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ON PARTIALLY HYPOELLIPTIC OPERATORS

BY

MINORU YAMAMOTO

§ 1. Introduction

In this note we shall consider the differential operator P(D) =
P(Dx'y Dx") with complex constant coefficients defined in some open set
Ω,aRmχRn whose points are denoted by * = (*', χ") = (χ[,..., χ'm9 χ'{,..., #£),
where fl/=(ΰ,;, • • • ^ ^ ( - V ^ δ / ^ i , " ' , - ^ S K ) and Dx,,=

L. Garding and B. Malgrange [3] introduced the notions of partial
hypoellipticity, partial ellipticity and conditional ellipticity for the operator
P(D), and characterized each of ίliese notions completely by the property
of the algebraic variety V(P) ={ζ = (ξ", ζ") € Cm x Cn P(ζ) = 0}. J. Friberg
[1] and L. Hormander [6] proved that, if P(ζ) is a polynomial of finite
type σ in a fixed direction, any solution of P(D)u = 0 is hypoanalytic of
type σ in the same direction. J. Friberg [1] expected that if P(ζ) is
partially hypoelliptic of type σ in x', P(ζ) will be conditionally hypo-
elliptic of type <τ in x\ In this note we shall prove the above fact.
The method of the proof is based on the idea of Garding and Malgrange
[3] and that of Friberg [1]. The theorem 5.1 of [3] follows from our
results by setting σ = l .

I would like to thank Professor M. Nagumo for his kind criticism
and constant encouragement during the preparation of this note.

§2. Definitions and Algebraic Considerations

Let a = (ax\ -.,am\a}'\ •• ,ΛW//) be a multi-integer whose elements
are non-negative integers.
In what follows we use the following notations:

\a\ = a1' + .-• +am/+CX1" + -•• +an" ,

U — U~/Uvff — LJ„/ *•* LJ„/ LJ„// ••• LJ„//

xx x x X x

DEFINITION 2.1. Let Ω be an open set in Rm x Rn and /(#', xff) e £)'(
be a distribution. We say that / is regular in x' if, for every pair of
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open sets AaRm, BaRn, AxBczΩ and for any φe<D(B)9 the distribu-
tion in xr

(2. 1) /(*', φ) = J /(*', X")φ{x")dx"

is an infinitely differentiable function.

DEFINITION 2.2. Let Ω, be an open set in Rm x Rn and f(x', x") G 3)'(Ω)
be a distribution. We say that / is analytic in xr if, for every pair of
open sets AaRm, BaRn, AxBaΩ and for any φe£)(B), the distribu-
tion in xr

(2. 2) /(*', φ) = j /(*', X")φ{x")dx"

is an analytic function.

DEFINITION 2.3. P=P(D/y Dx") is said to be partially hypoelliptic in
xr if, for an open set O, every distribution solution of Pf=0 in Ω, is
regular in x'.

DEFINITION 2.4. When the operator P(D) is hypoelliptic, we say P
is strictly stronger than Q (it is written by Q<P) if Q(t)/P(ξ)-»0 as

The following Garding-Malgrange's theorem [3] is important.

Theorem 2.1. An operator P is partially hypoelliptic in xf if and
only if one of the following equivalent two conditions are satisfied

(I) P(ζ', ?") = 0, ζ" and Smζf are bounded then Άeζ
f is bounded.

(ii) p(ς\n=Po(n+ΈPy(n<ny \Ύ\>O
where P0(ξ") is hypoelliptic and Py{]ζ')<PQ(ζ').

(I) is equivalent to

(Γ) There exist <r>0 and C > 0 such that

Corollary 2.1. 4̂w operator P(D) is partially hypoelliptic if and only
if every solution of P(D)u = 0 such that ueC^^ belongs to C(° .̂

(See, L. Hδrmander [6] or proof of Theorem 3.1. in [3].)

