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Abstract 

Strain improvement plays a central role in development of microbial process for 

production of valuable chemical. Recent development of computational approach enable 

to predict metabolic state, and strain improvements have been performed based on the 

prediction. Applying flux balance analysis (FBA) on genome-scale metabolic model, 

which contains all known metabolic reactions and genes, metabolic network for 

enhancing growth-coupled target production can be designed with considering 

mass-balance. Although target productivities of various microbial processes has been 

improved by strain improvement based on the metabolic design, the target 

productivities were always lower than of the expected values. One possible reason of the 

decreased productivity is that FBA only considers mass-balance equation on metabolic 

network, while some of reactions in actual cells exists as rate-limiting reactions by 

metabolic constraints by substrate level, enzyme level and enzyme kinetics, and as a 

result, the engineered strain could not achieve the predicted state by FBA. This thesis 

focused on understanding the mechanism of rate-limiting reaction based on the 

metabolic design by FBA, and strain improvement by overcoming the rate-limiting 

reactions in productions of 3-hydroxypropionic acid and succinic acid, which are 

precursors of bio-plastics. 

This doctor thesis consists of five chapters: 

Chapter 1: Introduction and general objective of this study are described. 

Chapter 2: In order to evaluate the effect of limitation of flux of metabolic reaction 

on the target production, rapid screening method of possible rate-limiting reaction was 

developed by using genome-scale metabolic model. The method assumes the metabolic 

constraints as an upper-bound constraint on each enzymatic flux on FBA calculation 

and simulate which reaction is thought to be possible rate-limiting reactions for the 

target production. The experimental results of strain improvement for 1,4-butanediol 

production reported by Yim et al. were consistency with the predicted rate-limiting 

reactions. This proposed method also screened the possible rate-limiting reactions for 

various microbial process of growth-coupled target production. 

Chapter 3: Strain improvement for 3-hydroxypropionic acid production by the 

knockout mutant of E. coli was achieved by additional genetic manipulation for 

overcoming the predicted rate-limiting reactions. Experimental evaluation of the 
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knockout mutant suggested that overflow of 1,3-propanediol (1,3PDO) from 

3-hydroxypropionaldehyde led to decrease the flux into 3-hydroxypropionaldehyde 

dehydrogenase, which was predicted as one of the rate-limiting reactions. Additional 

deletion of yqhD encoding NADPH-dependent aldehyde reductase successfully 

improved 3HP production by rewiring carbon flux from 1,3PDO overflow to 3HP 

synthesis. 

Chapter 4: Molecular mechanism causing the rate-limiting reaction on the 

growth-coupled succinate production was revealed through strain improvement by 

adaptive laboratory evolution (ALE). The proposed method developed in the chapter 2 

displayed that the knockout mutant of adhE-pykAF-gldA-pflB had 9 possible 

rate-limiting reactions. High succinate producing strains were isolated from ALE 

experiment of the knockout mutant by selecting faster growing strain, since the strain 

has to produce succinate in order to grow faster. Mutation analysis of high succinic acid 

producing strains obtained from ALE revealed that phosphoenolpyruvate carboxylase 

(Ppc), which was predicted as one of possible rate-limiting reaction, was a dominant 

rate-limiting reaction. Reverse engineering and functional analysis of the identified 

mutations revealed that the mutants of Ppc desensitized allosteric inhibition by 

aspartate, and improved enzymatic activity of Ppc toward increasing succinate 

production. 

Chapter 5: General conclusion and future perspective of this research are described. 
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Chapter 1: Introduction 

 

1-1 Highlights 

 Microbial production is a promising way to compensate the increasing 

demand for commercial use due to depletion of oil resource. 

 Strain improvement for enhancing the target productivity is essential for 

development of the microbial process. 

 Flux balance analysis (FBA) is a powerful method to design the 

genome-scale metabolic network for enhancing the growth-coupled target 

production with considering mass-balance. 

 Although target productivities of various fermentation processes has 

been improved based on the metabolic design, the target productivities 

were always lower than of the expected value by FBA. 

 The general objective of this study was to unveil what causes the 

miss-prediction by FBA and achieve further strain improvements.  

 

1-2 Microbial production of chemicals 

Microbial fermentation for chemical production is a promising way to 

compensate the increasing demand of commercially used chemicals. Strain 

improvement for increasing target productivity is an essential for 

development of the microbial process. Recombinant DNA techniques have 

been applied to improve target production by modification of metabolic 

pathway such as gene deletion. It is important for further strain 
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development to build a metabolic engineering strategy for optimizing whole 

metabolic network toward increasing target production, because metabolism 

in actual cells constructs huge and complex network structure via 

intermediate metabolites and cofactors.  

 

1-2-1 Importance of biotechnological production process 

Biosynthesis of target chemicals using microorganism’s metabolism has 

been attracted for compensating the increasing demand for commercially 

valuable chemicals due to depletion of oil resource. Metabolism is a general 

term meaning a set of chemical reactions essential for life-sustaining within 

the cells of organisms. The microbial process of chemical production converts 

abundantly available substrates such as renewable biomass resources and 

waste glycerol to the valuable chemicals such as bio-plastic, bio-fuel and 

pharmaceutical. Therefore, the process is expected to contribute to the 

sustainable development of highly civilized human society. 

Actually, the microbial process has contributed to develop our life in 

various industrial fields. The oldest record about the microbial process is the 

conversion of sugar to alcohol by yeast in B.C (1). In the early 1900's, 

Alexander Fleming firstly discovered antibiotic effect of penicillin and this 

led to begin the golden era of microbial production of antibiotics. The 

microbial production of monosodium glutamate, which is known as an 

umami tastant, has been developed by using Corynebacterium glutamicum 

before World War II in Japanese food companies of Ajinomoto Corporation 

Inc. and Kyowa Hakko Kogyo Corporation Ltd. (2). Recently, the microbial 
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production processes have been commercially developed for 1,3-propanediol 

production in DuPont Tate and Lyle Bioproducts Company (USA), succinate 

in Myriant Corporation (USA) and 1,4-butanediol in Genomatica Inc. (USA). 

In the 2000’s, the US Department of Energy addressed the microbial process 

of valuable chemical production and listed the potential target chemicals 

produced from biomass (3)(4). 

 

1-2-2 History of strain improvement 

Industrial strain improvement plays a central role in the development of 

the microbial process. Before the 1980s, the strain improvement has been 

achieved by random mutagenesis/selection/screening (5). Mutagenesis is 

conducted by using physical mutagen like ultra violet or chemical mutagen 

like nitrosomethyl guanidine. Physiological characteristics such as target 

productivity, growth ability and stability of surviving clones, which can grow 

in designated selective pressure, are evaluated in the step of screening. To 

repeat the cycle of random mutagenesis/selection/screening is a beneficial 

way to improve target productivity. Since the biggest advantage of this 

approach is capable to apply for any organism independent a priori 

knowledges about them, strain improvements have been achieved for various 

target products including alcohol (6), anti-biotics (7), amino acids (8) and 

nucleic acids (9). However, there are also several disadvantages in the 

approach. Firstly, sufficient time is needed to develop the ideal strain. 

Second, identification of beneficial mutations for improved target 

productivity is difficult because they have a large number of mutations, some 
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of which does not affected on the productivity. This complexity for 

understanding the mechanism of improved target production hampers to 

apply them for the other target chemical productions. 

After 1970, development of site-directed mutagenesis approach, which is 

known as recombinant DNA technology, enable us to introduce artificial 

mutations into designated site in vitro and express them as plasmid DNAs in 

vivo (10). Sanger and Coulson developed that a novel method for determining 

sequence in DNA using dideoxynucleotide in 1977 (11). These technologies 

contributed to identify the beneficial mutations on strain improvement. In 

the 1980s, development of chromosomal transformation technology made it 

possible to construct knockout mutant of designated chromosomal genes 

replaced by antibiotic marker (12). In the 1990s, these techniques have 

accelerated metabolic pathway modification for improving the properties of 

microorganisms and their target productivities. The term metabolic 

engineering is defined as the directed improvement of product formation or 

cellular properties through the modification of specific biochemical reactions 

or introduction of new ones with the use of recombinant DNA technology 

(13).  

 

1-2-3 Metabolic engineering 

Metabolic engineering is a powerful approach to improve target 

productivity by recombinant DNA technology. Optimizing metabolic flux 

distributions for the target production is important in order to apply 

metabolic engineering for strain improvement. The flux is the term meaning 
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reaction rate (or velocity) in this thesis, and a fundamental determinant of 

cell physiology and the most critical parameter of a metabolic pathway (14). 

In general metabolic engineering strategy, biosynthesis pathways of target 

metabolite are activated, while the other pathways which do not related on 

target production are inactivated (15)(16)(17)(18)(19)(20)(21)(22)(23)(24).  

Gene deletion (or gene knockout) is mostly used technique to block 

unnecessary pathways and rewire metabolic flux to target synthesis. There 

are several ways to disrupt target gene in chromosomal DNA. The mostly 

used approach is replacement of the target gene by antibiotic resistance gene 

such as kan encoding kanamycin resistance gene derived from Streptomyces 

kanamyceticus (25)(26). Recent development of genome editing such as 

CRISPR has improved efficiency of gene deletion without antibiotic 

resistance gene in various organisms including E. coli (27), yeast (28), and 

cyanobacteria (29). Target gene is often determined based on the culture 

result of a parental strain and priori knowledges of metabolism. For example, 

when the parental strain produces a large amount of byproduct, the gene 

involved in the synthetic pathway of the byproduct is a candidate to be 

disrupted. Since cofactors also play an important role in the biosynthesis 

pathway, gene deletion strategy have to consider not only carbon flow, but 

also supply and regeneration of cofactors for strain improvement (30). 

However, it is difficult to make metabolic engineering strategy by only 

relying on our experiences and intuitions, because there are a large number 

of reactions constructing complex metabolic network via intermediate 

metabolites and cofactors in the cells. Therefore, rational engineering of 
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metabolism with considering whole metabolic network or wide view of 

metabolic pathways is essential for the practice of metabolic engineering for 

strain improvement. 

 

1-3 Genome-scale metabolic design 

Genome-scale metabolic reconstruction has been developed based on 

whole genome sequence information and gene-protein-reaction associations. 

Flux balance analysis (FBA) is a widely used technique to calculate a flux 

distribution using the genome-scale metabolic model based on assumptions 

of metabolic steady state and maximizing cell growth. Gene knockout targets 

for growth-coupled target production can be screened by using FBA. The 

term genome-scale metabolic design is meaning rational design of whole 

metabolic network for enhancing target production in this thesis. Although 

various fermentation processes has been improved by gene deletion based on 

the prediction, the target productivity is always lower than of the predicted 

value. One possible reason causing the inconsistency was that FBA only 

considers mass-balance equation on the metabolic network, while 

metabolism in actual cells is complexity regulated by low enzymatic activity 

(31), enzymatic regulation (32), expression regulation (33), and 

thermodynamic feasibility (34). If such regulation system cause rate-limiting 

reactions on de novo biosynthesis of target metabolite, the cells could not 

achieve the predicted metabolic state. It is essential for genome-scale 

metabolic design to identify rate-limiting reactions and build a metabolic 

engineering strategy.  
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1-3-1 Reconstruction of genome-scale metabolic model  

To simulate the physiological characteristics of microorganism and the 

behavior of metabolic network, constraint-based metabolic modeling has 

been developed. Metabolism is sequential chemical reactions catalyzed by 

enzymes, and the products produced by a metabolic reaction are rapidly 

catalyzed by the other metabolic reaction. In the modeling approach, a 

pseudo-steady state assumption is generally applicable for them, because 

concentrations of internal metabolite do not dynamically changed during 

stable culture conditions, such as exponential cell growth phase. Therefore, 

the sum of fluxes in and out of each internal metabolite is balanced. In first 

studies, the constrain-based modeling was applied to determine the internal 

flux through local metabolic network such as tricarboxylic acid cycle (35)(36). 

Recent development of whole genome-sequencing techniques and 

accumulation of knowledges of metabolism enable us to extend 

reconstruction of the metabolic network from local reactions to genome-scale 

metabolic network. Genome-scale metabolic models are constructed from 

genome sequence annotation and information about biochemical reactions 

from literatures and databases such as KEGG (37)(URL: 

http://www.genome.jp/kegg/) and BRENDA (38)(URL: 

https://www.brenda-enzymes.org/). The genome-scale metabolic models 

usually contain gene-protein-reaction associations, stoichiometry of the 

biochemical reactions including transport reaction and chemical reaction, 

thermodynamic information (i.e. reversibility) and biomass reaction 

constructed from a molecular weight of components of cell of 1 g mmol－1. 
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The first genome-scale metabolic model was built for Haemophilus influenza in 

1999 (39). Subsequently, the genome-scale metabolic models were developed on 

well-characterized model organisms such as Escherichia coli (40) and Saccharomyces 

cerevisiae (41). During past ten years, the number of the genome-scale metabolic 

reconstructions has rapidly grown and these have been widely applied in studies related 

in metabolic engineering, biological discovery, phenotypic behavior, network analysis 

and evolutionary biology (42). The genome-scale metabolic models are now available 

for more than 100 species including bacteria, eukaryotes and archaea (43)  

 

1-3-2 Solution space of metabolic network 

Steady state assumption of metabolic network constraints space of 

feasible fluxes of each reaction in genome-scale metabolic model. The term 

solution space is used in this thesis in reference to the feasible space of fluxes. 

The number of dimensions of solution space is equal to the number of 

reaction included in the genome-scale metabolic model. Here, an example of 

metabolic solution space is described using simple metabolic network model. 

Figure 1-1 shows a simple example of metabolic network, which contains 

6 intracellular reactions, 3 transport reactions and biomass reaction. There 

are 5 intracellular metabolites (A-E), 4 extracellular metabolites (Aext, Dext, 

Eext and Biomass). The stoichiometric equation of the network are also 

shown in Figure 1-1. 
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Figure 1-1  A simple example of metabolic network. Arrows indicate 

metabolic reaction. A ~ E indicate intracellular metabolites. Aext, Dext and 

Eext indicate extracellular metabolites. R1~R9 indicate each metabolic 

reactions, whose stoichiometric equations are described in next to the 

metabolic network. 
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In the metabolic network shown in the Figure 1-1, a dynamic mass balance is 

described as following equations (1.1a-e). 𝑣𝑗  represents metabolic fluxes of 

the jth reaction (i.e. R1-R10) and the unit of 𝑣𝑗  is mmol gCDW－1 hr－1.  

 

𝑑𝐴

𝑑𝑡
= 𝑣1 − 𝑣2 − 𝑣3 − 𝑣4 (Equation 1.1a) 

𝑑𝐵

𝑑𝑡
= 𝑣2 − 𝑣5 − 𝑣6 

(Equation 1.1b) 

𝑑𝐶

𝑑𝑡
= 10𝑣3 + 𝑣6 − 𝑣7 

(Equation 1.1c) 

𝑑𝐷

𝑑𝑡
= 𝑣4 − 𝑣7 − 𝑣8 

(Equation 1.1d) 

𝑑𝐸

𝑑𝑡
= 10𝑣5 + 9𝑣6 − 𝑣9 

(Equation 1.1e) 

 

Assuming the metabolic steady state on the metabolic network, constraint 

equations on each metabolic fluxes are obtained as follows (equation 1.2a-e), 

because intracellular metabolite’s concentration are not dynamically 

changed. 

 

 

𝑣1 − 𝑣2 − 𝑣3 − 𝑣4 = 0 (Equation 1.2a) 

𝑣2 − 𝑣5 − 𝑣6 = 0 (Equation 1.2b) 

10𝑣3 + 𝑣6 − 𝑣7 = 0 (Equation 1.2c) 

𝑣4 − 𝑣7 − 𝑣8 = 0 (Equation 1.2d) 

10𝑣5 + 9𝑣6 − 𝑣9 = 0 (Equation 1.2e) 

  



11 

 

These constraint equations can be represented using a matrix notation, 

 

[
 
 
 
 
𝟏 −𝟏 −𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 −𝟏 −𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏𝟎 𝟎 𝟎 𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 −𝟏 −𝟏 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏𝟎 𝟗 𝟎 𝟎 −𝟏]

 
 
 
 

[
 
 
 
 
 
 
 
 
𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒗𝟓

𝒗𝟔

𝒗𝟕

𝒗𝟖

𝒗𝟗]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎]
 
 
 
 
 

 (Equation 1.3) 

⇔ ∑ 𝑺𝑖,𝑗 ∙ 𝑣𝑗 = 0𝑗∈𝑹  (∀𝑖∈ 𝑴 and ∀𝑗∈ 𝑹)   (Equation 1.4) 

 

where S is called stoichiometric matrix indicating stoichiometric coefficients 

of all metabolic reactions. 𝑴 is a set of metabolites in the system or cell.  𝑹 

is a set of reactions in the system or cell. 

In general, stoichiometric metabolic reconstruction does not have any 

constraint for fluxes of intracellular reactions, and only consider uptake flux 

in order to calculate the solution space satisfying the assumption of 

metabolic steady state. Furthermore, the values of fluxes are assumed 

continuous explanatory variables for calculating feasible solution space. 

Here, the following constraints are assumed to describe the solution space of 

the metabolic network in Figure 1-1.  

 

𝑣1 =  1 mmol gCDW－1 hr －1   (Equation 1.5) 

0 ≤ 𝑣𝑗 ≤ ∞   ( 𝑗 = 2~9)   (Equation 1.6) 

 

Since the number of dimensions of solution space is equal to the number 
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of reaction included in the metabolic network, it is difficult to visualize the 

overall solution space. In this thesis, solution space is described by focusing 

molar yield of target metabolite and biomass reaction per consumed 

substrate. Here, the solution space of the metabolic network is described 

with regarding metabolite Eext as target metabolite (Figure 1-2). 

 

 

Figure 1-2 A simple example of metabolic network (A) and solution space 

(B). Red arrows in pane A indicate metabolic reactions describing their fluxes 

in the x-axis and y-axis in pane B. 

 

The y-axis and x-axis in Figure 1-2B are equivalent of the molar yield of the 

target metabolite Eext and Biomass, respectively. 

The structure of solution space is depend on the structure of metabolic 

network. The solution space means the relationship of target production and 

cell growth with considering mass-balance equation. In wildtype 
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microorganisms, the relationship is usually trade-off except for in case of 

natural byproducts such as acetate in E. coli. 

The shape of solution space is depend on network structure. For example, 

considering disruption of reaction 3 (R3), the additional constraint is 

imposed as following equation 1.7), 

 

𝑣3 = 0    (Equation 1.7) 

 

and the solution space is changed as shown in Figure 1-3. In this case, the 

cells have to produce target metabolite of Eext in order to grow, since 

intracellular metabolite C required for biomass reaction is only supplied by 

reaction 6, which is coupled with production of target metabolite E. This type 

of the solution space is thought to be favorable for growth-coupled production 

process. The term growth-coupled target production is used in this thesis in 

reference to the target production process coupled with cell growth. Since the 

shape of solution space is depend on the network structure, rational 

metabolic design by disruption and addition of metabolic reactions is 

important for the development of the growth-coupled target production. 
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Figure 1-3 A simple example of metabolic network with disruption of 

reaction 3 (A) and its solution space (B). (B) Gray and blue area indicate the 

feasible solution spaces of the metabolic network without disruption of R3 

and with the disruption, respectively. 
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1-3-3 Flux balance analysis 

Flux balance analysis (FBA) is a widely used approach for studying 

biochemical networks, in particular the genome-scale metabolic network 

reconstructions (44)(45)(46)(47). FBA uses the steady state assumption and 

an objective function to model a desired phenotype as an optimization 

problem (Figure 1-4). Since steady state assumption of metabolic network 

reduces the system to a set of linear equations as shown in the chapter 1-3-2, 

a flux distribution is calculated using linear programming as following 

equations: 

(Equation 1.8) 

Maximize 𝒄𝑇 ∙ 𝒗 

Subject to  ∑ 𝑆𝑖,𝑗 ∙ 𝑣𝑗 = 0𝑗∈𝑹  (∀𝑖∈ 𝑴 and ∀𝑗∈ 𝑹) 

𝑣𝑗,𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑗,𝑚𝑎𝑥 

Where 

𝑹 is a set of reactions in the system or cell. 

𝑴 is a set of metabolites in the system or cell. 

𝒄 is a vector that represents coefficients of an objective function to be 

maximized. 

𝒗 is a vector of metabolic fluxes in the system or cell. 

𝑣𝑗 represents metabolic fluxes of the j th reaction. 

𝑣𝑗,𝑚𝑖𝑛 represents lower bound of metabolic fluxes of the j th reaction. 

𝑣𝑗,𝑚𝑎𝑥 represents upper bound of metabolic fluxes of the j th reaction. 

𝑆𝑖,𝑗 represents the stoichiometric coefficient indicating the amount of the  
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i th metabolite produced per unit of flux of the j th reaction 

For example, the flux distribution of the simple metabolic network at the 

optimal growth state is shown in Figure 1-5. 

 

In genome-scale metabolic model, the biomass reaction is generated based 

on molecular weight of metabolic precursors of cell of 1g mmol－1. These 

precursors include nucleotides, amino acids, energy metabolites and 

components of cell membrane that a cell requires for replication and 

maintenance. When the coefficient is set to 1 for biomass reaction, vbiomass 

reaction indicates maximum specific cell growth rate under the designated 

conditions. In general, the maximum cell growth rate and flux distributions 

at the optimal growth state are highly consistency with the experimental 

results in various wild-type microorganisms (48)(49). 

