
Title Fluid-based Analysis and Simulation of Internet
Congestion Control Mechanisms

Author(s) Sakumoto, Yusuke

Citation 大阪大学, 2010, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/698

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Fluid-based Analysis and Simulation

of Internet Congestion Control Mechanisms

July 2010

Yusuke SAKUMOTO

Fluid-based Analysis and Simulation

of Internet Congestion Control Mechanisms

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2010

Yusuke SAKUMOTO

List of Publications

Journal Papers

1. Satoshi Hasegawa, Yuske Sakumoto, Mirai Wakabayashi, Hiroyuki

Ohsaki, and Makoto Imase, “Delay performance analysis on ad-hoc

delay tolerant broadcast network,” IEICE Transactions on Communica-

tions Special Section on Ad Hoc and Mesh Networking for Next Generation

Access Systems, vol. E92-B, pp. 728–739, May 2009.

2. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Stability

analysis of XCP (eXplicit Control Protocol) with heterogeneous flows,”

IEICE Transactions on Communications, vol. E92-B, pp. 3174–3182, Oc-

tover 2009.

3. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Improving

robustness of XCP (eXplicit Control Protocol) for dynamic traffic,” re-

submited to IEICE Transactions on Communications, June 2010. (Con-

ditionally Accepted)

4. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Effective-

ness of Thorup’s Shortest Path Algorithm for Large-Scale Network

Simulation,” submited to IEICE Transactions on Communications, June

2010.

i

Refereed Conference Papers

1. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “On XCP

stability in a heterogeneous network,” in Proceedings of 12th IEEE Sym-

posium on Computers and Communications(ISCC’07), pp. 531–537, July

2007.

2. Yusuke Sakumoto, Ryouta Asai, Hiroyuki Ohsaki, and Makoto Imase,

“Design and implementation of flow-level simulator for performance

evaluation of large scale networks,” in Proceedings of 15th Annual Meet-

ing of the IEEE International Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunication Systems (MASCOTS 2007),

pp. 166–172, Octover 2007.

3. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Increasing

robustness of XCP (eXplicit Control Protocol) for dynamic traffic,” in

Proceedings of 50th IEEE Global Telecommunications Conference (GLOBE-

COM 2007), pp. 2025–2030, November 2007.

4. Takeaki Nishioka, Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto

Imase, “Design and implementation of flow-level simulator for a net-

work with heterogeneous flows,” in Proceedings of 9th Annual Interna-

tional Symposium on Applications and the Internet (SAINT 2009), pp. 78–

84, July 2009.

5. Shinpei Kuribayashi, Yuske Sakumoto, Satoshi Hasegawa, Hiroyuki

Ohsaki, and Makoto Imase, “Performance evaluation of broadcast

communication protocol DSCF (Directional Store-Carry-Forward) for

VANETs with two-dimensional road model,” in Proceedings of IEEE

ii

International Workshop on Vehicular Communications, Networks, and Ap-

plications (VCNA 2009), pp. 615–619, December 2009.

6. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “On the ef-

fectiveness of thorup’s shortest path algorithm for large-scale net-

work simulation,” to be presented at the First Workshop on High Speed

Network and Computing Environments for Scientific Applications (HSNCE

2010), July 2010.

Non-Refereed Technical Papers

1. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Stability

Analysis of XCP Connections with Different Propagation Delays,”

Proceedings of IEICE General Conference 2006, pp. 164, March 2006 (in

Japanese).

2. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Stability

Analysis of Transport Protocol XCP for High-speed Networks,” Tech-

nical Report of IEICE (IN2006-29), pp. 73–78, 2006 June (in Japanese).

3. Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase, “Proposal

of a Technique for Improving Robustness of Data Transfer Protocol

XCP,” Technical Report of IEICE (IN2006-91), pp. 13–18, November

2006 (in Japanese).

4. Ryouta Asai, Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase,

“Design and Implementation of Flow-Level Simulator for Large Scale

Network Analysis,” Proceedings of IEICE General Conference 2007, pp.

108, March 2007 (in Japanese).

iii

5. Ryouta Asai, Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto Imase,

Makoto IMASE, “Design and Implementation of Flow-Level Simula-

tor for Performance Evaluation of Large Scale Networks,” Technical

Report of IEICE (IN2006-230), pp. 297–302, March 2007 (in Japanese).

6. Takeaki Nishioka, Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto

Imase, “A Flow-Level Network Simulator Supporting Both Long-lived

and Short-Lived TCP Flows,” Proceedings of IEICE General Conference

2008, pp. 215, March 2008 (in Japanese).

7. Takeaki Nishioka, Yusuke Sakumoto, Hiroyuki Ohsaki, and Makoto

Imase, “Design and Implementation of Flow-Level Simulator for a

Network with Heterogeneous Flows,” Technical Report of IEICE (IN2008-

37), pp. 65–70, July 2008 (in Japanese).

8. Shinpei Kuribayashi, Yusuke Sakumoto, Satoshi Hasegawa, Hiroyuki

Ohsaki, and Makoto Imase, “Characteristic Analysis of a Broadcast

Communication Mechanism with Delay Tolerance for VANET,” Tech-

nical Report of IEICE (IN2009-05), pp. 19–24, May 2009 (in Japanese).

iv

Preface

In recent years, the scale of the Internet has been expanding rapidly. Be-

cause of widespread deployment and rapid advancement of Internet tech-

nologies, the number of hosts connected to the Internet and the capacity

of the Internet have been increasing exponentially. Such explosive expan-

sions of the Internet in both size and speed make it difficult to understand

behavior of cogestion control mechanisms. Hence, performance evaluation

technique of congestion control mechanisms for a large-scale network has

been demanded by many networking researchers.

Application of mathematical analysis to performance evaluation of a

large-scale network has been a hot topic among network researchers. In the

past, a variety of research has been performed with regard to performance

evaluation techniques for networks using mathematical analysis techniques.

However, the networks in question are mostly small-scale.

On the other hand, several researchers try to enable simulation for a

large-scale network, but there still remain several issues to be solved. Packet-

level simulator has been widely used by many networking researchers.

Packet-level simulator mimics behavior of every packet in a network. For

instance, packet-level simulator simulates packet arrivals at a router and

packet departures from a router. An advantage of packet-level simula-

v

tor includes its accuracy. Since packet-level simulator simulates behavior

of every packet, packet-level performance metrics can be measured with

packet-level simulator. On the contrary, a disadvantage of packet-level sim-

ulator is its inability to simulate large-scale networks. This is because the

time complexity increases as the size and/or speed of a simulated network

increases.

Fluid-based approaches of Internet congestion control mechanisms have

been actively studied by many researchers. Essentially, fluid-based ap-

proaches approximate a series of packets as a flow, which enables appli-

cation of mathematical analsysis and simulation such as differential equa-

tions and their numerical solutions. One of the noticeable features of fluid-

based approaches is its analytical tractability as well as its powerfulness for

accurate modeling of dynamical systems. The anothor noticeable features

of fluid-based approaches mimics the flow-level behavior of the network.

Flow-level bevaivior is lower granularity compared with packet-level be-

haivior.

In this thesis, to realize analysis and simulation of Internet congestion

control mechanisms for large-scale networks, we tackle the issues with

fluid-based approaches. Since fluid-based approaches have an excellent

balance for detail and scalability, we expect that mathematical analysis and

simulation of Internet congestion control mechanisms in large-scale net-

work can be performed by utilizing fluid-based approaches. One of the

noticeable features of fluid-based approaches is its analytical tractability

as well as its powerfulness for accurate modeling of dynamical systems.

Specifically, the following challenges are tackled.

First, we analyze the stability of XCP in a network with heterogeneous

XCP flows (i.e., XCP flows with different propagation delays). Specifically,

vi

we model a network with heterogeneous XCP flows using fluid-flow ap-

proximation. We then derive the conditions that XCP control parameters

should satisfy for stable XCP operation.

Next, we propose an XCP-IR (XCP with Increased Robustness) that op-

erates efficiently for dynamic XCP and non-XCP traffic. XCP-IR prevents

instability of the XCP control caused by non-XCP traffic dynamics while

preventing loss of the bottleneck link utilization caused by XCP traffic dy-

namics. We analyze stability and transient state performance of XCP-IR

using the analytic approach.

Thirdly, we propose a flow-level simulator called FSIM (Fluid-based

SIMulator) for performance evaluation of large-scale networks, and verify

its effectiveness using our FSIM implementation. The notable feature of

our flow-level simulator FSIM is fast simulation execution compared with

a conventional flow-level simulator. For accelerating simulation execution,

our flow-level simulator FSIM adopts an adaptive numerical computation

algorithm for ordinary differential equations. Another features of our flow-

level simulator FSIM are accuracy and compatibility with an existing net-

work performance analysis tool. For improving simulation accuracy, our

flow-level simulator FSIM utilizes accurate fluid-flow models.

Finally, we investigate the effectiveness of Thorup’s algorithm for large-

scale network simulation. One of challenges toward realization of large-

scale network simulation is efficient execution of shortest-path routing. The

time complexity for solving a single-source shortest path (SSSP) problem

using Dijkstra’s algorithm with a binary heap is O((E + N) logN). An

efficient linear time algorithm called Thorup’s algorithm with the time com-

plexity of O(E + N) has been proposed. Through extensive experiments

with our implementations of Thorup’s and Dijkstra’s algorithms, we com-

vii

pare the performance (i.e., the execution time and memory consumption)

of those algorithms.

viii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor,

Professor Makoto Imase of Osaka University. He has been carefully advis-

ing me for seven years since I had joined his laboratory. He always leads

me in the right direction by his sophisticated thinking. His advice and com-

ments have enabled me to grow up.

I would like to express my gratitude to Professor Hirotaka Nakano,

Professor Teruo Higashino, Professor Koso Murakami, Professor Masayuki

Murata of Osaka University for their valuable comments and advice, and

reviewing my thesis. Especially, I would like to express my deepest appre-

ciation to Professor Masayuki Murata for his advice and suggestion when

I started research activity.

I would like to give heartfelt thanks to Associate Professor Hiroyuki

Ohsaki. He has been actual advisor for my research works. I could not con-

duct my research works without his support and leadership. When I was

worried about something, he always gave me a helping hand with tender

toughness. What I have learned from him would become very valuable in

my life.

I am thankful to Dr. Hideyuki Shimonishi, Principle Researcher, NEC

Co., Ltd, for his valuable comments. His comments raise the quality of my

ix

research.

I would like to very grateful to Dr. Satoshi Hasegawa, President, Techno-

Edge Co., Ltd., for teaching me the life for a member of society.

I wish to express to thank to Associate Professor Harumasa Tada of

Kyoto University of Education and Assistant Professor Osamu Honda of

Onomichi University for their support when I was a master course student.

Special thanks to all laboratory members for support. Specifically, I

would like to thank to Assistant Professor Yuki Koizumi for his right ad-

vice. I thank to Sho Tsugawa, Takamichi Nishijima, Keiichiro Tsukamoto,

Keita Shigemori and Shinpei Kuribayashi for their warm encouragement.

Finally, I would like to greatly appreciated to my wife, Kana, my par-

ents, Kazue and Taeko, my grandmother, Tomoko, and my sister, Chie for

their heartily help and support on my work.

Without all of these, I could not complete this work.

x

Contents

List of Publications i

Preface v

Acknowledgements ix

Contents xi

List of Figures xv

List of Tables xxiii

1 Introduction 1

1.1 Background . 1

1.2 Internet Congestion Control Mechanisms 4

1.3 Fluid-based Analysis and Simulation 5

1.4 Outline of Thesis . 7

2 Stability Analysis of XCP (eXplicit Control Protocol) with Hetero-

geneous Flows 13

2.1 XCP (eXplicit Control Protocol) 13

2.2 Modeling with Fluid-Flow Approximation 17

xi

2.3 Stability Analysis . 21

2.4 Numerical Examples and Simulation Results 24

2.4.1 Experimental design 24

2.4.2 Effect of propagation delays 25

2.4.3 Effect of variation in propagation delays 27

2.5 Summary . 31

3 Improving Robustness of XCP (eXplicit Control Protocol) for Dy-

namic Traffic 37

3.1 XCP (eXplicit Control Protocol) 37

3.1.1 Overview . 37

3.1.2 XCP problems for dynamic traffic 39

3.2 XCP-IR (XCP with Increased Robustness) 41

3.2.1 Basic ideas . 41

3.2.2 XCP-IR algorithm . 43

3.3 Performance evaluation using synthetic traffic dynamics . . 47

3.3.1 Stability and transient state performance 48

3.3.2 Robustness for XCP traffic dynamics 51

3.3.3 Robustness for non-XCP traffic dynamics 54

3.4 Performance evaluation using realistic traffic dynamics . . . 55

3.4.1 Robustness for realistic XCP traffic dynamics 55

3.4.2 Robustness for realistic TCP traffic dynamics 57

3.5 Summary . 59

4 Design and Implementation of Flow-Level Simulator FSIM for

Performance Evaluation of Large Scale Networks 69

4.1 Related Works . 69

4.2 FSIM (Flow-level SIMmulator) 71

xii

4.2.1 Fluid-flow models . 71

4.2.2 Adaptive numerical computation algorithm 75

4.2.3 Routing . 76

4.2.4 Compatibility with existing performance evaluation

tools . 77

4.3 Experiments . 77

4.3.1 Experimental setup . 77

4.3.2 Accuracy . 81

4.3.3 Simulation speed . 81

4.3.4 Memory consumption 88

4.4 Summary . 91

5 Effectiveness of Thorup’s Shortest Path Algorithm for Large-Scale

Network Simulation 95

5.1 Thorup’s Algorithm . 95

5.2 Experiment . 98

5.2.1 Methodology . 98

5.2.2 Speed . 100

5.2.3 Memory Consumption 104

5.2.4 Cause of Camel-Shaped Function 105

5.2.5 Estimating Relative Execution Time 110

5.2.6 Discussion . 112

5.3 Summary . 114

6 Conclusion 117

Bibliography 121

xiii

List of Figures

2.1 Overview of XCP congestion control algorithm; a router cal-

culates the amount of window size increase/decrease for a

source host, and it then notifies the source host of the calcu-

lated value as explicit feedback. 14

2.2 Analytic model; heterogeneous XCP flows with different prop-

agation delays share the single bottleneck. 18

2.3 Stability region of XCP control parameters (α β) for different

settings of two-way propagation delays (τ1, τ2); the stabil-

ity region in a heterogeneous case is larger than that in the

homogeneous case. 26

2.4 Simulation results with the control parameters of P1 = (0.9, 0.2);

the window size of an XCP flow in flow class 1 is stable re-

gardless of the two-way propagation delays (τ1, τ2). 28

2.5 Simulation results with the control parameters of P2 = (1.2, 0.2);

the window size of an XCP flow in flow class 1 is unstable

for (τ1, τ2) = (10, 10), (20, 20). 29

xv

2.6 Simulation results with the control parameters of P3 = (1.5, 0.2);

the window size of an XCP flow in flow class 1 is stable only

when the two-way propagation delays (τ1, τ2) are set to (10,

30). 30

2.7 Stability region of XCP control parameters (α β) for differ-

ent numbers of XCP flows in each flow class (N1, N2); the

stability region is smallest when (N1, N2) = (15, 5). 31

2.8 Maximum modulus of eigenvalues of the state transition ma-

trix B for τ1 = 10 [ms], N2 = 1, and (α,β) = (0.4,0.226); the op-

eration of XCP becomes unstable when the number of XCP

flows in flow class 1, N1, reaches around 100 for τ2 = 200 [ms]. 32

2.9 Evolution of the window size of an XCP flow in flow class 1

for τ1 = 10 [ms] and (α, β) = (0.4, 0.226); XCP flows in flow

class 1 are stable regardless of the two-way propagation de-

lay τ2 of flow class 2. Maximum throughput are 4.00 [Mbit/s]

for τ2 = 100 [ms] and 200 [ms]. 33

2.10 Evolution of the window size of an XCP flow in flow class

2 for τ1 = 10 [ms] and (α, β) = (0.4, 0.226); XCP flows in

flow class 2 become unstable when the two-way propaga-

tion delay τ2 of flow class 2 is large. Maximum throughput

are 4.00 [Mbit/s] for τ2 = 100 [ms] and 200 [ms]. 34

2.11 Evolution of the queue length of the XCP router for τ1 =

10 [ms] and (α, β) = (0.4, 0.226); The XCP router becomes un-

stable when the two-way propagation delay τ2 of flow class

2 is large. 35

xvi

3.1 Time evolution of bottleneck link utilization when changing

the number of active XCP flows at t = 4 and 8; the bottle-

neck link utilization degrades significantly when XCP flows

terminate their transfers at t = 8. 40

3.2 Time evolution of queue length at XCP router when trans-

mitting non-XCP (UDP) traffic; the queue length of the XCP

router becomes large as the amount of non-XCP traffic in-

creases. 42

3.3 Time evolution of bottleneck link utilization when changing

the number of active XCP flows at t = 4 and 8; XCP-IR com-

pletely prevents degradation of the bottleneck link utiliza-

tion caused by XCP traffic dynamics. 45

3.4 Time evolution of queue length at XCP-IR router when trans-

mitting non-XCP (UDP) traffic; XCP-IR succeeds to control

the queue length regardless of the average transfer rate of

UDP traffic. 46

3.5 Network topology used in simulation; multiple XCP flows

and the single UDP flow share the single bottleneck link. . . 48

3.6 Stability region when XCP flow starts data transfers (XCP

control is stable when (α, β) is under the boundary line);

both XCP and XCP-IR operate stably with the recommended

parameter configuration of (0.4, 0.226). 49

3.7 Settling time of window size when an XCP flow starts its

data transfer; the settling time of the window size is a con-

cave function for the target value of queue length QT 51

3.8 Synthetically generated XCP traffic dynamics; the number of

active XCP flows are synthetically changed during simulation. 52

xvii

3.9 Bottleneck link utilization for a different target value QT with

synthetic XCP traffic dynamics; XCP-IR always shows higher

bottleneck link utilization than XCP. 53

3.10 Time evolution of the bottleneck link utilization with XCP,

XCP-IR(QT = 2, 000 [packet]), and XCP-IR(QT = 2, 600 [packet])

for τ = 25 [ms] and C = 50 [packet/ms] 60

3.11 Synthetically generated UDP traffic dynamics; the average

transfer rate of UDP traffic is changed during simulation. . . 61

3.12 Time evolutions of queue lengths with XCP and XCP-IR (QT

= 0 and 2,000 [packet]) for τ = 25 [ms] and C = 50 [packet/ms];

XCP-IR can control the queue length around the target value

QT . 61

3.13 Bottleneck link utilization for a different C and τ ; the bot-

tleneck link utilization with XCP-IR is approximately 10%

higher than that with XCP. 62

3.14 Time evolution of the number of active XCP flows for τ =

25 [ms] and C = 6.25 [packet/ms] 62

3.15 Average Round-trip time of all XCP flows for a different C

and τ ; the average round-trip time of all XCP flows gradu-

ally increases when QT increases. 63

3.16 Average throughput of all Web flows for a different C and τ ;

the average throughput of all Web flows is a convex function

for the target value of queue length QT 63

3.17 Average throughput of all P2P flows for a different C and

τ ; the average throughput of all P2P flows with XCP-IR is

approximately 200% higher than that with XCP. 64

xviii

3.18 Time evolution of the bottleneck link utilization with XCP,

XCP-IR(QT = 150 [packet]), and XCP-IR(QT = 300 [packet])

for τ = 25 [ms] and C = 6.25 [packet/ms] when generating

realistic XCP traffic . 65

3.19 Time evolutions of queue lengths with XCP, XCP-IR (QT =

0 [packet]), and XCP-IR (QT = 600 [packet]) for τ = 25 [ms]

and C = 6.25 [packet/ms]; the queue length of XCP drasti-

cally oscillates, whereas the queue length of XCP-IR is stabi-

lized and minimized. 66

3.20 Time evolutions of the window size with XCP for τ = 25 [ms]

and C = 6.25 [packet/ms] . 67

3.21 Bottleneck link utilization for a different buffer size of the

XCP router; the bottleneck link utilization with XCP is low

when the buffer size of the XCP router is small. 67

3.22 Throughput of the XCP flow for a different buffer size of the

XCP router; the throughput of the XCP flow with XCP is low

when the buffer size of the XCP router is small. 68

3.23 Round-trip time of the XCP flow for a different buffer size

of the XCP router; the round-trip time of the XCP flow with

XCP is very large when the buffer size of the XCP router is

large. 68

4.1 Dumb-bell network . 78

4.2 A random network with 20 nodes 79

4.3 Hierarchical network . 80

4.4 Time average of TCP packet transmission rates vs. the link

bandwidth . 82

xix

4.5 Relative error of the time average of TCP packet transmis-

sion rates vs. the link bandwidth 83

4.6 Time average of the queue length vs. the link bandwidth . . 84

4.7 Simulation execution time vs. the number of TCP flows . . . 85

4.8 Simulation execution time vs. the bottleneck link bandwidth 86

4.9 Simulation execution time vs. the number of nodes in the

random network . 87

4.10 Simulation execution time vs. the number of nodes in the

hierarchical network . 88

4.11 Maximum memory consumption vs. the number of TCP flows 89

4.12 Maximum memory consumption vs. the bottleneck link band-

width . 90

4.13 Maximum memory consumption vs. the number of nodes in

a random network . 91

4.14 Maximum memory consumption vs. the number of nodes in

a hierarchical network . 92

5.1 Recursive partitions for an example graph 97

5.2 Component tree for an example graph 98

5.3 Execution times of THORUP-KL and DIJKSTRA-BH for ob-

taining all-pairs shortest paths for the average degree k = 5

and multiple edge weights of 1–1000. 101

5.4 Relative execution time (i.e., the execution time of THORUP-

KL normalized by that of DIJKSTRA-BH) for different aver-

age degrees k and types of edge weights. 102

5.5 Relative execution time for different network topology. . . . 103

xx

5.6 Memory consumptions of THORUP-KL and DIJKSTRA-BH

for the average degree k = 5 and multiple edge weights of

1–1000. 106

5.7 Relative execution times with and without the memory cache

for the average degree k = 5 and multiple edge weights of

1–1000. 107

5.8 L1 cache miss rate of THORUP-KL and DIJKSTRA-BH for

the average degree k = 5, 10 and multiple edge weights of

1–1000. 108

5.9 L2 cache miss rate of THORUP-KL and DIJKSTRA-BH for

the average degree k = 5, 10 and multiple edge weights of

1–1000. 109

5.10 Measured and estimated relative execution times with the

memory cache for the average degrees k = 5, 10 and multi-

ple edge weights of 1–1000. 112

xxi

List of Tables

2.1 The definition of symbols . 19

2.2 The parameter configuration use in numerical examples and

simulation results . 24

3.1 Parameters used in simulation 48

4.1 Definitions of symbols (constants and variables) 72

5.1 Measured CPI time, access time and cache miss penalty . . . 111

5.2 System specifications . 111

xxiii

Chapter 1

Introduction

1.1 Background

In recent years, the scale of the Internet has been expanding rapidly. Be-

cause of widespread deployment and rapid advancement of Internet tech-

nologies, the number of hosts connected to the Internet and the capacity

of the Internet have been increasing exponentially [1-3]. Such explosive

expansions of the Internet in both size and speed make it difficult to under-

stand behavior of cogestion control mechanisms [4-6]. Hence, performance

evaluation technique of congestion control mechanisms for a large-scale

network has been demanded by many networking researchers [7, 8].

