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Abstract

In this thesis, we will discuss the results of two themes;

(1) Existence of a regular unimodular triangulation of the edge polytopes of finite
graphs (Chapter 2),

(2) Ehrhart series of fractional stable set polytopes of finite graphs (Chapter 3).

As far as (1) is concerned, it is known that it is enough to consider a fundamen-
tal FHM graph. Ohsugi obtained a necessary and sufficient condition for an edge
polytope to possess a regular unimodular triangulation [16]. However, this condi-
tion is not easy to apply to a given fundamental FHM graph by merely inspecting
the graph. In Chapter 1, we present the basics of Gröbner bases and convex poly-
topes. Subsequently, in Section 2.3, we obtain four sufficient conditions for an edge
polytope to possess a regular unimodular triangulation. This is applied to a given
fundamental FHM graph by merely inspecting the graph and using the graph data.
Moreover, we implement a program for the computer algebra system Magma [2]
that determines whether a given fundamental FHM graph satisfies our sufficient
conditions. In Section 2.5, we provide the details of the algorithm and the program.

As far as (2) is concerned, we will show that the Ehrhart ring of a fractional stable
set polytope FRAC(G) of a finite simple graph is Gorenstein. In Section 3.1, we
will be concerned with the convex polytope P(G) = 2FRAC(G) and will show that
the δ−vector of P(G) is alternatingly increasing. In Section 3.3, using this result,
we will show how to calculate the Ehrhart series of FRAC(G) and present some
examples in the case of a complete graph. Finally, in Section 3.4, we will consider
the dual polytope Q(G)∨ of the convex polytope Q(G) := 3FRAC(G) − (1, . . . , 1).
Therein, we will show the equivalence of the following four conditions:

(i) The graph G is a bipartite graph.

(ii) The dual polytope Q(G)∨ has a unimodular triangulation.

(iii) The dual polytope Q(G)∨ is normal.

(iv) The dual polytope Q(G)∨ is a Gorenstein Fano polytope.
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Chapter 1

Introduction

In this chapter, we review the basics of Gröbner bases and convex polytopes.

1.1 Gröbner bases

In this section, we review the basics of Gröbner bases, following Chapter 1 of [5]
and Chapter 1 of [14].

Let K[X] = K[x1, . . . , xn] be a polynomial ring in n variables over the field
K. We first define the monomial order on K[X]. A monomial in the variables
x1, x2, . . . xn is a product of the form

Xα = xα1
1 xα2

2 . . . xαn
n ,

where all the exponents α1, . . . , αn are nonnegative integers. The set of monomials
M of K[X] is in one-to-one correspondence to Zn

≥0 via

Xα ←→ α ∈ Zn
≥0.

Therefore, we may regard M as Zn
≥0.

Definition 1.1.1 A monomial ordering on K[x1, . . . , xn] is any relation > on Zn
≥0,

or equivalently, any relation on the set of monomials {Xα | α ∈ Zn
≥0} satisfying:

(i) > is a total (or liner) ordering on Zn
≥0.

(ii) If α > β and γ ∈ Zn
≥0, then α + γ > β + γ.

(iii) > is a well-ordering on Zn
≥0. That is, every non-empty subset of Zn

≥0 has a
smallest element under >.

The following lemma will help us understand the well-ordering condition in part
(iii) of the definition.
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Lemma 1.1.2 An order relation > on Zn
≥0 is a well-ordering if and only if every

strictly decreasing sequence in Zn
≥0

α(1) > α(2) > α(3) > · · ·

eventually terminates.

We usually use the monomial orders, lexicographic, graded lex and graded reverse
lexicographic order.

Definition 1.1.3 (i) (lexicographic order) Let α = (α1, . . . , αn) ∈ Zn
≥0 and

β = (β1, . . . , βn) ∈ Zn
≥0. Let Xα = xα1

1 · · · xαn
n ∈ K[x1, . . . , xn] and Xβ =

xβ1

1 · · · xβn
n ∈ K[x1, . . . , xn]. The notation α >lex β implies that the leftmost

non-zero entry in the vector difference α − β ∈ Zn is positive. We will write
Xα >lex X

β if α >lex β.

(ii) (graded lex order) Let α = (α1, . . . , αn) ∈ Zn
≥0 and β = (β1, . . . , βn) ∈ Zn

≥0.
The notation α >grlex β implies that

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi or |α| = |β| and α >lex β.

(iii) (graded reverse lex order) Let α = (α1, . . . , αn) ∈ Zn
≥0 and β = (β1, . . . , βn) ∈

Zn
≥0. The notation α >rev β implies that

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi or |α| = |β|

and the rightmost non-zero entry in α− β ∈ Zn is negative.

We fix a monomial order < on the polynomial ring K[X] = K[x1, x2, . . . , xn].
Given a non-zero polynomial

f = a1u1 + a2u2 + · · ·+ atut

of K[X], where 0 ̸= ai ∈ K and u1, u2, . . . , ut are monomials with

u1 > u2 > · · · > ut,

the support of f is the set of monomials appearing in f . It is denoted by supp(f).
The initial monomial of f with respect to < is the largest monomial belonging to
supp(f) with respect to <. It is denoted by in<(f). Thus,

supp(f) = {u1, u2, . . . , ut}
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and
in<(f) = u1.

Let I be an ideal of the polynomial ring K[X] with I ̸= ⟨0⟩. The monomial ideal
generated by {in<(f) | 0 ̸= f ∈ I} is called the initial ideal of I with respect to <
and is denoted by in<(I). That is,

in<(I) = ⟨{in<(f) | 0 ̸= f ∈ I}⟩.

However, even if I = ⟨{fλ}λ∈Λ⟩, it is not necessarily true that in<(I) coincides with
⟨{in<(fλ)}λ∈Λ⟩.

Definition 1.1.4 We fix a monomial order < on the polynomial ring K[X] =
K[x1, . . . , xn]. Let I be an ideal of the polynomial ring K[X] with I ̸= ⟨0⟩. Then
a Gröbner basis of I with respect to < is a finite set G = {g1, g2, . . . , gs} of nonzero
polynomials belonging to I such that in<(I) = ⟨in<(g1), in<(g2), . . . , in<(gs)⟩.

For all ideals I (̸= 0) of the polynomial ring K[X], if G = {g1, g2, . . . , gs} is a
Gröbner basis of I, then G is a system of generators of I.

Example 1.1.5 Let n = 7. Let f = x1x4 − x2x3, g = x4x7 − x5x6 and I = ⟨f, g⟩.
Then, in<lex

(f) = x1x4 and in<lex
(g) = x4x7. Let h = x7f − x1g = x1x5x6 − x2x3x7.

Since h ∈ I, we have that in<lex
(h) = x1x5x6 ∈ in<lex

(I). However, x1x5x6 /∈
⟨x1x4, x4x7⟩. Hence, ⟨x1x4, x4x7⟩ ̸= in<lex

(I). Therefore, {f, g} is not a Gröbner
basis of I with respect to <lex.

We will now review the Buchberger criterion and the Buchberger algorithm. We
first introduce the division algorithm and the S-polynomial.

Theorem 1.1.6 (The division algorithm) We work with a fixed monomial or-
der < on the polynomial ring K[X] = K[x1, . . . , xn] and non-zero polynomials
g1, g2, . . . , gs belonging to K[X]. Then, given a polynomial 0 ̸= f ∈ K[X], there
exist f1, f2, . . . , fs and f ′ belonging to K[X] with

f = f1g1 + f2g2 + · · ·+ fsgs + f ′

such that the following conditions are satisfied:

• If f ′ ̸= 0 and u ∈ supp(f ′), then none of the initial monomials in<(gi), 1 ≤
i ≤ s divides u. That is, if f ′ ̸= 0, then no monomial u ∈ supp(f ′) belongs to
the monomial ideal ⟨in<(g1), in<(g2), . . . , in<(gs)⟩.

• If fi ̸= 0, then
in<(f) ≥ in<(figi).
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Definition 1.1.7 Let f, g ∈ K[X] be non-zero polynomials. Let m(f, g) be the
least common multiple of in<(f) and in<(g). Moreover, let cf be the coefficient of
in<(f) and cg the coefficient of in<(g). Then, the S-polynomial of f and g is the
combination

S(f, g) =
m(f, g)

cf in<(f)
f − m(f, g)

cgin<(g)
g.

Theorem 1.1.8 (Buchberger Criterion) Let I ̸= ⟨0⟩ be an ideal of the polyno-
mial ring K[X] and G = {g1, . . . , gs} be a system of generators of I. Then, G is a
Gröbner basis of I if and only if for all i ̸= j, the remainder on division of S(gi, gj)
by G is 0.

Example 1.1.9 We consider Example 1.1.5 using Theorem 1.1.8. We first use the
lexicographic order <lex. Since in<lex

(f) = x1x4 and in<lex
(g) = x4x7, S(f, g) =

x1x5x6 − x2x3x7. The remainder of the division of S(f, g) by {f, g} is x1x5x6 −
x2x3x7 ̸= 0. Therefore, {f, g} is not a Gröbner basis of I.

We now use the graded reverse lex order <rev. Since in<rev(f) = x2x3 and
in<rev(g) = x5x6, S(f, g) = x1x4x5x6 − x2x3x4x7. The remainder of the division of
S(f, g) by {f, g} is 0. Therefore, {f, g} is a Gröbner basis of I with respect to <rev.

In general, when we fix a monomial order < on the polynomial ring K[X], a
Gröbner basis is not unique. Therefore, we consider the reduced Gröbner basis,
which is the standard Gröbner basis of I.

Let G = {g1, . . . , gs} be a Gröbner basis of an ideal I. We say that a Gröbner
basis G of I is a minimal Gröbner basis if {in<(g1), . . . , in<(gs)} is a minimal system
of monomial generators of in<(I) and if the coefficient of in<(gi) coincides with 1
for all 1 ≤ i ≤ s.

Let G = {g1, . . . , gs} be a minimal Gröbner basis of an ideal I. We say that a
minimal Gröbner basis G of I is a reduced Gröbner basis if the coefficient of in<(gi)
is 1 for all 1 ≤ i ≤ s and if i ̸= j, then none of the monomials belonging to supp(gj)
is divided by in<(gi).

Theorem 1.1.10 We fix a monomial order < on the polynomial ring K[X] and let
I ̸= {0} be a polynomial ideal. Then, I has a unique reduced Gröbner basis.

If we are given a Gröbner basis G of an ideal I, it is easy to obtain the reduced
Gröbner basis from G. We first remove gi from G = {g1, . . . , gs} in order that
in<(gi) be divided by in<(gj). Moreover, we can obtain a minimal Gröbner basis
G ′ by making an adjustment in order that the initial coefficient be 1. Let G ′ =
{h1, . . . , ht}. We calculate the remainder h′

1 of the division of h1 by G ′ \{h1} and let
G ′′ = {h′

1, h2, . . . , ht} by replacing h1 with h′
1. Similarly, we replace h2 with h′

2, where
h′
2 is the remainder of the division of h2 by G ′′\{h2} and let G ′′′ = {h′

1, h
′
2, h3, . . . , ht}.

Repeating this procedure, we obtain a reduced Gröbner basis.
We now introduce the Buchberger Algorithm. Let F := {f1, . . . , fs} be a finite

system of generators of an ideal I.
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(i) For all i > j, we calculate the remainder hij of the division of S(fi, fj) by F .

(ii) If hij = 0 for all i, j, then, by Theorem 1.1.8, F is a Gröbner basis.

(iii) If there exist i > j such that hij ̸= 0, then we let F ′ = F ∪ {hij}, replace F
with F ′ and go back to (i).

(iv) If the remainder of the division of the S-polynomials of all pairs of polynomials
in F by F is 0, then F is a Gröbner basis of I.

1.2 Configuration matrices and toric ideals

Let A = (aij)1≤i≤d,1≤j≤n be a d× n matrix and

aj =


a1j
a2j
...
adj

 , 1 ≤ j ≤ n,

the column vectors of A, where aij ∈ Z.
The inner product of vectors a = [a1, a2, . . . , ad]

⊥ and b = [b1, b2, . . . , bd]
⊥ be-

longing to Rd, where ⊥ stands for the transpose, is defined by

a · b =
d∑

i=1

aibi.

A matrix A = (aij)1≤i≤d,1≤j≤n ∈ Zd×n is called a configuration matrix if there
exists c ∈ Rd such that

aj · c = 1, 1 ≤ j ≤ n.

Given a configuration matrix A ∈ Zd×n, we let KerZA be the set of column
vectors b ∈ Zn with Ab = 0, where 0 is the zero vector of Rd. That is,

KerZA = {b ∈ Zn | Ab = 0}.

Lemma 1.2.1 If a column vector b = [b1, b2, . . . , bn]
⊥ ∈ Zn belongs to KerZA, then

b1 + b2 + · · ·+ bn = 0.

A binomial belonging to K[X] = K[x1, . . . , xn] is a polynomial of the form u−v,
where u and v are monomials of the same degree belonging to K[X]. A binomial
ideal is an ideal of K[X] generated by binomials. Given a column vector

b =


b1
b2
...
bn
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belonging to KerZA, we introduce the binomial fb ∈ K[X] defined by

fb =
∏
bi>0

xbi
i −

∏
bj<0

x
−bj
j .

Since Lemma 1.2.1 ensures that the degree of
∏

bi>0 x
bi
i coincides with that of∏

bj<0 x
−bj
j , we have that fb is, in fact, a binomial.

Let A ∈ Zd×n be a configuration matrix. The binomial ideal

IA = ⟨{fb | b ∈ KerZA}⟩

of K[X] is called the toric ideal of A.
Let t1, t2, . . . , td be variables and A = (aij)1≤i≤d,1≤j≤n ∈ Zd×n be a configuration

matrix. To each column vector

aj :=


a1j
a2j
...
adj

 ,

we associate the monomial
taj = t

a1j
1 t

a2j
2 . . . t

adj
d ,

allowing negative powers. If f = f(x1, x2, . . . , xn) ∈ K[X], then we define π(f) by
setting

π(f) = f(ta1 , ta2 , . . . , tan).

That is , π(f) is the rational function in t1, t2, . . . , td that is obtained by substituting
tai for each xi in f . Let

K[A] = {π(f) | f ∈ K[X]}.

Then, sum and product can be naturally defined in K[A]. We say that K[A] is the
toric ring of A.

Example 1.2.2 For the configuration matrix A

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,

the toric ring K[A] is

K[A] = K[t1t3, t1t4, t1t5, t2t3, t2t4, t2t5]

and the toric ideal IA is

IA = ⟨x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5⟩.
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1.3 Convex polytopes

In this section, we review the basics of convex polytopes, following Chapter 5 of [14].
A subset P ⊂ RN is said to be convex if, for each pair of points α, β ∈ P , the line
segment

{tα+ (1− t)β | t ∈ R, 0 ≤ t ≤ 1}

that connects the two points is contained in P . We first define several convex sets,
which will later play an important role.

Definition 1.3.1 For a finite subset X = {x1, . . . , xn} of RN . Let

CONV(X) :=

{
n∑

i=1

rixi

∣∣∣∣∣ 0 ≤ ri ∈ R,
n∑

i=1

ri = 1

}
.

We call this the convex hull of X.

Definition 1.3.2 A non-empty subset P of RN is called a convex polytope if there
exists a finite subset X ⊂ RN such that P = CONV(X). Moreover, the set

R≥0X :=

{
n∑

i=1

rixi

∣∣∣∣∣ 0 ≤ ri ∈ R

}

is called the polyhedral convex cone generated by X. A non-empty set C ⊂ RN is
called a cone if, for any finite subset X of C, we have R≥0X ⊂ C.

For a polyhedron P ⊂ RN and a vector w ∈ Rd, the set

FACEw(P ) := {u ∈ P | w · u ≥ w · v for all v ∈ P}

is called a face of P (with respect to w). A point α in a polyhedron P is called a
vertex of P if {α} is a face of P . The dimension of a convex polytope P ⊂ RN is the
dimension of the subspace of RN spanned by {x − α | x ∈ P} ⊂ RN , where α ∈ P
is any fixed point. We denote the dimension of P by dimP . If the dimension of a
face F of a convex polytope P ⊂ RN equals dimP −1, then F is called a facet of P .

