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ON PARTIALLY HYPOELLIPTIC OPERATORS

By

Mimnoru YAMAMOTO

§1. Introduction

In this note we shall consider the differential operator P(D)=
P(D,, D,r) with complex constant coefficients defined in some open set
QC R™ x R" whose points are denoted by x=(x', x”)=(x1, -+, X}, X1, =+, %),
where D,/=(Dy:, -+, Dz;)=(—+/—19/0%1, ++, —/—19/0x,) and Dy =
(Dxyy =+ Dap)=(—+/—19/ox1, -+, —\/—10/0xy).

L. Garding and B. Malgrange [3] introduced the notions of partial
hypoellipticity, partial ellipticity and conditional ellipticity for the operator
P(D), and characterized each of {.iese notions completely by the property
of the algebraic variety V(P)={{=(&, ¢")e C"xC"; P(£)=0}. J. Friberg
[1] and L. Hormander [6] proved that, if P({) is a polynomial of finite
type o in a fixed direction, any solution of P(D)x=0 is hypoanalytic of
type o in the same direction. J. Friberg [1] expected that if P({) is
partially hypoelliptic of type o in x/, P({) will be conditionally hypo-
elliptic of type o in #’. In this note we shall prove the above fact.
The method of the proof is based on the idea of Garding and Malgrange
[3] and that of Friberg [1]. The theorem 5.1 of [3] follows from our
results by setting o=1.

I would like to thank Professor M. Nagumo for his kind criticism
and constant encouragement during the preparation of this note.

§2. Definitions and Algebraic Considerations

Let a=(aV, -, a™, a’, ..., a”') be a multi-integer whose elements
are non-negative integers.
In what follows we use the following notations :

| = @+ +a™ @ o

b

Dm Da’Da” Dal’ Da""Da"' a
= 2Dy = Z{ cee xi,, .o

xy L7

n’’

DerFINITION 2.1. Let Q be an open set in R” x R” and f(x/, ") € 9'(Q)
be a distribution. We say that f is regular in x’ if, for every pair of
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open sets ACR™, BCR”, AxBCQ and for any @€ 9(B), the distribu-
tion in x’

@1 1, @) = | A, 2y
is an infinitely differentiable function.

DEerFNITION 2.2. Let © be an open set in R” X R” and f(x/, ") € 9'(Q2)
be a distribution. We say that f is analytic in x’ if, for every pair of
open sets ACR™, BCR", AxBCQ and for any @€ 9(B), the distribu-
tion in x’

2.2) £, 9) = | £, ) plaax”

is an analytic function.

DerNiTION 2.3. P=P(D,, D,) is said to be partially hypoelliptic in
x’ if, for an open set Q, every distribution solution of Pf=0 in Q is
regular in x’.

DEFINITION 2.4. When the operator P(D) is hypoelliptic, we say P
is strictly stronger than Q (it is written by Q< P) if Q¢&)/P()—0 as
E—> oo, E€ RN,

The following Garding-Malgrange’s theorem [3] is important.

Theorem 2.1. An operator P is partially hypoelliptic in x’ if and
only if one of the following equivalent two conditions are satisfied
(I) P, ¢)=0, ¢” and 9, are bounded then R,t' is bounded.
(IT) P, &")=P(&)+22 PLL)-E")  [v1>0
where P(L') is hypoelliptic and P, (&)< P(&).
(I) is equivalent to
(') There exist o >0 and C>0 such that
P&, £7)=0 implies
|REN=CA+ 18"+ [Inl"])".

Corollary 2.1. An operator P(D) is partially hypoelliptic if and only

if every solution of P(DYu=0 such that ue CZr, belongs to Cg,.
(See, L. Hormander [6] or proof of Theorem 3.1. in [3].)