Performance evaluation techniques for communication networks are

classified into three categories: mathematical analysis, simulation, and ex-

periment [9].

Mathematical analysis is a technique for performance evaluation uti-

lizing a mathematical model of the network under study. Mathematical

analysis is generally suitable for analyzing characteristics of a congestion

control mechanism as a feedback-based control system, such as stability

1

and transient performance.

Simulation is a common technique for performance evaluation utiliz-

ing computers. In simulation, computer models of building blocks of the

network under study are built, and behavior of those building blocks are

simulated [9]. Compared with mathematical analysis, simulation can be

applied to performance evaluation of rather complicated networks.

Experiment is a technique for performance evaluation utilizing a real

system [9]. In experiment, the network under study is constructed using

real devices and computers. Although experiment enables detailed perfor-

mance evaluation, it generally lacks flexibility and also requires significant

amount of cost for building the real system. For performance evaluation

of a large-scale network, experiment requires a number of network devices

and computers, making it unrealistic to apply to a large-scale network.

Considering cost required for performance evaluation, mathematical

analysis and simulation are reasonable approaches for performance eval-

uation of congestion control mechanisms in large-scale networks.

Application of mathematical analysis to performance evaluation of a

large-scale network has been a hot topic among network researchers [10,

11]. In the past, a variety of research has been performed with regard to

performance evaluation techniques for networks using mathematical anal-

ysis techniques. However, the networks in question are mostly small-scale.

On the other hand, several researchers try to enable simulation for a

large-scale network [12], but there still remain several issues to be solved.

Packet-level simulator has been widely used by many networking researchers.

Packet-level simulator mimics behavior of every packet in a network [13].

For instance, packet-level simulator simulates packet arrivals at a router

and packet departures from a router. An advantage of packet-level simula-

2

tor includes its accuracy [14]. Since packet-level simulator simulates behav-

ior of every packet, packet-level performance metrics can be measured with

packet-level simulator. On the contrary, a disadvantage of packet-level sim-

ulator is its inability to simulate large-scale networks. This is because the

time complexity increases as the size and/or speed of a simulated network

increases [14].

Fluid-based approaches of Internet congestion control mechanisms have

been actively studied by many researchers [15-18]. Essentially, fluid-based

approaches approximate a series of packets as a flow, which enables appli-

cation of mathematical analsysis and simulation such as differential equa-

tions and their numerical solutions. One of the noticeable features of fluid-

based approaches is its analytical tractability as well as its powerfulness for

accurate modeling of dynamical systems. The anothor noticeable features

of fluid-based approaches mimics the flow-level behavior of the network.

Flow-level behaivior is lower granularity compared with packet-level be-

haivior.

Using fluid-based approaches, application of mathematical analysis and

simulation to performance evaluation of congestion control mechanisms in

a large-scale network become possible. However, fluid-based approaches

are still immature so that several issues must be solved for applying to

fluid-based analyis of complex network protocols such as Internet conges-

tion control mechanisms for high-speed networks, and develpping the ef-

ficient numerical computation algorithm.

3

1.2 Internet Congestion Control Mechanisms

TCP (Transmission Control Protocol) has being widely used in the Inter-

net to carry data traffic [19]. There are various versions of TCP, and the

most popular ones are TCP version Reno (TCP Reno) and its variants [20].

Several problems of TCP Reno have been reported such as its inability to

support rapidly increasing speeds of recent networks [21-23].

One of the serious problems with TCP Reno is that a large number of

packets sent into the network are discarded. This problem is caused by

inability of source hosts to detect congestion before some packets are lost,

and large delay for source hosts to detect congestion when the round-trip

time between end hosts is large. Since the scale and the speed of network

is continuously increasing, it is expected that the performance of TCP Reno

would be further degraded due to an increased number of packet losses

before source hosts’ congestion detection.

For solving problems of TCP Reno in a high-speed and wide-area net-

work, many congestion control mechanisms (router-assistent congestion

control mechanism) using explicit feedback from a router to end hosts are

proposed [24-27]. Compared with TCP Reno, these protocols perform ef-

ficient congestion control between end hosts with the aid of routers. As a

router-assisted congestion control mechanism, XCP (eXplicit Control Pro-

tocol) has been proposed [24, 28]. XCP is a sort of window-based flow

control mechanisms. An XCP router periodically calculates the amount of

window size increase/decrease for a source host, and notifies source hosts

of it as explicit feedback. With such explicit feedback, an XCP source host

can quickly and appropriately respond to congestion status of the network.

A router-assisted congestion control mechanism has advantage and dis-

4

advantage. An end-to-end congestion control mechanism estimates a con-

gestion status of a network only using the information that can obtain at the

end host. On the other hand, a router-assisted congestion control mecha-

nism estimates a congestion status of a network utilizing feedback infor-

mation from routers. An advantage of router-assisted congestion control

mechanisms is ability to accurately control the congestion compared with

end-to-end congestion control mechanisms. Hence, it is expected that a

router-assisted congestion control mechanism realizes high performance

compared with end-to-end congestion control mechanisms. A disadvan-

tage of router-assisted congestion control mechanisms is needed to replace

routers in the network. Researches for incremental deployment of XCP

have been performed [24, 28, 29]. By utilizing these research results, it is

possible to deploy XCP. To realize high performance in a large-scale net-

work, it would be better to actively utilize the feedback information from

a router like router-assisted congestion control mechanisms. Therefore, we

focus on the router-assisted congestion control mechanism XCP.

1.3 Fluid-based Analysis and Simulation

There exist a few analytical studies on XCP, all of which used fluid-flow

approximation [24, 15, 30, 16]. In [24, 15], by assuming an identical prop-

agation delay for all XCP flows, stability of XCP has been analyzed. The

authors of [24] have derived a sufficient condition for XCP control param-

eters to stabilize XCP’s operation. By extending the analytic model in [24],

the authors of [15] have shown that operation of XCP becomes unstable

when the available bandwidth of an XCP router’s output link is varied.

The authors of [30] have analyzed stability of XCP using a Lyapunov func-

5

tion. In [30], the authors mention possibility of extending their stability

analysis to handle heterogeneous XCP flows, but the details are not pre-

sented. In [16], steady state performance of XCP in a tandem network (i.e.,

a network with multiple routers and heterogeneous flows) has been an-

alyzed. Specifically, the authors of [16] have derived throughput of XCP

flows in steady state, and have shown that fairness among XCP flows is

significantly degraded unless control parameters of an XCP router are con-

figured appropriately. Although multiple XCP flows are modeled in [16]

for analyzing fairness among XCP flows, stability of XCP has not been in-

vestigated.

Flow-level simulator mimics behavior of every flow in a network [31].

For instance, packet arrivals at a router and packet departures from a router

are aggregated as a flow (i.e., a series of packets) in flow-level simulator.

Since flow-level behavior is lower granularity compared with packet-level

behavior, flow-level simulator has the following advantage and disadvan-

tage. An advantage of flow-level simulator is small time complexity com-

pared with packet-level simulator. Hence, it is expected that flow-level sim-

ulator can simulate a large-scale network, where the number of in-flight

packets is enormous. On the contrary, disadvantages of flow-level simu-

lator are (1) low accuracy compared with packet-level simulator, and (2)

inability to measure packet-level performance metrics. Therefore, the ap-

plication region of flow-level simulator is restricted to the network that a

highly accurate fluid-flow approximation model can be build, and it is suf-

ficient to measure flow-level performance metrics for evaluate performance

of.

Flow-level simulation can be utilized to measure the flow level perfor-

mance metrics of a large-scale network to be hardly simulated by packet-

6

level simulator. In particular, if the target network to simulate by flow-level

simulator is a wired network, it may expect to realize highly accurate sim-

ulation by using the fluid-flow approximation model studied so far. More-

over, since many of packets transfered in a wired network are data packets,

in the performance evaluation of a wired network, measuring flow-level

performance metrics (e.g., throughput and round-trip time), which it is im-

portant for data transfer, is often sufficient. Therefore, flow level simulator

would be sufficient to evaluate the performance of a large-scale wired net-

work.

1.4 Outline of Thesis

In this thesis, to realize analysis and simulation of Internet congestion con-

trol mechanisms for large-scale networks, we tackle the issues with fluid-

based approaches. Since fluid-based approaches have an excellent balance

for detail and scalability, we expect that mathematical analysis and simula-

tion of Internet congestion control mechanisms in large-scale network can

be performed by utilizing fluid-based approaches. One of the noticeable

features of fluid-based approaches is its analytical tractability as well as its

powerfulness for accurate modeling of dynamical systems. Specifically, the

following challenges are tackled.

Stability Analysis of XCP (eXplicit Control Protocol) with Hetero-

geneous Flows [32-34]

In Chapter 2, we analyze the stability of XCP in a network with hetero-

geneous XCP flows (i.e., XCP flows with different propagation delays).

Specifically, we model a network with heterogeneous XCP flows using fluid-

7

flow approximation. We then derive the conditions that XCP control pa-

rameters should satisfy for stable XCP operation.

Through several numerical examples and simulation results, we quan-

titatively investigate effect of system parameters and XCP control parame-

ters on stability of the XCP protocol. Our findings include: (1) when XCP

flows are heterogeneous, XCP operates more stably than the case when

XCP flows are homogeneous, (2) conversely, when variation in propagation

delays of XCP flows are large, operation of XCP becomes unstable, and (3)

the output link bandwidth of an XCP router is independent of stability of

the XCP protocol.

The primary contribution in this chapter is to mathematically reveal

stability properties of the XCP protocol with heterogeneous flows.

Improving Robustness of XCP (eXplicit Control Protocol) for Dy-

namic Traffic [35-37]

In Chapter 3, we propose an XCP-IR (XCP with Increased Robustness) that

operates efficiently for dynamic XCP and non-XCP traffic. XCP-IR prevents

instability of the XCP control caused by non-XCP traffic dynamics while

preventing loss of the bottleneck link utilization caused by XCP traffic dy-

namics.

In Chapter 3, we analyze stability and transient state performance of

XCP-IR using the analytic approach in Chapter 2. We evaluate the effec-

tiveness of XCP-IR through extensive simulations. Through investigation

of both steady state and transient state performances, we show that XCP-IR

operates efficiently even for dynamic traffic.

8

Design and Implementation of Flow-Level Simulator FSIM for Per-

formance Evaluation of Large Scale Networks [38]

In Chapter 4, we propose a flow-level simulator called FSIM (Fluid-based

SIMulator) for performance evaluation of large-scale networks, and verify

its effectiveness using our FSIM implementation. The notable feature of

our flow-level simulator FSIM is fast simulation execution compared with

a conventional flow-level simulator [39]. For accelerating simulation exe-

cution, our flow-level simulator FSIM adopts an adaptive numerical com-

putation algorithm for ordinary differential equations. Another features of

our flow-level simulator FSIM are accuracy and compatibility with an ex-

isting network performance analysis tool. For improving simulation accu-

racy, our flow-level simulator FSIM utilizes accurate fluid-flow models [40].

Also, the flow-level simulator FSIM can input and output files compatible

with ns-2 [13], which is one of the most popular packet-level simulators.

In Chapter 4, through extensive experiments using our FSIM imple-

mentation, we evaluate the effectiveness of our flow-level simulator FSIM

in terms of simulation speed, accuracy and memory consumption. Conse-

quently, we show that our flow-level simulator FSIM outperforms a con-

ventional flow-level simulator; i.e., it realizes approximately 200%-300%

faster simulation with higher accuracy and less memory consumption than

a conventional flow-level simulator.

Effectiveness of Thorup’s Shortest Path Algorithm for Large-Scale

Network Simulation [41, 42]

Since one of the challenges toward realization of large-scale network simu-

lation is efficient execution of shortest-path routing (e.g., static routing) [43-

9

45], in Chapter 5, we investigate the effectiveness of Thorup’s algorithm for

a large-scale network simulation.

All network simulators require some type of routing to be performed

during its simulation. Network simulators generally use a solution for a

single-source shortest path (SSSP) problem for static routing. For instance,

one of the most popular network simulators, ns-2 [13], uses Dijkstra’s al-

gorithm with a binary heap (hereafter referred to as DIJKSTRA-BH) [46,

47]. With static routing, ns-2 first obtains shortest paths for all source–

destination node pairs.

The time complexity of DIJKSTRA-BH is O((E+N) logN) where N and

E are the number of vertices and edges in a graph [46, 47]. Since network

simulators usually need to obtain shortest paths for all source–destination

node pairs, network simulators consume significant amount of time just for

static routing [43].

An efficient solution for a single-source shortest path problem called

Thorup’s algorithm has been proposed [48]. The original Thorup’s algorithm

(hereafter THORUP-FR) uses Fredman’s algorithm [49] for obtaining the

minimum spanning tree. THORUP-FR is a linear time algorithm with the

time complexity of O(E +N). A simplified version of Thorup’s algorithm

(hereafter THORUP-KL), which uses Kruskal’s algorithm [50] for obtaining

the minimum spanning tree, is also discussed in [48]. The time complexity

of THORUP-KL is O(E α(N) +N) where α(N) is the functional inverse of

the Ackerman function [47].

Comparison of time complexities of Thorup’s and Dijkstra’s algorithms

suggests that Thorup’s algorithm seems to be more efficient than Dijkstra’s

for, in particular, large-scale network simulation. However, to the best of

our knowledge, effectiveness of Thorup’s algorithm compared with Dijk-

10

stra’s algorithm for large-scale network simulation has not been fully in-

vestigated.

The objective of this chapter is therefore to investigate the effectiveness

of Thorup’s algorithm by comparing with Dijkstra’s, and to answer the

following questions.

1. How efficiently/inefficiently does Thorup’s algorithm perform com-

pared with Dijkstra’s for large-scale (e.g., million nodes) network sim-

ulation?

2. How and why does the practical performance of Thorup’s and Dijk-

stra’s algorithms deviate from their time complexities (i.e., theoretical

performance)?

In the pioneering work by Asano et al. [51], it has been reported that

practical efficiency of THORUP-FR is considerably lower than that of Dijk-

stra’s algorithm with a Fibonatti heap (hereafter DIJKSTRA-FH) [52]. DIJKSTRA-

FH has a better amortized running time than DIJKSTRA-BH [46]. In [51],

the authors have investigated the performance of THORUP-FR (i.e., the

original Thorup’s algorithm) using their implementation for medium-scale

random graphs with 50,000 vertices. Even with the linear time complex-

ity of THORUP-FR, the authors have shown that THORUP-FR is at least

10 times slower than DIJKSTRA-FH. The authors explain that their imple-

mentation of THORUP-FR is very slow due to the time for constructing the

minimum spanning tree with Fredman’s algorithm [51].

In this chapter, we intentionally use THORUP-KL (i.e., a simplified ver-

sion of Thorup’s algorithm) with the time complexity of O(E α(N) +N).

Through extensive experiments with our implementations of THORUP-

KL and DIJKSTRA-BH, we compare their performances (i.e., the execution

11

time and memory consumption). Our findings include that (1) THORUP-

KL is almost always faster than DIJKSTRA-BH for large-scale network sim-

ulation, and (2) the performances of THORUP-KL and DIJKSTRA-BH de-

viate from their time complexities due to the existence of memory cache in

the microprocessor.

12

Chapter 2

Stability Analysis of XCP

(eXplicit Control Protocol) with

Heterogeneous Flows

2.1 XCP (eXplicit Control Protocol)

In this section, the congestion control algorithm of XCP is briefly summa-

rized. Refer to [24] for details of the XCP algorithm.

In XCP, congestion information is exchanged between a source host and

a router using congestion header in a packet. An overview of the XCP conges-

tion control using the congestion header of a packet is illustrated in Fig. 2.1.

XCP is a sort of window-based flow control mechanisms. In XCP, a

router calculates the amount of window size increase/decrease for a source

host, and it then notifies the source host of the calculated value as explicit

feedback. The congestion header of a packet stores information on a source

host and a router: e.g., the window size and the estimated round-trip time

13

Figure 2.1: Overview of XCP congestion control algorithm; a router calcu-
lates the amount of window size increase/decrease for a source
host, and it then notifies the source host of the calculated value
as explicit feedback.

of the source host, and the amount of window-size increase/decrease (i.e.,

feedback value) calculated by the router.

At the time of packet transmission, a source host stores its estimated

round-trip time, its current window size, and the initial value of the feed-

back value (i.e., the amount of window size increase requested by the source

host) in the congestion header of the packet. This enables the XCP router

to know the status of the source host.

When the packet arrives at an XCP router, the router calculates a feed-

back value based on the information stored in the congestion header of

the packet. The router overwrites the feedback value in the congestion

header of the packet with the calculated feedback value, if the feedback

value stored in the congestion header is larger than the calculated feedback

value. The XCP router then forwards the packet to its downstream router.

14

Once the packet arrives at a destination host, the destination host re-

turns an ACK (ACKnowledgement) packet to the source host. At this time,

the congestion header of the data packet is copied to the congestion header

of the ACK packet. This makes it possible for the source host to know the

congestion information of XCP routers by way of the destination host.

Finally, when the source host receives the ACK packet, the feedback

value stored in the congestion header of the ACK packet is added to the

current window size of the source host.

In what follows, we explain how an XCP router calculates a feedback

value (i.e., the amount of increase/decrease of the window size of a source

host).

The control mechanism of an XCP router is composed of efficiency con-

troller, which tries to maximize utilization of the router, and fairness con-

troller, which tries to realize fairness among competing XCP flows. The

efficiency controller and the fairness controller are invoked every average

round-trip time of all XCP flows. The efficiency controller calculates the

total amount of rate increase/decrease for all XCP flows. The fairness con-

troller then calculates the amount of rate increase/decrease for each XCP

flow. An XCP router calculates a feedback value based on the amount of

rate increase/decrease calculated by the fairness controller and informa-

tion stored in the congestion header of arriving packets. In what follows,

algorithms of the efficiency controller and the fairness controller are briefly

explained.

The efficiency controller calculates the aggregate feedback value φ (i.e.,

the total amount of rate increase/decrease for all XCP flows) from the packet

15

arrival rate at the XCP router and the current queue length as

φ = αdS − β Q, (2.1)

where d is the average round-trip time of XCP flows accommodated in the

XCP router, S is the available bandwidth of the link (i.e., the output link

bandwidth excluding the current packet arrival rate), Q is the minimum

queue length observed during the average round-trip propagation time,

and α and β are control parameters of the XCP router.

The fairness controller distributes the aggregate feedback value φ to all

XCP flows. The fairness controller realizes fairness among XCP flows by

performing an AIMD (Additive Increase and Multiplicative Decrease) con-

trol. Namely, if φ ≥ 0, the fairness controller allocates φ so that the increase

in throughput of all XCP flows is the same. On the contrary, if φ < 0,

the fairness controller allocates φ so that the decrease in throughput of a

XCP flow is proportional to its current throughput. Specifically, the fairness

controller calculates ξp and ξn, which are used for calculating the feedback

value.

ξp =
h+ [φ]+

d
∑N

m=1
rttm sm

wm

(2.2)

ξn =
h+ [−φ]+

d T
(2.3)

In the above equations, N is the number of packets arrived at the XCP

router during the average round-trip time, and T is the total size of packets

arrived during the average round-trip time.

Also, wm and rttm are the window size and the estimated round-trip

time stored in the congestion header of the m-th packet of N packets ar-

16

rived during the average round-trip time, and sm is the packet size of the

m-th packet. Note that [x]+ ≡ max(x, 0).

In Eq. (2.3), h is called shuffle traffic, and is determined by

h = [γ T − |φ|]+ , (2.4)

where γ is a control parameter of an XCP router.

Finally, an XCP router calculates the feedback value Hfeedback for the

m-th packet as

Hfeedback = ξp
rtt2m sm
wm

− ξn rttm sm. (2.5)

2.2 Modeling with Fluid-Flow Approximation

In this chapter, we model a network with heterogeneous XCP flows with

different propagation delays (i.e., XCP flows traversing links with different

propagation delays) sharing the single bottleneck link as a discrete-time

system (Fig. 2.2). XCP flows are classified into flow classes, in which XCP

flows have the identical propagation delay. In our analysis, dynamics of

transfer rates from XCP flows and the queue length of an XCP router are

modeled as discrete-time models with slot length of ∆. The definition of

symbols used throughout our analysis is summarized in Tab. 2.1.

