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Abstract
A special rank-one perturbation S;, of a weighted shift on a directed tree is constructed.
Partial normality and weak hyponormality (including quasinormality, p-hyponormality, p-
paranormality, absolute- p-paranormality and A(p)-class) of S, are characterized.

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space and let B(H) be the
algebra of all bounded linear operators on /. For nonzero vectors u and v in H we shall
write u ® v for the rank-one operator in B(H) defined by (1 ® v) (x) = {(x,v)u, x € H. For
X,Y € B(H), we denote by [X, Y] = XY — YX the commutator of X and Y. An operator
T € B(H) is normal if [T*,T] = 0, subnormal if it is (unitarily equivalent to) the restriction
of a normal operator to an invariant subspace, and hyponormal if [T*,T] > 0. An operator
T € B(H) is said to be p-hyponormal (0 < p < oo) if (T*T)? > (TT*)?. In particular, if
p= %, then 7 is said to be semi-hyponormal ([26]). And T € B(H) is co-hyponormal if T
is p-hyponormal for all p € (0, o). According to the Lowner-Heinz inequality ([16],[26]),
every g-hyponormal operator is p-hyponormal for p < g. Recall that an operator 7 € B(H)
has the unique polar decomposition 77 = U|T|, where |T| = (T*T)% and U is a partial
isometry satisfying ker U = ker |T'| = ker T and ker U* = ker T*. An operator T is absolute-
p-paranormal if |||T|PTx|| > ||Tx||P*' for all unit vectors x in . Note that every absolute-
g-paranormal operator is absolute-p-paranormal for ¢ < p ([16]). And for each p > 0, an
operator T is p-paranormal if |||T|P U |T| x|| > |||T|” x||* for all unit vectors x in . Every
g-paranormal operator is p-paranormal for ¢ < p. Note that absolute-1-paranormality and
1-paranormality coincide; we call this property paranormality for simplicity. An operator
T is A(p)-class if (T* |T|2” T)ﬁ > |T|2. There are relations among the classes of operators
mentioned above as follows:

e subnormal = p-hyponormal = p-paranormal = absolute-p-paranormal (when 0 <
p <l

e subnormal = p-hyponormal = absolute-p-paranormal = p-paranormal (when p >
1)

e A(p)-class = absolute-p-paranormal (when p > 0).

2010 Mathematics Subject Classification. Primary 47B20, 05C20, 47B37; Secondary 47A55, 47A50.



440 G.R. ExnErR, I.B. Jung, E.Y. LEE AND M. SE0

The operator classes between subnormal and normaloid have been studied for more than
40 years (see [2],[3],[8],[16],[26]). Also, some operator models have been studied to de-
tect those classes. For example, some block matrix operators induced by composition op-
erators on discrete measure spaces were considered to exemplify some classes above (cf.
[6],[71.[22],[23]). In [19] the notion of weighted shifts S, on directed trees was introduced
and has been developed well for recently for several years. But this operator S, is not
enough to differentiate the above classes; for example, S, is p-paranormal if and only if
S 1 is absolute-p-paranormal (cf. Section 4). But a rank-one perturbation S;, of S, which
will be defined below (Section 2.2) is a good operator model to detect gaps of weak hy-
ponormalities. In fact, the weighted shifts on directed trees have been discussed as a special
model of weighted adjacency operators on directed graphs which generalizes Fujii-Sasaoka-
Watatani’s operator models; see [9],[12],[13],[14],[15] for related results. Note that the
rank-one perturbations of a bounded (unbounded) operator can be applied to several related
areas in mathematical physics as well as operator theory ([5],[10],[11],[21],[24]). In this
paper we characterize the quasinormality, p-hyponormality, p-paranormality, absolute-p-
paranormality and A(p)-class of operators S, which exemplify some operator gaps between
normal and nomaloid operators.

The paper consists of five sections. In Section 2, we assemble some useful observations
and recall some terminology and notation concerning weighted shifts on directed trees. And
also we construct the rank-one perturbation S, of the weighted shift S ; on a certain directed
tree 7,,. In Section 3, we characterize p-hyponormality of S, and discuss some related
remarks. In Section 4, we also characterize absolute-p-paranormality, p-paranormality and
A(p)-class property of S, ,. In Section 5, we consider some related examples.

Throughout this paper we write C[R, R, Z,, N, resp.] for the set of complex numbers
[real numbers, positive real numbers, nonnegative integers, positive integers, resp.]. Some
of the calculations in this paper were obtained through computer experiments using the
software tool Mathematica [25].

2. Preliminaries and notations

2.1. Some basic observations. In what follows we will frequently have use for certain
elementary observations which we record here and use with little or no further comment.
First, if a, b and p are positive real numbers, then ab” — (p + 1)s”a + psP*! > 0 for all s > 0
if and only if b > a. Second, it is the standard Nested Determinant test ([4, p.213]) that
a real symmetric matrix M is non-negative if the determinants of its principal submatrices
are positive and det(M)> 0. For a two-by-two real symmetric matrix A, A is positive semi-
definite if and only if both its diagonal entries are non-negative and det(A)> 0.

Third, we will frequently have occasion to find powers g of a real symmetric matrix

( Z [Z ), which we do as usual by transforming to a diagonal matrix of eigenvalues using

the associated eigenvectors. The eigenvalues are

% ((a+ )7 V(a+cP - 4ac-1?)).

We will frequently call these names such as p; and p,, with associated eigenvectors e; and e,
and abbreviate the square root term by some name such as y. If we express the eigenvectors
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ase; = ((a—p3)/b, )T and e; = ((a — p1)/b, 1)7, the resulting expression for A7, which we
call form 1, is

(p2—a)p—(p1-a)p} b(pl-p)
y Y
b(pi—p}) (p2—a)pi—(p1—a)p]
Y Y

If instead we express the eigenvectors as e; = ((0; — ¢)/b, DT and e; = ((02 — ¢)/b, )T, the
resulting expression for A7, which we call form 2, is

(p2—0)p5—(p1=0)p] b(p3—p))
y Y
b(p§—p)) (p2=0)pi=(p1=c)p]
Y Y

When we apply this process we will indicate the form, the eigenvalues, and the square root
term for the reader’s convenience.

2.2. Directed trees. In this section we recall some definitions and terminology in graph
theory which will be used in this paper ([19],[20]). First of all, we look at some basic notions
of graph theory. A pair G = (V, E) is a directed graph if V is a nonempty set and E is a subset
of VX V\{(v,v)|ve V} Weset

E = {{u,v} C V| (u,v) € Eor (v,u) € E}.
An element of V is called a vertex of G, a member of E is called an edge of G, and a member
of E is called an undirected edge. A directed graph G is said to be connected if for any two
distinct vertices u and v of G, there exists a finite sequence vy, - - - , v, of vertices of G(n > 2)
such that u = vy, {vj,vj41) € E for all j=1,---,n-1,and v, = v. Such a sequence will be
called an undirected path joining u and v. For u € V, put

Chi(u) ={ve V| (u,v) € E}.

An element of Chi(u) is called a child of u. If, for a given vertex u € V, there exists a unique
vertex v € V such that (v, u) € E, then we say that u has a parent v and write par(u) for v. A
vertex v of G is called a root of G, or briefly v € Root(Q), if there is no vertex u of G such that
(u,v) is an edge of G. If Root(G) is a one-element set, then its unique element is denoted by
root(G), or simply by root if this causes no ambiguity. We write V° = V\Root(G). A finite
sequence {u j};F:l (n > 2) of distinct vertices is said to be a circuit of Gif (uj,u;,1) € E for all
j=1,---,n—1,and (u,,u;) € E. A directed graph T is a directed tree if T is connected,
has no circuits and each vertex in v € V° has a parent. From now on, 7 = (V, E) is assumed
to be a directed tree. Note that £2(V) is the Hilbert space of all square summable complex
functions on V with the standard inner product

(f9) = D fwg@), f.g € CWV).
ueV
For u € V, we define ¢, € £*(V) by
eu(v)z{ 1 ifu=uv,

0 otherwise.

