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Abstract

A quasitoric manifold (resp. a small cover) is a-&mensional (resp. am-
dimensional) smooth closed manifold with an effective Itycatandard action of
(SH" (resp. £2)") whose orbit space is combinatorially ardimensional simple con-
vex polytopeP. In this paper we study them whdn is a product of simplices. A
generalized Bott tower ovef, whereF = C or R, is a sequence of projective bun-
dles of the Whitney sum of -line bundles starting with a point. Each stage of the
tower overF, which we call a generalized Bott manifold, provides an eplenof
quasitoric manifolds (whefr = C) and small covers (whefi = R) over a product
of simplices. It turns out that every small cover over a paidaf simplices is equiv-
alent (in the sense of Davis and Januszkiewicz [5]) to a gdimed Bott manifold.
But this is not the case for quasitoric manifolds and we sHuoamt & quasitoric man-
ifold over a product of simplices is equivalent to a genesli Bott manifold if and
only if it admits an almost complex structure left invariamtder the action. Finally,
we show that a quasitoric manifoldl over a product of simplices is homeomorphic
to a generalized Bott manifold iM has the same cohomology ring as a product of
complex projective spaces witQ coefficients.

1. Introduction

Toric varieties in algebraic geometry and Hamiltonian $oactions on symplectic
manifolds exhibit fascinating relations between the geoynef algebraic varieties or
smooth manifolds and the combinatorics of their orbit spa€onsidering the success of
toric theory, it is natural to generalize them to the topatabcategory, and a monumen-
tal development in this direction was obtained by the worba¥is and Januszkiewicz in
[5]- They defined a topological generalization of toric edyiby the name of “toric man-
ifold”, which is a 2h-dimensional closed manifolt with a locally standard action of
n-torusG = (SH)" whose orbit space is combinatorially ardimensional simple convex
polytope P. In this caseM is said to be a “toric manifold” oveP. They also defined a
Z,-analogue of a “toric manifold” called a small cover, whighann-dimensional man-
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ifold with an effective action of theZ,-torus of rankn with an n-dimensional simple
polytope as the orbit space.

Unfortunately the term “toric manifolds” is already webtablished among alge-
braic geometers as “non-singular toric variety”. Moreoveere are “toric manifolds”
(in the sense of Davis and Januszkiewicz) which are not edgelvarieties, for ex-
ample CP?  CP2. Because of this reason Buchstaber and Panov introducetktine
“quasitoric manifold” as an alias for Davis and Januszkégi “toric manifold” in [1].
In this paper we adopt Buchstaber and Panov’s “quasitoriifiold” instead of “toric
manifold”. We refer the reader to Chapter 5 of [1] for an ebar@l exposition on quasi-
toric manifolds including their comparison with (compaanrsingular) toric varieties.

This paper is motivated by the work [10] which investigatemsjtoric manifold
over a cube. A cube is a product of 1-simplices. We take a mtodfisimplices as
the simple polytopeP and describe quasitoric manifolds and small covers d¥en
terms of matrices with vectors as entries. A typical exangflguasitoric manifolds or
small covers over a product of simplices appears in a seguehprojective bundles

T Tm— TT; T .
Bm — Bp_1 —> --- — By — By = {a point,

whereB; for i =1,..., mis the projectivization of the Whitney sum of + 1 F-line
bundles overBi_; (F = C or R). Grossberg—Karshon [7] considered the sequence
above whenf = C andn; = 1 for anyi, and they named it 8ott tower Motivated

by this, we call the sequence abovegeneralized Bott towefover F). The j-stageB;

of the tower provides a quasitoric manifold (wh&n= C) and a small cover (when

F = R) over ]'[ij:l A" where A" is the n;-simplex. We call eaclB; a generalized
Bott manifold(over IF) and especially call it 8ott manifoldwhen the tower is a Bott
tower. It turns out that any small cover over a product of dioss is equivalent (in
particular, homeomorphic) to a generalized Bott manifaget R) (see Remark 6.5)
but this is not the case for quasitoric manifolds. We give aessary and sufficient
condition for a quasitoric manifold over a product of sinepk to be equivalent to a
generalized Bott manifold (ove€) (see Theorem 6.4), where a part of the statement
is a particular case of [6, Theorem 6].

This paper is organized as follows. In Section 2 we recalleganfacts on quasi-
toric manifolds and small covers over a simple polytope.nfFr®ection 3 we restrict
our concern to a product of simplices as the simple polytape teeat only quasitoric
manifolds because small covers can be treated similarlySdnotion 3 we introduce
some notation needed for later discussion and associatetréx méth vectors as en-
tries to a quasitoric manifold over a product of simplicen. Section 4 we describe
guasitoric manifolds over a product of simplices as thetmspace of a product of odd
dimensional spheres by some free torus action. This is dofig] iand [4] when the or-
bit space is a product of 1-simplices, that is, a cube. Thecéstson of the matrix with
vectors as entries to a quasitoric manifold over a produdimbplices depends on the
order of the product of the simplices. We discuss this in iBeck. Generalized Bott
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towers are introduced in Section 6 and generalized Bott folasi are characterized
among quasitoric manifolds over a product of simplices ¢fbm 6.4). In Section 7
we explicitly describe the cohomology ring of a quasitorianifold over a product of
simplices and prove in Section 8 that such a quasitoric ralwhis homeomorphic to a
generalized Bott manifold if it has the same cohomology msga product of complex
projective spaces witl coefficients.

