィードバック制御コントローラが収容する監視点数

Dr フィードバック制御コントローラの冗長度

Nvm 全VM数 (NcDr)

Nvmdh 占有ホストが実行できるVM数．占有ホストのスペックにより決まる．

Ndh 全占有ホスト数 (⌈ Nc

Nvmdh
⌉Dr)

Cdh 1台の占有ホストを使用することで発生するコスト (ドル/時)

Id 監視点データの計測間隔 (秒)

Ihb ハートビートの送信間隔 (秒)

Fd 1度の計測処理で，クラウド外部に対して発生するトラヒック (バイト)

Fhb 1度のハートビートと受信応答の送受信で発生するトラヒック (バイト)

Cex VMがクラウド外部に対して通信するためのコスト (ドル/ギガバイト)

Cin VMがリージョン間で通信するためのコスト (ドル/ギガバイト)

Cwan WANの 1ヶ月分の契約料

Cacは以下のように，監視点データを計測することで発生するコストCasとハー

トビートを交換することで発生するコストCahの合計となる．

Cac = Cas + Cah (4.6)

Casは総監視点データ数と計測頻度から計算できる．

Cas =
365× 24× 60× 60

1000000000Id
FdNvmCex (4.7)

同様に，Cahは以下の式で計算される．

Cah =
365× 24× 60× 60

1000000000Ihb
FhbNvmDrCin (4.8)
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Cawはビルの数とWANの契約費から，以下のように計算される．

Caw = 12NbCwan (4.9)

一方，パブリッククラウドを使用せずに，ビル内にビル管理システムを構築し

た場合，一年間に発生する設備投資 Cabは，コントローラのハードウェア費 Cctrl

とその耐用年数 Y から計算できる．

Cab =
NcDrCctrl

Y
(4.10)

上記の式において，コントローラ数をNcDrとしている理由は，ビル内においても

コントローラを冗長化することを想定するためである．

4.7.2 設備投資の試算

表 4.9に，設備投資の試算に用いる変数の値をまとめる．試算にあたり，ビルの

コントローラの数Nbとして 1棟から 100棟までを想定する．中小ビルを想定し，1

ビルあたり 10個のフィードバック制御コントローラとする．また，1コントローラ

あたり 10個の監視点を監視制御する設定とする．4.5.5項で考察したように，WAN

の稼働率が高ければ，リージョンの冗長度は 2で十分であるため，Drは 2とする．

パブリッククラウドの料金はAmazon EC2の現行の料金を使用する．占有ホスト

としてタイプ「m3」を選択する．m3は，mediamインスタンスを 32個実行でき

る．この数は，占有ホストの中では最大である．Fdと Fhbは，試作したフィード

バック制御コントローラの実装に合わせて 200バイトとする．現時点で，本論文

が想定する高信頼なWANのサービスは存在しないため，WANの使用料Cwanは

複数の値を想定する．

設備投資の試算結果を図 4.14に示す．ビル内にビル管理システムを構築する場

合は，コントローラの耐用年数 Y を 5年，コントローラの価格を 50万円 (5000ド

ル)として試算した．ビルの数が増えると，必要なコントローラの数が増えるため，

設備投資が増加することは明らかである．図 4.14から，WANの契約費が 1500ド

ル/月の場合は，ビル内にビル管理システムを設置する場合よりも設備投資が高く
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表 4.9: 設備投資の試算時の各変数の値

変数 説明

Nb 1から 100

Ncpb 10

Nc 10から 1000

Ns 10

Dr 2

Nvm 20から 2000

Nvmdh 32 (m3は，mediumインスタンスを 32個実行可能)

Cdh 1.292ドル/一時間 (Amazon EC2の占有ホストのm3タイプの 3年間契約)