Then the set {e,},ey is an orthonormal basis of ¢*(V). For A = {4,},cy- € C, we define the
operator S ; on £>(V) with the domain D(S ;) such that



442 G.R. ExnErR, I.B. Jung, E.Y. LEE AND M. SE0

DSy = {fefz(V):Z( > |AU|2]|f(u>|2<oo},

ueV \veChi(u)

Saf Arf, f € DS,

where A7 is the mapping defined on functions f : V — C by

Ay - f(par(v)) ifve Ve,
0 if v = root.

(A7 )W) = {

In this case the operator S, is called a weighted shift on the directed tree 7 with weights
{Au}veve. In particular, if S ; € B(€*(V)), then

S e, = Z Ave,
veChi(u)
(cf. [19, Prop. 3.1.3]) and
Ae ifueVve
S* L= u€par(u) )
a¢ { 0 if u is root;

these formulas are used frequently in this paper (cf. [19, Prop. 3.4.1]). Recall that S,
is bounded if and only if sup,cy >’ ,echiw) |4,/> < oco. In this paper we only consider the
operators S ; in B(£*(V)). We deal with weighted shifts associated to the following models
and this model is closely related to the subnormality of weighted shifts on directed trees (cf.

[19D).

DermniTioN 2.1 ([19]). Given i,k € Z, U {oo} with n > 2, we define the directed tree
Tn,K = (Vn,m Er],K) by
Vik = {=k:keJJU{OU{(,)): i€y jeN],

Epe = E U{0,G 1) i€} Ul )G j+ 1) i€, jeN)

where E, = {(=k,—k+1): ke Jand J, = {k e N: k <} fort € Z, U{oo}. The the directed
tree 7y, is called an (1, )-type directed tree.

If k < oo, then the directed tree 7, has a root and root(7, ) = —«. In turn, if x = co, then
the directed tree 7, is rootless. In the case of x < oo, the (1, x)-type directed tree can be
illustrated as in Figure 2.1 below.

@D
CEO—>CxtD— o0 0 > O—>C0 3
1 D)—>

Fig.2.1

@3p
@3D—+ » *
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2.3. Basic construction. Let S, be a weighted shift on the directed tree 75, with weights
{’lv}veV{K consisting of positive real numbers. Let {e,},cy,, be the usual orthonormal basis of
fz(Vz,K). For a fixed n € N and parameter ¢ € R, we consider a rank-one perturbation of S ,
on the directed tree 7,

(2.1) Stni=Sat+tean®enn.

Unless t = 0, S, is not a weighted shift on a directed tree. A special case of S, is S 4, .n
which is a weighted adjacency operator in the sense of [9] on the directed graph below, al-
though we do not take this point of view. Butif 7 # 0 and t # A2, the rank-one perturbation
S 1s more general than either type. We consider an ordered orthonormal basis of 52(V2,K)

D>+ + + > @+ *+
GO D o e+ >0
(m) oo o

BD—>@D >

Fig.2.2

by taking the following ordering of the standard basis:

(2.2) € iy €oiils 5 €05 €(11)s €(2.1)s €(12)s €(2.2)> €(1.3)> €(2.3)s " " * »

and consider throughout this paper the matrices corresponding to operators S, relative to
the ordered orthonormal basis in (2.2).

First, we begin with the following computational lemma.

Lemma 2.1. Let S, , be as in (2.1). Suppose that p € (0, c0). Ift # 0, then the following

assertions hold:

: * — D 2p 2p 320 AP 320 32p  32p  32p
(1) (St’lst,l)p - Dlag{/l_,ﬁ_l’ Y /1_17 /10 aAl 5 /1(2’2), /1(1’3)’ /1(2’3)9 /1(1’4)’ tee }’

where A’f is unitarily equivalent to a 2 X 2 matrix (a;j(1, p))1<i j<> With
23a)  an(l,p) = {Br = Ay ) =~ Woa] + A gy + Ay — @B} 71,
(2.3b)  ap(l, p) = axn(l, p) = tAonB) — o))/,

(23¢)  an(l,p) = {(A ) + A4y — @) + Br = Ay — 2518

(2.3d) ay = (P + A(ZU) + 432,1) + 1(21,2) -v)/2,
(2.3e) Bi = (1 + A7 1) + A% 1) + A5 +71)/2,
(2.3f) Y1 = [+ A8 ) + A0 + A5.1)7 — HAG ) Ay + A + 131,2))}]”2,

(i) forn > 2,
(S7,S:2)" = Diag(2”

—k+1°

. 2 32 2 \p 2p 2p 2p
Ay (A )" AT 2y Ay A )

2p P 32p 2p
e ’/l(l,n)’A"’ /1(2,n+1)’ /1(1,%2)’ o)

where AL is unitarily equivalent to a 2 X 2 matrix (aij(n, p)i<ij<2 with

(2.4a) an(n, p) = {(Bn — A + (A, — @n)Bit Vs
(2.4b) an(n, p) = a1 (n, p) = tAon(Bh — )/ vu,
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(2.40) an(n, p) = () = @)l + Bo = A, B0 Y
(2.4d) =@+ /1(1 arl) T /1(2 n) -v/2,
(2.4¢) ,3 =+ /1(1 arh) T /1(2 m T 7n)/2
(2.41) = [ + /1(1 ey T A0, n)) (1 w0, n)]1/2
Proof. By simple computations, we have that
(25) S 1St 1= Dlag{ —k+10 "7 /1%1, /lé, Al, /152’2), /l<21’3), /1(22’3), /131,4)a e }

and forn > 2,

292
StnS”l = D1ag{/l it oA ’/1(1 nt /1(2 1)’/1(12)’/1(22)7/1(13)’ T
2 2
(2.6) ’/l(l,n)’A”’/1(2,n+1)/l(1,n+2)’ b
with
2 2
2.7) A ( Ay Ty e )
. 1= 2
l/l(z’l) 2+ J’(l 2)
and
2
(2.8) A, :( Aow  tom )
Aom 1+ A0

Since A, is diagonalizable, we obtain that for n € NN,
D, := Diag{a,,,} = P,'A,P,,
where @, 5, and vy, are as in (2.3d-f) and (2.4d-f),

2 2 2 2
AptonBr g ntien -
P, = e, 1.

1 1

and

Ao =Bn Ay

P, = 1A 1A (n>2).
1 1

Clearly, a, and (3, are eigenvalues of A,, and P, is a nonsingular matrix consisting of the

associated eigenvectors of A, for each n € N. By calculating the matrix product P,D} P!,

we obtain the entries of A? as in (2.3) and (2.4), n € N. Observe that this is the construction
of “form 17, with eigenvalues «,, 5, and with “square root term” 7y,,. m]

Note that, in Lemma 2.1, if # = O then

(S()nSOn)p Dlag{ 2p (/l(] 1) + /152 1)) 5 /1217 2p /12[) e }’

,<+1" ’ (1,2)° (22)’ (1,3)°

which will be used in the later sections.
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3. Partial normalities

We discuss the p-hyponormality, quasinormality and normality of S, in this section. We
begin this section with the p-hyponormality of S, as follows.

