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1. Introduction

Let X be a topological space with AC X a subspace, and let 7: (X, 4)—

(X, A) be a continuous map of period p, p an odd prime. We define oriented

equivariant bordism groups with maps of preiod p which are analogues of the

equivariant bordism groups of involutions given by Stong [6]. As a special
case we obtain Z,-bordism groups defined by Conner and Floyd [2].

Our aim is to compute such bordism groups and to catch a clearer view of
their structures.

The main results of this paper are as follows.

In §2 we define (free) oriented equivariant bordism groups Ox(X, 4, 7)
(Q«(X, 4, 7)) and another bordism group M«(X, 4, 7), a generalization of the
bordism groups My=2>171,,(BO(*—m)) of involutions given by Conner and
Floyd in [2,28.1]. And we obtain

Theorem 1. The sequence

(X, A, 7)o O, A, 7)— o WYX, Ay T) s Oy (X, A, ) i
exact, where iy forgets freeness, v is defined by taking the normal disk bundle of the
fixed point sets and 0 is defined by taking boundary.

As a special case we obtain an exact sequence

l.* 14 6 -

The Q-modules My(Z,) and O«(Z,) may be given ring structure, and in
this sequence we see that (J=im i, is an ideal of O4(Z,). We then have

Corollary 1.2. Let é*(Z 2)=04(Z)|9. Then the sequence

A v 0 _
0= Ox(Z)) —> Mx(Zp) —> Qx(Z ) >0

is exact.

* The author was supported by a fellowship from the National Science Council of the
Republic of China during April 1969-March 1970, and then holds a fellowship from
th: United Board for Christian Higher Education in Asia from April 1970 to March 1971.
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In §3 we define the Smith homomorphism and obtain
Theorem 2. The sequence

~ N A P
e (XX SE, TX ) —> (X, T) ——> Qp (X, T) —> O, (XX S, TX p)
—>«e+ 15 exact, where = is defined by taking projection and P is defined by taking
product, p=exp (2rzi[p).

As a special case we have

Theorem 3. The sequence
P’ . A
0— Qn—l — Qn—1 —_—> Qn(Zp) — Qn—z(zﬁ) -0
is exact, where P’ is defined by sending [M] into p[M] and =’ is defined by sending
[N] into [N]-[S?, p].

This theorem gives immediate corollaries of well-known results discussed
in [2].

In §4 we define weakly complex bordism groups and get some analogous
results obtained in §3 which we list in Theorem 4.

In §5 we determine the Q-module structures of (%*(Z3) and Ox(Z,), and
obtain

Theorem 5. As free Q-module, é*(Zs)w SNV Q-BeDO(SY), where S Q- B,
k>1 k>1

is a free Q-module generated by Bk:360”—1—[M 0652 [M*)05 4+, with M*,
k=1,2, .-+, closed oriented manifolds such that for each k=1, 3at,,_,+[M*]atsn_s
+[M®) ety -=0 in Dy(Z,) where oty ;=[S**7, p] with p=exp (27i[3), and
with 0,=[5"— ] the trivial 2-plane bundle over a point x; and O4(S?) is the bordism
group of semi-free S'-action formed from O(Z,) just by replacing Z,-action by
semi-free S*-action in Ow(Z,). The Q-module structure of O(S*) has been deter-
mined by Uchida [7], Shimada and the author [5].

We also obtain

Theorem 6. As free Q-module, Ox(Z,)~ > Q- P O«(S?), where p,=
>0

[Z,, o], o the map of period 3 which interchanges elements of Z,, and u, is taken
to be such an element of O4(Z,) that v(u.)= B for each k>1.

It is a great pleasure to express my thanks to Professor N. Shimada for his
many valuable discussions and suggestions, and also to Professor A. Komatsu
for his helpful advice and criticisms for writing this paper when the author was
a Fellow in the Mathematics Institute of the Kyoto University. 'The author also
wishes to express his appreciation to Professor F.Uchida who has read the
final manuscript with improvement on some proofs.
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2. Bordism groups with maps of odd prime period

In this section we study the oriented equivariant bordism groups with
maps of period p, p an odd prime, which are analogues of the equivariant bor-
dism groups of involutions provided by Stong [6], and as a special case we
obtain Z ,-bordism groups given by Conner and Floyd in [2].