2. General facts

An n-dimensional convex polytop® is said to besimple if precisely n facets
(namely codimension-one faces Bf) meet at each vertex. Equivalentlfy is simple
if the dual of the boundary complexP of P is a simplicial complex. It is clear that
every simplex is simple and a product of simple convex pggtis simple. Therefore
a product of simplices is simple.

Letd =1 or 2. We denote by an order two groups® whend = 1 and a cir-
cle group St whend = 2, and byGq a group isomorphic to%)". A dn-dimensional
smoothG4-manifold My with a projectionzt: My — P is called asmall cover(when
d = 1) and aquasitoric manifold(whend = 2) over ann-dimensional simple convex
polytope P if My is locally isomorphic to a faithful reatln-dimensional representa-
tion of G4 and each fiber ofr is a Gg-orbit. The orbit spaceVy/Gy4 can be identi-
fied with P. Two quasitoric manifolds or small covers: Mg — P and7’: M| — P
are equivalent(in the sense of Davis and Januszkiewifzhere is a homeomorphism
f: Mg — M covering the identity orP and an automorphism: Gq — G4 such that
f satisfieso-equivariance, i.e.,f(gm) = 6(g) f(m) for all m € My and g € G4. Note
that the equivalence is neither weaker nor stronger Bgfhomeomorphism, because
any G4-homeomorphism must satistirequivariance withp = id, but it may not cover
the identity on the orbit space.

Let 7: Mg — P be a small cover or a quasitoric manifold and JEtbe the set
of facets of P. If F € F, then the isotropy subgroup of a poirte 7~1(int F) is
independent of the choice of, and is a rank-one subgrou®y(F) of G4. The group
Hom(S, G4) of homomorphisms fronfy; to Gy is isomorphic to Ry)" where Ry is
Z/2 whend = 1 andZ whend = 2. Each rank-one subgroup @4 corresponds
uniquely (up to sign) to a primitive vector of Ho®(, G4) which generates a rank-
one direct summand of Hor§{, Gq4). Therefore everyMy defines what is called the
characteristic functionof My

Ar F — Hom(Sy, Gg)

such that the image df € F is a primitive vector of Hom$;, G4) corresponding to the
rank-one subgrousq(F). Whend = 1, such a primitive vector is unique for eaéh
but sign ambiguity arises wheth= 2. This sign ambiguity can be resolved if an omni-
orientation (see [1]) is assigned to a quasitoric manifidlgl in particular if Mg admits
an almost complex structure left invariant under the acfgee Lemma 1.5 and 1.10
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of [9]). In any case, the characteristic functianof My must satisfy the following
condition, see [5].

CoONDITION 2.1. If n facetsFy,..., F, of P intersect at a vertex, then their im-
agesi(Fy), ..., A(F,) must form a basis of Hongj, Gg).

Conversely, for a functiorh: 7 — Hom(&;, Gq) satisfying Condition 2.1, there
exists a unique (up to equivalence) small cover (wkhes 1) and quasitoric manifold
(whend = 2) with A as the characteristic function, see [5] or [2] for detailhefe-
fore in order to classify all small covers or quasitoric nfalais over a simple convex
polytope P, it is necessary and sufficient to understand the functiosatisfying Con-
dition 2.1.

Let Fq,..., Fx be the all facets oP and letw;, ..., wx be the indeterminates cor-
responding to the facets. Then it is shown in [5] that the \egiant cohomology ring
Hg,(Mg; Rq) is the face ring (or the Stanley—Reisner ring) Rfwith Ry coefficient as
graded rings, that is,

(2.1) Hg,(Ma; Ry) = Ra[wy, ..., ]/,

where the degree @ is d for eachi and| is the homogeneous ideal of the polynomial
rng Ry[wi, ..., wk] generated by all square-free monomials of the fesm - - w;, such
that the intersection of the corresponding facgts. . ., F_ is empty.

We choose a basis of Ho®(, G4) and identify Hom&;, G4) with (Ry)". We form
a k x n matrix whosei-th row is A(F) € (Ry)", i.e.,

A(F1)

(2.2) @ij) = :
A(Fx)

Let Aj = A1jw1 + - -+ + Akjwx, and letJ be the ideal ofRy[w, . . ., w] generated by
Aj for j=1,...,n Then we have

(2.3) H*(Mg; Ry) = Ry[or, ..., ex]/(I + J).

REMARK 2.2. In general it would be natural to usecalumnvector to express
MF) (see [1]), but then, as noticed in [10], we need to take asprase of a matrix
at some point to adjust our description to the notation usefltj and [7]. Therefore
we will use arow vector to expresa.(F) in this paper.