DEFINITION 2.5. A function u(x) £ C°°(Ω) is said to be hypoanalytic of
type σ in Ω, (we denote it u(x) G ^U*)) if for every compact subset K of Ω,
there exists a positive constant C depeinding only on K and u such that

(2.3) Max. \D*u(x)\ ̂ Cp+1pσ'p ^ = 0,1,2, -
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where |Z>M*)I2= £ # 5 ^ \D4D£U\\

DEFINITION 2. 6. P(ζ) is said to be hypoelliptic polynomial of type σ if

(2.4) I Ά X I ^ C(l + \SmζI)' for all f € V( j>).

Here we take σ as small as possible.

Lemma 2.1. P is hypoelliptic of type σ9 if and only if

(2. 5) Σ IP<*\?)\2\ξ'\*w ^ ^ Σ l P C Λ ψ ) 1 2 (
|αs|>0 |Λ|^0

or equivalently

(2.5/ Σ I PCΛ)(r) I I r Γ l / σ ^ C-1 P(^) I (IFI > A)
| > | > 0

constant Ax. (For a proof, see p. 25-28 of Friberg [1].)
Since P(£) = P(ζf, ζ") is a polynomial in CmxCn

y P(ζ) can be written
as a finite sum

where 7=(7X, •••, 7n) with non-negative integer γ*. Then the following
important theorem is established.

Theorem 2 2. /w ortίβr that a polynomial P(ζ) satisfies the condition
for some constant

(2.6) iiκe

it is necessary and sufficient that the following estimate holds with some
constant C1%

(2.7) Σ IPΠfOΓIfΊ^^'^QdPoffO^+l) (rei?w).
|Λ+γι^o

REMARK. If P(ζ) satisfies the inequality (2.6), then P0(ξ') ( = P(?7, 0))
is hypoelliptic of type σ as a polynomial in ξ*7. Thus the following
inequality is valid from Lemma 2.1, with some

(2.8) Σ i m r ) 11 r iια|/σ ^ c21 po(r) i (F e i?w, ι r ι
|α|>o

Proof of Theorem 2.2. It is easily verified that (2. 7) is equivalent
to

(2.7y Σ i m f o 11 ? i '*+γl/σ < cί i po(r> i ( i n > Λ )
|α>+γι>o

|a»l^o

for suitably chosen Λ3 and C( which depend only on P and Cx. Setting
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Wt={ζ=(ξ',ξ"); \<3mζ'\ + \ζ"\<t\Sleζ'\ί'1'} and writing ζ'=ξ'+W where
¥,v'eRm, ζeWt implies

(2.9) I P(f) I = I P0(ζ') + Σ Pyiζ'Hi'Ύ I
IVI>0

Σ cmp\r(?).(iηγ+ Σ Σ c^P
|«|>0 | Y | 0 |Λ |^0

0

-c Σ Σ
Γ + γ l / σ

where po=degree of P0} p = degree of P. From the inequality (2.7)' we
have the following estimate

(2.9/ \P(ζ)\^\PQ(F)\ {1-CCί

It is obvious that there exists a sufficiently small positive number t0 such
that if 0<Ct^t0 then 1-CCί 2 / 1 Λ + γ l >0, and from (2.8) follows

(XlΛ+γi^p + iv-

IΛ(f)l>0 for | l τ Ί > Λ .
These facts show that if |?Ί + l?"K*ol?l1 / σ a n d 1<^41 / < Γ |^Ί1 / < Γ then
P(ζ)Φ0 where A4 = max. (A2, A3). Now let C^min. (ί0, At1*) then

l + h Ί + i r Ί < C Ί f T / β P implies P(?) + 0.