Let X be a topological space with AC X a subspace, and let 7: (X, 4)—
(X, A) be a continuous map of period p. A (free) oriented equivariant bordism
class of (X, 4, ) is an equivalence class of triples (M ", T, f) with M™ a compact
oriented differentiable manifold with boundary, T': M"—M?" a (fixed point free)
orientation preserving diffeomorphism of period p, and f: (M*, 0M”*)—(X, A) a
continuous equivariant map sending 0M * into A. Two triples (M3, T,, f,) and
(M3, T, f,) are bordant if there is a 4-tuple (W**', V* T, f) such that W"**
and V" are compact oriented differentiable manifolds with boundary; 0V "=
OM3U—0M?Y and OW""'=M3U—V"U—Mt/0MTU—0Mi=0oV"; My, MY
and V" are regular submanifolds of 9 whose orientation are induced by that of
W; T; (W, V)—(W, V) is a (fixed point free) orientation preserving diffeormor-
phism of period p restricting to 7, on M, and T, on M,; and f: (W, V)—(X, A)
is a continuous equivariant map restricting to f, on M, and f, on M,. Denote
the equivariant bordism class of (M, T, f) by [M, T, f], and the collection of all
such classes by O,X, 4, 7) in which T: M—M is not necessarily free.
04X, 4, 1) is called the group of n-dimensional oriented equivariant bordism
classes of (X, 4, 7). The group of n-dimensional free oriented equivariant
bordism classes of (X, 4, 7) is denoted by Q,(X, 4, 7) in which every T: M —M
is fixed point free. An abelian group structure is imposed on O,(X, 4, 7)
(Q.(X, 4, 7)) via disjoint union. The weak direct sum Ou(X, 4, 7)=
>0X, A4, 7) is a graded Q-module. From element [M*, T, fl=0(X, 4, 7)
(or Q,(X, 4, 7)) and a closed manifold V"”=(Q,, we give an element [M”*x V'™,
TX1, for]E0 s m(X, 4, T) (or QpiW(X, 4, 7)).

Notice that if X is a point and 7 is the identity map, then Ox(pt, 1)=04(Z},)
and Qq(pt, 1)=Qx(Z,) where O(Z,) is the unrestricted Z,-bordism group in
which the action is not necessarily free and Q4(Z,) is the free (i.e., fixed point
free) Z ,-bordism group. We also notice that an action of Z, is equivalent to a
map T: M —M of period p, so (M, Z,) is replaced by (M, T) to denote a Z,-
manifold in these cases.

Given an equivariant map @: (X, 4, 7)—(X’, 4’, 7’) there is associated a
natural homomorphism @y: O(X, 4, 7)—0,(X’, A’, 7') given by @[M?*, T, f]
=[M", T, ¢ f]. There is also a homomorphism 9: O,(X, 4, 7)—0,_,(4, 7)
given by 9[M ", T, f]=[0M™", T |0M, f|dM]. Let( denote the category of pairs
with map of period p, (X, 4, 7), and equivariant maps of pairs. We then have

Proposition 1. On the category C of pairs with map of period p and
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equivariant maps of pairs the oriented equivariant bordism functor {O.«(X, A4, 7),
@, 0} satisfies

(1) If @,, @, are equivariantly homotopic maps, then @ =@, .

(2) If U is an invariant open set with Uc Int A, A closed, then the inclusion
i: (X—U, A—U)—(X, A) induces an isomorphism

ix: O(X—U, A—U)— 04X, A4).
(3) The sequence

] 0
04, ) > Ou(X, 1) Lr O X, A7) —> Op (A, 7)o with (4, $, )
; .
— (X, ¢, 7) —1—> (X, A4, 7) the inclusions, is exact.

Note. The same is true for the free oriented equivariant bordism functor
{Q«(X, 4, 7), px, 0}). And these oriented equivariant bordisms are equivariant
generalized homology theories on the category of pairs with map of odd prime
period.

We also have

Proposition 2. O, (X, 4, 1)~Q (XX S”[txX p, AXS=|TX p) where p=
exp (2zi[p) is the action on the infinite sphere S™C C*™.

The proofs of Proposition 1 and Proposition 2 are entirely analogous to
those given by Stong in [6], replacing involutions and unorientedness by maps
of period p and the requirments of orientability or orientedness, so we omit
the proofs here.