As is seen above, most of the arguments for quasitoric mdsifaork for small
covers withS' and Z replaced byS® and Z/2 respectively. In fact, the study of small
covers is a bit simpler than that of quasitoric manifolds ur oase. So we shall treat
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only quasitoric manifolds throughout this paper. The maiffeence between quasi-
toric manifolds and small covers in our arguments is stateBémark 6.5, so that the
arguments after Section 7 are unnecessary for small covers.

3. \ector matrices

From now on, we take

m m
le_[A”i, with Zni =n,
i—1 i—1

where A" is the n;-simplex fori =1,..., m. Let {vg, e vLI} be the set of vertices
of the simplexA™. Then each vertex oP is the product of vertices oAA"’s for
i =1,...,m, hence the set of vertices &1 is

{vjl...jm:vjllx---xvﬁ?r‘|05 ji <ni}.

Each facet ofP is the product of a codimension-one face of one/df's and the
remaining simplices. Therefore the set of facetsPofs

F={(F |0<k=n,i=1...,m

where Fl = A™ x ... x AM-1x fl x A+ x...x A™ and f, is the codimension-one

face of the simplexA™ which is opposite to the verteo{(i. Hence there arg ™ (n; +

1) = n + m facets inP. Since P is simple, exactlyn facets meet at each vertex.

Indeed, at each vertex;,..; of P all n facets in}'—{Fjil i =1,..., m} intersect, in

particular, then facets in the set
F—{Fyli=0,....,m}={(F,...,FL .. F"...,F"

Nm

intersect at the vertexyg..q.
Let A: F — Hom(S, (SH") be the characteristic function of a quasitoric manifold
over P. By Condition 2.1,n vectors

(3.1) AMFED, AR - AR, L AR

form a basis of Honf', (S')") and we identify Hom®', (S')") with Z" through this
basis. Then the vectors in (3.1) correspond to the standasib lelements

e=(,0,...,0),...,e.=(0,...,0,1)
in the given order. For the remaining facetsF/, we set

MF)=a ez" for i=1,...,m.
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In this way, to the characteristic function of a quasitoric manifold oveP we have
a correspondingn x n matrix

a
: |, where g €Z".
am
Each row vectorg; can be written as
a=@,....,a,....,a"
= (&Y, ah) @l ekl @ el )

where aij = [aijl, e, aijnj] e Z" for j =1,..., m. Therefore we may write
a a ay
A= : = O
(3.2) 1 1 m m
& o @y, &; -0 A,
a%ﬂ a%ml aml amnﬂ
with aij €z foralli =1,...,m. In other words, thanxn matrix A can be viewed

as anm x m matrix whose entries in th¢-th column are vectors irZ"i. From now
on, we shall view the matribA this way and call it avector matrix

Since the characteristic functionsatisfies Condition 2.1, we need to translate this
into a condition on the corresponding matéx For this let us fix some more notation.
For given 1< k; < n; with j =1,..., m, let A.k, be them x m submatrix of A
whose j-th column is thek;-th column of them x n; matrix

]

i i j
a apy Ay

alnj

ah aly o laly | ah

Thus

m
Ay, 0 Ay,
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EXAMPLE 3.1. LetP = A2x Al be a triangular cylinder. Lefv}, vi, v3} be the
vertices of A2 and {v3, v} the vertices ofAl. Then

{voo, v10, V20, Vo1, V11, V21}
is the vertex set oP whereuj; = v} x vf. The set of facets oP is
(Fo. Fi, F2, F§. Ff)

where F' = f1 x A' for i =0, 1, 2 are the side rectangles afid = A% x f? for
j = 0,1 are the top and bottom triangles. The characteristictiom A»: F — 72 is
assigned as follows:

MR =a, AMFD) =6, AMF)=e,
MR =a, AMF) =es.

The corresponding 3 matrix A is
a~(2)
=Y
1 aZ
= (ai ; as a 2x2 vector matrix
aG &
_ (ah aj, a%l)
ay a3 &
Thus the 2x 2 submatricesA;; and Ay are as follows:

1 42 1 42
Ars — <a11 all) Aot — <a12 all)
11 = 1 , | f21= 1 > |
a; & ay &
Condition 2.1 at a vertex, sapy,;, can be translated as follows: since the facets
Ft, Fi and FZ intersect atvp;

& 1 0 0

det| a; | =det| af; af, af

& a, &, a5
=detAy; = £1.

Similarly Condition 2.1 atvg; is equivalent toa§l = 41, and that at,g is equivalent
to aj, = +1. These conditions are equivalent to the condition thapaticipal minors
of Ay (including the determinant of\,; itself) are £1. Similarly Condition 2.1 at
other vertices is equivalent to all principal minors Af; being 1.
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The last statement in Example 3.1 holds in generapriacipal minor of anmxm
vector matrix A of the form (3.2) means a principal minor of amx m matrix Aj,...j,
for some 1< j; < ng,..., 1< jm < nn where the determinant oA;,..;, itself is un-
derstood to be a principal minor d4;,...;,..