A convex polytope P is said to be integral if all the vertices of P are integer
vectors. A convex polytope P is called a simplex if P has dimP + 1 vertices. That
is, a simplex is a convex polytope that has the least number of vertices among all
convex polytopes with the same dimension. We note that every face of a simplex is
a simplex.

Example 1.3.3 A simplex of dimension 0 is a point. A simplex of dimension 1 is
a line segment. A simplex of dimension 2 is a triangle. A simplex of dimension 3 is
a tetrahedron.
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For a polytope P ⊂ RN , a finite set ∆ of simplices is called a triangulation of P
if the following conditions are satisfied:

(i) P =
∪

σ∈∆ σ.

(ii) If two simplices σ, τ satisfy σ ∩ τ ̸= ∅, then σ ∩ τ is a face of both σ and τ .

(iii) For a simplex σ ∈ ∆, if τ is a face of σ, then τ ∈ ∆.

In particular, if a finite set ∆ of simplices satisfies conditions (ii) and (iii), then ∆ is
called a simplicial complex. The dimension of a simplicial complex ∆ is the maximal
dimension of a simplex in ∆.

Definition 1.3.4 (i) We say that an integral polytope P ⊂ Rd is a Fano polytope
if the origin of Rd is the unique lattice point belonging to the interior of P .

(ii) Let P be a Fano polytope. We say that P is Gorenstein if the dual polytope
of P is an integral polytope, where the dual polytope P∨ is defined by

P∨ := {x ∈ Rd | x · y ≤ 1 for any y ∈ P}.

1.4 Triangulation of the configuration matrix and

Gröbner bases

Let A = [a1, . . . , an] ∈ Zd×n be a configuration matrix. Let ∆ be a collection of
simplices whose vertices belong to A. Then, ∆ is called a covering of A if

CONV(A) =
∪
F∈∆

F

holds. In addition, If a covering ∆ of a configuration matrix A is a simplicial
complex, then it is called a triangulation of A.

For a configuration matrix A = [a1, . . . , an] ∈ Zd×n, let

ZA =

{
n∑

i=1

ziai

∣∣∣∣∣ zi ∈ Z

}
⊂ Zd.

Let B ⊂ {a1, . . . , an} be the vertex set of a maximal simplex σ ∈ ∆ in a covering
(triangulation) ∆ of A.

Definition 1.4.1 We assume that the rank of a configuration matrix A ∈ Zd×n is
equal to d. Let δ be the greatest common divisor of all d × d minors of A. Then,
the normalized volume of σ is defined by

Nvol(σ) =
| det(B)|

δ
.
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Definition 1.4.2 A covering (triangulation) ∆ of A is said to be unimodular if the
normalized volume of any maximal simplex in ∆ is equal to 1.

For a configuration matrixA = [a1, . . . , an] ∈ Zd×n and a vectorw = [w1, . . . , wn] ∈
Qn, let ∆w be the set of all convex polytopes CONV({ai1 , . . . , air}) satisfying the
following condition:

there exists c ∈ Qd such that

{
aj · c = wj j ∈ {i1, . . . , ir},
aj · c < wj j /∈ {i1, . . . , ir}.

Definition 1.4.3 A triangulation ∆ of a configuration matrixA is said to be regular
if there exists w ∈ Qd such that ∆ = ∆w.

We will now regard regular triangulations from an algebraic point of view. For
an ideal I ⊂ K[X],

√
I := {f ∈ K[X] | fm ∈ I for a natural number m}

is called the radical of I. For a monomial m = xa1
1 · · · xan

n , the squarefree part of m
is defined by √

m =
∏
ai>0

xi.

Proposition 1.4.4 Let I ⊂ K[X] be the ideal generated by monomials m1, . . . ,ms.
Then, we have

√
I = ⟨√m1, . . . ,

√
ms⟩.

A monomial m is said to be a squarefree if m is equal to
√
m. By Proposition

1.4.4, for a monomial ideal I, I =
√
I holds if and only if I has a minimal set of

generators consisting of squarefree monomials.
We will now define the initial complex.

Definition 1.4.5 For a configuration matrix A = [a1, . . . , an] ∈ Zd×n and a mono-
mial order <,

∆(in<(IA)) :=

{
CONV(B)

∣∣∣∣ B ⊂ {a1, . . . , an},
∏
ai∈B

xi /∈
√

in<(IA)
}

is called the initial complex.

By the following theorem, for any configuration matrix and any monomial order,
the initial complex is a triangulation.

Theorem 1.4.6 Let A ∈ Zd×n be a configuration matrix and let < be a monomial
order. If w ∈ Qn satisfies in<(IA) = inw(IA), then ∆(in<(IA)) = ∆w.

14



We now introduce necessary and sufficient conditions for a regular triangulation
to be unimodular.

Theorem 1.4.7 For a configuration matrix A ∈ Zd×n and a monomial order <, the
regular triangulation ∆(in<(IA)) is unimodular if and only if

√
in<(IA) = in<(IA).

Example 1.4.8 For the configuration matrix

A =


0 1 1 0 1
0 1 0 1 1
0 0 1 1 1
1 1 1 1 1

 ,

the toric ideal is IA = ⟨f⟩, where f = x1x
2
5−x2x3x4. In this case, for any monomial

order, {f} is a minimal Gröbner basis. We note that there exist two types of initial
ideals. We assume that the monomial orders <1 and <2 satisfy in<1(f) = x1x

2
5 and

in<2(f) = x2x3x4, respectively. Then, we have in<1(IA) = ⟨x1x
2
5⟩,
√

in<1(IA) =

⟨x1x5⟩ and in<2(IA) = x2x3x4 =
√

in<2(IA). Hence, ∆(in<1(IA)) is not unimodular
and ∆(in<2(IA)) is unimodular.

Definition 1.4.9 A configuration matrix A is said to be unimodular if all triangu-
lations of A are unimodular.

Theorem 1.4.10 For a configuration matrix A ∈ Zd×n, the following conditions
are equivalent.

(i) A is a unimodular configuration matrix.

(ii) Any regular triangulation of A is unimodular.

(iii) Any lexicographic triangulation of A is unimodular.

(iv) The normalized volume of any maximal simplex whose vertices belong to A is
equal to 1.

Moreover, if rank(A) = d, then the following is equivalent to the above.

(v) All nonzero d× d minors of A have the same absolute value.

We now introduce the normal configuration matrix. In general, a configuration
matrix A satisfies Z≥0A ⊂ ZA ∩ Q≥0A. However, it does not, in general, satisfy
Z≥0A ⊃ ZA ∩ Q≥0A. We say that A is normal if it satisfies Z≥0A = ZA ∩ Q≥0A.
The formal definition of a normal ring is the following: “The integral domain K[A]
is called normal if it is integrally closed in its field of fractions.” With respect to
the normality of the toric ring K[A], the existence of unimodular triangulations and
unimodular coverings of A plays an important role.
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Theorem 1.4.11 If a configuration matrix A has a unimodular covering, then the
toric ring K[A] is normal.

Corollary 1.4.12 Let A be a configuration matrix. If there exists a monomial order
< such that in<(IA) is generated by squarefree monomials, then the toric ring K[A]
is normal.

The converse of Corollary 1.4.12 does not hold in general. However, the following
proposition holds.

Proposition 1.4.13 Let A be a configuration matrix. If there exists a minimal set
of binomial generators of the toric ideal IA of A that contains a binomial with no
squarefree monomials, then K[A] is not normal.

1.5 h-polynomials and δ-polynomials

Let ∆ be a simplicial complex of dimension d. For i (0 ≤ i ≤ d), let fi = fi(∆) be
the number of i-dimensional faces in ∆ and let

f(∆) = (f0, f1, . . . , fd).

This is called the f-vector of ∆. We define the h-vector h(∆) = (h0, h1, . . . , hd+1) by
setting

d+1∑
i=0

fi−1(x− 1)d+1−i =
d+1∑
i=0

hix
d+1−i,

where f−1 = 1. We define the h-polynomial h(∆, t) of ∆ by

h(∆, t) =
d+1∑
i=0

hit
i.

Example 1.5.1 We consider the following simplicial complex ∆.

Simplicial complex ∆
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Since f−1 = 1, f0 = 5, f1 = 6, f2 = 2, we have

f(∆) = (5, 6, 2).

Moreover, since

3∑
i=0

fi−1(x− 1)3−i = f−1(x− 1)3 + f0(x− 1)2 + f1(x− 1) + f2

= (x− 1)3 + 5(x− 1)2 + 6(x− 1) + 2

= x3 + 2x2 − x

=
3∑

i=0

hix
3−i

= h0x
3 + h1x

2 + h2x+ h3,

we have h0 = 1, h1 = 2, h2 = −1 and h3 = 0. Hence,

h(∆) = (1, 2,−1, 0).

Therefore,

h(∆, t) =
3∑

i=0

hit
i

= h0 + h1t+ h2t
2 + h3t

3

= 1 + 2t− t2.

We now define the Ehrhart polynomial, Ehrhart series and δ-polynomial. Let P
be a d-dimensional integral convex polytope in RN , i.e., all vertices of P are lattice
points. For each n ∈ N, let nP = {nα | α ∈ P} and let nP ◦ be the interior of nP .
We define the functions i(P, n) = #(nP ∩ ZN) and i∗(P, n) = #(nP ◦ ∩ ZN). Thus,
i(P, n) (resp., i∗(P, n)) is the number of lattice points contained in nP (resp., nP ◦).
It is known that i(P, n) is indeed a polynomial in n of degree d. It is called the
Ehrhart polynomial of P .

The generating functions of the Ehrhart polynomials i(P, n), i∗(P, n) are defined
by

E(P, t) := 1 +
∞∑
n=1

i(P, n)tn, E∗(P, t) :=
∞∑
n=1

i∗(P, n)tn

and are called the Ehrhart series of P .

Theorem 1.5.2 (Ehrhart’s Law of Reciprocity) We assume that P ⊂ RN is a
d-dimensional integral convex polytope. For the Ehrhart polynomial of P , we have

i∗(P, n) = (−1)di(P,−n)
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for every integer n ≥ 1. Moreover, for the Ehrhart series of P , we have

E∗(P, t) = (−1)d+1E

(
P,

1

t

)
.

The Ehrhart series E(P, t) of a d-dimensional integral convex polytope P can be
rewritten as

E(P, t) =
δ0 + δ1t+ · · ·+ δdt

d

(1− t)d+1
.

We define δ(P, t) = δ0 + δ1t + · · · + δdt
d and call this the δ-polynomial of P . The

coefficient vector δ(P ) = (δ0, δ1, . . . , δd) of δ(P, t) is called the δ-vector of P .
Let P ⊂ RN be a d-dimensional rational convex polytope and m be the smallest

natural number such that mP is an integral convex polytope. Then, the functions
i(P, n) = #(nP ∩ ZN) and i∗(P, n) = #(nP ◦ ∩ ZN) are quasi-polynomials in n of
degree d with period m.

Ehrhart’s Law of Reciprocity (Theorem 1.5.2) is satisfied when P is a rational
convex polytope. Let E(P, t) be the Ehrhart series of a d-dimensional rational
convex polytope P and m be the smallest natural number such that mP is an
integral convex polytope. Then, E(P, t) can be rewritten as

E(P, t) =
δ(P, t)

(1− tm)d+1
,

where δ(P, t) is a polynomial of degree less than m(d + 1) whose coefficients are
integral. We call δ(P, t) the δ-polynomial of P . When δ(P, t) = δ0 + δ1t + · · · +
δst

s (δs ̸= 0, s < m(d+ 1)), then δ(P ) := (δ0, . . . , δs) is called the δ-vector of P .
We now define the Ehrhart ring of a d-dimensional rational convex polytope. Let

P ⊂ RN be a d-dimensional rational convex polytope and let {x1, . . . , xv} be the set
of vertex of P . We define P̃ ⊂ RN+1 by

P̃ = {(α, 1) ∈ RN+1 | α ∈ P ⊂ RN}.

Moreover, let

C(P̃ ) :=

{
v∑

i=1

ri(xi, 1)

∣∣∣∣∣ 0 ≤ ri ∈ Q, 1 ≤ i ≤ v

}
⊂ QN+1,

where {(xi, 1) | 1 ≤ i ≤ v} is the set of vertices of P̃ .
For n ∈ Z≥0, we set C(P̃ )n := {y ∈ C(P̃ ) | yN+1 = n}. We note that C(P̃ )n is a

d-dimensional convex polytope that is isomorphic to nP by the correspondence

C(P̃ )n ∋ (x, n)←→ x ∈ nP.

Then, the lattice point (α, n) ∈ Zd×n belonging to C(P̃ )n corresponds to the mono-
mial xαtn. Moreover, we define the linear space over the field K

[AK(P )]n := ⟨xαtn | (α, n) ∈ C(P̃ )n ∩ ZN+1⟩.
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The Ehrhart ring of P is defined by

AK(P ) :=
⊕
n≥0

[AK(P )]n.

We now review the definition of a Cohen-Macaulay ring and a Gorenstein ring.
We consider a standard graded K-algebra A = ⊕n≥0An over the field K. By the
Noether Normalization Lemma, there exist a finite number of homogeneous elements
θ1, . . . , θd, which are algebraically independent over K, such that A is a finitely
generated module over K[θ] = K[θ1, . . . , θd]. Namely, there exist a finite number of
homogeneous elements η1, . . . , ηs such that

A = K[θ]η1 + · · ·+K[θ]ηs.

Then, {θ1, . . . , θd} is called a system of parameters of A. The number of parameters
d is always equal to the Krull dimension.

Definition 1.5.3 A system of parameters {θ1, . . . , θd} is called regular if A is a
finitely generated free module over K[θ]. If A possesses a regular system of param-
eters, then A is called a Cohen-Macaulay ring.

We assume that A = ⊕n≥0An is Cohen-Macaulay and define the Hilbert series
of A by

H(A, t) :=
∑
n≥0

(dimK An)t
n.

Moreover, let {θ1, . . . , θd} be a system of parameters of A, d = dimA and ek =
deg θk. Then, we have

H(A, t) =
a(t)∏d

k=1(1− tek)
.

Definition 1.5.4 A finitely generated graded algebra A = ⊕n≥0An is Gorenstein if
it has finite injective dimension as a module over itself.

Theorem 1.5.5 We assume that a finitely generated graded algebra A = ⊕n≥0An is
a d-dimensional Cohen-Macaulay integral domain and let H(A, t) = (c0+ c1t+ · · ·+
clt

l)/
∏d

k=1(1− tek) (cl ̸= 0) be the Hilbert series of A. Then, A is Gorenstein if and
only if the coefficients {c0, . . . , cl} of the polynomial in the numerator of H(A, t) are
symmetric.

Let P be a d-dimensional rational convex polytope and AK(P ) := ⊕n≥0[Ak(P )]n
be an Ehrhart ring of P . By the definition of the Ehrhart ring, since {xαtn | (α, n) ∈
C(P̃ )n ∩ ZN+1} is the basis of AK(P ) as a liner space, the Hilbert series of AK(P )
is equal to the Ehrhart series of P .
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An Ehrhart ring AK(P ) is a (d+1)-dimensional finitely generated graded algebra
over K and, by Hochster’s theorem, a Cohen-Macaulay integral domain. Therefore,
the Hilbert series of AK(P ) is

H(AK(P ), t) =
a(t)∏d+1

k=1(1− tek)
.

If P is an integral polytope, then ek = 1 for all k. Thus, if P is not an integral
polytope, then some ek may not equal 1.

Moreover, by the definition of the δ-polynomial of P , if m is the minimal natural
number such that mP is an integral convex polytope, then the Ehrhart polynomial
of P is

E(P, t) =
δ(P, t)

(1− tm)d+1
.