Ndh 2から 64

Id 1秒

Ihb 1秒

Fd 200バイト

Fhb 200バイト

Cex 0.14ドル/ギガバイト

Cin 0.09ドル/ギガバイト

Cwan 500ドル/月，1000ドル/月，1500ドル/月

なることがわかる．一方，WANの契約費が 1000ドル/月または 500ドル/月の場

合は，パブリッククラウドを利用したほうが安くなった．

図 4.15に，設備投資の内訳の比率を示す．図 4.15から，契約費が 1000ドル/月

または 1500ドル/月の場合は，総コストにおいてWANの契約費が支配的である

ことがわかる．例えば，KDDIの国内イーサネット専用サービスは 10Mbpsの帯域

保証型のWANサービスであり，月当たりの契約費は 170,000円 (1700ドル)であ

る4．また，CTCの広域イーサーネットサービス「CTC EtherLINK」も，同様の

サービスであり，10Mbpsの帯域を保証できる5．このサービスの月当たりの契約

4http://www.kddi.com/business/network/intranet/ethernet-senyo/charge/10mbps/
5http://business.ctc.jp/service/network/etherlink/charge.html
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図 4.14: 設備投資の試算結果

費は 200,000円 (2000ドル)である．つまり現状のWANサービスでは，パブリッ

ククラウドを利用するほうが設備投資が増える．また，WANサービスを提供可能

な国が限られるため，利用できるパブリッククラウドのリージョンが限定される．

パブリッククラウドを利用することで設備投資の削減効果を得るためには，WAN

サービスの契約費の低価格化が進み，現状の 50%程度 (1000ドル程度)になる必要

がある．

図 4.15では，通信により発生するコストはほぼ見えなくなっている．監視制御

の通信は，整数値や小数値をやりとりするだけであるため，発生するトラヒック

は小さい．ハートビートも同様であり，トラヒックは小さく，結果として，通信に

より発生するコストは，VMの使用料やWANの契約費と比べて小さくなった．ト

ラヒック量を減らす方法として，1)複数の監視点データをまとめて計測する，2)

ハートビートの送信頻度を下げる，などが考えられる．これらの方法を適用する

ことで，通信により発生するコストを下げることはできるが，総設備投資の削減

の観点からは効果が薄いと言える．

本節では，ビル管理システムを構築するための設備投資のみを試算し，比較し

た．設備投資以外では，システムの保守費が考えられる．ビル内にビル管理シス

テムを構築する場合は，物理的なコントローラが地理的に分散するビル群に設置
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される．そのため，コントローラを保守・修理するための人員を各地に配置する

必要があり，そのための人件費が発生する．一方，パブリッククラウドを利用す

る場合は，コントローラはソフトウェア化され，ネットワーク経由で管理できる．

したがって，パブリッククラウドを利用したほうが保守費を下げられると考えら

れる．

4.8 むすび

本章では，パブリッククラウドにおける監視制御アプリケーションの稼働率を

向上するための冗長化手法を提案した．監視制御アプリケーションとして，フィー

ドバック制御コントローラを想定した．提案手法では，複数のプライマリコント

ローラとバックアップコントローラを，異なるリージョンで実行させ，コントロー

ラ間で生存確認のためのハートビートメッセージを交換する．ハートビートに，制

御に関する情報や，制御用ネットワークの通信品質の情報を含めることで，異常

発生時に，制御品質の低下を抑えられる新プライマリコントローラを選択できる．

また，パブリッククラウドの一種であるAmazon EC2を用いて提案手法を評価

した．その結果，制御に関する情報や通信品質を共有することで，制御品質の低
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下を抑えつつフェイルオーバーできることを確認した．