Lemma 3.2. Let P=[[",; A". If an mx m vector matrix A of the forn(3.2)
is associated with the characteristic functianof a quasitoric manifold over Pthen
Condition 2.1for A at all vertices of P is equivalent to all principal minors of ke-
ing £1.

Proof. The basic idea of the proof is same as in Example 3dedd, at a vertex
Vj,-jn Of P all n facets inF' = F—{F| |i =1,...,m} intersect. Hence Condition 2.1
at vj,..j, is equivalent to the determinant of tlnex n matrix havingi(F) as its row
vectors for allF € 7' being +1. But this determinant is nothing but a principal minor
of the m x m matrix Aj,..;, up to sign. Therefore the lemma follows. [

REMARK 3.3. It follows from the lemma above that each compom%ptin the
diagonal entry vectog = (a4, ..., &, ) of the matrix A, see (3.2), ist1 for j =
1,...,n;. The characteristic functioh is defined up to sign and if we change the sign
of a vectorA(Fl(j) in (3.1) (sayA(Fl(j) = gq), then the column vector corresponding
to A(ij) (the I-th column) changes the sign; so we can always arraaq-‘nge: 1 for
i=1,...,mandj=1,...,m, ie,a =(1,...,1) by an appropriate choice of signs
of the vectors in (3.1). In the following we always taﬁe: a,...,)fori=1,...,m
for the matrix A associated with a quasitoric manifold unless otherwistedta

4. Quotient construction

It is known that any quasitoric manifold over a simple popgois realized as the
orbit space of the moment-angle manifold of the polytope bme free torus action,
see [1] and [2]. When the polytope [§, A™, the moment-angle manifold is the
product [T, S™*! of odd dimensional spheres. In this section we shall desdtile
free torus action on it explicitly. We remark that the caseewemn; = 1 for all i (i.e.,
the polytope is amrm-cube) is treated in [7] and [4].

Lemma 4.1. If C = (gj) is a unimodular matrix of size mthen the system of
equations

Zit...fm =1, for i=1,...,m

has a unique solutionz=--- =z, =1in St c C.
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Proof. Writez; = exp(27r6;+/—1) with 6; e R for j =1,..., m. Then the equa-
tions in the lemma are equivalent to

G101+ -+Cmbn=k for i=1,...,m

for somek; € Z. SinceC is unimodular andk;’s are integersfj's are also integers,
which meansz; =1 for j =1,..., m. O

Let A be anm x m vector matrix in (3.2). We construct a quasitoric manifold
M(A) with A as its corresponding matrix. Consider the subspdce [, S +1 of
[T, €™+, which is the moment-angle manifold ¢f[{_, A™. Let K = (SH)™ and
define an action oK on X by

1

(@ Om) (@ 2 @ Z0)

1 1 1 1
(4.1) = (@7, (@ g™, ... (™ - gn™)Zh).
(Omf, (5% g2, (g - gz )
where @1,...,9m) € K and @, ..., 27,) e St cchifori=1,...,m.

Lemma 4.2. The action of K on X defined if#.1) is free if all principal minors
of A are equal to+1.

Proof. To prove that the action is free we have to show thatetigation

1

@ Om) (- ) (@ )

(4.2) 1 1 m m

=0z -z (- Z0)
implies g = --- = gy = 1. Since &, ..., 7,) € $"*1, at least one component, say
Ziji' is nonzero for every =1,..., m. If z{) =0 foralli =1,...,m, then equation
(4.2) implies thatgf1ii g —1foralli=1,..., m. Since detA,..j, = +1 from
the hypothesis, Lemma 4.1 implies thgit=--- = gn = 1. Now supposa{) = 0 for
somei = 1,..., m. For simplicity let us assume that there is some § < m such that
zZi=---=25=0andz, #0 for alli =s+1,...,m. Then equation (4.2) implies that
g1=---=0s=1and gg(fll)“ .gm =1foralli =s+1,...,m. Since all principal
minors of A;,..;, are =1, Lemma 4.1 implies thags;1 = --- = gm = 1, which proves

the lemma. O
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Since the actiorK on X is free, the orbit spaceX/K is a smooth manifold of
dimension 2. Let M(A) be the orbit spaceX/K with the action ofG = (S)" de-
fined by

(e ) 2 2y @ 2]

(4.3)
=z 1z1, - thZn)s oo (@ taone a2l - ez

Then we have the following proposition.

Proposition 4.3. M(A) is a quasitoric manifold ovef["; A™ with A as its as-
sociated matrix

Proof. We think ofg-simplex A% as

AY = {(Xo, ey Xq) € Rq+1

q
X0=0,...,% =0, inzl .
i=0

Then P = [T, A" sits in [TL,; R"*1. It is easy to see thaM(A) with the action
of G = (SY)" is a quasitoric manifold oveP with the projectionz: M(A) — P de-
fined by

r((Z oz ) @ D) = (2 2 (2 (2 D)
The facetsF| of P are given byx; = 0 for some 1<i <m and 0< j <n;, wherex;
denotes the j(+ 1)-st coordinate of thé-th factor R" 1. The isotropy subgroup of a

point in z~1(int F]-i) is a circle subgroup. One can check that it is (@L;ll N + j)-th

factor of G = (S')" when j > 1 and the circle subgroup
[((g%, ..., g%),..., (g%, ..., %)) |ge S
whenj = 0. This shows that if we denote the characteristic functibM@A) by A, then
AMFD, o MFL) L AFD), AR
are the standard basis elementszéfin the given order and
AMF)=(@%,....ak),....@%....ah ez for i=1,...,m,
which is thei-th row of our matrix A, proving the lemma. O