In this chapter, we focus on the stability of XCP in a network with a

single XCP router, rather than in a tandem network. We believe that it is

possible to extend our analytic approach to a tandem network with mul-

tiple XCP routers, but it is beyond the scope of this chapter. It should be

noted that the operation of XCP may become unstable in a tandem network

17

XCP
router

XCP senderN1

NM

α β γ

τ1

τΜ

C

N2
τ2

A

q

r1

r2

rM

XCP sender

XCP sender

XCP reciever

XCP reciever

XCP receiver

XCP
router

Figure 2.2: Analytic model; heterogeneous XCP flows with different prop-
agation delays share the single bottleneck.

when many XCP flows are frequently activated and/or deactivated [53].

The main purpose of this chapter is, however, to investigate the effect of

heterogeneous flow on the stability of the XCP protocol.

In what follows, using a fluid-based modeling approach, we derive a

detailed model of a network with heterogeneous XCP flows.

First, we model dynamics of the transfer rate of an XCP flow. In our

analysis, we assume: (a) all XCP flows with the same propagation delay

synchronize, (b) all XCP source hosts always have data to transfer, (c) sizes

of all packets are equal, (d) the window size of a source host is changed only

by receiving the feedback value from XCP routers (i.e., effect of timeouts

triggered by a large number of packet losses are negligible), and (e) the

round-trip time of an XCP flow is equal to its two-way propagation delay.

Since an XCP router performs the same congestion control for all XCP

flows with the same round-trip time (see Eq. (2.5)), the assumption (a) is

reasonable. Moreover, since XCP is mainly used for transferring a large

amount of data in a high-speed network, assumptions (b) through (d) should

be appropriate. The assumption (e) is reasonable since the control objective

of an XCP router is to minimize its queue length, resulting negligible queu-

18

Table 2.1: The definition of symbols
M the number of flow classes
Ni the number of XCP flows in flow class i
∆ slot length
ri transfer rate of XCP flows in flow class i
τi two-way propagation delay of XCP flows in flow class i
d average round-trip time of all XCP flows
s packet size
T the total size of packets arrived during the average

round-trip time
q current queue length of XCP router
φ aggregate feedback of XCP router
h shuffle traffic of XCP router
A packet arrival rate at XCP router
C output link bandwidth of XCP router
α XCP control parameter
β XCP control parameter
γ XCP control parameter

ing delay at the router buffer. Note that in our analysis, all XCP flows are

assumed to start their transmissions simultaneously from an initial state.

Hence, the queue length of the XCP router is not likely to be overloaded,

which validates the assumption (e).

The transfer rate and the two-way propagation delay of XCP flows in

flow class i are denoted by ri and τi, respectively. Moreover, the number

of XCP flows in flow class i is denoted by Ni. Then, the packet arrival rate

A at an XCP router and the average round-trip time d of all XCP flows are

given by

A =
M∑

i=1

Ni ri, (2.6)

d =

∑M
i=1Ni τi∑M
i=1Ni

. (2.7)

Since
∑N

m=1 rttm sm/wm $ d
∑M

i=1Ni in Eq. (2.2) [16] and T $ Ad, ξp

19

and ξn (Eqs. (2.2) and (2.3)) are given by

ξp =
h+ [φ]+

d2
∑M

i=1Ni
, (2.8)

ξn =
h+ [−φ]+

d2A
. (2.9)

In the above equations, the aggregate feedback value φ and the shuffle traf-

fic h are given by Eqs. (2.1) and (2.4) as

h = [γ dA− |φ|]+, (2.10)

φ = αd (C −A)− β q, (2.11)

where q is the current queue length of the XCP router, and C is the output

link bandwidth of the XCP router.

From Eqs. (2.8) and (2.9), the feedback value Hfeedbacki for XCP flows in

flow class i is given by

Hfeedbacki =
h+ [φ]+

d2
∑M

j=1Nj

τi s

ri
− h+ [−φ]+

d2A
τi s. (2.12)

Hence, at the time of ACK packet reception, the amount of change in the

transfer rate of XCP flows in flow class i is given by

Hfeedbacki

τi
=

h+ [φ]+

d2
∑M

j=1Nj

s

ri
− h+ [−φ]+

d2A
s. (2.13)

The transfer rate of XCP flows in flow class i and the current queue

length of the XCP router at slot k are denoted by ri(k) and q(k), respectively.

Without loss of generality, we assume that the propagation delay from a

source host to the XCP router is zero, and that the propagation delay from

the XCP router to source hosts by way of the destination hosts is τi. The

20

information stored in the congestion header of the ACK packet received

by a source host at slot k is k − τi/∆ slots old. Moreover, the number of

ACK packets that a source host receives during the slot length ∆ can be

approximated by ri(k − τi/∆)∆/s. Thus, from Eq. (2.13), the transfer rate

of XCP flows in flow class i at (k + 1)-th slot is given by

ri(k + 1) $ ri(k) + ∆
h(k − τi

∆) + [φ(k − τi
∆)]+

d2
∑M

j=1Nj

−∆
ri(k − τi

∆)
(
h(k − τi

∆) + [−φ(k − τi
∆)]+

)

d2A(k − τi
∆)

. (2.14)

Next, we model the dynamics of the queue length of an XCP router.

Letting q(k) be the current queue length of the XCP router at slot k, the

current queue length q(k + 1) at slot k + 1 is approximately given by

q(k + 1) $






q(k) + ∆ (A(k)− C) if q(k) > 0

q(k) + ∆ [A(k)− C]+ if q(k) = 0
. (2.15)

2.3 Stability Analysis

In what follows, using the fluid-flow model of XCP derived in Section 2.2,

we analyze the stability (local asymptotic stability) of XCP around its equi-

librium point using the same analytic approach with [54]. In what follows,

equilibrium values of the transfer rate ri(k) and the current queue length

q(k) are denoted by r∗i and q∗, respectively. First, we linearize the fluid-flow

model defined by Eqs. (2.14) and (2.15) at its equilibrium point. The aggre-

gate feedback value φ(k) and the current queue length q(k) are discontinu-

ous at the equilibrium point (i.e., φ∗ = 0 and q∗ = 0). For alleviating such

a discontinuity problem, we introduce the following approximation for a

21

sufficiently small ∆.

[f(x+∆)]+ − [f(x)]+

∆
$ 1

2

f(x+∆)− f(x)

∆
(2.16)

Thereby, Eqs. (2.14) and (2.15) can be approximated as

ri(k + 1) $ ri(k) + ∆
h(k − τi

∆) + φ(k − τi
∆)/2

d2
∑M

j=1Nj

−∆
ri(k − τi

∆)
(
h(k − τi

∆)− φ(k − τi
∆)/2

)

d2A(k − τi
∆)

, (2.17)

and

q(k + 1) $ q(k) +
∆ (A(k)− C)

2
. (2.18)

Equations (2.17) and (2.18) suggest that state variables at slot k + 1 are

determined by state variables from k − ν (ν ≡ max1≤i≤M τi/∆) to slot k.

Furthermore, we linearize Eq. (2.17) around its equilibrium point as

ri(k + 1) $
M∑

m=1

ν∑

n=0

∂ri(k + 1)

∂rm(k − n)
{rm(k − n)− r∗m}

+
ν∑

n=0

∂ri(k + 1)

∂q(k − n)
{q(k − n)− q∗} . (2.19)

We introduce a state vector x(k) that is composed of differences be-

22

tween each state variable at slot k, . . . , k − ν and their equilibrium values.

x(k) =





r1(k) − r∗1
...

r1(k − ν) − r∗1
...

rM (k) − r∗M
...

rM (k − ν) − r∗M

q(k) − q∗

...

q(k − ν) − q∗





(2.20)

The relation between x(k) and x(k + 1) can be represented using a state

transition matrix B as

x(k + 1) = Bx(k). (2.21)

Note that the state transition matrix B is independent of the slot k. If x(k)

converges to the zero vector for k → ∞, the system is stable. Otherwise,

the system is unstable. The state transition matrix B determines the stabil-

ity of the system. Let λi(1 ≤ i ≤ (M + 1) (ν + 1)) be the eigenvalues of

the state transition matrix B. The maximum absolute value of eigenvalues

(i.e., maximum modules) determines the stability around its equilibrium

point. It is known that the system is stable if the maximum modulus is less

than unity [55]. Namely, if the maximum modulus is less than unity, x(k)

converges to the zero vector for k → ∞.

23

Table 2.2: The parameter configuration use in numerical examples and sim-
ulation results

C 400 [Mbit/s]
τ1 10 [ms]
τ2 20 [ms]
N1 10
N2 10
γ 0.1

2.4 Numerical Examples and Simulation Results

2.4.1 Experimental design

In this section, through several numerical examples and simulation results,

we investigate the effect of system parameters and XCP control parameters

on stability of XCP protocol. Due to space limitation, in what follows, only

results in the case of two flow classes (M = 2) are shown. Unless explicitly

stated, the parameter configuration shown in Tab. 2.2 is used. The slot

length is set to ∆ = min(τ1, τ2).

After examining various numerical examples of our stability analysis

in Section 2.3, we found that the control parameter γ is hardly affected

stability of the XCP protocol. In this chapter, we therefore focus only on

the effect of control parameters α and β. 1

Also, we found that the output link bandwidth C of an XCP router did

not affect stability of the XCP protocol. Although the proof is not shown

in this chapter due to space limitation, independence of the output link

bandwidth C from stability of the XCP protocol can be confirmed from the

fact that expansion of Eq. (2.19) eliminates all C’s. This phenomenal finding

will be confirmed through simulation experiments in Section 2.4.2.

1Note that it is shown in [16] that the control parameter γ does affect efficiency of the
XCP router and fairness among XCP flows.

24

2.4.2 Effect of propagation delays

First, the effect of propagation delays of XCP flows on stability of the XCP

protocol is investigated. Figure 2.3 shows stability regions of XCP control

parameters (α β) for different settings of two-way propagation delays : i.e.,

(τ1, τ2) = (10, 10), (20, 20), (10, 20), and (10, 30) [ms]. The stability region is a

region surrounded by the boundary line in the figure, and the vertical and

the horizontal axes. XCP operates stably only when XCP control parame-

ters (α, β) lie in the stability region. Note that in Fig. 2.3, boundary lines for

(τ1, τ2) = (10, 10) and (20, 20) are almost identical.

In the following simulations, all XCP flows are activated simultane-

ously at t = 0. Note that staggered activation of XCP flows, instead of

simultaneous activation, does not affect the stability of the XCP protocol if

the activation interval of consecutive XCP flows is larger than the average

round-trip time.

Figure 2.3 indicates that the stability region in a heterogeneous case

(i.e., when two-way propagation delays τ1 and τ2 are different) is larger

than that in the homogeneous case (i.e., when two-way propagation de-

lays τ1 and τ2 are identical). This phenomenon can be explained by de-

synchronization of XCP flows with different propagation delays; i.e., when

XCP flows have different propagation delays, variation in the transfer rate

of an XCP flow is likely to be canceled by those of other XCP flows. More-

over, Fig. 2.3 indicates that in homogeneous cases (i.e., when two-way prop-

agation delays of all XCP flows are identical) the stability region is indepen-

dent of two-way propagation delays τ1 and τ2.

From these observations, we conclude that when XCP flows are het-

erogeneous, XCP operates more stably than the case when XCP flows are

25

Figure 2.3: Stability region of XCP control parameters (α β) for different set-
tings of two-way propagation delays (τ1, τ2); the stability region
in a heterogeneous case is larger than that in the homogeneous
case.

homogeneous.

We then examine the accuracy of our approximate analysis. We choose

three settings of control parameters (α, β) : P1 = (0.9, 0.2), P2 = (1.2, 0.2),

and P3 = (1.5, 0.2) as shown in Fig. 2.3. For each control parameters setting,

we perform simulation using ns-2 simulator for the same topology with

Fig. 2.2. These control parameters settings are chosen to examine validity

of our approximate analysis. For instance, if our stability analysis is valid,

simulation results with P2 should be stable for (τ1, τ2) = (10, 20), (10, 30)

and unstable for (τ1, τ2) = (10, 10), (20, 20). In all simulations, all XCP flows

are activated at 0 [s], the initial window size is set to 1 [packet], and the

network topology shown in Fig. 2.2 is used.

Simulation results for control parameters settings P1, P2, and P3 are

26

shown in Figs. 2.4 through 2.6, respectively. These figures show evolution

of the window size of an XCP flow in flow class 1 for different settings of

two-way propagation delays: i.e., (τ1, τ2) = (10, 10), (20, 20), (10, 20), and

(10, 30). For each simulation result, stability of XCP is determined using a

simple criterion — whether the window size of an XCP flow at the end of

simulation is within ± 5% of its average value.

These simulation results are in agreement with our analytic results. For

instance, the stability region shown in Fig. 2.3 indicates that, with the con-

trol parameters of P2 = (1.2, 0.2), the operation of XCP flows is unstable for

(τ1, τ2) = (10, 10) and (20, 20), and is stable for (τ1, τ2) = (10, 20) and (10, 30).

Simulation results shown in Fig. 2.5 clearly show that the operation of XCP

flows is unstable for (τ1, τ2) = (10, 10) and (20, 20). Similar tendency can

be observed for other control parameters P1 = (0.9, 0.2) and P3 = (1.5, 0.2).

From these observations, we confirm validity of our approximate analysis.

Figures 2.4 through 2.6 include simulation results for (τ1, τ2) = (10, 20)

with a large output link bandwidth C = 800 [Mbit/s]. One can find from

these figures that stability of the XCP protocol is not affected by the output

link bandwidth. As we have discussed in Section 2.4.1, these results coin-

cide with our finding; i.e., the independence of the output link bandwidth

C from stability of the XCP protocol.

2.4.3 Effect of variation in propagation delays

Next, the effect of variation in propagation delays of XCP flows on stability

of the XCP protocol is investigated. In this chapter, CV(Coefficient of Vari-

ation) is used to measure variation in propagation delays, which is defined

27

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

W
in

do
w

 s
iz

e
[p

ac
ke

t]

Time [s]

τ1=τ2=10 [ms]
τ1=τ2=20 [ms]

τ1=10 [ms] τ2=20 [ms]
τ1=10 [ms] τ2=30 [ms]

C=800[Mbit/s]

Figure 2.4: Simulation results with the control parameters of P1 = (0.9, 0.2);
the window size of an XCP flow in flow class 1 is stable regard-
less of the two-way propagation delays (τ1, τ2).

by

CV =
1

d

√√√√
∑M

i=1(τi − d)2
∑M

i=1Ni
. (2.22)

Figure 2.7 shows stability regions of XCP control parameters (α β) for

different numbers of XCP flows in each flow class: i.e., (N1, N2) = (5, 15),

(10, 10), and (15, 5). In this figure, propagation delays of XCP flows, τ1 and

τ2, are set to 10 [ms] and 20 [ms], respectively.

Figure 2.7 shows that the stability region is smallest when (N1, N2) = (15,

5); i.e., when the number of XCP flows in flow class 1 is larger than that in

flow class 2. This phenomenon can be explained as follows. As explained

in Section 2.1, both the efficiency controller and the fairness controller are

invoked every average round-trip time of XCP flows. When there exist

28

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

W
in

do
w

 s
iz

e
[p

ac
ke

t]

Time [s]

τ1=τ2=10 [ms]
τ1=τ2=20 [ms]

τ1=10 [ms] τ2=20 [ms]
τ1=10 [ms] τ2=30 [ms]

C=800 [Mbit/s]

Figure 2.5: Simulation results with the control parameters of P2 = (1.2, 0.2);
the window size of an XCP flow in flow class 1 is unstable for
(τ1, τ2) = (10, 10), (20, 20).

many XCP flows with a small propagation delay, the average round-trip

time estimated by the XCP router tends to be small. Since the XCP router

invokes its controllers every the average round-trip time, these controllers

are invoked quite frequently. This results in aggressive control of the XCP

router, leading unstable operation.

From these observations, we conclude that when variation in propaga-

tion delays of XCP flows is large, operation of XCP becomes unstable.

We then investigate the effect of heterogeneity in XCP flows on stability

of the XCP protocol. Figure 2.8 shows the maximum modulus of eigenval-

ues of the state transition matrix B for different numbers of XCP flows in

flow class 1, N1. In this figure, the number of XCP flows in flow class 2, N2,

is fixed at 1, and the propagation delay of XCP flows in flow class 1, τ1, is at

10 [ms]. Note that control parameters (α, β) are set to their recommended

29

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

W
in

do
w

 s
iz

e
[p

ac
ke

t]

Time [s]

τ1=τ2=10 [ms]
τ1=τ2=20 [ms]

τ1=10 [ms] τ2=20 [ms]
τ1=10 [ms] τ2=30 [ms]

C=800[Mbit/s]

Figure 2.6: Simulation results with the control parameters of P3 = (1.5, 0.2);
the window size of an XCP flow in flow class 1 is stable only
when the two-way propagation delays (τ1, τ2) are set to (10, 30).

values, (0.4, 0.226) [24].

Figure 2.8 shows, for example, the operation of XCP becomes unstable

when the number of XCP flows in flow class 1, N1, reaches around 100 (i.e.,

the maximum modulus becomes larger than 1.0) for τ2 = 200 [ms].

Finally, through simulation experiments, we confirm the validity of our

stability analysis and also investigate how XCP operates unstably when the

heterogeneity of XCP flows is too large.

Figures 2.9 through 2.11 show evolution of the window size of an XCP

flow in each flow class, and the evolution of the queue length of the XCP

router. In these figures, the number of XCP flows in each flow class, (N1,

N2), are set to (99, 1). Also, the two-way propagation delay of each flow

class, (τ1, τ2), are to either (10, 100) or (10, 200). Fig. 2.9 is the simulation re-

sult of XCP flows with a small propagation delay. Fig. 2.10 is the simulation

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

XC
P

co
nt

ro
l p

ar
am

et
er

 β

XCP control parameter α

N1=15 N2=5 CV=34.6
N1=10 N2=10 CV=33.3
N1=5 N2=15 CV=24.7

Figure 2.7: Stability region of XCP control parameters (α β) for different
numbers of XCP flows in each flow class (N1, N2); the stability
region is smallest when (N1, N2) = (15, 5).

result of XCP flows with a long propagation delay.

Figures 2.10 and 2.11 indicate that, when the two-way propagation de-

lay τ2 of the XCP flow in flow class 2 is 200 [ms], its window size and

the queue length of the XCP router show oscillatory behavior, leading low

throughput. Namely, when the variation in propagation delays of XCP

flows is large, the window size of the XCP flow and the queue length of

the XCP router become unstable, which shows the validly of our stability

analysis.

2.5 Summary

In this chapter, we have analyzed the stability of XCP in a network with het-

erogeneous XCP flows (i.e., XCP flows with different propagation delays).

31

 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01
 1.02

10007505002500

M
ax

im
um

 m
od

ul
us

Number of XCP flows in flow class 1 N1

τ2=100[ms]
τ2=200[ms]
τ2=300[ms]

Figure 2.8: Maximum modulus of eigenvalues of the state transition matrix
B for τ1 = 10 [ms], N2 = 1, and (α,β) = (0.4,0.226); the operation of
XCP becomes unstable when the number of XCP flows in flow
class 1, N1, reaches around 100 for τ2 = 200 [ms].

Through several numerical examples and simulation results, we have in-

vestigated the effect of system parameters and XCP control parameters on

stability of the XCP protocol. Our findings include: (1) when XCP flows are

heterogeneous, XCP operates more stably than the case when XCP flows

are homogeneous, (2) conversely, when variation in propagation delays of

XCP flows is large, operation of XCP becomes unstable, and (3) the out-

put link bandwidth of an XCP router is independent of stability of the XCP

protocol.

As future work, we are planning to analyze the transient performance

of XCP utilizing our fluid model of XCP. In addition, we are planning to

derive the optimal configuration of XCP control parameters, which maxi-

mizes the performance of XCP, based on our stability analysis and transient

32

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 5 10 15 20 25 30

W
in

do
w

 s
iz

e
[p

ac
ke

t]

Time [s]

τ2=100 [ms]
τ2=200 [ms]

Figure 2.9: Evolution of the window size of an XCP flow in flow class 1 for
τ1 = 10 [ms] and (α, β) = (0.4, 0.226); XCP flows in flow class
1 are stable regardless of the two-way propagation delay τ2 of
flow class 2. Maximum throughput are 4.00 [Mbit/s] for τ2 =
100 [ms] and 200 [ms].

performance analysis. We are planning to clarify the stability of XCP in a

network with frequent XCP flows.

33

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

W
in

do
w

 s
iz

e
[p

ac
ke

t]

Time [s]

τ2=100 [ms]
τ2=200 [ms]

Figure 2.10: Evolution of the window size of an XCP flow in flow class 2 for
τ1 = 10 [ms] and (α, β) = (0.4, 0.226); XCP flows in flow class
2 become unstable when the two-way propagation delay τ2 of
flow class 2 is large. Maximum throughput are 4.00 [Mbit/s]
for τ2 = 100 [ms] and 200 [ms].

34

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

Q
ue

ue
 le

ng
th

 [p
ac

ke
t]

Time [s]

τ2=100 [ms]
τ2=200 [ms]

Figure 2.11: Evolution of the queue length of the XCP router for τ1 = 10 [ms]
and (α, β) = (0.4, 0.226); The XCP router becomes unstable
when the two-way propagation delay τ2 of flow class 2 is large.

35

Chapter 3

Improving Robustness of XCP

(eXplicit Control Protocol) for

Dynamic Traffic

3.1 XCP (eXplicit Control Protocol)

3.1.1 Overview

In this section, we briefly summarize the operation algorithm of XCP. Refer

to [24, 56] for details of the XCP protocol.