DEFINITION 2.5. A function u(x)€ C(L2) is said to be hypoanalytic of
type o in Q (we denote it u(x)€ A, if for every compact subset K of Q,
there exists a positive constant C depeinding only on K and # such that

(2.3) M?x. | D?u(x)| < C2+ipe? =012 .-
€K
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where |D?u(x)|’= > _pt | D% D% u |
e=s /! '

DEFINITIOﬁ 2.6. P(¢) is said to be hypoelliptic polynomial of type o if
(2.4) |RLI=CA+|IaEl)  for all Ce V(p).
Here we take o as small as possible.

Lemma 2.1. P is hypoelliptic of type o, if and only if
(2.5) 2, | PN [& 5 < C’méo |PENI* (EeR™)
or equivalently

(2.5Y 2, | PEENETE=CIPE) (18> 4)

with some constant A,. (For a proof, see p. 25-28 of Friberg [1].)
Since P(¢)=P(&’, &) is a polynomial in C”xC", P(¢) can be written
as a finite sum ;

P, &) = PN+ 23 PAE)-E7)

where y=(v', ---, ") with non-negative integer 7. Then the following
important theorem is established.

Theorem 2.2. In order that a polynomial P(%) satisfies the condition
Jfor some constant C, >0

(2.6) | R N< CA+1Ia L1+ 18717 (£ V(D))

it is mecessary and sufficient that the following estimate holds with some
constant C,.

2.7) [PPE I < C(IP(E)1*+1)  (§'eR™).

j@+Y| =0

ReMArk. If P({) satisfies the inequality (2.6), then P,(¢") (=P(¢’, 0))
is hypoelliptic of type o as a polynomial in ¢’. Thus the following
inequality is valid from Lemma 2.1, with some C, >0,

@8  JIPCEIE|CCIRE)  EeR™ E1>A)

Proof of Theorem 2.2. It is easily verified that (2.7) is equivalent
to

@7 S IPPENEISCIPE)]  (E1>4)
@) =0

for suitably chosen -A, and C; which depend only on P and C,. Setting
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W={=, &) ; | It | + 187 |<t| R, &Y} and writing &' =& +iy’ where
&, 7€ R™ te W, implies
2.9) [P©®)I= |Po(f')-i-mZJOPy(é")'(é’”)yl
= | P(&')+ Ig.:ao caP (&) (in')" + | ﬂz)o méo caP(E)+(in')* (")
= | Py&)] ‘—CK,‘;SPO H | PEOE)| €1
—_ C 2 2 tl“|+|7| IP‘(YW)(E/)I l&ll |@+Y|/o

<Yi=wN oL@l <P
where p,=degree of P,, p=degree of P. From the inequality (2.7) we
have the following estimate

(2.9y |PQ)IZIPE){1-CC, 53 g},

0<|l@w+YI<P+N
It is obvious that there exists a sufficiently small positive number £, such
that if 0<t<t¢, then 1-CCj >V ¢* >0, and from (2. 8) follows

0<IN+YI§P+N
| P(&)1 >0 for |&|>A,.
These facts show that if |7/|+[¢”|<¢4, €| and 1<A7Y7|&|'° then
P(£)==0 where A,=max.(4,, A,). Now let C’'=min. (¢,, A7'/°) then
1+ |9/ | +187|<C|&|Y"  implies P(£)==0.
Thus the sufficiency of (2.7) is proved.
(Necessity). Writing {'=&+iy’ (&, 9’ € R™) as above, (2.6) is equi-
valent to
2.6y &1 < Cla' I +187])  (Ce V(P), |E]> As)
for some positive C; and A,. From Taylor’s formula P({) can be written
as follows,
(2.11) P(t) = PE)+ 3 caPiE)-Gin)"
+ >3 33 cPY(E) (' )"(E") .

171>0 |@|=0
Now let 9= l§/| Yo gt £ = Iflll/at.'g// where # € R™, f"E c* (IE”I _ 1),
teC' and t-&”=(t&{, -+, tf2), then (2.11) is transformed into
(2.12) P(t) = PE)+ T P& @E)- 18] V()"
+ 2 E C,,P?’)(E’)- Ié;/l 1¢+1|/o-(z-77/)m(’f//)yt|y| .