5. Conjugation of vector matrices

The correspondence between a quasitoric manifold dves [, A™ and an
m x m vector matrix A depends on the order of the simplicad'’s in the product
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formula of P. Namely, if we consideP = [[; A™® for some permutatiornr of
{1,..., m}, then the correspondingn x m vector matrix A, will be different from A.
In fact it is not difficult to see that ifE, is the m x m permutation matrix ofo ob-
tained from the identity matrix by permuting theth row and column taoo (i)-th row
and column respectively for all=1,...,m, then A, = EUAE(;l. One should be cau-
tious that, as am x m vector matrix, the entries in thg-th column of A, are vectors
in Z"® while the j-th column of A are vectors inz"i.

As an example let us consid& as in Example 3.1. If we considd? = A*x A?
instead of A2 x Al then the corresponding22 vector matrixA, is given by

2 1
vo (2 3)
(2
10 10/ °
The entries of the first column above are vectorZimnd the ones in the second col-
umn are inZ?.
We say that twam x m vector matricesA and B are conjugateif there exists an
m x m permutation matrixg, such thatB = EUAEgl. In this case, the quasitoric
manifolds M(A) and M(B) defined in Proposition 4.3 are equivariantly diffeomomphi
Let A be anm x m vector matrix of the form (3.2). Aproper principal minor
(resp.determinant of A means that a proper principal minor (resp. determinant) of

Aj,..j, for some 1< j; < ng, ..., 1= jm < nm. The set of proper principal minors
or determinants is invariant under the conjugation refatio

Lemma 5.1. Let A be an mx m vector matrix of the forn{3.2) such that all
the proper principal minors of A ard. If all the determinants of A ard, then A is
conjugate to a unipotent upper triangular vector matrix bé tfollowing form

1 02 B} ... b
o 1 B - by
(5.1) : SR
16D,
0 1

where0 = (0,...,0), 1=(1,..., 1) of appropriate sizeslf all the determinants of A
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are £1 and at least one of them isl, then A is conjugate to a vector matrix of the
following form

1 v 0 .- 0

o 1 B ... 0
(5.2) : R E

0 1 b

bt 0 1

whereb' is non-zero for any i and [, by, where b is any non-zero component of
b', is (~1)M2. (Therefore the non-zero components b\ are all same for each i and
they arex+1 or £2.)

Proof. The lemma is proved in [10] whef is an ordinarym x m matrix except
the last statement on the componentsblaf and the proof for anm x m vector matrix
is quite similar. So we refer the reader to the cited paper simall prove only the
statement on the components ot

Let B be the vector matrix of the form (5.2). The determinantsAoére +1 and
at least one of them is-1 by assumption while any determinant Bfis of the form
1+ (=1)™1[I™, b whereb; is a component ob'. Since the set of determinants of
A agrees with that oB as remarked above, it follows that there is a non-zZgrdor
eachi and[]", b = (—1)™2 whenever each; is non-zero. This implies the statement
on b’s in the lemma. ]

6. Generalized Bott towers

A quasitoric manifold over a product of simplices also appea iterated projec-
tive bundles. For a complex vector bundle we denote the total space of its projec-
tivization by P(E).

DEFINITION 6.1. We call a sequence
(6.1) Bm -5 Bm.1 —5 ... 2% B; 25 By = {a point,

where B; = P(C @ &) andé; is the Whitney sum of complex line bundles ov@y_s,
a generalized Bott toweand eachB; for j = 1,..., m a generalized Bott manifold

Each B; admits an effective action oB; = (ShHEi-dmé& defined as follows. As-
sume by induction thaB;_, admits an effective action oG;_,. Then it lifts to an
action ong; since H(Bj_;) = 0 although the lifting is not unique, see [8]. On the
other hand sincé; is the Whitney sum of complex line bundles, it admits an actio
of (SH)dmé py scalar multiplication on fibers. These two actions conavand define
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an action ofG; on &;, which induces an effective action &; on B;. Without much
difficulty it can be shown thaB; with the action ofG; is a quasitoric manifold over

]_[ijzlAdimé‘. Furthermore eacl8; is a nonsingular toric variety (i.e., a toric manifold).

Proposition 6.2. Let M be a quasitoric manifold over B [T™; A™, and let A
be an mx m vector matrix associated with M'hen M is equivalent to a generalized
Bott manifold if A is conjugate to an m m upper triangular vector matrix of the
form (5.1).

REMARK 6.3. We will see later that the “only if” statement in the posfiion
above also holds, see Lemma 5.1 and Theorem 6.4.