Proposition 3.1 ([19]). If t = O, then So,(= Sa) is p-hyponormal if and only if the
following inequalities hold:

1) Aps1 = Ay, —k+1<m< -1,

(ii) /l(] b+ /lé b= A

(i) 4754035, > (/1<2f72>/l%21> A8 A2 1y + )
(V) A j+2) = A ja1y, fori=1,2, jeN.

We now discuss the general case below.
Theorem 3.2. Let S, be as in (2.1) and let the a;;’s be as in Lemma 2.1. Suppose that
p € (0,00) and t € R\{0}. Then the following assertions hold.

(1) St is p-hyponormal if and only if the following conditions are satisfied:
(i-a) it holds that

3.1) Appst = Ay —k+1<m<—1,
(3.2) A ke3) 2 A k+2)> A2kr2) 2 Aekrn), k €N,

(i-b) the following matrix is positive:

an(l,p) - A" an(l, p) 0 0
app(l, p) ax(l,p) - b1, p) _b12(1 P) -bi3(1, p)
0 —b1o(1, p) ALy = bn(l,p)  —bx(l,p) ’
0 ~by3(1, p) —bx(1,p) Al —bx(l, p)

where b;;’s are as in Appendix Al.
(1) S,z is p-hyponormal if and only if the following conditions are satisfied:
(ii-a) the inequalities in (3.1) hold,
(i1-b) it holds that
(3.3) Ay + A5 2 A5,
(3.4 A kray ZA0k+3)s A2 k+3) 2 Adapr2), kK EN,

(ii-c) the following matrix is positive:

2 2 1 2 1
Ay = A, 1)(’1(1 n*tAen) " —dande ‘>(/l<1 y*Aan)” +p 0
-Aa,nde, 1)(/1(1 y T 5P an,p) - /1(2 1)(/1(1 nt ’1(22 N an(2, p) ’
0 an(2, p) an(2,p) - (1 2)

(ii-d) it holds that
(2 3 2 bu(2, p), /1(1 b = bn(2, p),
(/1(2 3) - bn(2, P))(/l(l 4) —b»(2,p) = bin(2, ),

where b;;’s are as in Appendix Al.
(iii) Forn > 3, S, is p-hyponormal if and only if the following conditions are satisfied:
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(iii-a) the inequalities in (3.1) and (3.3) hold,

(iii-b) it holds that
3.5) A g+1) = A h)s 2<k<n-l;k>n+2,
(36) /1(2,[_,_1) > /1(2’1), 2<l<n- 2,1 >n+1,

2p 2 2 2 1
(iii-c) /l<1 2) <22> 2 (A1) + 4 <22>)(/1(1 n ey
(i1i-d) it holds that

all(n p) = /1(2}1 1)’ a22(n P) 2 /1(1 N’

(all(n P) /l(2n 1))(“22(”5 P) - /l(l,n)) 2 a12(l’l, P)z,

(iii-e) it holds that
AL 1y 2 b, p), A ) = boo(n, p),

(/1(2 n+1) bll(n P))(/l(l n+2) b22(na P)) 2 blZ(”a P)z,

where b;;’s are as in Appendix Al.
Proof. By simple computations, we have that

e 2 2 2 2 2 2
S8y = Diag{0, A2, ,,, - 7/10’Bls/1(2,2)7/1(1,3)#1(2,3)7/1(1,4)""}

and for n > 2,
* . 2 2 2 2 2
Sl‘,I’LS[,n = Dlag{O /l—K+1’ s /10, BO, /1(1’2), /1(2’2), /1(1’3)9 e
2 2 2
/1(1 ny? B, /1(2,n+1)/1(l,n+2)’ o)

with
2
Ay Aanden 0
B, = /1(1,1)/1(2,1) l‘+/l(2l) 1/1(1,2) s

0 tA12) /1(21,2)

2

/1(1’1) )

dandan  Agy

Then we can obtain the entries of B}, B} and By by using Diag{0, 1,8} = 0;'B;Q;,
0;'BoQo and Diag{a,, 8,} = Q;'B,Q,, where

By =

2., 92

Aanden ) and B _( '+ Ay, tAaa
n = 2

Aanety A

Diagf{0, /1(1 nt /1(22 1)}

Adapden  Aan@n G0 =B) Ay +AG )

a1, Ae.ndan andan
0 = ) n=2y Bi=A1a) s
t 1/1(1_2) l/l(l'z)
1 1

A1t 1) A1 041y

2 2
Gy B A
1

1

_ Aoy Aay
_ 2 1 _
= a.n (i,n and Q, =

with the @, and B, as in Lemma 2.1, n € N. Set B} := (b;j(1,p))i<ij<3 and B) :=
(bij(n, p))1<i j<>, where the b;;’s are as in Appendix Al. Note that B’f and B! are symmetric,
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0 b;j = bj;. And also we have

2 1+ 2 1+
Bl = (1 1)(/1(1 1) + /1(2 1)) P /l(l 1)/1(2 1)(/1(] 1) + /1(2 1)) g )
2 1+ 2 I+p
Aa,nde, l)(/la 1) + ’l<2 1)) P (2 1)(/1(1 1 + /1(2 1))
. . . 2 2 2 2 .
Since (15} ,)” = Diag{0,4 i+1"' , A, By, /1(22),/1(1’j3),/l(£3),/l(1'7’4),---}, using Lemma

2.1 (1), (1) follows.

Second, using Lemma 2.1 (ii) with n = 2, the statements of (ii-a), (ii-b) and (ii-c) are
easily checked from (S* Si)P = (S tzS*z)” 0. We can see that the statement (ii-d) is a
condition equivalent to Dlag{/l(2 3 ’1(1 4)} B” > 0.

Finally, we consider (S7,S:,)" — (S:.S ,’n)” > 0 for n > 3. Using Lemma 2.1 (ii), we
can see (iii-a) and (iii-b) easily. And we know that the positivity of Diag{/l(zf 2y /1(25 N B is
equivalent to the following conditions:

2p 2 2 1+
’1(12) 2 /1(1 1)(/1(1 1 + /1(2 1)) ",
2p 2 2 1+
’1(2 2) 2 ’1(2 l)(ﬂ(l 1 + /1(2 1)) ",
2p 32p 2p 32 2 2 1+
/l(l 2>/1(2 2) 2 (/1(1 2)’1(2 nt /l(l D2, 2))(/1(1 nt ’1(2 1)) P

Since we only consider the weights {/lU}U€V§K of positive real numbers, in the presence of the
third condition the first two inequalities above are automatic. Also, the conditions (i1i-d) and
(iii-e) are equivalent to the positivities of AL — Dlag{/l(2 1y /1(1 n)} and Diagf{A (2 1) /l(zfi \ +2)}—
B!, respectively. Hence the proof is complete. |

Remark 3.3. It is obvious that HS =S 0,,,” — 0 ast — 0. Also it is worth mentioning
that if we let ¢ approach 0 in the conditions equivalent to p-hyponormality of S, , in Theorem
3.2, then such conditions obtained by some direct computations coincide exactly with the
conditions equivalent to p-hyponormality of Sy, in Proposition 3.1.

Proposition 3.3. Let Sg,, = S, be as usual. Then S, is oo-hyponormal if and only if the
following conditions hold:

1) A1 = Ay, —k+ 1 <m < -1,

(11) /1(1 j+2) > /l(l J+1)o fOl’i =1,2, jE N,

(iii) min{A? /1(22 2)} > /lgl y T /l%2 = /12

Proof. Since (i), (ii) and (iv) in Proposition 3.1 are independent of p, we will show that
Proposition 3.1(iii) is equivalent to the condition min{A(, ), A5} = 47, ;) + 45, ;). Suppose
Proposition 3.1(iii) holds for all p > 0, i.e.,

2 2
(’la o A

2p 2p
/1(2,2) /1(1,2)

(1,2

@, 2)}

-1
(3.7) )(1(2l btahy) <Lp>o.