Since H(AK(P ), t) = E(P, t), we have

a(t)

(1 + · · ·+ te1−1) · · · (1 + · · ·+ ted+1−1)
=

δ(P, t)

(1 + t+ · · ·+ tm−1)d+1
.

Therefore, the coefficients of a(t) are symmetric if and only if the coefficients of
δ(P, t) are symmetric. Moreover, we have the following corollary.

Corollary 1.5.6 Let P be a rational convex polytope. The Ehrhart ring AK(P ) of P
is Gorenstein if and only if the coefficients of the δ-polynomial of P are symmetric.
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Chapter 2

Regular unimodular triangulations
of edge polytopes

Let G be a finite connected simple graph and PG be the edge polytope of G. The
combinatorial structure of PG, especially the types of triangulations that PG admits,
is an interesting problem, which has been studied extensively (see [14, Chapter 5] and
references therein). In [16], Ohsugi obtained a necessary and sufficient condition for
PG to possess a regular unimodular triangulation. Namely, there exists a monomial
order such that the initial ideal of the toric ideal of the graph G is generated by
squarefree monomials. However, this condition is not easy to apply to a given graph
by merely inspecting the graph.

In this chapter, for a graph G, we will obtain several criteria for the existence
of a regular unimodular triangulation of PG in terms of simple data related to the
graph. Moreover, we will present examples where we will apply our criteria to
specific graphs and show that their edge polytopes possess a regular unimodular
triangulation.

Furthermore, we will implement a program for the computer algebra system
Magma [2] that determines whether a given fundamental FHM graph satisfies our
criteria. Finally, we will show how the program can be used.

2.1 The edge polytope of a finite graph

Let G = (V,E) be a finite graph, where V = {1, 2, . . . , d} is the vertex set and
E = {e1, . . . , en} is the set of edges. A graph is called simple if it has no loops and
no multiple edges. For each edge e = {i, j} ∈ E, we set

ρ(e) := ei + ej ∈ Zd,

where ei is the i-th unit coordinate vector in Rd.
Let AG be a configuration matrix whose column vectors are {ρ(e) | e ∈ E}. We

call the convex hull CONV(AG) ⊂ Rd of AG the edge polytope of G and denote it
by PG.
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Example 2.1.1 We consider the following graph.

1 2

3

4

Graph G

The configuration matrix AG of G is the following

AG =


1 1 0 0
1 0 1 0
0 1 1 1
0 0 0 1

 .

We now define certain concepts related to graphs. A sequence Γ = (ej1 , . . . , ejr)
of edges of a finite graph G is called a walk of length r if Γ satisfies

ej1 = {i1, i2}, ej2 = {i2, i3}, . . . , ejr = {ir, ir+1}.
In addition, if is ̸= it (s ̸= t, s, t = 1, . . . , r + 1), then Γ is called a path and if
ir+1 = i1, then Γ is called a closed walk of length r. A closed walk of even length is
called an even closed walk. If ir+1 = i1 and i1, . . . , ir (r ≥ 3) are distinct, then Γ is
called a cycle of length r. A cycle of odd length is called an odd cycle. An edge that
joins two vertices of a cycle that is not itself an edge of the cycle is called a chord
of that cycle [8]. A cycle is called minimal if it possesses no chords.

A finite graph G is said to be connected if, for any two vertices i and j of G,
there exists a walk from i to j. In what follows, we will always assume that G
is a connected graph. If the vertex set V of a finite graph G is partitioned into
V = V1 ∪V2, where V1 ∩V2 = ∅ and each edge of G joins a vertex in V1 and a vertex
in V2, then G is called a bipartite graph. It is known that a finite graph is bipartite
if and only if it has no odd cycles.

If two cycles C and C ′ in G have no common vertices, then they are called
disjoint. For the disjoint cycles C and C ′, the bridge of C and C ′ is the edge of G
joining a vertex in C and a vertex in C ′.

Let E = {e1, . . . , em} be the edge set of G. The edge space ε(G) of G is the
vector space over the two-element field F2 = {0, 1} of all functions E → F2. The
cycle space is the subspace of ε(G) spanned by all cycles in G.

A Fulkerson―Hoffman―McAndrew (FHM) graph (see [9]) is a finite connected
simple graph such that any pair of disjoint odd cycles has a bridge. A fundamental
FHM graph (see [9]) is an FHM graph that has at least one pair of disjoint odd
cycles.
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The following is a basic fact about FHM graphs.

Proposition 2.1.2 ([16, Proposition 3.4], [19], [18, Corollary 2.3] and [25])
Let G be a finite connected simple graph.

(i) The edge polytope PG is normal if and only if G is an FHM graph. In particu-
lar, if the edge polytope PG possesses a regular unimodular triangulation, then
G is an FHM graph.

(ii) If G possesses no pairs of disjoint odd cycles, then PG possesses a regular
unimodular triangulation. In particular, if G is a bipartite graph, then PG

possesses a regular unimodular triangulation.

(iii) There exists an example of an edge polytope PG of a fundamental FHM graph
G that possesses no regular unimodular triangulations.

We show examples of 20 fundamental FHM graphs in Appendix A. One of the
graphs in Appendix A, namely “Graph 2”, satisfies condition (iii).

2.2 Theoretical lower bounds

In this section, we provide several preliminary lemmas and propositions that will
help us determine the type of the graphs under consideration. The following lemma
shows that we are not interested in any graph that has a vertex of degree 1.

Lemma 2.2.1 ([11], Lemma 2.1) Let G be a graph having a vertex v with deg v =
1 and let G′ = G \ v. Then, the edge polytope PG of G has a regular unimodular
triangulation if and only if the edge polytope PG′ has one.

The following proposition shows that we are not interested in any graph with
≤ 5 vertices.

Proposition 2.2.2 ([22], Theorem 3.3) For a finite connected graph of d ver-
tices, if d ≤ 5, then all triangulations of PG are unimodular.

Let G be a graph with d vertices and n edges. The following proposition shows
that we are not interested in any graph with n− d ≤ 3.

Proposition 2.2.3 ([19]) Let G be a finite connected graph with d vertices and
n edges. We assume that n − d ≤ 3. Then, the edge polytope PG has a regular
unimodular triangulation if and only if PG is normal.
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Proof. The “only if” part is clear. Therefore, we will prove the “if” part. By Lemma
2.2.1, we may assume that the degree of each vertex of G is at least 2. We will use
the following fact:

・If a subgraph G′ of G has d′ vertices and n′ edges, then n′ − d′ ≤ n− d.

We assume that PG is normal and has no regular unimodular triangulations. Then,
using [16, Theorem 3.5], there exist two pairs of disjoint odd cycles Π = (C1, C2)
and Π′ = (C3, C4) such that there is an edge e of C3 that joins C1 and C2. We
assume that the sequence of vertices of C3 is v1, v2, . . . , vm, v1 and e = {v1, vm}. Let
G′ = C1 ∪ C2 ∪ C3. Moreover, we assume that C4 is a cycle in G′. Since C3 and
C4 have no common vertices, the cycle C4 is a subgraph of C1 ∪ C2 and does not
contain the vertices v1 and vm. This is a contradiction. Thus, C4 is not contained
in G′. We let v(≥ 2) denote the number of maximal consecutive subsequences of
vertices of C1 or C2 that appear in C3. Let d′ (resp., n′) be the number of vertices
(resp., edges) of the graph G′. Then, v = n′ − d′ ≤ n− d ≤ 3. Hence, v ∈ {2, 3}.

(Case 1) We assume that n − d = n′ − d′. Since both G and G′ are connected,
the dimension of the cycle space of G and that of G′ are both n− d+1 = n′− d′+1
(see, e.g., [8, Theorem 1.9.6]). Hence, the two cycle spaces are isomorphic and, in
particular, the set of cycles of G coincides with that of G′. Thus, C4 appears in G′.
This is a contradiction. Hence, this case is not possible.

(Case 2) We assume that n − d > n′ − d′. Then, 3 ≥ n − d > n′ − d′ = v ≥ 2.
Hence, n−d = 3 and n′−d′ = v = 2. Let V ′ (resp., E ′) be the set of vertices (resp.,
edges) of G′ and let G′′ be a subgraph of G with edge set E ′′ = E \ E ′. Moreover,
let V ′′ be the set of vertices appearing in E ′′. Let G1, . . . , Gs denote connected
components of G′′. Then, we have

1 = (n− d)− (n′ − d′) =
s∑

i=1

(|Ei| − |Vi|+ |V ′ ∩ Vi|), (2.1)

where Vi is the vertex set of Gi and Ei is the edge set of Gi. Since G is connected,
|V ′ ∩Vi| ≥ 1 for each i. In addition, since Gi is connected, we have |Ei|− |Vi| ≥ −1.
We assume that |Ei| − |Vi| + |V ′ ∩ Vi| = 0. Then, |Ei| − |Vi| = −1. Hence, Gi

is a tree. It is known that any tree has at least two vertices of degree 1. Since
the degree of each vertex of G is at least 2, we have |V ′ ∩ Vi| ≥ 2. Therefore,
|Ei|− |Vi|+ |V ′∩Vi| ̸= 0. This is a contradiction. Thus, |Ei|− |Vi|+ |V ′∩Vi| ≥ 1. It
follows from Equation (2.1) that s = 1 and |E1|− |V1|+ |V ′∩V1| = 1. Therefore, G′′

is connected and either (i) |E ′′|− |V ′′| = 0 and |V ′∩V ′′| = 1 or (ii) |E ′′|− |V ′′| = −1
and |V ′ ∩ V ′′| = 2.

We assume that V ′ ∩ V ′′ = {v′1, v′2} and v′i is a vertex of Ci for i = 1, 2. Since
|E ′′| − |V ′′| = −1, G′′ is a path. Then, any cycle in C1 ∪ C2 ∪ G′′ contains one of
the vertices v1 and vm. This contradicts the assumption that C4 is a subgraph of
C1 ∪ C2 ∪G′′. Thus, we may assume that |V ′ ∩ V ′′| ≤ 2 and V ′ ∩ V ′′ is a subset of
the vertex set of C1. Then, C4 is a subgraph of C1 ∪G′′ and has no vertices of C2.
Since G satisfies the odd-cycle condition, there exists an edge e′ that is not an edge
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of G joining C4 and C2. Since G
′′∪C1 and C2 have no common vertices, e′ is not an

edge of G′′∪C1. Since C4 and C2∪C3 have no common vertices, e′ is not an edge of
C2 ∪C3. Thus, e

′ is not an edge of G = G′′ ∪C1 ∪C2 ∪C3. This is a contradiction.
Thus, Case 1 and Case 2 are not possible. Hence, we arrive at the desired

conclusion. �

Let G be a fundamental FMH graph with d vertices and n edges and having
no vertices of degree 1. By the preceding, we are interested in fundamental FHM
graphs G with d ≥ 6 and n− d ≥ 4.

2.3 Criteria for the existence of a regular unimod-

ular triangulation

Let G be a finite connected graph and let C be an odd cycle contained in G. Let
c be a chord of C. Then, c divides C into two cycles, where one is an odd cycle
and the other is an even cycle. We call the even cycle the even closed walk of the
chord c in C. In the even closed walk Γ of the chord c in C, we require that c be an
even-numbered edge of Γ.

Let (C1, C2) be a pair of disjoint odd cycles in G (namely, the odd cycles C1

and C2 have no common vertices) and b be a bridge of this pair. Then, the even
closed walk of b in (C1, C2) is the closed walk (C1, b, C2,−b). Here, −b denotes the
oppositely directed edge of b and the cycle C1 starts from the vertex C1∩ b and ends
at the same vertex. The same holds for C2. We note that in the even closed walk Γ
of the bridge b in (C1, C2), b appears twice as an even-numbered edge of Γ.

We will review the necessary and sufficient condition for PG to have a regular
unimodular triangulation ([16, Theorem 3.5]). We assume that G possesses p pairs
of disjoint odd cycles Π1 = (C1, C

′
1), . . . ,Πp = (Cp, C

′
p). For each i (1 ≤ i ≤ p),

let {bij | 1 ≤ j ≤ qi} be the set of bridges of Πi and the chords of Ci or C ′
i. Let

Γi
j = (ei1ei2 . . . ei2r) be the even closed walk of bij, where the bridge or chord is

even-numbered.
We now define the open half-space Hbij

by

Hbij
:=

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣∣
r∑

k=1

xi2k−1
>

r∑
k=1

xi2k

}
. (2.2)

Furthermore, we set W :=
∩p

i=1(
∪qi

j=1Hbij
). The following result is our starting

point.

Proposition 2.3.1 ([16, Theorem 3.5]) The edge polytope PG possesses a regu-
lar unimodular triangulation if and only if W ̸= ϕ.

Let G be a fundamental FHM graph. In this section, we will provide four criteria
for the edge polytope PG to possess a regular unimodular triangulation in terms of
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simple graph data. Our criteria are based on the existence of special bridges in each
pair of disjoint odd cycles. Let Π1, . . . ,Πp be all the pairs of disjoint odd cycles in
G as before and {b1, . . . , bp} be the set of bridges, where bi is the bridge of Πi. Let
Γi := (ei1 , . . . , ei2s+1 , b

i, ej1 , . . . , ej2t+1 ,−bi).
We define

αi := |{b1, . . . , bp} ∩ {ei2 , ei4 , . . . , ei2s , ej2 , ej4 , . . . , ej2t}|,

βi := |{b1, . . . , bp} ∩ {ei1 , ei3 , . . . , ei2s+1 , ej1 , ej3 , . . . , ej2t+1}|.

Furthermore, we set ai := 2 + αi − βi.

Theorem 2.3.2 We use the same notation as above. The edge polytope of a fun-
damental FHM graph G possesses a regular unimodular triangulation if it has a set
of bridges {b1, . . . , bp} (bi is the bridge of Πi) that satisfies the following condition:
For each i, ai ≥ 0 holds and the number of Γi such that ai = 0 is at most two.

Proof. We first rewrite W in Proposition 2.3.1, by the distributive law, as follows:

W =

p∩
i=1

(
qi∪
j=1

Hbij

)
=

∪
j1,...,jp

(
Hb1j1

∩ · · · ∩Hbpjp

)
,

where jk satisfies 1 ≤ jk ≤ qk. We set

Cb = C{
b1j1

,...,bpjp

} := Hb1j1
∩ · · · ∩Hbpjp

and call Cb the open cone of b = {b1j1 , . . . , b
p
jp
}. Thus, W ̸= ϕ is equivalent to the

existence of a set of bridges b = {b1, . . . , bp} (bi is a bridge of Πi) such that Cb is
non-empty.

For each i, let Γi be the even closed walk of bi and fi > 0 be Inequality (2.2)
defined by bi. We denote by the same fi an n-dimension vector that consists of the
coefficients of the left-hand side (LHS) of the inequality fi > 0. We note that if the
bridge bi is equal to an edge ej, if the j-th component fi[j] of the vector fi is −2
and if the other edge ek is contained in Γi, then fi[k] = +1 (resp., −1) if ek is an
odd (resp., even)-numbered edge of Γi. The other components of fi are 0.

We define the standard weight vector w ∈ Rn of Cb as follows. If there exists i
such that fi[k] = −2, then we set w[k] := −1. The other components of w are 0.
We note that ai is equal to fi · w (inner product) for each i.

(i) We assume that ai > 0 for any i. Since fi · w > 0 for any i, we have w ∈ W .

(ii) We assume that aj = 0 and ai > 0 (i ̸= j). Let bj be a bridge of Γj and
bj = el. Let w

′ := w + (−1/10el), where el is a unit vector. We now consider
fj · w′ = fj · w + fj · −1/10el. By assumption, fj · w = aj = 0. Moreover, we
obtain fj · −1/10el = 1/5. Therefore, fj ·w′ = fj ·w+ fj · −1/10el = 1/5 > 0.
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Furthermore, let bk be a bridge of Γi and bk = em and let w′ := w+(−1/10em).
We next consider fi ·w′ = fi ·w+fi ·−1/10em. By assumption, fi ·w = ai > 0.
Moreover, we obtain fi · −1/10em = 1/5. Therefore, fi · w′ = fi · w + fi ·
−1/10em > 0.

