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Abstract
A special rank-one perturbation S t,n of a weighted shift on a directed tree is constructed.

Partial normality and weak hyponormality (including quasinormality, p-hyponormality, p-
paranormality, absolute-p-paranormality and A(p)-class) of S t,n are characterized.

1. Introduction

1. Introduction
Let  be a separable, infinite dimensional, complex Hilbert space and let B() be the

algebra of all bounded linear operators on . For nonzero vectors u and v in  we shall
write u ⊗ v for the rank-one operator in B() defined by (u ⊗ v) (x) = 〈x, v〉 u, x ∈ . For
X, Y ∈ B(), we denote by [X, Y] = XY − YX the commutator of X and Y . An operator
T ∈ B() is normal if [T ∗, T ] = 0, subnormal if it is (unitarily equivalent to) the restriction
of a normal operator to an invariant subspace, and hyponormal if [T ∗, T ] ≥ 0. An operator
T ∈ B() is said to be p-hyponormal (0 < p < ∞) if (T ∗T )p ≥ (TT ∗)p. In particular, if
p = 1

2 , then T is said to be semi-hyponormal ([26]). And T ∈ B() is ∞-hyponormal if T
is p-hyponormal for all p ∈ (0,∞). According to the Löwner-Heinz inequality ([16],[26]),
every q-hyponormal operator is p-hyponormal for p ≤ q. Recall that an operator T ∈ B()
has the unique polar decomposition T = U |T |, where |T | = (T ∗T )

1
2 and U is a partial

isometry satisfying ker U = ker |T | = ker T and ker U∗ = ker T ∗. An operator T is absolute-
p-paranormal if ‖|T |pT x‖ ≥ ‖T x‖p+1 for all unit vectors x in . Note that every absolute-
q-paranormal operator is absolute-p-paranormal for q ≤ p ([16]). And for each p > 0, an
operator T is p-paranormal if ‖ |T |p U |T |p x‖ ≥ ‖ |T |p x‖2 for all unit vectors x in . Every
q-paranormal operator is p-paranormal for q ≤ p. Note that absolute-1-paranormality and
1-paranormality coincide; we call this property paranormality for simplicity. An operator
T is A(p)-class if (T ∗ |T |2p T )

1
p+1 ≥ |T |2. There are relations among the classes of operators

mentioned above as follows:
• subnormal⇒ p-hyponormal⇒ p-paranormal⇒ absolute-p-paranormal (when 0 <

p < 1);
• subnormal⇒ p-hyponormal⇒ absolute-p-paranormal⇒ p-paranormal (when p >

1);
• A(p)-class⇒ absolute-p-paranormal (when p > 0).

2010 Mathematics Subject Classification. Primary 47B20, 05C20, 47B37; Secondary 47A55, 47A50.
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The operator classes between subnormal and normaloid have been studied for more than
40 years (see [2],[3],[8],[16],[26]). Also, some operator models have been studied to de-
tect those classes. For example, some block matrix operators induced by composition op-
erators on discrete measure spaces were considered to exemplify some classes above (cf.
[6],[7],[22],[23]). In [19] the notion of weighted shifts S λ on directed trees was introduced
and has been developed well for recently for several years. But this operator S λ is not
enough to differentiate the above classes; for example, S λ is p-paranormal if and only if
S λ is absolute-p-paranormal (cf. Section 4). But a rank-one perturbation S t,n of S λ which
will be defined below (Section 2.2) is a good operator model to detect gaps of weak hy-
ponormalities. In fact, the weighted shifts on directed trees have been discussed as a special
model of weighted adjacency operators on directed graphs which generalizes Fujii-Sasaoka-
Watatani’s operator models; see [9],[12],[13],[14],[15] for related results. Note that the
rank-one perturbations of a bounded (unbounded) operator can be applied to several related
areas in mathematical physics as well as operator theory ([5],[10],[11],[21],[24]). In this
paper we characterize the quasinormality, p-hyponormality, p-paranormality, absolute-p-
paranormality and A(p)-class of operators S t,n which exemplify some operator gaps between
normal and nomaloid operators.

The paper consists of five sections. In Section 2, we assemble some useful observations
and recall some terminology and notation concerning weighted shifts on directed trees. And
also we construct the rank-one perturbation S t,n of the weighted shift S λ on a certain directed
tree 2,κ. In Section 3, we characterize p-hyponormality of S t,n and discuss some related
remarks. In Section 4, we also characterize absolute-p-paranormality, p-paranormality and
A(p)-class property of S t,n. In Section 5, we consider some related examples.

Throughout this paper we write C[R, R+, Z+, N, resp.] for the set of complex numbers
[real numbers, positive real numbers, nonnegative integers, positive integers, resp.]. Some
of the calculations in this paper were obtained through computer experiments using the
software tool Mathematica [25].

2. Preliminaries and notations

2. Preliminaries and notations2.1. Some basic observations.
2.1. Some basic observations. In what follows we will frequently have use for certain

elementary observations which we record here and use with little or no further comment.
First, if a, b and p are positive real numbers, then abp − (p + 1)spa + psp+1 ≥ 0 for all s ≥ 0
if and only if b ≥ a. Second, it is the standard Nested Determinant test ([4, p.213]) that
a real symmetric matrix M is non-negative if the determinants of its principal submatrices
are positive and det(M)≥ 0. For a two-by-two real symmetric matrix A, A is positive semi-
definite if and only if both its diagonal entries are non-negative and det(A)≥ 0.

Third, we will frequently have occasion to find powers q of a real symmetric matrix(
a b
b c

)
, which we do as usual by transforming to a diagonal matrix of eigenvalues using

the associated eigenvectors. The eigenvalues are

1
2

(
(a + c) ∓

√
(a + c)2 − 4(ac − b2)

)
.

We will frequently call these names such as ρ1 and ρ2, with associated eigenvectors e1 and e2,
and abbreviate the square root term by some name such as γ. If we express the eigenvectors



Rank-One Perturbation ofWeighted Shifts 441

as e1 = ((a − ρ2)/b, 1)T and e2 = ((a − ρ1)/b, 1)T , the resulting expression for Aq, which we
call form 1, is ⎛⎜⎜⎜⎜⎜⎜⎝

(ρ2−a)ρq
1−(ρ1−a)ρq

2
γ

b(ρq
2−ρq

1)
γ

b(ρq
2−ρq

1)
γ

(ρ2−a)ρq
2−(ρ1−a)ρq

1
γ

⎞⎟⎟⎟⎟⎟⎟⎠ .
If instead we express the eigenvectors as e1 = ((ρ1 − c)/b, 1)T and e2 = ((ρ2 − c)/b, 1)T , the
resulting expression for Aq, which we call form 2, is⎛⎜⎜⎜⎜⎜⎜⎝

(ρ2−c)ρq
2−(ρ1−c)ρq

1
γ

b(ρq
2−ρq

1)
γ

b(ρq
2−ρq

1)
γ

(ρ2−c)ρq
1−(ρ1−c)ρq

2
γ

⎞⎟⎟⎟⎟⎟⎟⎠ .
When we apply this process we will indicate the form, the eigenvalues, and the square root
term for the reader’s convenience.

2.2. Directed trees.
2.2. Directed trees. In this section we recall some definitions and terminology in graph

theory which will be used in this paper ([19],[20]). First of all, we look at some basic notions
of graph theory. A pair  = (V, E) is a directed graph if V is a nonempty set and E is a subset
of V × V \ {(v, v) | v ∈ V}. We set

Ẽ = {{u, v} ⊆ V | (u, v) ∈ E or (v, u) ∈ E}.
An element of V is called a vertex of , a member of E is called an edge of , and a member
of Ẽ is called an undirected edge. A directed graph  is said to be connected if for any two
distinct vertices u and v of , there exists a finite sequence v1, · · · , vn of vertices of (n ≥ 2)
such that u = v1, {v j, v j+1} ∈ Ẽ for all j = 1, · · · , n − 1, and vn = v. Such a sequence will be
called an undirected path joining u and v. For u ∈ V , put

Chi(u) = {v ∈ V | (u, v) ∈ E}.
An element of Chi(u) is called a child of u. If, for a given vertex u ∈ V , there exists a unique
vertex v ∈ V such that (v, u) ∈ E, then we say that u has a parent v and write par(u) for v. A
vertex v of  is called a root of , or briefly v ∈ Root(), if there is no vertex u of  such that
(u, v) is an edge of . If Root() is a one-element set, then its unique element is denoted by
root(), or simply by root if this causes no ambiguity. We write V◦ = V\Root(). A finite
sequence {u j}nj=1 (n ≥ 2) of distinct vertices is said to be a circuit of  if (u j, u j+1) ∈ E for all
j = 1, · · · , n − 1, and (un, u1) ∈ E. A directed graph  is a directed tree if  is connected,
has no circuits and each vertex in v ∈ V◦ has a parent. From now on,  = (V, E) is assumed
to be a directed tree. Note that �2(V) is the Hilbert space of all square summable complex
functions on V with the standard inner product

〈 f , g〉 =
∑
u∈V

f (u)g(u), f , g ∈ �2(V).

For u ∈ V , we define eu ∈ �2(V) by

eu(v) =
{

1 if u = v,
0 otherwise.

Then the set {eu}u∈V is an orthonormal basis of �2(V). For λ = {λv}v∈V◦ ⊂ C, we define the
operator S λ on �2(V) with the domain D(S λ) such that
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D(S λ) = { f ∈ �2(V) :
∑
u∈V

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
v∈Chi(u)

|λv|2
⎞⎟⎟⎟⎟⎟⎟⎠ | f (u)|2 < ∞},

S λ f = Λ f , f ∈ D(S λ),

where Λ is the mapping defined on functions f : V → C by

(Λ f )(v) =
{
λv · f (par(v)) if v ∈ V◦,
0 if v = root.

In this case the operator S λ is called a weighted shift on the directed tree  with weights
{λv}v∈V◦ . In particular, if S λ ∈ B(�2(V)), then

S λeu =
∑

v∈Chi(u)

λvev

(cf. [19, Prop. 3.1.3]) and

S ∗λeu =

{
λuepar(u) if u ∈ V◦,
0 if u is root;

these formulas are used frequently in this paper (cf. [19, Prop. 3.4.1]). Recall that S λ

is bounded if and only if supu∈V
∑
v∈Chi(u) |λv|2 < ∞. In this paper we only consider the

operators S λ in B(�2(V)). We deal with weighted shifts associated to the following models
and this model is closely related to the subnormality of weighted shifts on directed trees (cf.
[19]).