+ A2

Without loss of generality, we assume that A2 e

an = 1. To see the first inequality of

(iii), suppose mln{/l(l,z), /1(2 2)} < 1. Say A¢12) < 1. Then
2 2
/1(2 1 /1(1 D
— 00 as p — oo,
PO

(2,2) (1,2)
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which contradicts (3.7). Thus min{/l(z1 2 /1(22 2)} > 22
first inequality of Proposition 3.3(iii) holds, i.e., 4>

p > 0, we have

an T /1(2 1y Conversely, we suppose the

> A2 +/l(2’1) (i = 1,2). Then, for any

(i.2) 1.0

A2 A2
2,1) (1,1) -1
(/lzp 2 )(ﬂa b+ Aan)

(2,2) (1,2)

A+ A2 A+ A\,
2 (Yo T Ao > (Ao T Ao 2 ) !
= (4(2,1)(7/12 ) + Ml)(‘y ) )(/1(1,1) + )

2,2) 1,2)
(/1(2 nt /1(21 1)) (/1(1 nt /1(2 1))_1 = 1.

So Proposition 3.1(iii) holds for all p > 0. m|

REmARK 3.4 (Normality). Note that S;, can not be normal because weights are strictly
positive. However, if we consider a weight sequence {/lU}UEVZK in the real numbers, we can
obtain that S, is normal if and only if the following conditions hold:

(i)ifk < oo, thent=0=A4,, vE V;K,
(ii) if k = co, then one of the following conditions holds:

(ii-a) t = /1(1,]') =0, g = /l_j = /1(2’]'), JjeEN,

(ii-b) t = /1(2,J') =0, Ag = /l_j = /l(l,j), JEN,

(ii-C) t= /7.() = ﬂ._j = /l(l,k) = /1(2,1'4_,,), /l(l,j+n) = /l(z,k) = 0, 1<k< n, jE N.

REmMARK 3.5 (Quasinormality). Let S;, be as usual. If S,, is quasinormal, by a direct
computation, ¢ = 0, and so S;, must be S¢,. And S, is quasinormal if and only if

Ay + Aoy =45, ve V5 ML D, (2, 1)

Of course, if we consider a weight sequence {/L,}UGV;K in the real numbers, we can obtain
some equivalent conditions for quasinormality of S,,. We leave the detailed conditions to
the interested readers.

4. Weak hyponormalities

There are several kinds of partial normalities that are weaker than p-hyponormality, for
example, p-paranormality, absolute-p-paranormality, A(p)-class (cf.[16],[18]). In particular,
Son = Sais p-paranormal if and only if S, is absolute-p-paranormal (if and only if S, is
A(p)-class). By some direct computations, S, is p-paranormal if and only if the following
conditions hold:

1) g1 = A, —k+1<m< -1,

(i) 43,1y + Ay = A3

(iii) /l(l ) (zfz) + /1%2 1 (2;2) z (/l(l ) + /1(22 1

(iv) /l(l,ﬁ.z) > /l(,’j_,_l), fori=1,2, jeN.

It is not known in general for p € (0, c0)\{1} whether p-paranormality is different from
absolute-p-paranormality. It is worth discussing p-paranormality and absolute-p-

paranormality of S, .

P,
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4.1. Absolute-p-paranormality. Recall from [16, p.174] that T € B(H) is absolute-p-
paranormal if and only if T*(T*T)?T — (p + 1)T*Ts? + psP*'I > 0 for all s € R,.

Theorem 4.1. Let S, be as in (2.1) and let the a;;’s be as in Lemma 2.1. Suppose
p € (0,00) and t € R\{0}. Then
(1) S11 is absolute-p-paranormal if and only if the following conditions hold:
(i-a) the inequalities in (3.1) and (3.2) hold,
(i-b) for all s € Ry, Q1 := Qi(p, 1, 5) = 0, where

w1 (1, p) Ao nain(l, p) 0
4.1  Qp:=| Adodanan(l,p) wzz(l,P) 1, 1)(/1(22) (p+1)s?)
0 t/l(Z 1)(/1(2 2) (P + 1)Sp) (1)33(1’ P)

with w;;’s as in Appendix A2.
(1) S, is absolute-p-paranormal if and only if the following conditions hold:
(ii-a) the inequalities in (3.1), (3.3) and (3.4) hold,
(ii-b) it holds that

Afl 1)/1(1 5 tan(2, p)/l(z = (a(l y+ /1(22 1>) P ay(2, p) > /1(1 2
(1)11(2 P)(U22(2 P) > 6112(2 P) A(l 2) (2 1)° NS R+’
(ii-c) it holds that

/l(z 3) = /1(2 2), 2 A 2p + t2/12p

2, 32
1314 3 = +4

)1+p
(1,3) ’
(1)11(2 p)w22(2 p) 2 t2/l(22){ 2,3) (1 +P)Sp} , $ € R+,

where w;;’s and w;;’s are as in Appendix A2.
(iii) Forn > 3, S, is absolute- p-paranormal if and only if the following conditions hold:
(iii-a) the inequalities in (3.1), (3.3), (3.5) and (3.6) hold,
(i1i-b) it holds that

2 2p 2
/1(1’1)/1 +A4

2 p+1
a2 T A (2 2 = (/1(1 n+t Ao

(iii-c) it holds that

Clll(l’l P) = (zn 1) aZZ(” P) = (ln)’
w]](l’l, p)(UZZ(na P) > Cl]z(l’l, p) /l(l,n) @2n-1)° s € R+a
(i11-d) it holds that

2 2p 292p 2 2 1+
Aan+1) Z A2y /l(ln+l)/l(ln+2) +1 /1(2 n+1) > (" + ’1(1 +1)) i

(J.)]](l’l p)a)22(n P) = tz/l(z n){/l(Z n+1) (1 + P)Sp} , S € R+7
where w;;’s and w;;’s are as in Appendix A2.

Proof. By Lemma 2.1(i), it is easy to compute that

2 2
[I(Szlstl) S[l - ]:)lag{/1 K+1/l k+2° ,/1%1/1 r Wla/l(zz)/l(ng)y/lgl 3)/1(1 4)""}a

where
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an(1, pAg Ao, nan(l, p) 0
2 2
(4.2) Wy =1 Aodana(l, p) 6122(1,19)/1%1,1) ‘; /1(22,1)/1(52) t/l£2,l)/l(2p’2) i
p 2 2 2p
0 1A, Az T A0y

Using (2.5), we can obtain that

STSIS)S = (p+ 1DS; Sus” + psPt'I
= Diag{0_x+1,- "+ ,0-1,91,0022),6013), "},

where

(4.3) O =22, 00— (p+ DA, 5P + psP*l,
2

(4.4) O.p =Gy At jyry — (0 + DAG 8" + ps™!

withk—1>2m>1,i=1;j>3,i=2;j>2and Q;isasin (4.1). So, forxk — 1 >m > 1,
k €N, 0_,, 01.+2) and 62 x+1) are nonnegative for all s > 0 if and only if

Amit 2 Aoy A1 p+3) 2 A xs2) and A pr2) = A k+1)-

Hence (i) is proved.