今後は，プライマリコントローラの選択方法を改善する．現状の提案手法のプ

ライマリコントローラの選択方法は決定論的ではない．つまり，複数のバックアッ

プコントローラの制御用ネットワークの通信品質が同等であった場合，ハートビー

トを交換するタイミングや，プライマリコントローラの選択処理を実行するタイ

ミングによっては，各コントローラが異なるプライマリコントローラを選択してし

まう可能性が存在する．この問題を解決するためには，Paxos [58]やRaft [72]な

どの分散合意形成アルゴリズムを適用してプライマリコントローラを決定する必

要があると考える．また，待ち行列理論などに基づき想定環境をモデル化し，フェ

イルオーバーが制御品質に与える影響の理論値を得るための検討を行う．これに

より，パブリッククラウドやインターネットというブラックボックスが制御品質

に与える影響を分析しやすくなると考える．
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第5章 結論

5.1 本論文のまとめ

本論文では，監視制御システムにクラウドコンピューティングを適用した場合

に，監視制御システムの高い安定性を保証するための方法について議論した．

まず第 1章では，監視制御システムの概要を述べた．また，クラウドコンピュー

ティングの実現形態としてプライベートクラウドとパブリッククラウドが存在す

ることと，それぞれの特徴を述べた．そして，監視制御システムをクラウドコン

ピューティング上で構築する際の課題として，安定した性能の保証と稼働率の向

上の 2つがあることを述べた．

第 2章では，プライベートクラウド上で監視制御システムを構築することを想

定し，監視制御アプリケーションをVM上で動作させた場合の性能への影響を把

握した．VMに割り当てるCPUリソース量や，単一の物理マシン上で複数のVM

を同時に実行することが監視制御アプリケーションの性能に与える影響を調べる

ための評価を実施した．また，物理マシンのCPUコアの一部を仮想化ソフトウェ

アに占有させることが性能へ与える影響や，CPUスケジューリングのアルゴリズ

ムが性能へ与える影響を調べるための評価を実施した．評価結果から，VM間の

CPU競合や，仮想化ソフトウェアの CPU不足が，監視制御アプリケーションの

性能を低下させる主要因であることを確認した．

第 3章では，第 2章で得られた知見に基づき，VM上で動作する監視制御アプリ

ケーションの性能を推定する手法を提案した．提案手法は，物理マシンやVMの

挙動をモデル化し，そのモデルに基づくシミュレーションにより，複数の監視制御

アプリケーション／VMを単一の物理マシン上で実行した場合の性能を推定する．

モデルにおける物理マシンの性能に依存するパラメータは，実機をモニタリング
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した結果から値を求めることで，シミュレーションの精度を向上する．複数のVM

によるCPU競合を考慮して性能を推定する点と，仮想化ソフトウェアのCPU不

足を考慮して性能を推定する点が，提案手法の特徴である．提案手法の有効性を

示すために，実機を用いた性能評価と，提案手法による推定結果を比較し，提案

手法の推定精度を検証した．その結果，監視制御アプリケーションの性能が著し

く低下する状況を推定できることを確認した．

第 4章では，監視制御アプリケーションをパブリッククラウド上で実行する環境

を想定し，その稼働率を向上させる手法を提案した．提案手法では，各クラウド

上で実行される監視制御アプリケーションが，定期的に生存確認用のメッセージ

を交換することで，互いに生存確認を行う．また，単に生存確認を行うだけでな

く，それぞれが実施している監視制御処理の情報や，監視制御アプリケーション

と監視制御対象との間のネットワークの品質を共有することで，障害発生時の制

御品質の低下を抑える．パブリッククラウドを使用した評価を行い，提案手法が

制御品質の低下を抑えられるかを検証した．その結果，提案手法は，監視制御処

理の情報やネットワーク品質を共有しない場合と比べて，制御品質の低下を抑え

られることを確認した．

監視制御システムの低コスト化と柔軟性向上のため，監視制御システムをクラ

ウド上で構築するための研究が注目されている．しかし，既存の研究の多くは，少

数の監視制御アプリケーションの性能を仮想化環境において評価したものであり，

多数の監視制御アプリケーションを同時に実行する状況や，「監視制御アプリケー

ションを追加する」という運用フローを考慮していない．これに対して，本論文

で提案した手法は，多数の監視制御アプリケーションを同時に実行する状況にお

ける性能を推定し，監視制御アプリケーションを追加できるかを判断できる．ま

た，通信の品質を考慮した冗長化手法により，パブリッククラウド上でも高い稼

働率と制御品質を実現する．本研究の成果は，クラウドコンピューティングを利

用した監視制御システムの実現に向けて，大きな進展をもたらすものである．
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5.2 検討課題