Definition 2.1 ([19]). Given η, κ ∈ Z+ ∪ {∞} with η ≥ 2, we define the directed tree
Tη,κ = (Vη,κ, Eη,κ) by

Vη,κ = {−k : k ∈ Jκ} ∪ {0} ∪ {(i, j) : i ∈ Jη, j ∈ N},
Eη,κ = Eκ ∪ {(0, (i, 1)) : i ∈ Jη} ∪ {((i, j), (i, j + 1)) : i ∈ Jη, j ∈ N},

where Eκ = {(−k,−k+ 1) : k ∈ Jκ} and Jι = {k ∈ N : k ≤ ι} for ι ∈ Z+ ∪ {∞}. The the directed
tree η,κ is called an (η, κ)-type directed tree.

If κ < ∞, then the directed tree η,κ has a root and root(η,κ) = −κ. In turn, if κ = ∞, then
the directed tree η,∞ is rootless. In the case of κ < ∞, the (η, κ)-type directed tree can be
illustrated as in Figure 2.1 below.

Fig.2.1
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2.3. Basic construction.
2.3. Basic construction. Let S λ be a weighted shift on the directed tree 2,κ with weights

{λv}v∈V◦2,κ consisting of positive real numbers. Let {eu}u∈V2,κ be the usual orthonormal basis of
�2(V2,κ). For a fixed n ∈ N and parameter t ∈ R, we consider a rank-one perturbation of S λ

on the directed tree 2,κ

(2.1) S t,n := S λ + te(2,n) ⊗ e(1,n).

Unless t = 0, S t,n is not a weighted shift on a directed tree. A special case of S t,n is S λ(2,n),n

which is a weighted adjacency operator in the sense of [9] on the directed graph below, al-
though we do not take this point of view. But if t � 0 and t � λ(2,n) the rank-one perturbation
S t,n is more general than either type. We consider an ordered orthonormal basis of �2(V2,κ)

Fig.2.2

by taking the following ordering of the standard basis:

(2.2) e−κ, e−κ+1, · · · , e0, e(1,1), e(2,1), e(1,2), e(2,2), e(1,3), e(2,3), · · · ,
and consider throughout this paper the matrices corresponding to operators S t,n relative to
the ordered orthonormal basis in (2.2).

First, we begin with the following computational lemma.

Lemma 2.1. Let S t,n be as in (2.1). Suppose that p ∈ (0,∞). If t � 0, then the following
assertions hold:

(i) (S ∗t,1S t,1)p = Diag{λ2p
−κ+1, · · · , λ2p

−1, λ
2p
0 , A

p
1 , λ

2p
(2,2), λ

2p
(1,3), λ

2p
(2,3), λ

2p
(1,4), · · · },

where Ap
1 is unitarily equivalent to a 2 × 2 matrix (ai j(1, p))1≤i, j≤2 with

a11(1, p) = {(β1 − λ2
(1,1) − λ2

(2,1))α
p
1 + (λ2

(1,1) + λ
2
(2,1) − α1)βp

1}/γ1,(2.3a)

a12(1, p) = a21(1, p) = tλ(2,1)(β
p
1 − αp

1)/γ1,(2.3b)

a22(1, p) = {(λ2
(1,1) + λ

2
(2,1) − α1)αp

1 + (β1 − λ2
(1,1) − λ2

(2,1))β
p
1}/γ1,(2.3c)

α1 = (t2 + λ2
(1,1) + λ

2
(2,1) + λ

2
(1,2) − γ1)/2,(2.3d)

β1 = (t2 + λ2
(1,1) + λ

2
(2,1) + λ

2
(1,2) + γ1)/2,(2.3e)

γ1 = [(t2 + λ2
(1,1) + λ

2
(1,2) + λ

2
(2,1))

2 − 4{λ2
(1,2)λ

2
(2,1) + λ

2
(1,1)(t

2 + λ2
(1,2))}]1/2,(2.3f)

(ii) for n ≥ 2,

(S ∗t,nS t,n)p = Diag{λ2p
−κ+1, · · · , λ2p

0 ,(λ
2
(1,1) + λ

2
(2,1))

p, λ
2p
(1,2), λ

2p
(2,2), λ

2p
(1,3), · · ·

· · · ,λ2p
(1,n), A

p
n , λ

2p
(2,n+1), λ

2p
(1,n+2), · · · },

where Ap
n is unitarily equivalent to a 2 × 2 matrix (ai j(n, p))1≤i, j≤2 with

a11(n, p) = {(βn − λ2
(2,n))α

p
n + (λ2

(2,n) − αn)βp
n}/γn,(2.4a)

a12(n, p) = a21(n, p) = tλ(2,n)(β
p
n − αp

n)/γn,(2.4b)



444 G.R. Exner, I.B. Jung, E.Y. Lee andM. Seo

a22(n, p) = {(λ2
(2,n) − αn)αp

n + (βn − λ2
(2,n))β

p
n}/γn,(2.4c)

αn = (t2 + λ2
(1,n+1) + λ

2
(2,n) − γn)/2,(2.4d)

βn = (t2 + λ2
(1,n+1) + λ

2
(2,n) + γn)/2,(2.4e)

γn = [(t2 + λ2
(1,n+1) + λ

2
(2,n))

2 − 4λ2
(1,n+1)λ

2
(2,n)]

1/2.(2.4f)

Proof. By simple computations, we have that

(2.5) S ∗t,1S t,1 = Diag{λ2
−κ+1, · · · , λ2

−1, λ
2
0, A1, λ

2
(2,2), λ

2
(1,3), λ

2
(2,3), λ

2
(1,4), · · · }

and for n ≥ 2,

S ∗t,nS t,n = Diag{λ2
−κ+1, · · · , λ2

0,λ
2
(1,1) + λ

2
(2,1), λ

2
(1,2), λ

2
(2,2), λ

2
(1,3), · · ·

· · · ,λ2
(1,n), An, λ

2
(2,n+1)λ

2
(1,n+2), · · · },(2.6)

with

(2.7) A1 =

⎛⎜⎜⎜⎜⎝ λ2
(1,1) + λ

2
(2,1) tλ(2,1)

tλ(2,1) t2 + λ2
(1,2)

⎞⎟⎟⎟⎟⎠
and

(2.8) An =

⎛⎜⎜⎜⎜⎝ λ2
(2,n) tλ(2,n)

tλ(2,n) t2 + λ2
(1,n+1)

⎞⎟⎟⎟⎟⎠ .
Since An is diagonalizable, we obtain that for n ∈ N,

Dn := Diag{αn, βn} = P−1
n AnPn,

where αn, βn and γn are as in (2.3d-f) and (2.4d-f),

P1 =

⎛⎜⎜⎜⎜⎜⎜⎝
λ2

(1,1)+λ
2
(2,1)−β1

tλ(2,1)

λ2
(1,1)+λ

2
(2,1)−α1

tλ(2,1)

1 1

⎞⎟⎟⎟⎟⎟⎟⎠
and

Pn =

⎛⎜⎜⎜⎜⎜⎜⎝
λ2

(2,n)−βn

tλ(2,n)

λ2
(2,n)−αn

tλ(2,n)

1 1

⎞⎟⎟⎟⎟⎟⎟⎠ (n ≥ 2).

Clearly, αn and βn are eigenvalues of An, and Pn is a nonsingular matrix consisting of the
associated eigenvectors of An, for each n ∈ N. By calculating the matrix product PnDp

n P−1
n ,

we obtain the entries of Ap
n as in (2.3) and (2.4), n ∈ N. Observe that this is the construction

of “form 1”, with eigenvalues αn, βn and with “square root term” γn. �

Note that, in Lemma 2.1, if t = 0 then

(S ∗0,nS 0,n)p = Diag{λ2p
−κ+1, · · · , λ2p

0 , (λ
2
(1,1) + λ

2
(2,1))

p, λ
2p
(1,2), λ

2p
(2,2), λ

2p
(1,3), · · · },

which will be used in the later sections.
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3. Partial normalities

3. Partial normalities
We discuss the p-hyponormality, quasinormality and normality of S t,n in this section. We

begin this section with the p-hyponormality of S 0,n as follows.

Proposition 3.1 ([19]). If t = 0, then S 0,n(= S λ) is p-hyponormal if and only if the
following inequalities hold:

(i) λm+1 ≥ λm, −κ + 1 ≤ m ≤ −1,
(ii) λ2

(1,1) + λ
2
(2,1) ≥ λ2

0,

(iii) λ2p
(1,2)λ

2p
(2,2) ≥ (λ2p

(1,2)λ
2
(2,1) + λ

2
(1,1)λ

2p
(2,2))(λ

2
(1,1) + λ

2
(2,1))

p−1,
(iv) λ(i, j+2) ≥ λ(i, j+1), for i = 1, 2, j ∈ N.

We now discuss the general case below.

Theorem 3.2. Let S t,n be as in (2.1) and let the ai j’s be as in Lemma 2.1. Suppose that
p ∈ (0,∞) and t ∈ R\{0}. Then the following assertions hold.