Next, by applying Lemma 2.1(ii) with n = 2, we can also compute that
SZQ(SZQSz,z)pSz,z = Diag{lzk+l/lzi+2’ T ’/1%1/1(2);)’/1%(/1(21,1) + A%Z,l))p’

7 2 2
Wa, Wa, Ay 3,40 4 A0 4y AT s+ ),

(2,4)° (1,5)°
where
2
4.5) W, = ( an(2, PG, + A pAits  Aapdenain2, p) )
AaAdenan(2, p) an(2, P)/l(21 2)

and

2 2p 2p
(4.6) W, =| teaten  Headay

' z Ao AP 2 2%, + 2%, |
IMentas  Aantas T 400

Using (2.6) withn = 2,
S12(S158:2)S 12— (p+ DS7,S 08" + psP™'I
= Diag{6_s1,-- 61,60, 2, Qs 02,3), 01,49, |

where 0_,,, k —1>m>1,6;,i=1,j>4;i=2, j>3 areasin (4.3) and (4.4),

4.7) 00 := 340 1) + Ay — (p+ DAGs” + psP™,
Q, = ( w11(2, p) Aapdenan(2, p) )
Aadenan(2, p) wn(2,p)
and
~ @11(2. p) 124, — (1 + p)sP)
t/l(Z,Z)(/lg’ 3y~ (L+p)sh) wn(2, p)

with w;;’s and w;;’s as in Appendix A2. Tt follows that the positivities of Q, and Q, are
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equivalent to (ii-b) and (ii-c), respectively. And (ii-a) can be checked easily.
Finally, by using Lemma 2.1(ii), we get that for n > 3,
SiaS 1S n)'Sin=(p+ 1S, Sias” + psPt'I
= Diag{0_+1,- - ,60,6(1,1), 61.2),022), " - * s O2.0-2)s
0.1y > Qs O 041y, O 042)5 -+ 1,

where 0_,,k—1>m>1,604;,2<j<n-1;j>2n+2,and 0 ;,2<j<n-2;j>2n+1
are as in (4.3), (4.7) and (4.4),

2 1
0(] 1) = /l(l 1)/1(1 2) + /1(2 1 (2 2) —(p+ 1)(/1 1.1 + /1(2 l))Sp + pSp+
0 =( wi1(n, p) AamAea-1na2(n, p) )
" AawAden-1ann(n, p) wxn(n, p)
and
3 - w11(n, p) A, n)(/l(z ni1y — (L Dp)sP)
" A, n)(/l(z ne1y — (L +p)sP) wx(n, p) '

where w;;’s and w;;’s are as in Appendix A2. It follows that (iii-c) and (iii-d) are equivalent
to the positivities of Q,, and Q. respectively. For all s > 0, 6(; ;) is nonnegative if and only if
(iii-b) holds. And (iii-a) can be obtained by nonnegativity of 6,, v € VQ’K \{(1,1),(2,1),2,n—
1), (1,n),(2,n),(1,n + 1)} for all s > 0. Hence the proof is complete. |

4.2. p-Paranormality. For T € B(H), let T = U |T| be the (unique) polar decomposition
of T. Then it follows from [27, Prop. 3] that T is p-paranormal if and only if
TP U ITPP UITIP - 2s|TI?? + s°1 > 0, 5 € R,.
To characterize the p-paranormality of S, ,, we begin with the following lemma.

Lemma4.2. Let S, be as in (2.1), where t € R\{0}, and let the a;;’s be as in Lemma 2.1.
LetS,, =U,, ’S t’n| be the polar decomposition of S ,,. Then
(1) Ur1 = S7+un(Deq,y ® e,y + un(lea ®eq 1y + usi(1)eq 2) ® ey, where

1 1
ui(l) = an (1, 5)/1(1,1)/(5, up(l) = —ap (1, E)/l(l,l)/é,
1 1 1
u(l) =qan|l, '3 A,y —tap /5 upn(l) =qta; (1, = 5|~ an I, 3 Ao, /5,
1 1
uz (1) = —app |1, > /1(1,2)/5, uzn(l) =ap (1, 3 /1(1,2)/5
with & = (A7, 5,4, 1) + A7 1) + A5 ) and A := {Ahwevy such that Aqyy = u(l),
Ao = a1 (1), A1) = usp(1) and A, = 1 (otherwise),
(i) ifn > 2,

Uip = S7+ui(n)eq nin) ® e u-1) + u12(n)ez,) ® e ),

where
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1 1
up(n) = {022 (Vl 5) A —tan (n —)} /(/1<1 arDA2n)s

1 1
upp(n) = {tall (n, 5) —an (n, 5) ﬂ(z,n)}/(ﬂ(l,n+1)/l(2,n)),
u1(n) = —ap (ﬂ )//1(2 m» U2(n) = ai (n )//l(zn)

with /l = { U}UE\/ such that /l(] H = /l(] 1)(/1(1 1) (2’1))_1/2, /1(271) = /1(271)(/1(21,1) + /152’1))—1/2,
/l(z,n) = uy1(n), /1(1,,,“) = ux(n) and /lU = 1 (otherwise).

Proof. Since the weights {4, }UEV are positive and the determinants of Ai/ 2 and A,i/ 2

(n>2)are (/l(l 2) (2 nt /l<21 1)(tz + /lfl 2)))1/2 and A1 »+1)A2,n), Tespectively, we see that |S,,n|

is invertible for all n € N. Other proofs are routine. m|

We now characterize the p-paranormality of S ;.

Theorem 4.3. Let S, be as in (2.1) and let the a;;’s be as in Lemma 2.1. Suppose that
p € (0,00) and t € R\{0}. Then
(1) S;1 is p-paranormal if and only if the inequalities in (3.1) and (3.2) hold, and for all
s € Ry, Wy := (¢ij(1, p)i<ij<3 = 0, where the ¢;;’s are as in Appendix A3,
(i1) S,z is p-paranormal if and only if the following assertions hold:
(ii-a) the inequalities in (3.1), (3.3) and (3.4) hold,
(ii-b) it holds that
/1(21 1)/1(1 2) + a1 (2, p)/l(z = (/1(1 1 + /1(22 1)) P , an(2,p) > /l(l 2)
()011(2 P)9022(2 P) 2 a12(2 P)Z/l(l 2)1(22 1)(/1(1 1) (2’1))[7_ , SER,,

(ii-c) it holds that

(2 D012 + AL 6427 2 an(2, p),
AL 622 + A7 4 66(2)% = an(2, p),
212, P2, p) = 912(2,p)%. s € Ry,

where @;;’s and @;;’s are as in Appendix A3.
(iii) S, for n = 3 is p-paranormal if and only if the following assertions hold:
(iii-a) the inequalities in (3.1), (3.3), (3.5) and (3.6) hold,
PE 2
(iii-b) Ay 1 A1’y + 4G 1Ay = (A gy + A )
(iii-c) it holds that
all(n P) = /1(2,1 1)’ (122(71 P) 2 /1(1 n)’

2 2
‘pll(n’ P)‘;DZZ(”, P) 2 alZ(n’ p)ZA(an)/l(gn 1)’ s € R+9

(iii-d) it holds that
(2 OB + XL ba(n)® = an(n, py,

AL o820 + AT G6(n)” = an(n, p)’,
@11(n, P)pn(n, p) > @o(n, p)*, s € Ry,
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where ¢;;’s and @;;’s are as in Appendix A3.