クラウドコンピューティングを利用した監視制御システムを真に実現するため

には，各章のむすびで述べた課題に加えて，WANサービスの高信頼化と低コスト

化が今後の検討課題となる．

2.2.2項で述べたように，ビルの火災報知器の状態を計測する場合は，計測時刻

誤差を 5ミリ秒以下に抑えたい．これを実現するためには，通信帯域を保証できる

WANサービスが必要である．ビル管理システムや電力系統網監視システムに使用

できる品質のWANの実現を目指し，Internet Engineering Task Force (IETF)に

て Deterministic Networking (DetNet) [25, 31]という標準規格の策定が進んでい

る．DetNetは，PCE [23]やMPLS [78]などの経路制御および帯域予約の手法を

活用して，信頼性や通信遅延を制御する．このようなオープンな標準規格が策定・

実用化されれば，WANサービスの低価格化が進むと考える．ただし，DetNetに

おいて，どのような経路を選択し，どれだけの帯域を予約するかは，規格の範囲

外である．したがって，監視制御アプリケーションの要件を考慮して，適切な経

路を選択し，適切な帯域を予約するアルゴリズムが必要となる．
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Dive: Transparently Identifying and Managing Performance Interference in

Virtualized Environments, in Proc. of USENIX Conference on Annual Tech-

nical Conference (USENIX ATC 2013), pp. 219–230 (2013).

[71] OASIS: oBIX 1.0 - Committee Specification 01 (2006).

[72] Ongaro, D., and Ousterhout, J.: In Search of an Understandable Consensus

Algorithm, in Proc. of USENIX Annual Technical Conference (USENIX ATC

2014), pp. 305–319 (2014).

[73] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., and

Epema, D.: A Performance Analysis of EC2 Cloud Computing Services for

Scientific Computing, in Proc. of International Conference on Cloud Comput-

ing (CloudComp 2009), pp. 115–131 (2009).

[74] Parker, P., and Chadwick, S.: Scada approaches to Remote Condition Mon-

itoring, in Proc. of IET Conference on Railway Condition Monitoring and

Non-Destructive Testing (RCM 2011), pp. 1–6 (2011).

[75] Patnaik, D., Krishnakumar, A. S., Krishnan, P., Singh, N., and Yajnik, S.:

Performance Implications of Hosting Enterprise Telephony Applications on

Virtualized Multi-core Platforms, in Proc. of International Conference on

Principles, Systems and Applications of IP Telecommunications, pp. 1–11

(2009).

[76] Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., Pu, C., and Cao, Y.: Who

Is Your Neighbor: Net I/O Performance Interference in Virtualized Clouds,

IEEE Transactions on Services Computing, Vol. 6, No. 3, pp. 314–329 (2013).



参考文献 123

[77] Qin, B., and Yan, D.: Remote SCADA System Based on 3G VPN Services for

Secondary Pressurization Pump Station, in Proc. of International Conference

on Intelligent System Design and Engineering Application (ISDEA 2010),

Vol. 2, pp. 132–135 (2010).

[78] Rosen, E., Viswanathan, A., and Callon, R.: Multiprotocol Label Switching

Architecture, IETF RFC 3031 (2001).

[79] Schachinger, D., Stampfel, C., and Kastner, W.: Interoperable integration of

building automation systems using RESTful BACnet Web services, in Proc.

of IEEE International Conference on Industrial Electronics Society (IECON

2015), pp. 3899–3904 (2015).

[80] Shahzad, A., Musa, S., Aborujilah, A., and Irfan, M.: A Performance Ap-

proach: SCADA System Implementation within Cloud Computing Environ-

ment, in Proc. of International Conference on Advanced Computer Science

Applications and Technologies (ACSAT 2013), pp. 274–277 (2013).

[81] Singh, S., Chary, V., and Rahman, P.: Dual Redundant Profibus Network

Architecture in hot standby fault tolerant control systems, in Proc. of In-

ternational Conference on Advances in Engineering and Technology Research

(ICAETR 2014), pp. 1–5 (2014).

[82] Smith, O. J.: A controller to overcome dead time, ISA J., Vol. 6, No. 2, pp.