Proof of Proposition 6.2. We may assume tivat= M(A) and A is of the form
(5.1). We recall the quotient construction in Section 3. Kgt= ]_[i":l gt for j =
1,...,m, so Xy agrees withX in Section 3. The grouK = (S)™ is acting onX as
in (4.1) andX/K = M(A). We setB; = X;/K, so By = M(A). In the following we
claim that the sequence

Bm -5 Bm.1 —5 ... 24 B, 25 By = {a point

induced from the natural projections froiy on X;_; for j =m,..., 2, 1 is a gener-
alized Bott tower.

Since A is of the form (5.1), the lastnf — j) factors of K = (S)™ are acting
on X; trivially, so the action ofK on X; reduces to an action of the produk of
the first j factors of K = (SY)™. This means thafX;/K = X;/K;. Moreover, the
last factor ofK; is acting on the last facto®"i*! of X; as scalar multiplication and
trivially on the other factors ofX;. Therefore the maprj: B; = X;/K;j — Bj_1 =
Xj_1/Kj_1 is a fibration withCP" = S+1/S! as a fiber and this is actually the
projectivization of a complex vector bundlg over Bj_;. In fact, the bundle; is
obtained as follows. LeV; be C"i+! with the linearK;_;-action defined by

@0 G 0)- @ 2)
— (2 (g )z (00 V)

where bij = (bijl, cee bijnj) is a vector in (5.1) foi =1,..., ] —1. Since the action
of Kj_1 on X;_1 is free, the projection

(Xj—1x Vj)/Kj_1 = Xj_1/Kj_1 = Bj1

becomes a vector bundle, where the actiorKef; on X;_; x V; is a diagonal one. This
is the desired bundlg; and sinceV; decomposes into sum of complex one dimensional
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K-modules, the bundlg; decomposes into the Whitney sum of complex line bundles
accordingly. ]

One can describe the bundlgsin the proof of the proposition above more explicit-
ly. For that let us fix some notation. For a vector bungliend a vectoa = (ay,...,a,) €
Z" let n? denote the bundle® @ - - - ® n?. For vector bundlesy, .. ., nk over a space
and vectorsa; = (ag1, ..., @), .- ., & = (&1, - . ., &n) let

k
O =miro--onR
i=1
:(niﬂ®...®nsk1)@...®(ni‘ln®...®,7Ekm)

where the last expression denotes the Whitney sum of compeise tensor products.
Let £2 denote the canonical line bundle ovBy and let&? = x5 (£2) the pull-back

bundle of the canonical line bundle ovB4 to B, via the projectiont,: B, — B;. In

general, Ie'rgjj_1 be the canonical line bundle ové;_;, and we inductively define

g =m0 om’ (Y for k=2,...,j-1.
Then one can see that = )71

A generalized Bott manifold is not only a quasitoric mardfolver a product of sim-
plices but also a complex manifold on which the action presthe complex structure,
in particular, it has an almost complex structure left ifsar under the action. The fol-
lowing theorem shows that the converse holds. We remarkhiatquivalence (1 (3)
is a particular case of [6, Theorem 6].

Theorem 6.4. Let M be a quasitoric manifold over B []™, A™, and let A be
the mx m vector matrix associated with M which hasas the diagonal entriesThen
the following are equivalent
(1) M is equivalent to a generalized Bott manifold
(2) M is equivalent to a quasitoric manifold which admits an inaat almost complex
structure under the action
(3) All the principal minors of A arel.

Proof. The implication (1)}= (2) is obvious and the implication (3} (1) follows
from Proposition 6.2 and Lemma 5.1, so it suffices to proveitfy@ication (2) = (3).

We may assume tha¥l itself admits an invariant almost complex structure. As is
noted in the paragraph before Condition 2.1 we can definerawigmbiguous charac-
teristic functioni of M. Let A be the matrix associated with To each cubical face
of P, the submanifold ofM over it inherits an invariant almost complex structure, so
it follows from [10, Theorem 3.4] that all principal minorg the restriction of—A to
each cubical face oP are equal to 1. Therefor& = —A and this proves (3). [
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REMARK 6.5. A difference between quasitoric manifolds and smailec® ap-
pears here. Namely, not every quasitoric manifold over aycbof simplices is equiv-
alent to a generalized Bott manifold as is seen from Theoretn while it follows
from the real version of Proposition 6.2 and tAg2 version of the former part of
Lemma 5.1 that every small cover over a product of simplicesst out to be equiva-
lent to a generalized Bott manifold (ové).

7. Cohomology ring

The connected sur@P? 4 CP? is a quasitoric manifold over a square but not homeo-
morphic to a Bott manifold (or Hirzebruch surface) over aagu In the rest of this
paper, we shall give a sufficient condition in terms of cohtwgy ring for a quasitoric
manifold over a product of simplices to be homeomorphic temegalized Bott manifold
(Theorem 8.1). This section is a preliminary section for plepose.