(iii) We assume that aj = ak = 0 and ai > 0 (i ̸= j, i ̸= k). There exists at
least an edge el in Γj that is not contained in Γk. Moreover, there exists
at least an edge em in Γk that is not contained in Γj. Let v be a vector
that satisfies the following condition: v[l] = 1/10 (resp., −1/10) if el is odd
numbered (resp., even-numbered) in Γj. v[m] = 1/10 (resp., −1/10) if em is
odd numbered (resp., even-numbered) in Γk. The other components of v are
0. Let w′ := w + v. We now consider fi · w′ = fi · w + fi · v. By assumption,
fi · w = ai > 0. Moreover, we obtain fi · v ≥ −3/10. Since ai ∈ Z>0, we have
fi ·w = ai ≥ 1. Therefore, fi ·w′ = fi ·w+ fi · v ≥ 7/10 > 0. We next consider
fj · w′ = fj · w + fj · v. By assumption, fj · w = aj = 0. Moreover, we obtain
fj · v = 1/10 or 1/5. Therefore, fj · w′ = fj · w + fj · v > 0.

As above, we obtain fk · w′ = fk · w + fk · v > 0.

�
We have the following corollaries.

Corollary 2.3.3 We use the same notation as above. The edge polytope of a fun-
damental FHM graph G possesses a regular unimodular triangulation if it has a set
of bridges {b1, . . . , bp} (bi is the bridge of Πi) such that ai > 0 for each i.

Corollary 2.3.4 The edge polytope of a fundamental FHM graph G possesses a
regular unimodular triangulation if it has a set of bridges {b1, . . . , bp} (bi is the
bridge of Πi) that satisfies the following condition: For each even closed walk Γi of
bi, the number of the other bridges bj contained in Γi is at most two and the number
of Γi that contain exactly two other bridges is at most two.

Corollary 2.3.5 The edge polytope of a fundamental FHM graph G possesses a
regular unimodular triangulation if it has a set of bridges {b1, . . . , bp} (bi is the
bridge of Πi) that satisfies the following condition: Each even closed walk of the
bridge bi contains at most one different bridge bj.

We note that the strongest condition is Corollary 2.3.5, whereas the weakest is
Theorem 2.3.2. However, Corollary 2.3.5 is the easiest to verify graphically.

Remark 2.3.6 (i) In Theorem 2.3.2, if there exist more than two i such that
ai = 0, the following holds. We assume that ai = 0 for i = i1, . . . , ir (r ≥
3) and ai > 0 for the other i. Let H ⊂ Rn be the hyperplane defined by∑n

j=1w[j]xj = 0. If the convex cone P generated by fi1 , . . . , fir in H is
strongly convex, i.e., P ∩ −P = {0}, then W is non-empty. The proof is the
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same as that of Theorem 2.3.2. Namely, owing to this condition, we can vary
w slightly to obtain a new weight w′ such that fi · w′ > 0 for any i. However,
this condition is not clear at all by merely inspecting the graph.

(ii) More generally, let C(f1, . . . , fp) be an open cone in Rn defined by p linear
homogeneous inequalities fi > 0 (1 ≤ i ≤ p). Then, C(f1, . . . , fp) ̸= ϕ holds if
and only if the dual cone C(f1, . . . , fp)

∨ = R≥0f1+ · · ·+R≥0fp of C(f1, . . . , fp)
is strongly convex (fi is the coefficient vector of the LHS of the inequality).
It is difficult to determine whether C(f1, . . . fp)

∨ is strongly convex or not by
merely inspecting the graph.

(iii) The edge polytope of the following graph does not possess regular unimodular
triangulations (Example 3.2 in [17]). Moreover, there exist three i such that
ai = 0. Therefore, we cannot improve the condition of Theorem 2.3.2 such
that “the number of Γi such that ai = 0 is at most three”

2.4 Applications

We first apply our criteria to the complete graph G = K6 with six vertices. It is
known that PKd

possesses a regular unimodular triangulation for any d (see [30]).
Moreover, the same is true of an edge polytope of a gap-free graph or a complete
multipartite graph (see [6] and [20]).

Remark 2.4.1 The complete graph K6 satisfies the condition of Corollary 2.3.3.
However, it does not satisfy the condition of Corollary 2.3.4.

We finally provide several other examples that satisfy our criteria.

Example 2.4.2 The following five types of graphs satisfy the condition of Corollary
2.3.5. More precisely, in the graphs Am,n, Bm,n and Cm1,m2,n1,n2 , all pairs of disjoint
odd cycles (triangles) have a bridge b in common. Thus, there are no other bridges
contained in the even closed walk of b.
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Dm1,m2,m3,m4 has a set of bridges {b1, b2}, where any disjoint pair has a bridge in
this set and the even closed walk of bi (i = 1, 2) contains (exactly) one other bridge.
Em1,m2,m3 has a set of three bridges {b1, b2, b3}, where any disjoint pair has a bridge
in this set and there are no other bridges contained in the even closed walk of bi

(i = 1, 2, 3).
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Example 2.4.3 The following two types of graphs satisfy the condition of Corollary
2.3.3 and not that of Corollary 2.3.4. Fm1,m2,m3,m4 has a minimal set of six bridges
{bi | 1 ≤ i ≤ 6}, where any disjoint pair has a bridge in this set and Gm1,m2,m3,m4,m5

has a minimal set of ten bridges {bi | 1 ≤ i ≤ 10}.
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Example 2.4.4 The following graph (“Graph 9” in Appendix A) satisfies the con-
dition of Theorem 2.3.2. Moreover, there exist only two i such that ai = 0. The
graph has a minimal set of three bridges {bi | 1 ≤ i ≤ 3}, where any disjoint pair
has a bridge in this set. When Γ1 = (e15, e5, b

1, b2, b3, e12, e11,−b2), then α1 = 0
and β1 = 2. Therefore, a1 = 2 + α1 − β1 = 2 + 0 − 2 = 0. Moreover, when
Γ2 = (e17, e7, e6, e5, b

1, b2, b3, e12, e11,−b2), then α2 = 0 and β2 = 2. Therefore,
a2 = 2 + α2 − β2 = 2 + 0− 2 = 0.
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2.5 The algorithm and the program

We have implemented a program for the computer algebra system Magma [2] that
determines whether a given fundamental FHM graph satisfies Theorem 2.3.2, Corol-
lary 2.3.3, Corollary 2.3.4 and Corollary 2.3.5. In this section, we provide the details
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of the algorithm and the program. Let G be a FHM graph and PG be an edge poly-
tope of G. The program that determines whether PG possesses a regular unimodular
triangulation is based on Theorem 2.3.1. We can rewrite “the open cone Cb is not
empty if and only of the dimension of the closed cone Cb is equal to the number
of edges” as “PG possesses a regular unimodular triangulation if and only if there
exists at least one closed cone Cb such that the dimension of Cb is equal to the num-
ber of edges”, where the closed cone is defined by replacing > with ≥ in Inequality
(2.2). The algorithm calculates the dimension of all closed cones. If there exists a
cone such that the dimension of the cone is equal to the number of edges, then the
program will output “W is not empty”. If the dimension of all cones is less than
the number of edges, then the program will output “W is empty”.

We now show how the program “cycle12.c” can be used (the details are in Ap-
pendix B). The data of a graph G = (V,E) is given by the vertex set V and the
edge set E.

Example 2.5.1 The following is an example of the input data for “Graph 1” in
Appendix A.

V1:= [1..9];

E1:= [{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{1,7},{2,7},{2,8},{7,8},{8,9},

{2,9},{7,9},{4,9},{5,9},{3,9},{6,9}];

The main commands are “main” and “initial”. The command “main(V ,E)”
calculates the dimension of all closed cones of the graph G = (V,E). If there exists
a closed cone such that the dimension of the cone is equal to the number of edges,
the program stops and outputs the coefficients of Inequality (2.2) of the cone and an
inner point w in the cone. The inner point w is generated to solve Inequality (2.2)
and calculate the minimal generators of the cone and their sum. If the dimension of
all cones is less than the number of edges, then the program will output the message
“W is empty”.

The command “initial(V ,E,w)” is used if W is non-empty. The command
“initial(V ,E,w)” outputs the initial ideal of the toric ideal with respect to weight
monomial order on the polynomial ring Q[x1, . . . , xn] (n is the number of edge) de-
fined from w and graded reverse lex order. Moreover, it outputs the set of maximal
simplices of the regular unimodular triangulation.

Example 2.5.2 The following is the result for “Graph 5” in Appendix A.

main(V5,E5);

set of vertices = [ 1 .. 10 ]

array of edges = [

{ 1, 2 },

{ 2, 3 },

{ 3, 4 },

{ 4, 5 },

{ 5, 6 },

{ 6, 7 },
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{ 7, 8 },

{ 1, 8 },

{ 1, 9 },

{ 8, 9 },

{ 9, 10 },

{ 2, 10 },

{ 7, 10 },

{ 5, 10 },

{ 2, 4 },

{ 5, 7 }

]

number of edges= 16

number of pairs= 12

array of the number of even closed walks= [ 1, 6, 6, 3, 2, 4, 2, 1, 3, 3, 1, 4 ]

number of cones= 62208

1 16

[

[ 0, -1, 1, -2, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ],

[ -2, 1, -1, 0, -1, 1, -1, 1, 1, 0, -1, 0, 0, 1, 1, 0 ],

[ -2, 1, -1, 1, -1, 1, 0, 1, 1, -1, 0, 1, -1, 0, 0, 0 ],

[ -2, 1, -1, 1, 0, 0, 0, 1, 1, -1, 0, 1, 0, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, -2, 1, -1, 1, 0, 0, 1, -1, 0, 1 ],

[ -2, 0, 0, -1, 0, 0, 0, 1, 1, -1, 0, 1, -1, 0, 1, 1 ],

[ 0, -1, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1 ],

[ -2, 1, -1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 1, 0 ],

[ -2, 1, -1, 0, 0, 0, -1, 1, 1, 0, -1, 0, 1, 0, 1, 0 ],

[ 0, -1, 1, -2, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, 1, 1 ],

[ 0, 0, 0, 0, -1, 1, -2, 1, -1, 1, 0, 0, 0, 0, 0, 1 ],

[ -1, 0, 0, 0, -1, 1, -2, 1, 0, 1, -1, 1, 0, 0, 0, 1 ]

]

16 non-empty

inner product = [ 2, 3, 1, 1, 2, 3, 2, 2, 3, 3, 2, 3 ]

inner product (absolute value) = [ 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3 ]

inner point weight=

[ 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 1, 3, 1, 1, 9, 7 ]

[ 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 1, 3, 1, 1, 9, 7 ]

---------------------------------------------------------------------------

initial(V5,E5,[ 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 1, 3, 1, 1, 9, 7 ]);

number of vertices= 10

number of edges = 16

initial ideal = [

x[8]*x[15]*x[16],

x[2]*x[8]*x[9]*x[15],

x[3]*x[5]*x[15]*x[16],

x[2]*x[8]*x[11]*x[15],

x[2]*x[8]*x[13]*x[15],

x[6]*x[8]*x[10]*x[16],

x[5]*x[7]*x[9]*x[15],

x[8]*x[10]*x[13]*x[16],

x[8]*x[12]*x[16],
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x[2]*x[4]*x[6]*x[8],

x[1]*x[3]*x[10]*x[16],

x[8]*x[11]*x[16],

x[2]*x[4]*x[8]*x[11],

x[2]*x[4]*x[8]*x[13],

x[1]*x[3]*x[11]*x[16],

x[3]*x[12]*x[16],

x[14]*x[15],

x[9]*x[12],

x[7]*x[11],

x[5]*x[13]

]

number of maximal simplices= 73

array of maximal simplices of regular unimodular triangulation=

[

x[2]*x[3]*x[4]*x[6]*x[9]*x[10]*x[11]*x[13]*x[15]*x[16],

x[2]*x[3]*x[4]*x[6]*x[9]*x[10]*x[11]*x[13]*x[14]*x[16],

x[2]*x[3]*x[4]*x[6]*x[7]*x[9]*x[10]*x[13]*x[15]*x[16],

x[2]*x[3]*x[4]*x[6]*x[7]*x[9]*x[10]*x[13]*x[14]*x[16],

x[2]*x[3]*x[4]*x[5]*x[7]*x[8]*x[9]*x[10]*x[14]*x[16],

x[2]*x[3]*x[4]*x[5]*x[6]*x[9]*x[10]*x[11]*x[14]*x[16],

x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[9]*x[10]*x[14]*x[16],

x[1]*x[3]*x[4]*x[6]*x[8]*x[10]*x[11]*x[12]*x[13]*x[15],

x[1]*x[3]*x[4]*x[6]*x[8]*x[10]*x[11]*x[12]*x[13]*x[14],

x[1]*x[3]*x[4]*x[6]*x[8]*x[9]*x[10]*x[11]*x[13]*x[15],

x[1]*x[3]*x[4]*x[6]*x[8]*x[9]*x[10]*x[11]*x[13]*x[14],

x[1]*x[3]*x[4]*x[6]*x[7]*x[8]*x[10]*x[12]*x[13]*x[15],

x[1]*x[3]*x[4]*x[6]*x[7]*x[8]*x[10]*x[12]*x[13]*x[14],

x[1]*x[3]*x[4]*x[6]*x[7]*x[8]*x[9]*x[13]*x[14]*x[16],

x[1]*x[3]*x[4]*x[6]*x[7]*x[8]*x[9]*x[10]*x[13]*x[15],

x[1]*x[3]*x[4]*x[6]*x[7]*x[8]*x[9]*x[10]*x[13]*x[14],

x[1]*x[3]*x[4]*x[5]*x[6]*x[8]*x[10]*x[11]*x[12]*x[15],

x[1]*x[3]*x[4]*x[5]*x[6]*x[8]*x[10]*x[11]*x[12]*x[14],

x[1]*x[3]*x[4]*x[5]*x[6]*x[8]*x[9]*x[10]*x[11]*x[15],

x[1]*x[3]*x[4]*x[5]*x[6]*x[8]*x[9]*x[10]*x[11]*x[14],

x[1]*x[3]*x[4]*x[5]*x[6]*x[7]*x[8]*x[10]*x[12]*x[15],

x[1]*x[3]*x[4]*x[5]*x[6]*x[7]*x[8]*x[10]*x[12]*x[14],

x[1]*x[3]*x[4]*x[5]*x[6]*x[7]*x[8]*x[9]*x[14]*x[16],

x[1]*x[3]*x[4]*x[5]*x[6]*x[7]*x[8]*x[9]*x[10]*x[14],

x[1]*x[2]*x[4]*x[6]*x[10]*x[11]*x[12]*x[13]*x[15]*x[16],

x[1]*x[2]*x[4]*x[6]*x[10]*x[11]*x[12]*x[13]*x[14]*x[16],

x[1]*x[2]*x[4]*x[6]*x[9]*x[10]*x[11]*x[13]*x[15]*x[16],

x[1]*x[2]*x[4]*x[6]*x[9]*x[10]*x[11]*x[13]*x[14]*x[16],

x[1]*x[2]*x[4]*x[6]*x[7]*x[10]*x[12]*x[13]*x[15]*x[16],

x[1]*x[2]*x[4]*x[6]*x[7]*x[10]*x[12]*x[13]*x[14]*x[16],

x[1]*x[2]*x[4]*x[6]*x[7]*x[9]*x[10]*x[13]*x[15]*x[16],

x[1]*x[2]*x[4]*x[6]*x[7]*x[9]*x[10]*x[13]*x[14]*x[16],

x[1]*x[2]*x[4]*x[5]*x[7]*x[8]*x[9]*x[10]*x[14]*x[16],

x[1]*x[2]*x[4]*x[5]*x[6]*x[10]*x[11]*x[12]*x[15]*x[16],

x[1]*x[2]*x[4]*x[5]*x[6]*x[10]*x[11]*x[12]*x[14]*x[16],

x[1]*x[2]*x[4]*x[5]*x[6]*x[9]*x[10]*x[11]*x[15]*x[16],

x[1]*x[2]*x[4]*x[5]*x[6]*x[9]*x[10]*x[11]*x[14]*x[16],
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x[1]*x[2]*x[4]*x[5]*x[6]*x[7]*x[10]*x[12]*x[15]*x[16],