 

 

Figure 1-4 Principal of flux balance analysis.  
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Figure 1-5 Flux distribution of a simple metabolic network calculated by 

FBA. Black arrows indicate activate metabolic reactions. Gray arrows 

indicate inactivate metabolic reactions (i.e. the fluxes is equal to zero.). 
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1-3-4 Importance of metabolic design for growth-coupled target production 

Strain improvement for optimizing the production of valuable chemicals is 

an overarching challenge in biotechnology. However, wildtype 

microorganisms almost show low productivities for industrial applications. 

Since target production consume carbon and energy sources, the relationship 

of cell growth and target production is usually trade-off. This means that 

increasing target production leads to decrease cell growth rate. The trade-off 

relationship is expected to be unfavorable for the microbial process, because 

the final volume of target metabolite (i.e. production titer) is depend on not 

only production rate, but also cell volume and cell growth rate. Furthermore, 

during fermentation process of such strain, population of the cells having 

high growth rate and low productivity likely overgrow the overall population. 

This leads unstable production of the target metabolite and decrease the 

productivity with increasing the population of high-growing cells (50)(51).  

Growth-coupled target production is a promising approach to develop the 

microbial process. Since the strain designed for the growth-coupled target 

production produces target metabolite in order to grow, the process is 

expected to contribute stable production and increase target productivity. 

The other advantage of the process is that high target producing strains can 

be easily selected by selecting faster growing cells through adaptive 

laboratory evolution (52)(53), which is described in the chapter 4. Since the 

relationship is depend on the metabolic network structure as shown in the 

chapter 1-3-2, genetic manipulation of metabolic genes can change the 

network structure and the relationship. Rational design of metabolic 
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network is an important for development of the growth-coupled target 

production. 

 

1-3-5 Metabolic engineering strategy based on FBA 

Effective gene knockout for the growth-coupled target production can be 

screened by evaluating the predicted target productivity at the optimal 

growth state. The knockout mutant must produce a target metabolite to 

produce the biomass components with satisfying the mass balance 

constraints. For example, the metabolic engineering strategy for the 

growth-coupled production of target metabolite Eext in the simple metabolic 

network is displayed in Figure 1-6. Disruption of reaction 3 leads to increase 

target production yield at optimal growth state (Figure 1-6B), because 

precursor metabolite C for biomass reaction is only supplied via target 

metabolite biosynthesis in the metabolic network disrupting reaction 3. On 

the other hand, disruption of reaction 8 do not change the production yield 

(Figure 1-6C). These results indicate that the disruption of reaction 3 blocks 

unnecessary pathways for target production and rewire metabolic flux to 

target synthesis coupled with cell growth.  

Recent development of calculation algorithm enable us to evaluate the 

effect of combinatorial gene knockouts on the growth-coupled target 

production (54)(55)(56). Using such simulations, strain improvements have 

been achieved for various target production processes (Table 1-1). For 

example, Fong et al. constructed high lactate producing E. coli by double 

knockout of pta and adhE predicted by Optknock algorithm (54), which is a 
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most used the calculation algorithm, while wildtype E. coli do not secrete 

lactate (52). 

 

 

Figure 1-6 Comparison of solution spaces and flux distributions between 

different metabolic networks. Upper panes indicate the solution spaces, and 

lower panes indicate flux distributions calculated by FBA. Red points in the 

solution space indicate optimal solution calculated by FBA. 
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Table 1-1 Experimental evaluation of gene knockout simulation for strain improvements for target production. 

Target process Host 

Knockout gene 

Carbon molar yield of target product (C-mol/C-mol)*1 Ref. 

Pre-knockout*2 Knockout mutant Predicted value 

Glucose -> Succinate E. coli 

ptsG, pykAF 

0 0.23 0.46 (57) 

Glucose -> Lactate E. coli 

pta, adhE 

0 0.61 0.85 (52) 

Glucose -> Lactate E. coli 

pta. adhE + ALE*3 

0 0.86 0.85 (52) 

Glucose -> 1,4-butanediol E. coli 

adhE, ldh, pflB, mdh 

0.02 0.10*4 0.49 (58) 

Glucose -> 2,3-butanediol S. cerevisiae 

ADH1, ADH3, ADH5 

0 0.15 0.42 (59) 

Glycerol  

-> 3-hydroxypropionic acid 

E. coli 

tpiA, zwf 

0.05 0.20 0.71 This 

study 

Glycerol  

-> 3-hydroxypropionic acid 

E. coli 

tpiA, zwf + yqhD knockout 

0.05 0.34 0.71 This 

study 

Glycerol -> Succinate E. coli 

adhE, pykAF, gldA, pflB 

0.03 0.08 0.44 This 

study 

Glycerol -> Succinate E. coli 

adhE, pykAF, gldA, pflB 

+ ALE*3 

0.03 0.45 0.44 This 

study 



22 

 

*1 Carbon molar yields were calculated from the carbon-mol of the product per cabon-mol of the consumed substrate. 

*2 Pre-knockout indicates wild-type microorganisms or host strains expressing genes involved in synthetic pathway of 

target metabolite. 

*3 “+ALE” indicates the evolved strain obtained from adaptive laboratory evolution of the knockout mutant 

*4 The value was refer to the culture result of ECKh-401 strain (E. coli ΔadhE ΔldhA ΔpflB Δmdh ΔarcA lpdA::lpdAD354K 

expressing heterologous genes involved in 1,4BDO synthetic pathway) in the previous study (58).
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1-3-6 Problem of the metabolic engineering strategy based on FBA 

FBA is a useful to predict to build metabolic engineering strategy for 

development of growth-coupled target production. Although the engineered 

strains based on FBA have actually improved the target productivity, these 

knockout mutants always showed lower cell growth ability and target 

production yield as compared to FBA predictions as shown in Table 1-1. The 

possible reasons why the knockout mutant decreased the productivity of 

growth-coupled target production are summarized as following. 

 

1) Environmental stress 

1-A)  Growth inhibition by oxidative stress and culture environment 

such as pH, temperature and osmotic stress 

1-B)  Regulation of specific metabolic reaction by chemicals 

(Ex. feedback inhibition of amino acid biosynthesis) 

2) Limitation of metabolic reaction 

2-A)  Shortage of enzyme level 

2-B)  Shortage of substrate level 

2-C)  Kinetic constraints 

3) Difference of composition of biomass reaction 

 

(1) Environmental stress is caused by physical factors such as pH, 

temperature and osmotic pressure, and chemicals in culture medium 

including substrate and product. Environmental stress can effect on both of 

overall physiological characteristic of microorganism and specific metabolic 
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reaction. For example, oxidative stress, which is the metabolic condition 

arisen from imbalance between toxic reactive oxygen species and antioxidant 

systems, leads redox imbalance and increases energy requirement for cell 

growth or damages macromolecules such as DNA (60). Chemicals existing in 

culture broth also damage macro molecules and inhibit specific metabolic 

reaction (61)(62)(63). In such case, construction of tolerable strain against 

the environmental stress is important for increasing target production 

(62)(64). 

(2) Metabolic reaction in actual cells is regulated by kinetic constraints 

including enzyme level, substrate level and enzymatic activity, while FBA 

simplify the complicated metabolic system by considering only mass-balance 

equation of the stoichiometry. Product inhibition discussed as the 

environmental stress (1-B) is also considered to be caused by kinetic 

constraint such as feedback inhibition of amino acid biosynthesis. Enzymatic 

activity is limited by not only its kinetic parameters, but also interaction 

with other molecules such as inhibitor. Since there are several factors 

regulating metabolism such as limitation of enzymatic activity (31), 

enzymatic regulation (32), expression regulation (33), and thermodynamic 

feasibility (34), and causing rate-limiting reactions, the flux space of actual 

metabolic network must be diminished from the solution space in FBA. 

Therefore, these simplification of metabolic system potentially lead to 

overestimate the productivity by FBA and that the knockout mutant always 

display the lower productivity than of the predicted value. For development 

of genome-scale metabolic design for strain improvement, it is absolutely 
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essential to know which reaction is rate-limiting step, what cause the 

rate-limiting and how do we overcome the metabolic limitation. 

For example, assuming the reaction 2 as a sole rate-limiting reaction in 

the simple metabolic network with disruption of the reaction 3, and the 

maximum flux through the reaction 2 is limited lower than 0.4 mmol gCDW－

1 hr－1, an additional constraint is added to the linear programming problem 

as following. 

0 ≤ 𝑣2 ≤ 0.4 mmol gCDW－1 hr－1   (Equation 1.9) 

The solution space and the flux distribution with considering the 

rate-limiting reaction are calculated as shown in Figure 1-7. The biomass 

yield and the target production yield at the optimal growth state is decreased 

by considering the rate-limiting reaction, because the flux through the 

reaction 3 determine the precursor supply for biomass reaction and target 

synthesis. For overcoming the kinetic constraints causing rate-limiting 

reaction, further strain improvement is required. 

 (3) The biomass reaction of genome-scale metabolic model is constructed 

by measuring composition of biomass components of wildtype microorganism. 

The biomass compositions might be changed based on their genetic 

backgrounds. In previous study, Long CP et al. reported that measured 

molecular weight of wildtype and 22 types of single gene knockout mutant of 

E. coli were 37.3 ± 0.4 C-mmol gCDW－1 (65). Therefore, although the 

difference of composition of biomass reaction is a potential cause leading the 

inconsistency between FBA prediction and culture result, the effect is 

considered to be small.  



26 

 

 

Figure 1-7 Comparison of solution spaces with considering reaction 2 as a 

rate-limiting reaction. (A) Solution space of the simple metabolic network 

with the disruption of reaction 3, and the flux distribution calculated by FBA. 

(B) Solution space of the simple metabolic network with the disruption of 

reaction 3 and considering reaction 2 indicated by blue arrow as a 

rate-limiting reaction, and the flux distribution calculated by FBA. The 

solution space and flux distribution was calculated by setting the 

upper-bound of reaction 3 to 0.4.  
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1-4 General objective 

The general objective of this study was to unveil what causes the 

inconsistencies on growth-coupled target production between FBA prediction 

and experimental results. For this purpose, novel method to screen possible 

rate-limiting reaction for the growth-coupled target production based on FBA  

is developed (chapter 2), and reveal the molecular mechanism causing the 

rate-limiting steps in the microbial production processes of 

3-hydroxypropionic (chapter 3) acid and succinate (chapter 4) through strain 

improvements. 

 

1-5 Outline of the thesis 

The thesis consists of 5 chapters, and a schematic outline of the thesis is 

shown in Figure 1-3. 

 

Chapter 1 describes the general introduction of this thesis. The background 

about the microbial process and genome-scale metabolic design are 

summarized in this chapter. The objectives and schematic of this thesis are 

also described. 

 

Chapter 2 describes the development of novel screening method of key 

enzyme for metabolic engineering by using genome-scale metabolic model. 

The method assumes the complex metabolic regulating system as an 

upper-bound constraint on each enzymatic flux on FBA calculation and 

simulate which reaction is thought to be possible rate-limiting reactions for 
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the target production. The experimental results of strain improvement for 

1,4-butanediol production reported by Yim et al. were consistency with the 

predicted rate-limiting reactions. And this proposed method also 

successfully screened the possible rate-limiting reactions for various 

microbial process of growth-coupled target production. To understanding 

the mechanism causing the rate-limiting reactions is essential to build 

metabolic engineering strategies, since the proposed approach cannot deal 

the molecular mechanism.  

 

Chapter 3 describes the strain improvement for 3-hydroxypropionic acid 

production based on genome-scale metabolic design. Gene knockout 

simulation based on conventional FBA identified the double knockout of 

tpiA-zwf improve the growth-coupled 3HP production in E. coli. Actually, 

the production yield of 3HP was improved to 0.20 C-mol/C-mol, which was 

4.4-fold higher than before the gene deletions. Next, the metabolic 

engineering strategy for further improvement of 3HP production in the 

knockout mutant was build based on experimental evaluation of the strain. 

Overflow of 1,3-propanediol was thought to led to decrease the flux through 

3-hydroxypropionaldehyde dehydrogenase, which was predicted as one of 

the possible rate-limiting reactions for the 3HP production. This overflow 

was caused by yqhD expression induced by activation of methylglyoxal 

pathway in the knockout mutant. Additional disruption of yqhD 

successfully increased the production yield of 3HP from 0.20 C-mol/C-mol 

to 0.34 C-mol/C-mol. 
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Chapter 4 describes the strain improvement for succinic acid production 

based on genome-scale metabolic design. Gene knockout simulation based 

on conventional FBA identified the five knockout of adhE-pykAF-gldA-pflB 

improve the growth-coupled succinic acid production in E. coli. Although 

the production yield of 3HP was improved to 0.08 C-mol/C-mol, the 

productivity was lower than of the predicted value of 0.45 C-mol/C-mol at 

the optimal growth state. 9 enzymatic reactions including 

phosphoenolpyruvate carboxylase (Ppc) were identified as candidates of 

rate-limiting reactions that can diminish flux space of the actual metabolic 

network and hamper the optimization of metabolic state for succinate 

production. For improving succinate production and understanding the 

molecular mechanism causing the rate-limiting reaction, adaptive 

laboratory evolution (ALE) was applied for the knockout mutant, since its 

metabolic network was designed for growth-coupled succinate production. 

All of the evolved strains obtained from ALE successfully increased cell 

growth rate and succinate production yield. Furthermore, the all evolved 

strains had novel mutations in ppc. These mutations expanded the flux 

space of actual metabolic network for succinate production by desensitizing 

an inhibition by aspartate on Ppc. 

 

Chapter 5 describes general conclusion and future perspective of this 

research
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Figure 1-8 The schematic and novelties of this thesis.
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Chapter 2: Prediction of possible rate-limiting reactions 

for target production based on genome-scale metabolic 

model 

 

2-1 Highlights 

 Simple screening method of rate-limiting reactions for 

growth-coupling target production was developed. 

 The proposed method screens the rate-limiting reactions with none of 

experimental data and only imposing an upper-bound constraint of 

each enzymatic reaction’s flux on conventional FBA calculation. 

 Predicted results for 1,4-butanediol production were consistency with 

the experimental results of stain improvement performed in the 

previous study. 

 The proposed method was applied to screen possible rate-limiting 

reactions in various fermentation processes. 

 

2-2 Introduction 

2-2-1 Genome-scale metabolic design for growth-coupled target production 

One of the goals of metabolic engineering is to optimize a metabolic 

system for overproduction of a target compound based on the understanding 

of the system. Recent developments in genome-scale metabolic 

reconstructions have enabled the simulation of the physiological 
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characteristics of organisms (66)(67)(68). Flux balance analysis (FBA) is a 

method to estimate a metabolic flux distribution using a genome-scale 

metabolic model (44)(46)(45)(47), and it has been widely used to predict the 

effect of gene knockouts in enhancing the target production 

(54)(69)(56)(70)(55)(71). 

Gene knockout mutant for growth-associated target production can be 

screened by comparing production yield at its optimal growth state as 

predicted by FBA (54)(56)(55). The knockout mutant must produce a target 

metabolite to produce the biomass components with satisfying the mass 

balance constraints. Several studies successfully achieved strain 

improvement for production of various target metabolites by using such 

simulations (57)(58)(59). However, these knockout mutants often showed 

lower cell growth ability and target production yield as compared to FBA 

predictions. These inconsistencies should be arising from that FBA simplify 

the complicated metabolic system by considering only mass-balance equation 

of the stoichiometry. Since there are several factors regulating metabolism 

such as enzymatic regulation (32), expression regulation, and 

thermodynamic feasibility (34) and causing rate-limiting steps, the flux 

space of actual metabolic network must be diminished from the solution 

space in FBA. These lead to overestimate the productivity by FBA and that 

the knockout mutants always display the lower productivity than of the 

predicted value. 
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2-2-2 Identification of rate-limiting steps to metabolic fluxes in biotechnological 

process 

Overcoming the metabolic limitation is important for strain improvement. 

Rate-limiting reactions in biotechnological process are caused by low 

enzymatic activity (31), enzymatic regulation (32), expression regulation (33), 

and thermodynamic feasibility (34). Screening the rate-limiting step for 

target production has been achieved by experimental approaches 

(72)(73)(74)(75). For example, Lu et al. identified rate-limiting step in 

Coenzyme Q10 biosynthesis by overexpression of individual enzymes 

involved in quinone modification pathway at different levels (72). Pitera et al. 

identified rate-limiting step in isoprenoid production by exogenously 

supplementing a precursor in the culture medium (73). Although such 

experimental approaches can directly evaluate the metabolic bottleneck in 

vivo, it is difficult to expand the target pathways for evaluation due to 

experimental cost and technical limitations. Computational approaches 

using a metabolic model considering kinetics have the potential to overcome 

the disadvantage.  

Kinetic modeling of metabolism quantitatively describes the dynamics of 

metabolic system. Reconstruction of kinetic models has been achieved by 

integration of priori knowledges on the network structure, kinetics of their 

enzymes and kinetic parameters (e.g., rate constants such as Km or Kcat and 

enzyme concentrations) measured in vitro and assumed by using 

experimental data (76)(77)(78)(79). Sensitivity analysis using kinetic models 

have the potential to screen the metabolic bottleneck from the entire 
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metabolic system. For example, Rizk et al. achieved to rank which metabolic 

reactions mostly limited on aromatic production (78). Andreozzi et al. 

predicted the gene targets for upregulation or downregulation for enhancing 

1,4-butanediol production using the kinetic models (80). The kinetic 

modeling approaches enable us to evaluate which enzymatic reactions are 

most sensitive for the target production, and enable to build metabolic 

engineering strategies, such as up-regulation, down-regulation, and 

knockout. On the other hand, there are several disadvantages in such 

conventional modeling approaches for identification of rate-limiting steps.  

Firstly, they require considerable information regarding the detailed 

reaction mechanism including regulation and accurate kinetic parameters to 

construct the model. Second, they have to validate the model accuracy with a 

large amount of experimental data of culture results and omics data such as 

fluxomics, metabolomics, transcriptomics and proteomics. And last, although 

quantitative reconstruction using kinetic modeling can reproduce the 

metabolic behavior in the range of used training data sets, estimation of the 

metabolic state overproducing target metabolite is potentially difficult since 

the training data sets do not contain the abnormal metabolic state. In these 

studies, further strain improvement based on the predicted rate-limiting 

reactions were not experimentally validated (78)(79). Furthermore, genetic 

engineering tools could not quantitatively change enzymatic properties as 

expected, and trial-and-error procedures of genetic manipulation are needed 

to obtain the ideal one in the end. Therefore, simple screening method 

without any experimental data such as conventional FBA approach is 
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expected to be useful to screen the first candidate of metabolic reaction for 

strain improvement. 

 

2-2-3 Objective of this chapter 

In this chapter, I firstly developed in silico screening method for possible 

rate-limiting reactions for growth-coupled target production by using only 

existing genome-scale metabolic model without any experimental data. The 

proposed method simplify the metabolic limitation arisen from the 

complicated interaction of several factors as an upper-bound constraint of 

each enzymatic reaction’s flux on FBA calculation (Figure 2-1). When 

imposing upper-bound constraint on a reaction decreased target productivity 

at the optimal growth state, the reaction is thought to be possible a 

rate-limiting step. When imposing upper-bound constraint on a reaction do 

not decrease target productivity at the optimal state, the reaction is thought 

to be potentially non rate-limiting step. The calculation of the maximum 

productivity at the optimal state was performed by using a linear 

programming problem as same as FBA calculation. 

For validating the predictions of this method, previously reported the 

metabolic engineering results for 1,4-butanediol production in E. coli was 

used in this chapter. The proposed approach was also applied to predict the 

possible rate-limiting reactions for various biotechnological processes such as 

lactate or succinate production from glucose, and 3-hydroxypropionic acid 

(3HP) or succinate production from glycerol. Furthermore, molecular 

mechanism causing the rate-limiting steps and metabolic engineering 
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strategies were discussed with priori knowledges on metabolic system.
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Figure 2-1 The principle of in silico prediction of possible rate-limiting reactions using genome-scale metabolic model.
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2-3 Methods 

2-3-1 Metabolic model 

Genome scale metabolic model of Escherichia coli iAF1260 (81) was used 

in this study. This model contains 1,260 ORFs, 2,077 metabolic and transport 

reactions, and 1,038 unique metabolites. To simulate heterologous 

metabolite production of 1,4-BDO or 3HP, synthetic pathway, transport 

reaction and exchange reactions were added to the genome-scale metabolic 

model, respectively (Figure 2-2 and 2-3, Table 2-1 and 2-2). In case of 

simulation of 3HP production, the fluxes of exchange reaction, which serves 

to uptake compounds to the cell or secrete compounds from the cell, of 

dihydroxyacetone and D-glyceraldehyde were set to zero due to avoid 

undetermined production fluxes. Substrate uptake rate (SUR) and oxygen 

uptake rate (OUR) were respectively set to the values shown in Table 2-3 

considering each fermentation process. Other external metabolites such as 

CO2 and NH3 were allowed to transport freely through the cell membrane. 

For gene knockout simulations, minimum and maximum fluxes of the 

corresponding reactions were set to zero. 
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Figure 2-2 1,4-Butanediol synthetic pathway. The genes encoding relevant 

enzymes are given in italics. 

 

 

Figure 2-3 3HP synthetic pathway from glycerol. The genes encoding 

relevant enzymes are given in italics. 
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Table 2-1 List of added reactions for 1,4-butanediol production. 