We next define an oriented equivariant bordism group M,(X, 4, 7) as
follows, where X is a topological space with AC X a subspace, and 7: (X, 4)—
(X, A) is a map of odd prime period p. An oriented equivariant bordism class
of (X, 4, 7) is an equivalence class of 4-tuple (M”, N*°*, T, f) with M”* and
N™"* compact oriented differentiable manifolds with boundary, N* ' a regular
submanifold of 9M™; T'; (M, N)—(M, N) an orientation preserving diffeomor-
phism of period p with T |(0M™—Int N*°") fixed point free; and f: (M, N)—
(X, 4) a continuous equivariant map sending N”°' into 4. Two 4-tuples
(M3, N3, T,, f,) and (M%t, Ni', T,, f,) are bordant if there is a 4-tuple
(W, V= T, f) such that

i) W' and V™ are compact oriented differentiable manifolds with
boundary;

T| (dM—IntN) : fixed

M point free
N\ et
/
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M3U—V*U—M? is contained in 0W as regular submanifolds whose orientation
are induced by that of W; N,U—N, is contained in 8V as regular submanifolds
whose orientation are induced by that of V, with M,N V=N, and M, N V=N;;

i) T:(W, V)—(W, V) is an orientation preserving diffeomorphism of
period p restricting 7, on M and T, on M, with T |0W—1Int (M,UV UM) fixed
point free; and

iii) f: (W, V)—(X, 4) is a continuous equivariant map restricting to f, on
M, and f, on M,.

Denote the equivariant bordism class of (M*, N*™*, T, f) by [M", N*7*, T, f],
and the collection of all such classes by (X, 4, 7).

If A=¢, then N=¢ and [M, N, T, f]=[M, T, fle M(X, 7). Therefore
(M, T, f) consists of a compact oriented differentiable manifold with boundary,
T: M—M an orientation preserving diffeomorphism of period p with T |0M
fixed point free, and f: M —X a continuous equivariant map. And so the situa-
tion is simpler.

Suppose that £: E—X is an 0(2k) bundle with fibre R** over a connected,
locally connected, paracompact base, and that T: E—E is a map of odd prime
period p which carries each fibre orthogonally onto itself leaving only the zero
vector fixed. There are then linear subbundles £ ;: E,—X of &, j=1, 2, -,
(p—1)/2 with E=E + -+ E,_,y, and there exists a complex linear structure on
E; such that T(E,)C E; and T(v)=p’v for vE E; where p=exp (2zi/p), [2, 38.3].
Here the centralizer C(Z ,)=U(k,) X -+ X U(kcp_,>,) in O(2k) where R, -+ +Rcp_,y/,
=k and we may as well suppose that the structural group of £ is reduced to
U)X -+ X Ulkep_pps)s [2, 38.2]. 1t follows that if T: M —M is a differentiable
map of odd prime period on an oriented n-manifold, then the structure group of
the normal bundle to the fixed point set F can be reduced on each component of
F to the unitary group.

For given [M™*, T, fl€0.X, A4, 7), let F; be the fixed point set of T, and
let F'7~2* be the union of the (n—2k)-dimensional components of F, which is
orientable. And consider the normal disc bundle z: D(v,)—F%* which is
identified with a closed tubular neighborhood of F’3~2* and whose orientation is
given as follows. We orient F’72* so that the orientation of the fibre followed
by that of F4~?* yields the orientation of D(v,). Let k=k,+---+kc,_;5, and let
T: D(vy)—D(v;) be the map T'(v)=p’v for v E; as in [2, 38.3] which coincides
with the restriction of 7" on the tubular neighborhood of F7 2. We now
consider the 4-tuple (D(v,), D(v,|0F% %%, T, f) where D(v, | 0F 5 2*)=D(v,) N 0M.
Obviously, T [0D(vs;)—Int D(v,|0F% ) is fixed point free, so > [D(vg),
D(v,|0F %), T, f] is an element of H,(X, A, 7). We may then define a
homomorphism v: O,(X, 4, 7)— M(X, 4, 7) by v[M*, T, f1=2>"[D(vs),
D(v,|3F%**), T, f]. Notice that for the absolute case, v: O(X, T)—> M (X, T)
is the forgetting homomorphism.
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We next let [M*, N, T, f]€ M(X, 4, 7) and let M"'=0M*—Int N*"*.
The triple (M*~, T |M*"*, f | M*"") is then fixed point free and thus represents
an element of Q,_ (X, 4, 7). We may then define a homomorphism 9d:
MuX, A, T)>Qu (X, 4,T) by 8 [M, N, T, f1=[M, T | M, f | M]. Letting iy:
Q.(X, 4, 7)—>0,(X, A, 7) be the homomorphism induced by forgetting the free
condition, we thus obtain the following.