x[1]*x[2]*x[4]*x[5]*x[6]*x[7]*x[10]*x[12]*x[14]*x[16],

x[1]*x[2]*x[4]*x[5]*x[6]*x[7]*x[9]*x[10]*x[14]*x[16],

x[1]*x[2]*x[3]*x[6]*x[8]*x[10]*x[11]*x[12]*x[13]*x[14],

x[1]*x[2]*x[3]*x[6]*x[8]*x[9]*x[10]*x[11]*x[13]*x[14],

x[1]*x[2]*x[3]*x[6]*x[7]*x[8]*x[10]*x[12]*x[13]*x[14],

x[1]*x[2]*x[3]*x[6]*x[7]*x[8]*x[9]*x[13]*x[14]*x[16],

x[1]*x[2]*x[3]*x[6]*x[7]*x[8]*x[9]*x[10]*x[13]*x[14],

x[1]*x[2]*x[3]*x[5]*x[6]*x[8]*x[10]*x[11]*x[12]*x[14],

x[1]*x[2]*x[3]*x[5]*x[6]*x[8]*x[9]*x[10]*x[11]*x[14],

x[1]*x[2]*x[3]*x[5]*x[6]*x[7]*x[8]*x[10]*x[12]*x[15],

x[1]*x[2]*x[3]*x[5]*x[6]*x[7]*x[8]*x[10]*x[12]*x[14],

x[1]*x[2]*x[3]*x[5]*x[6]*x[7]*x[8]*x[9]*x[14]*x[16],

x[1]*x[2]*x[3]*x[5]*x[6]*x[7]*x[8]*x[9]*x[10]*x[14],

x[1]*x[2]*x[3]*x[4]*x[6]*x[10]*x[11]*x[12]*x[13]*x[15],

x[1]*x[2]*x[3]*x[4]*x[6]*x[10]*x[11]*x[12]*x[13]*x[14],

x[1]*x[2]*x[3]*x[4]*x[6]*x[9]*x[10]*x[11]*x[13]*x[15],

x[1]*x[2]*x[3]*x[4]*x[6]*x[9]*x[10]*x[11]*x[13]*x[14],

x[1]*x[2]*x[3]*x[4]*x[6]*x[7]*x[10]*x[12]*x[13]*x[15],

x[1]*x[2]*x[3]*x[4]*x[6]*x[7]*x[10]*x[12]*x[13]*x[14],

x[1]*x[2]*x[3]*x[4]*x[6]*x[7]*x[9]*x[13]*x[15]*x[16],

x[1]*x[2]*x[3]*x[4]*x[6]*x[7]*x[9]*x[13]*x[14]*x[16],

x[1]*x[2]*x[3]*x[4]*x[6]*x[7]*x[9]*x[10]*x[13]*x[15],

x[1]*x[2]*x[3]*x[4]*x[6]*x[7]*x[9]*x[10]*x[13]*x[14],

x[1]*x[2]*x[3]*x[4]*x[5]*x[7]*x[8]*x[10]*x[12]*x[15],

x[1]*x[2]*x[3]*x[4]*x[5]*x[7]*x[8]*x[10]*x[12]*x[14],

x[1]*x[2]*x[3]*x[4]*x[5]*x[7]*x[8]*x[9]*x[14]*x[16],

x[1]*x[2]*x[3]*x[4]*x[5]*x[7]*x[8]*x[9]*x[10]*x[14],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[10]*x[11]*x[12]*x[15],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[10]*x[11]*x[12]*x[14],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[9]*x[10]*x[11]*x[15],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[9]*x[10]*x[11]*x[14],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[10]*x[12]*x[15],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[10]*x[12]*x[14],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[9]*x[14]*x[16],

x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[9]*x[10]*x[14]

]

The following table shows whether W is empty and, in case W is non-empty,
the number of maximal simplices of the regular unimodular triangulation and the
number of cones for 20 fundamental FHM graphs in Appendix A. In the case of
“Graph 13”, the program cannot determine whether W is empty and calculate the
number of maximal simplices.
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Table 2.1: Results for the 20 FHM graphs

Graph number empty or non-empty number of cones

Graph 1 non-empty 17280
Graph 2 empty 1
Graph 3 non-empty 32768
Graph 4 non-empty 32
Graph 5 non-empty 62208
Graph 6 non-empty 1761205026816
Graph 7 non-empty 18
Graph 8 non-empty 4
Graph 9 non-empty 16128
Graph 10 non-empty 6912
Graph 11 non-empty 8
Graph 12 non-empty 812479653347328000
Graph 13 ? 491830100941206719692800000
Graph 14 non-empty 8
Graph 15 non-empty 3456
Graph 16 non-empty 81
Graph 17 non-empty 4
Graph 18 non-empty 4
Graph 19 non-empty 1024
Graph 20 non-empty 432
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We next consider the command “bmaink”(1 ≤ k ≤ 4), which determines whether
a given fundamental FHM graph G satisfies Theorem 2.3.2, Corollary 2.3.3, Corol-
lary 2.3.4 and Corollary 2.3.5.

For example, “bmain1(V ,E)” determines whether G possesses cones that satisfy
Theorem 2.3.2. IfG possesses cones that satisfy Theorem 2.3.2, then “bmain1(V ,E)”
outputs the inequalities of the cones and the weights that satisfy these inequalities.

Example 2.5.3

bmain1(V1,E1);

number of edges= 17

number of pairs= 8

array of the number of even closed walks= [ 5, 4, 3, 3, 4, 4, 3, 2 ]

number of cones= 17280

[

[ 0, -2, 1, -1, 1, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 1, -1 ],

[ 1, -2, 1, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1 ],

[ 0, 0, 0, -1, 0, 0, 0, -1, 1, 1, -2, 0, 0, 1, 1, 0, 0 ],

[ 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0 ],

[ 0, -2, 1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, -1, 0, 1, 0 ],

[ 0, 0, 0, 0, 1, -2, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, 1 ],

[ -1, 0, 0, 0, 1, -2, 1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1 ],

[ 1, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, -2, 0, 1, 1, 0, 0 ]

]

17 non-empty

inner product = [ 2, 2, 2, 2, 2, 2, 2, 2 ]

inner product (absolute value) = [ 2, 2, 2, 2, 2, 2, 2, 2 ]

inner point weight=

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 1, 9, 5 ]

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 1, 9, 5 ]

-----------------------------------------------------------------------------

bmain1(V2,E2);

number of edges= 15

number of pairs= 5

array of the number of even closed walks= [ 1, 1, 1, 1, 1 ]

number of cones= 1

no bridge cones

-----------------------------------------------------------------------------

bmain2(V3,E3);

number of edges= 15

number of pairs= 9

array of the number of even closed walks= [ 3, 3, 2, 3, 3, 3, 2, 3, 2 ]

number of cones= 5832

[

[ 0, 0, 1, -2, 1, -1, 0, 0, -1, 1, 0, -1, 1, 1, 0 ],

[ 1, -2, 1, -1, 0, 0, 0, -1, 0, -1, 1, 1, 0, 1, 0 ],

[ 1, -2, 1, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0 ],
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[ 1, -1, 0, 0, 1, -2, -1, 0, 0, 1, 0, 1, 0, -1, 1 ],

[ 1, -2, 1, 0, 0, -1, 0, 0, -1, 0, 1, 1, -1, 0, 1 ],

[ 0, -1, 1, -2, 1, 0, -1, 0, 0, 0, 1, 0, 1, 1, -1 ],

[ 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1 ],

[ 1, 0, 0, -1, 1, -2, 0, -1, 0, 1, -1, 0, 1, 0, 1 ],

[ 1, 0, 0, 0, 1, -2, 0, 0, 0, 1, -1, 0, 0, -1, 1 ]

]

15 non-empty

standard weight vector=

[ 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

inner product = [ 3, 3, 2, 3, 3, 3, 2, 3, 2 ]

inner product (absplute value) = [ 3, 3, 2, 3, 3, 3, 2, 3, 2 ]

[ 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

-----------------------------------------------------------------------------

bmain2(V4,E4);

number of edges= 12

number of pairs= 3

array of the number of even closed walks= [ 4, 4, 2 ]

number of cones= 32

[

[ 0, -2, 1, -1, 0, 0, 1, 1, 0, 1, 0, -1 ],

[ 1, -2, 0, 0, 0, -1, 1, 0, 1, 1, -1, 0 ],

[ 1, -2, 1, -1, 0, -1, 1, 0, 0, 1, 0, 0 ]

]

12 non-empty

standard weight vector=

[ 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

inner product = [ 2, 2, 2 ]

inner product (absplute value) = [ 2, 2, 2 ]

[ 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

-----------------------------------------------------------------------------

bmain3(V5,E5);

number of edges= 16

number of pairs= 12

array of the number of even closed walks= [ 1, 3, 3, 2, 2, 3, 2, 1, 2, 2, 1, 3 ]

number of cones= 2592

[

[ 0, -1, 1, -2, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ],

[ -2, 1, -1, 0, -1, 1, -1, 1, 1, 0, -1, 0, 0, 1, 1, 0 ],

[ -2, 1, -1, 1, -1, 1, 0, 1, 1, -1, 0, 1, -1, 0, 0, 0 ],

[ -2, 1, -1, 1, 0, 0, 0, 1, 1, -1, 0, 1, 0, -1, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, -2, 1, -1, 1, 0, 0, 1, -1, 0, 1 ],

[ -2, 0, 0, -1, 0, 0, 0, 1, 1, -1, 0, 1, -1, 0, 1, 1 ],

[ 0, -1, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1 ],

[ -2, 1, -1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 1, 0 ],

[ -2, 1, -1, 0, 0, 0, -1, 1, 1, 0, -1, 0, 1, 0, 1, 0 ],

[ 0, -1, 1, -2, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, 1, 1 ],

[ 0, 0, 0, 0, -1, 1, -2, 1, -1, 1, 0, 0, 0, 0, 0, 1 ],
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[ -1, 0, 0, 0, -1, 1, -2, 1, 0, 1, -1, 1, 0, 0, 0, 1 ]

]

16 non-empty

inner product = [ 2, 3, 1, 1, 2, 3, 2, 2, 3, 3, 2, 3 ]

inner product (absolute value) = [ 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3 ]

inner point weight=

[ 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 1, 3, 1, 1, 9, 7 ]

[ 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 1, 3, 1, 1, 9, 7 ]

-----------------------------------------------------------------------------

bmain3(V6,E6);

number of edges= 13

number of pairs= 5

array of the number of even closed walks= [ 1, 2, 2, 1, 2 ]

number of cones= 8

[

[ 1, -2, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 1 ],

[ -1, 0, 0, 0, 0, -1, 1, -2, 1, 1, 0, 1, 0 ],

[ 1, -2, 1, -1, 0, 0, 0, 1, -1, 0, 1, -1, 1 ],

[ 0, 0, -1, 1, -2, 1, -1, 0, 0, 0, 0, 1, 1 ],

[ 0, -2, 1, -1, 0, -1, 1, -1, 0, 1, 1, 0, 1 ]

]

13 non-empty

inner product = [ 2, 2, 1, 2, 3 ]

inner product (absolute value) = [ 2, 2, 3, 2, 3 ]

inner point weight=

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 ]

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 ]

-----------------------------------------------------------------------------

bmain4(V7,V7);

number of edges= 13

number of pairs= 4

array of the number of even closed walks= [ 1, 2, 2, 1 ]

number of cones= 4

[

[ -1, 0, 0, -1, 0, 0, 1, 1, 0, -2, 0, 1, 1 ],

[ 1, 0, 0, 0, 1, -2, 1, -1, 0, 0, 1, -1, 0 ],

[ 0, 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1 ],

[ 0, -1, 0, 0, -1, 0, 0, 1, 1, -2, 1, 1, 0 ]

]

13 non-empty

standard weight vector=

[ 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2 ]

inner product= [ 2, 2, 2, 2 ]

inner product (absolute value) = [ 2, 2, 2, 2 ]

[ 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2 ]

-----------------------------------------------------------------------------
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bmain4(V8,E8);

number of edges= 18

number of pairs= 19

array of the number of even closed walks= [ 2, 2, 1, 2, 3, 3, 2, 1, 2, 3, 2, 3,

1, 1, 4, 2, 3, 2, 2 ]

number of cones= 497664

no bridge cones

The following table shows whether the 20 fundamental FHM graphs in Appendix
A satisfy Theorem 2.3.2, Corollary 2.3.3, Corollary 2.3.4 and Corollary 2.3.5, where
“?” indicates that the program is inconclusive.

Table 2.2: Testing whether the 20 fundamental FHM graphs satisfy our criteria

Graph number Theorem 2.3.2 Corollary 2.3.3 Corollary 2.3.4 Corollary 2.3.5

Graph 1 ⃝ ⃝ ⃝ ⃝
Graph 2 × × × ×
Graph 3 ⃝ ⃝ ⃝ ⃝
Graph 4 ⃝ ⃝ ⃝ ⃝
Graph 5 ⃝ ⃝ ⃝ ⃝
Graph 6 ⃝ ⃝ ⃝ ⃝
Graph 7 ⃝ ⃝ ⃝ ⃝
Graph 8 ⃝ ⃝ ⃝ ×
Graph 9 ⃝ ⃝ ⃝ ×
Graph 10 ⃝ ⃝ ⃝ ⃝
Graph 11 ⃝ ⃝ ⃝ ⃝
Graph 12 ? ? ? ?
Graph 13 ? ? ? ?
Graph 14 ⃝ ⃝ ⃝ ⃝
Graph 15 ⃝ ⃝ ⃝ ⃝
Graph 16 ⃝ ⃝ ⃝ ⃝
Graph 17 ⃝ ⃝ ⃝ ⃝
Graph 18 ⃝ ⃝ ⃝ ⃝
Graph 19 ⃝ ⃝ ⃝ ⃝
Graph 20 ⃝ ⃝ ⃝ ⃝

39



Chapter 3

Ehrhart series of fractional stable
set polytopes of finite graphs

A fractional stable set polytope FRAC(G) of a simple graph G with d vertices is a
rational polytope consisting of a set of non-negative vectors (x1, . . . , xd) satisfying
xi+xj ≤ 1 for every edge {i, j} of G. In this chapter, we show that (i) The δ-vector
of a lattice polytope 2FRAC(G) is alternatingly increasing. (ii) The Ehrhart ring
of FRAC(G) is Gorenstein. (iii) The coefficients of the numerator of the Ehrhart
series of FRAC(G) are symmetric, unimodal and can be computed by the δ-vector
of 2FRAC(G).

Let G be a finite simple graph on the vertex set [d] = {1, 2, . . . , d} and let E(G)
be the edge set of G. Throughout this chapter, we always assume that G has no
isolated vertices. Given a subset W ⊂ [d], we associate the (0, 1)-vector ρ(W ) =∑

j∈W ej ∈ Rd. Here, ei is the i-th unit coordinate vector of Rd. In particular, ρ(∅)
is the origin of Rd. A subset W is called stable if {i, j} /∈ E(G) for all i, j ∈ W with
i ̸= j. We note that the empty set and each single-element subset of [d] are stable.
Let S(G) denote the set of all stable sets of G. The stable set polytope (independent
set polytope) STAB(G) ⊂ Rd of a simple graph G is the (0, 1)-polytope that is the
convex full of {ρ(W ) |W ∈ S(G)}. Stable set polytopes are very important in many
areas, e.g., optimization theory. The δ-vector of the stable set polytope of a perfect
graph is studied in [1, 16]. Moreover, the fractional stable set polytope FRAC(G) of
G is the d-polytope in Rd defined by

FRAC(G) =

{
(x1, . . . , xd) ∈ Rd

∣∣∣∣ 0 ≤ xi ≤ 1 (1 ≤ i ≤ d),
xi + xj ≤ 1 ({i, j} ∈ E(G))

}
.