17I1>0 || =0

First of all fix the length of 7%’ (=¢) suitably, then according to (2.8)
there exist constants C;, C; such that

(2.13) CIPEN = PLE) + 23 cal§2(8) - 1817
=GIPE) (F>4).
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Thus from the condition (2.6), if #(€C') is a root of the algebraic
equation :

(2.149) P&+ ,,,”‘v;‘ocapw(f')' |& |12 (i7)
+ I712>o IéocaPé'm({:’)' | €] l“*'“/"(iﬁ/)w(f//)v MM =0,

then ¢=(&+i|& |V %, |E|"¢t-§”)e V(P) and |¢|>C, for some C, >0
(For example C,=(1—C;&)Cj™"), for arbitraly #'€ R™ (|%|=¢), CeC”
(1€”|=1) and uniformly in & for |&|>A, where A,=max.(A4,, 4;).
This shows that every solution = of the algebraic equation :

(2.14) i é IDEOCNPS,“)(E/), | £ | 1%+ 71/o(j557)
. 14) + k=1 m2=k 10»12206“P‘()w)(§/)‘ |&[127%(i5)

(g//)v 7.P—Iz — 0

satisfies |7|<(1/C, uniformly in #’, £, |§’| determined above.

This implies that every coefficient of 7* (k=0, ---, p—1) is uniformly
bounded, i.e.
2.15 Io; ochEim(g/)'Iéllmwll'r(iﬁl)w
@B RS PrE E

lw| =0

is uniformly bounded in # € R™ (|#|=¢), £7€ C*(|Z”|=1) and |&|>A,.
Therefore by virtue of uniformity in &” we can choose suitably finite
number of vectors &/, (i=1, ---, M) such that the coefficients of ()" are
solvable in Q(, #’, /) (i=1, -, M). Thus

22 P E i)
3 PP TG
is bounded for arbitraly # € R™ (|#|=¢) and |&|>As. From the in-

equality (2.13), the absolute value of R(£, #’) is not smaller than the
absolute value of

3 P(E)- 1)
Gt PE)]

@€y =QE&,7,¢")

(2. 16) — R(El, ~/)

(2. 17) — R(&/’ ~/)

for arbitrary #'€ R™ (|#/|=¢€) and |§|”>A,. The same argument as
above is applicable to 7’ in place of £”. Hence {P{ (&)« |& |11/} | P(&)|
is bounded for |§|>>A,. This completes the proof.

REMARK. As in the proof of Lemma 3.9 in Hoérmander [6] the best
possible choice of o, such that for some C

| R N=CA+I.E1+1871)  (Ce V(P))
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is always a rational number, therefore we may assume in this note
o=r/s (=1) with mutually prime positive integers » and s. Then the
inequality (2.7) is equivalent to

@7 3 IPPE)TIE M S CIPE) T+ EER™).

l@+Y|>0
| =0

§3. A priori estimates and the main theorem

In this section we introduce a new norm (similar to the norm intro-
duced in [1]) which depend on the operator P(D) and & with 0<8<1.
Let K be any given relatively compact subset in QC R”x R” such that
EcQ. We then define the norm of # (€ C~(Q)) as follows

B.1) | Kl =2 22 [1Q5*(D) ++- Q5'~(D)+D*u, K ||? &>+~
0= 1Yl 0<0I¢£ﬂk§;[;”ﬁ ly|

where Q,(D)=P,D,/)D?» and || f, K|| denotes the usual L’ norm of f
on K.
Now by the above definition ck—>|«;|< 0, because

ok—23a;|<os|e,| —2la;| = rla| =23 e, = 23(le [ — |a;|) = 0.

Since the degree of P(&) is p, there exists at least one «,(|«,| =p) such
that P®“?(D)=c=0. Thus |u, K|, contains terms of type |/¢’D*u, K|
for all # with 0<k<sp, and since ok—>)|a;|=—p.r and 0<6<1, the
following estimates are established :

3.2) |, K|y =, Ko < |, K],-87
(3-3) ¢ 3 1D, KIF< |u, KI3 < |u, K|}
0 k<pes

On the other hand the total degree of the polynomial Q{?(§)*.-- Q{'7(E)*-
|€|** is smaller than 21111&'1>x. {pr—=32a;]| +smin. |a;|} =2 {p-r—(r—s)}.