• XCP end host algorithm

At the time of packet transmission, an XCP sender stores its estimated

round-trip time, its current window size, and the initial value of the

feedback value (i.e., the amount of window size increase requested

by the XCP sender) in the congestion header of the packet.

An XCP receiver receives the packet, and sends an ACK packet back

37

to the XCP sender. The XCP receiver simply copies the congestion

header of the received packet to the congestion header of the ACK

packet.

When an XCP sender receives the ACK packet, the XCP sender up-

dates its window size, and re-calculates the estimated round-trip time.

The window size is updated based on the amount of window size in-

crease/decrease notified by XCP routers. More specifically, the win-

dow size is set to the sum of the current window size and the window

size increase/decrease. The round-trip time is re-calculated using the

algorithm similar to that of TCP Reno [57].

• XCP router algorithm

The control mechanism of an XCP router is composed of the efficiency

controller, which tries to maximize the link bandwidth utilization, and

the fairness controller, which tries to realize fairness among competing

XCP flows. The efficiency controller and the fairness controller are

invoked every average round-trip time of all XCP flows.

The efficiency controller estimates the amount of total rate increase/decrease

for all XCP flows. The fairness controller then calculates the amount

of rate increase/decrease for each XCP flow. An XCP router calcu-

lates the feedback value based on the amount of rate increase/decrease

calculated by the fairness controller and information stored in the

congestion header of arriving packets. In what follows, we briefly

explain algorithms of the efficiency controller and the fairness con-

troller.

The efficiency controller calculates the aggregate feedback value φ, which

is the amount of total rate increase/decrease for all XCP flows, from

38

the packet arrival rate at the XCP router and the queue length as

φ = αd (C −A)− β Q, (3.1)

where d is the average round-trip time of XCP flows accommodated

in the XCP router, C is the output link bandwidth of the XCP router,

A is the packet arrival rate at the XCP router, Q is the minimum queue

length observed during the average round-trip time, and α and β are

control parameters. The efficiency controller controls so that: (1) the

link bandwidth is fully utilized, and (2) the number of packets in the

buffer becomes zero.

The fairness controller distributes the aggregate feedback value φ to

all XCP flows based on an AIMD (Additive Increase and Multiplica-

tive Decrease) discipline. Namely, if φ is positive, the fairness con-

troller evenly allocates φ to all XCP flows so that the increase in through-

put of all XCP flows is the same. Otherwise, the fairness controller

unevenly allocates φ to all XCP flows so that the decrease in through-

put of an XCP flow becomes proportional to its current throughput.

3.1.2 XCP problems for dynamic traffic

We investigate the implications of both XCP traffic dynamics and non-XCP

(e.g., TCP and UDP) traffic dynamics on the XCP protocol.

First, we consider XCP traffic dynamics. The time evolution of the bot-

tleneck link utilization (i.e., link utilization measured for every 10 [ms]) for

the same simulation model with [24] is shown in Fig. 3.1. The amount of

XCP traffic is fluctuated by changing the number of active XCP flows in a

network similarly to [24]. In this simulation, 10 XCP flows are activated at

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

Li
nk

 u
til

iz
at

io
n

Time [s]

Figure 3.1: Time evolution of bottleneck link utilization when changing
the number of active XCP flows at t = 4 and 8; the bottleneck
link utilization degrades significantly when XCP flows termi-
nate their transfers at t = 8.

t = 0, and 100 XCP flows are activated at t = 4. Also, 100 XCP flows are

deactivated at t = 8.

Figure 3.1 shows that the bottleneck link utilization degrades signifi-

cantly when XCP flows terminate their transfers at t = 8. This is because

XCP controls the queue length of a router to become zero. Since the router’s

buffer is almost always empty, the bottleneck link utilization will degrade

even when the amount of incoming XCP traffic slightly decreases. In a net-

work with rapid XCP traffic dynamics like realistic XCP traffic dynamics,

this phenomenon leads low bottleneck link utilization. As we will see in

Section 3.4.1, this phenomenon becomes problematic for realistic XCP traf-

fic dynamics.

Second, we consider non-XCP traffic dynamics. Simulations are per-

40

formed using the same network topology with that in Section 3.3. The

time evolution of the number of packets in the XCP router’s buffer (i.e.,

the queue length) when transmitting UDP traffic with the average transfer

rate of 1.25, 2.5, and 3.75 [packet/ms] is shown in Fig. 3.2.

Figure 3.2 shows that the queue length of the XCP router becomes large

when the amount of non-XCP traffic increases. This is because the XCP

router performs its control by assuming that the available bandwidth of

its output links is known (see Eq. (3.1)). If the amount of non-XCP traf-

fic increases, the XCP router will be overloaded and many packets will be

queued at the buffer. In a network with rapid non-XCP traffic dynamics

like realistic TCP traffic dynamics, this phenomenon leads unstable XCP

control. As we will see in Section 3.4.2, this phenomenon also becomes

problematic for realistic non-XCP traffic dynamics.

From these observations, we conclude that XCP has the following prob-

lems: (1) the bottleneck link utilization is lowered against XCP traffic dy-

namics, and (2) operation of XCP becomes unstable in a network with both

XCP and non-XCP traffic.

3.2 XCP-IR (XCP with Increased Robustness)

In this section, we explain the basic ideas for improving the robustness of

XCP for traffic dynamics, and describe the operation algorithm of XCP-IR.

3.2.1 Basic ideas

First, how the degradation of the link utilization caused by XCP traffic

dynamics can be prevented? To prevent degradation of the link utiliza-

tion caused by XCP traffic dynamics, a router’s buffer can be utilized ef-

41

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9 10

Q
ue

ue
 le

ng
th

 [p
ac

ke
t]

Time [s]

UDP 1.25 [packet/ms]
UDP 2.5 [packet/ms]

UDP 3.75 [packet/ms]

Figure 3.2: Time evolution of queue length at XCP router when transmit-
ting non-XCP (UDP) traffic; the queue length of the XCP router
becomes large as the amount of non-XCP traffic increases.

fectively. Namely, XCP traffic dynamics can be absorbed at the router’s

buffer. If a certain amount of packets are always stored in the XCP router’s

buffer, degradation of the link utilization caused by XCP traffic dynam-

ics can be prevented. In the literature, congestion controls with storing a

certain amount of packets in the bottleneck router’s buffer have been pro-

posed [17, 58, 59]. In these congestion controls, storing a certain amount

of packets in the bottleneck router’s buffer is effective for preventing the

degradation of the link utilization.

Second, how instability of the XCP router caused by the increase in non-

XCP traffic can be prevented? Instability of the XCP router control caused

by the increase in non-XCP traffic can be prevented if the XCP router es-

timates the available bandwidth to XCP traffic correctly. For this purpose,

an XCP router should measure the departure rate of non-XCP traffic. The

42

XCP router estimates the available bandwidth to XCP traffic by subtract-

ing the departure rate of non-XCP traffic from the physical link bandwidth.

The XCP router then distributes the available bandwidth for XCP traffic to

all XCP flows. Since the XCP router can correctly calculate the bandwidth

assigned to each XCP flow, stable control can be realized regardless of non-

XCP traffic dynamics.

These improvements are realizable only by changing the control algo-

rithm of an XCP router. Namely, it is necessary to change neither an XCP

sender nor a packet format. Hence, the burden of deploying XCP-IR into a

real network is quite low.

3.2.2 XCP-IR algorithm

In what follows, we explain the algorithm of XCP-IR. With XCP-IR, only the

method of calculating the aggregate feedback value φ (Eq. (3.1)) is different

from that of XCP. XCP-IR calculates the aggregate feedback value φ as

φ = αd {(C −DN)−A} − β (Q−QT), (3.2)

where DN is the departure rate of non-XCP traffic, and QT is the target

value of a queue length.

QT is a control parameter (i.e., the target value of the queue length)

introduced to prevent degradation of the link utilization caused by XCP

traffic dynamics. Thus, QT packets are always stored in the XCP router’s

buffer. Thereby, degradation of the link utilization can be prevented even

for XCP dynamic traffic. The increase in QT may cause side-effects(e.g., the

increase in a queuing delay and a packet loss probability, and less respon-

siveness). We discuss these side-effects with Section 3.3 and 3.4 for details.

43

DN is an internal variable introduced to prevent instability of the XCP

control caused by the increase in non-XCP traffic. An XCP router calculates

DN as

DN =
T

d
, (3.3)

where T is the total amount of non-XCP packets departed at the XCP router

during the control interval d of the XCP router. By changing the avail-

able bandwidth of XCP traffic from C to C −DN , XCP-IR can absorb XCP

router’s temporary overload when the amount of non-XCP traffic increases.

Note that such a simple modification to the XCP router itself may cause

a fairness issue between XCP and non-XCP traffic. Specifically, changing

the available bandwidth of XCP traffic from C to C −DN implies that XCP

traffic suffers lower priority than non-XCP traffic. However, priority con-

trol between XCP and non-XCP traffic can be easily realized by introducing

one of service differentiation mechanisms at an XCP router. For instance,

a multi-level RED mechanism [60] can be applied to the XCP router for re-

alizing priority control between XCP and non-XCP (e.g., TCP and UDP)

traffic. By configuring parameters of the weighted round-robin queue ap-

propriately, fairness among XCP and non-XCP traffic can be realized. Note

that a multi-level RED mechanism is for realizing fairness among traffic

classes (i.e., XCP and non-XCP traffic) rather than among traffic flows (i.e.,

XCP and non-XCP flows).

In what follows, we briefly demonstrate that the problem of XCP for

XCP and non-XCP traffic dynamics can be solved using XCP-IR.

Figure 3.3 shows the time evolution of the bottleneck link utilization

when using XCP-IR in the same simulation model with that of Fig. 3.1. The

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

Li
nk

 u
til

iz
at

io
n

Time [s]

Figure 3.3: Time evolution of bottleneck link utilization when changing the
number of active XCP flows at t = 4 and 8; XCP-IR completely
prevents degradation of the bottleneck link utilization caused
by XCP traffic dynamics.

target value QT of the queue length is set to 2,000 [packet]. By comparing

Figs. 3.1 (XCP) and 3.3 (XCP-IR), one can find that XCP-IR completely pre-

vents degradation of the bottleneck link utilization caused by XCP traffic

dynamics.

Figure 3.4 shows the time evolution of the queue length of the XCP-IR

router when transmitting the UDP traffic with the average transfer rate of

1.25, 2.5, and 3.75 [packet/ms]. To simply focus on the tolerance to non-

XCP traffic dynamics, the target value of the queue length QT is set to

0 [packet]. By comparing Figs. 3.2 (XCP) and 3.4 (XCP-IR), one can find

that XCP-IR succeeds to control the queue length regardless of the average

transfer rate of UDP traffic.

In what follows, we discuss characteristics of XCP-IR. Specifically, we

45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9 10

Q
ue

ue
 le

ng
th

 [p
ac

ke
t]

Time [s]

UDP 1.25 [packet/ms]
UDP 2.5 [packet/ms]

UDP 3.75 [packet/ms]

Figure 3.4: Time evolution of queue length at XCP-IR router when trans-
mitting non-XCP (UDP) traffic; XCP-IR succeeds to control the
queue length regardless of the average transfer rate of UDP traf-
fic.

discuss how steady state and transient state performances are affected by

changing the calculation method of the aggregate feedback φ from Eq. (3.1)

to Eq. (3.2).

First, the round-trip times of XCP flows in XCP and XCP-IR are com-

pared. The round-trip time of XCP-IR is larger than that of XCP. XCP-IR

controls the queue length to QT whereas XCP controls to 0. In XCP-IR,

the queuing delay of QT /C therefore occurs in the router’s buffer. In other

words, XCP-IR sacrifices the round-trip time for improving robustness. As

we will discuss in Section 3.4, we believe such an increase in the round-trip

time is acceptable for most applications.

Second, stability and transient state performance of XCP and XCP-IR

are compared. We analyzed stability and transient state performance of

46

XCP and XCP-IR using the analytic approach in [33]. Although derivation

and results are not presented due to space limitation, we found that the

stability and the transient state performance of XCP-IR around the equilib-

rium point are same as those of XCP. Namely, our findings indicate that the

stability and the transient state performance around the equilibrium point

do not change, even if the calculation method of the aggregate feedback

value is changed from Eq. (3.1) to Eq. (3.2). This implies that sensitivity of

XCP-IR control parameters on stability and transient state performance is

the same with that of XCP-IR.

3.3 Performance evaluation using synthetic traffic dy-

namics

In this section, we evaluate the performance of XCP-IR through extensive

simulations using synthetic traffic dynamics. We investigate the perfor-

mance of XCP-IR from the following viewpoints.

1. Stability and transient state performance

2. Robustness for XCP traffic dynamics

3. Robustness for non-XCP traffic dynamics

Figure 3.5 shows the network topology used in simulation. Except

the existence of UDP traffic, we use the same simulation model with that

in [24]. Multiple XCP flows and the single UDP flow share the single bot-

tleneck link. For compact notation, in what follows, the bandwidth and

the propagation delay of the bottleneck link are denoted by C and τ , re-

spectively. Unless explicitly stated, parameter values shown in Tab. 3.1 are

47

XCP router

XCP sender

XCP sender

XCP sender

XCP receiver

XCP receiver

UDP receiverUDP sender

XCP receiverUDP traffic

XCP traffic

XCP router

125 [packet/ms]
10[ms]

125[packet/ms]
10 [ms]

6.25, 12.5, 50, 100 [packet/ms]
 1, 5, 25 [ms]

Figure 3.5: Network topology used in simulation; multiple XCP flows and
the single UDP flow share the single bottleneck link.

Table 3.1: Parameters used in simulation
packet size 1,000 [byte]

socket buffer size delay-bandwidth product
buffer size of XCP router 10,000 [packet]

used throughout our simulations. We used ns-2 version 2.28 with several

modifications to implement XCP-IR.

3.3.1 Stability and transient state performance

Stability

In Section 3.2, the stability of XCP-IR around the equilibrium point was

discussed. In the following simulations, we investigate the stability after

initiating data transfers rather than the stability around the equilibrium

point.

The stability regions of the control parameter (α, β) in XCP and XCP-

IR are shown in Fig. 3.6. We performed a large number of simulations with

different sets of control parameters (α, β). To focus on the effect of dynamic

XCP traffic, 20 XCP flows started their transfers simultaneously (i.e., UDP

48

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

XC
P

co
nt

ro
l p

ar
am

et
er

 β

XCP control parameter α

XCP
XCP-IR(QT=1,000 [packet])
XCP-IR(QT=2,000 [packet])

Figure 3.6: Stability region when XCP flow starts data transfers (XCP con-
trol is stable when (α, β) is under the boundary line); both XCP
and XCP-IR operate stably with the recommended parameter
configuration of (0.4, 0.226).

traffic is not generated). This figure means that operation of XCP or XCP-

IR was stable, when a set of control parameters (α, β) was in the stability

region (i.e., the region surrounded by the boundary line and XY-axes). We

determined XCP or XCP-IR was stable when the window sizes of all flows

were stabilized within ± 5% of their equilibrium values.

Figure 3.6 shows that the stability region of XCP-IR is smaller than that

of XCP. Namely, the stability of XCP-IR is lower than that of XCP when

XCP flows initiate their data transfers. However, with the recommended

parameter configuration of (α, β) = (0.4, 0.226) [24], both XCP and XCP-IR

operate stably. Hence, as long as the recommended parameter configura-

tion is used, there should be no stability problem in XCP-IR.

49

Transient state performance

We also investigate the transient state performance after initiating data

transfers rather than the transient state performance around the equilib-

rium point.

The settling time of the window size of an XCP flow while changing

the target value of the queue length QT from 0 to 5,000 [packet] is shown in

Fig. 3.7. The settling time of the window size is defined as the time for the

window size to be stabilized within ± 5% of its equilibrium value (i.e., the

window size in steady state). To focus on the effect of dynamic XCP traffic,

20 XCP flows start their transfers simultaneously in this simulation.

Figure 3.7 shows that the transient state performance of XCP-IR is al-

ways better than that of XCP unless the target queue length QT is too large.

As the target queue length QT increases, the settling time of the window

size once decreases. But it then increases as the target queue length be-

comes too large. This is because that an increase in the target queue length

QT has both positive and negative effect on the transient state performance.

Namely, increasing the target queue length makes XCP-IR more aggressive

since the aggregate feedback value φ becomes large as QT increases. At

the same time, increasing the target queue length makes XCP-IR less re-

sponsive since the round-trip time becomes large as QT increases. With

an appropriate setting of the target queue length QT , the positive effect is

much stronger than the negative effect, leading XCP-IR’s better transient

performance than XCP.

50

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

0 100 200 500 1000 2000 5000

Se
ttl

in
g

tim
e

of
 w

in
do

w
 s

iz
e

[s
]

Target queue length QT [packet]

τ=5[ms], C=50[packet/ms]
τ=25[ms], C=50[packet/ms]
τ=25[ms], C=100[packet/ms]

Figure 3.7: Settling time of window size when an XCP flow starts its data
transfer; the settling time of the window size is a concave func-
tion for the target value of queue length QT .

3.3.2 Robustness for XCP traffic dynamics

For investigating robustness of XCP-IR, dynamic XCP traffic is syntheti-

cally generated by changing the number of active XCP flows as shown in

Fig. 3.8. Namely, 10 XCP flows are activated every 1 [s] after t = 0, and

10 XCP flows are deactivated every 1 [s] after t = 5. To focus on the ef-

fect of dynamic XCP traffic, UDP traffic is not generated. The bottleneck

link utilization when changing the target value of the queue length QT is

shown in Fig. 3.9. Note that the result of XCP corresponds to the case with

QT = 0 [packet].

Figure 3.9 shows that XCP-IR always shows higher bottleneck link uti-

lization than XCP. This figure also shows the bottleneck link utilization in-

creases as the target value of the queue length QT increases. It should be

51

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r o

f a
ct

iv
e

XC
P

flo
w

s

Time [s]

Figure 3.8: Synthetically generated XCP traffic dynamics; the number of ac-
tive XCP flows are synthetically changed during simulation.

noted that all bottleneck link utilizations in Fig. 3.9 are convex for the target

value QT . This implies an advantage of XCP-IR; i.e., a small increase in QT

significantly improves the bottleneck link utilization. In practice, the target

value of the queue length QT should be determined by taking account of

trade-offs between robustness and responsiveness. For the link utilization,

the improvement in XCP-IR is not so significant. However, in Section 5.1,

we show that XCP-IR will significantly improve throughput.

Discussion on appropriate setting of QT

How the target value of the queue length QT should be configured to max-

imize the XCP-IR performance? When the number of active XCP flows de-

creases rapidly, at least the feedback delay of df is taken for the XCP router

to notify XCP senders of the changed feedback value. The feedback delay

52

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 1000 2000 3000 4000 5000

Li
nk

 u
til

iz
at

io
n

Target queue length QT [packet]

τ=5[ms], C=50[packet/ms]
τ=25[ms], C=50[packet/ms]
τ=25[ms], C=100[packet/ms]

Figure 3.9: Bottleneck link utilization for a different target value QT with
synthetic XCP traffic dynamics; XCP-IR always shows higher
bottleneck link utilization than XCP.

df is a fraction of the round-trip time d; i.e., df can be obtained by subtract-

ing the queuing delay from the round-trip time d. Let us assume that M of

N XCP flows terminate their transfers. In this case, df CM/N packets are

drained from the buffer until XCP senders are notified of the re-calculated

feedback value. To prevent degradation of the bottleneck link utilization, it

is necessary to satisfy df CM/N ≤ QT ; i.e.,

QT ≥ df CM

N
(3.4)

Figure 3.9 clearly shows the validity of Eq. (3.4); i.e., the bottleneck link

utilization is almost 1.0 when the target value of the queue length satisfies

Eq. (3.4). Namely, QT ≥ 1, 250 for τ = 5 [ms] and C = 50 [packet/ms],

QT ≥ 2, 250 for τ = 25 [ms] and C = 50 [packet/ms], and QT ≥ 4, 500 for τ

53

= 25 [ms] and C = 100 [packet/ms].

We then focus on the time evolution of the bottleneck link utilization for

τ = 25 [ms] and C = 50 [packet/ms]. In Fig 3.10, the time evolutions of the

bottleneck link utilization in XCP and XCP-IR with QT = 2, 000 and QT =

2, 600 is plotted. The number of active XCP flows is synthetically changed

as shown in Fig. 3.8. Figure 3.10 shows that degradation of the bottleneck

link utilization can be prevented with QT larger than 2,250 [packet] (i.e.,

QT =2,600 [packet]).

Note that the bottleneck link utilization is stabilized quite rapidly in

Fig. 3.10. This is because XCP can quickly respond to decrease in the num-

ber of active XCP flows. When the number of active XCP flows decreases

rapidly, the queue length of the XCP router decreases, which results in

smaller round-trip time to active XCP flows. Thus, XCP flows can quickly

respond to congestion indication from the XCP router.

3.3.3 Robustness for non-XCP traffic dynamics

We first investigate the robustness of XCP-IR for synthetically generated

dynamic UDP traffic. The average transfer rate of background UDP traffic

is changed every second as shown in Fig. 3.11.

The time evolutions of the queue lengths with XCP and XCP-IR (QT =

0 and 600 [packet]) for τ = 25 [ms] and C = 50 [packet/ms] are shown in

Fig. 3.12. A single XCP flow is activated at t = 0.

This figure shows that XCP fails to stabilize the queue length. This fig-

ure also shows that XCP-IR controls the queue length around the target

value of the queue length QT . This clearly indicates that XCP-IR has ro-

bustness for UDP traffic dynamics.