Thus the sufficiency of (2. 7) is proved.
(Necessity). Writing ζ' = ξ' + iv' (ξ',v'eRm) as above, (2.6) is equi-

valent to

(2.6)' ifT'σ^cί(b/ι + ι rn (re v(n ι^ι>Λ)
for some positive Co and A5. From Taylor's formula P(ζ) can be written
as follows,

(2. l i) P(r) = Pjp>+ Σ ^

+ Σ Σ
|Y|>0 |Λ|^0

Now let t /= |*T / e Y, ζ"=\ξ'\ι/σt'ξ" where if6 Rm, ξ"6 C" (|f"| = 1),
ί€Cx and t'ξ"=(tξί, —, tξZ), then (2.11) is transformed into

(2.12) P(f) = Po(£') + Σ cαPΓ(^) I ^' I |β|/*(»Y)"
0^|β»|

i \Π V /» pW(&\m\£'\\<*+1\/(T(jtt'\(*('F//\Ίf\Ί\

|Y|>0 |α»|^0

First of all fix the length of q' ( = €) suitably, then according to (2.8)
there exist constants C3, C'3 such that

/o iq\ C \ P (P\ I <Γ I P (P\ -J- V1
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Thus from the condition (2.6)', if t(eC) is a root of the algebraic
equation:

(2.14) Λ(f)+ Σ c W f )• I f Γ l/σ(i9T
|Λ|>0

+ Σ Σ ^WHfT - +* l /"(*YW') i rfm = 0,
IV|>O |Λ|^0

then ^ ( f + i l f l 1 ^ ^ , IflV'ί ^Oe F(P) and | / | > C 4 for some C 4 > 0
(For example C4=(l-Cίδ)Cί"1), for arbitraly ^e-R" (|^'| = <s), r e C"
(I?" |=1) and uniformly in ξ' for | f | > 4 . where A6=max.(A3, A5).
This shows that every solution r of the algebraic equation:

2 , ^ Σ α π ) i r w r
o

satisfies | τ |<^ l/C 4 uniformly in rf> ξ", | F | determined above.
This implies that every coefficient of rk (k=0, •••, p — 1) is uniformly

bounded, i.e.

Σ <vPΠ£>l£Ί'"+γl/Wr

|α>| g o

is uniformly bounded in η'&Rm{\fj'\ =£), ?/7e C"(|f"| =1) and | ? | > A
Therefore by virtue of uniformity in ζ" we can choose suitably finite
number of vectors | % ( i=l , - ,M) such that the coefficients of (ξ"y are
solvable in Q{ξ', if, ξ{'iy) ( i=l, - , M ) . Thus

Σ c^Γ(P) lfP"+YI/*(*Y) l

is bounded for arbitraly *ί'eRm(\fj'\=€) and | ^ | > Λ . From the in-
equality (2.13), the absolute value of R(ξ'y η') is not smaller than the
absolute value of

Σ cΛPψ\ξ')*\
( 2 1 7 ) "'*'

for arbitrary v'eRm {\η'\ =S) and | ^ | > Λ The same argument as
above is applicable to η' in place of ζ". Hence {PΓ(f )• |^|1Λ+ΎI/σ}
is bounded for | ^ | > y l 6 . This completes the proof.

REMARK. AS in the proof of Lemma 3.9 in Hδrmander [6] the best
possible choice of σ, such that for some C
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is always a rational number, therefore we may assume in this note
<r=r/s (2^1) with mutually prime positive integers r and s. Then the
inequality (2. 7) is equivalent to

(2. 7)" Σ I P?X?) 12Ί ξ'\2s[Λ+yι ^ Cί'( I P 0 (f)
|rtγ|>o

§ 3. A priori estimates and the main theorem

In this section we introduce a new norm (similar to the norm intro-
duced in [1]) which depend on the operator P(D) and S with 0 < ^ ^ l .
Let K be any given relatively compact subset in Ω,aRmχRn such that
RczΩ. We then define the norm of u (eC°°(ί2)) as follows

(3.1) \u, K\\ = Σ Σ WQΨΛD) ••• Q<fr\D) Dku,

where Qy(D) = Py(Dx')Dl» and | |/, ϋΓ|| denotes the usual L2 norm of /
on K.