Reaction name Formular Gene 

2-oxoglutarate 

decarboxylase 

akg[c] + h[c]  

-> co2[c] + sucsal[c] 

M. bovis 

sucA  

CoA-dependent succinate 

semialdehyde 

dehydrogenase 

h[c] + nadh[c] + succoa[c]  

-> coa[c] + nad[c] + sucsal[c]  

P. gingivalis 

sucD 

4-hydroxybutyrate 

dehydrogenase 

h[c] + nadh[c] + sucsal[c]  

<=> nad[c] + 4hdxbutn[c]  

P. gingivalis 

4hbd 

4-hydroxybutyryl-CoA 

transferase 

accoa[c] + 4hdxbutn[c] -> 

ac[c] + 4hbutcoa[c]  

P. gingivalis  

cat2 

4-hydroxybutyryl-CoA 

reductase 

h[c] + nadh[c] + 4hbutcoa[c]  

<=> coa[c] + nad[c] + 

4hdxbld[c]  

C. acetobutylicum  

adhE2  

1,4-butanediol 

dehydrogenase 

h[c] + nadh[c] + 4hdxbld[c]  

<=> nad[c] + 14btd[c]  

C. acetobutylicum  

adhE2 

4-hydroxybutyrate transport 

via proton symport 

h[c] + 4hdxbutn[c]  

<=> h[e] + 4hdxbutn[e]  

– 

1,4-butanediol transport via 

diffusion 

14btd[c] <=> 14btd[e]  – 

4-hydroxybutyrate exchange 4hdxbutn[e] <=>  – 

1,4-butanediol exchange 14btd[e] <=>  – 
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Table 2-2 List of added reactions for 3-hydroxyporpionic acid production. 

Reaction name Formular Gene 

Glycerol dehydratase glyc[c] -> 3hpa[c] + h2o[c] 

 

K. pneumoniae 

dhaB 

3-hydroxypropionaldehyde 

dehydrogenase 

3hpa[c] + nad[c] + h2o[c]  

<=> 3hp[c] + nadh[c] + 2h[c] 

Escherichia coli 

aldH 

3-hydroxypropionic acid 

transport via proton 

symport 

3hp[c] + h[c] <=> 3hp[e] + h[e] – 

3-hydroxypropionic acid 

exchange 

3hp[e] <=> – 

1,3-propanediol 

oxidoreductase 

3hpa[c] + nadph[c] + h[c]  

<=> 13pd[c] + nadp[c] 

Escherichia coli 

yqhD 

1,3-propanediol transporter 

via diffusion 

13pd[c] <=> 13pd[e] – 

1,3-propanediol exchange 13pd[e] <=> – 

 

Table 2-3 Substrate uptake rate and oxygen uptake rate 

Target metabolites Substrate uptake rate 

(mmol gCDW-1hr-1) 

Oxygen uptake rate* 

1,4-butanediol Glucose, 10 0 

Lactate Glucose, 10 0 

Succinate Glucose, 10 0 

3-hydroxypropionic acid Glycerol, 15 10 

Succinate Glycerol, 15 10 

* Oxygen uptake rates on target productions from glucose were set to zero 

indicating anaerobic condition in refer to the previous studies (52)(57)(58). 

Oxygen uptake rates on target productions from glycerol were set to 10 

indicating micro-aerobic condition because the knockout model cannot grow 

anaerobically on glycerol medium.  
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2-3-2 Screening algorithm of key enzyme for metabolic engineering 

Conventional FBA only considers mass balance constraints on metabolic 

network and optimizing objective function such as maximum cell growth rate. 

To predict the possible rate-limiting reactions for target production in the 

knockout mutant, FBA was performed with some of constraints as shown 

below: 

max  cT⋅v 

subject to  0,  Rj jji vS  )( Mi  

vsubstrate_uptake = SUR 

  voxygen_uptake = OUR 

  vknockout_reactions = 0 

  vj ≦ k･SUR (if reaction j has kinetic constraints.) 

  vj ≧ k･SUR (if reaction j is reversible and the reverse reaction has 

kinetic constraints.) 

where Si,j is the stoichiometric coefficient of the metabolite i in the reaction j. 

The vj is the metabolic flux of enzymatic reaction j. M and R are the set of 

metabolites and reactions, respectively. c is a vector that represents 

coefficients of an objective function to be maximized or minimized. For 

determining the maximal succinate production flux at optimal growth, the 

coefficients were set to 1 and 1×10-6 for biomass equation and target 

metabolite’s exchange reaction, respectively. vglycerol_uptake, and voxygen_uptake are 

SUR and OUR, respectively as shown in Table 2-3. vknockout_reactions corresponds 

to the knockout reaction for growth-coupled target production. For screening 
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of the rate-limiting reactions, constant value k was set to 0.2 for glycerol 

fermentation or 0.4 for glucose fermentation. When a constraint on an 

enzymatic reaction resulted in decrease target production rate at the optimal 

growth state, that reaction was considered as a candidate for rate-limiting 

reaction (Figure 2-1). The calculation was implemented in Matlab 

(MathWorks Inc., Natick, MA, USA) with a solver for linear programming, 

Gurobi (http://www.gurobi.com).  
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2-4 Results and discussion 

2-4-1 Prediction of possible rate-limiting reactions for 1,4-butanediol production 

from glucose. 

Since E. coli does not have 1,4BDO synthetic pathway in natural, Yim et 

al. demonstrated 1,4BDO production from glucose in E. coli by expressing 

heterologous pathway shown in Fig. 2-2 (58). In the study, growth-associated 

1,4BDO production was increased by deletion of adhE-pflB-ldhA-mdhA 

based on the FBA prediction. For identification of key enzymatic reaction on 

the growth-associated 1,4BDO production, the knockout mutant model was 

reconstructed from E. coli iAF1260 by addition of 1,4BDO synthetic pathway 

and disruption of the reaction encoded by the knockout genes. In the 

knockout model, glucose was converted to acetate and 1,4BDO via glycolysis 

and reductive TCA cycle at optimal growth state (Figure 2-4B). Deletion of 

adhE, pflB, mdh and ldhA enhanced 1,4BDO production in order to maintain 

the redox balance.  

In the knockout model, 7 enzymatic reactions were predicted as 

candidates of the rate-limiting reaction for 1,4BDO production (Table 2-5 

and Figure 2-4C-E). The limitation of 1,4BDO synthesis pathway directly 

reduced carbon flow into 1,4BDO formation. The limitation of pyruvate 

dehydrogenase decreased ATP regeneration by reducing acetate production. 

This led to decrease 1,4BDO synthesis and cell growth because 1,4BDO 

synthesis from glucose via reductive TCA cycle cannot produce ATP. The 

limitation of Ppc reduced the flux into the reductive TCA cycle, and led to 

decrease 1,4BDO formation.  

In the previous study, Yim et al. optimized the metabolic network in the 
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knockout mutant for enhancing 1,4BDO production by additional gene 

manipulations. Native lpdA gene was replaced by the mutant gene of 

lpdAD354K derived from K. pneumoniae. Dihydrolipoamide dehydrogenase 

encoded by lpdA is a component of pyruvate dehydrogenase, which was 

predicted as the rate-limiting reaction in the proposed method, and E. coli 

LpdA activity is tightly regulated under the anaerobic condition owing to 

NADH sensitivity (82). Because the mutant has higher activity under 

anaerobic condition compared with its wildtype, the lpdA replacement is 

thought to increase the flux into pyruvate dehydrogenase (83). The 

replacement of native lpdA by lpdAD354K in the knockout mutant increased 

not only 1,4BDO production, but also cell growth ability under the oxygen 

limited condition. This indicated that production of 1,4BDO in the knockout 

mutant was coupled with cell growth as predicted by FBA. 

Yim et al. also deleted arcA to activate pyruvate dehydrogenase, 

succinyl-CoA synthase and CoA-dependent succinate semialdehyde 

dehydrogenase, because arcA gene product work as a global regulator and 

repress the expressions of aceEF encoding subunits of pyruvate 

dehydrogenase, sucCD encoding succinyl-CoA synthase and sucD encoding 

CoA-dependent succinate semialdehyde dehydrogenase (84)(85)(86). The 

reactions catalyzed by these enzymes were also predicted as rate-limiting 

reactions. 

Furthermore, the enzymes of downstream pathway of 1,4BDO synthesis, 

which were also predicted as rate-limiting reactions, were optimized by 

screening high active enzymes from Clostridium acetobutylicum and related 



46 

 

organisms. These genetic manipulations resulted in overcoming the 

metabolic limitations on growth-coupled 1,4BDO production in the knockout 

mutant. 

A recent study by Andreozzi et al. applied kinetic modeling approach to 

identify metabolic engineering targets for the enhancement of 1,4BDO 

production in the engineered strain derived from the knockout mutant (80). 

In order to compare the predicted reaction, possible-rate limiting reactions 

were screened under aerobic condition setting OUR to 2 mmol gCDW-1hr-1, 

because the previous study consider aerobic fermentation of 1,4BDO. The 

predicted rate-limiting reactions were almost consistency with the result of 

the proposed approach (Table 2-6). The main difference was that the kinetic 

modeling approach identified the metabolic engineering targets for down 

regulating, while the proposed method cannot identify those. The other 

difference was that some of reactions in oxidative TCA cycle was determined 

as the metabolic engineering targets in the kinetic modeling approach, while 

the proposed method could not predict that. This was caused by metabolic 

flux through oxidative TCA cycle was not responsible for 1,4BDO production 

at the optimal growth state predicted by FBA, since the knockout mutant’s 

metabolic network was design for 1,4BDO production under anaerobic 

condition (58). 

Increasing flux of Ppc is a rational way for further improvement of 

1,4BDO production in the engineered strain, because the previous study by 

Yim et al. did not try to do genetic manipulation for ppc. Furthermore, the 

study using kinetic model by Andreozzi et al. also reported that enhancing 
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enzymatic activity of Ppc is most positively effect on the 1,4BDO production 

yield in the engineer strain (80). The way to enhance the Ppc activity was 

subsequently discussed in the chapter 4 

 

 

Figure 2-4 Predicted rate-limiting reactions of growth coupled 1,4BDO 

production from glucose. (A, B) Flux distributions of wildtype (A) and ΔadhE 

ΔpflB ΔldhA ΔmdhA (B) were calculated by using iAF1260. Blue arrows 

indicated predicted rate-limiting reactions. (C-E) Feasible solution space of 

the knockout mutant with the upper bound constraint of pyruvate 
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dehydrogenase (C), Ppc (D) and 1,4-butanediol dehydrogenase (E) at 0-100% 

of SUR and free. 
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Table 2-5 Predicted rate-limiting reactions for growth-coupling target productions. 

Target Substrate Aerobic  

condition 

Knockout genes Rate-limiting reactions or pathways  

(Corresponding genes) 

1,4BDO Glucose Anaerobic *1adhE, pflB, ldhA, mdh Pyruvate dehydrogenase (lpdA) 

Phosphoenolpyruvate carboxylase (ppc) 

1,4-butanediol synthetic pathways  

(sucA, sucD, adhE, P. gingivalis 4hbd,  

P. gingivalis cat2) 

Lactate Glucose Anaerobic *2pta, adhE Lactate dehydrogenase (ldhA) 

Succinate Glucose Anaerobic *3ptsG, pykAF Triosephosphate isomerase (tpiA) 

Phosphoenolpyruvate carboxylase (ppc) 

Reductive TCA cycle (mdh, fumA) 

Acetate synthetic pathway (pta, ackA) 

3HP Glycerol Microaerobic *4tpiA, zwf Glycerol dehydratase  

(K. pneumoniae dhaB) 

3HPA dehydrogenase (aldH) 

Succinate Glycerol Microaerobic *4adhE, pykAF, gldA, pflB Glycerol assimilation pathway (glpK, gpsA) 

Lower glycolysis (tpiA, gapA, eno, pgk, pgm, lpdA) 

Phosphoenolpyruvate carboxylase (ppc) 

*1: The knockout genes were predicted in the previous report (58). 

*2: The knockout genes were predicted in the previous report (52). 

*3: The knockout genes were predicted in the previous report (57). 

*4: The knockout genes were predicted in this study 
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Table 2-6 A comparison of the proposed method with kinetic modeling approach 

 Kinetic modeling approach (80) The proposed method 

Requirement Reconstruction of kinetic models using 

stoichiometry, thermodynamics, diverse 

experimental data (fluxomics, metabolomics, 

transcriptomics, proteomics and kinetics) 

Existing genome-scale metabolic model 

Type of prediction Up or down regulation of target genes Upregulation 

Prediction method Metabolic control analysis using ensemble of 

kinetic models having different kinetic 

parameters 

FBA with an upper-bound constraint of 

each single enzymatic reaction. 

Predicted reactions*   

Glycolysis Upregulation: ENO, PGM, Ppc 

Downregulation: FBA, PFK, PGI 

Upregulation: ENO, GAPD, PDH, PGK, 

PGM, Ppc 

TCA cycle Upregulation: ACONTa, CS, ICDHyr − 

1,4BDO biosynthesis Upregulation: AKGD, SUCSALD, 4HBD, 

4HBCOAT, 4HBCOAR, 4HBDH 

Upregulation: SUCSALD, 4HBD, 

4HBCOAT, 4HBCOAR, 4HBDH 

*The metabolic reaction names were abbreviations in the genome-scale metabolic model and engineering targets 

predicted by both method was highlighted in bold.
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2-4-2 Application of the proposed method for various fermentation process. 

The proposed method was applied to identify the possible rate-limiting 

reactions in the other growth-coupled target productions. The proposed 

method was successful to screen possible rate-limiting reactions for all case 

(Figure 2-5). The predicted possible rate-limiting reactions were increased by 

decreasing the value of k, which is constant parameter for the constraint of 

upper-bound of enzymatic flux. When the k was set to 0 (i.e. knockout), 

unintended reactions which directly involve in de novo synthesis of biomass 

components were predicted. When the k was set to 1 (i.e. the upper bound of 

the flux was set to substrate uptake rate.), no reactions were predicted in 

some cases. In order to avoid the unintended reactions and evaluate the 

predicted rate-limiting reaction as same manner, the parameter k was set to 

0.2 for fermentation on glycerol, or 0.4 for fermentation on glucose by 

standardizing the intensity of the constraint based on the number of carbon 

of each substrate. 

The calculation time using the genome-scale metabolic model of E. coli 

iAF1260, which contains 1,387 metabolic reactions and 1,038 unique 

metabolites, was less than 3 minutes by a single Xeon CPU (2.93 GHz). Since 

the proposed method solves linear programming problems for the metabolic 

models with constrained upper-bound of each enzymatic reaction’s flux, and 

extracts the possible rate-limiting reactions by comparing the optimal value, 

the calculation time is dependent on the number of enzymatic reactions in 

the model. These results indicated that calculation time is less than 0.13 sec 

per a limitation of each single reaction. The knockout models and the 
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predicted rate-limiting reactions for the growth-coupled target productions 

were summarized in Table 2-5. Molecular mechanisms of predicted 

rate-limiting reactions on target production from glycerol were subsequently 

discussed in the chapter 3 and 4 thorough experimental strain 

improvements.  
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Figure 2-5  Effect of parameter k on the prediction of rate-limiting 

reactions.  
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Case1: Lactate production from glucose 

Lactate is one of anaerobic fermentation products in microorganism. Fong 

et al. successfully increased lactate production from glucose in E. coli by 

knockout of pta-adhE based on FBA prediction (52). Wildtype E. coli model 

produced formate, acetate and ethanol under the anaerobic condition 

because of re-oxidation of NADH generated in glycolysis (Figure 2-6A). The 

flux distribution in the knockout model constructed from E. coli iAF1260 

displayed that the deletion of pta and adhE increased lactate production in 

order to generate high amount of ATP in glycolysis and maintain the redox 

balance (Figure 2-6B). The knockout of pta and adhE increased the 

production yield of lactate to 0.61 C-mol/C-mol, which was lower than 0.86 

C-mol/C-mol as the predicted yield at the optimal growth state by FBA. 

By imposing the upper-bound constraint on the flux of each enzymatic 

reaction, lactate dehydrogenase was predicted as a sole rate-limiting 

reaction (Figure 2-6C). Lactate dehydrogenase, which encoded by ldhA, 

converts pyruvate to lactate coupling with NADH oxidation. Fong et al. 

demonstrated that ALE of the knockout mutant of pta and adhE successfully 

increased the growth-coupled lactate production (52). Further experimental 

analysis of the evolved strains revealed that the ALE experiments optimized 

the activities in central metabolism for enhancement lactate production (87). 

Increased phosphoglucose isomerase and phosphofructokinase and 

decreased glucose 6-phosphate dehydrogenase contributed to improve the 

flux ratio of glycolytic to oxidative pentose phosphate pathway (Figure 2-7A). 

The enhanced glycolytic flux improved the supply of NADH and pyruvate as 
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precursors of lactate dehydrogenase and this led to overcome the kinetic 

limitation of lactate dehydrogenase, which was predicted as a sole 

rate-limiting step by the proposed method (Figure 2-7B). 

 

 

Figure 2-6 Predicted rate-limiting reactions of growth coupled lactate 

production from glucose. (A, B) Flux distributions of wildtype (A) and Δpta

ΔadhE (B) were calculated by using iAF1260. Blue arrows indicated lactate 

dehydrogenase predicted as a rate-limiting reaction. (C) Feasible solution 

space of the knockout mutant with the upper bound constraint of lactate 

dehydrogenase (C) at 0-100% of SUR and free. 
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Figure 2-7 Metabolic optimization for growth-coupled lactate production by 

adaptive laboratory evolution. (A) Overview of metabolic adjustment for the 

lactate production in the knockout mutant of pta and adhE during adaptive 

laboratory evolution (87). (B) Direct comparison of feasible solution space 

and experimental results of the lactate producing strains. White and red 

circles indicate the experimental results of the unevolved knockout mutant 

and the average of the all evolved strains obtained in the previous study (52). 

Metabolic solution space was calculated with the kinetic constant value (k) of 

1.0 and the measured value of SUR of 16.1 mmol gCDW-1hr-1 in iAF1260.  

  



57 

 

Case2: Succinate production from glucose 

Lee et al. successfully increased succinate production from glucose in E. 

coli by knockout of ptsG and pykAF based on FBA prediction (57). The flux 

distribution in the knockout model constructed from E. coli iAF1260 

displayed that the deletion of ptsG and pykAF increased succinate 

production in order to generate high amount of ATP via acetate secretion and 

maintain the redox balance (Figure 2-8B). The multiple knockout of ptsG 

and pykAF increased the production yield of succinate from 0.04 to 0.23 

C-mol/C-mol, which was lower than of the predicted yield of 0.46 

C-mol/C-mol at the optimal growth state by FBA. 

By imposing the upper-bound constraint on the flux of each enzymatic 

reaction, 6 enzymatic reactions were predicted as rate-limiting reactions for 

succinate production in the knockout mutant (Figure 2-8C~E and Table 2-5).  

The flux limitations of triosephosphate isomerase encoded by tpiA, 

phosphate acetyltransferase encoded by pta, and acetate kinase encoded by 

ackA reduced the flux into acetate synthetic pathway and this led to reduce 

ATP supply and cause redox imbalance. Limiting phosphoenolpyruvate 

carboxylase encoded by ppc, malate dehydrogenase encoded by mdh, and 

fumarase encoded by fumA, fumB, fumC directly reduced the flux into 

succinate synthesis via reductive TCA cycle.  

Because the knockout mutant produced large amount of acetate and 

formate in the flask cultivation, pta and ackA products should not be 

rate-limiting reactions. The flux into lower glycolysis such as 

triosephosphate isomerase is regulated by PEP consuming reaction (88). 
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Since the knockout mutant does not have pyruvate kinase or 

phosphotransferase consuming PEP, Ppc is thought to be a possible 

rate-limiting reaction. Although there is not further experimental strain 

improvement on the knockout mutant in the study, overexpression of ppc, 

mdh and fumABC is a possible way to increase the succinate production. 

 

 

Figure 2-8 Predicted rate-limiting reactions of growth coupled succinate 

production from glucose (A, B) Flux distributions of wildtype (A) and ΔptsG

ΔpykAF (B) were calculated by using iAF1260. Blue arrows indicated 
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predicted rate-limiting reactions. (C~E) Feasible solution space of the 

knockout mutant with the upper bound constraint of fumarase (C), 

phosphoenolpyruvate carboxylase (D) and phosphate acetyltransferase (E) at 

0-100% of SUR and free. 
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Case3: 3-hydroxypropionic acid production from glycerol 

Although wildtype E. coli does not have 3HP synthetic pathway, Raj et al. 

demonstrated 3HP production from glucose in E. coli by expressing 

heterologous pathway shown in Fig. 2-3 (89). In order to simulate the 

metabolic state of 3HP producing E. coli, biosynthetic pathway of 3HP 

(Figure 2-3 and Table2-2) was added on the genome-scale metabolic model 

iAF1260. The double knockout models of tpiA-zwf was used to identify the 

rate-limiting reaction for 3HP production. In the all models, 3HP synthesis 

pathway which involves 2 reactions was predicted as the rate-limiting 

reactions (Figure 2-9C, Figure 2-9D and Table 2-5).  