Theorem 1. The sequence

9
(X, A, T) o O(X, A, T) —> HAX, A, T) > Oy (X, A, Ty s
exact.

Proof. Itis easy to see that 9v=0 and i 0=0. If [M*, T,fle€Q,(X, 4, 7),
Fy is empty so vig[M, T, f]=0 in M(X, 4, 7).

im ¢ Dkerv. Let [M*, T, f1€0,(X, 4, 7) with >3[D(v,), D(v;|0F 52,
T, f1=0 in M,(X, A, 7). For simplicity, put [M’, N, T, f1=2>2[D(vy),
D(v,|0F% 2", T, f]. Then thereis (W"", V", T, f) such that oW oM’ U—V,
OVDON', M'NV=N’; T: (W, V)—(W, V) is an orientation preserving
diffeomorphism of period p with 7| M’=T, and with 7"|0W—Int (M’"UV) fixed
point free; and f : (W, V)—(X, A) is a continuous equivariant map with f | M’
=f. Let U*"" be formed from M xI UW by identifying M’x 1 and M’, and
let T: U—Ubegivenby Tx1U T. The continuous equivariant map f: U—X
is given by for, on Mx I and by f on W. Next let B*={(Mx 1)—Int N’} uw
by identifying the two coples of N’ where W 6W—Int V. Let T’=TU T and
let f: B—>X be fUf. Then (B" , f) is fixed point free, so
[B*, T/, f'1leQ (X, A4, 7). But (U™, GMXIUV, T, f) is a bordism of
(M, T, f) and (B, T’, f'). Hence there is [B*, T’, f'1€Q.X, 4, 7) such that
BB, TV, f1=IM", T, f]in Ou(X, 4, 7).

imvOkerd. Let [M", N, T, f1€ M. (X, 4, 7) with [M"", T | M, f | M]
=0 in Q,,(X, 4, 7) where M?"'=0M—Int N. Then there exists
(B*, C**, T’, f'ysuch that 0C=0M, 0B= —MU C/oM=4C; T’: (B, C)—(B, C)
is an orientation preserving, fixed point free, diffeomorphism of period p with
T'|M=T|M; and f’: (B, C)—(X, A4) is a continuous equivariant map with
f/I|M=f|M. Let E*=—M"UB", identifying the two copies of M, and let T
be given by T'U T’ and £ be given by f U f/ on E. Here notice that F3=F 7.
We then have [E*, T, f]l€04X, A, 7) such that »[E*, T, f]="[D(vs),
D(v,|3F%**), T, f] which can be shown to be [M, N, T, f] by the following
observation. Let W""'=(Mx[0, 1/2]) U (UD(vp)x[1/2, 1]) by identifying the

two copies of LkJD(v,,)X 1/2.  Then W DO —Mx0U(UD(vg)x 1)UV where
k
V=Nx[0, 1/2]1U( &JD(vklaF’—}‘“)x [1/2,1] and VD —N U(UD(v,|0FF?*).
k
Let 7 (W, V)—(W, V) be given by Tx 1 and f: (W, V)—(X, A) be given by
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fom, on both Mx[0, 1/2] and (L;JD(vk)X [1/2,1]. Then F3=Fx[0, 1] and
T10W —1Int MUy L;JD(vk)U V) is fixed point free. Thus (W, V, T, f) is a
bordism of ( LhJD(vk), L;JD(V,,IOF”T‘“), T, f) and (M, N, T, f).

im0Dkeriy. Let [M* T, fleQ X, 4, 7) with [M"* T, f]=0 in
OuX, A, 7). Then there is (W™, V", T’, f’) such that aV=0M, oW
=—MUV/oM =0V, T'|M=T, f'| M=f. Moreover T’ |dW—Int V=T"'|M
=T is fixed point free, so [W, V, T’, f'le Ma.(X, A4, T)and O[W, V, T’, f']
=[M, T, f]. The theorem thus follows.