Hence the following important lemma is established.

Lemma. 3.1. There exist constants C, and C, (independent of )
such that the ineqalities

3.4 G, 2 1D, Kl <|u, KIi=Cs | 33 I|D%, K|I
0<Lk<sp

| L per—(r=9)
is valid for all u€ C~(Q).
REMARK. p-r—(r—s) >s-p except in the trivial case p=1 or r=s=

o=1. The case r=s=o0=1 is treated in [3]. When r=s=o=1, our
norm is equivalent to that of §5 in [3].
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Lemma 3.2. Let K,, K, be relatively compact subdomains of Q such
that K,CK,CK,CQ and dist(3K,, 0K,)=6">0. Then it is possible to
find a function p(x)€ C5(K,) which is equal to 1 on K, such that

(3.5) [D*p(x)| <€, (x€K,)
where T, is a constant depending only on & and m-+n.

Proof is easy. cf. p. 205 in Hérmander [7].
Hereafter we only consider the case such that |a|<p.r, thus we
may suppose

(3.5) |ID*p(x)| < 87"t (x€ K, |a|< p-r)

where ¢= max ¢,.
@] < per

Parseval’s formula shows the

Lemma 3.3. If R(8) (i=1,2, ---,7) are polynomials with constant
coefficients then the following inequality is valid for all v(x)e Cs.

(3.6) 1R(D) -+ RAD)v(x)|F < 77" ; I RDYv(2)II,

where integration is taken over the full space.
Now we state the most important estimate.

Theorem 3.1. Let P(¢) be a polynomial which satisfies the condition :
(2.6) | RN C(1+ I +1871)" (e V(P)),

and K,, K, be two relatively compact subdomains of Q such that K,CK,C
K,CQ and dist (3K, 9K,)=06 (0<6<1).

Then there exists a constant C, (independent of u, 8, K, and K,) such
that

3.7 9 |Du, Kils

= C—,{'gllD;//u, K1|88k+0 z ’_I)HDMP(D)Z{, Kllls-p(r_l)}

<le=ec
is valid for all ue C~(Q).
Proof. First we estimate the quantity

(3.8) & Du, K|}
— 33 11QD) - QD) DR, K[ ek

Y150 o<, | <+ < |y
0= Fk<slayl

=[IA

We can split the above sum into two parts so that in the first part
k+1<s|a,| and in the second part k+1=s|«,|. In the first part each
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term is contained in the members of |, K,|?, hence there exists a posi-
tive constant C, such that

3.9 The 1st part < C,|u, K,|2 < C,lu, K,|}.
In the second part each term is estimated as follows (we set v(x)=
Pp(x)-u(x) € C3(K)),
(3.10)  [QD) - QD)D" ™lu, K,|[5woui-231%

= 1Q{"(D) -+ QY (D)- D", K,|[*83ou1-1o40

= [|QEAD) -+ Qr(D)- D" ™y |[3-22 1m0

< 7t 31| QDY DIy | 8-t

i=1

The last inequality is obtained from Lemma 3.3. by setting R{(D)=
Q*P(D)S8-%!-1%:1b  The last sum in (3.10) is composed of terms of two

different types generally.
One type is

(3.11) [1Qy(DYD*'""w||*  (when |e;|=]|a,])
and another type is
3.12) 1QS(DY D p||?6-2 =% with k2<]|«af.