Now by the above definition ^ - 2 | « , K 0 , because

Since the degree of P(ζ) is />, there exists at least one oc0 (| a01 = p) such
that P(Λo)(/)) = C φ θ . Thus |«, JBΓU contains terms of type \\crDkuy K\\2

for all k with 0 < & Ό J O , and since <rk—ΣI^Ί^— P r and 0 < δ ^ l , the
following estimates are established:

(3.2) l«,ϋ:|1^l«,/iΓ|β^l«,/SΠi δ-pr

(3.3) c Σ

On the other hand the total degree of the polynomial QΊ

Λl\ξ)2 — Q^'Xξf
\ξ\2k is smaller than 2max. {p r—Σl^ l +^min. |^, |} =2 {p r—(r—s)}.

|β», | > 0

Hence the following important lemma is established.

Lemma. 3.1. There exist constants C5 and C6 (independent of u)
such that the ineqalities

(3.4) C5 Σ \\Dku,K\\2^\uyK\l^C6 Σ \\D«u,K\\2

is valid for all u e C°°(O).

REMARK. p r—(r—s)^>s p except in the trivial case p = l or r=s=
cr=l. The case r=s=cr=l is treated in [3]. When r = s=<r=l, our
norm is equivalent to that of §5 in [3].
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Lemma 3. 2. Let Ko, K1 be relatively compact subdomains of O such
that K^K.czK^n and dist (dK09 3iQ = S>0. Then it is possible to
find a function φ(x) 6 CoiKJ which is equal to 1 on Ko such that

(3.5) \DMx)\^ca8~^

where ca is a constant depending only on a and m + n.

Proof is easy. cf. p. 205 in Hormander [7].
Hereafter we only consider the case such that \oc\^p r9 thus we

may suppose

(3.5/ | D V ( * ) | ^ £ δ - | Λ | (xeKlf \a\<p-r)

where c= max cΛ.

ParsevaΓs formula shows the

Lemma 3.3. // R£(ξ) (ί=l, 2, -- ,r) are polynomials with constant
coefficients then the following inequality is valid for all v{x)£ Co-

(3. 6) URJtD) - Rr(D)v(xW < r~^ ±

where integration is taken over the full space.
Now we state the most important estimate.

Theorem 3.1. Let P(ζ) be a polynomial which satisfies the condition :

(2.6) I ^ Π

and Ko, Kx be two relatively compact subdomains of Ω such that
K.czΩ and dist (3K0> 3^) = 8 ( 0 < S < l ) .

Then there exists a constant CΊ {independent of u, δ, Ko and K^) such
that

(3.7)

\\D*P(D)u,
l)

is valid for all u G C°°(Ω).

Proof. First we estimate the quantity

(3.8) 8>*\Du,K0\ϊ

= Ί2 Σ \\Q^\D)'"Q
|Y|>0 0<|α»1l^ — ^ |Λ r |

0^*<s |Λ i |

We can split the above sum into two parts so that in the first part
and in the second part k + l = s\oc1\. In the first part each
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term is contained in the members of \u>Ko\%, hence there exists a posi-
tive constant C8 such that

(3.9) The 1st part ^ Cβ|«, K0\l ^C8\u, Kx\l .

In the second part each term is estimated as follows (we set v(x) =

(3.10)

Σ I

The last inequality is obtained from Lemma 3.3. by setting Ri(D) =
Q?iXD)δ-c}Λiι-w\ The last sum in (3.10) is composed of terms of two
different types generally.

One type is

(3.11) 11 Q^\D)rDs^v 112 (when | ct4 \ = \ aλ \)

and another type is

(3.12) ||Q?')(Z))r/?'*i;||28-2rcl<i|-w with k<\a\ .