Proof. (i) Applying Lemma 2.1(i) and Lemma 4.2(i), it follows that

* 2 2
|S[’]|pUt’l St,]’pU[’]’St’]|p_2S|St’]|p+S21
= Diag{yy i1, -1, Y1, 022 Y13,
where
(4.8) Yo =020 =227 5+ 57,
4.9 =P P s st
: Vi) =G pAa jan) @S Ts

withk—1>m>1,i=1;j>3,i=2;j>2,and ¥y := (¢;;(1, p))i<ij<3, With ¢;;(1, p)’s
as in Appendix A3. So S is p-paranormal if and only if y_,,, ¥; ;) and ¥, are nonnegative
for all s € R,. Itis obvious that ¢_,, and ¥ ;, are nonnegative for all s € R, if and only if
(3.1) and (3.2) hold, respectively.

(i) By Lemma 2.1(ii) and Lemma 4.2(ii) with n = 2, we have

2 2
SZ,Z’ P Ut,2 ’St’2|p - 2S |S[,2| P + SZI
= Diag{yy 11, - ,lﬁ—l,lﬂo,‘Pz,‘—f’z,'ﬁ(zg),lﬁ(1,4), SRS

where Y_,,, k =1 > m > 1, ¥qj, j =2 4, and Y2j, j = 3 are as in (4.8) and (4.9),
respectively,

P oypx
|S t,2| Ut,2

(4.10) o 1= AL )+ A%, ) =20 s + 57,
p—1
v, ¢1(2,p) Al 2@, p)AG )+ A%,)
2 = p-t
/lfl 2Adenan2, P)(/l(zl,l) + /1(22,1)) 2 ©22(2,p)

and ¥, := (©ij(2, p))i<ij<> With the ¢;;’s and @;;’s as in Appendix A3. For all s € R,,
v, >20,ve€ Vik \{(1,1),@2,1),(1,2),(2,2),(1,3)} if and only if (ii-a) holds. It follows that
the matrices ¥, and ‘T’z are positive semi-definite for all s € R, if and only if (ii-b) and (ii-c)
hold, respectively.
(iii) By Lemma 2.1(ii) and Lemma 4.2(ii) with n > 3, we have
Sl’n|2p U[’n |S[,n|p - ZS 'S;)n|2p + SZI
= Diag{yy_s1, - Y1, %0, Y110, Y12, ¥ 22), s W @n-2)s
Yan-1y, Yo ¥, Yy W(ins2)s b

where _,,, k=12>2m> 1,90, Y, 2<j<n—-1;j2n+2, 40, 2<j<n-2;j>n+1
are as in (4,8), (4.10) and (4.9),

[Sel” UL

2 2 2 2 2 -l 2 2 2
Yan = QapAlsy + A o)A + o)’ =205 + Ao s + 57,
p _ ( @11 (l’l, p) Afl’n)/lfz’”_l)aIQ(n’ P) )
n - B
A{l,n)/lf’Z,n—l)aIZ(n’ p) 9022(’/[, p)
¥, = (@ij(n, p)i<i j<2

with the ¢;;’s and @;;’s as in Appendix A3. Forall s € Ry, ¢, > 0,v € Vo, M@, D, (2,n -
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1), (1,n),(2,n),(1,n + 1)} if and only if (iii-a) and (iii-b) hold. It follows that ¥, and ‘T’n are
positive semi-definite for all s € R, if and only if (iii-c) and (iii-d) hold, respectively. Hence
the proof is complete. m|

4.3. A(p)-class. Recall that an operator T € B(H) is a class A operator it |T2' > |TP.
The class A operators have been developed well for several decades. Note that the A(1)
class property is equivalent to the class A property. In [17], one shows that there exists an
absolute-2-paranormal operator 7 which is not A(2)-class by using some block matrices.
However the models for A(p)-class operators have not been developed completely. In this
section we characterize the class A(p)-class property of our operator model S, .

Theorem 4.4. Let S, be as in (2.1) and let the a;;’s be as in Lemma 2.1. Suppose that
p € (0,00) and t € R\{0}. Then the following assertions hold.
1
(1) S11 is an A(p)-class operator if and only if the inequalities in (3.1), (3.2) and Wlp+l >
Diag{/lz,Al} hold, where Wy is as in (4.2) and Ay is as in (2.7).
(i1) S, is an A(p)-class operator if and only if the following conditions hold:
(ii-a) the inequalities in (3.1), (3.3) and (3.4) hold,
(ii-b) it holds that
fll(2 P) 2 /1(1 1) + )»(21 2)? f22(2 P) 2 /1(21,2)’
(fll(z’ P) - (1’1) (1 2))(f22(2 p) (1 2)) 2 f12(2, P)z,

where f;;’s are as in Appendix A4,
(ii-c) it holds that
911(2 P) 2 /1(22 2)? 922(2’ P) 2 /1(21,3) + tz,
(911(2, P) - /1(22 2))(922(2 P) /l(] 3) tz) = (912(2’ P) - t/l(2,2))25

where g;;’s are as in Appendix A4.

(iii) For n > 3, S, , is an A(p)-class operator if and only if the following conditions hold:
(iii-a) the inequalities in (3 1), (3.3), (3.5) and (3.6) hold,

(iii-b) A2 | A7, + A2 > (A, + A2

) p+1
1) (2 2) an T ten) o
(iii-c) it holds that

fir(n,p) 2 2%, ), ol p) = A3,
(fir(n, p) = (2,n,1))(f22(n, p) - (l,n)) > fia(n, p)*,
where f;;’s are as in Appendix AS,
(i1i-d) it holds that
gn(n,p) = Ay,, g0, p) = A3, + 1,
(g1 (n, p) - /1(2 )(g22(n, p) — /1(1 D) - 1) > (g12(n, p) — tAdom)?
where g;;’s are as in Appendix AS.
Proof. See (4.2) in the proof of Theorem 4.1 for the matrix form of § ;‘ ! |S rl |2p S:1,and

also (2.5) for the matrix form of |S t,1|2. The statement (i) then follows naturally. Since

L
W is diagonalized by its eigenvectors, we can also find the matrix form of W/ by direct
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computation.
2 — .
rs 12, where W, and W are as in (4.5)

Applying the proof of Theorem 4.3 with §7,
and (4.6), we have that

1
yzal

2p512)1’” Diagf (/12K+1 a )#’ (/12 /lzp)p+l (/lé(/l(l 1) +/l%2 1)) )

—Kk+2

W;TI’WZM (/1(23)/1(24))”+l (/1(14)’1(15))p+1 b

N L
where W,*' := (f;;(2, p)) and W,"" : (g,j(2 p)) with the f;;’s and g;;’s as in Appendix A4.