A term of the second type is estimated as follows. Since v=p-.u
belongs to Cg(K,), applying lemma 3.2 we obtain

(3 13) ” ny“)(D)rDskvl|28_2r(|m|_k)
= ||Q§“)(D)rDsk(¢°u), KIHZS"W("”'"‘)_
= C 2 HQ§M+51>(D) Q'(YN‘Fﬂr)(D).DSk—fu’ K1”28—2(2|°’+ﬁ£|—rk+j)
1B;1=0
g (k<lal).
Here, sk—j<sk<(s-|a|<smin|a@+p8;|, and (the exponent of &)
— Da+B +rh—j=osk—j— S|a-+8|= olsk—j)~ Dla+Ail,
by the assumption on o: o.s=7 and o=1. The fact that 0< 861
implies
O—AZ |B+B;1-7k+]) g §20(Sk=7)-2% | @+, .

Therefore the right hand side of (3.13) is majorated by
(318 €31 1QAD)- - QD) Dhu, K804 1484

|@+B; >0
0<k<s'minl@+8;|

<C,lu, K,|? for some C, >0.

i.e.
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(3.14) | Qs> (DY D*v||?6-1*-B < C,lu, K,|} with k<|a].
Finally we consider the terms of the first type, (3.11).
(3.15) QY (DY D**lv, K, |I*
= [1em@ 1= 8) 0

sla|

+ BN [ 1@ g mae-o g+ oe) 2 ae

where 9(£) denotes the Fourier transform of v(x).
The last sum of the above equality is estimated as follows:

l]

@.16) (1) f1er@ime e g o)

k=1

= cfiem@ g g7 0)"dE

= Cll@(DY D™ 'D.(p-u), K,|I
=C 3 QD) QD) DIy, K573 ke
il

0<IB;
0<k=sl@|-1

+C7 33 1QF D)+ QF#(D)- D" (D), K|35 ..

We denote by I, and I,, the first and the second sum of the right hand
side of the above inequality respectively. Then we must calculate the
exponent of & and the orders of operators.
In I,, the exponent of &°, —>|B;| —(k+1), is
=o(s|la| —k—1)—3|a+5;],

and s-|la|—1—Fk<s|a|—-1<s|a|<s.min.|c¢+B;|, thus I, is majorated
by C|u, K,|3 with some positive constant C.
In I, the exponent of &, —3|B;|, is

=o(sja|-1)-2|a+B;]| +o

and s-|a|—1<s.|@|<s-min.|a+8;|, hence I,<C|D.u, K |36 with
another constant C.
Therefore we obtain the following inequality,

(3.17) 5 LD f1em@ g = -e g7 @)1

= C10{|u: K |3+ | D, u, Kl|§-32"}

with some constant C,,_>0.
Next if we define £-%" as follows,
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1) y—a” = (yY—a”, .., y"—a”’)  when vyi—a’ =0 for all i.
9) £ =0 when vi—ai” <0 for some i.

(we shall write y2Oa” for the case 1), and ypa” for the case 2)), then
(0/2E")" {(£")} =Cy »(E")'~*" with suitable constant C, ,.
We shall estimate the quantity

@.18) 1= {ler@IIE)=6e)dE
= (1P (/087" (&) 1718112166 1 *d

in two cases.
In the first case; y>2a” and |y—a’/| >0, we obtain the following

inequality with suitable 8”7 (|8”]=1):
1= C [ 1PEE)- @17 181 6) d
= C [1Pg@)- @y 17 7 g 1 08) | d

g C S | P-(ym/)(fl)°(§”)y_m”_8// ‘ 2,«'5 I 2(s|a|+s-1) | f// l 2(7r—S+1) l ﬁ(é;) ‘ zdg
< C'|Qy ¥ (DY - DI+~ (D* ), K,

¢ T =S+ 1)+20(s| @l +5-1)~2 % la+g77|

~ ’7 ~ ’/ _
=0 2 |y (D) - Q5+ or (D) D1k DIne Ry, K| I*
o< ;]
0k,
% Sxr-s+1-#) §eocsial+s-1- k)23 lw+5i+ﬂ”| .

Therefore we obtain

3.19 I< C“o N | Diru, K, |26% with some C, >0.

Er=r—s+1

In the second case; y=a”, from theorem 2.2 we obtain
(3.20) I= S | PSOE) P& 121 | 6() | *dE
<cy S (I P(E) 1> +1)|6()|*dE
= cx | 1s@ra
+ CY g |PE)— 33 Py(&)-(")17 |9(€)|*dE .