A term of the second type is estimated as follows. Since υ = φ u
belongs to C;r(/Q, applying lemma 3.2 we obtain

(3.13) \\Q<fXD)rDskυ\\2δ-wi-*>

= \\Qc

y"XD)rDsk(<p-u), ϋΓ 1 | | 2 δ- 2 r c | β l | -«.

Here, s&—j< ŝk< ŝ l ^ l ^ ^ m i n l α r + ^ l , and (the exponent of
i

by the assumption on <r: σ s=r and σ-^1. The fact that
implies

Therefore the right hand side of (3.13) is majorated by

(3.13)' C Σ | | Q ^ + ^ ( β ) Q^+^(Z)) Z)^, Kx\\2^
|Λ + β |>0

0 ^ * < 5 min|Λ + βJ |

^C.Ie.KxIJ for some C 9 > 0 .

i.e.
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(3.14) WQPiDγiyυWS-"*™-* <C9\u, K^l with

Finally we consider the terms of the first type, (3.11).

(3.15) \\Q

s (s l' ) J ' Qί*){ξ) •2r'ξ> t**1"1 ~w' *"'
+ s (

where $(£) denotes the Fourier transform of v(x).
The last sum of the above equality is estimated as follows:

(3.16) g j ( * ' £ ' ) JIQT\S)\2 r\?\2 < ί | α |-*31S"

\\Qya+βl\D)

We denote by Ix and /2, the first and the second sum of the right hand
side of the above inequality respectively. Then we must calculate the
exponent of δ2 and the orders of operators.

In /j, the exponent of δ2, —

and 5 | α | — 1 —fe^5 |α |—l<^5 |α |^5 min.|α+iβ ί |, thus Iλ is majorated
by CIU) Kγ I \ with some positive constant C.

In 72 the exponent of δ2, — Σ l f t L is

and 5 . | α | - l < 5 . | α | ^ 5 min.|α + iSί|> hence I2<C\Dx»u, K^δ2* with
another constant C.

Therefore we obtain the following inequality,

(3.17)

with some constant C
Next if we define ξy-a" as follows,
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1) Ί-a" = (γ'-c*1", .. >Ύ»-an") when y ' - α / ' ^ O for all i.

2 ) £?-«" = o when <?-<**'<0 for some i.

(we shall write η^a" for the case 1), and y^pa" for the case 2)), then
(d/dξ")«"{(ξ'Ύ}=Cy,Xξ"y-*" with suitable constant C7y/.

We shall estimate the quantity

(3.18) / = J |Q

= J \P
in two cases.

In the first case; ηΊ2>arf and | y — ^ " I ^ O , we obtain the following
inequality with suitable /3" ( | j θ " | = l ) :

< C f I Pfψ) (r) Y " Λ / / 1 2 r If '1 2 5 1 * Iί(f) 12

- 5 + l )

Therefore we obtain

(3.19) / ^ Cn Σ I #»"«> ^i 11 δ2* with some Cu > 0
Oglέr-s + l

In the second case; γ=cc", from theorem 2.2 we obtain

(3.20) / = j IPfψ)\ 2 r \ξ ' \ 2 s | α ' + γ | Iύ(ξ)12dξ

+ C" \ \PΦ)~ Σ Py(ξ')'(¥Ύ\2r\m\2dξ.
J m>o

The first term of the right hand side of the above inequality is of course
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less than C\u, Kx\\ with some C. The second term in (3.20) is (for
suitable C>0)

(3.21) <

Σ
!VI>o= C\\P(D)r(<P.u),K1\\2

+ Cγi[\PΊ(ξ')-{ξ"γ-t"\2r\ξ"\2r\ύ(ξ)\*dξ with |/8"| = 1.
m>o j

The first term in (3.21) is

(3.22) ^ C Σ \\P^\D)-PίΛ'\D)u,
l«, IB0

= C Σ

+ C
|β»f l>0 l ^ k ^ r

Σ II

by the definition of P and lemma 3. 3.
The second term in (3.21) is

(3.23) < C ' I ] Σ l l φ W ' ^ . . φ - r + β ' ^
|Y|>0 O ^ l s j

Σ Σ l

Therefore we obtain the estimate:

(3.20)' r^C12{~Έ \Dk

x»u, i ζ l J . δ 2 ^ Σ \\D«P{D)uy
0 | * | ^ D

The inequality (3.9), (3.14), (3.17), (3.19) and (3.20/ show that the
estimate (3. 7) is established. This complete the proof of theorem 3.1.
(In the above proof constants C's are independent of u, δ, Ko and

Theorem 3. 2. Let P(ζ) be a polynomial of the type <r considered in
theorem 3.1, p be the degree of P(ζ)y and K and L be arbitrary relatively
compact subdomains of Ω, such that KczLaLaΩ and dist (3K9 3L) = δ

Then there exists a constant C13 such that the inequality
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(3.24) {SlP)'p\D>u,K\tlp

Σ
is valid for all u £ C°°(X2). The constant C13 ύfô s not depend on p, u, K
and L.

Proof. By the assumptions on K and L there exists an increasing
sequence of relatively compact domains: Ko, Kly --,Kp such that K=
K.ciK.c: ... aKp = L and dist(aiξ , dKi+1) = δ/p = h<C.l. Thus every pair
Kiy Ki+1 satisfies the conditions imposed on Ko and Kx with h in place
of δ in theorem 3.1. If wGC°°(Ω) then for every i (i = 0,l, •••,/>), ϋ ^ 6

C°°(ί2). Successive applications of theorem 3.1 to Kiy Ki+1 show that the
conclusion is obtained as follows,

hσ*\D*u, K0\h = ftt>-^h°\Ό{Ό*-λu\ K0\h

+ Σ \\D«P(D)(Dp-1u), KM-*'-1'}
\\<P(rV)

+ KΣΓ Σ

This completes the proof of theorem 3.2 with C13 = C7(r—s + 1).

Lemma 3. 4 L^ί P(?) fe a polynomial which satisifes the condition,

(2.6) \Ά£\^

{hereafter we call such P partially hypoelliptic of type <r in xf) and u be
an infinitely different table solution of P(D)u=f {where f belongs to AlCx^
in O) such that u and Dku£ AlCx"> {k = l, 2, -••, rp — {r—s)).

Then the following estimate is valid.

(3.25) I Dpuy K\,< CHψ* for every p ^ 0 ,

where C14 does not depend on p and u.

Proof. Considering Dku£AlCx"^ {k = 0, 1, ••-, rp — {r—s)) aud feAlCx^,
we may suppose that there exists a constant C15 such that the following
inequalities are valid.
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(3.26) C6 Σ II Dk

x»D«u, L112 ^ (Cf5

+1fe*)2

(3.27) Σ 11 DkD«f, L11 < C\tλkk.

(3.26) and (3.4) imply that

(3.26)' \Dk

r/'u,L\h^\D^u,L

Hence theorem 3.2 implies

245

u, L
l/p

{(pr)!} C {C15δ(r- s +1)}

This completes the proof.
Lemma 3. 4. and ineqality (3.4) show the inequality,

(3.28) 1 DpDhu, K\\^

Sobolev's lemma. // u£Cm+n(Ω,) and MczMczKcgcΩ,
exists a constant C16

(3.29)

Proof is well known and we shall omit it.

Main Theorem. Let a polynomial P(ζ) satisify the inequality (2. 6)
(i.e. P(ζ) is partially hypoelliptic of type σ in x') and f£AlCjύ in ίλ The
solution u (€C~(Ω)) of P(D)u=f in Ω such that DkuβAlCx^ (& = 0, 1, •••,
rp-(r-s)), also belongs to AM in M with MczMaKaRciLciL, com-
pact in Ω,.