(i) S t,1 is p-hyponormal if and only if the following conditions are satisfied:
(i-a) it holds that

λm+1 ≥ λm, − κ + 1 ≤ m ≤ −1,(3.1)

λ(1,k+3) ≥ λ(1,k+2), λ(2,k+2) ≥ λ(2,k+1), k ∈ N,(3.2)

(i-b) the following matrix is positive:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11(1, p) − λ2p

0 a12(1, p) 0 0
a12(1, p) a22(1, p) − b11(1, p) −b12(1, p) −b13(1, p)

0 −b12(1, p) λ
2p
(2,2) − b22(1, p) −b23(1, p)

0 −b13(1, p) −b23(1, p) λ
2p
(1,3) − b33(1, p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where bi j’s are as in Appendix A1.
(ii) S t,2 is p-hyponormal if and only if the following conditions are satisfied:

(ii-a) the inequalities in (3.1) hold,
(ii-b) it holds that

λ2
(1,1) + λ

2
(2,1) ≥ λ2

0,(3.3)

λ(1,k+4) ≥λ(1,k+3), λ(2,k+3) ≥ λ(2,k+2), k ∈ N,(3.4)

(ii-c) the following matrix is positive:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ

2p
(1,2) − λ2

(1,1)(λ
2
(1,1) + λ

2
(2,1))

−1+p −λ(1,1)λ(2,1)(λ2
(1,1) + λ

2
(2,1))

−1+p 0
−λ(1,1)λ(2,1)(λ2

(1,1) + λ
2
(2,1))

−1+p a11(2, p) − λ2
(2,1)(λ

2
(1,1) + λ

2
(2,1))

−1+p a12(2, p)
0 a12(2, p) a22(2, p) − λ2p

(1,2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(ii-d) it holds that

λ
2p
(2,3) ≥ b11(2, p), λ2p

(1,4) ≥ b22(2, p),

(λ2p
(2,3) − b11(2, p))(λ2p

(1,4) − b22(2, p)) ≥ b12(2, p)2,

where bi j’s are as in Appendix A1.
(iii) For n ≥ 3, S t,n is p-hyponormal if and only if the following conditions are satisfied:
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(iii-a) the inequalities in (3.1) and (3.3) hold,
(iii-b) it holds that

λ(1,k+1) ≥ λ(1,k), 2 ≤ k ≤ n − 1; k ≥ n + 2,(3.5)

λ(2,l+1) ≥ λ(2,l), 2 ≤ l ≤ n − 2; l ≥ n + 1,(3.6)

(iii-c) λ2p
(1,2)λ

2p
(2,2) ≥ (λ2p

(1,2)λ
2
(2,1) + λ

2
(1,1)λ

2p
(2,2))(λ

2
(1,1) + λ

2
(2,1))

−1+p,
(iii-d) it holds that

a11(n, p) ≥ λ2p
(2,n−1), a22(n, p) ≥ λ2p

(1,n),

(a11(n, p) − λ2p
(2,n−1))(a22(n, p) − λ2p

(1,n)) ≥ a12(n, p)2,

(iii-e) it holds that

λ
2p
(2,n+1) ≥ b11(n, p), λ2p

(1,n+2) ≥ b22(n, p),

(λ2p
(2,n+1) − b11(n, p))(λ2p

(1,n+2) − b22(n, p)) ≥ b12(n, p)2,

where bi j’s are as in Appendix A1.

Proof. By simple computations, we have that

S t,1S ∗t,1 = Diag{0, λ2
−κ+1, · · · , λ2

0, B1, λ
2
(2,2), λ

2
(1,3), λ

2
(2,3), λ

2
(1,4), · · · }

and for n ≥ 2,

S t,nS ∗t,n = Diag{0, λ2
−κ+1, · · · ,λ2

0, B0, λ
2
(1,2), λ

2
(2,2), λ

2
(1,3), · · ·

· · · , λ2
(1,n), Bn, λ

2
(2,n+1)λ

2
(1,n+2), · · · }

with

B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ2

(1,1) λ(1,1)λ(2,1) 0
λ(1,1)λ(2,1) t2 + λ2

(2,1) tλ(1,2)

0 tλ(1,2) λ2
(1,2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

B0 =

⎛⎜⎜⎜⎜⎝ λ2
(1,1) λ(1,1)λ(2,1)

λ(1,1)λ(2,1) λ2
(2,1)

⎞⎟⎟⎟⎟⎠ and Bn =

⎛⎜⎜⎜⎜⎝ t2 + λ2
(2,n) tλ(1,n+1)

tλ(1,n+1) λ2
(1,n+1)

⎞⎟⎟⎟⎟⎠ .
Then we can obtain the entries of Bp

1 , Bp
0 and Bp

n by using Diag{0, α1, β1} = Q−1
1 B1Q1,

Diag{0, λ2
(1,1) + λ

2
(2,1)} = Q−1

0 B0Q0 and Diag{αn, βn} = Q−1
n BnQn, where

Q1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ(1,2)λ(2,1)

tλ(1,1)

λ(1,1)(λ2
(1,1)+λ

2
(2,1)−β1)

tλ(2,1)λ(1,2)

λ(1,1)(λ2
(1,1)+λ

2
(2,1)−α1)

tλ(2,1)λ(1,2)

−λ(1,2)

t
α1−λ2

(1,2)

tλ(1,2)

β1−λ2
(1,2)

tλ(1,2)

1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Q0 =

⎛⎜⎜⎜⎜⎜⎝ −λ(2,1)

λ(1,1)

λ(1,1)

λ(2,1)

1 1

⎞⎟⎟⎟⎟⎟⎠ and Qn =

⎛⎜⎜⎜⎜⎜⎜⎝
αn−λ2

(1,n+1)

tλ(1,n+1)

βn−λ2
(1,n+1)

tλ(1,n+1)

1 1

⎞⎟⎟⎟⎟⎟⎟⎠
with the αn and βn as in Lemma 2.1, n ∈ N. Set Bp

1 := (bi j(1, p))1≤i, j≤3 and Bp
n :=

(bi j(n, p))1≤i, j≤2, where the bi j’s are as in Appendix A1. Note that Bp
1 and Bp

n are symmetric,
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so bi j = b ji. And also we have

Bp
0 =

⎛⎜⎜⎜⎜⎝ λ2
(1,1)(λ

2
(1,1) + λ

2
(2,1))

−1+p λ(1,1)λ(2,1)(λ2
(1,1) + λ

2
(2,1))

−1+p

λ(1,1)λ(2,1)(λ2
(1,1) + λ

2
(2,1))

−1+p λ2
(2,1)(λ

2
(1,1) + λ

2
(2,1))

−1+p

⎞⎟⎟⎟⎟⎠ .
Since (S t,1S ∗t,1)p = Diag{0, λ2p

−κ+1, · · · , λ2p
0 , B

p
1 , λ

2p
(2,2), λ

2p
(1,3), λ

2p
(2,3), λ

2p
(1,4), · · · }, using Lemma

2.1 (i), (i) follows.
Second, using Lemma 2.1 (ii) with n = 2, the statements of (ii-a), (ii-b) and (ii-c) are

easily checked from (S ∗t,2S t,2)p − (S t,2S ∗t,2)p ≥ 0. We can see that the statement (ii-d) is a
condition equivalent to Diag{λ2p

(2,3), λ
2p
(1,4)} − Bp

2 ≥ 0.
Finally, we consider (S ∗t,nS t,n)p − (S t,nS ∗t,n)p ≥ 0 for n ≥ 3. Using Lemma 2.1 (ii), we

can see (iii-a) and (iii-b) easily. And we know that the positivity of Diag{λ2p
(1,2), λ

2p
(2,2)} − Bp

0 is
equivalent to the following conditions:

λ
2p
(1,2) ≥ λ2

(1,1)(λ
2
(1,1) + λ

2
(2,1))

−1+p,

λ
2p
(2,2) ≥ λ2

(2,1)(λ
2
(1,1) + λ

2
(2,1))

−1+p,

λ
2p
(1,2)λ

2p
(2,2) ≥ (λ2p

(1,2)λ
2
(2,1) + λ

2
(1,1)λ

2p
(2,2))(λ

2
(1,1) + λ

2
(2,1))

−1+p.

Since we only consider the weights {λv}v∈V◦2,κ of positive real numbers, in the presence of the
third condition the first two inequalities above are automatic. Also, the conditions (iii-d) and
(iii-e) are equivalent to the positivities of Ap

n−Diag{λ2p
(2,n−1), λ

2p
(1,n)} and Diag{λ2p

(2,n+1), λ
2p
(1,n+2)}−

Bp
n , respectively. Hence the proof is complete. �

Remark 3.3. It is obvious that
∥∥∥S t,n − S 0,n

∥∥∥ → 0 as t → 0. Also it is worth mentioning
that if we let t approach 0 in the conditions equivalent to p-hyponormality of S t,n in Theorem
3.2, then such conditions obtained by some direct computations coincide exactly with the
conditions equivalent to p-hyponormality of S 0,n in Proposition 3.1.

Proposition 3.3. Let S 0,n = S λ be as usual. Then S 0,n is∞-hyponormal if and only if the
following conditions hold:

(i) λm+1 ≥ λm, −κ + 1 ≤ m ≤ −1,
(ii) λ(i, j+2) ≥ λ(i, j+1), for i = 1, 2, j ∈ N,
(iii) min{λ2

(1,2), λ
2
(2,2)} ≥ λ2

(1,1) + λ
2
(2,1) ≥ λ2

0.

Proof. Since (i), (ii) and (iv) in Proposition 3.1 are independent of p, we will show that
Proposition 3.1(iii) is equivalent to the condition min{λ2

(1,2), λ
2
(2,2)} ≥ λ2

(1,1) + λ
2
(2,1). Suppose

Proposition 3.1(iii) holds for all p > 0, i.e.,

(3.7)
(
λ2

(2,1)

λ
2p
(2,2)

+
λ2

(1,1)

λ
2p
(1,2)

) (
λ2

(1,1) + λ
2
(2,1)

)p−1 ≤ 1, p > 0.

Without loss of generality, we assume that λ2
(1,1) + λ

2
(2,1) = 1. To see the first inequality of

(iii), suppose min{λ2
(1,2), λ

2
(2,2)} < 1. Say λ(1,2) < 1. Then

λ2
(2,1)

λ
2p
(2,2)

+
λ2

(1,1)

λ
2p
(1,2)

→ ∞ as p→ ∞,
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which contradicts (3.7). Thus min{λ2
(1,2), λ

2
(2,2)} ≥ λ2

(1,1) + λ
2
(2,1). Conversely, we suppose the

first inequality of Proposition 3.3(iii) holds, i.e., λ2
(i,2) ≥ λ2

(1,1)+λ
2
(2,1) (i = 1, 2). Then, for any

p > 0, we have(
λ2

(2,1)

λ
2p
(2,2)

+
λ2

(1,1)

λ
2p
(1,2)

) (
λ2

(1,1) + λ
2
(2,1)

)p−1

=

(
λ2

(2,1)

(
λ2

(1,1) + λ
2
(2,1)

λ2
(2,2)

)p

+ λ2
(1,1)

(
λ2

(1,1) + λ
2
(2,1)

λ2
(1,2)

)p) (
λ2

(1,1) + λ
2
(2,1)

)−1

≤
(
λ2

(2,1) + λ
2
(1,1)

) (
λ2

(1,1) + λ
2
(2,1)

)−1
= 1.