Let F, be the fixed point set of 7, and let k=Fk,+ -+ kcp_,y,. We then have

Proposition 3. H,(X, 4, 7)~ > Qu_p(F. X B(UR) X +++ X U(Rcp-1312))s
(F:NA)X B(U(k,) X -+ X Ukcp-1312)))

Proof. Let [M", N*, T, fle M (X, 4, 7) and let F%** be the union of
the (n—2k)-dimensional components of F,. The normal bundle of F%7%*, v,
is then a U(k,) X+ X U(kcp_,5.)-bundle classified by a map v,: F% ?*—B(U(k,)
X oo+ X Ulkcp_yyn)) Wwhere k=k,+ -+ kep_r5.  For xe Frp, 1f(x)=fT(x)=f(x), so
f(x)e F,, inducing a map f | Fr: (Fgy, 0F;)—(F,, F.N A) where 0F ;=F;N0M.
We thus have a mapkL>Jo(f |F57 2% X v,): %JF"T‘Z”—> L"JFTXB( Uk) X - X Ulkep-132))

which defines a homomorphism @: M, (X, 4, 7) = > Qp_b(F. X B(U(k) X ++ X
Ulkcp-vp))y (F:NA)XB(U(k))X - X Ulkep-pp))) by @[M”, N"7', T, f]=
D P72, fIFT 2 X vy].

Next, for given [V, g, 1€ Qp_(F. X B(UR,) X - X U(Rcp_15p5)), (F, N A)
X B(U(k)X -+ X Ulkcp_135))), let &, be the complex k vector bundle over V'
induced by 7,0, from the universal bundle v, X - X v4,_,,, over B(U(k,) X ---
X Ulkcp_1p2)). We then have f,: D(E,)—F.CX given by 7, 0g,omr with = the
projection of the disc bundle D(&,) of £,. Since there is the natural action of
U(k,) X +++ X U(k¢p_,57) on the complex linear space C*¥=C*# X -+ x C*»s-0r2 and
£y E(E,)—V " ** is the bundle with fibre C*, with T: C*—C* defined by T(v)
= piv for v C*/, then T'is in the center of U(k,) X -+ X U(kcp_yy,)- Hence there
is induced a T: E—~E. E is oriented by the usual way. Then T: D(§,)—D(&,)
is a differentiable map of period p, preserving the orientation, we may thus define
a homomorphism yr: D30, . (F, X B(U(R) X+ X U(kcp_155)), (F.VA)X B(U(k,)
X vve X Ul )= Hol X, 4, 7) by w(S[V "%, 1) = SDENDEV ), T £l
Then it is easy to see that @oir=1, here we use the fact that F.=V C D(&,).
Next for any element [M, N, T, fle M[X, 4, 7), VoplM, N, T, fl=
WEFFY, fIFFx n])=S D), DEaloF5™), T, forl=X[D(),
D(v,|0F% %%, T, f]. However, we may show that >[D(v,), D(v,|0F% %", T, f]
=[M, N, T, f] as follows. Form W"** from M”x [0, 1/2]U( LgD(v,,)x [1/2, 1])

by identifying the two copies of D(v,)x 1/2, with T: (W, V)—(W, V) given by
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Tx1 and f: (W, V)—(X, A) given by foz, on both of M"x[0, 1/2] and
UD(v)x[1/2, 1], where V=Nx[0, 1/2]U(UD(v,|0F 5 *)x[1/2, 1]). Then
k k

(W, V, T, F) is a bordism of (M, N, T, f) and (UD(v), D(us| 0F5™), T, f).

The assertion follows.
From the previous arguments we see immediately that the exact sequence

of Theorem 1 is equivalent to the following exact sequence: -:-—Q,(X, 4, 'r)l—*>
14
Ou(X, A, 7) = 220 b(F. X B(U(k)) X - X Ulkc-172))s (F, N A) X B(U(k;) X -

6]
X Ulkep-y2))) = Quo(X, A, 7).
For X a point and 7 the identity map, this exact sequence becomes

i* 14 6 .*
e Ol Zp) > O Z ) —> HMAZ ) —> U (Zp) —2 o
where H(Zy)= 330w BU(R) % -+ X Ulkcp_r)))-

Furthermore, we may reduce this exact sequence to a more compact form
and obtain a corollary to Theorem 1 as follows.