In general, we have STAB(G) ⊂ FRAC(G). Each vertex of FRAC(G) belongs to
{0, 1/2, 1}d (see, e.g, [15]). It is known that FRAC(G) = STAB(G) if and only if
G is bipartite. If G is bipartite, then STAB(G) has a unimodular triangulation and
the δ-vector of STAB(G) is symmetric and unimodal (see [1, 4, 16]). We note that
if G is bipartite, then STAB(G) is the chain polytope of a poset P of rank 1 whose
comparability graph is G and is affinely equivalent to the order polytope of the poset
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P (see [27]). Our purpose is to study the Ehrhart series of FRAC(G). The following
two polytopes will play an important role:

P(G) = 2 · FRAC(G),

Q(G) = 3 · FRAC(G)− (1, . . . , 1)

=

{
(x1, . . . , xd) ∈ Rd

∣∣∣∣ xi ≥ −1 (1 ≤ i ≤ d),
xi + xj ≤ 1 ({i, j} ∈ E(G))

}
.

In [29], Steingŕımsson called the lattice polytope P(G) the extended 2-weak vertex-
packing polytope of G and studied the structure of P(G). In particular, he con-
structed a unimodular triangulation of P(G) and showed that the δ-vector of P(G)
is obtained by a descent statistic on a subset of the hyperoctahedral group deter-
mined by G.

This chapter is organized as follows. In Section 3.1, we show that the δ-vector
(δ0, . . . , δd−1) of P(G) is alternatingly increasing ([23, Definition 2.9]), i.e.,

δ0 ≤ δd−1 ≤ δ1 ≤ δd−2 ≤ · · · ≤ δ⌊d/2⌋−1 ≤ δd−⌊d/2⌋ ≤ δ⌊d/2⌋.

In Section 3.2, we study the structure of Q(G) in order to show that the Ehrhart ring
of FRAC(G) is Gorenstein. Using this result, in Section 3.3, we obtain a formula for
the numerator of the Ehrhart series E(FRAC(G), t) := g(FRAC(G), t)/(1 − t2)d+1

via the δ-vector of P(G). Since the Ehrhart ring of FRAC(G) is Gorenstein and
the δ-vector of P(G) is alternatingly increasing, the coefficients of g(FRAC(G), t)
are symmetric and unimodal. Finally, in Section 3.4, we discuss the dual polytope
Q(G)∨ of Q(G).

3.1 The δ-vector of P(G)

We first review the results in [29]. Let Bd denote the signed permutation words on
[d] = {1, 2, . . . , d}. For example, if d = 2,

B2 = {1 2, 2 1, 1 2, 2 1, 1 2, 2 1, 1 2, 2 1},

where 1 = −1 and 2 = −2. An element i ∈ [d] is called a descent in π = a1 · · · ad ∈
Bd if one of the following holds ([29, Definition 5]):

(i) i < d and ai > ai+1;

(ii) i = d and ai > 0.

Let des(π) denote the number of descents in π ∈ Bd. For any subset S of Bd, the
descent polynomial of S is D(S, t) :=

∑
π∈S t

des(π). Let G be a simple graph on the
vertex set [d] and the edge set E(G). We define a subset Π(G) of Bd as follows ([29,
Definition 11 and Theorem 12]):

Π(G) =

{
π ∈ Bd

∣∣∣∣ if {i, j} ∈ E(G) and + i appears in π,
then − j must precede + i in π

}
.
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Proposition 3.1.1 ([29]) Let G be a finite simple graph. Then, the δ-polynomial
of P(G) equals the descent polynomial D(Π(G), t).

Using this fact, we will show the following:

Theorem 3.1.2 Let G be a simple graph with d vertices. Then, there exist symmet-
ric and unimodal polynomials a(t) and b(t) of degree d − 1 and d − 2, respectively,
such that δ(P(G), t) = a(t) + tb(t). In particular, the δ-vector (δ0, δ1, . . . , δd−1) of
P(G) is alternatingly increasing, i.e.,

δ0 ≤ δd−1 ≤ δ1 ≤ δd−2 ≤ · · · ≤ δ⌊d/2⌋−1 ≤ δd−⌊d/2⌋ ≤ δ⌊d/2⌋.

Proof. Let Π+ (resp., Π−) denote the set of all π ∈ Π(G) such that the last number
of π is positive (resp., negative). Note that the first number of π ∈ Π(G) is always
negative since G has no isolated vertices.

Let π ∈ Π+. Then, π has a representation

π = m
(1)
1 · · ·m(1)

α1
p
(1)
1 · · · p

(1)
β1
m

(2)
1 · · ·m(2)

α2
p
(2)
1 · · · p

(2)
β2
· · ·m(γ)

1 · · ·m(γ)
αγ
p
(γ)
1 · · · p

(γ)
βγ
,

where p
(j)
i > 0 and m

(j)
i < 0. Let S(π) denote the set of all signed permutation

words on [d] of the form

m
(1)
σ1(1)
· · ·m(1)

σ1(α1)
p
(1)
τ1(1)
· · · p(1)τ1(β1)

· · ·m(γ)
σγ(1)
· · ·m(γ)

σγ(αγ)
p
(γ)
τγ(1)
· · · p(γ)τγ(βγ)

,

where σk ∈ Sαk
and τk ∈ Sβk

are permutations. It is easy to see that S(π) ⊂ Π+.
Then,

D(S(π), t) = tγ
γ∏

j=1

Aαj
(t)Aβj

(t),

where Ak(t) =
∑k−1

i=0 A(k, i)t
i is the Eulerian polynomial whose coefficient A(k, i) is

an Eulerian number. It is known that (A(k, 0), A(k, 1), . . . , A(k, k−1)) is symmetric
and unimodal, i.e., A(k, i) ≤ A(k, i+1) for 0 ≤ i ≤ ⌊2/k⌋. The degree of D(S(π), t)
is γ +

∑γ
j=1(αj + βj − 2) = d − γ. Since Ak(t) is symmetric and unimodal, so is

Aαj
(t)Aβj

(t). Hence,

D(S(π), t) = sγt
γ + · · ·+ sd−γt

d−γ

implies that (sγ, . . . , sd−γ) is symmetric and unimodal. Since

D(Π+, t) = u1t+ · · ·+ ud−1t
d−1

is a sum of such D(S(π), t), (u1, . . . , ud−1) is symmetric and unimodal.
Let π ∈ Π−. Then, π has a representation

π = m
(1)
1 · · ·m(1)

α1
p
(1)
1 · · · p

(1)
β1
m

(2)
1 · · ·m(2)

α2
p
(2)
1 · · · p

(2)
β2
· · ·m(γ)

1 · · ·m(γ)
αγ
,
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where p
(j)
i > 0 and m

(j)
i < 0. We define S(π) as before. Then, we have

D(S(π), t) = tγ−1Aαγ (t)

γ−1∏
j=1

Aαj
(t)Aβj

(t).

The degree of D(S(π), t) is γ − 1 + αγ − 1 +
∑γ−1

j=1 (αj + βj − 2) = d− γ. Since

D(Π−, t) = v0 + v1t+ · · ·+ vd−1t
d−1

is a sum of such D(S(π), t), (v0, v1, . . . , vd−1) is symmetric and unimodal.
We now show that the δ-vector (δ0, . . . , δd−1) = (v0, u1 + v1, . . . , ud−1 + vd−1) of

P(G) is alternatingly increasing. We first note that δd−1 − δ0 = ud−1 + vd−1 − v0 =
ud−1 ≥ 0. Moreover, for i = 1, 2, . . . , ⌊d/2⌋, we have δi−δd−i = ui+vi−ud−i−vd−i =
vi− vi−1 ≥ 0 and for i = 1, 2, . . . , ⌊d/2⌋− 1, we have δd−i−1− δi = ud−i−1 + vd−i−1−
ui − vi = ui+1 − ui ≥ 0. Thus, the δ-vector of P(G) is alternatingly increasing. �

3.2 The Ehrhart ring of FRAC(G)

In this section, we will show that the Ehrhart ring of FRAC(G) is Gorenstein. In
order to show this, we will use the following criterion [7, Theorem 1.1]:

Proposition 3.2.1 Let P ⊂ Rd be a rational convex polytope of dimension d and
let δ ≥ 1 denote the smallest integer for which δ(P − ∂P ) ∩ Zd ̸= ∅. We fix α ∈
δ(P − ∂P ) ∩ Zd and let Q = δP − α ⊂ Rd. Then, the Ehrhart ring AK(P ) of P is
Gorenstein if and only if the following conditions are satisfied:

(i) The dual polytope Q∨ of Q is a lattice polytope.

(ii) Let P̃ ⊂ Rd+1 denote the rational convex polytope that is the convex hull of

the subset {(β, 0) ∈ Rd+1 | β ∈ P} ∪ {(0, . . . , 0, 1/δ)} in Rd+1. Then P̃ is

facet-reticular, that is, if H is a hyperplane in Rd+1 and if H ∩ P̃ is a facet of
P̃ , then H ∩ Zd+1 ̸= ∅.

It is clear that there exist no lattices in the interior of P(G) = 2FRAC(G) and there
exists a lattice (1, . . . , 1) in the interior of 3FRAC(G). Thus, it is enough to show
that conditions (i) and (ii) in Proposition 3.2.1 are satisfied when P = FRAC(G),
δ = 3, α = (1, . . . , 1) and Q = Q(G).

A criterion for a vector to be a vertex of FRAC(G) is given in [29, Theorem 15]:

Lemma 3.2.2 Let G be a finite simple graph with d vertices. We assume that
v = (v1, . . . , vd) ∈ {0, 1/2, 1}d belongs to FRAC(G). Let GS be the subgraph of G
induced by S = {i ∈ [d] | vi = 1/2}. Then, v is a vertex of FRAC(G) if and only if
either S = ∅ or each connected component of GS contains an odd cycle.
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Using Lemma 3.2.2, we determine when Q(G) is a lattice polytope.

Proposition 3.2.3 Let G be a finite simple graph without isolated vertices. Then,
the following conditions are equivalent.

(i) The graph G is a bipartite graph.

(ii) The polytope FRAC(G) is a lattice polytope.

(iii) The polytope Q(G) is a lattice polytope.

Proof. We first note that (ii) ⇒ (iii) is trivial. If G is bipartite, then FRAC(G) =
STAB(G) is a lattice polytope. Hence, (i)⇒ (ii) holds. We now show that (iii)⇒ (i).
We assume that G contains an odd cycle C. Let H be a connected component of G
that contains C and let V (H) be the set of vertices of H. We define v = (v1, . . . , vd)
by vi = 1/2 if i ∈ V (H) and vi = 0 if i /∈ V (H). Then, v is a (0, 1/2)-vector in
FRAC(G). Moreover, since v satisfies the condition in Lemma 3.2.2, v is a vertex
of FRAC(G). Then, 3v− (1, . . . , 1) ∈ {−1, 1/2}d is a vertex of Q(G) that is not an
integer vector. Hence, Q(G) is not a lattice polytope. �

We next show that Q(G)∨ is a lattice polytope.

Proposition 3.2.4 Suppose G is a finite simple graph without isolated vertices.
Then, the origin of Rd is a unique integer point belonging to the interior of Q(G)
and

{ei + ej | {i, j} ∈ E(G)} ∪ {−ei | 1 ≤ i ≤ d}
is the vertex set of Q(G)∨. In particular, if G is a bipartite graph, then Q(G) is a
Gorenstein Fano polytope.

Proof. It is known that the inequalities xi ≥ 0 (1 ≤ i ≤ d) and xi + xj ≤ 1
({i, j} ∈ E(G)) define the facets of FRAC(G). Hence, the inequalities xi ≥ −1
(1 ≤ i ≤ d) and xi + xj ≤ 1 ({i, j} ∈ E(G)) define the facets of Q(G). Thus,
a vector (v1, . . . , vd) ∈ Rd belongs to the interior of Q(G) if and only if vi > −1
(1 ≤ i ≤ d) and vi + vj < 1 ({i, j} ∈ E(G)). It is clear that the origin of Rd belongs
to the interior of Q(G). We assume that (v1, . . . , vd) ∈ Zd belongs to the interior of
Q(G). Since vi and vi + vj are integers, we have vi ≥ 0 (1 ≤ i ≤ d) and vi + vj ≤ 0
({i, j} ∈ E(G)). Hence, vi = 0 for all i, i.e, (v1, . . . , vd) = 0. It is known that
there is a one-to-one correspondence between the facets of Q(G) and the vertices of
Q(G)∨. The set {ei + ej | {i, j} ∈ E(G)} ∪ {−ei | 1 ≤ i ≤ d} of coefficient vectors
of the inequalities that define the facets is the set of vertices of Q(G)∨. Thus, in
particular, Q(G)∨ is a lattice polytope. By Proposition 3.2.3, if G is a bipartite
graph, then Q(G) is a lattice polytope. Hence, it is a Gorenstein Fano polytope. �

We are now in a position to show that the Ehrhart ring of FRAC(G) is Goren-
stein.
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Theorem 3.2.5 Let G be a finite simple graph without isolated vertices. Then, the
Ehrhart ring of FRAC(G) is Gorenstein.

Proof. It is enough to show that conditions (i) and (ii) in Proposition 3.2.1 are
satisfied when P = FRAC(G), δ = 3, α = (1, . . . , 1) and Q = Q(G). We first note

that Proposition 3.2.4 ensures that Q∨ is a lattice polytope. Let F = H ∩ P̃ be a
facet of P̃ , where H is a hyperplane in Rd+1 and let F ′ = F ∩{xd+1 = 0}. Then, F ′

is a facet of P , whose supporting hyperplane is H ′ = H ∩ {xd+1 = 0}. Therefore,
H ′ is defined by either xi + xj = 1 ({i, j} ∈ E(G)) or xi = 0 (1 ≤ i ≤ d). Hence,
it is clear that there exists a lattice in H ′. Thus, there exists a lattice in H and
condition (ii) in Proposition 3.2.1 is satisfied. Therefore, the Ehrhart ring of P is
Gorenstein by Proposition 3.2.1. �

3.3 The Ehrhart series of FRAC(G)

In this section, we show that we can calculate the Ehrhart series and the Ehrhart
quasi-polynomial of FRAC(G) from those of P(G). Let G be a simple graph on
the vertex set [d] without isolated vertices. Since the interior of P(G) possesses
no lattices and the interior of 2P(G) has a lattice, we have that deg δ(P(G), t) =
d + 1 − 2 = d − 1. Moreover, the degree of E(FRAC(G), t) is −3 as a rational
function. Since i(FRAC(G), n) is a quasi-polynomial of period at most 2, there
exist polynomials iodd(FRAC(G), n) and ieven(FRAC(G), n) of degree d such that

i(FRAC(G), n) =


iodd(FRAC(G), n) if n is odd,

ieven(FRAC(G), n) if n is even.

In particular, if G is bipartite, then iodd(FRAC(G), n) = ieven(FRAC(G), n).

Theorem 3.3.1 Let G be a simple graph on the vertex set [d] without isolated ver-
tices and let δ(P(G), t) = δ0 + δ1t+ · · ·+ δd−1t

d−1. Then, we have

E(FRAC(G), t) =
δ(P(G), t2) + t2d−1δ(P(G), 1/t2)

(1− t2)d+1

=
δ0 + δd−1t+ δ1t

2 + δd−2t
3 + · · ·+ δ1t

2d−3 + δd−1t
2d−2 + δ0t

2d−1

(1− t2)d+1
,

where (δ0, δd−1, δ1, δd−2, . . . , δ1, δd−1, δ0) is symmetric and unimodal. In addition,

iodd(FRAC(G), 2k + 1) = (−1)dieven(FRAC(G),−2k − 4)

= (−1)di(P(G),−k − 2).
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Proof. Let W = FRAC(G) and P = P(G). Then,

E(W, t) =
∑
k≥0

ieven(W, 2k)t2k +
∑
k≥0

iodd(W, 2k + 1)t2k+1.