So Proposition 3.1(iii) holds for all p > 0. �

Remark 3.4 (Normality). Note that S t,n can not be normal because weights are strictly
positive. However, if we consider a weight sequence {λv}v∈V◦2,κ in the real numbers, we can
obtain that S t,n is normal if and only if the following conditions hold:

(i) if κ < ∞, then t = 0 = λv, v ∈ V◦2,κ,
(ii) if κ = ∞, then one of the following conditions holds:

(ii-a) t = λ(1, j) = 0, λ0 = λ− j = λ(2, j), j ∈ N,
(ii-b) t = λ(2, j) = 0, λ0 = λ− j = λ(1, j), j ∈ N,
(ii-c) t = λ0 = λ− j = λ(1,k) = λ(2, j+n), λ(1, j+n) = λ(2,k) = 0, 1 ≤ k ≤ n, j ∈ N.

Remark 3.5 (Quasinormality). Let S t,n be as usual. If S t,n is quasinormal, by a direct
computation, t = 0, and so S t,n must be S 0,n. And S 0,n is quasinormal if and only if

λ2
(1,1) + λ

2
(2,1) = λ

2
v , v ∈ V◦2,κ\{(1, 1), (2, 1)}.

Of course, if we consider a weight sequence {λv}v∈V◦2,κ in the real numbers, we can obtain
some equivalent conditions for quasinormality of S t,n. We leave the detailed conditions to
the interested readers.

4. Weak hyponormalities

4. Weak hyponormalities
There are several kinds of partial normalities that are weaker than p-hyponormality, for

example, p-paranormality, absolute-p-paranormality, A(p)-class (cf.[16],[18]). In particular,
S 0,n = S λ is p-paranormal if and only if S λ is absolute-p-paranormal (if and only if S λ is
A(p)-class). By some direct computations, S λ is p-paranormal if and only if the following
conditions hold:

(i) λm+1 ≥ λm, −κ + 1 ≤ m ≤ −1,
(ii) λ2

(1,1) + λ
2
(2,1) ≥ λ2

0,

(iii) λ2
(1,1)λ

2p
(1,2) + λ

2
(2,1)λ

2p
(2,2) ≥ (λ2

(1,1) + λ
2
(2,1))

p+1,

(iv) λ(i, j+2) ≥ λ(i, j+1), for i = 1, 2, j ∈ N.
It is not known in general for p ∈ (0,∞)\{1} whether p-paranormality is different from

absolute-p-paranormality. It is worth discussing p-paranormality and absolute-p-
paranormality of S t,n.
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4.1. Absolute-p-paranormality.
4.1. Absolute-p-paranormality. Recall from [16, p.174] that T ∈ B() is absolute-p-

paranormal if and only if T ∗(T ∗T )pT − (p + 1)T ∗T sp + psp+1I ≥ 0 for all s ∈ R+.
Theorem 4.1. Let S t,n be as in (2.1) and let the ai j’s be as in Lemma 2.1. Suppose

p ∈ (0,∞) and t ∈ R\{0}. Then
(i) S t,1 is absolute-p-paranormal if and only if the following conditions hold:

(i-a) the inequalities in (3.1) and (3.2) hold,
(i-b) for all s ∈ R+, Ω1 := Ω1(p, t, s) ≥ 0, where

(4.1) Ω1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ω11(1, p) λ0λ(1,1)a12(1, p) 0

λ0λ(1,1)a12(1, p) ω22(1, p) tλ(2,1)(λ
2p
(2,2) − (p + 1)sp)

0 tλ(2,1)(λ
2p
(2,2) − (p + 1)sp) ω33(1, p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with ωii’s as in Appendix A2.

(ii) S t,2 is absolute-p-paranormal if and only if the following conditions hold:
(ii-a) the inequalities in (3.1), (3.3) and (3.4) hold,
(ii-b) it holds that

λ2
(1,1)λ

2p
(1,2) + a11(2, p)λ2

(2,1) ≥ (λ2
(1,1) + λ

2
(2,1))

1+p, a22(2, p) ≥ λ2p
(1,2),

ω11(2, p)ω22(2, p) ≥ a12(2, p)2λ2
(1,2)λ

2
(2,1), s ∈ R+,

(ii-c) it holds that

λ(2,3) ≥ λ(2,2), λ
2
(1,3)λ

2p
(1,4) + t2λ

2p
(2,3) ≥ (t2 + λ2

(1,3))
1+p,

ω̃11(2, p)ω̃22(2, p) ≥ t2λ2
(2,2){λ2p

(2,3) − (1 + p)sp}2, s ∈ R+,
where ωii’s and ω̃ii’s are as in Appendix A2.

(iii) For n ≥ 3, S t,n is absolute-p-paranormal if and only if the following conditions hold:
(iii-a) the inequalities in (3.1), (3.3), (3.5) and (3.6) hold,
(iii-b) it holds that

λ2
(1,1)λ

2p
(1,2) + λ

2
(2,1)λ

2p
(2,2) ≥ (λ2

(1,1) + λ
2
(2,1))

p+1,

(iii-c) it holds that

a11(n, p) ≥ λ2p
(2,n−1), a22(n, p) ≥ λ2p

(1,n),

ω11(n, p)ω22(n, p) ≥ a12(n, p)2λ2
(1,n)λ

2
(2,n−1), s ∈ R+,

(iii-d) it holds that

λ(2,n+1) ≥ λ(2,n), λ
2
(1,n+1)λ

2p
(1,n+2) + t2λ

2p
(2,n+1) ≥ (t2 + λ2

(1,n+1))
1+p,

ω̃11(n, p)ω̃22(n, p) ≥ t2λ2
(2,n){λ2p

(2,n+1) − (1 + p)sp}2, s ∈ R+,
where ωii’s and ω̃ii’s are as in Appendix A2.

Proof. By Lemma 2.1(i), it is easy to compute that

S ∗t,1(S ∗t,1S t,1)pS t,1 = Diag{λ2
−κ+1λ

2p
−κ+2, · · · , λ2

−1λ
2p
0 ,W1, λ

2
(2,2)λ

2p
(2,3), λ

2
(1,3)λ

2p
(1,4), · · · },

where
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(4.2) W1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11(1, p)λ2

0 λ0λ(1,1)a12(1, p) 0
λ0λ(1,1)a12(1, p) a22(1, p)λ2

(1,1) + λ
2
(2,1)λ

2p
(2,2) tλ(2,1)λ

2p
(2,2)

0 tλ(2,1)λ
2p
(2,2) λ2

(1,2)λ
2p
(1,3) + t2λ

2p
(2,2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Using (2.5), we can obtain that

S ∗t,1(S ∗t,1S t,1)pS t,1 − (p + 1)S ∗t,1S t,1sp + psp+1I

= Diag{θ−κ+1, · · · , θ−1,Ω1, θ(2,2), θ(1,3), · · · },
where

θ−m :=λ2
−mλ

2p
−m+1 − (p + 1)λ2

−msp + psp+1,(4.3)

θ(i, j) :=λ2
(i, j)λ

2p
(i, j+1) − (p + 1)λ2

(i, j)s
p + psp+1(4.4)

with κ − 1 ≥ m ≥ 1, i = 1; j ≥ 3, i = 2; j ≥ 2 and Ω1 is as in (4.1). So, for κ − 1 ≥ m ≥ 1,
k ∈ N, θ−m, θ(1,k+2) and θ(2,k+1) are nonnegative for all s > 0 if and only if

λ−m+1 ≥ λ−m, λ(1,k+3) ≥ λ(1,k+2) and λ(2,k+2) ≥ λ(2,k+1).

Hence (i) is proved.
Next, by applying Lemma 2.1(ii) with n = 2, we can also compute that

S ∗t,2(S ∗t,2S t,2)pS t,2 = Diag{λ2
−κ+1λ

2p
−κ+2, · · · , λ2

−1λ
2p
0 , λ

2
0(λ2

(1,1) + λ
2
(2,1))

p,

W2, W̃2, λ
2
(2,3)λ

2p
(2,4), λ

2
(1,4)λ

2p
(1,5), · · · },

where

(4.5) W2 =

⎛⎜⎜⎜⎜⎝ a11(2, p)λ2
(2,1) + λ

2
(1,1)λ

2p
(1,2) λ(1,2)λ(2,1)a12(2, p)

λ(1,2)λ(2,1)a12(2, p) a22(2, p)λ2
(1,2)

⎞⎟⎟⎟⎟⎠
and

(4.6) W̃2 =

⎛⎜⎜⎜⎜⎜⎝ λ2
(2,2)λ

2p
(2,3) tλ(2,2)λ

2p
(2,3)

tλ(2,2)λ
2p
(2,3) λ2

(1,3)λ
2p
(1,4) + t2λ

2p
(2,3)

⎞⎟⎟⎟⎟⎟⎠ .
Using (2.6) with n = 2,

S ∗t,2(S ∗t,2S t,2)pS t,2 − (p + 1)S ∗t,2S t,2sp + psp+1I

= Diag{θ−κ+1, · · · , θ−1, θ0,Ω2, Ω̃2, θ(2,3), θ(1,4), · · · },
where θ−m, κ − 1 ≥ m ≥ 1, θ(i, j), i = 1, j ≥ 4; i = 2, j ≥ 3 are as in (4.3) and (4.4),

(4.7) θ0 := λ2
0(λ2

(1,1) + λ
2
(2,1))

p − (p + 1)λ2
0sp + psp+1,

Ω2 =

(
ω11(2, p) λ(1,2)λ(2,1)a12(2, p)

λ(1,2)λ(2,1)a12(2, p) ω22(2, p)