The first term of the right hand side of the above inequality is of course
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less than Clu, K,|? with some C. The second term in (3.20) is (for
suitable C >0)

@2ny  =c(iPeriiE)daE

+ ¢33 [1P@)-@y o) e
= CIIP(DY(p-u), KiF
+ €33 (1PE)-@ #1187 7 [0@)°dE with 87| =1.
The first term in (3.21) is
(3.22) < C[m§ [[PeXD) - Pe(Du, K, |82
= C 3, [IP@XD)- Per(Dyu, K,[*87°21%
+C 31 3 [[PXAD)-w Pr-(D)-P(D)u, K82 B ™!

16,750 1< k<

= Clu, K1!§+C Z ||D‘”P(D)u, KIHZS_zp(r_x)
l@l<P(r—1)

by the definition of P and lemma 3. 3.
The second term in (3.21) is
(8.23) =C' 3 3 {[Q(D) - QD)D" ¥ (D5 ), K I?
>0 0 <T@, |

0< ki’
3—z<k+k’>—22 le@;

=C 3 3@ D) - Q4 D) D' (D5 ), Ko

_ Y150 @
X32{cr<s 1-kN-S|@+p/ 1) Secr-s+1-k>

=C" > |Dyu, K,|3-8%

0<k=r—s+1

Therefore we obtain the estimate:

(3.20) I<Cul 3] IDMvi, K,138%+ 31 [|D*P(Dyu, K,[:6-*~% .

o) <PCr -1

The inequality (3.9), (3.14), (3.17), (3.19) and (3.20) show that the
estimate (3.7) is established. This complete the proof of theorem 3.1.
(In the above proof constants C’s are independent of #, 8, K, and K)).

Theorem 3.2. Let P(£) be a polynomial of the type o considered in
theorem 3.1, p be the degree of P(¢), and K and L be arbitrary relatively
compact subdomains of Q such that KCLCLCQ and dist (K, 9L)=6
08,

Then there exists a constant C,, such that the inequality
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(3.24)  (8/p)*|D%u, Kl5,
. p(r—s+1)
=CL{ X (/p)|Divu, Ly,

ST Sy | DPP(D)-D*u, LI(B/p)T Y p=0,1,2, .

£=0 @l <P(r~1)

is valid for all ue C°(Q). The constant C,, does not depend on p, u, K
and L.

Proof. By the assumptions on K and L there exists an increasing
sequence of relatively compact domains: K, K, -+, K, such that K=
K,CK,cC-..-CK,=L and dist (0K;, 0K;,,)=06/p=h<_1. Thus every pair
K;, K, satisfies the conditions imposed on K, and K, with % in place
of 8 in theorem 3.1. If ue C°(Q) then for every ¢ (:=0,1, .-, p), Diuc
C=(Q). Successive applications of theorem 3.1 to K;, K;., show that the
conclusion is obtained as follows,

17| Do, K, |, = Ko~k | D(D? '), K, |,
< hr-oC,{ 3 DEADY ), K| e B
> IDP(DXD*"w), K[|}

l@i <pcr-1

.......................................

< {(Clr—s+ D {5 Db, K, |t
+Mriﬂ) 2 HDmP(D)Dku, Kp]lhk_p(r_l)-

=0 18 <Pe-D

This completes the proof of theorem 3.2 with C,,=C,(r—s+1).
Lemma 3.4. Let P(&) be a polynomial which satisifes the condition,
(2.6) | R = C(1+ I +1871) (£ V(P))

(hereafter we call such P partially hypoelliptic of type o in x') and u be
an infinitely differentiable solution of P(D)u=j (where f belongs to A,
in Q) such that u and D*uc A, (k=1,2, ---, vp—(r—5s)).

Then the following estimate is valid.

(3.25) |D?u, K|, < CYi'p°? for every p=0,
where C,, does not depend on p and u.