Corollary 1.1. The sequence

3 0
0= 0 —25 Ou(Z,) —> HAZp) — Dy r(Zy) = O

is exact. Hereiy: Q,—0O,(Z,) is defined by i [M"|=[M"X Z,, 1 X o] where o is
the map of period p which interchanges elements of Z ,.

Proof. From the exact sequence

o OUZ) o OUZ )~ HAZ ) — s s (Z) ~Er -, it sufficies to show
that 0: M,(Z,)—>Q,_.(Z ;) is an epimorphism.

(1) We first show that 9 is a homomorphism of H,(Z,) into the reduced
bordism group O,_,(Z,). For 8: M,(Z,)—Qy_,BO,_,(Z,), we shall prove that
for any element SYD(Ey), TI€ HM,(Z,) its image A(ID(ER), TH=SS(E), T]
isin O, (Z,). If €x: Q, (Z,)—Q,_, is the augmentation defined by &x[M, T']
—[M]T), €x(SUS(ED), TT—SExlS(Ea), T1=S[S(E4)/T] which clearely vanishes
in Q,_,. For Q4 has no element of odd order, and 0=[S(&,)]=p[S(&x)/T],
[2, 19.4], [S(£:)/T]=0. Hence 0 is the homomorphsim M, (Z,)—>Q,_(Z,).

(2) We go on to show that @ is an epimorphism. Since {[S*7? p]}
generates the Q-module Q4(Z,), [2, 34.3], any element [M "', T]€Q,_,(Z,) can
be written in the form [M*™*, T1=33,[S*, p]- [V #]=24[S* 'x V"%, px 1]
where V" %Q,_,;. Consider now the trivial complex 7 vector bundle &;:
Cix V* %" % where C’ is the i-dimensional complex vector space which is
given the action p. Then there is >3[D(E;), p] € M.(Z ,) such that 3(2[D(E;), p])
=2[S8(), pl=22[S* 'V, px1]=[M"*", Tl Q,_,(Z,). Hence 0 is an
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epimorphism. The assertion thus follows.

The Q-modules Ox(Z,) and M(Z,) are graded ring with multiplication
induced by cartesian porduct: [M,, T ]-[M,, T\]=[M,xM,, T,xT;]. And in
the exact sequence

i 9
0 = Oy —> Ox(Z,) —> Hn(Z,) —> Ox(Z,) — 0

if we let J=im iy, J is an ideal of Ox(Z,) since » is a ring homomorphism.
A A

Therefore if we let Ox(Z,)=0x(Z,)/J, then O4(Z,) is also a ring and we obtain

the following.

Corollary 1.2. The sequence

A v 0
0 — Ox(Z,) —> Mx(Zp) —> Qu(Z,) > 0
is exact.

This short exact sequence is an analogue of the exact sequence

0
0 = I(Z)) — My —— T1y(Z) — 0

where My=2>1,,(BO(x—m)) and I(Z,) is the unrestricted Z,-bordism group
which was provided by Conner and Floyd in [2, 28.1].

3. The Smith homomorphism

Let 7: X—X be an action of Z,, p an odd prime, on a space X, and let T':
M—M be a free action of Z, on a closed oriented manifold M. Given
[M*, T, fleQ. (X, 7) and 2m+1>n, there exists an equivariant differentiable
map @: (M?*, T)—(S*"**, p) which is transverse regular on S**~'C S**** where
p=-exp(2zi/p). Let N**=¢ (S*”7"). Then N is a closed oriented submanifold
of M. The Smith homomorphism A: Q. (X, 7)—Q,_,(X, 7) is defined by
A[M*, T, f1=[N"* T|N, f|N].