— 1
Hence (ii-b) and (ii-c) are equivalent to W"+l > Dlag{/l(1 1 + /l(l 2),/1(1 »} and W) > A,
respectively, where A, is as in (2.8) with n = 2. And (ii-a) is obtained easily. For n > 3, we

obtain that
(5%

= Diag{(/ﬁm/lziﬁ)”% S (/12 /lzp)Ll (/lo(/l(l b+ A )

1
2p Pl
ofS0)

1
+1

1 1
2 2p 2 2p \p+l 2 2p ﬁ 2 2p Pl
(AT 2+ o diy)) (B A s) s s (Aneadiann)
1 1 1
2 2\ el B ) 2p s
(/l(l,n—l)/l(l,n))p AN A ’(/I(Z,n+l)/l(2,n+2))p b
where
W = an(m,p) A,y Aamdea-n@n, p)
A A@n-nan(n, p) an(n, P)/%,n)
and
2
Wn _( /I(Zn)/l(Z n+1) , Mg)")/l(z n+é) 2 )
1o, n)/l(z n+1) /l(l n+1)/1(1 Nn+2) +1 /1(2 n+1)

By direct computations, we have that W,{m := (fij(n, p)) and VV,F := (gij(n, p)) with the

fij and g;; as in Appendix AS. Thus S, is an A(p)-class operator if and only if (iii-a) and
1

(iii-b) hold, W' > Diag{/l(Zn 1y /l(1 n)} and W”+1 > A,, where A,, is as in (2.8). And (iii-c)

and (iii-d) are equivalent to W,;’” > Dlag{/l(z’n_l), /l(l’n)} and WZI’ & > A, respectively. Hence

the proof is complete. m|

5. Examples

We consider some examples related to theorems in the previous sections.
Let S, be a weighted shift on the directed tree 7, with the 1, below and consider S, :=
Sa+tear) ® e, with
Aupy=4Aen =2, Ay=1, k+1<m<0,
Aa) =3, Adax2) = Aok =4, k€N,
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p-Hyponormality. According to Theorem 3.2(i), we obtain that S, ; is p-hyponormal
(0 < p < o) if and only if A(p, ) > 0, where

8 2t 0 oY (10 o0 oY
A1) = 26 +9 0 0| |04 4 0
7l o 0 16 0 0 4 2+4 3t |
0 0 0 16 00 3 9

which is equivalent to the positivity of the 4 X 4 matrix in Theorem 3.2 (i-b).

If we give a positive number p, we can estimate the range of ¢ in R for the p-hyponormality
of §;;. For example, a direct computation proves that S, is 2-hyponormal if and only if
t € [-9,6], where ¢ is the unique positive root of det A(2,¢) = 0. For some p > 0, it is not
easy to find the range in ¢ for the p-hyponormality of S, ;, but we can find a subrange for the
p-hyponormality of S, . For example, taking p = % andt = %, we have A(%, % >0,1ie.,
S is %—hyponormal.

100

Absolute-p-paranormality. We compute W, appearing in (4.2) using instead part of the
result from the computation of A(p, ) above and direct computation from § zl(S ZlS t)PSe.
According to Theorem 4.1(i), we recall that S, is absolute-p-paranormal (0 < p < o0) if
and only if Q;(p, t,s) > 0 for all s > 0, where

8 2t 0 0Y(1 00
Q(pit.s) = (1) (2) g 8 2t #+9 0 0 020
' 00+ 3]0 0 160 0 2 ¢
0O 0 0 16 00 3
1 0 0
-(p+Ds?| 0 8 2t |+pst
0 2t #+9

as in (4.1). By some computations, we have that S 3—2,1[5 2y, or S w resp.] is absolute-2-
paranormal[absolute-1-paranormal, or absolute- % -paranormal, resp.].

p-Paranormality. In what follows, we use for convenience of computation an alternative
form of the relevant matrix obtained using the polar decomposition of S, ;. According to
Theorem 4.3(i), we obtain that S;; is p-paranormal (0 < p < oo) if and only if ¥;(p, ¢, s) > 0
for all s > 0, where

L0 0 pl2 8 2t o oY L0 0 P2
~ |2t 2+9 0 0 | =
Wipts) = |0 8 2 ol (J)r e o | Tlo s 2

2t 12 2t 12

0 2t r*+9 0 0 0 16 0 2t *+9
1o o Y

25| 0 8 21 + 521
0 2t 49

with
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1 0 0 1 0 0 ~1/2
0w wmy | o200 0
U= = 0 8 2t ,
0 ux(1) wuxn(l) 0 2 1t 0 2% £+9
0 un() un()) L0 0 3

where u;;(1) are as in Lemma 4.2(i). By some computations, we have that S u alS 2y, OF
S 20 resp.] is 2-paranormal[ 1-paranormal, or %-paranormal, resp.].

A(p)-class operator. We compute W, appearing in (4.2) using instead part of the result
from the computation of A(p, r) above. According to Theorem 4.4(i), we obtain that S, is
an A(p)-class operator (0 < p < o0) if and only if (W, (p, t))ﬁ — Diag{1,A,} > 0, where

8 20 0 0Y(1 00
1 000
2% 249 0 0 02 0
Wl(”’t)‘géigoomo 02 ¢ |
0O 0 0 16 00 3
8 2t
A'_(zt t2+9)’

as in (4.2) and (2.7). (In the examples which follow, what is required for the Lowner-
Heinz inequality is the positivity of a certain matrix difference. However, using the Nested
Determinant Test the positivity condition arising from the determinant of the full difference
matrix is the most restrictive, as is shown by an easy computation, so we omit the other
conditions.) To consider the case of an A(1)-class operator, if we take any ¢ € [0, 6], where
¢ is the unique positive root of polynomial

det(W,(1,1) — (Diag{1,A})*) = 15876 — 2548¢> — 212¢* — 12,

by the Lowner-Heinz inequality, (W, (1, t))% > Diag{1,A;},1i.e., S, is an A(1)-class operator.
Similarly, for an A(%)—class operator, if we take any ¢ satisfying

2
det [(Wl (%, t)) — (Diag{1, A, })3) >0,

then by the Lowner-Heinz inequality, Wl(%,t)% > Diag{l,A,}, i.e,, S, is an A(%)—class
operator. Also, for an A(2)-class operator, if we take any ¢ satisfying

det(W,(2,1) — (Diag{1,A})*) > 0,

then by the Lowner-Heinz inequality, W;(2, p)% > Diag{l,A}, i.e,, S, is an A(2)-class
operator. For example, S 1 alS w1 1, OF S o 15 resp.] is an A(2)-class operator[A(1)-class

operator, or A(%)—class operator, resp.].

Finally we give some remarks related to the topics on partial normality and weak hy-
ponormality.

Remark 5.1. If we consider other values p € (0, o) instead of p = %, 1,2 in the above
discussion about the operator S, |, we may compare the range of ¢ for the p-hyponormality,
p-paranormality and absolute- p-paranormality of S, to show such classes are distinct. We
leave them to interested readers.
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The notion of n-contractivity has played an important role to detect the gaps between
subnormality and hyponormality. The following remark records some information about the
connection between n-contractivity and absolute-p-paranormality.

ReMARK 5.2. Recall that T € B(H) is 2-contractive if T*>T? = 2T*T +1 > 0 ([1]).
Clearly, if T is absolute-1-paranormal then it is 2-contractive. Our model S;; can show these
properties are distinct. For example, S u is 2-contractive but not absolute-1-paranormal
because the matrix €, is not positive when s = 15.

The following example related to our operator model is interesting in its own right.

RemArk 5.3. If we allow ¢+ = 0 in the model, we may create some examples of 2-
isometries which we believe to be new. Recall that T € B(H) is a 2-isometry if I = 2T*T +
T*2T? = 0, that every isometry is a 2-isometry (including the unilateral shift), and that the
standard non-isometric 2-isometry is the Dirichlet shift Wp, with weights \/E, V3/2,v4/3,

V5/4,.... Observe that the Wp, is a strict expansion, in the sense that |[Wpx|| > ||x]| for all
x # 0 (any 2-isometry is at least a weak expansion). If we use (for example) x = 4 with

3= V2, s = V372, A1 = VAT3, Ao = V375,
bp=10n21), 411 =V1/5 4i,=Vn/(n—1)(n =2),
we produce a 2-isometry which is neither an isometry, strictly expansive, nor a trivial direct

sum of the Dirichlet shift with an isometry.

Appendix - expressions of polynomials
We give the exact expressions of polynomials which appeared in the previous sections.