Glycerol dehydratase is coenzyme B12-dependent dehydratase converting 

glycerol to 3-hydroxypropion aldehyde. Because E. coli strains cannot 

synthesize cobalamin de novo, addition of cobalamin to the culture broth is 

needed to activate the 3HP synthesis (89). Furthermore, expression of gdrAB 

from K. pneumoniae is needed to reactivate glycerol-inactivated DhaB and 

regenerate active enzyme–cyanocobalamin complex for keep activation of 

glycerol dehydratase in E. coli (90)(91)(92). The next reaction of 

3-hydroxypropionaldehyde dehydrogenase converts 3-hydroxypropion 

aldehyde to 3HP. Because accumulation of 3-hydroxypropionaldehyde 

decrease the cell growth due to its toxicity, the activity of 

3-hydroxypropionaldehyde dehydrogenase must be increased by 

over-expression of the enzyme (89). In addition to overexpression strategy, 

many reports has tried to increase the activity of 3-hydroxypropionaldehyde 

dehydrogenase by screening more efficient enzyme from K. pneumoniae (93), 
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Azospirillum brasilense (92) and Cupriavidus necator (94). Directed 

evolution approach is also thought to be a possible approach to enhance the 

activity. 

 

 

Figure 2-9  Predicted rate-limiting reactions of growth coupled 3HP 

production from glycerol. (A, B) Flux distributions of wildtype (A) and ΔtpiA

Δzwf (B) were calculated by using iAF1260. Blue arrows indicated predicted 

rate-limiting reactions. (C, D) Feasible solution space of the knockout 

mutant with the upper bound constraint of glycerol dehydratase (C) and 
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3-hydroxypropionaldehyde dehydrogenase (D) at 0-50% of SUR and free.  
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Case4: Succinate production from glycerol 

The knockout model of ΔadhEΔpykAFΔgldAΔpflB was used to identify 

the rate-limiting reactions for the growth-coupled succinate production. By 

limiting the upper bound flux of each reaction to 20% of SUR, 9 enzymatic 

reactions were screened as candidates of the rate-limiting reaction (Figure 

2-10 and Table 2-5). These candidates were classified into three categories 

according to their subsystems of glycerol assimilation (e.g. glycerol kinase, 

Figure 2-10C), glycolysis (e.g. pyruvate dehydrogenase, Figure 2-10D), and 

anaplerotic reaction (phosphoenolpryvate carboxylase, Figure 2-10E).  

 

Category 1: glycerol assimilation 

Glycerol kinase (GLYK) is encoded by glpK and converts glycerol to 

glycerol-3-phosphate. Because the GLYK is the sole entrance reaction to 

central carbon metabolism, in the knockout mutant of gldA the upper bound 

constraints of GLYK directly suppresses the flux into central carbon 

metabolism, thereby decreasing succinate production and biomass 

formation.  

 

Category 2: glycolysis 

Pyruvate dehydrogenase (PDH) is encoded by aceEF and lpdA, and converts 

Pyr to acetyl-CoA. Suppression of PDH decreases NADH supply and ATP 

generation thereby decreasing acetate synthesis, leading to a decrease in cell 

growth rate and succinate production. 
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Category 3: anaplerotic reaction 

Ppc is encoded by ppc, and catalyzes an anaplerotic reaction from PEP to 

oxaloacetate. Since Ppc reaction is an entrance of the reductive TCA cycle 

under microaerobic condition, the suppression of Ppc led to decrease in 

succinate production. Furthermore, Ppc inhibition also led to decrease in cell 

growth rate since malate dehydrogenase in reductive TCA cycle is a main 

NADH oxidation reaction. 

 

The candidates of rate-limiting reactions for succinate production should 

be regulated by several factors in an actual cell. The expression of glpK is 

regulated by transcriptional repressor encoded by glpR. Previous report said 

the deletion of glpR increased the expression of glycerol kinase and glycerol 

uptake rate (95). In vitro analysis revealed that the activity of 

glycerol-3-phosphate dehydrogenase is allosterically regulated by glycerol 

3-phosphate (96). Expressions of the subunits of PDH were regulated by 

several transcriptional factors of arcA, cra, fnr, nsrR and pdhR (97)(98). The 

multi-enzyme complex of PDH also needs Mg2+ and vitamin B1 to catalyze 

the reaction (99). Ppc is allosterically activated by acetyl-CoA, fructose 

1,6-bisphosphate and guanosine triphosphate, and also inhibited by malate 

and aspartate (100)(101). There are several ways to optimize the metabolic 

network for growth-coupled succinate production, since the number of 

predicted rate-limiting reactions was larger than of other target production 

process, and a lot of factors involved in the regulation of the predicted 

enzymes. In such case, evolution engineering such as ALE is a possible way 
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to increase target production coupled, since the metabolic pathway of the 

knockout mutant was designed for growth-coupled target production 

 

 

Figure 2-10 Predicted rate-limiting reactions of growth coupled succinate 

production from glycerol. (A, B) Flux distributions of wildtype (A) and Δ

adhEΔpykAFΔgldAΔpflB model (B) were calculated by using iAF1260. 

Blue arrows indicated predicted rate-limiting reactions. (C~E) Feasible 
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solution space of the knockout mutant with the upper bound constraint of 

glycerol kinase (C), phosphoenolpyruvate carboxylase (D) and pyruvate 

dehydrogenase (E) at 0-50% of SUR and free. 
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2-5 Summary 

FBA has been used to predict the behavior of metabolic network and 

evaluate the effect of gene-manipulation on target production. However, the 

knockout mutant for enhancing the growth-coupled target production based 

on FBA prediction did not achieve the high target producing state at the 

optimal growth state (Table 1-1). One possible cause of these inconsistencies 

should be certain kinetic constraints, which hampered to optimize metabolic 

network towards the optimal growth state. In the present chapter, I 

developed simple screening method of possible rate-limiting reactions by 

simplifying the kinetic constraints as an upper-bound constraint of each 

enzymatic reaction’s flux on FBA calculation. The proposed method 

successfully predicted the rate-limiting reactions for growth coupled 

production of various metabolites. Especially, in case of 1,4BDO production 

from glucose, the predicted rate-limiting reactions were consistency with the 

experimentally optimized reaction by additional genetic manipulations (58). 

Conventional modeling approaches for identification of rate-limiting 

reactions for target production use the dynamic metabolic model such as 

mass action equation (78) (80). These approaches must consider the detail 

information of in vivo kinetic parameters and metabolic regulation system 

for prediction of metabolic behavior in accurate. Therefore, the prediction 

accuracy is dominant on the quantity and quality of these information. 

Needless to say, full kinetic representation in whole cell level is thought to be 

difficult at the present, since there are a lot of unknown metabolic 

regulations, even if in well-characterized microorganism such as E. coli. 
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Furthermore, kinetic parameters are thought to be different between culture 

conditions and strain backgrounds. On the other hand, the present method 

can screen possible rate-limiting reaction with none of experimental data 

and only using existing genome-scale metabolic model. Considering the 

complex kinetic regulation as a simple assumption of upper-bound constraint, 

the present approach successfully extracted the possible rate-limiting 

reactions from all enzymatic reactions in several microbial production 

processes. 

Another advantage of the present approach is applicable for various 

microorganisms besides E. coli, because there are various type of 

genome-scale metabolic models for fermentative microorganism such as 

Corynebacterium glutamicum (49), Yeast (102), Cyanobacteria (103) and 

Lactic acid bacterium (104). The other advantage of this approach is small 

computational costs compared with the dynamic modeling approach, since 

the effect of the upper-bound constrain on target production is calculated as 

a linear programming problem. The calculation time for comprehensive 

analysis of single enzymatic reaction is less than 3 minutes by a single Xeon 

CPU (2.93 GHz).  

As shown in several fermentation processes for growth-coupled target 

production, the present approach successfully extracted the rate-limiting 

reactions from all enzymatic reactions without consider the detail 

mechanism of kinetic regulation. These results implied that the behavior of 

metabolic network is dependent on the network structure rather than the 

regulation system. One of the disadvantages is that the regulating 
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mechanism on the rate-limiting reaction cannot identified by this approach. 

Therefore, priori knowledges of metabolism or experimental approach for 

understanding the mechanism are needed to build the next metabolic 

engineering strategy. The optimization strategy of predicted rate-limiting is 

discussed in the following chapters. 
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Chapter 3: Strain improvement for 3-hydroxypropionic 

acid production from glycerol in engineered E. coli 

based on flux balance analysis 

 

3-1 Highlights 

 Microbial production of 3-hydroxypropionic acid has been attracted 

recently, due to its wide-range availability for commercial products.  

 Based on in silico metabolic design by FBA, the effect of double gene 

deletion of tpiA and zwf on 3HP producing E. coli was evaluated by 

flask cultivation. 

 Overflow of 1,3-propanediol (1,3PDO) from 

3-hydroxypropionaldehyde is a possible reason to decrease the flux 

into 3-hydroxypropionaldehyde dehydrogenase, which was predicted 

as a rate limiting reaction. 

 Additional deletion of yqhD encoding NADPH-dependent aldehyde 

reductase successfully improved 3HP production at 0.34 C-mol/C-mol 

by rewiring carbon flux from 1,3PDO overflow to 3HP synthesis. 
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3-2 Introduction 

3-2-1 Introduction of 3-hydroxypropionic acid 

3-hydroxypropionic acid (3HP) has recently attracted attention due to its 

availability as a precursor of valuable chemicals such as acrylic acid, 

β-propiolactone, and malonic acid (105) (106). Its polymerized form, 

poly(3HP), is a promising alternative to petrochemical-derived plastic (107) 

(108). Because of this superior industrial availability, 3HP was designated as 

one of the top value-added chemicals produced by biomass, by the U.S. 

Department of Energy (3)(4). In the commercial bioproduction process, the 

substrate has a significant impact on production cost. Glycerol is a potential 

substrate for bioproduction considering that the recent expansion of biodiesel 

production has caused a surplus of glycerol as its byproduct, and a 

subsequent decrease in the price of glycerol (109)(110)(111). 

 

3-2-2 Microbial production of 3-hydroxypropionic acid 

The microbial production of 3HP from glycerol has been developed using a 

natural 3HP producer, Klebsiella pneumoniae (112)(113)(114)(93). 

Expression of the heterologous glycerol dehydratase and aldehyde 

dehydrogenase enabled 3HP to be produced in the non-natural 3HP 

producers Pseudomonas denitrificans (115) (116) and Escherichia coli 

(89)(92)(117)(118)(95). To date, various studies have reported increased 3HP 

production as summarized in Table 3-1. For example, Rathnasingh et al. 

optimized the expression level of each enzyme in this pathway in E. coli (92). 

Ashok et al. deleted dhaT and yqhD to reduce the production of byproducts 
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in K. pneumoniae (114). Kim et al. modified glycerol metabolism in 

3HP-producing E. coli and developed fed-batch cultivation with 

simultaneous feeding of glycerol and glucose (118). As described above, most 

previous studies focused on the optimization of metabolic reactions from 

glycerol to 3HP and culture conditions. Considering the whole metabolic 

network, modification of other pathways, as well as the biosynthetic pathway 

of the target product, is also a key strategy for increasing the metabolic flux, 

leading to enhanced target production. For example, target production can 

be enhanced by improving the redox balance and rewiring carbon flow into 

biosynthetic pathway of target product via gene knockout and 

overexpression (114)(119). 
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Table 3-1 Comparison of 3HP production using glycerol as a carbon source 

 

 

Organism Strategy 
Yield 

(C-mol / C-mol) 

Titer 

(mM) 
Reference 

E. coli 
Expression of aldehyde dehydrogenase derived from E. 

coli and glycerol dehydratase from K. pneumoniae 
0.19 6.48 (89) 

E. coli Optimization of culture condition 0.39 50.4 (117) 

E. coli 

Expression of α-ketoglutaric amialdehyde dehydrogenase 

derived from  A. brasilense and glycerol dehydratase 

reactivase derived from K. pneumoniae 

0.40 31.1 (92) 

E. coli 
Disrupted of byproduct synthetic pathways and 

activation of glycerol metabolism and fed-batch culture 
0.26 467.3 (95) 

K. pneumoniae 
Disruption of byproduct synthetic pathway and fed-batch 

culture. 
0.34 145.2 (114) 

K. pneumoniae 
Co-production of 3-hydroxypropionic acid and 

1,3-propanediol in fed-batch culture 
0.41 542.8 (120) 

P. denitrificans Expression of glycerol dehydratase pathway genes 0.67 54.7 (115) 

P. denitrificans Disruption of 3HP degradation genes 0.78 33.1 (116) 



74 

 

3-2-3 Genome-scale metabolic design for 3-hydroxypropionic acid production  

Recently, in silico metabolic simulation has been developed to consider 

whole metabolic networks. A genome-scale metabolic model, which includes 

most of the metabolic reactions of the cell (81)(103)(49)(104)(102), can 

estimate the flux distribution of the whole metabolic network using FBA 

(46)(121) by assuming the steady states of metabolic reactions and 

maximizing objective functions such as cell growth (67)(122). This method 

can be used to simulate the effects of gene modifications on target production 

and identify candidate genes for metabolic engineering (54)(70)(55). However, 

the FBA prediction always overestimates the productivities in the actual cell 

as shown in Table 1-1. One of the possible reasons of the inconsistency is that 

FBA calculation does not consider any kinetic constraints in actual cells. In 

the chapter 2, the screening algorithm for the rate limiting reaction was 

developed by imposing an upper-bound constrain of each enzymatic 

reaction’s flux. The disadvantage of this approach could not reveal the 

molecular mechanism causing the rate limiting reaction. Therefore, a strain 

engineered on the basis of metabolic simulation should be evaluated 

experimentally to understand the mechanism for building the next strategy 

for improving target production. 

 

3-2-4 Objective of this chapter 

In the chapter 2, I identified the possible rate-limiting reactions for 

enhancing growth-coupled 3HP production by developing the novel screening 

method using FBA. Understanding the molecular mechanism causing 



75 

 

rate-limiting reaction is important for building metabolic engineering 

strategy of genetic manipulation for further strain improvement. The 

current chapter aimed to improve 3HP production based on the FBA 

prediction and experimental evaluation for understanding the molecular 

mechanism. First, I evaluated the effect of the deletion of predicted genes on 

3HP production and estimated the molecular mechanism causing the rate 

limiting reaction. Then, I aim to releasing the metabolic limitation based on 

the molecular mechanism and improve target production by additional 

genetic manipulation. 

 

3-3 Materials and methods 

3-3-1 In silico screening of knockout gene targets for enhancing 3HP production 

FBA is a method to estimate a metabolic flux distribution using a 

genome-scale metabolic model (44)(45)(46)(47). Since the genome-scale 

metabolic model iAF1260 does not contain biosynthetic reaction of 3HP, the 

reactions (Figure 2-3 and Table 2-2) were added as shown in the chapter 2. 

To identify the candidates for gene knockout to achieve growth-coupling 

production of 3HP from glycerol, FBA was performed by using the iAF1260 

models containing 3HP synthetic reactions (iAF1260-3HP) as shown below:  

max  cT⋅v 

subject to  0,  Rj jji vS  )( Mi  

vsubstrate_uptake = SUR 

  voxygen_uptake = OUR 
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  vknockout_reactions = 0 

 

where M and R are the set of metabolites and reactions, respectively. c is a 

vector that represents coefficients of an objective function to be maximized or 

minimized. Glycerol was used as the sole carbon source in metabolic 

simulations, and glycerol uptake rate (GUR, vglycerol_uptake) was set to 15 mmol 

gCDW-1hr-1. The oxygen uptake rate (OUR, voxygen_uptake) was set to 10 mmol 

gCDW-1hr-1. Other external metabolites such as CO2 and NH3 were allowed 

to transport freely through the cell membrane. For determining the maximal 

3HP production flux at optimal growth, the objective coefficients were set to 

1 and 1×10-6 for biomass recation and 3HP exchange reaction, respectively. 

After the FBA calculations for multiple reaction knockout models, the models 

showing 3HP production at the optimal growth solution were identified as 

growth-coupling target model. The calculation was implemented in Matlab 

(MathWorks Inc., Natick, MA, USA) with a solver for linear programming, 

Gurobi (http://www.gurobi.com). 
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3-3-2 Strains and plasmids 

The strains and plasmids used in this study are summarized in Table 3-2 

and 3-3. The MG1655(DE3) strain was constructed based on E. coli MG1655, 

using the λDE3 Lysogenization Kit (Merck KGaA, Darmstadt, Germany). 

The 3HP-producing strain, TK52, was constructed as published previously 

(92). Fragments containing dhaB1, dhaB2, and dhaB3, encoding for 

components of glycerol dehydratase, and the gdrA and gdrB genes, encoding 

for glycerol dehydratase reactivase, were amplified from the genomic DNA of 

K. pneumoniae subsp. pneumoniae (NBRC 14940), which was purchased 

from the National Institute of Technology and Evaluation (Tokyo, Japan). 

Fragments were generated by PCR using the primer pair 

5′-CCGGAATTCATGAAAAGATCAAAACGATTTGCAGTACT-3′ and 

5′-GTTAAGCTTGATCTCCCACTGACCAAAGCTGG-3′ for dhaB (dhaB1, 

dhaB2, dhaB3) and gdrA and the primer pair 

5′-GAAAAGCTTGAGGGGGACCGTCATGTCGCTTTCACCGCCAG-3′ and 

5′-GCGCTTAAGTCAGTTTCTCTCACTTAACGGC-3′ for gdrB. The aldH 

gene was amplified from the genomic DNA of E. coli MG1655 with the 

primer pair 5′-GGAGGATCCATGAATTTTCATCATCTGGC-3′ and 

5′-TCGAAGCTTTCAGGCCTCCAGGCTTAT-3′. PCR was performed using 

KOD FX Neo (Toyobo Co., Ltd., Osaka, Japan). Each amplified fragment was 

treated with A-attachment mix (Toyobo Co., Ltd.), and then cloned into 

pGEM-T easy (Promega Co., Madison, WI, U.S.A.), followed by sequence 

confirmation by the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems, Inc., Foster City, CA, U.S.A.), and the 3130 Genetic Analyzer 
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(Applied Biosystems). The EcoRI-HindIII and HindIII-AflII fragments 

carrying dhaB-gdrA and gdrB, respectively, on pGEM-T easy were cloned 

into the same restriction sites in pCDFDuet-1 (Merck KGaA), generating 

pCDFDuet/dhaB-gdrAB. In addition, the BamHI-HindIII fragment carrying 

aldH on pGEM-T easy was cloned into the pTrc99A expression vector 

(Pharmacia, Stockholm, Sweden), generating pTrc99A/aldH. 

The knockout strains were constructed using Wanner’s method (25) and 

P1kc-mediated phage transduction (123). For the deletion of yqhD, the 

disruption cassette, including the tetracycline resistance gene and 

homologous regions upstream and downstream of yqhD, was amplified from 

pKD13tet (124) by PCR with the primer pair 

5′-GCAGATCGTTCTCTGCCCTCATATTGGCCCAGCAAAGGGAGCAAGTA

ATGATTCCGGGGATCCGTCGACC-3′ and 

5′-CGAAAACGAAAGTTTGAGGCGTAAAAAGCTTAGCGGGCGGCTTCGTA

TATTGTAGGCTGGAGCTGCTTCG-3′. The disruption cassette was 

introduced into the BW25113/pKD46 strain to construct BW25113ΔyqhD::tet. 

To delete zwf, tpiA, and yqhD in E. coli MG1655(DE3), P1 transduction was 

performed using P1 phage obtained from JW3890 (26), BW25113Δzwf::cat 

and BW25113ΔyqhD::tet strains, respectively. Finally, the plasmids 

pTrc99A/aldH and pCDFDuet/dhaB-gdrAB, were introduced into 

MG1655(DE3) and the knockout strains to construct the 3HP-producing 

strains (Table 3-2). 
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Table 3-2 List of strains used in this study 

Strains Description 

DH5α F－, Φ80d lacZΔM15, Δ(lacZYA-argF)U169, deoR, 

recA1, endA1, hsdR17(rK－ mK+), phoA, supE44, 

λ－, thi－1, gyrA96, relA1 

BW25113  

(25) 

F−, λ−, lacIq rrnBT14 ΔlacZWJ16 hsdR514 

ΔaraBA-DAH33 ΔrhaBADLD78 

JW3890 (26) The same as BW25113 but ΔtpiA::kan 

BW25113 Δ zwf::cat  

(124) 

The same as BW25113 but Δzwf::cat 

BW25113 Δ yqhD::tet The same as BW25113 but ΔyqhD::tet 

MG1655 F−,λ−, rph-1 

MG1655(DE3) F−, λ−, rph-1, λ (DE3[lacI lacUV5-T7 gene l indl 

sam7 nin5]) 

TK52 MG1655(DE3) transformed with pTrc99A-aldH 

and pCDFDuet-dhaB gdrAB 

TK52t The same as TK52 but Δtpi::kan 

TK52z The same as TK52 but Δzwf::cat 

TK52tz The same as TK52 but ΔtpiA::kan Δzwf::cat 

TK52tzy The same as TK52 but ΔtpiA::kan Δzwf::cat 

ΔyqhD::tet 
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Table 3-3 List of plasmids used in this study. 