54

3.4 Performance evaluation using realistic traffic dy-

namics

3.4.1 Robustness for realistic XCP traffic dynamics

For deploying XCP-IR in a real network, its performance should be evalu-

ated under realistic conditions. We therefore investigate the robustness of

XCP-IR for realistic XCP traffic dynamics.

Realistic dynamic XCP traffic is generated by aggregating a large num-

ber of XCP flows according to the mesurement results reported in [61]. Cur-

rently, majority of the Internet traffic is Web and P2P traffic. We generated

realistic dynamic XCP traffic by aggregating a large number of XCP flows.

Each XCP flow is randomly actived to match the measured distribution

of flow activation intervals [61]. It is then deactivated when it finishes its

file transfer, whose file size is randomly determined according to the mea-

sured distribution of file sizes [61]. More specifically, distributions of flow

activation intervals of Web and P2P traffic are given by an exponential dis-

tribution with mean 0.015 and 14.98 [s], respectively. Distributions of file

sizes of Web and P2P traffic are given by a Pareto distribution with mean

0.421C × 10−3 and 0.121C [Mbyte], respectively. Note that file sizes are

proportional to the bottleneck link bandwidth C. In our simulation sce-

nario, the number of XCP flows carrying Web traffic is as appoximately

1,100 times as those carrying P2P traffic.

The bottleneck link utilization for different settings of C and τ are shown

in Fig. 3.13. This figure shows that XCP-IR can achieve 97% link utiliza-

tion with an adequate setting of the target queue legnth QT while XCP

achieves only 86% link utilization. In this case, QT = 600 [packet] is suffi-

55

cient for well utilizing the bottleneck link bandwidth regardless of the bot-

tleneck link bandwidth C and the propagation delay τ . QT can take a much

smaller value while almost fully utilizing the bottleneck link bandwidth if

the propagation delay is small (e.g., τ = 1 or 5 [ms]). Note that since this

simulation scenario is very busrty, the bottleneck link utilization in XCP-IR

is slightly less than 1.0. An example of realistic traffic dynamics (i.e., the

evolution of the number of active XCP flows) generated by aggregating a

large number of XCP flows is shown in Fig. 3.14. Note that the realistic traf-

fic dynamics (Fig. 3.14) is much more dynamical than the synthetic traffic

dynamics (Fig. 3.8).

The average round-trip delay of all XCP flows for different settings of

C and τ are shown in Fig. 3.15. This figure shows that the average round-

trip time of all XCP flows gradually increases as the target queue legnth QT

increases. This is because XCP-IR controls so that QT packets are queued at

the router’s buffer to prevent degradation of the bottleneck link utilization.

Note that since this simulation scenario is very busrty, the queue length

with XCP-IR is smaller than QT . Therefore, the increase in the round-trip

time of all XCP flows is smaller than QT /C. To prevent the significant

increase in the round-trip delay of an XCP flow, QT should be set between

0 and 150 [packet] for LAN environment and between 0 and 600 [packet]

for WAN environment.

Average throughputs of all Web flows and all P2P flows for different

settings of C and τ are shown in Fig. 3.16 and 3.17. Figure 3.16 shows

that the average throughput of all Web flows with XCP-IR is always higher

than that of XCP unless the target queue length QT is too large. This is

because as the target queue length QT increases, although increase in the

link utilization become small, increase in the round-trip time do not become

56

small. Figure 3.17 shows that the average throughput of all P2P flows with

XCP-IR is always higher than that of XCP. This is because there is almost

no effect of the throughput on the increase in the round-trip time since file

sizes of P2P traffic are large.

Due to space limitation, results for the packet loss probability in the

bottleneck router for a different C and τ are not included. We have con-

firmed that a packet was not lost in the bottleneck router. If the configu-

ration value of QT is sufficiently small as compared with the buffer size of

the XCP router, increase in a packet loss probability can be prevented.

We then focus on the time evolution of the bottleneck link utilization

for τ = 25 [ms] and C = 6.25 [packet/ms]. In Fig 3.18, the time evolutions of

the bottleneck link utilization with XCP and XCP-IR for QT = 150 [packet]

and QT = 300 [packet] is plotted. This figure shows that degradation of

the bottleneck link utilization can be almost prevented with XCP-IR(QT =

300 [packet]).

From these observations, we conclude that XCP-IR has high robustness

for different types of XCP traffic dynamics.

3.4.2 Robustness for realistic TCP traffic dynamics

We finally investigate the robustness of XCP-IR for realistic non-XCP traffic

dynamics. Since the majority of the Internet traffic is carreid by TCP, we

consider the impact of dynamic TCP traffic on the robustness of XCP-IR.

Similarly to Section 3.4.1, realistic dynamic TCP traffic is generated by

aggregating a large number of TCP flows according to the mesurement re-

sults in [61]. Namely, TCP flows are randomly activated and their file sizes

are randomly determined based on the measurement results in [61]. A sin-

57

gle XCP flows is activated at t = 0.

Time evolutions of queue lengths with XCP, XCP-IR (QT = 0 [packet]),

and XCP-IR (QT = 600 [packet]) for τ = 25 [ms] and C = 6.25 [packet/ms] are

shown in Fig. 3.19. This figure shows that the queue length of XCP dras-

tically oscillates, whereas the queue length with XCP-IR is stabilized and

minimized. Note that the queue length with XCP is unstable; the queue

length is simply upper-bounded by the buffer size, and many packet are

lost due to buffer overflows. These result indicate that the lack of robust-

ness is quite costly for realistic dynamic traffic. The oscillatory behavior of

the queue length with XCP in Fig. 3.19 is directly caused by the oscillatory

behavior of XCP flows. Figure 3.20 shows the evolution of the window size

of an XCP flow. As explained in Section 3.1, when the amount of non-XCP

traffic increases, the XCP router is overloaded and many packets are queue

at the buffer because the XCP router performs its control by incorrectly as-

suming that the available bandwidth to XCP traffic is known.

We then investigate how malicious XCP’s lack of robustness is in terms

of the bottleneck link utilization, the throughput of the XCP flow, and the

round-trip time. The bottleneck link utilization, the throughput of the XCP

flow, and the round-trip time of the XCP flow for different buffer sizes of

the XCP router are shown in Figs. 3.21 through 3.23, respectively. Those

figures show that the performance of XCP is significantly affected by the

buffer size of the XCP router, but XCP still suffers either low bottleneck link

utilization or large round-trip time. This can be explained as follows. If the

buffer size of the XCP router is small, many packets are lost due to buffer

overflows, leading low bottleneck link utilization and low throughput. On

the contrary, if the buffer size of the XCP router is large, the queuing delay

in the XCP router is large, leading a large round-trip time.

58

From these observations, we conclude that XCP-IR achieves good per-

formance and high robustness for different types of non-XCP traffic dy-

namics.

3.5 Summary

In this chapter, we have proposed XCP-IR (XCP with Increased Robustness)

that operates efficiently even for dynamic traffic. XCP-IR prevents instabil-

ity of the XCP control caused by non-XCP traffic dynamics while prevent-

ing degradation of the bottleneck-link utilization caused by XCP traffic dy-

namics. Through extensive simulation experiments, we have shown that

XCP-IR operated efficiently even for dynamic traffic. In particular, we have

shown that the throughput with XCP-IR is approximately 200% higher than

that with XCP.

As future work, we are planning to examine the optimal control param-

eter configuration of XCP-IR for maximizing its performance in realistic

environments.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Li
nk

 u
til

iz
at

io
n

Time [s]
(a) XCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Li
nk

 u
til

iz
at

io
n

Time [s]
(b) XCP-IR(QT = 2, 000 [packet])

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Li
nk

 u
til

iz
at

io
n

Time [s]
(c) XCP-IR(QT = 2, 600 [packet])

Figure 3.10: Time evolution of the bottleneck link utilization with XCP,
XCP-IR(QT = 2, 000 [packet]), and XCP-IR(QT = 2, 600
[packet]) for τ = 25 [ms] and C = 50 [packet/ms]

60

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

U
D

P
tra

ffi
c

ra
te

 [p
ac

ke
t/m

s]

Time [s]

Figure 3.11: Synthetically generated UDP traffic dynamics; the average
transfer rate of UDP traffic is changed during simulation.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 1 2 3 4 5 6 7 8 9 10

Q
ue

ue
 le

ng
th

 [p
ac

ke
t]

Time [s]

XCP
XCP-IR (QT=0 [packet])

XCP-IR (QT=600 [packet])

Figure 3.12: Time evolutions of queue lengths with XCP and XCP-IR (QT =
0 and 2,000 [packet]) for τ = 25 [ms] and C = 50 [packet/ms];
XCP-IR can control the queue length around the target value
QT .

61

 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

0 100 200 500 1000 2000 5000

Li
nk

 u
til

iz
at

io
n

Target queue length QT [packet]

τ=1[ms], C=6.25[packet/ms]
τ=5[ms], C=6.25[packet/ms]
τ=25[ms], C=6.25[packet/ms]
τ=25[ms], C=12.5[packet/ms]

Figure 3.13: Bottleneck link utilization for a different C and τ ; the bottle-
neck link utilization with XCP-IR is approximately 10% higher
than that with XCP.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

N
um

be
r o

f a
ct

iv
e

XC
P

flo
w

s

Time [s]

Figure 3.14: Time evolution of the number of active XCP flows for τ =
25 [ms] and C = 6.25 [packet/ms]

62

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

0 100 200 500 1000 2000 5000

Av
er

ag
e

ro
un

d-
tri

p
tim

e
[s

]

Target queue length QT [packet]

τ=1[ms], C=6.25[packet/ms]
τ=5[ms], C=6.25[packet/ms]
τ=25[ms], C=6.25[packet/ms]
τ=25[ms], C=12.5[packet/ms]

Figure 3.15: Average Round-trip time of all XCP flows for a different C and
τ ; the average round-trip time of all XCP flows gradually in-
creases when QT increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 500 1000 2000 5000

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Target queue length QT [packet]

t=1[ms], C=6.25[packet/ms]
t=5[ms], C=6.25[packet/ms]
t=25[ms], C=6.25[packet/ms]
t=25[ms], C=12.5[packet/ms]

Figure 3.16: Average throughput of all Web flows for a different C and τ ;
the average throughput of all Web flows is a convex function
for the target value of queue length QT .

63

 0

 1

 2

 3

 4

 5

 6

 7

0 100 200 500 1000 2000 5000

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Target queue length QT [packet]

τ=1[ms], C=6.25[packet/ms]
τ=5[ms], C=6.25[packet/ms]
τ=25[ms], C=6.25[packet/ms]
τ=25[ms], C=12.5[packet/ms]

Figure 3.17: Average throughput of all P2P flows for a different C and τ ;
the average throughput of all P2P flows with XCP-IR is ap-
proximately 200% higher than that with XCP.

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Li
nk

 u
til

iz
at

io
n

Time [s]
(a) XCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Li
nk

 u
til

iz
at

io
n

Time [s]
(b) XCP-IR(QT = 150 [packet])

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Li
nk

 u
til

iz
at

io
n

Time [s]
(c) XCP-IR(QT = 300 [packet])

Figure 3.18: Time evolution of the bottleneck link utilization with XCP,
XCP-IR(QT = 150 [packet]), and XCP-IR(QT = 300 [packet]) for
τ = 25 [ms] and C = 6.25 [packet/ms] when generating realistic
XCP traffic

65

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700 800 900 1000

Q
ue

ue
 le

ng
th

 [p
ac

ke
t]

Time [s]

XCP-IR(QT=0[packet])
XCP-IR(QT=600[packet])

XCP

Figure 3.19: Time evolutions of queue lengths with XCP, XCP-IR (QT =
0 [packet]), and XCP-IR (QT = 600 [packet]) for τ = 25 [ms] and
C = 6.25 [packet/ms]; the queue length of XCP drastically os-
cillates, whereas the queue length of XCP-IR is stabilized and
minimized.

66

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700 800 900 1000

W
in

do
w

 s
iz

e
[p

ac
ke

t]

Time [s]

Figure 3.20: Time evolutions of the window size with XCP for τ = 25 [ms]
and C = 6.25 [packet/ms]

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000

Li
nk

 u
til

iz
at

io
n

Buffer size of XCP router [packet]

XCP(τ=5[ms], C=6.25[packet/ms])
XCP-IR(τ=5[ms], C=6.25[packet/ms])

XCP(τ=25[ms], C=6.25[packet/ms])
XCP-IR(τ=25[ms], C=6.25[packet/ms])

XCP(τ=25[ms], C=12.5[packet/ms])
XCP-IR(τ=25[ms], C=12.5[packet/ms])

Figure 3.21: Bottleneck link utilization for a different buffer size of the XCP
router; the bottleneck link utilization with XCP is low when the
buffer size of the XCP router is small.

67

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2000 4000 6000 8000 10000

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Buffer size of XCP router [packet]

XCP(τ=5[ms], C=6.25[packet/ms])
XCP-IR(τ=5[ms], C=6.25[packet/ms])

XCP(τ=25[ms], C=6.25[packet/ms])
XCP-IR(τ=25[ms], C=6.25[packet/ms])

XCP(τ=25[ms], C=12.5[packet/ms])
XCP-IR(τ=25[ms], C=12.5[packet/ms])

Figure 3.22: Throughput of the XCP flow for a different buffer size of the
XCP router; the throughput of the XCP flow with XCP is low
when the buffer size of the XCP router is small.

 0.01

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000

R
ou

nd
-tr

ip
 ti

m
e

[s
]

Buffer size of XCP router [packet]

XCP(τ=5[ms], C=6.25[packet/ms])
XCP-IR(τ=5[ms], C=6.25[packet/ms])

XCP(τ=25[ms], C=6.25[packet/ms])
XCP-IR(τ=25[ms], C=6.25[packet/ms])

XCP(τ=25[ms], C=12.5[packet/ms])
XCP-IR(τ=25[ms], C=12.5[packet/ms])

Figure 3.23: Round-trip time of the XCP flow for a different buffer size of
the XCP router; the round-trip time of the XCP flow with XCP
is very large when the buffer size of the XCP router is large.

68

Chapter 4

Design and Implementation of

Flow-Level Simulator FSIM for

Performance Evaluation of

Large Scale Networks

4.1 Related Works

In [39], an approach for large-scale network simulation utilizing a TCP/RED

fluid-flow model is proposed. Ordinary differential equations directly de-

rived from fluid-flow models are numerically solved for performing flow-

level simulation. However, the numerical computation algorithm for or-

dinary differential equations in [39] is quite simple; i.e., network states of

fluid-level simulation are updated every fixed step time. Network states

are updated even when network states are unchanged, causing slowdown

of fluid-level simulation. Also, the TCP fluid-model developed in [39] does

69

not model the TCP timeout mechanism, so that accuracy of the fluid-flow

model is not satisfactory for simulating a rather congested network.

In [40], another TCP/RED fluid-flow model is derived, which models

the TCP timeout mechanism. By comparing simulation results with ana-

lytic ones, the authors of [40] show it has higher accuracy than the fluid-

flow model derived in [39]. Both input and output of fluid-flow models

derived are uniformly defined as packet transmission rate. So, those fluid-

flow models can be easily interconnected for building the fluid-flow model

of a large-scale network. In this chapter, we utilize those fluid-flow mod-

els and the modeling approach in [40] for realizing an accurate flow-level

simulator for a large-scale network.

In [62], a hybrid system model is proposed. The hybrid system model

switches multiple fluid-flow models according to the TCP operation phase

(i.e., slow-start phase and congestion avoidance phase) for improving the

modeling accuracy. The hybrid system is numerically solved for perform-

ing flow-level simulation. In [63], a real-time network simulator is pro-

posed. The real-time network simulator uses a hybrid model which com-

bines time-stepping fluid-flow models with a discrete-event packet-level

simulation for improving the modeling accuracy. Ordinary differential equa-

tions directly derived from fluid-flow models in the real-time network sim-

ulator are numerically solved using the numerical computation algorithm.

However, similar to [39], the numerical computation algorithm in [62, 63]

is quite simple; network states of fluid-level simulation are updated every

fixed step time. Network states are updated even when network states are

unchanged, causing slowdown of fluid-level simulation.

In [12, 64], hybrid simulators combining fluid and packet-level simula-

tors have been developed. By partially performing packet-level simulation,

70

a hybrid simulator is able to measure packet-level performance metrics. Re-

searches of a hybrid simulator does not aim to accelerate flow-level simu-

lation. To realize simulation of a large-scale network, flow-level simulation

should be accelerated.

4.2 FSIM (Flow-level SIMmulator)

The notable feature of our flow-level simulator FSIM is fast simulation ex-

ecution compared with conventional flow-level simulators [39, 65]. For ac-

celerating simulation execution, our flow-level simulator FSIM adopts an

adaptive numerical computation algorithm for ordinary differential equa-

tions. Another features of our flow-level simulator FSIM are its accuracy

and its compatibility with other network performance analysis tools. For

improving simulation accuracy, our flow-level simulator FSIM utilizes ac-

curate fluid-flow models [40]. Also, the flow-level simulator FSIM can in-

put and output files compatible with ns-2 [13], which is one of representa-

tive packet-level simulators.

In what follows, details of our flow-level simulator FSIM — fluid-flow

models, the adaptive numerical computation algorithm for ordinary dif-

ferential equations, routing, and compatibility with an existing network

performance analysis tool — are explained.

4.2.1 Fluid-flow models

FSIM utilizes the fluid-flow model of the TCP congestion control mecha-

nism derived in [40]. Definition of symbols (i.e., constants and variables)

used throughout this chapter are summarized in Tab. 4.1.

In the fluid-flow model of the TCP congestion congestion control mech-

71

Table 4.1: Definitions of symbols (constants and variables)
x(t) input (packet transmission rate)
y(t) output (packet transmission rate)
R(t) TCP round-trip time

pTO(t) TCP timeout probability
minth minimum threshold value
maxth maximum threshold value
maxp maximum packet marking probability

α weight of exponential moving average
c processing speed of RED router

q(t) current queue length of RED router
r(t) average queue length of RED router
pq(t) packet marking probability of RED router
p(t) packet loss probability of RED router
τ propagation delay of link
M number of TCP flows in the network
N number of RED routers in the network

anism, the input x(t) is the arrival rate of ACK packets and the output y(t)

is the transmission rate of data packets, which is given by

ẏ(t) = f1(t, x(t), y(t), y(t−R(t)))

=
x(t)

y(t)R(t)2
− 2

3
y(t) z(t) (1− pTO(t))

−
(
4

3
y(t)− 1

R(t)

)
z(t) pTO(t),

(4.1)

where z(t) ≡ y(t−R(t))−x(t). pTO(t) is the probability that a packet loss is

detected by the timeout mechanism rather than duplicate ACKs, and it can

be approximated as pTO(t) $ min(1, 3/w(t)). R(t) is the TCP round-trip

time, which is given by the sum of propagation delays and queuing delays

on the path.

FSIM utilizes the fluid-flow model of the RED router derived in [40]. In

the fluid-flow model of the RED router, the input x(t) is the arrival rate of

data packets and the output y(t) is the transmission rate of data packets,

72

which is given by

y(t) = g1(t, x(t))

= min(c, (1− p(t))x(t)), (4.2)

where p(t) is the packet loss probability. p(t) is given by the packet marking

probability pq(t) [40, 39], the current queue length q(t), and the average

queue length r(t) :

p(t) =






2

3
pq(t) if Wait option on
2pq(t)

1 + pq(t)
otherwise

(4.3)

pq(t) =






0 if r(t) < minth

maxp
maxth −minth

(r(t)−minth)

if minth ≤ r(t) < maxth
1−maxp
maxth

r(t)− (1− 2maxp)

if maxth ≤ r(t) < 2maxth

1 if r(t) ≥ 2maxth

(4.4)

ṙ(t) = −α c(r(t)− q(t)) (4.5)

q̇(t) =






x(t)− c if q(t) > 0

max(x(t)− c, 0) otherwise
(4.6)

73

The link propagation delay is modeled as

y(t) = h1(t, x(t))

= x(t− τ), (4.7)

where the input x(t) is the packet transmission rate, output y(t) is the

packet transmission rate and τ is the propagation delay for the link.

An entire network is modeled with the analysis technique proposed

in [40] by connecting models of the TCP congestion control mechanism, the

RED router and the link propagation delay. When the RED router has mul-

tiple input links, it is modeled as link convergence from individual input

links. Link convergence can be described as the sum of packet transmission

rates from individual links. In other words, when the transmission rate for

each link is xi(t)(1 ≤ i ≤ LI) where LI is the number of input links, the

transmission rate y(t), is given by

y(t) =
LI∑

i=1

xi(t) (4.8)

. When the RED router has multiple output links, output from the RED

router is modeled through distribution in multiple flows. Flow distribution

can be described by distribution of incoming traffic to LO links where LO

is the number of output links. Let the departure rate of data packets from

the RED router be x(t), the outgoing link rate yi(t)(1 ≤ i ≤ LO), and the

flow distribution ratio fi(t)(1 ≤ i ≤ LO) for the output link, we have the

following equation.

yi(t) = fi(t)x(t) (4.9)

74

4.2.2 Adaptive numerical computation algorithm

In fluid-flow models explained in Section 4.2.1, network state is represented

by TCP packet transmission rates y(t), current queue lengths q(t) of RED

routers, and the average queue lengths r(t) of RED routers. Let z(t) be the

state vector of a network given by

z(t) =





y1(t)
...

yM (t)

y1(t−R1(t))
...

yM (t−RM (t))

r1(t)
...

rN (t)

q1(t)
...

qN (t)





, (4.10)

where M is the number of TCP flows in the network, and N is the number

of RED routers in the network. The state vector at t + ∆ is approximately

given by

z(t+∆) $ z(t) + ḟ(t, z(t))∆, (4.11)

where ḟ is obtained from fluid-flow models (Eqs. (4.1)–(4.6)).