)

and

Ω̃2 =

⎛⎜⎜⎜⎜⎜⎝ ω̃11(2, p) tλ(2,2)(λ
2p
(2,3) − (1 + p)sp)

tλ(2,2)(λ
2p
(2,3) − (1 + p)sp) ω̃22(2, p)

⎞⎟⎟⎟⎟⎟⎠
with ωii’s and ω̃ii’s as in Appendix A2. It follows that the positivities of Ω2 and Ω̃2 are
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equivalent to (ii-b) and (ii-c), respectively. And (ii-a) can be checked easily.
Finally, by using Lemma 2.1(ii), we get that for n ≥ 3,

S ∗t,n(S ∗t,nS t,n)pS t,n − (p + 1)S ∗t,nS t,nsp + psp+1I

= Diag{θ−κ+1, · · · ,θ0, θ(1,1), θ(1,2), θ(2,2), · · · , θ(2,n−2),

θ(1,n−1),Ωn, Ω̃n, θ(2,n+1), θ(1,n+2), · · · },
where θ−m, κ − 1 ≥ m ≥ 1, θ(1, j), 2 ≤ j ≤ n − 1; j ≥ n + 2, and θ(2, j), 2 ≤ j ≤ n − 2; j ≥ n + 1
are as in (4.3), (4.7) and (4.4),

θ(1,1) := λ2
(1,1)λ

2p
(1,2) + λ

2
(2,1)λ

2p
(2,2) − (p + 1)(λ2

(1,1) + λ
2
(2,1))sp + psp+1,

Ωn =

(
ω11(n, p) λ(1,n)λ(2,n−1)a12(n, p)

λ(1,n)λ(2,n−1)a12(n, p) ω22(n, p)

)

and

Ω̃n =

⎛⎜⎜⎜⎜⎜⎝ ω̃11(n, p) tλ(2,n)(λ
2p
(2,n+1) − (1 + p)sp)

tλ(2,n)(λ
2p
(2,n+1) − (1 + p)sp) ω̃22(n, p)

⎞⎟⎟⎟⎟⎟⎠ ,
where ωii’s and ω̃ii’s are as in Appendix A2. It follows that (iii-c) and (iii-d) are equivalent
to the positivities of Ωn and Ω̃n, respectively. For all s > 0, θ(1,1) is nonnegative if and only if
(iii-b) holds. And (iii-a) can be obtained by nonnegativity of θv, v ∈ V◦2,κ\{(1, 1), (2, 1), (2, n−
1), (1, n), (2, n), (1, n + 1)} for all s > 0. Hence the proof is complete. �

4.2. p-Paranormality.
4.2. p-Paranormality. For T ∈ B(), let T = U |T | be the (unique) polar decomposition

of T . Then it follows from [27, Prop. 3] that T is p-paranormal if and only if

|T |p U∗ |T |2p U |T |p − 2s |T |2p + s2I ≥ 0, s ∈ R+.
To characterize the p-paranormality of S t,n, we begin with the following lemma.

Lemma 4.2. Let S t,n be as in (2.1), where t ∈ R\{0}, and let the ai j’s be as in Lemma 2.1.
Let S t,n = Ut,n

∣∣∣S t,n

∣∣∣ be the polar decomposition of S t,n. Then
(i) Ut,1 = S λ̃ + u12(1)e(1,1) ⊗ e(1,1) + u22(1)e(2,1) ⊗ e(1,1) + u31(1)e(1,2) ⊗ e0, where

u11(1) = a22

(
1,

1
2

)
λ(1,1)

/
δ, u12(1) = −a12

(
1,

1
2

)
λ(1,1)

/
δ,

u21(1) =
{

a22

(
1,

1
2

)
λ(2,1) − ta12

(
1,

1
2

)} /
δ, u22(1) =

{
ta11

(
1,

1
2

)
− a12

(
1,

1
2

)
λ(2,1)

} /
δ,

u31(1) = −a12

(
1,

1
2

)
λ(1,2)

/
δ, u32(1) = a11

(
1,

1
2

)
λ(1,2)

/
δ

with δ = (λ2
(1,2)λ

2
(2,1) + λ

2
(1,1)(t

2 + λ2
(1,2)))

1/2 and λ̃ := {̃λv}v∈V◦2,κ such that λ̃(1,1) = u11(1),
λ̃(2,1) = u21(1), λ̃(1,2) = u32(1) and λ̃v = 1 (otherwise),

(ii) if n ≥ 2,

Ut,n = S λ̃ + u21(n)e(1,n+1) ⊗ e(2,n−1) + u12(n)e(2,n) ⊗ e(1,n),

where
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u11(n) =
{

a22

(
n,

1
2

)
λ(2,n) − ta12

(
n,

1
2

)} /
(λ(1,n+1)λ(2,n)),

u12(n) =
{

ta11

(
n,

1
2

)
− a12

(
n,

1
2

)
λ(2,n)

} /
(λ(1,n+1)λ(2,n)),

u21(n) = −a12

(
n,

1
2

) /
λ(2,n), u22(n) = a11

(
n,

1
2

) /
λ(2,n)

with λ̃ := {̃λv}v∈V◦2,κ such that λ̃(1,1) = λ(1,1)(λ2
(1,1) + λ

2
(2,1))

−1/2, λ̃(2,1) = λ(2,1)(λ2
(1,1) + λ

2
(2,1))

−1/2,

λ̃(2,n) = u11(n), λ̃(1,n+1) = u22(n) and λ̃v = 1 (otherwise).

Proof. Since the weights {λv}v∈V◦2,κ are positive and the determinants of A1/2
1 and A1/2

n

(n ≥ 2) are (λ2
(1,2)λ

2
(2,1) + λ

2
(1,1)(t

2 + λ2
(1,2)))

1/2 and λ(1,n+1)λ(2,n), respectively, we see that
∣∣∣S t,n

∣∣∣
is invertible for all n ∈ N. Other proofs are routine. �

We now characterize the p-paranormality of S t,n.

Theorem 4.3. Let S t,n be as in (2.1) and let the ai j’s be as in Lemma 2.1. Suppose that
p ∈ (0,∞) and t ∈ R\{0}. Then

(i) S t,1 is p-paranormal if and only if the inequalities in (3.1) and (3.2) hold, and for all
s ∈ R+, Ψ1 := (ϕi j(1, p))1≤i, j≤3 ≥ 0, where the ϕi j’s are as in Appendix A3,

(ii) S t,2 is p-paranormal if and only if the following assertions hold:
(ii-a) the inequalities in (3.1), (3.3) and (3.4) hold,
(ii-b) it holds that

λ2
(1,1)λ

2p
(1,2) + a11(2, p)λ2

(2,1) ≥ (λ2
(1,1) + λ

2
(2,1))

p+1, a22(2, p) ≥ λ2p
(1,2),

ϕ11(2, p)ϕ22(2, p) ≥ a12(2, p)2λ
2p
(1,2)λ

2
(2,1)(λ

2
(1,1) + λ

2
(2,1))

p−1, s ∈ R+,
(ii-c) it holds that

λ
2p
(2,3)φ1(2)2 + λ

2p
(1,4)φ4(2)2 ≥ a11(2, p)2,

λ
2p
(2,3)φ2(2)2 + λ

2p
(1,4)φ6(2)2 ≥ a22(2, p)2,

ϕ̃11(2, p)ϕ̃22(2, p) ≥ ϕ̃12(2, p)2, s ∈ R+,
where ϕi j’s and ϕ̃i j’s are as in Appendix A3.

(iii) S t,n for n ≥ 3 is p-paranormal if and only if the following assertions hold:
(iii-a) the inequalities in (3.1), (3.3), (3.5) and (3.6) hold,
(iii-b) λ2

(1,1)λ
2p
(1,2) + λ

2
(2,1)λ

2p
(2,2) ≥ (λ2

(1,1) + λ
2
(2,1))

p+1,

(iii-c) it holds that

a11(n, p) ≥ λ2p
(2,n−1), a22(n, p) ≥ λ2p

(1,n),

ϕ11(n, p)ϕ22(n, p) ≥ a12(n, p)2λ
2p
(1,n)λ

2p
(2,n−1), s ∈ R+,

(iii-d) it holds that

λ
2p
(2,n+1)φ1(n)2 + λ

2p
(1,n+2)φ4(n)2 ≥ a11(n, p)2,

λ
2p
(2,n+1)φ2(n)2 + λ

2p
(1,n+2)φ6(n)2 ≥ a22(n, p)2,

ϕ̃11(n, p)ϕ̃22(n, p) ≥ ϕ̃12(n, p)2, s ∈ R+,
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where ϕi j’s and ϕ̃i j’s are as in Appendix A3.
Proof. (i) Applying Lemma 2.1(i) and Lemma 4.2(i), it follows that∣∣∣S t,1

∣∣∣p U∗t,1
∣∣∣S t,1

∣∣∣2p
Ut,1

∣∣∣S t,1
∣∣∣p − 2s

∣∣∣S t,1
∣∣∣2p
+ s2I

= Diag{ψ−κ+1, · · · , ψ−1,Ψ1, ψ(2,2), ψ(1,3), · · · },
where

ψ−m :=λ2p
−mλ

2p
−m+1 − 2λ2p

−ms + s2,(4.8)

ψ(i, j) :=λ2p
(i, j)λ

2p
(i, j+1) − 2λ2p

(i, j)s + s2(4.9)

with κ − 1 ≥ m ≥ 1, i = 1; j ≥ 3, i = 2; j ≥ 2, and Ψ1 := (ϕi j(1, p))1≤i, j≤3, with ϕi j(1, p)’s
as in Appendix A3. So S t,1 is p-paranormal if and only if ψ−m, ψ(i, j) and Ψ1 are nonnegative
for all s ∈ R+. It is obvious that ψ−m and ψ(i, j) are nonnegative for all s ∈ R+ if and only if
(3.1) and (3.2) hold, respectively.