Letting ¢y: M (X, T)—> M, (X, T) be defined by sending [M", T, f] into
[M*XD?, TX p, for,] where D* is a disk whose boundary is a unit sphere S*, we
then have

Proposition 4. The diagram
0
Mu(X, T) —> Qi (X, 7)
lx A
ﬂfﬁz(X; T) -— Qn+1(Xy T)

commutes.
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Proof. If [M", T, fle M (X, ), then O[M, T, f]=[0M, T |dM, f|0M]
and 0w[M, T, fl=0MxD? Txp, for]=[0(MxD?, Txpl|lo(MxD?),
fom,|0(M x D?)]. We shall show that A[0(M x D?), T X p|o(M X D?),
fom |0(M x D?)]=[0M, T |oM, f|oM]. To do this, we use the equivariant
differentiable map ¢: (0M; T |0M)—(S***', p) to obtain an equivariant
differentiable map @: (0(M X D?), T' X p|0(MxD?)—(S*"*3, p)=(S*"*", p)x(S*, p)
defined by

(A—tp(x)+tzif x€dM, 2| =1, 0<t<I,

P(#, 13) = {0+z fxeM, |z|=1, t=1,

where (S#"*!, p)%(S*, p) denotes the join of (S*”**', p) and (S?, p). We thus
have @ (S*"*)=0Mx0, so A[Q(MXD?), TXp|d(MXD?), fon,|0(Mx D?)]
=[0M, T |0M, f|oM].

If X is a point and 7 is the identity map, we obtain the following

Corollary. The diagram

0
MuZ p) —> Qu_i(Z))
(2% 9 A
I
ﬂn+2(zp) I Qn+1(Zp)
commutes.

We also have
Proposition 5. For any element [M”, T, f] in O, (X, ) we have
Ocyv[M™, T, f1=[M"XS"?, TXp, for,]

in Qi (X, 7) where v: O (X, T) > M(X, T) is the homomorphism defined in the
preceeding section. '

This is a generalization of the case, X=pt., 7=1, given in [2, 38.6].

Proof. Considering the diagram

0
L%;ﬁz(X) T) — Qn+1(X) T)

Lx

Ou(X, T) —— HAX, 7)

and letting [M", T, fleO,(X, 7), we have v[M", T, f1=[M?", T, f] since v is the
forgetting homomorphism. We then see that duw[M, T, fl=0v[M, T, f]
=0[MXxD? TXp, fom,]=[M xS, TXp, for,], this completes the proof.

We next define a homomorphism P: Q,(X, 7)—Q,,(XXS?, 7Xp) by
PIM*, T, fl=[MxS*, Txp, f x1].
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We also consider a homomorphism 7z: Q,(X X S*, X p)—Q,(X, 7) defined
by =[M, T, f1=[M, T, =,°f].

Some of our main results are then obtained in the following.

Theorem 2. The sequence

A P
QXX S, TX ) — o QX ) (X, T) > A (XX ST, TX p) oo
is exact.

Proof. (1) An=0and PA=0. Consider the diagram

P
Qul(X, 7) = Qs XX S, TX p) —> Qs (X, 7)
A A A
P 7
Qn—z(X, T) I Qn—l(XX Sl) X P) i Qn—l(X’ T)

which commutes by definition. Here
A Q, (XXSY, TXp) =0y (X XS, 7Xp)

is a zero map since for any element [M, T, f] € Q,. (XX S*, 7Xp), the map
p=iom,ef: M—S'->S*" and S'~(S*™'—S*"), so N=¢p (S™ )=¢,
and A[M, T, f]=0. Hence Az=nA=0 and PA=AP=0.

(2) 7P=0. Let[M"* T, fl€Q, (X, 7), then zP[M, T, fl=[MXxS",
Tx p, wxo(fx1)]. Notice that zxo(fXx 1)=fom, and evidently (M x D?, T'X p,
foma) has boundary (M x S, T'X p, fomy) so zP=0.

(3) imzDkerA. If [M* T, fleQ. X, 7) with A[M" T, f]=[N"",
T|N, fIN]=0, there is (V*"!, T’, f’) such that 0V=N, T’|N=T |N and f'|N
=f|N. Let M"=(M*—NxIntD?)UV xS, identifying the two copies of
Nx S, with T: M*—M" given by T UT’X p, and with f: M—X given by
F=fUg where g is defined as follows. Let 7,: Nx.S'—>Nx D? be defined by
ri(x, s)=(x, (1—1t)s), then for,=fol=f|NxS': NxS'-X is t/tquivariantly