Proof. From Sobolev's lemma we get that for every non-ήegative
integer p,

(3.29)/ Sup I D*u(x) \ ̂  Clβ 111 Dm+n{Dqu\ K \ \ \ ,
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where |||D*(u), K\\\2 stands for ΣU\\DJ(u), K\\2. Lemma 3.4 and (3.28)
imply that a solntion u satisfies

(3.28)' \\\D"-\D'u), K\\\ <

Therefore we have, if s p — l<^m+n, setting μ—m+n—(s p — 1)

(3. 30) Sup \Dpu{x)\ ^ C1.|||Z)*+('£)Jp-1«,

2q J

because (/>+/*+l)! =0»+l)! ' ( / ' +π(
«=i \ 2

Thus we obtain

(3.31) Sup I Dpu(x) I ̂  Cf,+1(/>!)σ.

Next if S'p — l^m+n, then obviously we obtain

(3.31)' Sup I D*u{x) I ̂  C?7

+1(/»!)σ.

This completes the proof.

REMARK. Corollary 2.1 shows that if u £ C£"> and u is a distribution
solution of P{D)u=f with / € C°°(O), then in virtue of the partial hypo-
ellipticity of P, the solution u also belongs to C°°(Ω).

Therefore let u be a distribution solution of P(D)u=f such that
D*«G Ac*") (* = 0,1, •••, r p-(r-s)) and if f€AlCx>, and P(?) satisfy the
condiction (2.6), then using theorem 3.3, u belongs to A^x.

The above fact may be said, "if P(ζ) is partially hypoelliptic of
type σ in x\ then P(D) is conditionally hypoelliptic of type σ iu xn\
Moreover if a distribution solution u of P(D)u = 0 possess the property
described in the above remark, then it will be proved that P(ζ) satisfies
the condition (2. 6) analogically to the proof of Garding and Malgrange
[3] for the conditionally elliptic case.

OKAYAMA UNIVERSITY

(Received March 30, 1963)



PARTIALLY HYPOELLIPTIC OPERATORS 247

References

[ 1 ] J. Friberg : Partially hypoelliptic differential equations of finite type, Math.
Scand. 9 (1961), 22-42.

[ 2 ] L. Garding et B. Malgrange : Opέrateurs diffέrentiel partiellέment hypoel-
liptiques, C. R. Acad. Sci., Paris, 247 (1958), 2083-2086.

[ 3 ] L. Garding et B. Malgrange: Opέrateurs diffέrentiels partiellement hypoel-
liptiques et partiellement elliptiques, Math. Scand. 9 (1961), 5-21.

[ 4 ] L. Hόrmander: On the theory of general partial differential operators,
Acta. Math. 94 (1955) 161-248.

[ 5 ] L. Hόrmander: On the regularity of the solutions of boundary value prob-
lems, Acta Math. 99 (1958) 225-264.

[ 6 ] L. Hόrmander: Lectures on linear partial differential operators, Mimeo-
graphed Note.

[ 7 ] L. Hόrmander: On interior regularity of the solutions of partial differential
equations, Comm. Pure. Appl. Math. 11 (1958), 197-218.

[ 8 ] S. Matsuura: Partially hypoelliptic and partially elliptic systems of dif-
ferential operators with constant coefficients, J. Math. Kyoto Univ. 1
(1962), 147-160.

[ 9 ] S. Mizohata: One remarque sur les opέrateurs differentiels hypoelliptiques
et partiellement hypoelliptiques, J. Math. Kyoto Univ. 1 (1962) 411-423.

[10] C. B. Morrey and L. Nirenberg: On the analyticity of the solutions of
linear elliptic systems of partial differential equations, Comm. Pure Appl.
Math. 10 (1957) 271-290.

[11] M. Yamamoto: On conditionally hypoelliptic properties of partially hypoel-
liptic operators, Proc. Japan Acad. 39 (1963) 114-119.