Plasmids Description 

pGEM-T easy lacZα; cloning vector; pGEM 5zf(＋) derivative; 

3’T-overhang; Ampr 

pKD46 λ Red recombinase expression; R101 ori; Ampr 

pKD13-tet PCR templete; R6K-ori; FLP-tetA-FLP; Ampr 

pCDFDuet-1 lacI; expression vector; T7 promoter; CloDF13-ori; 

two sets of MCS; MCS I, His6-N; MCS II, S-tag-N; 

Strr 

pTrc99A lacI; expression vector; trc promoter; ColE1-ori; 

one MCS; Ampr 

pCDFDuet-dhaB gdrAB dhaB1, dhaB2, dhaB3, gdrA, and gdrB derived 

from K. pneumoniae in pCDFDuet-1 vector; Strr 

pTrc99A-aldH aldH derived from E. coli in pTrc99A vector; Ampr 

 

3-3-3 Medium and culture methods 

Pre-cultures were grown aerobically at 37°C overnight in Lennox medium 

(10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 1 g/L glucose) containing 

0.05 g/L ampicillin and 0.05 g/L streptomycin. Pre-cultures were transferred 

to the main culture with an initial optical density at 600 nm (OD600) of 0.02. 

For the main culture, M9 medium (17.1 g/L Na2HPO4･12H2O, 3.0 g/L 

KH2PO4, 2.0 g/L NH4Cl, 0.5 g/L NaCl, 0.123 g/L MgSO4･7H2O, 0.00278 g/L 

FeSO4･7H2O, 0.0147 g/L CaCl2･2H2O, 0.01 g/L thiamine HCl) supplemented 

with 2 g/L yeast extract, 0.02 mM cyanocobalamin, 0.1 mM IPTG, 0.05 g/L 

ampicillin, and 0.05 g/L streptomycin was used. Cells were cultured in 500 

mL Sakaguchi flasks containing 50 mL of the M9 medium at 37°C in a 

shaking incubator at 120 rpm (MM-10, Taitec, Saitama, Japan). 
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3-3-4 Analytical methods 

Cell growth was monitored by the measurement of OD600 using UV-mini 

1240 (Shimadzu, Kyoto, Japan). Concentrations of glycerol, 3HP, 1,3PDO, 

succinate, lactate, acetate, formate, and ethanol present in the supernatant 

of the culture broth were determined by an HPLC system (HPLC 

Prominence, Shimadzu) equipped with an Aminex HPX-87H column 

(Bio-Rad, Hercules, CA, U.S.A.), a UV/vis detector (SPD-20A), and a 

refractive index detector (RID-10A). The column temperature was set to 

65°C, and 2 mM H2SO4 was used as the mobile phase with a flow rate of 0.5 

mL/min. The flow cell temperature of the refractive index detector was set to 

35°C. The supernatant of the culture broth was obtained by centrifugation at 

21,500 × g for 5 min at 4°C, and then filtered through a Millex HV 0.45-μm 

filter (Merck KGaA). Methylglyoxal in the supernatant was quantified 

colorimetrically with 2,4-dinitrophenylhydrazine (2,4-DNPH) (125). The 

reaction mixture containing 67 μL of sample and 22 μL of 2,4-DNPH solution 

(0.1% 2,4-DNPH in 2 M HCl) was incubated for 15 min at 30°C in a 96-well 

microtiter plate, and then 111 μL of 10% NaOH was added. After a 15-min 

incubation at room temperature, the absorbance at 544 nm was measured 

with a microplate reader (1420 ARVO, PerkinElmer Inc., Waltham, MA, 

U.S.A.).  
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3-4 Results and discussion 

3-4-1 Construction of a 3HP-producing strain in E. coli 

The 3HP biosynthetic pathway from glycerol consists of two reactions: the 

dehydration of glycerol to 3-hydroxypropionaldehyde (3HPA), catalyzed by 

glycerol dehydratase, and the oxidation of 3HPA to 3HP, catalyzed by 

aldehyde dehydrogenase (89). Since E. coli does not possess the 3HP 

biosynthetic pathway, the 3HP-producing strain (TK52) was constructed by 

the overexpression of dhaB and gdrAB, which encode for glycerol 

dehydratase and glycerol dehydratase reactivase (from K. pneumoniae), 

respectively, and aldH, which encodes for aldehyde dehydrogenase (from E. 

coli), as described in a previous study (92). TK52 was cultivated in M9 

medium in a Sakaguchi flask and 3HP was produced at 0.05 ± 0.01 

C-mol/C-mol (Figure 3-1A-B and Table 3-4). Acetate was produced as a major 

byproduct 0.10 ± 0.02 C-mol/C-mol and small yields of 1,3PDO (0.01 ± 0.00 

C-mol/C-mol) and succinate (0.01 ± 0.00 C-mol/C-mol) were also produced. 

Ethanol and formate were not detected in this strain. Although E. coli does 

not possess 1,3PDO biosynthetic pathways, the introduction of dhaB for 3HP 

production enabled production of 1,3PDO as follows: glycerol dehydratase 

converts glycerol to 3HPA, and an endogenous alcohol dehydrogenase 

(encoded for by yqhD) further converts 3HPA to 1,3PDO (126). 
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Figure 3-1 Culture results of the 3HP-producing strains. The culture 

results of the strains TK52 (A, B), TK52z (C, D), TK52t (E, F), TK52tz (G, H), 

and TK52tzy (I, J) are shown. The symbols indicate metabolite 
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concentrations and optical density as shown in the bottom. Error bars 

represent standard deviation of triplicate experiments in TK52 and TK52z 

strains, and of nine replicate experiments in other strains. Some of the error 

bars are smaller than the symbols.



85 

 

Table 3-4 Summary of the experimental results 

 Culture result  Simulation 

TK52 TK52z TK52t TK52tz TK52tzy  No deletion ΔtpiA Δzwf 

Specific growth rate 

(h－1)*1 

0.73 ± 0.00 0.71 ± 0.00 1st: 0.55 ± 0.01 1st: 0.54 ± 0.01 1st: 0.56 ± 0.01    

2nd: 0.03 ± 0.01 2nd: 0.03 ± 0.00 2nd: 0.04 ± 0.01  

Maximum 3HP 

production rate (mmol 

gCDW-1hr-1)*2 

0.08 ± 0.02 0.09 ± 0.01 0.22 ± 0.14 0.27 ± 0.11 0.94 ± 0.05    

Consumed glycerol 

(mM)*3 

192.7 ± 5.0 193.2 ± 2.4 168.2 ± 24.4 119.0 ± 44.6 117.6 ± 3.9    

Biomass 

(C-mol/C-mol)*3 

0.37 ± 0.04 

(5.2 ± 0.5) 

0.36 ± 0.01 

(5.1 ± 0.2) 

0.20 ± 0.03 

(2.4 ± 0.6) 

0.22 ± 0.11 

(1.6 ± 0.3) 

0.21 ± 0.01 

(1.8 ± 0.1) 

 0.48 0.23 

3HP (C-mol/C-mol)*3 0.05 ± 0.01 

(8.9 ± 1.3) 

0.06 ± 0.01 

(11.1 ± 1.0) 

0.15 ± 0.07 

(24.3 ± 11.7) 

0.20 ± 0.09 

(21.2 ± 7.7) 

0.34 ± 0.01 

(39.9 ± 2.4) 

 0 0.71 

1,3-PDO 

(C-mol/C-mol)*3 

0.01 ± 0.00 

(1.5 ± 0.8) 

0.01 ± 0.00 

(1.3 ± 0.3) 

0.23 ± 0.05 

(38.1± 9.4) 

0.38 ± 0.13 

(40.5 ± 14.0) 

0.06 ± 0.01 

(7.0 ± 0.7) 

 0 0 

Succinate 

(C-mol/C-mol)*3 

0.01 ± 0.00 

(1.3 ± 0.2) 

0.01 ± 0.00 

(1.9 ± 0.2) 

0.00 ± 0.00 

(0.4 ± 0.3) 

0 

(0) 

0 

(0) 

 0 0 

Acetate (C-mol/C-mol)*3 0.10 ± 0.02 

(28.7 ± 5.4) 

0.13 ± 0.00 

(37.3 ± 1.1) 

0.08 ± 0.10 

(20.5 ± 24.3) 

0.02 ± 0.04 

(5.1 ± 9.6) 

0.07 ± 0.02 

(11.6 ± 3.0) 

 0.27 0 

Maximum 

methylglyoxal (mM) 

0.03 ± 0.02 0.03 ± 0.02 0.29 ± 0.02 0.22 ± 0.02 0.60 ± 0.02    
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*1 Specific growth rates were calculated using OD600 at 0–6 h for the TK52 and TK52z strains. For the TK52t, TK52tz and 

TK52tzy strains, specific growth rates during the 1st and 2nd growth phases were calculated using the OD600 at 0–6 h and 48–

72 h, respectively. 

*2 Maximum 3HP production rates were calculated from the data at 24–48 h for the TK52 and TK52z strains, and at 48–72 h for 

other strains. 

*3 The values in the parentheses indicate the final concentrations of biomass (g/L) and products (mM). For calculation of 

biomass yield, OD600 was converted into dry cell weight using the conversion factor 0.37 g DC/L, and carbon-mol in the biomass 

was calculated based on the biomass composition described in the iAF1260 model (81)
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3-4-2 Gene knockout simulation for 3HP production 

Metabolic simulation was carried out to improve 3HP production by 

considering the whole metabolic network. A genome-scale metabolic model of 

E. coli, iAF1260 (81), which includes 2077 metabolic and transport reactions, 

and 1,038 unique metabolites, was employed with FBA to simulate 3HP 

production in E. coli. Since the 3HP biosynthesis pathway does not exist in E. 

coli, seven reactions involved in the 3HP biosynthesis pathway were added to 

the iAF1260 model (Table 2-2), which was subsequently referred to as the 

iAF1260-3HP model. Using the iAF1260-3HP model, multiple gene knockout 

simulations were performed to identify candidate genes that when deleted 

could enhance 3HP production under the same condition in the chapter 2. 

FBA simulations predicted that no deletion E. coli catabolized glycerol 

via glycolysis, and formed acetate, ethanol, and formate at optimal growth 

state. This result said the 3HP production in the wildtype E. coli is not 

preferable for cell growth. Double-reaction knockout simulations identified 

some candidate genes that when deleted together could enhance 3HP 

production (Table 3-5). Among these, ΔtpiA Δzwf, ΔtpiA Δpgi,and ΔtpiA Δedd 

models displayed the highest carbon-mol yield of 3HP on glycerol (0.71 

C-mol/C-mol). Because the optimal flux distributions in these knockout 

model were almost same and the maximum production yield of 3HP was 

same in those model, I focused on the double knockout of tpiA and zwf for 

further analysis in this study. Deletion of tpiA encoding triosephosphate 

isomerase, which converts dihydroxyacetone phosphate (DHAP) to 

glyceraldehyde- 3-phosphate (GAP), changed the direction of the reaction in 
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glycolysis from catabolism to gluconeogenesis (Figure 3-2C). Deletion of zwf 

blocked flux into the Entner-Doudoroff pathway (Figure 3-2 D), which was 

active in the ΔtpiA model. The inactivation of the Entner-Doudoroff pathway 

resulted in glycerol catabolism through the glycerol kinase reaction, which 

converts glycerol to glycerol-3-phosphate, and the methylglyoxal pathway, in 

which DHAP is converted to pyruvate via methylglyoxal. 3HP was produced 

instead of acetate in the double reaction knockout models. In the ΔtpiA 

model, acetate production was preferred since ATP was also generated. 

However, in the double reaction knockout models, ATP was consumed by the 

glycerol kinase reaction, which is why total ATP was not generated by 

acetate production from glycerol. When the OUR was limited, 3HP 

production was increased, instead of acetate production, to balance the 

reduced capacity of the respiratory chain due to the reduction in NADH 

generation by 3HP production from glycerol. 

 

Table 3-5  Knockout candidate gene sets for growth-coupled 3HP 

production 

Knockout genes 3HP yield  

(C-mol/C-mol) 

Biomass yield  

(C-mol/C-mol) 

− 0 0.48 

ΔtpiA 0 0.32 

ΔtpiA Δzwf 0.71 0.23 

ΔtpiA Δpgi 0.71 0.23 

ΔtpiA Δedd 0.71 0.23 
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Figure 3-2  Flux distributions for 3HP production in E. coli. Flux 

distributions at optimal growth state of E. coli having 3HP synthetic 

pathway (A), Δzwf model (B), ΔtpiA model (C) and ΔtpiAΔzwf model (D). 

Width of the black arrow corresponds to the relative flux value of glycerol 

uptake rate. Gray arrows indicate the flux of the corresponding reaction was 

0. Blue arrows in panel D indicate the predicted rate limiting reaction in the 

chapter 2. All flux distributions were calculated by FBA as same calculation 

condition in the chapter 2. 
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3-4-3 Evaluation of the 3HP productivity of the double knockout mutant of tpiA 

and zwf 

Based on the results of the gene knockout simulation, both tpiA and zwf 

were disrupted in the TK52 strain, generating strain TK52tz (ΔtpiA Δzwf). 

Estimated flux distributions at optimal growth state were summarized in 

Figure 3-2. The 3HP yield of TK52tz was successfully increased 4.4-fold 

relative to TK52 (0.20 ± 0.09 C-mol/C-mol) (Figure 3-1G-H and Table 1). 

TK52tz exhibited a two-step growth phase that was not observed in TK52, 

with specific growth rates of 0.54 1/h in the first growth phase (0–6 h) and 

0.03 1/h in the second growth phase (48–72 h). 3HP was mainly produced in 

the second growth phase with the consumption of acetate and lactate that 

was produced prior to the second growth phase. The growth rate of TK52tz 

was decreased compared to TK52 (0.73 h-1), and glycerol was not completely 

consumed in TK52tz. Acetate and 1,3PDO were produced as byproducts.  

Based on the metabolic simulation, glycerol was predicted to be 

catabolized in TK52tz through the methylglyoxal pathway, which converts 

DHAP to pyruvate (Figure 3-2D). This pathway is not usually active in E. 

coli due to allosteric inhibition by inorganic pyrophosphate and the low 

activity of enzymes involved in this pathway (127)(128). The extracellular 

concentration of methylglyoxal, an intermediate of the pathway, was 

increased significantly in TK52tz (0.22 mM at maximum) compared with 

TK52 (0.03 mM at maximum). This suggested that flux into the 

methylglyoxal pathway was increased as predicted. This could result in 

decreased growth and incomplete glycerol consumption because 
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methylglyoxal is a toxic cellular electrophile that reacts with the nucleophilic 

centers of macromolecules such as DNA, RNA, and protein (129). 

Although the 3HP yield of TK52tz was improved to 0.20 ± 0.09 

C-mol/C-mol by the knockout, the yield was lower than of the predicted 

result of 0.71 C-mol/C-mol. In the chapter 2, two reactions in biosynthesis of 

3HP from glycerol were predicted as possible-rate limiting reactions. Since 

glycerol dehydratase converted a large amount of glycerol to 

3-hydroxypropionaldehyde at 0.58 ±  0.18 C-mol/C-mol, glycerol 

dehydratase was thought to be not rate-limiting reaction (Figure 3-3). On the 

other hand, larger amount of 3-hydroxypropionaldehyde was converted to 

1,3PDO than 3HP. These result indicated that 3-hydroxypropionaldehyde 

dehydrogenase should be a rate-limiting reaction. Since TK52tz strongly 

induced the expression of these genes using the T7 RNA 

polymerase/promoter system, the inconsistency might be caused by low 

turnover rate of the enzymes and the other mechanism. Experimental 

evaluation revealed that 1,3PDO was main byproduct in TK52tz. The 

overflow of 1,3PDO synthesis should decrease the availability of 

3-hydroxypropionaldehyde as a substrate for 3-hydroxypropionaldehyde 

dehydrogenase and limited the flux to 3HP. 
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Figure 3-3  Comparison of feasible solution spaces and culture results. 

Computationally calculated feasible solution space in metabolic network in the model of 

iAF1260-3HP (gray), and iAF1260-3HP ΔtpiA Δzwf with or without considering the 

metabolic limitation of 3-hydroxypropionaldehyde dehydrogenase (light blue or dark 

blue, respectively). For calculating the feasible solution space with the metabolic 

limitation, the upper bounds of 3-hydroxypropionaldehyde dehydrogenase flux was set 

to free or 20% of GUR. White triangle and circle indicate production yields of 3HP in 

TK52 and TK52tz, respectively. Blue circle indicates sum of production yield of 3HP 

and 1,3PDO in TK52tz. 
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3-4-4 Evaluation of the effect of gene deletion of tpiA and zwf on 3HP 

productivity 

The single knockout strains of tpiA and zwf, TK52t (ΔtpiA) and TK52z 

(Δzwf), respectively, were constructed to analyze the effects of the knockout 

of each gene. Metabolic simulation predicted that the zwf knockout would 

not affect metabolism, but the tpiA knockout would alter metabolic flux into 

the Entner-Doudoroff pathway and decrease the growth rate. Similar culture 

results between TK52z and TK52 (Figure 3-1A–D, Table 3-4) suggest that 

the flux into the oxidative pentose phosphate pathway was small, and the 

deletion of zwf had a small impact on metabolism in this condition, as 

predicted by the simulation. The culture results of TK52tand TK52tz (ΔtpiA 

Δzwf) were similar (Figure 3-1E-H, Table 3-4). The 3HP yield of TK52t was 

increased by 3.2-fold relative to TK52 (0.15 ± 0.07 C-mol/C-mol) and slightly 

reduced when compared to TK52tz. TK52t produced 1,3PDO (0.23 ± 0.05 

C-mol/C-mol) as a byproduct, as predicted by metabolic simulation. Acetate 

production by the tpiA knockout was also predicted, however measurements 

of acetate production (0.08 ± 0.10 C-mol/C-mol) in TK52t contained 

significant variation, thus it was difficult to compare the experimental 

results with the results from the metabolic simulation. 

The increased 3HP yield in the single tpiA knockoutstrain, which was not 

predicted by metabolic simulation, might be due to the conversion of glycerol 

to glycerol 3-phosphate by glycerol kinase, which may have had a higher 

activity than the glycerol dehydrogenase that converts glycerol to DHA (130). 

This would lead to increased flux into the methylglyoxal pathway, as 
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indicated by elevated methylglyoxal levels (Figure 3-1 F), resulting in 

similar culture results for TK52tz (Figure 3-1H), such as 3HP production. 

 

3-4-5 Proposed molecular mechanism of overflow of 1,3PDO 

Wildtype E. coli does not have 1,3PDO synthetic pathway. When 

heterologously expressing glycerol dehydratase in E. coli, the engineered E. 

col can produce 1,3PDO because there are some enzymes catalyzing 

3-hydroxypropionaldehyde to 1,3PDO as aldehyde reductase. YqhD is known 

as NADPH-dependent aldehyde reductase and the enzyme has reductase 

activity for a broad range of short-chain aldehydes including 

3-hydroxypripionaldehyde (131). Specific activity of E. coli YqhD as 

3-hydroxypropionaldehyde reductase is strong and several studies used 

YqhD for production 1,3PDO from glycerol (126)(132). Although the 

expression of yqhD in TK52tz was not directly induced by genetic 

manipulation, the knockout mutant produced large amount of 1,3PDO at 

yield of 0.38 ± 0.13 C-mol/C-mol. Previously, Ozyamak et al. reported that 

yqhD was strongly induced respond to methylglyoxal for detoxification of the 

toxic electrophile, which attacks macro molecules such as DNA (133). Since 

the knockout mutant highly accumulated methylglyoxal of 0.22 mM 

compared with no deletion strain, the expression of yqhD should be induced 

by the higher accumulation of methylglyoxal (Figure 3-4). This hypothesis 

was consistency in the lower production of 1,3PDO in TK52 and TK52z. 
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Figure 3-4 Proposed mechanism of 1,3PDO overflow in TK52tz.  
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3-4-6 Further increase in 3HP production by yqhD deletion 

Based on the proposed mechanism of the rate limiting reaction, yqhD was 

deleted in TK52tz, generating the strain TK52tzy, in order to decrease 

1,3PDO production and further increase 3HP production. As a result, the 

3HP yield of TK52tzy was increased 1.7-fold (0.34 ± 0.01 C-mol/C-mol) and 

the 1,3PDO yield was drastically reduced (0.06 ± 0.01 C-mol/C-mol) relative 

to TK52tz (Figure 3-5 and table 3-4). Compared to the parental strain, a 

7.4-fold increase in 3HP yield was achieved in TK52tzy. Despite the deletion 

of yqhD, 1,3PDO was still produced in TK52tzy (0.06 ± 0.01 C-mol/C-mol), 

likely due to the presence of other alcohol dehydrogenases that might 

convert 3HPA to 1,3PDO. The deletion of yqhD increased the maximum 

concentration of extracellular methylglyoxal in TK52tzy (0.60 mM at 

maximum) relative to TK52tz (0.22 mM at maximum), since YqhD also 

utilizes methylglyoxal as a substrate (131). The other culture results of 

TK52tzy, such as consumed glycerol and biomass yield, were similar to those 

of TK52tz (Table 3-4). The culture results of TK52t and TK52tz revealed 

large variations in the production of 3HP, 1,3PDO, and acetate and the 

consumption of glycerol (Figure 3-1E-H). On the other hand, the results from 

TK52tzy displayed smaller variations in these measurements (Figure 3-1I-J). 