28–33 (1959).

[83] Somani, G., and Chaudhary, S.: Application Performance Isolation in Vir-

tualization, in Proc. of IEEE International Conference on Cloud Computing

(CLOUD 2009), pp. 41–48 (2009).

[84] Soriga, S., and Barbulescu, M.: A comparison of the performance and scal-

ability of Xen and KVM hypervisors, in Proc. of RoEduNet International

Conference on Networking in Education and Research, pp. 1–6 (2013).



124 参考文献

[85] Suresh, K., Kirubashankar, R., and Krishnamurthy, K.: Research of Internet

based supervisory control and information system, in Proc. of International

Conference on Recent Trends in Information Technology (ICRTIT 2011), pp.

1180–1185 (2011).

[86] Tafa, I., Beqiri, E., Paci, H., Kajo, E., and Xhuvani, A.: The Evaluation

of Transfer Time, CPU Consumption and Memory Utilization in XEN-PV,

XEN-HVM, OpenVZ, KVM-FV and KVM-PV Hypervisors Using FTP and

HTTP Approaches, in Proc. of International Conference on Intelligent Net-

working and Collaborative Systems (INCoS 2011), pp. 502–507 (2011).

[87] Tomás, L., and Tordsson, J.: Improving Cloud Infrastructure Utilization

Through Overbooking, in Proc. of ACM Cloud and Autonomic Computing

Conference (CAC 2013), pp. 1–10 (2013).

[88] Venkataramanan, V.: Optimization of CPU Scheduling in Virtual Machine

Environments, PhD thesis, Ottawa University (2015).

[89] Wang, J., Varman, P., and Xie, C.: Avoiding performance fluctuation in cloud

storage, in Proc. of International Conference on High Performance Comput-

ing, pp. 1–9 (2010).

[90] Wang, Z., Zhu, X., Padala, P., and Singhal, S.: Capacity and Performance

Overhead in Dynamic Resource Allocation to Virtual Containers, in Proc.

of IFIP/IEEE International Symposium on Integrated Network Management

(IM 2007), pp. 149–158 (2007).

[91] Wu, H., Lou, L., Chen, C.-C., Hirche, S., and Kuhnlenz, K.: Cloud-Based

Networked Visual Servo Control, IEEE Transactions on Industrial Electron-

ics, Vol. 60, No. 2, pp. 554–566 (2013).



参考文献 125

[92] Xi, S., Wilson, J., Lu, C., and Gill, C.: RT-Xen: Towards real-time hypervisor

scheduling in Xen, in Proc. of International Conference on Embedded Software

(EMSOFT 2011), pp. 39–48 (2011).

[93] Xi, S., Xu, M., Lu, C., Phan, L., Gill, C., Sokolsky, O., and Lee, I.: Real-

time multi-core virtual machine scheduling in Xen, in Proc. of International

Conference on Embedded Software (EMSOFT 2014), pp. 1–10 (2014).

[94] Xia, Y.: Cloud control systems, IEEE/CAA Journal of Automatica Sinica,

Vol. 2, No. 2, pp. 134–142 (2015).

[95] Zhao, H., Zheng, Q., Zhang, W., Chen, Y., and Huang, Y.: Virtual ma-

chine placement based on the VM performance models in cloud, in Proc. of

IEEE International Performance Computing and Communications Confer-

ence (IPCCC 2015), pp. 1–8 (2015).

[96] Zheng, W., Bianchini, R., Janakiraman, G. J., Santos, J. R., and Turner, Y.:

JustRunIt: Experiment-based Management of Virtualized Data Centers, in

Proc. of USENIX Annual Technical Conference (USENIX ATC 2009), pp.

1–16 (2009).

[97] Zhou, W., Yang, S., Fang, J., Niu, X., and Song, H.: VMCTune: A Load

Balancing Scheme for Virtual Machine Cluster Using Dynamic Resource Al-

location, in Proc. of International Conference on Grid and Cooperative Com-

puting (GCC 2010), pp. 81–86 (2010).