Using a numerical computation algorithm for ordinary differential equa-

75

tions, evolution of the network state starting from an initial state can be nu-

merically obtained. As a numerical solution for Eq. (4.11), FSIM utilizes a

numerical computation algorithm for ordinary differential equations called

Dormand-Prince method [66]. For accelerating simulation execution, FSIM

uses the adaptive stepsize control for the Dormand-Prince method [66],

which adjusts the stepsize according change in ordinary differential equa-

tions. In other words, when change in the network state is large, the step-

size is decreased for minimizing error in the numerical computation. On

the contrary, when change in the network state is small, the stepsize is in-

creased for speeding up the numerical computation. With such an adap-

tive control, computational complexity required for flow-level simulation

can be significantly reduced, while maintaining the accuracy of simulation

results.

Notice that the fluid-flow model of the TCP congestion control mech-

anism (Eq. (4.1)) requires past network state (i.e., y(t − R)). In FSIM, past

network states (up to the maximum round-trip time of all TCP flows) are

recorded in the memory for enabling application of the Dormand-Prince

method. Since FSIM uses the adaptive stepsize control, the timing at which

the network state is updated is varied. So past network state required

for calculating the next network state might not have been calculated. In

FSIM, the past network state in need is approximated as an interpolation

of nearby network states [67].

4.2.3 Routing

FSIM obtains routing information using a independent module. To obtain

routing information, the module performs a single-source shortest path

76

algorithm. FSIM would be able to support dynamic routing by dynami-

cally modifying routing information depending on a dynamic routing al-

gorithm.

4.2.4 Compatibility with existing performance evaluation tools

The flow-level simulator FSIM realizes high compatibility with an exist-

ing network performance evaluation tool. Specifically, FSIM can input and

output files compatible with ns-2 [13], which is one of the most popular

packet-level simulators. Specifically, our flow-level simulator FSIM inter-

prets typical ns-2 simulation file written in OTcl[68]; i.e., major ns-2 com-

mands such as duplex-link and create-connection are parsed and

translated to FSIM objects. Also, FSIM outputs its simulation logs in either

ns-2 (generated with trace-all command) or nam [69] (generated with

namtrace-all compatible format.

4.3 Experiments

In this section, through extensive experiments using our FSIM implemen-

tation, we evaluate the effectiveness of our flow-level simulator FSIM in

terms of accuracy, simulation speed, and memory consumption.

4.3.1 Experimental setup

We compare performance of three simulators: our flow-level simulator

FSIM, the conventional flow-level simulator FFM [70], and packet-level

simulator ns-2 [13]. FFM is one of the latest flow-level simulators. Re-

call the major difference between FFM and FSIM; i.e., different from FSIM,

FFM has no adaptive stepsize control, and the TCP fluid-flow model in

77

TCP(1)

TCP(n)

RED(1) RED(2)

sink(1)

sink(n)

maxth = 2,500 [packet]
minth = 625 [packet]
maxp = 0.1
α = 0.04

10 [ms]
100 [Mbps]

10 [ms]
15,000 [Mbps]

10 [ms]
15,000 [Mbps]

RED configuration

access link
configuration

bottleneck link
 configuration

access link
configuration

Figure 4.1: Dumb-bell network

FFM does not model the TCP timeout mechanism. We performed simula-

tions for the same topology and parameters with those three simulators.

It is essential to investigate the performance of a network simulator for

several simulation scenarios since network simulators are in nature used

for several purposes. We therefore use three typical simulation scenarios:

dumb-bell network, random network, and hierarchical network.

• Dumb-bell network

A dumb-bell network [71] consists of two RED routers and homo-

geneous TCP flows with identical propagation delays (see Fig. 4.1).

The link between two RED routers is the bottleneck since the access

link (i.e., the link between an end host and an RED router) is much

faster than that between RED routers. Unless explicitly stated, the

number of TCP flows is 100, and the bottleneck link bandwidth is

100 [Mbit/s]. Such a simple simulation scenario has been widely

adopted as a baseline model for many networking performance stud-

ies [71].

78

RED

maxth = 2,500 [packet]
minth = 625 [packet]
maxp = 0.1
α = 0.04

10 [ms]
100 [Mbps]

RED configuration

link configuration

Figure 4.2: A random network with 20 nodes

• Random network

In the random network scenario (see Fig. 4.2), for a given number

of RED routers and the average degree (i.e., the average number of

links connected to an RED router), a network topology is randomly

generated as a random network [72]. Also, for a given number of TCP

flows, TCP source hosts and sinks are attached at randomly-chosen

RED routers. The random network is widely used by large-scale net-

work researchers [73-75]. Unless explicitly stated, the bandwidth of

all links are equally set to 100 [Mbit/s], the propagation delay of all

links are equally set to 10 [ms], and the average degree is 3.

• Hierarchical network

The hierarchical network consists of three levels, are referred to as

79

LAN(1) LAN(M-1) LAN(M)

MAN(1)

MAN(2)

WAN
(1 node)

(5% of
all nodes)

(5% of
all nodes)

(9 nodes) (9 nodes) (8 nodes)

RED configuration

RED

maxth = 2,500 [packet]
minth = 625 [packet]
maxp = 0.1
α = 0.04

10 [ms]
100 [Mbps]

M = 10 % of all nodes

link configuration

Figure 4.3: Hierarchical network

WAN, MAN and LAN levels (see Fig. 4.3). The hierarchical network

is a Internet-like network [76]. For a given number of RED routers, a

network topology is randomly generated as a hierarchical network [76].

Then, for a given number of TCP flows, TCP source hosts and sinks

are attached at randomly-chosen RED routers at LAN level. Un-

less explicitly stated, the bandwidth of all links are equally set to

100 [Mbit/s], and the propagation delay of all links are equally set

to 10 [ms],

In all simulation scenarios, all TCP source hosts continuously transmit

data to their corresponding TCP sinks.

80

In all experiments, a computer with two Intel Pentium 4 (3.06 [GHz])

processors with 3 [GByte] memory running Debian GNU/Linux 3.1 (kernel

version 2.4.32) is used for executing flow-level simulators or the packet-

level simulator.

In all experiments, we repeated 10 simulations, and calculated the aver-

age and 95% confidence interval of measurements (e.g., simulation execu-

tion time and maximum memory consumption). In the following figures,

confidence intervals are not shown because they were sufficiently small in

all experiments. Note that we optimized ns-2 configurations following the

guideline in [77].

4.3.2 Accuracy

With three network simulators (i.e., FSIM, FFM, and ns-2), TCP packet

transmission rate and the queue length of the RED router are measured

(Figs. 4.4 through 4.6). For different bottleneck link bandwidths, Figs. 4.4

and 4.5 illustrate the time average of TCP packet transmission rates and

the relative error of TCP packet transmission rates between a flow-level

simulator (FSIM or FFM) and the packet-level simulator ns-2, respectively.

Figure 4.5 shows that FSIM achieves much better accuracy than FFM. Note

that Fig. 4.5 shows that the accuracy of FSIM improves as the bottleneck

link bandwidth increase. Therefore, FSIM is effective for high-speed net-

work simulations which is hard to perform with packet-level simulators.

4.3.3 Simulation speed

We investigate simulation speeds of flow-level simulators (FSIM and FFM)

and the packet-level simulator ns-2 when changing the number of TCP

81

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 10 20 30 40 50 60 70 80 90 100TC
P

pa
ck

et
 tr

an
sm

is
si

on
 ra

te
 [M

bp
s]

Link bandwidth

FSIM
FFM
ns-2

Figure 4.4: Time average of TCP packet transmission rates vs. the link
bandwidth

flows, the link bandwidth, and the number of nodes. To investigate the

simulation speed, we measured simulation execution times of three sim-

ulators. With three simulators, simulation execution times required for

performing 50 [s] of simulation are measured. The purpose of flow-level

simulator is different with that of packet-level simulator. For reference, we

present results of the packet-level simulator ns-2.

We first investigate simulation speeds of three simulators when chang-

ing the number of TCP flows in the dumb-bell network. Figure 4.7 shows

simulation execution times of three simulators for different numbers of

TCP flows.

Figure 4.7 shows that the simulation execution time of FSIM is much

shorter than that of FFM regardless of the number of TCP flows. This is

because the adaptive stepsize control implemented in FSIM is effective re-

82

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
er

ro
r o

f T
C

P
pa

ck
et

 tr
an

sm
is

si
on

 ra
te

Link Bandwidth

FSIM
FFM

Figure 4.5: Relative error of the time average of TCP packet transmission
rates vs. the link bandwidth

gardless of the number of TCP flows. Figure 4.7 also shows that simulation

execution times of FSIM and FFM does not increase even when the num-

ber of TCP flows increases. This is because flow-level simulators support

flow aggregation, which aggregates multiple flows with the same character-

istics into a single one. Figure 4.7 even shows that the simulation execution

time of FSIM decreases as the number of TCP flows increases. This can

be explained as follows. As the number of TCP flows increases, the TCP

round-trip time increases, leading gradual change in the TCP transmission

rate. As the change in the TCP window size becomes gradual, the stepsize

increase, which results in fast simulation.

We then investigate simulation speeds of three simulators when chang-

ing the bottleneck link bandwidth in the dumb-bell network. Figure 4.8

shows simulation execution times of three simulators for different bottle-

83

 760
 780
 800
 820
 840
 860
 880
 900
 920
 940
 960
 980

 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 le

ng
th

 [p
ac

ke
t]

Link bandwidth

FSIM
FFM
ns-2

Figure 4.6: Time average of the queue length vs. the link bandwidth

neck link bandwidths.

Figure 4.8 shows that the simulation execution time of FSIM is much

shorter than that of FFM and ns-2 regardless of the bottleneck link band-

width. Surprisingly, Fig. 4.8 shows that the simulation execution time of

FSIM even decreases as the bottleneck link bandwidth increases. This is

resulted from our adaptive stepsize control. Namely, as the bottleneck link

bandwidth increase, the linear growth time of the TCP transmission rate

becomes long. Thus, the stepsize can be increased when the bottleneck link

bandwidth is large. Figure 4.8 shows that simulation execution times of

FSIM are almost the same if the bottleneck link bandwidth is more than or

equal to 1,000 [Mbit/s]. This can be explained as follows. The ordinary

differential equations (Eqs. (4.1) and (4.7)) used in FSIM are dependent on

the past network state at the delay time ago. Therefore, when the gradient

of network state from an ordinary differential equation is calculated, the

84

 0.1

 1

 10

 100

 1000

 10 100 1000

Si
m

ul
at

io
n

ex
ec

ut
io

n
tim

e
[s

]

Number of TCP flows

FSIM
FFM
ns-2

Figure 4.7: Simulation execution time vs. the number of TCP flows

past network state at the delay time ago must be already calculated. The

stepsize in FSIM cannot be larger than the delay time. The reason that sim-

ulation execution times of FSIM are almost the same is that the stepsize be-

come the delay time. Figure 4.8 shows that simulation execution times of

FSIM and FFM does not increase even when the bottleneck link bandwidth

increases. This clearly indicates the strength of flow-level simulators; the

computational complexity of flow-level simulators does not increase as the

link bandwidth increases.

We then investigate simulation speeds of three simulators when chang-

ing the number of nodes. Figures 4.9 and 4.10 show simulation execution

times of three simulators for different numbers of nodes in the random net-

work and the hierarchical network, respectively. Due to memory exhaus-

tion, we could not perform simulation 900 nodes with FFM and ns-2. We

will discuss this issue in Section 4.3.4.

85

 0.1

 1

 10

 100

 1000

 100 1000 10000

Si
m

ul
at

io
n

ex
ec

ut
io

n
tim

e
[s

]

Link Bandwidth [Mbit/s]

FSIM
FFM
ns-2

Figure 4.8: Simulation execution time vs. the bottleneck link bandwidth

Figures 4.9 and 4.10 show that the simulation execution time of FSIM is

much shorter than that of FFM and ns-2 regardless of the number of nodes.

From Figs. 4.9 and 4.10, it is found that the difference between simulation

execution times of FFM and FSIM for a random network is smaller than that

for a hierarchical network. This is because that it is easy to synchronize the

network state in a hierarchical network compared with a random network.

Since traffic concentration at top node is the highest in a hierarchical net-

work, it is easy to find a bottleneck link of a flow. Therefore, the network

state in a hierarchical network tends to be easily synchronized compared

with a random network. Figures 4.9 and 4.10 also show that simulation

execution times of FSIM and FFM increase when the number of nodes in-

creases. This is because the number of TCP flows with a different path

increases when the number of nodes increases. TCP flows with a different

path cannot be aggregated into a single one by flow-aggregation. Thus, the

86

 100

 1000

 10000

 100000

 200 400 600 800 1000 1200

Si
m

ul
at

io
n

ex
ec

ut
io

n
tim

e[
s]

Number of nodes

FSIM
FFM
ns-2

Figure 4.9: Simulation execution time vs. the number of nodes in the ran-
dom network

computational complexity of FSIM and FFM increases when the number

of nodes increases. Figure 4.10 shows that simulation execution times of

flow-level simulators and the packet-level simulator increases almost lin-

early. Hence, relative execution times between flow-level simulators and

packet-level simulator for different number of nodes are almost the same.

Therefore, the effectiveness of flow-level simulator does not become high

as the number of nodes increases.

In summary, the simulation speed of FSIM is much faster than that of

FFM regardless of the number of TCP flows, the link bandwidth, and the

number of nodes. FSIM realizes 2-3 times faster simulation compared with

FFM on the average.

87

 10

 100

 1000

 10000

 100000

 100 1000 10000

Si
m

ul
at

io
n

ex
ec

ut
io

n
tim

e[
s]

Number of nodes

FSIM
FFM
ns2

Figure 4.10: Simulation execution time vs. the number of nodes in the hier-
archical network

4.3.4 Memory consumption

We investigate memory consumptions of flow-level simulators (FSIM and

FFM) and the packet-level simulator ns-2 when changing the number of

TCP flows, the link bandwidth, and the number of nodes. Scalability of

network simulators is sometimes limited by the memory size required for

executing simulation [77]. To investigate the memory consumption, maxi-

mum memory consumptions (i.e., the sum of statistically and dynamically

allocated memory size) during simulation run are measured for three sim-

ulators.

We first investigate memory consumptions of three simulators when

changing the number of TCP flows in the dumb-bell network.

Figure 4.11 shows that the maximum memory consumptions of FSIM

is much smaller than that of FFM regardless of the number of TCP flows.

88

 1

 10

 100

 1000

 10 100 1000M
ax

im
um

 m
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Number of TCP flows

FSIM
FFM
ns-2

Figure 4.11: Maximum memory consumption vs. the number of TCP flows

This can be explained as follows. FFM is embedded in ns-2, which has

many functions not to be related to flow-level simulation. FFM loads such

functions on a memory during execution. It is not trivial to modify FFM to

load functions required only for flow-level simulation due to its high mod-

ule coupling. Figure 4.11 also shows that maximum memory consumptions

of FSIM and FFM does not increase even when the number of TCP flows

increases. Similar to the phenomenon observed in Fig. 4.7, this is because

flow-level simulators support flow-aggregation.

We then investigate memory consumptions of three simulators when

changing the bottleneck link bandwidth in the dumb-bell network.

Figure 4.12 shows that the maximum memory consumption of FSIM is

independent of much smaller than that of FFM and ns-2 regardless of the

bottleneck link bandwidth. Similar to the phenomenon observed in Fig. 4.8,

this is because flow-level simulators mimics behavior of every flow in a

89

 1

 10

 100

 1000

 100 1000 10000M
ax

im
um

 m
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Link Bandwidth [Mbit/s]

FSIM
FFM
ns-2

Figure 4.12: Maximum memory consumption vs. the bottleneck link band-
width

network.

We then investigate memory consumptions of three simulators when

changing the number of nodes. Figures 4.13 and 4.14 show maximum

memory consumptions of three simulators for different numbers of nodes

in the random network and the hierarchical network, respectively.

Figures 4.13 and 4.14 show that the maximum memory consumption

of FSIM is much smaller than that of FFM regardless of the number of

nodes. This is because FSIM stores the the path of a TCP flow as a list

with the number of elements equal to the path length whereas FFM stores

the path of a TCP flow in a array with the number of elements equal to the

total number of nodes. The maximum memory consumption of FSIM when

performing simulation with 10,000 nodes is approximately 1,430 [Mbyte].

Figures 4.13 and 4.14 also show that maximum memory consumptions of

90

 100

 1000

 10000

 200 400 600 800 1000 1200M
ax

im
um

 m
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Number of nodes

FSIM
FFM
ns-2

Figure 4.13: Maximum memory consumption vs. the number of nodes in a
random network

FSIM and FFM increase as the number of nodes increases. Similar to the

phenomenon observed in Figs. 4.9 and 4.10 this is because the number of

TCP flows with a different path increases when the number of nodes in-

creases.

In summary, the memory consumption of FSIM is always smaller than

that of FFM regardless of the number of TCP flows, the link bandwidth, and

the number of nodes. FSIM realizes more than 2-4 times memory efficiency

compared with FFM. This suggests that for a given memory size, our flow-

level simulator FSIM can simulate a larger network than FFM.

4.4 Summary

In this chapter, we have proposed a flow-level simulator called FSIM (Fluid-

based SIMulator) for performance evaluation of large-scale networks, and

91

 10

 100

 1000

 10000

 100 1000 10000M
ax

im
um

 m
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Number of nodes

FSIM
FFM
ns2

Figure 4.14: Maximum memory consumption vs. the number of nodes in a
hierarchical network

have verified its effectiveness using our FSIM implementation. Through

extensive experiments using our FSIM implementation, we have evaluated

the effectiveness of our flow-level simulator FSIM in terms of simulation

speed, accuracy and memory consumption. We have shown that our flow-

level simulator FSIM outperforms a conventional flow-level simulator; i.e.,

it realizes approximately 200%-300% faster simulation with higher accu-

racy and less memory consumption than a conventional flow-level simu-

lator. In particular, we should note that FSIM is effective for performance

evaluation of a network with large link capacities and many TCP flows.

As future work, we are planning to further improve the numerical com-

putation algorithm of differential equation. In particular, we are planning

to further discuss the adaptive numerical computation algorithm used in

FSIM. We are also planning to evaluate FSIM in a large-scale network in

92

terms of accuracy. We are planning to include support for various types of

network protocols such as UDP, DCCP, HighSpeed TCP, and XCP utilizing

fluid-flow models derived in [78, 79, 33].

Our FSIM implementation is available at http://www.ispl.jp/fsim/.

93

Chapter 5

Effectiveness of Thorup’s

Shortest Path Algorithm for

Large-Scale Network

Simulation

5.1 Thorup’s Algorithm

In this section, we briefly introduce Thorup’s algorithm. Refer to [48] for

the details.

Thorup’s algorithm is an efficient solution of a single-source shortest

path (SSSP) problem for an undirected graph with positive integer edge

weights [48]. In Dijkstra’s algorithm, vertices are visited in order of increas-

ing distance from the source vertex. Thus, Dijkstra’s algorithm need to sort

vertices according to their distances from the source vertex, which results

in non-linear time complexity. Thorup’s algorithm can realize a linear time

95

complexity by avoiding the sorting bottleneck. Several key techniques used

in Thorup’s algorithm are a hierarchical bucketing structure and identifica-

tion of vertex pairs that can be visited in any order. Note that edge weights

are restricted to positive integers due to introduction of buckets.

Thorup’s algorithm is composed of two phases: building the compo-

nent tree and visiting components for finding shortest-paths.

First, Thorup’s algorithm builds a hierarchical bucketing structure called

component tree, which is suitable for finding shortest paths from a source

vertex in the next phase. The graph is recursively partitioned into sev-

eral subgraphs. Namely, the graph is partitioned into several subgraphs

by removing edges having a large weight. This procedure is repeated (i.e.,

subgraphs are further partitioned into small subgraphs) until all subgraphs

become singletons. A component (i.e., node) of the component tree repre-

sents each subgraph; i.e., the root component of the component tree repre-

sents the whole graph, and leaf components of the component tree repre-

sent vertices in the graph. For efficient realization of recursive partitioning

of the graph, Thorup’s algorithm utilizes the minimum spanning tree of

the graph. Thus, the time complexity of building the component tree is

determined by that of the algorithm for obtaining the minimum spanning

tree.

Second, Thorup’s algorithm finds shortest paths from a source vertex

using the component tree. Similarly to Dijkstra’s algorithm, Thorup’s al-

gorithm obtains the shortest paths from the source vertex by gradually

expanding the set of visited vertices. For this purpose, components of

the component tree are recursively visited from the root component while

identifying vertex pairs that can be visited in any order. A bucket is as-

signed to each component in the component tree, and its key and values

96

1

2

3

4

5

6

8

7

1

3

5

5

1

9

7

7

35

9

1

11

22

33

44

55

66

88

77

1

3

5

5

1

9

7

7

35

9

1

1

2

3

4

5

6

8

7

1

3

5

5

1

9

7

7

35

9

1

11

22

33

44

55

66

88

77

1

3

5

5

1

9

7

7

35

9

1

1

2

3

4

5

6

8

7

1

3

5

5

1

9

7

7

35

9

1

11

22

33

44

55

66

88

77

1

3

5

5

1

9

7

7

35

9

1

1

2

3

4

5

6

8

7

1

3

5

5

1

9

7

7

35

9

1

11

22

33

44

55

66

88

77

1

3

5

5

1

9

7

7

35

9

1

root component

leaf components

Partitioned

by removing

edges having

weight 5,7,9

Partitioned

by removing

edges having

weight 1

Partitioned by removing

edges having weight 3

C1

C21

C22

C31

C32

C33

C41

C42

C43

C44

C45

C46

C47

C48

Figure 5.1: Recursive partitions for an example graph

are successively updated. The time complexity of visiting components for

finding shortest-paths is O(E +N).

In [48], two algorithms for finding the minimum spanning tree, Kruskal’s [50]

and Fredman’s [49] algorithms, are discussed.