Furthermore, TK52t and TK52tz produced a large amount of 1,3PDO, which 

accompanies NADPH oxidation. The deletion of yqhD in TK52tz decreased 

the magnitude of the error, suggesting that the high production of 1,3PDO in 

TK52t and TK52tz might cause redox imbalance, resulting in the large 

variations in the measurements. 
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The 3HP yield of TK52tzy (0.34 ± 0.01 C-mol/C-mol) was comparable to 

previous studies producing 3HP from glycerol via flask cultivation. Mohan et 

al. achieved 3HP yield of 0.39 ± 0.00 C-mol/C-mol by the optimization of 

culture conditions such as the initial culture medium pH (117). Rathnasingh 

et al. achieved a yield of 0.40 C-mol/C-mol by the expression of α-ketoglutaric 

semialdehyde dehydrogenase instead of aldehyde dehydrogenase, and 

periodic supplementation with vitamin B12, a coenzyme for glycerol 

dehydratase (92). Jung et al. constructed an engineered E. coli strain by 

knocking out ackA, pta, and yqhD to reduce byproduct generation and 

knocking out glpR and overexpressing glpF to enhance glycerol metabolism 

(95). They achieved high 3HP production (42 g/L) by fed-batch cultivation 

using a jar fermenter, but the 3HP yield was lower (0.26 C-mol/C-mol) than 

that achieved in this study. In previous studies (92)(117), acetate was a 

major byproduct, as it was in this study, and higher yields of succinate, 

lactate, and ethanol were also produced. Succinate, lactate, and ethanol 

production might serve to oxidize the excess NADH that accompanies 3HP 

production and glycerol catabolism via glycolysis, since production of these 

metabolites requires NADH as a reducing agent. Conversely, the yields of 

these metabolites were small in TK52tzy. This might be because the deletion 

of tpiA and zwf prevented flux into glycolysis, reducing excess NADH 

production, as predicted by metabolic simulation. 

In the chapter 2, there are two possible rate limiting reactions for 3HP 

production from glycerol in the double knockout mutant of tpiA and zwf. 

Since the total carbon yield of 3HP and 1,3PDO reached to 0.58 C-mol/C-mol 
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in the knockout mutant, the 1st step of glycerol dehydratase was thought to 

be sufficient to catalyze the reaction (Figure 3-3). On the other hand, the 

total carbon yield of 3HP and 1,3PDO decreased to 0.40 C-mol/C-mol by 

additional knockout of yqhD, and the production yield of 3HP in the 

knockout mutant was 0.34 ± 0.01 C-mol/C-mol lower than of the optimal 

solution (0.71 C-mol/C-mol, Figure 3-6). These results suggested that 

3-hydroxypropionaldehyde dehydrogenase was still rate-limiting reaction 

and had not enough activity to converting 3-hydroxypropionaldehyde to 3HP 

as predicted. Changing the aldehyde dehydrogenase to the superior enzyme 

such as α-ketoglutaric semialdehyde dehydrogenase (92) is a possible way to 

increase the 3HP production. Furthermore, some amount of 1,3PDO was still 

secreted in the triple knockout mutant. This result said that the other 

aldehyde reductase catalyzed 3-hydroxypropionaldehyde to 1,3PDO. 

Complete disruption of 1,3PDO synthesis should improve the supply of the 

substrate for 3-hydroxypropionaldehyde dehydrogenase and increase the 

3HP production. 
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Figure 3-5 Summary of carbon yields of 3HP and 1,3PDO in the engineered 

strains. 
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Figure 3-6 Comparison of feasible solution spaces and culture results. 

Computationally calculated feasible solution space in metabolic network in 

the model of iAF1260-3HP (gray), and iAF1260-3HP ΔtpiA Δzwf with or 

without considering the metabolic limitation of 3-hydroxypropionaldehyde 

dehydrogenase (light blue or dark blue, respectively). For calculating the 

feasible solution space with the metabolic limitation, the upper bounds of 

3-hydroxypropionaldehyde dehydrogenase flux was set to free, 20% or 34% of 

GUR. White plots indicate production yields of 3HP in TK52 (triangle), 

TK52tz (circle) and TK52tzy (square), respectively. Red circle indicate the 

optimal solution of iAF1260-3HP calculated by FBA. 
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3-5 Summary 

In this chapter, the effect of the predicted knockout genes on 3HP 

producing E. coli was experimentally evaluated for understanding the 

molecular mechanism causing the rate limiting reaction predicted in the 

chapter 2. Although the double knockout mutant of tpiA and zwf increased 

3HP production (0.20 ± 0.09 C-mol/C-mol), which was 4.4-fold higher than of 

no deletion strain, a large amount of 1,3PDO (0.38 ± 0.13 C-mol/C-mol) was 

secreted as an unexpected result. The molecular mechanism causing the 

overflow of 1,3PDO formation was estimated by that activated methylglyoxal 

pathway should induce the expression of yqhD converting 

3-hydroxypropanediol to 1,3PDO. Additional knockout of yqhD decreased 

1,3PDO production to 0.06 ± 0.01 and increased 3HP production to 0.34 

C-mol/C-mol by 1.7-fold.  

Metabolic simulation is a powerful tool for the design of metabolic 

engineering strategies to improve target production and has been used 

successfully in many studies. Metabolic simulation using FBA is simply 

based on the assumption of steady state metabolism without considering the 

complex cellular mechanisms such as enzyme activity and regulation. 

Therefore, FBA cannot stop overestimating the productivity in the actual cell 

and causing discrepancies between the simulation and experimental results, 

i.e., the overflow of 1,3PDO in the present study. The in silico screening 

method developed in the chapter 2 is useful to readily screen of rate-limiting 

reactions causing the discrepancies. Furthermore, experimental evaluation 
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helps us to understand what cause the rate-limiting reactions and build next 

metabolic engineering strategies. 
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Chapter 4: Strain improvement for succinic acid 

production from glycerol in engineered E. coli by 

adaptive laboratory evolution 

 

4-1 Highlights 

 Microbial production of succinic acid has been attracted recently, due 

to its wide-range availability for commercial products.  

 Adaptive laboratory evolution of the knockout mutant successfully 

improved succinate production at 0.45 C-mol/C-mol, which was 

predicted value by FBA. 

 All evolved strains had novel mutations in ppc for desensitizing Asp 

inhibition. 

 ALE expanded the flux space of actual metabolic network of the 

knockout mutant. 
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4-2 Introduction 

4-2-1 Microbial production of succinic acid 

Succinic acid is widely used for balk chemical industry as a precursor for 

various chemicals such as 1,4-butanediol, adipic acid and 

polybutylene-succinate, and it has been traditionally supplied by 

petrochemical production. Since depletion of oil resources has been 

concerned recently, microbial production of succinate from biomass is 

alternative way to compensate the demand. The U.S. Depertment of Energy 

designated succinate as one of the top-value added chemicals produced by 

biomass like 3HP in the chapter 3 (3)(4).  

The microbial production of succinate has been developed using natural 

succinate producers including Mannheimia succiniciproducens (18) and 

recombinant microorganisms such as E. coli (57)(134)(135), C. glutamicum 

(136) and Yarrowia lipolytica (137). Some of studies focused on fermentation 

of glycerol to produce succinate, since glycerol is inexpensive carbon source 

supplied as a byproduct of biodiesel production (109)(110)(111). The 

difference between carbon sources is that the succinate production from 

glycerol does not involve the net generation of reducing equivalents, while 

the fermentations of glucose or xylose to succinate is redox-generating 

pathway (130). Under the oxygen limited condition, wildtype E. coli favors to 

produce fermentative products generated from redox-balanced pathway. 

Since the ethanol production also does not generate net reducing equivalents 

and can generates ATP needed for cell growth, wildtype E. coli mainly 

converted glycerol to ethanol under the micro-aerobic fermentation of 
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glycerol. Succinic acid production from glycerol should be enhanced by a 

genetic manipulation for rewiring carbon flow into the biosynthetic pathway 

with considering redox balance and energy generation. 

 

4-2-2 Genome-scale metabolic design for succinic acid production  

In the chapter 2, I identified the possible rate-limiting reactions for 

enhancing growth-coupled succinate production by developing the novel 

screening method using FBA. Although overexpression of genes involved in 

the rate-limiting reaction is a way to overcome the metabolic limitations, the 

approach is not always enough to improve the enzymatic activity as expected 

since several factors involve the rate-limiting reaction. For example, in case 

of 3HP production discussed in chapter 3, the overflow of 1,3PDO in the 

knockout mutant was caused by activation of methylglyoxal pathway in spite 

of overexpression of genes involved in biosynthetic pathway of 3HP. 

Furthermore, the number of candidates of rate limiting reactions for 

succinate production was higher than of the other cases. The various factors 

seems to be involved in the regulation of the predicted reactions. For 

example, Ppc, which was one of the 9 possible rate limiting reactions, is 

transcriptionally regulated by Cra, and allosterically activated by acetyl-CoA, 

fructose 1,6-bisphosphate and guanosine triphosphate, and also inhibited by 

malate and aspartate (100)(101). It is still unclear that which factor mostly 

involved in the complex regulation in vivo. Even if we know the detail 

metabolic system, it should be difficult to release the limitation by genetic 

engineering due to insufficient knowledges for changing enzymatic 
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properties. In such case, evolution engineering is a possible approach to 

optimize the enzymatic functions and strains with spontaneous mutations. 

 

4-2-3 Adaptive laboratory evolution 

ALE is a useful experimental technique to increase cell growth rates 

against environmental perturbations including genetic perturbation 

(138)(139) and designated culture condition (140)(141)(142). In the field of 

metabolic engineering, ALE has been applied for latent pathway activation 

(143)(144) and enhanced tolerant to the target compounds (62)(64). As shown 

in these studies, ALE can enforce the cell growth rate for several 

perturbations, and the endpoint strain should maximize its growth ability 

for them. Since FBA calculates the metabolic state at the optimal growth 

state, the endpoint strain should reach to the predicted state by FBA 

(145)(146)(52). Previously, Ibarra et al. reported that the growth rate of 

wildtype E. coli on glycerol as the sole carbon source reached to the optimal 

growth state predicted by FBA (145). Fong & Palsson reported that strains of 

Escherichia coli lacking a single metabolic gene increase their growth rates 

(by 87% on average) during ALE, and that the endpoint growth rates were 

consistency with the predicted value in 39 of 50 (78%) strains tested (146). In 

the other study, Fong et al. reported that the knockout E. coli mutants 

designed for growth coupled lactate production successfully increased lactate 

production as predicted by FBA (52). 

The other use of ALE is to investigate microbial adaptation process. 

During ALE, the cells enhance their growth rates with naturally occurring 
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mutations. Genome resequencing analysis of evolved strains reveals the 

mutations, and re-introducing them into parent’s genome DNA by genome 

engineering can identify which mutations mostly contribute to the 

adaptation (141)(62)(64). Further analysis of the key mutation at function 

level leads to understand the molecular mechanism (147). Therefore, ALE of 

the knockout mutant for growth coupled succinate production designed in 

the chapter 2 should result in not only increasing the succinate production, 

but also identifying the key mutations for increased the succinate production 

and understanding the metabolic system causing the metabolic limitation. 

 

4-2-4 Objective of this chapter 

In the chapter 2, I identified the possible rate-limiting reactions for 

enhancing growth-coupled succinate production by developing the novel 

screening method using FBA. There are a lot of ways to optimize the 

metabolic network, since the number of predicted rate limiting reactions 

were larger than of other target production process, and many factors 

involved in the regulation of the predicted enzymes. One of the advantages of 

metabolic design of growth-coupled target production is that high target 

producing strains should be isolated by select faster growing strain via ALE, 

since the strain have to produce target metabolite in order to grow faster. 

Therefore, ALE of the knockout mutant based on FBA prediction is expected 

to overcome the metabolic limitation and improve the target production with 

increasing cell growth rate. The current chapter aimed to optimize the 
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metabolic network for enhancing succinate production by ALE and evaluated 

the rate-limiting reaction in actual cells.  

First, evolved strains were obtained from parallel ALE experiment and 

the succinate productivities were evaluated in batch culture and continuous 

culture. Next, genome resequencing analysis and reverse engineering using 

multiplexed genome engineering (MAGE) identified the key mutations to 

increase the succinate production. Finally, functional analysis and 

multi-omics analysis revealed the molecular mechanism causing and 

overcoming the metabolic limitation.  
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4-3 Materials and methods 

4-3-1 In silico screening of knockout gene targets for enhancing 3HP production 

FBA is a method to estimate a metabolic flux distribution using a 

genome-scale metabolic model (44)(45)(46)(47). To identify the candidates for 

gene knockout to achieve growth-coupling production of succinate from 

glycerol, FBA was performed by using the iAF1260 models (81) as shown 

below:  

max  cT⋅v 

subject to  0,  Rj jji vS  )( Mi  

vsubstrate_uptake = SUR 

  voxygen_uptake = OUR 

  vknockout_reactions = 0 

 

where M and R are the set of metabolites and reactions, respectively. c is a 

vector that represents coefficients of an objective function to be maximized or 

minimized.  

 

Glycerol was used as the sole carbon source in metabolic simulations, and 

glycerol uptake rate (GUR, vglycerol_uptake) was set to 15 mmol gCDW-1hr-1. The 

oxygen uptake rate (OUR, voxygen_uptake) was set to 10 mmol gCDW-1hr-1. Other 

external metabolites such as CO2 and NH3 were allowed to transport freely 

through the cell membrane. For determining the maximal succinate 

production flux at optimal growth, the objective coefficients were set to 1 and 
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1×10-6 for biomass reaction and succinate exchange reaction, respectively. 

After the FBA calculations for multiple reaction knockout models, the models 

showing succinate production at the optimal growth solution were identified 

as growth-coupling target model. The calculation was implemented in 

Matlab (MathWorks Inc., Natick, MA, USA) with a solver for linear 

programming, Gurobi (http://www.gurobi.com). 

 

4-3-2 Strains and plasmids 

All strains and plasmids used in this study are listed in Table 4-2. 

BW25113 was used as the succinate production host. BW25113 ΔadhE 

ΔpykAF ΔgldA::kan ΔpflB::tet was constructed by Wanner’s method (25) and 

P1 phage transduction (123). E. coli strain DH5α was used for plasmid 

construction and E. coli strain BL21(DE3) was used for enzymatic analysis. 

Ppc was expressed in pET28-a(+) (Novagen, Madison, Wis., USA).  
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Table 4-2 Strains and plasmids used in this study 

Strains and plasmids Source 

Strains  

BW25113 Previous work (25) 

BW25113ΔadhE::kan (JW1228) Previous work (26) 

BW25113ΔgldA::kan (JW5556) Previous work (26) 

BW25113ΔpykA::tet This work 

BW25113ΔpykF::cat This work 

BW25113ΔpflB::tet This work 

BW25113ΔadhE::kanΔpykA::tet This work 

BW25113ΔadhE::kanΔpykA::tetΔpykF::cat This work 

BW25113ΔadhEΔpykAF This work 

BW25113ΔadhEΔpykAFΔgldA::kan This work 

BW25113ΔadhEΔpykAFΔgldA::kanΔpflB::tet This work 

DH5α Toyobo 

BL21(DE3) Novagen 

Plasmids  

pKD46 Previous work (25) 

pCP20 Previous work (25) 

pKD13Cm Previous work (124) 

pKD13Tet Previous work (124) 

pORTMAGE2 Previous work (148) 

pET28-a(+) Novagen 

pET28-a(+) NdeI-ppcwild-XhoI This work 

pET28-a(+) NdeI-ppcI829S-XhoI This work 

pET28-a(+) NdeI-ppcR849S-XhoI This work 

 

4-3-3 Adaptive laboratory evolution 

ALE was performed in 5 mL of M9 minimal medium (16.9 g/L Na2HPO4･

12H2O; 3.1 g/L KH2PO4; 1.0 g/L NH4Cl; 0.5 g/L NaCl; 0.493 g/L MgSO4･
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7H2O; 0.0147 g/L CaCl2･H2O) supplemented with 10 g/L glycerol, 1% (v/v) 

wolfe’s mineral and 1% (v/v) wolfe’s vitamin at 37 °C with shaking at 20 

strokes min-1 using Bio-Photorecorder TVS062CA (Advantec Toyo Co., Tokyo, 

Japan). Optical density at 660 nm was automatically monitored at every 20 

min during the cultivation to determine the maximum specific growth rate. 

From the stationary phase culture, 1 μL of broth was passaged into fresh 

medium. After approximately 100 generations, evolved strains, named strain 

A-E, were isolated from the culture broth of five parallel passaged 

cultivations. 

 

4-3-4 Phenotype assessment 

Batch culture protocol 

The evolved E. coli strains (strain A-E) and parent strain (strain P, 

BW25113 ΔadhE ΔpykAF ΔgldA::kan ΔpflB::tet), wildtype E. coli (strain W, 

BW25113) were inoculated from the glycerol stock to 5 mL M9 medium and 

cultured aerobically at 37 °C overnight. The overnight cultures were 

transferred to fresh 50 mL M9 medium maintaining an initial optical density 

of 0.05 at 600 nm (OD600). Cells were cultured in a 100 mL Erlenmeyer flask 

at 37 °C and incubated in a rotary shaking incubator at 150 rpm (BR-43FL, 

Taitec, Saitama, Japan). 

 

Continuous culture protocol 

Strain B and P were inoculated from the glycerol stock to 40 mL M9 

medium and aerobically cultured at 37 °C overnight. The culture broths were 
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transferred to fresh 600 mL M9 medium in a 1-L jar fermenter, BMJ-P type 

bioreactor (ABLE, Tokyo, Japan) equipped with temperature, pH, and 

dissolved oxygen sensor. The temperature was maintained at 37 °C and pH 

was set at 7.0 using NH3 solution. Air flow rate and agitation speed were set 

at 300 mL/min and 400 rpm, respectively. The inoculum size was set to an 

initial OD600 of 0.1. After 8 hours of cultivation in batch mode, the continuous 

culture mode was started with a dilution rate of 0.04 h-1. After 48 hours into 

the continuous mode, the agitation speed was reduced to 100 rpm, and the 

culture broth were collected after more than two residence times for 

quantitation of extracellular metabolites. 

 

Fed-batch culture protocol 

Strain B was inoculated from the glycerol stock to 40 mL M9 medium and 

aerobically cultured at 37 °C overnight. The culture broths were transferred 

to fresh 400 mL M9 medium in a 1-L jar fermenter, BMJ-P type bioreactor 

(ABLE, Tokyo, Japan) equipped with temperature, pH, and dissolved oxygen 

sensor. The temperature was maintained at 37 °C and pH was set at 7.0 

using NH3 solution. Air flow rate and agitation speed were set at 400 mL/min 

and 400 rpm, respectively. The inoculum size was set to an initial OD600 of 

0.1. Feed of glycerol and NaHCO3 started after 6hr of main cultivation. The 

feeding volume was set to a constant value of 0.05 mL/min of 600 g/L glycerol 

and 10 g/L NaHCO3. During fed-batch culture mode, glycerol was always 

remaining higher than of 50 g/L.  
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4-3-5 Analytical methods 

Cell growth was monitored by the measurement of OD600 using UV-mini 

1240 (Shimadzu, Kyoto, Japan). Concentrations of glycerol, succinate, 

lactate, acetate, formate, and ethanol present in the culture supernatant 

were determined by high performance liquid chromatography (HPLC 

Prominence, Shimadzu) equipped with an Aminex HPX-87H column 

(Bio-Rad, Hercules, CA, U.S.A.), a UV/vis detector (SPD-20A), and a 

refractive index detector (RID-10A). The column temperature was set to 

65 °C, and 1.5 mM H2SO4 was used as the mobile phase at a flow rate of 0.6 

mL/min. The flow cell temperature of the refractive index detector was set to 

40 °C. The culture supernatant was obtained by centrifugation of the broth 

at 21,500 × g for 5 min at 4 °C, followed by filtration through a Millex HV 

0.45 μm filter unit (Millipore, Bedford, MA, USA). 

 

4-3-6 Genome sequence analysis and mutation analysis 

For genomic DNA preparation, the evolved E. coli strains (A ~ E) and 

parent strain P, wildtype E. coli were inoculated from the glycerol stock to 5 

mL M9 medium and aerobically cultured at 37 °C overnight. Subsequently, 

rifampicin (300 μg/mL final concentration) was added and the culture was 

continued for further 3 hours to block the initiation of DNA replication. The 

cells were collected by centrifugation at 20,000 × g for 1 min, at 4 °C, and the 

pelleted cells were stored at -80 °C until genomic DNA preparation. The 

genomic DNA was extracted from cell pellets of strain P and evolved strains 

A~E by DNeasy Blood & Tissue Kit (Qiagen, Germany) in accordance with 
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the manufacturer’s instructions. Genome sequence analysis were performed 

with MiSeq Desktop Sequencer (Illumina, Inc., San Diego, CA, US) as 

described previously (64). The reads obtained were aligned to the reference 

sequence of E. coli BW25113 genomic DNA (GenBank: NZ_CP009273) using 

breseq pipeline, version 0.28 (149). The mutations of ppc identified in all 

evolved strains were confirmed by Sanger sequence analysis of PCR products 

by Value Read sequencing service (Eurofins Genomics, Tokyo, Japan). 

Genome sequence data of E. coli strains in this study were deposited in the 

DDBJ Sequence Read Archive of the DNA Data Bank of Japan (DRA) under 

accession number DRA006046. 