(ii) By Lemma 2.1(ii) and Lemma 4.2(ii) with n = 2, we have∣∣∣S t,2
∣∣∣p U∗t,2

∣∣∣S t,2
∣∣∣2p

Ut,2
∣∣∣S t,2

∣∣∣p − 2s
∣∣∣S t,2

∣∣∣2p
+ s2I

= Diag{ψ−κ+1, · · · , ψ−1, ψ0,Ψ2, Ψ̃2, ψ(2,3), ψ(1,4), · · · },
where ψ−m, κ − 1 ≥ m ≥ 1, ψ(1, j), j ≥ 4, and ψ(2, j), j ≥ 3 are as in (4.8) and (4.9),
respectively,

(4.10) ψ0 := λ2p
0 (λ2

(1,1) + λ
2
(2,1))

p − 2λ2p
0 s + s2,

Ψ2 =

⎛⎜⎜⎜⎜⎜⎝ ϕ11(2, p) λ
p
(1,2)λ(2,1)a12(2, p)(λ2

(1,1) + λ
2
(2,1))

p−1
2

λ
p
(1,2)λ(2,1)a12(2, p)(λ2

(1,1) + λ
2
(2,1))

p−1
2 ϕ22(2, p)

⎞⎟⎟⎟⎟⎟⎠
and Ψ̃2 := (ϕ̃i j(2, p))1≤i, j≤2 with the ϕi j’s and ϕ̃i j’s as in Appendix A3. For all s ∈ R+,
ψv ≥ 0, v ∈ V◦2,κ \ {(1, 1), (2, 1), (1, 2), (2, 2), (1, 3)} if and only if (ii-a) holds. It follows that
the matrices Ψ2 and Ψ̃2 are positive semi-definite for all s ∈ R+ if and only if (ii-b) and (ii-c)
hold, respectively.

(iii) By Lemma 2.1(ii) and Lemma 4.2(ii) with n ≥ 3, we have∣∣∣S t,n

∣∣∣p U∗t,n
∣∣∣S t,n

∣∣∣2p
Ut,n

∣∣∣S t,n

∣∣∣p − 2s
∣∣∣S t,n

∣∣∣2p
+ s2I

= Diag{ψ−κ+1, · · · , ψ−1, ψ0, ψ(1,1), ψ(1,2), ψ(2,2), · · · , ψ(2,n−2),

ψ(1,n−1),Ψn, Ψ̃n, ψ(2,n+1), ψ(1,n+2), · · · },
where ψ−m, κ−1 ≥ m ≥ 1, ψ0, ψ(1, j), 2 ≤ j ≤ n−1; j ≥ n+2, ψ(2, j), 2 ≤ j ≤ n−2; j ≥ n+1
are as in (4,8), (4.10) and (4.9),

ψ(1,1) = (λ2
(1,1)λ

2p
(1,2) + λ

2
(2,1)λ

2p
(2,2))(λ

2
(1,1) + λ

2
(2,1))

p−1 − 2(λ2
(1,1) + λ

2
(2,1))

ps + s2,

Ψn =

⎛⎜⎜⎜⎜⎝ ϕ11(n, p) λ
p
(1,n)λ

p
(2,n−1)a12(n, p)

λ
p
(1,n)λ

p
(2,n−1)a12(n, p) ϕ22(n, p)

⎞⎟⎟⎟⎟⎠ ,
Ψ̃n = (ϕ̃i j(n, p))1≤i, j≤2

with the ϕi j’s and ϕ̃i j’s as in Appendix A3. For all s ∈ R+, ψv ≥ 0, v ∈ V◦2,κ \ {(2, 1), (2, n −
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1), (1, n), (2, n), (1, n + 1)} if and only if (iii-a) and (iii-b) hold. It follows that Ψn and Ψ̃n are
positive semi-definite for all s ∈ R+ if and only if (iii-c) and (iii-d) hold, respectively. Hence
the proof is complete. �

4.3. A(p)-class.
4.3. A(p)-class. Recall that an operator T ∈ B() is a class A operator if

∣∣∣T 2
∣∣∣ ≥ |T |2.

The class A operators have been developed well for several decades. Note that the A(1)
class property is equivalent to the class A property. In [17], one shows that there exists an
absolute-2-paranormal operator T which is not A(2)-class by using some block matrices.
However the models for A(p)-class operators have not been developed completely. In this
section we characterize the class A(p)-class property of our operator model S t,n.

Theorem 4.4. Let S t,n be as in (2.1) and let the ai j’s be as in Lemma 2.1. Suppose that
p ∈ (0,∞) and t ∈ R\{0}. Then the following assertions hold.

(i) S t,1 is an A(p)-class operator if and only if the inequalities in (3.1), (3.2) and W
1

p+1

1 ≥
Diag{λ2

0, A1} hold, where W1 is as in (4.2) and A1 is as in (2.7).
(ii) S t,2 is an A(p)-class operator if and only if the following conditions hold:

(ii-a) the inequalities in (3.1), (3.3) and (3.4) hold,
(ii-b) it holds that

f11(2, p) ≥ λ2
(1,1) + λ

2
(1,2), f22(2, p) ≥ λ2

(1,2),

( f11(2, p) − λ2
(1,1) − λ2

(1,2))( f22(2, p) − λ2
(1,2)) ≥ f12(2, p)2,

where fi j’s are as in Appendix A4,
(ii-c) it holds that

g11(2, p) ≥ λ2
(2,2), g22(2, p) ≥ λ2

(1,3) + t2,

(g11(2, p) − λ2
(2,2))(g22(2, p) − λ2

(1,3) − t2) ≥ (g12(2, p) − tλ(2,2))2,

where gi j’s are as in Appendix A4.
(iii) For n ≥ 3, S t,n is an A(p)-class operator if and only if the following conditions hold:

(iii-a) the inequalities in (3.1), (3.3), (3.5) and (3.6) hold,
(iii-b) λ2

(1,1)λ
2p
(1,2) + λ

2
(2,1)λ

2p
(2,2) ≥ (λ2

(1,1) + λ
2
(2,1))

p+1,

(iii-c) it holds that

f11(n, p) ≥ λ2
(2,n−1), f22(n, p) ≥ λ2

(1,n),

( f11(n, p) − λ2
(2,n−1))( f22(n, p) − λ2

(1,n)) ≥ f12(n, p)2,

where fi j’s are as in Appendix A5,
(iii-d) it holds that

g11(n, p) ≥ λ2
(2,n), g22(n, p) ≥ λ2

(1,n+1) + t2,

(g11(n, p) − λ2
(2,n))(g22(n, p) − λ2

(1,n+1) − t2) ≥ (g12(n, p) − tλ(2,n))2,

where gi j’s are as in Appendix A5.

Proof. See (4.2) in the proof of Theorem 4.1 for the matrix form of S ∗t,1
∣∣∣S t,1

∣∣∣2p
S t,1, and

also (2.5) for the matrix form of
∣∣∣S t,1

∣∣∣2. The statement (i) then follows naturally. Since

W1 is diagonalized by its eigenvectors, we can also find the matrix form of W
1

p+1

1 by direct
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computation.
Applying the proof of Theorem 4.3 with S ∗t,2

∣∣∣S t,2
∣∣∣2p

S t,2, where W2 and W̃2 are as in (4.5)
and (4.6), we have that

(S ∗t,2
∣∣∣S t,2

∣∣∣2p
S t,2)

1
p+1 = Diag{

(
λ2
−κ+1λ

2p
−κ+2

) 1
p+1 , · · · ,

(
λ2
−1λ

2p
0

) 1
p+1 ,

(
λ2

0(λ2
(1,1) + λ

2
(2,1))

p
) 1

p+1 ,

W
1

p+1

2 , W̃
1

p+1

2 ,
(
λ2

(2,3)λ
2p
(2,4)

) 1
p+1 ,

(
λ2

(1,4)λ
2p
(1,5)

) 1
p+1 , · · · },

where W
1

p+1

2 := ( fi j(2, p)) and W̃
1

p+1

2 := (gi j(2, p)) with the fi j’s and gi j’s as in Appendix A4.

Hence (ii-b) and (ii-c) are equivalent to W
1

p+1

2 ≥ Diag{λ2
(1,1) + λ

2
(1,2), λ

2
(1,2)} and W̃

1
p+1

2 ≥ A2,
respectively, where A2 is as in (2.8) with n = 2. And (ii-a) is obtained easily. For n ≥ 3, we
obtain that (

S ∗t,n
∣∣∣S t,n

∣∣∣2p
S t,n

) 1
p+1

= Diag{
(
λ2
−κ+1λ

2p
−κ+2

) 1
p+1 , · · · ,

(
λ2
−1λ

2p
0

) 1
p+1 ,

(
λ2

0(λ2
(1,1) + λ

2
(2,1))

p
) 1

p+1 ,(
λ2

(1,1)λ
2p
(1,2) + λ

2
(2,1)λ

2p
(2,2)

) 1
p+1 ,

(
λ2

(1,2)λ
2p
(1,3)

) 1
p+1 , · · · ,

(
λ2

(2,n−2)λ
2p
(2,n−1)

) 1
p+1 ,(

λ2
(1,n−1)λ

2p
(1,n)

) 1
p+1 ,W

1
p+1

n , W̃
1

p+1
n ,

(
λ2

(2,n+1)λ
2p
(2,n+2)

) 1
p+1 , · · · },

where

Wn =

⎛⎜⎜⎜⎜⎝ a11(n, p)λ2
(2,n−1) λ(1,n)λ(2,n−1)a12(n, p)

λ(1,n)λ(2,n−1)a12(n, p) a22(n, p)λ2
(1,n)

⎞⎟⎟⎟⎟⎠
and

W̃n =

⎛⎜⎜⎜⎜⎜⎝ λ2
(2,n)λ

2p
(2,n+1) tλ(2,n)λ

2p
(2,n+1)

tλ(2,n)λ
2p
(2,n+1) λ2

(1,n+1)λ
2p
(1,n+2) + t2λ

2p
(2,n+1)

⎞⎟⎟⎟⎟⎟⎠ .
By direct computations, we have that W

1
p+1

n := ( fi j(n, p)) and W̃
1

p+1
n := (gi j(n, p)) with the

fi j and gi j as in Appendix A5. Thus S t,n is an A(p)-class operator if and only if (iii-a) and