Fredman’s algorithm is an efficient algorithm, whose time complexity is

O(E). The original Thorup’s algorithm (THORUP-FR) uses Fredman’s al-

gorithm for obtaining the minimum spanning tree. Incorporation of Fred-

man’s algorithm into THORUP-FR is another key technique for realizing a

linear time algorithm of O(E +N).

Kruskal’s algorithm is an elementary algorithm with the time complex-

ity of O(E α(N)) where α(N) is the functional inverse of the Ackerman

function [47]. A simplified version of Thorup’s algorithm (THORUP-KL)

97

C1

C22C21

C31 C32 C33

C41 C42 C43 C44 C45 C46 C47 C48

Figure 5.2: Component tree for an example graph

uses Kruskal’s algorithm for obtaining the minimum spanning tree. THORUP-

KL is no longer a linear time algorithm since Kruskal’s algorithm is not a

liner time algorithm; i.e., the time complexity of THORUP-KL is O(E α(N)+

N).

5.2 Experiment

5.2.1 Methodology

Through extensive experiments, we compare the performance of Thorup’s

and Dijkstra’s algorithms in terms of speed and memory consumption. We

implemented Thorup’s algorithm using Kruskal’s algorithm for obtaining

the minimum spanning tree (THORUP-KL) and Dijkstra’s algorithm using

a binary heap (DIJKSTRA-BH) [47].

Note that in our experiments, THORUP-KL is used instead of THORUP-

FR even though THORUP-KL is theoretically less efficient than THORUP-

FR. As explained in Section 5.1, THORUP-KL is not a linear time algorithm.

However, we intentionally use THORUP-KL rather than THORUP-FR be-

98

cause of the following two practical reasons.

The first reason is that Asano et al. have shown that THORUP-FR is

very slow in practice [51]. The second reason is that the time complexity of

Kruskal’s algorithm, O(E α(N)), should be comparable with that of Fred-

man’s, O(E), since it is known that α(N) ≤ 4 for all N < 22
265536 − 3 [47].

Namely, the performance of THORUP-KL should be comparable with (or

might be even faster than) that of THORUP-FR for large-scale network sim-

ulation.

In all experiments, a computer with a single Intel Pentium4 2.80 [GHz]

processor with 1 [Gbyte] of memory running Debian GNU/Linux 5.0 (ker-

nel version 2.6.26) is used.

For clearly examining effectiveness of THORUP-KL and DIJKSTRA-

BH, we used a simple network topology. Namely, we generated a random

network with ER (Erdös-Rényl) model [72] for a given network size N (i.e.,

the number of nodes) and the average degree k (i.e., the average number

of links connected to each node). A random network is a traditional net-

work model, and it has been used for large-scale network simulation [80].

We claim neither that a random network is the typical network topology for

network simulation studies nor that performance evaluation with a ran-

dom network is sufficient for comparing effectiveness of THORUP-KL and

DIJKSTRA-BH. However, we believe that usage of a realistic (but complex)

network model as a network topology unnecessary complicates our perfor-

mance evaluation, and makes it difficult to interpret the results.

We calculated the average and 95% confidence interval of measure-

ments (e.g., execution time and memory consumption). In all figures, 95%

confidence intervals are not shown since they are negligibly small (i.e., less

than 1.0% of each measurement).

99

5.2.2 Speed

We first evaluate the effectiveness of THORUP-KL and DIJKSTRA-BH in

terms of speed by measuring and comparing their execution times. THORUP-

KL and DIJKSTRA-BH are for a single-source shortest path problem. On

the contrary, network simulators usually need to obtain shortest paths for

all source–destination node pairs. We therefore estimated the execution

time for obtaining all-pairs shortest paths from the execution time for ob-

taining single-source shortest paths. Note that obtaining all-pairs shortest

paths is the worst case; i.e., if the number of source–destination pairs is not

so large, the network simulator does not need to obtain all-pairs shortest

paths. We separately measured the mean times for program initialization,

TG
init, and computation of single-source shortest paths, TG

SSSP , for a graph

G. The execution time for obtaining all-pairs shortest paths for G with N

vertices, TG
APSP , is estimated as

TG
APSP = TG

init +N TG
SSSP .

Execution times of THORUP-KL and DIJKSTRA-BH for obtaining all-

pairs shortest paths for different network sizes with a fixed average degree

(i.e., k = 5) and multiple edge weights (i.e., randomly-chosen integer edge

weights from 1 to 1,000) are shown in Fig. 5.3. This figure shows that ex-

ecution times increase rapidly as the network size N increases. This phe-

nomenon is not surprising since the time complexity of any algorithm for

all-pairs shortest path problem is at least O(N2).

To visually show the difference in execution times of THORUP-KL and

DIJKSTRA-BH , the relative execution time (i.e., the execution time of THORUP-

KL normalized by that of DIJKSTRA-BH) for k = 5 and 10 is shown in

100

10-1
100
101
102
103
104
105
106
107

103 104 105 106

Ex
ec

ut
io

n
tim

e
[s

]

Network size N

THORUP-KL
DIJKSTRA-BH

Figure 5.3: Execution times of THORUP-KL and DIJKSTRA-BH for obtain-
ing all-pairs shortest paths for the average degree k = 5 and
multiple edge weights of 1–1000.

Fig. 5.4. In this figure, results with two types of edge weights are shown:

the single edge weight (i.e., 1 for all edges) and multiple edge weights (i.e.,

randomly-chosen integer edge weights from 1 to 1,000). Figure 5.5 shows

relative execution times for random graph and hierarchical graph shown

in Fig. 4.3.

Different from the performance comparison of THORUP-FR and DIJKSTRA-

FH in [51], this figure clearly indicates that THORUP-KL is almost always

faster than DIJKSTRA-BH for any network size, average degree, and edge

weights. In [51], it has been reported that even with its linear time com-

plexity, THORUP-FR is at least 10 times slower than DIJKSTRA-FH for

medium-scale random graphs with 50,000 vertices. In Fig. 5.4, the maxi-

mum value of the relative execution time is 1.02, which implies that the per-

formance of THORUP-KL is comparable with that of DIJKSTRA-BH even

101

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

103 104 105 106

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Network size N

k=5 (single weight)
k=10 (single weight)

k=5 (multiple weights)
k=10 (multiple weights)

relative execution time=1

Figure 5.4: Relative execution time (i.e., the execution time of THORUP-
KL normalized by that of DIJKSTRA-BH) for different average
degrees k and types of edge weights.

in the worst case. For large-scale (e.g., million nodes) network simulation,

THORUP-KL achieves almost double efficiency compared with DIJKSTRA-

BH.

These results bring us a natural question: why does THORUP-FR per-

form inefficiently in [51] while THORUP-KL performs efficiently in our ex-

periments? One possible explanation is the algorithm used for finding the

minimum spanning tree. Namely, Asano et al. used Fredman’s algorithm

whereas we used Kruskal’s algorithm. It has been reported in [51] that

for random graphs with 50,000 vertices, Fredman’s algorithm itself con-

sumes significant amount of time (e.g., 86% for E = 175, 065 and 98% for

E = 424, 396) of the total execution time in their experiments.

From detailed measurements of our implementation, we have found

that Kruskal’s algorithm itself consumed approximately 5% of the total ex-

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

103 104 105 106

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Network size N

random (multiple weights)
hierarchical (multiple weights)

relative execution time=1

Figure 5.5: Relative execution time for different network topology.

ecution time. Such a drastic reduction in the execution time for finding the

minimum spanning tree should be the reason for effectiveness of THORUP-

KL. Note that Asano et al. have addressed and extensively studied practical

inefficiency of Fredman’s algorithm in [51]. We could choose THORUP-KL

with Kruskal’s algorithm mostly because of their findings.

Also, contrary to one’s expectation, Fig. 5.4 shows somewhat strange

phenomenon; i.e., the relative execution time is like a camel-shaped function

for the network size N regardless of the average degree k and the type of

edge weights.

The relative time complexity of THORUP-KL to DIJKSTRA-BH is given

by

O((E α(N) +N)

O((E +N) logN)
≈ O

(
α(N)

logN

)
. (5.1)

103

Note the existence of α(N) in the numerator because we used Kruskal’s al-

gorithm instead of Fredman’s. Recall that α(N) ≤ 4 for all N < 22
265536 −

3 [47]. Thus, Eq. (5.1) should be an asymptotically monotone decreasing

for the network size N . One would therefore expect that the relative exe-

cution time TG
APSP be an asymptotically monotone decreasing function for

the network size N .

Aside from the camel-shaped function, Fig. 5.4 indicates that the rela-

tive execution time is moderately affected by the type of edge weights, and

slightly by the average degree. This is again contrary to one’s expectations.

The relative time complexity (Eq. (5.1)) is independent of the average de-

gree k (i.e., the number of edges E). One would therefore expect that the

relative execution time TG
APSP should not be affected by the average degree

k.

In the following sections, we will investigate the cause of those devia-

tions of the relative execution time (i.e., camel-shaped function and depen-

dence on the average degree) from the relative time complexity.

5.2.3 Memory Consumption

We next evaluate the effectiveness of THORUP-KL and DIJKSTRA-BH in

terms of memory consumption. We measured the memory consumption

for obtaining all-pairs shortest paths. Note that the memory consump-

tion for obtaining all-pairs shortest paths is equivalent to that for obtaining

single-source shortest paths because of its repetitive program execution.

Memory consumptions of THORUP-KL and DIJKSTRA-BH for obtain-

ing all-pairs shortest paths for different network sizes are shown in Fig. 5.6.

In this figure, the average degree k = 5 and multiple edge weights of 1–

104

1000 are used. Note that we have observed that the memory consumptions

of THORUP-KL and DIJKSTRA-BH are not significantly affected by the av-

erage degree and the type of edge weights.

Figure 5.6 shows that the memory consumption of THORUP-KL is as

approximately 1.4 times large as that of DIJKSTRA-BH. This is directly

caused by the difference in data structures used in THORUP-KL (i.e., a

hierarchical bucketing structure) and DIJKSTRA-BH (i.e., a binary heap).

More specifically, the memory complexity of DIJKSTRA-BH is O(N) [46].

The memory complexity of THORUP-KL is also O(N) [48]. Therefore, the

relative memory consumption (i.e., the memory consumption of THORUP-

KL normalized by that of DIJKSTRA-BH) should be independent of the

network size N . Although the data structure of DIJKSTRA-BH (i.e., a bi-

nary heap) can be implemented as one-dimensional array, the data struc-

ture of THORUP-KL is a complicated hierarchical bucketing structure. A

hierarchical bucketing structure consists of a component tree and buckets

for each component, which is apparently less memory efficient than the

binary heap.

5.2.4 Cause of Camel-Shaped Function

The larger memory consumption with THORUP-KL than with DIJKSTRA-

BH might be the cause of the camel-shaped function of the relative execu-

tion time (see Fig. 5.4). As observed in Fig. 5.6, the memory consumption of

THORUP-KL is as approximately 1.4 times large as that of DIJKSTRA-BH.

One possible explanation is the effect of memory cache of the microproces-

sor. If the memory usage is greedy, memory accesses are less likely to hit

the cache, causing significant slow down in program execution.

105

 0.1

 1

 10

 100

 1000

103 104 105 106

M
em

or
y

co
ns

um
pt

io
n

[M
by

te
]

Netowrk size N

THORUP-KL
DIJKSTRA-BH

Figure 5.6: Memory consumptions of THORUP-KL and DIJKSTRA-BH for
the average degree k = 5 and multiple edge weights of 1–1000.

To clarify why the relative execution time becomes a camel-shaped func-

tion for the network size N , we investigate the effect of the memory cache

on the performance of THORUP-KL and DIJKSTRA-BH. We performed the

same experiments with those in Section 5.2.2 except that the memory cache

in the microprocessor is disabled. Relative execution times with and with-

out the memory cache are shown in Fig. 5.7.

Figure 5.7 clearly shows that the relative execution time without the

memory cache is a monotone decreasing function for the network size N .

On the contrary, when the memory cache is enabled, the relative execution

time is a camel-shaped function for the network size N .

In Fig. 5.7, the fitted curve with the relative execution time without

the memory cache is also plotted. Recall again the relative time complex-

ity (Eq. (5.1)) of THORUP-KL to DIJKSTRA-BH and α(N) ≤ 4 for all N <

106

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

103 104 105 106

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Network size N

memory cache enable
memory cache disable

7.17 α(N) / log(N)+ 0.08

Figure 5.7: Relative execution times with and without the memory cache
for the average degree k = 5 and multiple edge weights of 1–
1000.

22
265536 − 3. We therefore used c1/ logN + c2 for curve fitting, and obtained

c1 = 7.17 and c2 = 0.08. The fitted curve well matches the relative execu-

tion time without the memory cache, indicating that the relative execution

time can be well explained with the relative time complexity (Eq. (5.1)).

Reversely, this suggests that the cause of the camel-shaped function of the

relative execution time should be the memory cache of the microprocessor.

More detailed investigation can be possible by examining the memory

cache performance. We measured the memory cache performance (i.e., L1

and L2 cache miss rates) using a cache profiler called cachegrind [81]. Fig-

ures 5.8 and 5.9 show cache miss rates of THORUP-KL and DIJKSTRA-

BH for L1 and L2 cache, respectively. These figures clearly indicate that

THORUP-KL is not cache-friendly. More specifically, L1 and L2 cache miss

rates of THORUP-KL is as approximately 2–4 times large as those of DIJKSTRA-

107

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

103 104 105 106

L1
 c

ac
he

 m
is

s
ra

te

Network size N

THORUP-KL (k=5)
DIJKSTRA-BH (k=5)
THORUP-KL (k=10)

DIJKSTRA-BH (k=10)

Figure 5.8: L1 cache miss rate of THORUP-KL and DIJKSTRA-BH for the
average degree k = 5, 10 and multiple edge weights of 1–1000.

BH. Namely, THORUP-KL suffers from much more frequent cache miss

penalties than DIJKSTRA-BH, leading significant slow down in program

execution.

So, why is the THORUP-KL not cache-friendly? Effectiveness of the

memory cache is affected by several factors: the size of memory used and

the locality of memory accesses (i.e., spatial and temporal localities) during

program execution [82]. As explained in Section 5.2.3, both THORUP-KL

and DIJKSTRA-BH are linear space algorithms. Lack of cache-friendliness

in THORUP-KL compared with DIJKSTRA-BH can be explained as fol-

lows.

• Larger memory usage

The memory consumption of THORUP-KL is as approximately 1.4

times large as that of DIJKSTRA-BH (see Fig. 5.6). Larger memory

108

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

103 104 105 106

L2
 c

ac
he

 m
is

s
ra

te

Network size N

THORUP-KL (k=5)
DIJKSTRA-BH (k=5)
THORUP-KL (k=10)

DIJKSTRA-BH (k=10)

Figure 5.9: L2 cache miss rate of THORUP-KL and DIJKSTRA-BH for the
average degree k = 5, 10 and multiple edge weights of 1–1000.

consumption results in a higher cache miss rate.

• Lower spatial locality

The hierarchical bucketing structure of THORUP-KL is sparsely al-

located in the memory while the binary heap of DIJKSTRA-BH is

densely allocated. The hierarchical bucketing structure consists of

several types of elements such as references (i.e., pointers) to buckets

and references to child components. The binary heap can be realized

as an array. Lower spatial locality of THORUP-KL results in a higher

cache miss rate.

• Lower temporal locality

THORUP-KL needs recursion, whereas DIJKSTRA-BH doesn’t. Be-

cause of introducing the hierarchical bucketing structure, THORUP-

109

KL needs to recursively visit components. Recursion generally re-

sults in lower temporal locality. On the contrary, DIJKSTRA-BH only

requires looping. Lower temporal locality of THORUP-KL results in

a higher cache miss rate.

From these observations, we conclude that THORUP-KL is almost always

faster than DIJKSTRA-BH for large-scale network simulation. However,

as the camel-shaped function of the relative execution time indicates, its

effective is significantly affected by the memory cache performance.

5.2.5 Estimating Relative Execution Time

For practically utilizing THORUP-KL for network simulation, thorough

understanding of its effective is necessary. In particular, we need to un-

derstand how the effectiveness of THORUP-KL is affected by the memory

cache performance. Hence, we finally try to answer the last question: how

is the relative execution time affected by several factors such as L1 and L2

cache miss rates and their cache miss penalties?

Let us introduce a simple cache performance model [83], which approx-

imates the execution time T̃ of a program on the microprocessor with L1

and L2 memory caches.

T̃ = NI TCPU +NM (tAL1 + pL1 TL1 + pL2 TL2) (5.2)

In the above equation, NI is the number of instructions executed, TCPU the

CPI (Cycles Per Instruction) time, and NM the number of memory accesses

performed. Also, TAL1 is the access time of L1 cache, and TLi and pLi (i =

1, 2) are the cache miss penalty and rate of Li cache.

We already have L1 and L2 cache miss rates, pL1 and pL2, in Figs. 5.8 and

110

Table 5.1: Measured CPI time, access time and cache miss penalty
CPI (Cycles Per Instruction) time TCPU 0.96 [ns]

access time of L1 cache TAL1 1.4 [ns]
cache miss penalty of L1 cache TL1 49.4 [ns]
cache miss penalty of L2 cache TL2 435.3 [ns]

Table 5.2: System specifications
FSB (Front-Side Bus) clock 800 [MHz]
L1 cache size 32 [Kbyte]
L2 cache size 1024 [Kbyte]
memory DDR2-533
memory controller hub Intel 82945G
memory clock 133 [MHz]
memory bus width 128 [bit]
I/O bus clock 266 [MHz]

5.9. The number of instructions executed, NI , and the number of mem-

ory accesses performed, NM , can be obtained with cachegrind. We then

measured other system-dependent (and program-independent) parame-

ters, TCPU , TAL1, TL1, and TL2, using a benchmark tool called lmbench [84].

Our measurement results are summarized in Tab. 5.1.

By substituting all parameters in Eq. (5.2) with our measured values,

execution times of THORUP-KL and DIJKSTRA-BH, T̃T and T̃D, can be

estimated. Thus, the estimated relative execution time, T̃T /T̃D, can be mea-

sured. Figure 5.10 shows the estimated relative execution times obtained

from Eq. (5.2) as well as the relative execution time obtained in Section 5.2.2.

Figure 5.10 shows that the simple cache performance model well ex-

plains the camel-shaped function of the relative execution time. It should

be noted that both the relative execution time and the estimated relative

execution time take the maximum value at the same network size N in

Fig. 5.10. Namely, the simple cache performance model accurately captures

the dynamics of the relative execution time. In other words, the camel-

shaped function of the relative execution time can be explained solely with

111

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

103 104 105 106

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Network size N

measured (k=5)
measured (k=10)

estimated (k=5)
estimated (k=10)

Figure 5.10: Measured and estimated relative execution times with the
memory cache for the average degrees k = 5, 10 and multiple
edge weights of 1–1000.

the memory cache performance.

5.2.6 Discussion

As explained in Section 5.1, the time complexity of THORUP-FR is O(E +

N) whereas that of THORUP-KL is O(E α(N) +N). We intentionally used

THORUP-KL instead of THORUP-FR. Our experiments clearly show that

practical efficiency of an algorithm cannot be predicted only from its time

complexity. Its performance is significantly affected by the existence of

memory cache.

In Sections 5.2.4 and 5.2.5, we have investigated the effect of memory

cache on performance of THORUP-KL and DIJKSTRA-BH from two differ-

ent approaches. It is well known that effectiveness of an algorithm is con-

siderably influenced by memory cache [82, 85, 86]. Also, studies on cache-

112

aware and cache-oblivious algorithms have been actively performed [85, 87,

88]. The effect of memory cache on the performance of an algorithm is quite

complicated. Therefore, its effectiveness should be carefully investigated

with extensive experiments, as we have done in this chapter.

In Section 5.2.2, we have shown that THORUP-KL is almost always

faster than DIJKSTRA-BH regardless of the network size, the average de-

gree, and the type of edge weights. This implies that THORUP-KL is ad-

vantageous to DIJKSTRA-BH for network simulation. However, as dis-

cussed in Section 5.2.1, we have only used a simple network model (i.e.,

random network). The effectiveness of THORUP-KL and DIJKSTRA-BH

might be affected by the type of networks (e.g., hierarchical network and

scale-free network). More investigation with realistic network models would

be of great interest.

In Section 5.2.5, we have demonstrated the potential of a simple cache

performance model for analyzing the effect of system performance on the

execution time. For instance, the simple model enables us to predict the

effect of system performance improvement/degradation on the execution

time. More specifically, the execution time with a double-speed micropro-

cessor can be predicted simply by halving TCPU in Eq. (5.2). Also, the exe-

cution time with double-speed L1 cache memory can be predicted simply

by halving TL1 in Eq. (5.2). Note that program-specific parameters (i.e., the

number of instructions executed, NI , the number of memory accesses per-

formed, NM , and cache miss rates pL1 and PL2) are independent of other

system-specific parameters (i.e., TCPU , TL1 and TL2). Thus, we can freely

change system parameters in Eq. (5.2) to predict their effect on the execu-

tion time. We are planning to investigate the effect of system architecture

(e.g., type of microprocessors and memory cache architecture) on the effec-

113

tiveness of THORUP-KL and DIJKSTRA-BH.

It is beyond the scope of this chapter, but investigation on the effective-

ness of THORUP-KL and DIJKSTRA-BH in a parallel environment would

be of great importance. In this chapter, the performances of THORUP-KL

and DIJKSTRA-BH with a single microprocessor are analyzed. However,

for very large-scale network simulation, usage of SMP processors and/or

parallel computers might be a viable choice. Multiple instances of a single-

source shortest path algorithm can be executed in parallel on SMP proces-

sors and/or parallel computers.