Since ieven(W, 2k) = i(2W,k) = i(P, k), we have∑
k≥0

ieven(W, 2k)t2k =
∑
k≥0

i(P, k)(t2)k =
δ(P, t2)

(1− t2)d+1
.

Since the degree of iodd(W, 2k + 1) is d, by [26, Corollary 4.3.1], we have∑
k≥0

iodd(W, 2k + 1)t2k+1 = t
∑
k≥0

iodd(W, 2k + 1)(t2)k = t
a(t2)

(1− t2)d+1
,

where a(t) is a polynomial of degree ≤ d. Thus,

E(W, t) =
δ(P, t2)

(1− t2)d+1
+ t · a(t2)

(1− t2)d+1
=

δ(P, t2) + ta(t2)

(1− t2)d+1
.

Since the degree of E(W, t) is −3 as a rational function, the degree of δ(P, t2)+ta(t2)
is 2d − 1. Hence, deg a(t) = d − 1 (= deg δ(P, t)). Moreover, since the Ehrhart
ring of W is Gorenstein, the coefficients of δ(P, t2) + ta(t2) are symmetric. Thus,
a(t) = td−1δ(P, 1/t) and δ(P, t2)+ ta(t2) = δ(P, t2)+ t2d−1δ(P, 1/t2). By the Ehrhart
reciprocity, it follows that∑

k≥0

iodd(W, 2k + 1)t2k+1 =
t2d−1δ(P, 1/t2)

(1− t2)d+1

=
(−1)− d+ 1

t3
δ(P, 1/t2)

(1− 1/t2)d+1

=
(−1)d+1

t3
E(P, 1/t2)

=
(−1)d

t3

∑
k≥1

i(P,−k)t2k

Thus, iodd(W, 2k + 1) = (−1)di(P,−k − 2) = (−1)dieven(W,−2k − 4), as desired. �

Example 3.3.2 Let W = FRAC(Kd) and P = P(Kd), where Kd is a complete
graph with d vertices. It is known [29, Example 27] that δ(P, t) = Ad(t)+dtAd−1(t).
Let

E(W, t) =
b0 + b1t+ · · ·+ b2d−1t

2d−1

(1− t2)d+1
.
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Since

δ(P, t) = Ad(t) + dtAd−1(t)

=
d−1∑
i=0

A(d, i)ti + dt

d−2∑
i=0

A(d− 1, i)ti

=
d−1∑
i=0

A(d, i)ti + d

d−1∑
i=1

A(d− 1, i− 1)ti

= 1 +
d−1∑
i=1

(A(d, i) + dA(d− 1, i− 1))ti

hold, the δ-vector (δ0, . . . , δd−1) of P satisfies δ0 = 1 and δi = A(d, i)+dA(d−1, i−1)
for i = 1, 2, . . . , d − 1. By Theorem 3.3.1, we obtain b0 = 1 and bi = A(d, ⌊i/2⌋) +
dA(d− 1, ⌊(i− 1)/2⌋) for i = 1, 2, . . . , 2d− 1.

Example 3.3.3 Let Wd = FRAC(Cd), where Cd is an odd cycle of length d. We
computed the numerator g(Wd, t) of E(Wd, t) = g(Wd, t)/(1− t2)d+1 for d = 3, 5, 7, 9
using software Normaliz ([3]).

g(W3, t) = 1 + 4t+ 7t2 + 7t3 + 4t4 + t5.

g(W5, t) = 1 + 11t+ 51t2 + 131t3 + 206t4 + 206t5 + 131t6 + 51t7 + 11t8 + t9.

g(W7, t) = 1 + 29t+ 281t2 + 1408t3 + 4320t4 + 8814t5 + 12475t6

+ 12475t7 + 8814t8 + 4320t9 + 1408t10 + 281t11 + 29t12 + t13.

g(W9, t) = 1 + 76t+ 1450t2 + 12844t3 + 67000t4 + 230986t5 + 561004t6

+ 996310t7 + 1321369t8 + 1321369t9 + 996310t10 + 561004t11

+ 230986t12 + 67000t13 + 12844t14 + 1450t15 + 76t16 + t17.

3.4 The dual polytope of Q(G)

In this section, we will discuss the dual polytope Q(G)∨ of Q(G). We recall that

Q(G)∨ = CONV({ei + ej | {i, j} ∈ E(G)} ∪ {−ei | 1 ≤ i ≤ d})

if G has no isolated vertices. It is easy to see that Q(G)∨ is Fano. A lattice polytope
P ⊂ Rd is called normal if Z≥0A = Q≥0A ∩ ZA, where A = {(α, 1) ∈ Zd+1 | α ∈
P ∩ Zd}. It is known that a lattice polytope P is normal if P has a unimodular
triangulation. See, e.g., [14].

Theorem 3.4.1 Let G be a finite simple graph without isolated vertices. Then, the
following conditions are equivalent.

(i) The graph G is a bipartite graph.
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(ii) The dual polytope Q(G)∨ has a unimodular triangulation.

(iii) The dual polytope Q(G)∨ is normal.

(iv) The dual polytope Q(G)∨ is a Gorenstein Fano polytope.

Proof. We note that (Q(G)∨)∨ = Q(G). By Proposition 3.2.3, we have (i) ⇔ (iv).
Moreover, (ii) ⇒ (iii) holds in general. Let AG be the vertex-edge incidence matrix
of G and let A′

G be the configuration matrix of Q(G)∨, namely,

A′
G =

(
0 AG −Ed

1 1 · · · 1 1 · · · 1

)
,

where Ed is the identity matrix.
(i)⇒(ii): Suppose that G is bipartite. It is known [24] that the vertex-edge

incidence matrix of any bipartite graph is totally unimodular, i.e., the determinant of
every square non-singular submatrix is ±1. Hence, the submatrix B =

(
AG −Ed

)
of A′

G is totally unimodular. Let ∆ be a pulling triangulation ofQ(G)∨ such that the
origin is a vertex of every maximal simplex in ∆. Such a triangulation is obtained
by a Gröbner basis of the toric ideal of A′

G with respect to a reverse lexicographic
order such that the smallest variable corresponds to the origin. See, e.g., [14]. Then,
the normalized volume of each maximal simplex in ∆ is equal to the absolute value
of the corresponding maximal minor of B. Since B is totally unimodular, each
maximal minor of B is ±1. Hence the triangulation ∆ is unimodular.

(iii)⇒(i): We assume that the graph G contains an odd cycle C. We will now
show that Q(G)∨ is not normal, that is, Z≥0A′

G ̸= Q≥0A′
G ∩ Zd+1. (It is easy to see

that ZA′
G = Zd+1.) We may assume that C = (1, 2, . . . , 2k + 1). Let

u =
1

2

(
ed+1 + (e1 + e2k+1 + ed+1) +

2k∑
i=1

(ei + ei+1 + ed+1)

)

= (k + 1)ed+1 +
2k+1∑
i=1

ei.

Then, u belongs to Q≥0A′
G ∩ Zd+1. It is enough to show that u /∈ Z≥0A′

G. We
assume that

u = γed+1 +
∑

{i,j}∈E(G)

αij(ei + ej + ed+1) +
d∑

i=1

βi(−ei + ed+1), (3.1)

for some αij, βi ∈ Z≥0. Then, the coefficient of ei (1 ≤ i ≤ 2k + 1) in (3.1) is 1 =∑
{i,j}∈E(G) αij−βi and that of ei (2k+2 ≤ i ≤ d) in (3.1) is 0 =

∑
{i,j}∈E(G) αij−βi.

Summing up the equations for 1 ≤ i ≤ d, we obtain

2k + 1 = 2
∑

{i,j}∈E(G)

αij −
d∑

i=1

βi. (3.2)
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Moreover, the coefficient of ed+1 in (3.1) is

k + 1 = γ +
∑

{i,j}∈E(G)

αij +
d∑

i=1

βi. (3.3)

Since γ and
∑d

i=1 βi are non-negative, by Equations (3.2) and (3.3), we obtain

k +
1

2
≤

∑
{i,j}∈E(G)

αij ≤ k + 1.

Since
∑

{i,j}∈E(G) αij ∈ Z, we have
∑

{i,j}∈E(G) αij = k+1. Hence, by Equation (3.2),

we have
∑d

i=1 βi = 1. Thus, by Equation (3.3), we have γ + 1 = 0. This is a
contradiction. �
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Appendix A

Examples of fundamental FHM
graphs

Graph 1 1
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4 5
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7
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9
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2
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5
6 7

8

9
10

Graph 2

1

2

3 4

5

6

7

8

9

Graph 3 Graph 4
1

2 3

4
56

7

50



Graph 5

1
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3

4 5

6

7

8

9

10

Graph 6
1

2

3

4 5 6 7

8

9

Graph 7

1
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3 4

5

6

7 8

Graph 8
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8
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Graph 9
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Graph 10
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6

7

8 9
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Graph 11 1

2
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4

5

6 7

8

Graph 12
1

2

3 4 5 6

7
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9 10

Graph 13
1
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6
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8 9
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Graph 14
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2
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8

Graph 15 1
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Graph 17 1

2

3

4

5

6

7

8

Graph 18
1
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6
7

Graph 19 1
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5

6

7

8

9

Graph 20
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2 3

4
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6

7

53



Appendix B

The program “cycle12.c”

V1:= [1..9];

E1:= [{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{1,7},{2,7},{2,8},{7,8},{8,9},{2,9},{7,9},{4,9},

{5,9},{3,9},{6,9}];

V2:= [1..10];

E2:= [{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,1},{2,10},{2,4},{4,6},

{6,8},{8,10}];

V3:= [1..9];

E3:= [{1,2},{2,3},{3,4},{4,5},{5,6},{6,1},{1,7},{2,7},{6,9},{9,5},{7,9},{7,8},{8,9},{3,8},

{4,8}];

V4:=[1..7];

E4:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,1},{3,5},{7,3},{5,7},{6,7},{2,6},{2,7}];

V5:=[1..10];

E5:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,1},{1,9},{8,9},{9,10},{2,10},{10,7},

{10,5},{2,4},{5,7}];

V6:=[1..9];

E6:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,1},{2,9},{2,6},{8,6},{3,5}];

V7:=[1..8];

E7:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,1},{1,7},{2,7},{3,7},{7,8},{6,8},{8,5},{8,4}];

V8:=[1..10];

E8:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,1},{1,10},{9,8},{8,10},{10,9},

{9,7},{2,4},{4,9},{9,6},{9,5},{2,10}];

V9:=[1..11];

E9:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,1},{10,11},{1,11},

{11,3},{11,2},{10,8},{11,6},{6,4},{8,6}];

V10:=[1..9];

E10:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,1},{1,8},{2,8},{8,9},{9,7},{9,6},{5,3}];

V11:=[1..8];

E11:=[{1,2},{2,3},{3,4},{4,1},{1,5},{1,8},{5,8},{4,8},{4,7},{8,7},{3,6},{3,7},{6,7},

{2,6},{2,5},{5,6}];

V12:=[1..10];

E12:=[{1,2},{2,3},{3,4},{4,5},{5,6},{7,6},{1,7},{7,8},{8,9},{8,2},{9,4},{2,9},{10,5},

{10,6},{10,7},{10,9},{10,8},{2,7},{3,9}];

V13:=[1..10];

54



E13:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,1},{1,7},{2,7},{3,8},{4,8},{4,9},{5,9},{5,10},

{10,6},{7,10},{7,8},{8,9},{9,10},{7,9}];

V14:= [1..8];

E14:= [{1,2},{2,3},{3,4},{4,5},{5,6},{6,1},{1,7},{6,7},{7,8},{2,8},{8,5},{8,4}];

V15:=[1..9];

E15:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,1},{1,9},{2,9},{8,9},{2,4},{9,5},

{6,8},{2,6}];

V16:=[1..8];

E16:=[{1,2},{2,3},{3,4},{4,1},{5,6},{6,7},{7,8},{8,5},{1,5},{5,4},{4,8},{3,7},{2,6},

{2,7},{5,7}];

V17:=[1..8];

E17:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,1},{2,8},{8,6},{6,4},{4,2}];

V18:=[1..7];

E18:=[{1,2},{2,3},{3,4},{4,5},{5,6},{1,6},{1,7},{2,7},{6,7},{7,5},{2,4}];

V19:=[1..9];

E19:=[{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{1,8},{2,8},{8,6},{6,4},{4,2},{2,9},{8,9},

{6,9},{4,9}];

V20:=[1..7];

E20:=[{1,2},{2,3},{3,4},{1,4},{1,5},{4,5},{5,6},{1,6},{5,7},{6,7},{4,7},{7,3},{2,7},{2,6}];

/////////////////////////////////////////////////////////////////////

cycle := function(V,E,p)

L := {{e,f}: e,f in E | #(e meet f) eq 1};

L := [SetToSequence(a): a in L];

repeat

n:= #(L[1]);

L := [a cat [f]: a in L, f in E | (a[n] diff (a[n] meet a[n-1])) subset f and f notin a];

if L eq [] then break;

end if;

until #(L[1]) eq p;

L1:= [a: a in L | a[1] diff (a[1] meet a[2]) eq a[p] diff (a[p] meet a[p-1])];

L2:= [a : a in L1 | #(&join(a)) eq p];

L3:= {SequenceToSet(a): a in L2};

L4:= [SetToSequence(b): b in L3];

m:= #(L4);

for a in [1..m] do

S:= [s: s in L2 | SequenceToSet(s) eq SequenceToSet(L4[a])];

L4[a]:= S[1];

end for;

return L4;

end function;

///////////////////////////////////////////////////

allodd:= function(V,E)

d:= #(V);

S:= [a: a in [3..d] | IsOdd(a)];

W := [];

for a in S do

W:= W cat cycle(V,E,a);

end for;

return W;

end function;

//////////////////////////////////////////////////
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oddpair:= function(V,E)

C:= allodd(V,E);

D := {{e,f}: e,f in C | &join(e) meet &join(f) eq {}};

D1:= [SetToSequence(a): a in D];

return D1;

end function;

////////////////////////////////////////////////////

chord:= function(V,E,C)

Ver:= &join(C);

L:= [e: e in E | Max(e) in Ver and Min(e) in Ver and e notin C];

return L;

end function;

///////////////////////////////////////////////////

bridge := function(V,E,P)

Ver1:= &join(P[1]);

Ver2:= &join(P[2]);

L := [e: e in E| (Max(e) in Ver1 and Min(e) in Ver2) or (Max(e) in Ver2 and Min(e) in Ver1)];

return L;

end function;

//////////////////////////////////////////////////////////////

evenwalk1:= function(b,C)

p:= #(C);

b1:= Min(b);

b2:= Max(b);

D1:= [a: a in [1..p] | b1 in C[a]];

if AbsoluteValue(D1[1]-D1[2]) gt 1 then C1:= C;

else

k1:= Min(D1);

C1:= Rotate(C,p-k1);

end if;

D2:= [a: a in [1..p] | b2 in C1[a]];

b3:= Min(D2);

if IsOdd(b3) then

L:= [C1[i]: i in [1..b3]] cat [b];

else L := [C1[i]: i in [b3+1..p]] cat [b];

end if;

return L;

end function;

//////////////////////////////////////////////////////////////

evenwalk2:= function(b,F)

C1:= F[1]; C2:= F[2];

p1:= #(C1); p2:= #(C2);

D1:= [i: i in [1..p1] | #(b meet C1[i]) eq 1];

if AbsoluteValue(D1[1] - D1[2]) gt 1 then C11:= C1;

else a:= Min(D1);

C11:= Rotate(C1,p1-a);

end if;

D2:= [j: j in [1..p2] | #(b meet C2[j]) eq 1];

if AbsoluteValue(D2[1]- D2[2]) gt 1 then C21:= C2;

else c:= Min(D2);

C21:= Rotate(C2,p2-c);

end if;