(iii-b) hold, W
1

p+1
n ≥ Diag{λ2

(2,n−1), λ
2
(1,n)} and W̃

1
p+1

2 ≥ An, where An is as in (2.8). And (iii-c)

and (iii-d) are equivalent to W
1

p+1
n ≥ Diag{λ2

(2,n−1), λ
2
(1,n)} and W̃

1
p+1

2 ≥ An, respectively. Hence
the proof is complete. �

5. Examples

5. Examples
We consider some examples related to theorems in the previous sections.

Let S λ be a weighted shift on the directed tree 2,κ with the λv below and consider S t,1 :=
S λ + te(2,1) ⊗ e(1,1), with

λ(1,1) = λ(2,1) = 2, λm = 1, −κ + 1 ≤ m ≤ 0,

λ(1,2) = 3, λ(1,k+2) = λ(2,k+1) = 4, k ∈ N.
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p-Hyponormality. According to Theorem 3.2(i), we obtain that S t,1 is p-hyponormal
(0 < p < ∞) if and only if Δ(p, t) ≥ 0, where

Δ(p, t) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
8 2t 0 0
2t t2 + 9 0 0
0 0 16 0
0 0 0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 4 4 0
0 4 t2 + 4 3t
0 0 3t 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

,

which is equivalent to the positivity of the 4 × 4 matrix in Theorem 3.2 (i-b).
If we give a positive number p, we can estimate the range of t inR for the p-hyponormality

of S t,1. For example, a direct computation proves that S t,1 is 2-hyponormal if and only if
t ∈ [−δ, δ], where δ is the unique positive root of detΔ(2, t) = 0. For some p > 0, it is not
easy to find the range in t for the p-hyponormality of S t,1, but we can find a subrange for the
p-hyponormality of S t,1. For example, taking p = 1

2 and t = 207
100 , we have Δ( 1

2 ,
207
100 ) ≥ 0, i.e.,

S 207
100 ,1

is 1
2 -hyponormal.

Absolute-p-paranormality. We compute W1 appearing in (4.2) using instead part of the
result from the computation of Δ(p, t) above and direct computation from S ∗t,1(S ∗t,1S t,1)pS t,1.
According to Theorem 4.1(i), we recall that S t,1 is absolute-p-paranormal (0 < p < ∞) if
and only if Ω1(p, t, s) ≥ 0 for all s > 0, where

Ω1(p, t, s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 2 2 0
0 0 t 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 2t 0 0
2t t2 + 9 0 0
0 0 16 0
0 0 0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 2 0
0 2 t
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−(p + 1)sp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 8 2t
0 2t t2 + 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + psp+1I

as in (4.1). By some computations, we have that S 53
25 ,1

[S 21
10 ,1
, or S 209

100 ,1
, resp.] is absolute-2-

paranormal[absolute-1-paranormal, or absolute- 1
2 -paranormal, resp.].

p-Paranormality. In what follows, we use for convenience of computation an alternative
form of the relevant matrix obtained using the polar decomposition of S t,1. According to
Theorem 4.3(i), we obtain that S t,1 is p-paranormal (0 < p < ∞) if and only ifΨ1(p, t, s) ≥ 0
for all s > 0, where

Ψ1(p, t, s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 8 2t
0 2t t2 + 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p/2

Ũ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
8 2t 0 0
2t t2 + 9 0 0
0 0 16 0
0 0 0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

Ũ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 8 2t
0 2t t2 + 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p/2

−2s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 8 2t
0 2t t2 + 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p

+ s2I

with
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Ũ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 u11(1) u12(1)
0 u21(1) u22(1)
0 u31(1) u32(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 2 0
0 2 t
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 8 2t
0 2t t2 + 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1/2

,

where ui j(1) are as in Lemma 4.2(i). By some computations, we have that S 11
5 ,1

[S 21
10 ,1
, or

S 52
25 ,1
, resp.] is 2-paranormal[1-paranormal, or 1

2 -paranormal, resp.].

A(p)-class operator. We compute W1 appearing in (4.2) using instead part of the result
from the computation of Δ(p, t) above. According to Theorem 4.4(i), we obtain that S t,1 is
an A(p)-class operator (0 < p < ∞) if and only if (W1(p, t))

1
p+1− Diag{1, A1} ≥ 0, where

W1(p, t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 2 2 0
0 0 t 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 2t 0 0
2t t2 + 9 0 0
0 0 16 0
0 0 0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 2 0
0 2 t
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

A1 =

(
8 2t
2t t2 + 9

)
,

as in (4.2) and (2.7). (In the examples which follow, what is required for the Löwner-
Heinz inequality is the positivity of a certain matrix difference. However, using the Nested
Determinant Test the positivity condition arising from the determinant of the full difference
matrix is the most restrictive, as is shown by an easy computation, so we omit the other
conditions.) To consider the case of an A(1)-class operator, if we take any t ∈ [−δ, δ], where
δ is the unique positive root of polynomial

det(W1(1, t) − (Diag{1, A1})2) = 15876 − 2548t2 − 212t4 − 12t6,

by the Löwner-Heinz inequality, (W1(1, t))
1
2 ≥Diag{1, A1}, i.e., S t,1 is an A(1)-class operator.

Similarly, for an A( 1
2 )-class operator, if we take any t satisfying

det

⎛⎜⎜⎜⎜⎜⎝
(
W1

(
1
2
, t
))2

− (Diag{1, A1})3

⎞⎟⎟⎟⎟⎟⎠ ≥ 0,

then by the Löwner-Heinz inequality, W1( 1
2 , t)

2
3 ≥ Diag{1, A1}, i.e., S t,1 is an A( 1

2 )-class
operator. Also, for an A(2)-class operator, if we take any t satisfying

det(W1(2, t) − (Diag{1, A1})3) ≥ 0,

then by the Löwner-Heinz inequality, W1(2, p)
1
3 ≥ Diag{1, A1}, i.e., S t,1 is an A(2)-class

operator. For example, S 103
50 ,1

[S 207
100 ,1

, or S 9
5 ,1
, resp.] is an A(2)-class operator[A(1)-class

operator, or A( 1
2 )-class operator, resp.].

Finally we give some remarks related to the topics on partial normality and weak hy-
ponormality.

Remark 5.1. If we consider other values p ∈ (0,∞) instead of p = 1
2 , 1, 2 in the above

discussion about the operator S t,1, we may compare the range of t for the p-hyponormality,
p-paranormality and absolute-p-paranormality of S t,1 to show such classes are distinct. We
leave them to interested readers.
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The notion of n-contractivity has played an important role to detect the gaps between
subnormality and hyponormality. The following remark records some information about the
connection between n-contractivity and absolute-p-paranormality.

Remark 5.2. Recall that T ∈ B() is 2-contractive if T ∗2T 2 − 2T ∗T + I ≥ 0 ([1]).
Clearly, if T is absolute-1-paranormal then it is 2-contractive. Our model S t,1 can show these
properties are distinct. For example, S 11

5 ,1
is 2-contractive but not absolute-1-paranormal

because the matrix Ω1 is not positive when s = 15.

The following example related to our operator model is interesting in its own right.

Remark 5.3. If we allow t = 0 in the model, we may create some examples of 2-
isometries which we believe to be new. Recall that T ∈ B() is a 2-isometry if I − 2T ∗T +
T ∗2T 2 = 0, that every isometry is a 2-isometry (including the unilateral shift), and that the
standard non-isometric 2-isometry is the Dirichlet shift WD, with weights

√
2,
√

3/2,
√

4/3,√
5/4, . . .. Observe that the WD is a strict expansion, in the sense that ‖WDx‖ > ‖x‖ for all

x � 0 (any 2-isometry is at least a weak expansion). If we use (for example) κ = 4 with

λ−3 =
√

2, λ−2 =
√

3/2, λ−1 =
√

4/3, λ0 =
√

5/4,

λ2,n = 1 (n ≥ 1), λ1,1 =
√

1/5, λ1,n =
√

n/(n − 1) (n ≥ 2),

we produce a 2-isometry which is neither an isometry, strictly expansive, nor a trivial direct
sum of the Dirichlet shift with an isometry.

Appendix - expressions of polynomials

We give the exact expressions of polynomials which appeared in the previous sections.

A1. Polynomials in Theorem 3.2:

b11(1, p) = λ2
(1,1)((β1 − λ2

(1,1) − λ2
(2,1))α

p
1β1 + (λ2

(1,1) + λ
2
(2,1) − α1)βp

1α1)/(γ1δ
2),

b12(1, p) = λ(1,1)λ(2,1)((λ2
(1,2) − α1)αp

1β1 + (β1 − λ2
(1,2))α1β

p
1)/(γ1δ

2),

b13(1, p) = tλ(1,1)λ(1,2)λ(2,1)(α1β
p
1 − αp

1β1)/(γ1δ
2),

b22(1, p) = ((λ2
(1,2) − α1)(λ2

(1,2)λ
2
(2,1) + λ

2
(1,1)(α1 − λ2

(1,1) − λ2
(2,1)))α

p
1

+ (β1 − λ2
(1,2))(λ

2
(1,2)λ

2
(2,1) + λ

2
(1,1)(β1 − λ2

(1,1) − λ2
(2,1)))β

p
1)/(γ1δ

2),

b23(1, p) = tλ(1,2)((λ2
(1,1)(λ

2
(1,1) + λ

2
(2,1) − α1) − λ2

(1,2)λ
2
(2,1))α

p
1

+ (λ2
(1,1)(β1 − λ2

(1,1) − λ2
(2,1)) + λ

2
(1,2)λ

2
(2,1))β

p
1)/(γ1δ

2),

b33(1, p) = λ2
(1,2)(((β1 − λ2

(1,2))λ
2
(2,1) + λ

2
(1,1)(λ

2
(1,1) + λ

2
(2,1) − α1))αp

1

+ ((λ2
(1,2) − α1)λ2

(2,1) + λ
2
(1,1)(β1 − λ2

(1,1) − λ2
(2,1)))β

p
1)/(γ1δ

2),

b11(n, p) = ((λ2
(1,n+1) − αn)αp

n + (βn − λ2
(1,n+1))β

p
n)/γn; b12(n, p) = tλ(1,n+1)(β

p
n − αp

n)/γn,

b22(n, p) = ((βn − λ2
(1,n+1))α

p
n + (λ2

(1,n+1) − αn)βp
n)/γn,

where δ = (λ2
(1,2)λ

2
(2,1) + λ

2
(1,1)(t

2 + λ2
(1,2)))

1/2.