Al. Polynomials in Theorem 3.2:

bii(1, p) = A (Br = A7y 1y — A1) Br + (A y) + Ay — @Bl an)/(116°),
bia(1, p) = Aa.n e (A ) — @) Br + (Br = A 21 B) [ (716%),
bis(1, p) = tda.ndapde (@il — B/ (y16),
bo(1, p) = (A7 5) — @A) 0y 1) + A (@1 = Ay — Ay )ay
+ (B1 = A ) Al + Aq . Br = Ay = A BN/ (16,
b (1, p) = 1A (A 1 (A ) + Ay 1y = @) = A8 A1)
+ (A1) B1 = Ay = ) + A2y Ae.1)BN/ (162,
b33(1, p) = A0 (((B1 = A8 ) A0 1) + A4 ATy + A yy — @)
+ ((/1(21,2) - “1)/1(22,1) + /1(21,1)(:31 - /l<21,1) - ﬂ%z,l)))ﬁf)/(%(sz),
bi1(n, p) = (A a1y = @ + Bu = Ay e1))BD/ Vs bra(n, p) = A ey (Bh = @)/ Vs
boa(n, p) = ((Bn = Ay yy1)@h + (A ety — @B/ Vs
where § = (47, A% 1) + A8 ) + A5 502

A2. Polynomials in Theorem 4.1:

wii(1, p) = ay (1, p)A3 — (p + DAZs? + pst™*!,



RANK-ONE PERTURBATION OF WEIGHTED SHIFTS

wn(l, p) = an(l, p)aAg ) + Aﬁz WAy = (p+ DAy, + A 1)s” + psP™,
wis(1,p) = PAZ, + By A0y = (p+ D + 23 5)s” + psP™,

w112, p) = A Aty + an(2, PGy, — (L + p)sP (A, 4y + Adyy)) + ps'*?,
wii(n, p) = ayy(n, p)As,,_p, — (L + p)s’a%,_, + ps'™?

wn(n, p) = an(n, ), — (1L + p)s’ A3, + ps'™?

o11(n, p) = 13, n)/l(;nm (1+ p)sPAg, ) + ps'*?

— 2 2 242 2 2 1
wn(n,p) = /1(1,n+1)/l(1p’n+2) +1 /1(;,1“) -(I+ p)sp(t + /l(l,n+l)) + ps P

A3. Polynomials in Theorem 4.3:
en(l, p) = ﬂép an(l, p) - 23/1 + 5% @ia(1, p) = Ban(l, p)gi(1),
ei3(1, p) = Agan(l, p)ga(l),
@n(1, p) = an(1, p)pi(1)* + /1(1 3¢3(1)” + /1(2 Yy ®a(1)? = 2san (1, p) + 57,
231, p) = an(l, p)p1(Dpa(1) + ;75 3(Dps(1) + A2 pa(D)ge(1) — 2saia(1, p),
¢33(1, p) = an(l, P)¢2(1) + 4705 bs(1)7 + 00, ¢6(1)* = 2sax(1, p) + 7,
012, p) = (B )ALy + an (2, PG Ay + A )P = 25(0 ) + A5, + 5%,
eu(n, p) = an(n, P)/l(z,, 1y~ 28 /l(z,n—l) + 5% n(n, p) = an(n, P)/l(l, ) 2S/1(21p y+ s*
en(n,p) = A, ,,+1)¢1(n)2 + /1(1 n+2)¢4(’1)2 — 2say(n, p) + 57,
$12(n, p) = (1,,,+2)¢4(n)¢6(7l) + /1(2 we1y@1(M@2(n) = 2sarn(n, p),

Po(n, p) = A3y, 820 + AT b6(n)* = 25an(n, p) + 5°,
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where
$1(n) = an, (n, g)u”(n) +ap (n g)ulz(n); $2(n) = ar (n, g)un(n) +an (n, g)ulg(n),
¢3(n) = ay, (n, g) w31 (n) + ar (n g) 3>(n),
$4(n) = any (n, g)uﬂ(n) tan (n g)uzz(n); $s(n) = an (n g)u31(n) tan (n, g)ugz(n),
d6n) = anz 1, 2 )us1n) + aza (1,2 ).

Ad4. Polynomials in Theorem 4.4 (f;; form 2, g;; form 1):

F12.p) = (@n@, PG 5 = p2.)py 7Y + (022 = an(2. )G, 5P, ) .
S12(2, p) = —an(2, P)/l(lz)/l(zl)(/ol/(pﬂ) Pé/z(pﬂ))/é“z,

£22.9) = (P22 — a2, )G 2y 7Y + (@2, P)AT, 5 = p2.0)pss" ) o
9112, p) = ((Pra = Ay AT 5,7V + (A5 4205 = Ba0ons” ) /&,
J1a(2. p) = M(zz)/l(zg) 1/(p+1)_~1/(p+1))/§2,

—1/(p+1 Ry
922(2.p) = (A4 (2 3~ PPy P4 B - A @ 3))Pz/z(p+ /.
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where

o1 = (@112, p)Ay ) + AL ATy + (2, p)A o) — £2)/2 (eigenvalue),
P22 = (a1 (2, p)/l(z y+ /1(21 1)/1(1’?2) +an(2, p)/l(zl,z) +&)/2 (eigenvalue),
& = ((@n(2. PGy, + ALy + an(2, p)ag, )
- 4/1(1,2)(‘*22(1 p)/l(l,l)/l?IPZ) + /1(2 1)/1(253)/1?2172)))]/2
(“square root” term — see Note following AS),
Pr1 = (B3 Al + AT + A2 (2 5 ~£)/2
022 = (/l%] 3) (2f’ ot t2/l(22p 5+ /lé 2 (2 5+ £)/2 (e1genvalues)

2 2 217 2 1/2 rec
§2 = ((/l(l 3) (14) + (t + /1(2 2))/l(2 3)) 4/1(l 3) (14)/1(2 » Ao, 3)) (“square root” term),

AS. Polynomials in Theorem 4.4 (f;; form 1, g;; form 2): for n > 3,

fi(n.p) = (o2 — an(n, PG, ), 7 + @i, p)ady, 1y = puopys” ) /én,
fi2(n, p) = —apa(n, p)Aq Ao - 1)(p1/(p+1) 1/(erl))/fn,
P, p) = (a1 (0. Py, = papy 7+ (on = an(n, )G, pns" ) é,
g11(n.p) = Bz = By ) A0 P+ (A2, 220 = P Pas” ),
gia(n, p) = f/l(Zn)/l(z n+1)@ 1/(p+1) ~1/(p+1))/§m
g2(n, p) = (Ay AL 1 = Pu Py " + Bz = Ay A s ) s
where
Pt = (an(n, PG, + an(n, p)AG,, ) — &)/2,
Pn2 = (an(n, p)AG ) + a1 (n. p)AG,,_y) + &:)/2 (eigenvalues),
én = ((ax(n, p)ﬂ%l n Tann, p)ﬂén )’

4/131 ) (1 . l)/l(zz n-nAo, n))l/ 2 (“square root” term — see Note below),
On1 = (/1(1’“1)/1(21’7’“2) + tzzl(zf ot /l%Z,n)/l(ZZP,n+l) - &))/2 (eigenvalue),
Pn2 = (/1(21 ,Hl)/lflp“z) + tle(zfnﬂ) + /1%2 n)ﬂ(zin+l) +&,)/2 (eigenvalue),
& = (Wt ALy + Ay AT )
- 4/1(21’“1)/1(1 n+2)/?'(2 ,1)/1(2 n+1))l/2 (“’square root” term).

Note. To simplify & and &,, we use that ay,(n, pax(n, p) — (an(n. p)* = A7, A7 .
n>2.
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