C3:= C11 cat [b] cat C21 cat [b];

return C3;

end function;
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///////////////////////////////////////////////////////////////////

times:= function(e,C)

m:= #(C);

L:= [a: a in C | a eq e];

return #(L);

end function;

////////////////////////////////////////////////////////////////

sign:= function(V,E,f)

n:= #(E);

p:= #(f);

F1:= [f[i]: i in [1..p] | IsEven(i)];

F2 := [f[i]: i in [1..p] | IsOdd(i)];

E1:= [j: j in [1..n] | E[j] in F1];

E2:= [j: j in [1..n] | E[j] in F2];

B := [0*i: i in [1..n]];

for i in [1..n] do

if i in E1 then B[i]:= times(E[i],f); end if;

if i in E2 then B[i]:= -1; end if;

end for;

B1:= [-x: x in B];

return B1;

end function;

//////////////////////////////////////////////////////

bij:= function(V,E)

X:= [];

OP:= oddpair(V,E);

p:= #(OP);

for i in [1..p] do

C1:= OP[i][1]; C2:= OP[i][2];

T:= bridge(V,E,OP[i]);

S1:= chord(V,E,C1);

S2:= chord(V,E,C2);

A:= [evenwalk2(t,OP[i]): t in T];

B1 := [evenwalk1(s,C1): s in S1];

B2 := [evenwalk1(s,C2): s in S2];

X:= X cat [A cat B1 cat B2];

end for;

return X;

end function;

//////////////////////////////////////////////////////

bij2:= function(V,E)

OP:= oddpair(V,E);

p:= #(OP);

X:= [];

for i in [1..p] do

C1:= OP[i][1]; C2:= OP[i][2];

T:= bridge(V,E,OP[i]);

//S1:= chord(V,E,C1);

//S2:= chord(V,E,C2);

A:= [evenwalk2(t,OP[i]): t in T];

//B1 := [evenwalk1(s,C1): s in S1];

//B2 := [evenwalk1(s,C2): s in S2];

X:= X cat [A];

end for;

return X;

end function;
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///////////////////////////////////////////////////////////////

fhm := function(V,E)

P := oddpair(V,E);

if P eq [] then

return "no odd pairs";

end if;

P1:= [a: a in P | #(bridge(V,E,a)) eq 0];

if P1 eq [] then

return "fFHM"; ///

else return "not FHM";

end if;

end function;

/////////////////////////////////////////////////

main := function(V,E)

n:= #(E);

A:= bij(V,E);

p:= #(A);

B :=[ #(A[i]) : i in [1..p]];

b:= &*(B);

"set of vertices = ", V;

"array of edges = ", E;

"number of edges=", n;

"number of pairs=", p;

"array of the number of even closed walks= ", B;

"number of cones= ", b;

C:= [[sign(V,E,A[i][j]): j in [1..B[i]]]: i in [1..p]];

if p eq 1 then

print "only one pair";

end if;

D:= CartesianProduct(C);

counter := 0;

c:= 0;

for x in D do

y:= [x[i]: i in [1..p]];

z:= Dimension(ConeWithInequalities(y));

c:= c+1;

c,z;

if z eq n then

counter := 1;

break;

end if;

end for;

if counter eq 0 then return "empty";

else F:= ConeWithInequalities(y);

L := {};

for j in [1..p] do

for k in [1..n] do

if y[j][k] eq -2 then L := L join {k};

end if;

end for;

end for;

M1:= [0*i: i in [1..p]];

for j in [1..p] do

M1[j]:= &+[-y[j][k]: k in L];

end for;

M2:= [0*i: i in [1..p]];

for j in [1..p] do

M2[j]:= &+[AbsoluteValue(y[j][k]): k in L];
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end for;

print y, Dimension(F), "non-empty";

print "inner product =", M1;

print "inner product (absolute value) =", M2;

F1:= MinimalRGenerators(F);

w:= &+(F1);

w1:= ElementToSequence(w);

m:= Min(w1);

if m gt 0 then w2:= w1;

else w2:= [x-m+1: x in w1];

end if;

"inner point weight= ";w2;

return w2;

end if;

end function;

/////////////////////////////////////////////////////////////

bmain4 := function(V,E)

n:= #(E);

A:= bij2(V,E);

p:= #(A);

B :=[ #(A[i]) : i in [1..p]];

b:= &*(B);

"number of edges=", n;

"number of pairs=", p;

"array of the number of even closed walks= ", B;

"number of cones= ", b;

C:= [[sign(V,E,A[i][j]): j in [1..B[i]]]: i in [1..p]];

///if p eq 1 then

///return "only one pair";

///end if;

D:= CartesianProduct(C);

counter := 0;

for x in D do

y:= [x[i]: i in [1..p]];

L := {};

for j in [1..p] do

for k in [1..n] do

if y[j][k] eq -2 then L := L join {k};

end if;

end for;

end for;

L := SetToSequence(L);

counter2 := 0;

for j in [1..p] do

d:= &+[AbsoluteValue(y[j][k]): k in L];

if d ge 4 then counter2 := 1;

break;

end if;

end for;

if counter2 eq 0 then counter:= 1;

break;

end if;

end for;

M := [0*k: k in [1..n]];

for j in L do

M[j]:= -1;

end for;

M:= [m+2 : m in M];

if counter eq 0 then return "no bridge cones";

else F:= ConeWithInequalities(y);
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print y, Dimension(F), "non-empty";

"standard weight vector=";M;

M1:= [0*i: i in [1..p]];

for j in [1..p] do

M1[j]:= &+[-y[j][k]: k in L];

end for;

M2:= [0*i: i in [1..p]];

for j in [1..p] do

M2[j]:= &+[AbsoluteValue(y[j][k]): k in L];

end for;

print "inner product=", M1;

print "inner product (absolute value) =", M2;

return M;

end if;

end function;

////////////////////////////////////////////////////////////////////

bmain3 := function(V,E)

n:= #(E);

A:= bij2(V,E);

p:= #(A);

B :=[ #(A[i]) : i in [1..p]];

b:= &*(B);

"number of edges=", n;

"number of pairs=", p;

"array of the number of even closed walks= ", B;

"number of cones= ", b;

C:= [[sign(V,E,A[i][j]): j in [1..B[i]]]: i in [1..p]];

///if p eq 1 then

///return "only one pair";

///end if;

D:= CartesianProduct(C);

counter := 0;

for x in D do

y:= [x[i]: i in [1..p]];

L := {};

for j in [1..p] do

for k in [1..n] do

if y[j][k] eq -2 then L := L join {k};

end if;

end for;

end for;

L := SetToSequence(L);

M:= [0*i: i in [1..p]];

for j in [1..p] do

M[j]:= &+[AbsoluteValue(y[j][k]): k in L];

end for;

counter2 := 0;

counter3:= 0;

for j in [1..p] do

d:= &+[AbsoluteValue(y[j][k]): k in L];

if d ge 5 then counter2 := 1;

break;

end if;

if d eq 4 then counter3:= counter3 +1;

end if;

end for;

if (counter2 eq 0) and (counter3 le 2) then counter:= 1;

break;

end if;
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end for;

if counter eq 0 then return "no bridge cones";

else F:= ConeWithInequalities(y);

print y, Dimension(F), "non-empty";

M1:= [0*i: i in [1..p]];

for j in [1..p] do

M1[j]:= &+[-y[j][k]: k in L];

end for;

M2:= [0*i: i in [1..p]];

for j in [1..p] do

M2[j]:= &+[AbsoluteValue(y[j][k]): k in L];

end for;

print "inner product =", M1;

print "inner product (absolute value) =", M2;

F1:= MinimalRGenerators(F);

w:= &+(F1);

w1:= ElementToSequence(w);

m:= Min(w1);

if m gt 0 then w2:= w1;

else w2:= [x-m+1: x in w1];

end if;

"inner point weight= ";w2;

return w2;

end if;

end function;

///////////////////////////////////////////////////////

bmain2 := function(V,E)

n:= #(E);

A:= bij2(V,E);

p:= #(A);

B :=[ #(A[i]) : i in [1..p]];

b:= &*(B);

"number of edges=", n;

"number of pairs=", p;

"array of the number of even closed walks= ", B;

"number of cones= ", b;

C:= [[sign(V,E,A[i][j]): j in [1..B[i]]]: i in [1..p]];

///if p eq 1 then

///return "only one pair";

///end if;

D:= CartesianProduct(C);

counter := 0;

for x in D do

y:= [x[i]: i in [1..p]];

L := {};

for j in [1..p] do

for k in [1..n] do

if y[j][k] eq -2 then L := L join {k};

end if;

end for;

end for;

L := SetToSequence(L);

counter2 := 0;

for j in [1..p] do

d:= &+[-y[j][k]: k in L];

if d le 0 then counter2 := 1;

break;

end if;

end for;
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if counter2 eq 0 then counter:= 1;

break;

end if;

end for;

L1:= [0*k: k in [1..n]];

for k in L do

L1[k]:= -1;

end for;

L2:= [x+2: x in L1];

if counter eq 0 then return "no bridge cones";

else F:= ConeWithInequalities(y);

print y, Dimension(F), "non-empty";

"standard weight vector=";L2;

M1:= [0*i: i in [1..p]];

for j in [1..p] do

M1[j]:= &+[-y[j][k]: k in L];

end for;

M2:= [0*i: i in [1..p]];

for j in [1..p] do

M2[j]:= &+[AbsoluteValue(y[j][k]): k in L];

end for;

print "inner product =", M1;

print "inner product（absplute value) =", M2;

return L2;

end if;

end function;

///////////////////////////////////////////////////////

bmain1 := function(V,E)

n:= #(E);

A:= bij2(V,E);

p:= #(A);

B :=[ #(A[i]) : i in [1..p]];

b:= &*(B);

"number of edges=", n;

"number of pairs=", p;

"array of the number of even closed walks= ", B;

"number of cones= ", b;

C:= [[sign(V,E,A[i][j]): j in [1..B[i]]]: i in [1..p]];

///if p eq 1 then

///return "only one pair";

///end if;

D:= CartesianProduct(C);

counter := 0;

for x in D do

y:= [x[i]: i in [1..p]];

L := {};

for j in [1..p] do

for k in [1..n] do

if y[j][k] eq -2 then L := L join {k};

end if;

end for;

end for;

L := SetToSequence(L);

M:= [0*i: i in [1..p]];

for j in [1..p] do

M[j]:= &+[-y[j][k]: k in L];

end for;

counter2 := 0;
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counter3:= 0;

for j in [1..p] do

d:= &+[-y[j][k]: k in L];

if d lt 0 then counter2 := 1;

break;

end if;

if d eq 0 then counter3:= counter3 +1;

end if;

end for;

if (counter2 eq 0) and (counter3 le 2) then counter:= 1;

break;

end if;

end for;

if counter eq 0 then return "no bridge cones";

else F:= ConeWithInequalities(y);

print y, Dimension(F), "non-empty";

M1:= [0*i: i in [1..p]];

for j in [1..p] do

M1[j]:= &+[-y[j][k]: k in L];

end for;

M2:= [0*i: i in [1..p]];

for j in [1..p] do

M2[j]:= &+[AbsoluteValue(y[j][k]): k in L];

end for;

print "inner product =", M1;

print "inner product（absolute value) =", M2;

F:= ConeWithInequalities(y);

F1:= MinimalRGenerators(F);

w:= &+(F1);

w1:= ElementToSequence(w);

m:= Min(w1);

if m gt 0 then w2:= w1;

else w2:= [x-m+1: x in w1];

end if;

"inner point weight= ";w2;

return w2;

end if;

end function;

/////////////////////////////////////////////////////////////////////////

initial := function(V,E,w)

Q := RationalField();

d:= #(V);

n:= #(E);

print "number of vertices= ", d; print "number of edges = ", n;

P1<[x]>:= PolynomialRing(Q,n,"grevlexw",w);

P2<[t]>:= PolynomialRing(Q,d);

L := [(P2 ! 0) * k: k in [1..n]];

for i in [1..n] do

a:= Max(E[i]); b := Min(E[i]);

L[i]:= t[a]*t[b];

end for;

f:= hom <P1 -> P2 | L>;

K := AffineAlgebraMapKernel(f);

K1:= GroebnerBasis(K);

LM:= [LeadingMonomial(x): x in K1];

print "initial ideal = ", LM;

A:= [0,1];

X:= CartesianPower(A,n);

Y:= [z: z in X];

L := [];

for z in Y do

C:= [x[i]^(z[i]): i in [1..n]];

63



m:= &*(C);

///D:= [x: x in LM | LCM(x,m) eq m];

///if D eq [] and TotalDegree(m) eq d then L:= L cat [m];

///else L := L cat [];

///end if;

///end for;

D:= [x: x in LM | LCM(x,m) eq m];

if D eq [] then L:= L cat [m];

else L := L cat [];

end if;

end for;

M := [TotalDegree(x): x in L];

m:= Max(M);

if d ne m then print "something is wrong";

else M1:= [m: m in L | TotalDegree(m) eq d];

end if;

print "number of maximal simplices=", #(M1);

print "array of maximal simplices of the regular unimodular triangulation=";

return M1;

end function;

//////////////////////////////////////////

toric := function(V,E)

d:= #(V);

n:= #(E);

Q := RationalField();

P1<[x]>:= PolynomialRing(Q,n);

P2<[t]>:= PolynomialRing(Q,d);

L := [(P2 ! 0) * k: k in [1..n]];

for i in [1..n] do

a:= Max(E[i]); b := Min(E[i]);

L[i]:= t[a]*t[b];

end for;

f:= hom <P1 -> P2 | L>;

K := AffineAlgebraMapKernel(f);

return K;

end function;
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[14] T. Hibi, Ed., Gröbner Bases: Statistics and Software Systems, Springer, 2013.

[15] G. L. Nemhauser and L. E. Trotter, Jr., Properties of vertex packing and inde-
pendence system polyhedra, Math. Programming 6 (1974), 48–61.

[16] H. Ohsugi, Unimodular Regular Triangulations of (0,1)-Polytopes Associated
with Finite Graphs, Algebraic Engineering (C.L. Nehaniv and M. Ito, Eds.),
World Scientific, Singapore, 1999, 159–171.

[17] H. Ohsugi, Toric ideals and an infinite family of normal (0,1)-polytopes without
unimodular regular triangulations, Discrete and Computational Geometry 27
(2002), 551–565.

[18] H. Ohsugi and T. Hibi, Normal polytopes arising from finite graphs, J. Algebra
207 (1998), 409–426.

[19] H. Ohsugi and T. Hibi, A normal (0,1)-polytope none of whose regular tri-
angulations is unimodular, Discrete and Computational Geometry 21 (1999),
201–204.

[20] H. Ohsugi and T. Hibi, Compressed polytopes, initial ideals and complete mul-
tipartite graphs, Illinois Journal of Mathematics 44 (2000), 391–406.

[21] H. Ohsugi and T. Hibi, Special simplices and Gorenstein toric rings, J. Combin.
Theory Ser. A 113 (2006), 718–725.

[22] H. Ohsugi and T. Hibi, Centrally symmetric configurations of integer matrices,
Nagoya Math. J. 216 (2014), 153–170.

[23] J. Schepers and L. Van Langenhoven, Unimodality questions for integrally
closed lattice polytopes, Ann. Comb. 17 (2013), 571–589.

[24] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons,
Ltd., Chichester, 1986.

[25] A. Simis, W. V. Vasconcelos, R. V. Villarreal, The integral closure of subrings
associated to graphs, J. Algebra 199 (1998), 281–289.

[26] R. P. Stanley, Enumerative Combinatorics Volume 1 second edition, Wadsworth
& Brook, Monterey, Wadsworth & Brooks/Cole Math Series, 1986.

[27] R. P. Stanley, Two poset polytopes, Discrete Comput. Geom. 1 (1986), 9–23.

66



[28] A. Stapledon, Inequalities and Ehrhart δ-vectors, Trans. Amer. Math. Soc. 361
(2009), 5615–5626.
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