Lemma 7.1. Let M be a quasitoric manifold ovef[", A" and let A be the
vector matrix of the form(3.2) associated with M Then

(7.1) H*(M) = Z[y1, ..., ym]/L
where the ideal L is generated by the following m expressions
Nk m
(7.2) yk-l_[<2ai‘§yi> for k=1,...,m.
j=1\i=1
Proof. We will use the result (2.3). In our case, the matriXdrR) is of the form
A
73) =)
n
where |, is the n x n identity matrix. Let

1 1 m m
Wy - oy Wpy e ..

be the indeterminates corresponding to the facets

Fov-wv Foweo s B R

Nm

in the given order. Then by (2.3) we have

(7.4) H*(M) = Z[w§, ..., op ..., of ..., ot 1/(1 + J)

ny?

where | is the ideal generated by the monomials
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because the intersection of faceFt§, ey Fr‘,i is empty fori =1,...,m, and J is the
ideal generated by

A= Alja)é+"‘+)»mjw6n
+ Am+1)j w% +eeet )»(m+n1)jwrln
...

ey i) @1 T Ao,
for j =1,..., m+ n because the order of the row vectors in (7.3) is
AFD), -  AF, AFD), o AR ), AFY, - AR,
Ifj=( ikjni)+l and 1<I < ny, then
A = afwg +aywl 4 - + a0l + of.
Sinceij =0 in H*(M), we have that
(7.5) of = —(jwp + a5 wf + - - + anep).
Setyy = wg for k=1,...,m. Thenwf---wk = 0 in the cohomology ring implies that
Nk
Yk H(aﬁ Yi+a5y2 + -+ apYm) = 0.
=1
This proves the relation in the lemma. ]

Lemma 7.2. Let M and y,...,ym be as abovelet x= ZT:lbj y; be an element
of H*(M) such that b # 0 for some j Then Xi # 0 in H*(M).

Proof. Suppose” = 0 on the contrary. The(lzrjnzlbj yj)nj must be in the ideal
L in (7.2). However,y]thrl is the least power of; which appears as a term in a poly-

nomial of L while (3", b; yj)nJ contains a non-zero scalar multiple p?" because
b; # 0 by assumption. This is a contradiction. ]

Lemma 7.3. Let M(j) be a facial submanifold of M ovef[i”;éj A". Then
H*(M(j)) is equal to(7.1) with y; = 0 plugged in

Proof. Lety,..., ym be the generators dfi*(M) in Lemma 7.1. We may assume
that M(j) is over ]_[i";éj A" x {v} wherev is a vertex of A" and also thaty; is the
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dual of the characteristic submanifold; over [T,; A™ x AM~*(v) where A™~(v)
is the facet of A" not containingv. Since M(j) and M; have no intersection, the
restriction ofy; to M(j) vanishes.

We know that

(76) H*(M) :Z[ylv"'! Ym]/(gla---a gm),

where gi is the polynomial in (7.2). Sincg; maps to zero inH*(M(j)) and g; con-
tains y; as a factor, we have a natural surjective map

ZIya, -y G Yl (G -0 G- G) = HA(M()),

where g, denotesgy with y; = 0 plugged in and™ denotes the term there is dropped.
The degree ofg, for k # j is ny 4+ 1 andg, contains the terny,'jk”. Therefore, the
ranks of the both sides above agree, so that the map is anrigbisim. This proves

the lemma. OJ

Lemma 7.4. Let N be the smallest number amongsnIf the vector matrix as-
sociated with M is of the fornf5.2) in Lemma 5.1,then there is no non-zero element
in H2(M) whose(N + 1)-st power vanishes

Proof. Lety be an element oH?(M) whose (N + 1)-st power vanishes. Since
N is smallest among’s, y can be expressed as a linear combination of the canonical
generatorsyi’s with nj = N by Lemma 7.2, say = »_, _yay with & € Z. All
relations in H*(M) of cohomological degree B( + 1) are generated byiki”(yi +
biyi_1)" %’s with n; = N over Z, wherey;_; with i =1 is understood to b, b; is
the non-zero component of the vectarin Lemma 5.1 andk; is the number of zero
components ob;. Note thatk; < N whenn; = N sinceb; is non-zero. It follows that

we obtain a polynomial identity

N+1
7.7) (Z ayi> = Y a Ty Ty by R
ni=N

ni=N

CAse 1. The case wheré&N = 1. In this casek; = 0 for i with nj = N = 1.
Suppose that; is non-zero for someé with n; = 1. Comparing the coefficients of
yi2 andy;y;_; at both sides of the identity (7.7) with an observation tlmt tight-hand
side of (7.7) contains & Yy;_;-term, we see thati_; =1 and &g_1 = aizbi. Sinceg;
andb; are both non-zero, this shows that, is also non-zero anda2_, = a;b;. Since
ni_1 = 1 andg_; is non-zero, the same argument can be applied-tal instead of
i. Repeating this argument, we see that=1 and &,_1 = a;b; for anyi. It follows
that [T™, by = 2™ which contradicts the fact thdf[", by = (=1)™2 in Lemma 5.1.
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CASE 2. The case wherd > 2. When we expand the right hand side of the
identity (7.7), no monomial in more than two variables appeaSinceN > 2, this
implies that at most two coefficients amoags are non-zero. Since albj’s are non-
zero, it easily follows from (7.7) that the case where onle @oefficient among’s
is non-zero does not occur.