A2. Polynomials in Theorem 4.1:

ω11(1, p) = a11(1, p)λ2
0 − (p + 1)λ2

0sp + psp+1,
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ω22(1, p) = a22(1, p)λ2
(1,1) + λ

2
(2,1)λ

2p
(2,2) − (p + 1)(λ2

(1,1) + λ
2
(2,1))sp + psp+1,

ω33(1, p) = t2λ
2p
(2,2) + λ

2
(1,2)λ

2p
(1,3) − (p + 1)(t2 + λ2

(1,2))sp + psp+1,

ω11(2, p) = λ2
(1,1)λ

2p
(1,2) + a11(2, p)λ2

(2,1) − (1 + p)sp(λ2
(1,1) + λ

2
(2,1)) + ps1+p,

ω11(n, p) = a11(n, p)λ2
(2,n−1) − (1 + p)spλ2

(2,n−1) + ps1+p,

ω22(n, p) = a22(n, p)λ2
(1,n) − (1 + p)spλ2

(1,n) + ps1+p,

ω̃11(n, p) = λ2
(2,n)λ

2p
(2,n+1) − (1 + p)spλ2

(2,n) + ps1+p,

ω̃22(n, p) = λ2
(1,n+1)λ

2p
(1,n+2) + t2λ

2p
(2,n+1) − (1 + p)sp(t2 + λ2

(1,n+1)) + ps1+p.

A3. Polynomials in Theorem 4.3:

ϕ11(1, p) = λ2p
0 a11(1, p) − 2sλ2p

0 + s2; ϕ12(1, p) = λp
0a12(1, p)φ1(1),

ϕ13(1, p) = λp
0a12(1, p)φ2(1),

ϕ22(1, p) = a22(1, p)φ1(1)2 + λ
2p
(1,3)φ3(1)2 + λ

2p
(2,2)φ4(1)2 − 2sa11(1, p) + s2,

ϕ23(1, p) = a22(1, p)φ1(1)φ2(1) + λ2p
(1,3)φ3(1)φ5(1) + λ2p

(2,2)φ4(1)φ6(1) − 2sa12(1, p),

ϕ33(1, p) = a22(1, p)φ2(1)2 + λ
2p
(1,3)φ5(1)2 + λ

2p
(2,2)φ6(1)2 − 2sa22(1, p) + s2,

ϕ11(2, p) = (λ2
(1,1)λ

2p
(1,2) + a11(2, p)λ2

(2,1))(λ
2
(1,1) + λ

2
(2,1))

p−1 − 2s(λ2
(1,1) + λ

2
(2,1))

p + s2,

ϕ11(n, p) = a11(n, p)λ2p
(2,n−1) − 2sλ2p

(2,n−1) + s2; ϕ22(n, p) = a22(n, p)λ2p
(1,n) − 2sλ2p

(1,n) + s2,

ϕ̃11(n, p) = λ2p
(2,n+1)φ1(n)2 + λ

2p
(1,n+2)φ4(n)2 − 2sa11(n, p) + s2,

ϕ̃12(n, p) = λ2p
(1,n+2)φ4(n)φ6(n) + λ2p

(2,n+1)φ1(n)φ2(n) − 2sa12(n, p),

ϕ̃22(n, p) = λ2p
(2,n+1)φ2(n)2 + λ

2p
(1,n+2)φ6(n)2 − 2sa22(n, p) + s2,

where

φ1(n) = a11

(
n,

p
2

)
u11(n) + a12

(
n,

p
2

)
u12(n); φ2(n) = a12

(
n,

p
2

)
u11(n) + a22

(
n,

p
2

)
u12(n),

φ3(n) = a11

(
n,

p
2

)
u31(n) + a12

(
n,

p
2

)
u32(n),

φ4(n) = a11

(
n,

p
2

)
u21(n) + a12

(
n,

p
2

)
u22(n); φ5(n) = a12

(
n,

p
2

)
u31(n) + a22

(
n,

p
2

)
u32(n),

φ6(n) = a12

(
n,

p
2

)
u21(n) + a22

(
n,

p
2

)
u22(n).

A4. Polynomials in Theorem 4.4 ( fi j form 2, gi j form 1):

f11(2, p) = ((a22(2, p)λ2
(1,2) − ρ2,1)ρ1/(p+1)

2,1 + (ρ2,2 − a22(2, p)λ2
(1,2))ρ

1/(p+1)
2,2 )/ξ2,

f12(2, p) = −a12(2, p)λ(1,2)λ(2,1)(ρ
1/(p+1)
2,1 − ρ1/(p+1)

2,2 )/ξ2,

f22(2, p) = ((ρ2,2 − a22(2, p)λ2
(1,2))ρ

1/(p+1)
2,1 + (a22(2, p)λ2

(1,2) − ρ2,1)ρ1/(p+1)
2,2 )/ξ2,

g11(2, p) = ((ρ̃2,2 − λ2
(2,2)λ

2p
(2,3))ρ̃

1/(p+1)
2,1 + (λ2

(2,2)λ
2p
(2,3) − ρ̃2,1)ρ̃1/(p+1)

2,2 )/ξ̃2,

g12(2, p) = −tλ(2,2)λ
2p
(2,3)(ρ̃

1/(p+1)
2,1 − ρ̃1/(p+1)

2,2 )/ξ̃2,

g22(2, p) = ((λ2
(2,2)λ

2p
(2,3) − ρ̃2,1)ρ̃1/(p+1)

2,1 + (ρ̃2,2 − λ2
(2,2)λ

2p
(2,3))ρ̃

1/(p+1)
2,2 )/ξ̃2,
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where

ρ2,1 = (a11(2, p)λ2
(2,1) + λ

2
(1,1)λ

2p
(1,2) + a22(2, p)λ2

(1,2) − ξ2)/2 (eigenvalue),

ρ2,2 = (a11(2, p)λ2
(2,1) + λ

2
(1,1)λ

2p
(1,2) + a22(2, p)λ2

(1,2) + ξ2)/2 (eigenvalue),

ξ2 = ((a11(2, p)λ2
(2,1) + λ

2
(1,1)λ

2p
(1,2) + a22(2, p)λ2

(1,2))
2

− 4λ2
(1,2)(a22(2, p)λ2

(1,1)λ
2p
(1,2) + λ

2
(2,1)λ

2p
(1,3)λ

2p
(2,2)))

1/2

(“square root” term − see Note following A5),

ρ̃2,1 = (λ2
(1,3)λ

2p
(1,4) + t2λ

2p
(2,3) + λ

2
(2,2)λ

2p
(2,3) − ξ̃2)/2,

ρ̃2,2 = (λ2
(1,3)λ

2p
(1,4) + t2λ

2p
(2,3) + λ

2
(2,2)λ

2p
(2,3) + ξ̃2)/2 (eigenvalues),

ξ̃2 = ((λ2
(1,3)λ

2p
(1,4) + (t2 + λ2

(2,2))λ
2p
(2,3))

2 − 4λ2
(1,3)λ

2p
(1,4)λ

2
(2,2)λ

2p
(2,3))

1/2(“square root” term),

A5. Polynomials in Theorem 4.4 ( fi j form 1, gi j form 2): for n ≥ 3,

f11(n, p) = ((ρn,2 − a11(n, p)λ2
(2,n−1))ρ

1/(p+1)
n,1 + (a11(n, p)λ2

(2,n−1) − ρn,1)ρ1/(p+1)
n,2 )/ξn,

f12(n, p) = −a12(n, p)λ(1,n)λ(2,n−1)(ρ
1/(p+1)
n,1 − ρ1/(p+1)

n,2 )/ξn,

f22(n, p) = ((a11(n, p)λ2
(2,n−1) − ρn,1)ρ1/(p+1)

n,1 + (ρn,2 − a11(n, p)λ2
(2,n−1))ρ

1/(p+1)
n,2 )/ξn,

g11(n, p) = ((ρ̃n,2 − λ2
(2,n)λ

2p
(2,n+1))ρ̃

1/(p+1)
n,1 + (λ2

(2,n)λ
2p
(2,n+1) − ρ̃n,1)ρ̃1/(p+1)

n,2 )/ξ̃n,

g12(n, p) = −tλ(2,n)λ
2p
(2,n+1)(ρ̃

1/(p+1)
n,1 − ρ̃1/(p+1)

n,2 )/ξ̃n,

g22(n, p) = ((λ2
(2,n)λ

2p
(2,n+1) − ρ̃n,1)ρ̃1/(p+1)

n,1 + (ρ̃n,2 − λ2
(2,n)λ

2p
(2,n+1))ρ̃

1/(p+1)
n,2 )/ξ̃n,

where

ρn,1 = (a22(n, p)λ2
(1,n) + a11(n, p)λ2

(2,n−1) − ξn)/2,

ρn,2 = (a22(n, p)λ2
(1,n) + a11(n, p)λ2

(2,n−1) + ξn)/2 (eigenvalues),

ξn = ((a22(n, p)λ2
(1,n) + a11(n, p)λ2

(2,n−1))
2

− 4λ2
(1,n)λ

2p
(1,n+1)λ

2
(2,n−1)λ

2p
(2,n))

1/2 (“square root” term − see Note below),

ρ̃n,1 = (λ2
(1,n+1)λ

2p
(1,n+2) + t2λ

2p
(2,n+1) + λ

2
(2,n)λ

2p
(2,n+1) − ξ̃n)/2 (eigenvalue),

ρ̃n,2 = (λ2
(1,n+1)λ

2p
(1,n+2) + t2λ

2p
(2,n+1) + λ

2
(2,n)λ

2p
(2,n+1) + ξ̃n)/2 (eigenvalue),

ξ̃n = ((λ2
(1,n+1)λ

2p
(1,n+2) + (t2 + λ2

(2,n))λ
2p
(2,n+1))

2

− 4λ2
(1,n+1)λ

2p
(1,n+2)λ

2
(2,n)λ

2p
(2,n+1))

1/2 (“square root” term).

Note. To simplify ξ2 and ξn, we use that a11(n, p)a22(n, p) − (a12(n, p))2 = λ
2p
(1,n+1)λ

2p
(2,n),

n ≥ 2.
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