 

4-3-7 Reverse engineering of identified ppc mutations in strain P 

Mutations identified in ppc were introduced into the genome of strain P 

by MAGE using pORTMAGE-2 vector (148). pORTMAGE-2 was a gift from 

Csaba Pál (Addgene plasmid # 72677). Sequences of MAGE oligos were 

created by MODEST tool (150) as shown in Supplementary Table 3 and the 

oligos were synthesized by FASMAC Co., Ltd. (Kanagawa, Japan). We have 

inserted the mutations of ppc in strain P to make its genotype the same as 

that of the evolved strain B or C following the procedure reported previously 

(148). The mutations were confirmed by MASC-PCR using KAPA2G Fast 

PCR kit (Nippon Genetics, Tokyo, Japan) followed by Sanger sequence 

analysis of PCR products by Value Read sequencing service (Eurofins). 
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4-3-8 Molecular cloning and enzyme overexpression 

The ppc genes were amplified by PCR using KOD FX Neo (Toyobo Co., 

Ltd., Osaka, Japan) from the genomic DNA of strain P, B and C using the 

primers as shown in Supplementary Table 3. Each amplified fragment was 

treated with A-attachment mix (Toyobo Co., Ltd.), and then cloned into 

pGEM-T Easy (Promega Co., Madison, WI, U.S.A.), followed by sequence 

confirmation by Value Read sequencing service (Eurofins). The NdeI-XhoI 

fragments of pGEM-T Easy were cloned into the same restriction site of 

pET28-a(+) vector, generating pET28-a(+)/ppcwild, pET28-a(+)/ppcI829S and 

pET28-a(+)/ppcR849S. The recombinant strains of BL21(DE3) harboring the 

plasmids were cultured in LB medium at 37 °C overnight. Five hundred 

micro liters of the culture broths were transferred to 250 mL baffled 

Erlenmeyer flasks containing fresh 50 mL LB medium containing 0.1 mM 

isopropyl-β-d-thiogalactopyranoside and cultured at 30 °C in a rotary 

shaking incubator at 200 rpm (BR-43FL, Taitec). After 20 hours of 

cultivation, the cells pellets were obtained from 10 mL of culture broth by 

centrifugation at 2,500 × g for 5 min at 4 °C. 

 

4-3-9 Protein structural analysis 

The protein structure of Ppc from E. coli (151) (PDB ID: 1FIY) was 

obtained from the Protein Data Bank 

(http://www.rcsb.org/pdb/home/home.do). Structure visualization and 

introduction of identified mutations were carried out using Pymol 

(http://www.pymol.org). 
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4-3-10 Enzymatic assay of Ppc with L-aspartate 

The enzyme activity of the purified Ppc was assayed by a coupling reaction 

catalyzed by malate dehydrogenase at 30 °C as previously described (152). 

The standard reaction mixture contained 100 mM Tris-HCl (pH 7.5), 10 mM 

MnSO4, 10 mM NaHCO3, 2 mM PEP, 0.1 mM NADH, and 1.5 U of malate 

dehydrogenase (Sigma-Aldrich Co, St. Louis, MI, USA). The decrease in 

absorbance of NADH at 340 nm was monitored by a microtiter plate reader 

(Varioskan Flash Multimode Reader, Thermo Fisher Scientific, USA). 

 

4-3-11 Metabolome analysis 

Twenty milliliters of culture broth from the batch culture experiment was 

sampled rapidly during the exponential growth phase and filtered through a 

0.5-μm pore size filter (PTFE-type membrane, Advantec, Tokyo, Japan). 

Intracellular metabolites were extracted with methanol/chloroform/water 

(153) and dried using a SpeedVac, SPD1010 (Thermo Fisher Scientific, 

Waltham, MA, USA) at room temperature.  

Gas chromatography–mass spectrometry (GCMS-QP2010 Ultra, 

Shimadzu, Japan) was performed under the following conditions. The 

column used was DB-5MS+DG column (30 m × 0.25 mm ID × 0.25 μm, 

Agilent Technologies, Santa Clara, USA). The front inlet temperature was 

set to 250 °C. The helium gas flow rate through the column was at 1 mL/min. 

The column temperature was held at 70 °C for 2 min isothermally and later 

raised by 3 °C/min to 280 °C and held there for 3 min isothermally. The 
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transfer line and ion-source temperatures were 250 °C and 200 °C, 

respectively. The dried extract was dissolved in 25 μL methoxyamine 

hydrochloride (20 mg/mL-pyridine) and incubated at 37 °C for 90 min. For 

tert-butyldimethylsilylation, 25 μL of 

N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide containing 1% 

tert-butyldimethylchlorosilane was added and incubated at 60 °C for 30 min. 

After 2 h cooling, the samples were centrifuged at 21,500 × g for 5 min. One 

micro liters of the supernatant containing the derivatized samples were 

injected at a split injection ratio of 1:10. 

 

4-3-12 Flux balance analysis with constraints of measured fluxes.  

Function of optimizeCbModel in COBRA Toolbox (154) was used to 

calculate metabolic flux distributions on continuous cultivation. For 

considering glycerol assimilation pathway, the reactions of EX_glyc(e), 

GLYCtex, GLYK, G3PD5, GLYCDx, DHAPT and F6PA in the genome-scale 

metabolic model iAF1260 were added to the core E. coli metabolic model 

(http://gcrg.ucsd.edu/Downloads/EcoliCore) and the flux of the reactions 

corresponding to the knockout genes were set to zero. Experimentally 

measured GUR, cell growth rate and production rates for succinate, acetate, 

lactate, ethanol, and formate were used to fix their flux, and then ATP 

production rate was maximized as an objective function with setting 

allowLoops to false in the function of optimizeCbModel.  
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4-4 Results 

4-4-1 Gene knockout simulation for design metabolic network for 

growth-coupled succinate production. 

Genome scale metabolic model iAF1260 (81) was used to identify a 

candidate of gene deletions for succinate production from glycerol coupled 

with cell growth. Combinatorial deletion mutant of pykAF-adhE-pflB-gldA 

was predicted to produce high amount of succinate coupled with cell growth. 

The production yield was expected to reach 0.45 C-mol/C-mol at the optimal 

growth state.  

FBA simulations predicted that wildtype E. coli catabolized glycerol via 

glycolysis, and formed acetate, ethanol, and formate (Figure 4-1A), whereas 

the knockout mutant produced succinate via Ppc and reductive TCA cycle 

(Figure 4-1B). Deletion of pykAF encoding pyruvate kinase blocked 

conversion of phosphoenolpyruvate (PEP) to pyruvate (Pyr) and rewired the 

carbon flow to Ppc. Deletion of gldA encoding glycerol dehydrogenase blocked 

supply of dihydroxyacetone (DHA) as a precursor of phosphotransferase 

system, which also converts PEP to Pyr. Because adhE and pflB were 

involved in the synthesis pathways of anaerobic fermentation production of 

ethanol and formate, respectively, disrupting these synthesis pathway 

enhanced succinate production in order to maintain the redox balance.  
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Figure 4-1 Flux distributions for succinate production in E. coli. Flux 

distributions at optimal growth state of wildtype E. coli (A) andΔadhEΔ

pykAFΔgldAΔpflB model (B). Blue arrows in panel B indicate the predicted 

rate limiting reaction in the chapter 2. 
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4-4-2 Evaluation of succinic acid production of multiple knockout mutant of 

pykAF, adhE, pflB and gldA 

Based on the gene knockout simulation using FBA, candidate genes 

(pykAF-adhE-pflB-gldA) were disrupted in wildtype E. coli BW25113, 

generating parent strain (strain P). The strain was cultivated in M9 medium 

using Erlenmeyer flasks. Succinate yield from the strain P (0.08 ± 0.00 

C-mol/C-mol) was improved 3-fold in comparison with the wildtype strain 

(0.03 ± 0.00 C-mol/C-mol) (Figure 4-2A and Table 4-3).  

FBA prediction is also effected by used influx values such as SUR and 

OUR (49). In order to accurately compare the result between experimental 

cultivation and FBA prediction, continuous cultivation using a bio-reactor is 

a better approach since it can make metabolic steady state, and measure 

SUR and OUR. Continuous cultivations for strain P was performed for 

comparing the succinate productivity of wet-experiment and FBA simulation. 

Although FBA predicted 0.32 C-mol/C-mol of succinate yield with setting 

glycerol uptake rate (GUR) and OUR to experimental values, the strain P 

experimentally produced only 0.01 C-mol/C-mol of succinate (Table 4-3). 

These gaps might be because the biomass yield of strain P (0.11 C-mol/C-mol) 

was lower than the predicted value (0.29 C-mol/C-mol). These results should 

be caused that some of rate-limiting reactions diminished the flux space of 

actual metabolic network of the knockout mutant as shown in the chapter 2, 

and the cells could not reach to the high succinate producing state. 
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Figure 4-2  Culture result of adaptive laboratory evolution. (A) Specific 

growth rate and succinate production in a batch culture. The cells obtained 

after 100 generations on M9 medium were named as "strain A"-"strain E" in 

the descending order of growth rate. W and P indicate wildtype E. coli 

BW25113 and the knockout strain of pykAF-adhE-pflB-gldA, respectively. 

(B) Direct comparison of feasible solution space and experimental results of 

continuous culture. Metabolic solution space was calculated with measured 

values of GUR and OUR in iAF1260 (gray area) and the knockout model 

(blue area). GUR and OUR were set to the experimentally measured values 

of 3.37 mmol gCDW-1hr-1 and 2.85 mmol gCDW-1hr-1 in strain B, respectively. 
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Table 4-3 Summary of the carbon-molar yield. 

Condition & strains 
Carbon yield (C-mol/C-mol) 

Biomass*1 Succinate Lactate Acetate Ethanol 

Batch culture      

(W): Wildtype 0.20 ± 0.01 0.03 ± 0.00 0.11 ±0.00 0.19 ± 0.01 0.24 ± 0.02 

(P): Parent 0.35 ± 0.01 0.08 ± 0.00 0.18 ± 0.15 0.12 ± 0.01 0 

(A): Evolved A 0.44 ± 0.04 0.24 ± 0.02 0 0.23 ± 0.02 0 

(B): Evolved B 0.27 ± 0.02 0.33 ± 0.03 0.08 ± 0.01 0.26 ± 0.02 0 

(C): Evolved C 0.31 ± 0.04 0.33 ± 0.04 0.06 ± 0.01 0.28 ± 0.03 0 

(D): Evolved D 0.25 ± 0.04 0.25 ± 0.03 0.05 ± 0.01 0.22 ± 0.03 0 

(E): Evolved E 0.28 ± 0.01 0.30 ± 0.01 0.06 ± 0.01 0.26 ± 0.01 0 

I829S mutant*2 0.28 ± 0.03 0.29 ± 0.01 0.02 ± 0.00 0.26 ± 0.02 0 

R849S mutant*2 0.26 ± 0.02 0.28 ± 0.02 0.01 ± 0.00 0.27 ± 0.02  

I829S-R849S mutant*2 0.24 ± 0.01 0.28 ± 0.01 0.03 ± 0.00 0.25 ± 0.01  

Continuous culture   0  0 

(P): Parent 0.11 0.01 0 0.14 0 

(B): Evolved B 0.16 0.45 0 0.29 0 

Simulation*3      

(P): Parent 0.29 0.32 0 0.29 0 

(B): Evolved B 0.16 0.44 0 0.32 0 

*1For calculation of biomass yield, OD600 was converted into dry cell weight using the conversion coefficient of 0.3 

gCDW･L-1･OD600
-1, and carbon-mol in the biomass was calculated based on the biomass composition described in the 
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iAF1260 model. 

*2These strains were constructed by introducing of the identified ppc mutations into the genome of strain P. 

*3The values were calculated by FBA using the genome-scale metabolic model iAF1260 adding constraints of 

experimentally measured values for GUR at 4.77 and 3.37 mmol gCDW-1hr-1, and OUR at 4.14 and 2.85 mmol 

gCDW-1hr-1 in strain P and B, respectively. 
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4-4-3 Adaptive laboratory evolution.  

Since the metabolic pathway of strain P was designed for growth-coupled 

succinate production, the evolved mutants with improved growth via ALE 

would have enhanced succinate production. Five evolved strains (strain A~E) 

were obtained by parallel passage of cultivations for about 100 generations 

(Figure 4-3). The specific growth rates were improved by more than 2-fold 

during ALE experiments. All of the evolved strains successfully increased 

the yield of succinate by more than 3.1-fold in flask cultivation (Figure 4-1A). 

Strain B and C were the highest producers of succinate with 0.33± 0.03 and 

0.33± 0.04 C-mol/C-mol yields, respectively. The main byproduct in all the 

evolved strains was acetate with 0.22 to 0.28 C-mol/C-mol yield (Table 4-3). 

During the continuous cultivation, strain P showed almost no production of 

succinate, on the other hand strain B showed the higher yields of succinate 

with 0.45 C-mol/C-mol yield, as predicted by FBA simulation (Figure 4-1B). 

The biomass yield in strain B was almost the same as the predicted value. 

Furthermore, byproduct formations such as acetate and lactate were 

consistent with the FBA result (Table 4-3). 
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Figure 4-3 Growth rate dynamics during adaptive laboratory evolution of 

the knockout mutant of adhE-pykAF-gldA-pflB. Adaptive laboratory 

evolution was performed by five parallel passage cultivations. The evolved 

strains were isolated as colonies from culture broth after 100 generations. 

The growth rates of strain A and C were temporarily decreased around 85 

generations due to aggregation.  

 

4-4-4 Fed-batch fermentation of evolved strain B. 

For evaluating the succinate titer, fed-batch fermentation was performed 

by using the highest succinate producer of evolved strain B. Feed of glycerol 

and NaHCO3 started after 6hr of main cultivation. Final succinate titer 

reached to 9.7 g/L on 50hr of fed-batch fermentation (Figure 4-4). This value 

was 12.1-fold higher than of the culture result of the evolved strain B on 24hr 

of batch cultivation using Erlenmeyer flasks. Acetate was main byproduct as 

predicted by FBA, and the final titer of acetate reached to 7.5 g/L.  
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Figure 4-4 Result of fed-batch fermentation of evolved strain B. 

 

4-4-5 Mutation analysis and reverse engineering.  

For evaluating rate limiting reaction for succinate production in the 

unevolved knockout strain, genomes of all evolved strains and strain P were 

sequenced using high-throughput sequencer Illumina MiSeq. The raw 

sequences generated, 5.3-6.5×108 base pairs, showed an average coverage of 

approximately 100-140-fold of 4.63 ×106 E. coli BW25113 genome (GenBank: 

NZ_CP009273). Mutations were identified by the breseq pipeline (149) using 

the genome sequence of E. coli BW25113 as reference. All of the evolved 

strains had more than one mutation in coding regions of ytfT, cyaA, glpK, 

ppc, and eutH (Table 4-4). Especially, mutations of ppc encoding Ppc, which 

was the candidate of rate limiting reaction, were shared at I829S in strain A 

and B or R849S in strain C, D and E. Although glpK encoding glycerol kinase 

was also predicted as the candidate for rate-limiting reaction, the ppc 
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mutations must be having a dominant effect on adaptation as the highest 

producer of succinate (strain B and C) had mutations only in ppc, not in glpK. 

Comparing the flux distributions calculated by FBA, the flux of Ppc in the 

knockout mutant was higher than that of the wildtype E. coli (Figure 4-1). 

These results suggested that the reaction of Ppc had kinetic limitations for 

achieving the optimal metabolic state, and introduction of these mutations in 

ppc led to changes in the enzyme properties for enhancing the activity. 

To evaluate the effect of these identified mutations on succinate 

production, mutations in ppc were introduced into the genome of strain P by 

multiplexed genome engineering. Introducing mutations of I829S or R849S 

in strain P improved the cell growth rate by about 2.0-fold, and increased the 

yield of succinate to 0.29 ± 0.01 or 0.28 ± 0.02 C-mol/C-mol, respectively, 

which were 89% or 84% of the yield from the highest producers, strain B and 

C (Table 4-3 and Figure 4-5). These results indicated that the mutations 

identified in ppc were important for succinate production in strain P. On the 

other hand, the engineered mutant containing both the I829S and R849S 

mutations displayed the same amount of succinate production as the single 

mutants (Figure 4-5). Since there was no synergistic effect of the two 

mutations on succinate production, these mutations likely affect the same 

enzymatic characteristics.  
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Table 4-4 Identified mutations in the evolved strains. 

Strain Gene Mutation Type 

A 

ytfT C393T I130I 

cyaA +C (1901/2547t) Frameshift 

glpK G762T Q254H 

ppc T2486G I829S 

B ppc T2486G I829S 

C ppc C2545A R849S 

D ppc C2545A R849S 

E 
ppc C2545A R849S 

eutH C936A N312K 

 

 

 

Figure 4-5 Batch culture results for engineered E. coli after introducing the 

mutations of PpcI829S, PpcR849S, or both by MAGE. 

 

4-4-6 Functional analysis of the mutations of Ppc. 

For characterization of the mutated amino acid residues of Ppc, multiple 

sequence alignment was performed with clustalW (Kyoto University 
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Bioinformatics Center: http://clustalw.genome.jp, Figure 4-6). The isoleucine 

residue at position 829 in E. coli Ppc is conserved in Mannheimia 

succinicproducens and Thermus thermophilus HB8, whereas other 

microorganisms including Corynebacterium glutamicum have a valine 

residue at the equivalent position of Ile829 in E. coli. The arginine residue at 

position 849 is highly conserved in various microorganisms. Functional 

analysis of the mutants of Ppc was performed to understand how the 

identified mutations in ppc changed enzymatic properties. Protein structure 

of Ppc has been reported previously by Kai et al. (151). The model displayed 

that the mutated positions at Ile829 and Arg849 residues were in the same 

α-helix strand (Figure 4-7A, yellow). Four residues, Lys773, Arg832, Arg587, 

and Asn881, are involved in L-aspartate binding, and among these, Arg832 

is located in the same α-helix strand that contains Ile829 and Arg849 (Figure 

4-7B). Because L-aspartate allosterically inhibits Ppc, it was hypothesized 

that the I829S and R849S mutations should decrease the inhibition by 

aspartate, leading to an increase in the flux of Ppc for succinate synthesis. 

The effect of the replacement of Ile829 or Arg849 by serine in Ppc was 

examined by in vitro enzymatic analysis. The enzymatic activities of Ppc 

were measured by a coupling reaction catalyzed by malate dehydrogenase 

and measuring the absorbance of NADH at 340 nm. The activity of wildtype 

Ppc (PpcWild) was drastically decreased by ca. 78% in the presence of 1 mM 

L-aspartate with 4 mM PEP (Figure 4-7F). On the other hand, Ppc mutants 

(PpcI829S and PpcR849S) displayed lower levels of the inhibition compared to 

Ppcwild (Figure 4-7G and 4-7H). Especially, PpcI829S showed no sensitivity to 
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L-aspartate inhibition with different concentrations of PEP tested from 0.2 

mM to 4 mM. 

 

 

Figure 4-6 Multiple sequence alignment of Ppc. 
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Figure 4-7 Functional analysis of identified mutations in Ppc. (A) Protein 

structure of Ppc wildtype monomer. (B-E) Close view of mutated site for 

I829S (B, C), and R849S (D, E). Yellow dashed line indicated hydrogen bonds 

(< 3.2 Å). (F-H) Specific activity of Ppc of wildtype (F), I829S mutant (G) and 

R849S mutant (H) with (black triangle) or without (open circle) 1 mM 

aspartate. The values indicate the relative activities against the activity 

with 4 mM PEP and in the absence of L-aspartate. 

 

4-4-7 Metabolic profiling analysis.  

For verification of in vivo effect of allosteric inhibition of L-aspartate to 

Ppc, intracellular metabolites in central carbon metabolism and amino acids 
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were quantified by gas chromatography–mass spectrometry (Figure 4-8). 

Aspartate concentration in strain P was 3.05 ±0.35 mM, which was three 

times higher than the concentration that could cause 78% inactivation of Ppc 

activity in vitro. Furthermore, PEP in strain P was 12.5-fold higher than of 

wildtype E. coli (6.04 ± 0.20 mM and 0.48 ± 0.06 mM, respectively). 

Compared with the accumulations of these metabolites in strain P, aspartate 

concentration in strain B had no significant change (2.72 ±0.35 mM), on the 

other hand, PEP concentrations was drastically decreased to 0.75 ± 0.10 mM. 

These results indicated that the evolved strains could overcome this 

metabolic limitation by introducing single amino acids substitution of 

Ile829Ser or Arg849Ser in Ppc. 
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Figure 4-8 Metabolic profiling of central carbon metabolism and amino 

acids. The values indicate absolute concentration of intracellular metabolites 

of wildtype, strain P and B as quantified by GC-MS. 
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4-5 Discussion 

Although there are many reports that the enhanced production of target 

metabolites using pathway engineering by gene deletion based on in silico 

design with FBA, most of these applications did not achieve the predicted 

value at the optimal growth state (Table 1-1). One possible cause of these 

inconsistencies should be that some of metabolic reaction exist as 

rate-limiting reactions due to enzymatic capacity or regulation. In the 

chapter 2, I revealed that the knockout mutant of pykAF-adhE-pflB-gldA 

have 9 possible rate-limiting reactions involved in glycerol assimilation, 

glycolysis and anaplerotic reaction for succinate production. In case of the 

3HP production discussed in the chapter 3, the mechanism causing the 

rate-limiting step was revealed by experimental evaluation, and this led the 

further strain improvement. Although experimental evaluation is a powerful 

approach to directly identify the rate-limiting reactions in vivo, it is difficult 

to apply the larger number of target reaction due to experimental cost and 

technical limitations. In the present chapter, the mechanism causing the 

rate-limiting step on the succinate production was revealed through ALE 

experiment of the knockout mutant based on FBA.  