Suppose that there are exactly two non-zero coefficienisasanda;. Then only
two variables appear at the left hand side. Unless- 2 andn; = n, = N, at least
three variables appear at the right hand side of (7.7) which ¢ontradiction. Ifm =2
andn; = ny = N, then the identity (7.7) is

(aayr + aya)N 't = al Lyt yy 4 by)N R Al Flyke iy, 4 byyy)N e,
Replacingy, by —b,y; above, we obtain an identity
|ag — aghy| N = Jay [N
where we used the fadhb, = 2 in Lemma 5.1. Sincepb, # 0, it follows from the
identity above that & = ayb,. Similarly, replacingy; by —b;y, above, we obtain

2a, = a;b;. These two identities imply that;b, = 4 which contradicts tdy; b, = 2.
This completes the proof of the lemma. ]

8. Cohomologically product quasitoric manifolds

We say that a quasitoric manifolM over []™; A" is cohomologically product

over Q if there are elementsy, ..., Xy in H3(M; Q) such that
(8.1) H*(M; Q) = Q[Xq, - . ., Xm] /O, ..., Xty

The purpose of this section is to prove the following.

Theorem 8.1. If a quasitoric manifold M ovef]"; A™ is cohomologically prod-
uct over@Q, then the vector matrix associated with M is conjugate to got@nt upper
triangular vector matrix so that M is homeomorphic to a generalized Bott manifold

REMARK 8.2. We prove in [3] that if a generalized Bott manifold is oofological-
ly trivial over Z, then it is diffeomorphic to a product of complex projecta@aces. This
together with Theorem 8.1 implies that if a quasitoric maldifover a product of sim-
plices is cohomologically trivial oveZ, then it is homeomorphic to a product of complex
projective spaces.
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In the following M is assumed to be cohomologically product ogr We have

another set of generatofy;, ..., ym} in Lemma 7.1. Since bothkx,, ..., Xn} and
{V1, ..., Ym} are sets of generators ¢f°(M; Q), one can write

m
(8.2) yj=Y cix for j=1,....m and c;€Q,

i=1

where the coefficient matri = (c;;) has non-zero determinant.

Lemma 8.3. By an appropriate change of indices in'sxand y’s, we may as-
sume that g #0 forany j=1,..., m.

Proof. We may assume that > n, > --- > n, by an appropriate change of in-
dices. LetS={Ny,..., Ng} be the set of all distinct elements of, ..., n, such that
N; > -+ > Nx. We can view{n,, ..., nyn} as a functionu: {1,..., m} - N such that
n(j) = nj. ThenSis the image ofu. Let J = w™Y(N)) for | =1,..., k. We write

m
(8.3) x =Y djy; for i=1,...,m and d;€Q.
j=1

Since xini+1 =0, dj =0if nj <nj by Lemma 7.2. This shows thd = (d;) is a
block upper triangular matrix because we assume n, > --- > ny,. The matrixC

in (8.2) is the inverse of the matrio, so C is also a block upper triangular matrix
and of the same type &3, i.e.,

Cy *
C= Co
0 | Cy
whereCy (I = 1,...,k) is a square matrix formed from;; with i, j € J. Since

detC # 0, we have de€,; # O for anyl. By definition of determinant de&; =
2o 89N0 [} Cjo(j) Where the sum is taken over all permutatienn J. Therefore
there must exist a permutation on J such that[[;; Cjo(j) # 0. This implies the
lemma. O

Lemma 8.4. The facial submanifold Nj) of M over ]_[im7éj A™ is also
cohomologically product ove® for any j.
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Proof. SinceH*(M(j)) is H*(M) with y; = 0 plugged by Lemma 7.3, it follows
from (8.2) that

H*(M(j), Q) = Q[Xl, cee Xm]/<X]r_1l+l, ey XR.]erl, Z Cjixi>-
i=1

Herecj; # 0 by Lemma 8.3, so that one can eliminate the variagleising the rela-
tion Zim=1 cjiXi = 0. Therefore a natural map

QX - Kooy X /O, XL XY S HE(M(): Q)

is surjective. Since the dimensions at the both sides ab®veaane, this map is actually
an isomorphism, proving the lemma. ]

Now we shall prove Theorem 8.1 by induction on the numbeiof factors in
[T™, A™. Suppose thaM is cohomologically product ove®. Then any facial sub-
manifold M(j) is cohomologically product ove® by Lemma 8.4. Therefore by in-
duction assumption all the proper principal minors of thetoe matrix A associated
with M are 1. It follows that the vector matriXA is conjugate to a unipotent upper
triangular vector matrix or to a matrix of the form (5.2) inrhea 5.1. But the lat-
ter does not occur because sinkkis cohomologically product ove®, H2(M) must
contain a non-zero element whodg ¢ 1)-st power vanishes, wheng is the smallest
number amongy;’s, but this fact contradicts Lemma 7.4. This proves Theofefn
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