5.3 Summary

The objective of this chapter is therefore to investigate the effectiveness of

Thorup’s algorithm by comparing with Dijkstra’s, and to answer the fol-

lowing questions.

1. How efficiently/inefficiently does Thorup’s algorithm perform com-

pared with Dijkstra’s for large-scale (e.g., million nodes) network sim-

ulation?

2. How and why does the practical performance of Thorup’s and Dijk-

stra’s algorithms deviate from their time complexities (i.e., theoretical

performance)?

In this chapter, we have intentionally used THORUP-KL (i.e., a simpli-

fied version of Thorup’s algorithm) with the time complexity of O(E α(N)+

N).

There are several variants of Dijkstra’s algorithm with different time

complexities of O(E+N2) [89], O((E+N) logN) [46] and O(E+N logN) [52].

114

In this chapter, we have focused on Dijkstra’s algorithm with a binary heap

(DIJKSTRA-BH) [46] with the time complexity of O((E +N) logN).

Through extensive experiments with our implementations of THORUP-

KL and DIJKSTRA-BH, we have compared their performances (i.e., the

execution time and memory consumption). Our findings include that (1)

THORUP-KL is almost always faster than DIJKSTRA-BH for large-scale

network simulation, and (2) the performances of THORUP-KL and DIJKSTRA-

BH deviate from their time complexities due to the existence of memory

cache in the microprocessor.

115

Chapter 6

Conclusion

In this chapter, we summarize the research presented in this thesis, and

present directions for future works.

In Chapter 2, we have analyzed the stability of XCP in a network with

heterogeneous XCP flows (i.e., XCP flows with different propagation de-

lays). Through several numerical examples and simulation results, we

have investigated the effect of system parameters and XCP control param-

eters on stability of the XCP protocol. Our findings include: (1) when XCP

flows are heterogeneous, XCP operates more stably than the case when

XCP flows are homogeneous, (2) conversely, when variation in propaga-

tion delays of XCP flows is large, operation of XCP becomes unstable, and

(3) the output link bandwidth of an XCP router is independent of stability

of the XCP protocol.

In Chapter 3, we have proposed XCP-IR (XCP with Increased Robust-

ness) that operates efficiently even for dynamic traffic. XCP-IR prevents in-

stability of the XCP control caused by non-XCP traffic dynamics while pre-

venting degradation of the bottleneck-link utilization caused by XCP traffic

dynamics. We have analyzed stability and transient state performance of

117

XCP-IR using the analytic approach in Chapter 2. Through extensive sim-

ulation experiments, we have shown that XCP-IR operated efficiently even

for dynamic traffic. In particular, we have shown that the throughput with

XCP-IR is approximately 200% higher than that with XCP.

In Chapter 4, we have proposed a flow-level simulator called FSIM

(Fluid-based SIMulator) for performance evaluation of large-scale networks,

and have verified its effectiveness using our FSIM implementation. Through

extensive experiments using our FSIM implementation, we have evaluated

the effectiveness of our flow-level simulator FSIM in terms of simulation

speed, accuracy and memory consumption. We have shown that our flow-

level simulator FSIM outperforms a conventional flow-level simulator; i.e.,

it realizes approximately 200%-300% faster simulation with higher accu-

racy and less memory consumption than a conventional flow-level simu-

lator. In particular, we should note that FSIM is effective for performance

evaluation of a network with large link capacities and many TCP flows.

The objective of Chapter 5 is to investigate the effectiveness of Thorup’s

algorithm by comparing with Dijkstra’s, and to answer the following ques-

tions.

1. How efficiently/inefficiently does Thorup’s algorithm perform com-

pared with Dijkstra’s for large-scale (e.g., million nodes) network sim-

ulation?

2. How and why does the practical performance of Thorup’s and Dijk-

stra’s algorithms deviate from their time complexities (i.e., theoretical

performance)?

In Chapter 5, we have intentionally used THORUP-KL (i.e., a simplified

version of Thorup’s algorithm) with the time complexity of O(E α(N)+N).

118

There are several variants of Dijkstra’s algorithm with different time

complexities of O(E+N2) [89], O((E+N) logN) [46] and O(E+N logN) [52].

In this thesis, we have focused on Dijkstra’s algorithm with a binary heap

(DIJKSTRA-BH) [46] with the time complexity of O((E +N) logN).

Through extensive experiments with our implementations of THORUP-

KL and DIJKSTRA-BH, we have compared their performances (i.e., the

execution time and memory consumption). Our findings include that (1)

THORUP-KL is almost always faster than DIJKSTRA-BH for large-scale

network simulation, and (2) the performances of THORUP-KL and DIJKSTRA-

BH deviate from their time complexities due to the existence of memory

cache in the microprocessor.

In this thesis, to realize analysis and simulation of Internet congestion

control mechanisms for large-scale networks, we have tackled the issues

with fluid-based approaches. For realizing analysis and simulation of Inter-

net congestion control mechanisms for large-scale networks, we are plan-

ning to investigate the effectiveness of analytic approach in Chapter 2 in

large-scale network with many nodes. We are planning to accelerate FSIM

implemented in Chapter 4 by using parallel computation. Moreover, we

are planning to improve cache performance of Thorup’s algorithm for large

scale network simulations.

119

Bibliography

[1] “Global internet geography.” available at http://www.

telegeography.com/.

[2] G. Gilder, TELECOSM: How infinite bandwith will revolutionize our

world. Free Press, 2000.

[3] “ISC internet domain survey.” http://www.isc.org/ops/ds/.

[4] S. Floyd and V. Paxson, “Why we don’t know how to simulate the

Internet,” Oct. 1999. available at http://www.aciri.org/floyd/

papers/wsc.ps.

[5] F. Cen, T. Xing, and K.-T. Wu, “Real-time performance evaluation of

line topology switched ethernet,” International Journal of Automation

and Computing, vol. 5, no. 4, pp. 376–380, 2008.

[6] T. Miyachi, K. ichi Chinen, and Y. Shinoda, “Starbed and springos:

large-scale general purpose network testbed and supporting soft-

ware,” in Proceedings of the 1st international conference on Performance

evaluation methodolgies and tools, p. 30, Oct. 2006.

[7] P. Defibaugh-Chavez, S. Mukkamala, and A. H. Sung, “Efficacy of co-

ordinated distributed multiple attacks (a proactive approach to cyber

121

defense),” in Proceedings of the 20th International Conference on Advanced

Information Networking and Applications-Volume 02, pp. 10–14, 2006.

[8] P. Velho and A. Legrand, “Accuracy study and improvement of net-

work simulation in the simgrid framework,” in Proceedings of the 2nd

International Conference on Simulation Tools and Techniques, p. 13, Mar.

2009.

[9] R. Jain, The Art of computer systems performance analysis. Wiley - Inter-

science, Apr. 1991.

[10] R. Pan and B. Prabhakar, “SHRiNK: A method for enabling scaleable

performance prediction adn efficient network simulation,” in Proceed-

ings of IEEE GLOBECOM 2005, pp. 1108–1113, June 2005.

[11] A. Feketea, G. Vattaya, and L. Kocarev, “Traffic dynamics in scale-free

networks,” Complex Systems, vol. 3, pp. 97–107, Aug. 2006.

[12] C. Kiddle, R. Simmonds, and B. Unger, “Improving scalability of net-

work emulation through parallelism and abstraction,” in Proceedings

of IEEE ANSS 2005, pp. 119–129, Apr. 2005.

[13] “The network simulator – ns-2.” available at http://www.isi.

edu/nsnam/ns/.

[14] Y. GU, Y. Lie, and D. Towsley, “On integragin fluid model with packet

simulation,” in Proceedings of IEEE INFOCOM 2004, vol. 4, pp. 2856–

2866, Mar. 2004.

[15] Y. Zhang and M. Ahmed, “A control theoretic analysis of XCP,” in

Proceedings of IEEE INFOCOM 2005, vol. 4, pp. 2831–2835, Mar. 2005.

122

[16] S. H. Low, L. L. H. Andrew, and B. P. Wydrowski, “Understand-

ing XCP: Equilibrium and fairness,” in Proceedings of IEEE INFOCOM

2005, vol. 2, pp. 1025–1036, Mar. 2005.

[17] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, ar-

chitecture, algorithms, performance,” IEEE/ACM Transactions on Net-

working, pp. 1–14, 2007.

[18] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability of

TCP/RED and a scalable control,” Computer Networks Journal, vol. 43,

pp. 633–647, Dec. 2003.

[19] J. Postel, “Transmission control protocol,” Request for Comments (RFC)

793, Sept. 1981.

[20] J. Padhye and S. Floyd, “On inferring TCP behavior,” ACM SIGCOMM

Computer Communication Review, vol. 31, pp. 287–298, Aug. 2001.

[21] S. Floyd, “Highspeed TCP for large congestion windows,” Request for

Comments (RFC) 3649, Dec. 2003.

[22] H. Bullot, R. L. Cottrell, and R. Hughes-Jones, “Evaluation of ad-

vanced TCP stacks on fast long-distance production networks,” in Pro-

ceedings of PFLDnet 2004, Feb. 2004.

[23] R. Wang, G. Pau, K. Yamada, M.Y.Sanadidi, and M. Geria, “TCP

startup performance in large bandwidth delay networks,” in Proceed-

ings of IEEE INFOCOM 2004, vol. 2, pp. 796–805, Mar. 2004.

[24] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high

bandwidth-delay product networks,” in Proceedings of ACM SIG-

COMM 2002, vol. 32, pp. 89–102, Aug. 2002.

123

[25] K. Ramakrishnan, S. Floyd, and D. B. Rosen, “The addition of explicit

congestion notification (ECN) to IP,” Request for Comments (RFC) 3168,

Sept. 2001.

[26] M. Welzl, “Scalable router aided congestion avoidance for bulk data

transfer in high speed networks,” in Proceedings of PFLDnet2005, Feb.

2005.

[27] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit

is enough,” in Proceedings of ACM SIGCOMM 2005, pp. 37–48, Aug.

2005.

[28] A. Falk and D. Katabi, “Specificaton for the explicit control proto-

col(XCP),” IETF Internet Draft: draft-falk-xcp-spec-01.txt, Oct. 2005.

[29] D. M. Lopez-Pacheco, C. Pham, and L. Lefévre, “XCP-i : explicit con-

trol protocol for heterogeneous inter-networking of high-speed net-

works,” in Proceedings of 49th IEEE Global Telecommunications Confer-

ence(GLOBECOM 2006), pp. 1–6, Nov. 2006.

[30] H. Balakrishnan, N. Dukkipati, N. McKeown, and C. Tomlin, “Stabil-

ity analysis of explicit congestion control protocols,” IEEE Communi-

cations Letters, vol. 11, pp. 823–825, Oct. 2007.

[31] B. Liu, D. R. Figueired, Y. Guo, J. Kurose, and D. Towsley, “A study

of networks simulation efficiency: Fluid simulation vs. packet-level

simulation,” in Proceedings of IEEE INFOCOM 2001, vol. 3, pp. 22–26,

Jan. 2001.

124

[32] Y. Sakumoto, H. Ohsaki, and M. Imase, “Stability analysis of trans-

port protocol XCP for high-speed networks,” Technical Report of IEICE

(IN2006-29), pp. 73–78, June 2006.

[33] Y. Sakumoto, H. Ohsaki, and M. Imase, “On XCP stability in a hetero-

geneous network,” in Proceedings of 12th IEEE Symposium on Computers

and Communications(ISCC’07), pp. 531–537, July 2007.

[34] Y. Sakumoto, H. Ohsaki, and M. Imase, “Stability analysis of XCP (eX-

plicit Control Protocol) with heterogeneous flows,” IEICE Transactions

on Communications, vol. E92-B, pp. 3174–3182, Oct. 2009.

[35] Y. Sakumoto, H. Ohsaki, and M. Imase, “Proposal of a technique for

improving robustness of data transfer protocol XCP,” Technical Report

of IEICE (IN2006-91), pp. 13–18, Nov. 2006.

[36] Y. Sakumoto, H. Ohsaki, and M. Imase, “Increasing robustness of

XCP (eXplicit Control Protocol) for dynamic traffic,” in Proceedings

of 50th IEEE Global Telecommunications Conference(GLOBECOM 2007),

pp. 2025–2030, Nov. 2007.

[37] Y. Sakumoto, H. Ohsaki, and M. Imase, “Improving robustness of XCP

(eXplicit Control Protocol) for dynamic traffic,” submitted to IEICE

Transactions on Communications, Oct. 2009.

[38] Y. Sakumoto, R. Asai, H. Ohsaki, and M. Imase, “Design and im-

plementation of flow-level simulator for performance evaluation of

large scale networks,” in Proceedings of 15th Annual Meeting of the IEEE

International Symposium on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems(MASCOTS) 2007, pp. 166–172,

Oct. 2007.

125

[39] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu, “Fluid mod-

els and solutions for large-scale IP networks,” in Proceedings of

ACM/SIGMETRICS 2003, pp. 91–101, June 2003.

[40] H. Ohsaki, J. Ujiie, and M. Imase, “On scalable modeling of TCP con-

gestion control mechanism for large-scale IP networks,” in Proceedings

of IEEE SAINT 2005, pp. 361–369, Feb. 2005.

[41] Y. Sakumoto, H. Ohsaki, and M. Imase, “On the effectiveness of tho-

rup’s shortest path algorithm for large-scale network simulation,” to

be presented at the First Workshop on High Speed Network and Computing

Environments for Scientific Applications (HSNCE 2010), July 2010.

[42] Y. Sakumoto, H. Ohsaki, and M. Imase, “Effectiveness of thorup’s

shortest path algorithm for large-scale network simulation,” submit-

ted to IEICE Transactions on Communications, June 2010.

[43] D. M. Nicol, M. Liljenstam, and J. Liu, “Advanced concepts in large-

scale network simulation,” in Proceedings of the 37th conference on Win-

ter simulation, pp. 153–166, Dec. 2005.

[44] P. Huang and J. Heidemann”, “Minimizing routing state for light-

weight network simulation,” in Proceedings of The IEEE Computer So-

ciety’s 9th Annual International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems(MASCOTS),

pp. 108–116, Aug. 2001.

[45] Z. Hao, X. Yun, and H. Zhang, “An efficient routing mechanism in

network simulation,” Simulation, vol. 84, pp. 511–520, May 2008.

126

[46] J. Williams, “Heapsort,” Communications of the ACM, vol. 7, no. 6,

pp. 347–348, 1964.

[47] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms (3rd ed.). MIT Press, Sept. 2009.

[48] M. Thorup, “Undirected single-source shortest paths with positive

integer weights in linear time,” Journal of the ACM (JACM), vol. 46,

pp. 362–394, May 1999.

[49] M. L. Fredman and D. E. Willard, “Trans-dichotomous algorithms for

minimum spanning trees and shortest paths,” Journal of Computer and

System Sciences, vol. 48, pp. 533–551, June 1994.

[50] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” in Proceedings of the American Mathemat-

ical society, pp. 48–50, JSTOR, Feb. 1956.

[51] Y. Asano and H. Imai, “Practical efficiency of the linear-time algorithm

for the single source shortest path problem,” Journal of the Operations

Research Society of Japan, vol. 43, pp. 431–447, Dec. 2000.

[52] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in im-

proved network optimization algorithms,” Journal of the ACM (JACM),

vol. 34, pp. 596–615, July 1987.

[53] Y. Zhang, D. Leonard, and D. Loguinov, “Jetmax: Scalable max-min

congestion control for high-speed heterogeneous networks,” in Pro-

ceedings of IEEE INFOCOM 2006, pp. 1–13, Apr. 2006.

127

[54] H. Hisamatsu, H. Ohsaki, and M. Murata, “Fluid-based analysis of

network with DCCP connections and RED routers,” in Proceedings of

IEEE SAINT 2006, pp. 156–163, Jan. 2006.

[55] N. S. Nise, Control Systems Engineering. New York: John Wiley & Sons,

4th ed., Aug. 2003.

[56] A. Falk, Y. Pryadkin, and D. Katabi, “Specificaton for the explicit con-

trol protocol(XCP),” IETF Internet Draft: draft-falk-xcp-spec-03.txt, July

2007.

[57] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” Re-

quest for Comments (RFC) 2581, Apr. 1999.

[58] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP

approach for high-speed and long distance networks,” in Proceed-

ings of 25th IEEE International Conference on Computer Communica-

tions(INFOCOM 2006), pp. 1–12, Apr. 2006.

[59] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,

pp. 397–413, Aug. 1993.

[60] J. Aweya, M. Ouellette, and D. Y. Montuno, “Service differentiation

using a multi-level red mechanism,” International Journal of Network

Management, vol. 12, pp. 81–98, Jan. 2002.

[61] T. Mori, M. Uchida, and S. Goto, “Flow analysis of internet traffic:

world wide web versus peer-to-peer,” Systems and Computers in Japan,

vol. 36, pp. 70–81, Oct. 2005.

128

[62] A. Kavimandan, W. Lee, M. T. A. Gokhale, and R. Viswanathan, “Ne-

towrk simulation via hybrid system modeling: A time-stepped ap-

proach,” in Proceedings of ICCCN 2005, pp. 531–536, Oct. 2005.

[63] J. Liu, “A primer for real-time simulation of large-scale networks,” in

Proceedings of the 41st Annual Simulation Symposium (ANSS’08), pp. 85–

94, Apr. 2008.

[64] J. Zhou, Z. Ji, M. Takai, and R. Bagrodia, “Maya: a multi-paradigm

network modeling framework for emulating disributed applications,”

in Proceedings of IEEE PADS 2003, pp. 162–170, June 2003.

[65] B. Melamed, S. Pan, and Y. Wardi, “Hybrid discrete-continuous fluid-

flow simulation,” in Proceedings of IEEE SPIE 2001, vol. 4526, pp. 263–

270, July 2001.

[66] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta

formulae,” Journal of Computational and Applied Mathematics, vol. 6,

pp. 19–26, Mar. 1980.

[67] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential

Equations I: Nonstiff Problems. Springer-Verlag, 1993.

[68] “Otcl(mit object tcl).” http://otcl-tclcl.sourceforge.net/

otcl/.

[69] “The network animator – NAM.” available at http://www.isi.

edu/nsnam/nam/.

[70] “Simulating large networks using fluid flow models (FFM).” available

at http://www-net.cs.umass.edu/fluid/fluid.html.

129

[71] L. Andrew, S. Floyd, and G. Wang, “Common tcp evaluation suite,”

IETF Internet Draft: draft-irtf-tmrg-tests-02.txt, July 2009.

[72] B. Bloolbas, Random Graphs Second Edition. Cambridge Univ Press, Oct.

2001.

[73] O. Hiroyuki, Y. Koutaro, and I. Makoto, “On the effect of scale-free

structure of network topology on t cp performance,” SAINT ’07:pro-

ceeding of the 2007 International Symposium on Ap plications and the Inter-

net, p. 12, 2007.

[74] G. Peli and G. Papp, “Are scale free networks better?.” http://

arxiv.org/pdf/cond-mat/0301555, Feb. 2003.

[75] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with

arbitrary degree distributions and their applications,” Phycal Review E,

vol. 64, p. 026118, July 2001.

[76] K. Calvert, M. B. Doar, A. Nexion, E. W. Zegura, G. Tech, and G. Tech,

“Modeling internet topology,” IEEE Communications Magazine, vol. 35,

pp. 160–163, June 1997.

[77] “The network simulator – ns2: Tips and statistical data for run-

ning large simulations in ns.” http://www.isi.edu/nsnam/ns/

ns-largesim.html.

[78] H. Hisamatu, H. Ohsaki, and M. Murata, “Fluid-based analysis of a

network with DCCP connections and RED routers,” in Proceedings of

the 2006 International Symposium on Applications and the Internet (SAINT

2006), pp. 22–29, Jan. 2006.

130

[79] H. Ohsaki, H. Yamamoto, and M. Imase, “Scalable modeling and per-

formance evaluation of dynamic RED router using fluid-flow approx-

imation,” in Proceedings of OpticsEast/ITCom 2005, Oct. 2005.

[80] H. Tangmunarunkfit, R. Govindan, S. Jamin, S. Shenker, and W. Will-

inger, “Network topology generators: Degree-based vs. structural,”

ACM SIGCOMM Computer Communication Review, vol. 32, pp. 147–159,

Oct. 2002.

[81] “Cachegrind - a cache profiler.” http://valgrind.org/info/

tools.html.

[82] J. Handy, The cache memory book. Morgan Kaufmann, Jan. 1998.

[83] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative

Approach, 3rd Edition. Morgan Kaufmann, May 2002.

[84] “Lmbench - tools for performance analysis.” http://www.

bitmover.com/lmbench/.

[85] R. E. Ladner, R. Fortna, and B.-H. Nguyen, “A comparison of cache

aware and cache oblivious static search trees using program instru-

mentation,” Experimental algorithmics, pp. 78–92, Jan. 2002.

[86] A. LaMarca and R. E. Ladner, “The influence of caches on the per-

formance of sorting,” in Proceedings of the eighth annual ACM-SIAM

symposium on Discrete algorithms, pp. 370–379, Jan. 1997.

[87] G. S. Brodal, R. Fagerberg, and R. Jacob, “Cache oblivious search trees

via binary trees of small height,” in Proceedings of the thirteenth annual

ACM-SIAM symposium on Discrete algorithms, pp. 39–48, Jan. 2002.

131

[88] L. Arge, M. A.Bender, E. D.Demaine, B. Holland-Minkley, and

J. Munro, “Cache-oblivious priority queue and graph algorithm ap-

plications,” in Proceedings of the thiry-fourth annual ACM symposium on

Theory of computing, pp. 268–276, May 2002.

[89] E. W. DijkstraDijkstra, “A note on two problems in connexion with

graphs,” Numerische mathematik, vol. 1, pp. 269–271, Dec. 1959.

132