Mutation analysis of high-succinate producing strains obtained from 

ALE displayed that the all evolved strains have more than one mutation into 

their chromosomal DNA. The mutations included coding regions of ppc and 

glpK, which were predicted as representative genes involved in the possible 

rate-limiting reactions. The Ppc was experimentally confirmed to be 

mediating a dominant rate-limiting step. Mutation of glpK encoding glycerol 
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kinase was only observed in evolved strain A. Previous reports demonstrated 

that a point mutation in the glpK (glpK 218a>t) gene promoted the growth of 

wildtype E. coli on glycerol medium by decreasing inhibitory effect of fructose 

1,6-bisphosphate on GlpK (147)(155). Since the mutation site of glpK 762 g>t 

occurred in strain A was different with the previous one. Although the glpK 

mutation might increase the cell growth by increasing glycerol catabolism, 

the ppc mutations are much effective in their metabolic adaptation. The 

other candidates such as glycolytic reactions were not observed in all of the 

evolved strains. Previous report mentioned that glycolytic fluxes in E. coli 

are mainly controlled by pyruvate kinase (156)(157), and the reversible 

glycolytic reactions to enolase are governed by PEP consuming irreversible 

reaction (88). Since the knockout mutant lacked pyruvate kinase, and Ppc 

was a main PEP consuming reaction, the candidates in glycolytic reaction 

turned out to be non-rate limiting steps. 

Ppc in E. coli is tightly regulated by L-aspartate, which bind to its four 

residues (Lys773, Arg832, Arg587, and Asn881) (151). Protein structure 

model of I829S mutant of Ppc suggests that the mutation pushes the residue 

of Arg832 away from L-aspartate binding by forming a hydrogen bond (2.9 

Å) between the hydroxyl residue of Ser829 and the amino group of Arg832 

(Figure 4-7B and 4-7C). Arg849 residue has a hydrogen bond with the 

residue of Leu63 (Figure 4-7D). Because the mutated residue of Ser849 

cannot bind the residue of Leu63, the R849S mutant should change the 

tertiary structure of Ppc and decrease the affinity for L-aspartate (Figure 

4-7E). In vitro enzyme assay displayed that the activity of Ppcwild was 
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inhibited to ca. 78% by 1 mM L-aspartate (Figure 4-7G), and the 

intracellular concentration of aspartate was high at 3.05 ± 0.35 mM in strain 

P (Figure 4-7). These results suggest that Ppc in unevolved knockout mutant 

was mostly suppressed. Flux distribution calculated by FBA with constraints 

of measured fluxes indicated that Ppc flux of strain P on continuous 

cultivation was 2.8% of GUR, whereas strain B showed higher Ppc flux value 

at 94.5% of GUR (Figure 4-9). Higher accumulation of PEP in strain P (6.04 ± 

0.20 mM) than in strain B (0.75 ± 0.10 mM) was also consistence with these 

results (Figure 4-8). By setting the flux of Ppc to 2.8% of GUR, the knockout 

mutant model cannot achieve the optimal growth state without any 

constraints of Ppc (Figure 4-10A). Therefore, evolved strains alleviate the 

kinetic limitation of Ppc by introducing single amino acid substitutions 

generating PpcI829S or PpcR849S, and optimized their metabolic network to 

improve succinate production as expected by FBA (Figure 4-10B). In other 

microorganisms such as C. glutamicum, Ppc is also thought to be possible 

rate limiting reaction since the enzyme is tightly regulated by L-aspartate 

(158)(152)(159). Multiple sequence alignment displayed that the amino acid 

residues of Ile829 and Arg849 are highly conserved in these microorganisms 

(Figure 4-6). This indicated that the introduction of mutations identified in 

Ppc should improve the flux and target production in other microorganisms 

also.  

Quantitative evaluation of the strength of the constraint of rate-limiting 

reaction is useful to increase the prediction accuracy of metabolic state by 

FBA. Without considering the kinetic limitation of Ppc in the genome-scale 
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metabolic model of E. coli iAF1260, the model overestimated the yields of 

biomass and succinate (Figure 4-11, right bars). On the other hand, the 

predicted values were close to the culture result (Figure 4-11, left bars) by 

considering the additional constraint by setting the upper-bound of Ppc’s flux 

to 2.8% of GUR (Figure 4-11, center bars), which is the measured value by 

constraint based metabolic flux analysis. Further evaluation of the metabolic 

limitations in actual cells designated for several fermentation process should 

improve the prediction accuracy and develop the metabolic design for strain 

improvement. 

Metabolic regulation existing in wildtype microorganism is a main 

obstacle for enhancing target production. Although stoichiometric models are 

normally used without any kinetic constraints, the effect of metabolic 

regulation on target production can be evaluated by considering it as an 

additional constrain. Recent studies have added the additional constraints 

such as enzymatic regulation (32), expression regulation (33) or 

thermodynamic feasibility (34) on flux balance modeling for improvement in 

simulation accuracy. Adding such constraints on our approach should 

improve prediction accuracy of rate limiting reactions and enable 

identification of target genes for genetic manipulation. The next question to 

consider would be on how to modify the enzymatic properties. Since small 

molecules can affect the activity of metabolic enzymes, engineering of 

enzymes with desired catalytic properties is important for enhancing the 

metabolic flow. Nevertheless, its application in metabolic engineering is still 

very challenging. Evolution engineering such as ALE enables to construct 
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ideal mutant enzymes or strains without having any prior knowledge on the 

properties of catalytic enzymes. In the present study, we revealed that Ppc is 

one of the rate limiting reactions in the actual metabolic network, and 

identified effective mutations of PpcI829S or PpcR849S for overcoming the 

metabolic limitation. Further identification of beneficial mutations with 

integrated use of in silico strain design and ALE will help us to understand 

the genotype-metabolic phenotype relationship for genome-scale metabolic 

design. 

Evolved strain B show the highest production yield of succinate in the 

batch cultures of all evolved strains and produced 9.7 g/L succinate on 50hr 

of fed-batch fermentation (Figure 4-4). This value was higher than of the 

previous study using an engineered strain disrupting maeA on high 

succinate producing strain obtained from ALE of pyruvate kinase deficient E. 

coli (6.0 ± 0.19 g/L) (139). The other study achieved the higher succinate 

titer of 14 g/L in 72hr of cultivation of an engineered strain disrupting adhE, 

pta, poxB, ldhA and ppc and overexpressing pyc on a plasmid vector. The one 

of advantages using the evolved strain B for industrial fermentation process 

is that the strain B does not have any plasmid vector for metabolic 

engineering, since expressing genes in plasmid vector is thought to lead 

unstable production on the commercial scale plant.  

Acetate was confirmed as main byproduct in the fed-batch fermentation of 

evolved strain B (7.5 g/L). FBA predicted that succinate production in the 

knockout mutant increased with decreasing oxygen uptake rate, while the 

acetate production was decreased with it (Figure 4-12). Thus, optimization of 
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culture condition such as changing aerobic condition should contribute 

further development of succinate production process from glycerol by using 

evolved strain B.  
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Figure 4-9 Flux distributions of strain P (A) and B (B). Estimated fluxes 

were normalized to a GUR of 100. The flux distributions were calculated as 

linear programming by optimizeCbModel function in COBRA toolbox. Briefly, 

the experimentally measured GUR, cell growth rate, and secretion rates of 

succinate, acetate, lactate and formate were used as constraints, and then 

ATP production rate was maximized as the objective function. The 

stoichiometric model used was constructed from the core E. coli metabolic 

model by adding glycerol assimilation pathway and disruption of the 

reactions corresponding to the knockout genes. 
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Figure 4-10 Adaptation trajectory of the knockout mutant for improving 

succinate production. (A) Computationally predicted feasible solution space 

in metabolic network with or without considering the kinetic limitation of 

Ppc. Experimentally measured GUR and OUR of strain B were considered as 

constraints, and the upper bounds of Ppc flux was set to free or 2.8% of GUR. 

White and red circles indicate the experimental results of strain P and B. (B) 

Overview of metabolic evolution for succinate production demonstrated in 

this study. 
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Figure 4-11 Comparison of the experimental result of the knockout mutant 

and optimal values by FBA. Left bars indicate the culture result of strain P 

on continuous culture experiment. Center bars indicate the predicted values 

by FBA using revised metabolic model with setting the upper-bound of Ppc’s 

flux to the measured flux. Right bars indicate the predicted values by FBA 

without any metabolic constraint (i.e. original metabolic model). 

 

 

Figure 4-12  In silico evaluation of the effect of OUR on succinate 

production by evolved strain B. Carbon yield of biomass and each 

metabolites at the optimal growth state were calculated by using FBA and 

iAF1260. GUR was set to the experimentally measured value of 3.37 mmol 

gCDW-1hr-1. OUR was set to the relative values of the experimentally 

measured value of 2.85 mmol gCDW-1hr-1.  
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4-6 Summary 

When there are many or unknown options to improve the rate limiting 

reactions, evolution engineering is powerful approach to screen the more 

effective strategy for enhancing the target production. Since the metabolic 

system of the knockout strain was designated for growth-coupled target 

production, ALE is enable to enhance the target production. In this chapter, 

ALE successfully improved the growth-coupled succinate production in the 

knockout mutant by 3-fold, and the productivity of the evolved strain 

reached to the predicted value by FBA (0.45 C-mol/C-mol). The other 

advantage of ALE is easy to identify the effective mutation on increased 

fitness for the perturbation of gene deletion, because mutation rate during 

ALE is lesser than of random mutagenesis approach. Analyzing the effect of 

identified mutations on the enzymatic function can contribute to understand 

that the molecular mechanism causing and overcoming the metabolic 

limitation. Therefore, further identification of beneficial mutations using 

evolution engineering will accelerate the genome-scale metabolic design for 

improving target production with compensating our lacking knowledges of 

the genotype-metabolic phenotype relationship. 
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Chapter 5: General conclusion and future perspective 

 

5-1 General conclusion 

Microbial production of valuable chemicals has been attracted as an 

alternative way to compensate the increasing demand for commercial use, 

since oil resources are limited and unsustainable. Strain improvement for 

enhancing target production is an important for development of microbial 

production process. Recent development of computational approaches 

enable us to design rational metabolic network for enhancing target 

production in silico. 

FBA is one of the most widely used approach to predict metabolic 

behavior and build metabolic engineering strategies such as gene 

knockout. Although microbial production of various target metabolites 

have been improved based on FBA, the target productivities were always 

lower than of the predicted values. These inconsistencies should be arisen 

from that FBA only considers mass-balance equation on metabolic 

network for prediction of metabolic behavior, while metabolism in actual 

cell is regulated by complicated interactions of various factors. 

The general objective of this study was to reveal the reason why FBA 

overestimates the productivity of growth-coupled target production in 

engineered strains. The hypothesis causing the inconsistency was validated 

through development of in silico modeling approach and experimental strain 

improvements. 
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In the chapter 2, in order to validate the hypothesis in silico, simple 

screening algorithm of key enzyme for metabolic engineering was developed 

by addition of a constraint on conventional FBA calculation. The proposed 

method simplify the complex metabolic regulation as an upper-bound 

constraint on enzymatic flux and evaluate changing productivity at optimal 

growth state. When a limited reaction decreased target productivity, the 

reaction was thought to be a possible rate-limiting reaction. The predicted 

reactions in growth-coupled 1,4BDO production were consistency with the 

optimized enzymatic reactions for the experimental strain improvement 

performed in the previous study. Furthermore, the proposed method 

successfully screened possible rate-limiting reactions in various 

fermentation process. The biggest advantage of the proposed approach use 

only the existing genome-scale metabolic model for the prediction without 

any experimental data sets. On the other hand, since this approach is simple 

screening method and impossible to know the reason why the reactions are 

limited and which reaction mostly effected target production in vivo, 

understanding the molecular mechanism causing rate-limiting reactions is 

needed for build metabolic engineering strategy. 

In the chapter 3, experimental evaluation of double knockout mutant of 

tpiA and zwf for growth-coupled 3HP production was performed to 

understand the molecular mechanistic causing the rate-limiting step. 

Overflow of 1,3PDO was thought to decrease precursor supply for 

3-hydroxypropionaldehyde dehydrogenase, which was predicted as a possible 

rate-limiting reaction. Increased activity of methylglyoxal bypass pathway 
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should induce the expression of yqhD encoding NADPH-dependent aldehyde 

reductase, and this led to the overflow of 1,3PDO. Additional disruption of 

yqhD based on the experimental evaluation successfully improved 3HP 

production from 0.20 C-mol/C-mol to 0.34 C-mol/C-mol. These results 

indicated that experimental evaluation is a useful approach to reveal the 

mechanism causing rate-limiting reaction and build next metabolic 

engineering strategy. 

In the chapter 4, ALE of knockout mutant of adhE, pykAF, gldA and pflB 

was performed for increasing growth-coupled succinate production, and 

understanding the mechanism causing the rate-limiting reaction. All of the 

evolved strain obtained from five parallel passaged cultivation successfully 

increased succinate production yield by more than 3-fold. The highest 

producing strain achieved the production yield of 0.45 C-mol/C-mol, which 

was almost same as the predicted value by FBA. Experimental analysis of 

evolved strains displayed that the allosteric inhibitor L-aspartate tightly 

regulated the activity of Ppc, which was one of the predicted possible 

rate-limiting reactions, and decreased target production in the unevolved 

knockout mutant. The evolved strains overcame the kinetic limitation for 

increasing succinate production by introducing novel mutations in ppc. 

These results indicated that ALE is a powerful approach not only for strain 

improvement of growth-coupled target production, but also for identifying 

key mutations overcoming the metabolic limitation. 

In conclusion, this study first verified the hypothesis that some of kinetic 

constraints caused the overestimation of the effect of gene knockout on the 
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target productivity through development of novel computational approach 

and experiments of strain improvement. 

 

5-2 Contribution of the present results for strain improvement 

The present results in this doctor thesis verified the hypothesis that 

kinetic constraints diminish the flux space of actual metabolic network and 

thereby decrease the target productivity on growth-coupled target 

production based on FBA design. Here, the contributions of the present 

results for strain improvement were discussed. 

In general, the strain improvement for optimizing the production of 

valuable chemicals is an overarching challenge in biotechnology. Recent 

development of computational modeling approach of metabolism enable to 

identify the effective knockout mutant for the growth-coupled target 

production in silico. The present results in this thesis give the lesson that 

considering the flux space of actual metabolic network is important for 

further strain improvement for growth-coupled target production based on 

the computational approach. Recently, Kamp & Klamt reported that rational 

design of the metabolic network for the growth-coupled target production by 

gene deletion is capable for almost all metabolites including carbon-based 

foods, bio-plastic, bio-fuel and pharmaceutical in five major production 

organisms of E. coli, S. cerevisiae, C. glutamicum, A. niger and Synecocystis 

sp. PCC 6803 (160). Because the screening method of possible rate-limiting 

reaction developed in the chapter 2 does not need any experimental data sets 

and only use existing genome-scale metabolic models, the method is easily 
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available for various microorganisms including them. The integrated use of 

the conventional gene knockout simulation and the screening method of 

possible rate-limiting reaction developed in the chapter 2 will accelerate to 

development of the various microbial processes of growth-coupled target 

production. 

The proposed screening method in the chapter 2 suggested that Ppc is a 

possible rate-limiting step in the production of industrially produced 

metabolites such as 1,4BDO and succinate. As shown in the chapter 4, 

experimental analysis of intracellular metabolism and protein function 

revealed that Ppc was tightly regulated by aspartate in vivo, since aspartate 

was highly accumulated independent on their genetic background (Figure 

4-8). Novel mutants of Ppc were identified by mutation analysis of the 

evolved strains by ALE in the chapter 4. The mutants of Ppc are insensitive 

to the inhibition by aspartate, and have enough enzymatic activity to 

increase the flux of Ppc. In the other industrial microorganism such as C. 

glutamicum, Ppc is also allosterically regulated by aspartate, and the amino 

acid residues of the mutated sites are highly conserved in them (Figure 4-6). 

Introducing the same mutations on the coding region of ppc of the 

industrially used strains is expected to increase the productivities.  

 

5-3 Future perspective for strain improvement 

The proposed screening method is available for screening possible 

rate-limiting reactions in various host cell factories, if only there are existing 

genome-scale metabolic models. To understand the mechanism causing the 
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rate-limiting reaction is needed for build metabolic engineering strategy by 

referring to the priori knowledges or using experimental evaluation. 

Optimization of the expression level of corresponding gene can be made by 

disrupting transcriptional repressor, changing the sequence of 5’ 

untranslated region, or using synthetic biology tools such as promoter library 

(161). The next question to consider would be on how to modify the 

enzymatic properties. When enzymatic property causes the rate-limiting 

step, protein engineering for desirable catalytic properties is required for 

enhancing the metabolic flow. Nevertheless, its application in metabolic 

engineering is still very challenging. Evolution engineering such as ALE 

enables to construct ideal mutant enzymes or strains without having any 

prior knowledge on the properties of catalytic enzymes. The result of this 

study displayed that Ppc is the rate-limiting reactions in the actual 

metabolic network, especially in industrially produced metabolites of 

1,4BDO and succinate, and identified effective mutations of PpcI829S or 

PpcR849S for overcoming the metabolic limitation. The approaches of 

overcoming the metabolic limitations were summarized in Table 5-1. Further 

identification of beneficial mutations will help us to develop genome-scale 

metabolic design for microbial cell factories.
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Table 5-1 Metabolic engineering strategies for overcoming the metabolic limitation predicted in the chapter 2. 

Optimization target Metabolic engineering strategy Reference 

Local optimization   

Phosphoenolpyruvate carboxylase  The replacement of Ile829 or Arg849 in ppc by 

serine. 

Chapter 4 

Pyruvate dehydrogenase  Using lpdAD354K mutant derived from K. 

pneumoniae. 

 Disrupting transcriptional regulator of arcA 

(58) 

Succinyl-CoA synthase  Disrupting transcriptional regulator of arcA (58) 

Succinate semialdehyde 

dehydrogenase 

 Disrupting transcriptional regulator of arcA (58) 

Glycerol dehydratase  Expressing glycerol dehydratase reactivase encoded 

by grdAB derived from K. pneumoniae 

 Addition of enough amount of coenzyme B12 

(92) 

 

(89) 

3-hydroxypropionaldehyde 

dehydrogenase 

 Disrupting yqhD encoding NADPH-dependent 

aldehyde reductase 

 Expressing superior enzymes derived from other 

microorganism, rather than of using E. coli aldH. 

Chapter 3 

 

(92) 

 

Pathway activity   

Lower glycolysis  Increasing activity of PEP consuming reaction. Chapter 4, (88), 

(58) 

Reductive TCA cycle  Disrupting transcriptional regulator of arcA (58) 

Glycerol assimilation pathway  The replacement of Asp72 in glpK by valine (147)(155) 
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Appendix 

 

List of abbreviations 

Abbreviation Full name 

ALE Adaptive laboratory evolution 

CDW Cell dry weight 

C-mol/C-mol Carbon molar yield 

FBA Flux balance analysis 

GLYK Glycerol kinase 

GUR Glycerol uptake rate 

MAGE Multiplexed automated genome engineering 

OD Optical density 

OUR Oxygen uptake rate 

PDB Protein data bank 

PDH Pyruvate dehydrogenase 

Ppc Phosphoenolpyruvate carboxylase 

SUR Substrate uptake rate 
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List of metabolite abbreviations 

Abbreviation Metabolite name 

1,3PDO 1,3-Propanediol 

1,4BDO 1,4-Butanediol 

3HP 3-hydroxypropionic acid 

3HPA 3-hydroxypropionic aldehyde 

3PG 3-phosphoglycerate 

6PG 6-phospho-D-gluconate 

AcCoA Acetyl-coenzyme A 

Aco Aconitate 

ADP Adenosine diphosphate 

Ala Alanine 

AMP Adenosine monophosphate 

Arg Arginine 

Asn Asparagine 

Asp Aspartic Acid 

ATP Adenosine triphosphate 

Cit Citrate 

CO2 Carbo dioxide 

CoA Coenzyme A 

Cys Cysteine 

DHA Dihydroxyacetone 

DHAP Dihydroxyacetone phosphate 

E4P D-Erythrose-4-phosphate 

F6P D-Fructose-6-phosphate 

FBP D-Fructose-1,6-bisphosphate 

Fum Fumarate 

G6P D-Glucose-6-phosphate 

GAP Glyceraldehyde-3-phophate 

Gln Glutamine 

Glu Glutamic Acid 

Gly Glycine 

Glyc3P Glycerol-3-phosphate 

Glyox Glyoxylic acid 

His Histidine 
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Ile Isoleucine 

IsoCit Isocitrate 

KDPG 2-keto-3-deoxy-6-phosphogluconate 

Leu Leucine 

Lys Lysine 

Mal Malate 

Met Methionine 

MGO Methylglyoxal 

NAD+ Nicotinamide adenine dinucleotide (oxidized) 

NADH Nicotinamide adenine dinucleotide (reduced) 

NADP+ Nicotinamide adenine dinucleotide phosphate (oxidized) 

NADPH Nicotinamide adenine dinucleotide phosphate (reduced) 

NH4 Ammonia 

Oxa Oxaloacetate 

PEP Phosphoenolpyruvate 

Phe Phenylalanine 

Pro Proline 

Pyr Pyruvate 

Q Quinone (oxidized) 

QH2 Quinone (reduced) 

Ru5P D-Ribulose-5-phosphate 

S7P D-Sedoheptulose-7-phosphate 

Ser Serine 

Suc Succinate 

SucCoA Succinyl-coenzyme A 

Thr Threonine 

Trp Tryptophan 

Tyr Tyrosine 

Val Valine 

Xu5P D-Xylose-5-phophate 

αKG α-Ketoglutarate 

 