Proof. Considering D*u€ A, (k=0,1, ---, vp—(r—3s)) aud f€ Ay,
we may suppose that there exists a constant C,; such that the following
inequalities are valid.



PARTIALLY HYPOELLIPTIC OPERATORS 245

(3.26) C. 31 |IDiD*u, LI < (Ci kY
@] < P7—(7~9)

(3.27) 31 ID*Df, LIl < Cii*.
@l ZpCr-1)

(3.26) and (3.4) imply that
(3.26) |Diru, L1y < | Diru, LI, (8/p) " < Ci3'k* 8% p*”
Hence theorem 3.2 implies
|D?u, K|, < |D?u, K|y,
= Cr3/p) s @/p)| Diva, Ly,

pr—s+1>

+ 23 X ID*Df, LII(8/p)* P}

0 e Zer -
» Py v k pr ppur
< C30727p?7{ 33 Skp~*CiitkkO~P PP
=0
PN Y A1 kS k=P =13 4~k ppCr =1
+ > Cis'kksk- 2 }

k=0

= 20102787 S Cu{CBr—s+ D}

< 2083 p e {(pr)}Cy) 3] ACB(r— s+ 1}
= Cpp.

This completes the proof.
Lemma 3. 4. and ineqality (3.4) show the inequality,

(3.28) S ID*DHu, K|l < Critpe? .

Sobolev’s lemma. If uc C™"(Q) and MCMCK CKCQ, then there
exists a constant C,, Such that

(3.29) Sup [u(2)|*= Css 23 |1 D"u, KIF.

I=m+

Proof is well known and we shall omit it.

Main Theorem. Let a polynomial P(§) satisify the inequality (2.6)
(i.e. P(§) is partially hypoelliptic of type o in x') and f€ Ay, in Q. The
solution u (€ C(Q)) of P(D)u=f in Q such that D*u€ A,,, (k=0,1, -,
rp—(r—ys)), also belongs to A, in M with MCMCKCKcLCL, com-
pact in £.

Proof. From Sobolev’s lemma we get that for every non-negative
integer p,

(3.29y Sup | D?*u(x)| < Cyolll D™*(Du), K1II,
xeM
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where ||| D?(«), K|||* stands for >_,||D’(»), K|’ Lemma 3.4 and (3.28)
imply that a solntion # satisfies

(3.28) [ID*=*(Du), K||| < C137p"” .
Therefore we have, if s.p—1<m+n, setting p=m-+n—(s-p—1)
(3.30) Sup | D*u(x)| = Cylll D***D*"'u, K|l

< CISC‘H““(p—!—,u,—i—l)“”HD

g CIGCf;Pd-lea'(P—H-H-l)[(p +l-l’+ 1) !]a‘

< Cuf(u+ DY 1T (”_*__“Lz‘; L) 2oy reme s ple

=1

because (j)—i—/lr—l-l)!=(/.L+1)!:ij:(ﬁ_—t2q—+—l>2pp!.
Thus we obtain

(3.31) Sup | D*u(x)| = Cr7(pY)° .
Next if sep—1=m+n, then obviously we obtain
(3.31y Sup [ D%u(x)| = C17(p1)" .
This completes the proof.

ReEMARK. Corollary 2.1 shows that if #€ C3, and « is a distribution
solution of P(D)u=f with fe C~(2), then in virtue of the partial hypo-
ellipticity of P, the solution # also belongs to C~(Q).

Therefore let # be a distribution solution of P(D)u=jf such that
D*ue A,y (k=0,1, -+, rep—(r—s)) and if f€ A,,, and P({) satisfy the
condiction (2.6), then using theorem 3.3, % belongs to A,.

The above fact may be said, “if P({) is partially hypoelliptic of
type o in x’, then P(D) is conditionally hypoelliptic of type o iu x’”.
Moreover if a distribution solution # of P(D)x=0 possess the property
described in the above remark, then it will be proved that P(¢) satisfies
the condition (2.6) analogically to the proof of Garding and Malgrange
[ 3] for the conditionally elliptic case.
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