homotopic to for(f | N)ory—f’omy | Nx S NxS' 2 NL o X, The
map g is given by g,=f"ozy on VX S'—Nx S'x[0,1) and g, on NxS*x[0,1]
defined by g,(, s, t)=for,(x, s). Then (M, T, ) and (M, T, f) are bordant.
For if we form M x I UV x D by identifying N X D*x 1 with N x D?, with action
given by T'X1U T’ X p,and with map M xI UV x D*—X given by foma U f'omy,
then d(MXIUVxXD)=—MUM, (Tx1UT'xp)|MUM=TUT, and
(fermU flomy)|MUM=FUf. Now let p=+Urny: (M—NxInt D*)U
(V'x 8")—S"* where + is the map defined as follows. Let B=M—N X Int D
Then since @: M™—>S*"*" is equivariant and transverse regular on S*”~* and
N=¢ (8", @|B: B—>(S*""—S*""'xInt D)~D*"x S* is equivariant.
There is also an equivariant homotopy 2x 1: D*”x S'—=0x S'~S'. We then
define +: B—S* by (hx1)o(@|B) which is equivariantly homotopic to ¢|B.
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We thus have [M, T, fx PleQ(X XS, TXp) such that n[M, T, fx 9]
[, T, mxo(F X P)|=[M, T, F1=[M, T, f].

(4) imADker P, Let[M"* T, fleQ,_,(X, 7) such that P[M, T, f]
=[MxS", Txp, fx1]=0in Q,_,(XxS*, 7Xp). Then there is (W", T’, ')
with OW=Mx S*, with T/: W—W an extension of TXp, and with an
equivariant map f': W—Xx 8" extending f. Form (W UM xD?, T"UT X p,
mxof’U foma) by identifying the two copies of M x S'. Then T'UT X p|M
=T and wxof'U fory|M=f. We shall show that there is an equivariant
differentiable map @: (W UMXD?, T’ UT X p)—(S*”**, p) which is transverse
regular on S*”7' and @' (S* )=M. If so, we then have [W UMXD?
T'UTxp, mxof Ufory]leQ (X, 7) with A[WUMxD), T'UTXp,
rxof Uf OnM]z[M/, T, f]. In fact, the map @ can be obtained in the following

way. Since Wl Xx81 7% 11, §7m and STH_0x StaST X

”2°f/

Int D? so if we consider (W—0WxI) —— 0x S* and equivariant maps u,:
MxS}—Sir;'x 8", 0<t<]1, then the maps u, define an equivariant map u:
MxD*—S*""'x D?. This implies MxX0—-S*""'x0. We thus define ¢ by
tom,of’ on Wand pon MxD?. Then @: (WUMXD? T"UTX p)—(S*"*!, p)
is an equivariant differentiable map which is transverse regular on S*”~! and
¢—1(szm—1)=M'

(5) im P Dker w. Let [M*', T, fle Q,_(XXS', 7Xp) such that
(M, T, fl=[M, T, n,of]1=0 in Q,_,(X, 7). There is then (W*, T’, f’)

with OW=M, T | M=T, and f'| M=n,of. Extending M7—r—2°—> S, we have an
equivariant differentiable map @: (W, T')—(D? p) and a commutaive diagram

w -2, D
W/:ll"i 21/:

For the regular value y€D?/p—(S'/pU{0}) of @, there are p regular values,
Y, p()s =+, pP7Y(y), of @ corresponding to y. Let N" =@ {y, p(y), -,
p? Y(y)}. Wethenhave [N, T|N, f'|N]€Q,_(X, 7) with P [N, T’|N, f'|N]
=[NxS, (T"|N)xp, (f'IN)x1]=[M, T, f]. The last equality follows by
the fact that (W—Nx Int D?, T’, f’) has boundary the disjoint union of (VX S*,
(T"|N)xp, (f'IN)x1)and (M, T, f). The theorem follows.

Notes. (1) The same arguments may be applied to the relative case and
obtain the exact sequence:

4 A P

e —> Qn(XX,Sl, AXSl, TX p)—) Q,,(X, A, 'T)——> Qn—z(X) A) T)

Q,,_l(XXS’, Ax S Tx p) —> -+
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(2) LetQ,(X, )=ker (Q.(X, 7)—Q,) where the augmentation : Q.(X, 7)
—Q, is defined by &4[M*, T, f]=[M"/T]1=Q,. We then have a split exact
sequence

0—0,X,7)—Q X, 7)>Q,—0.

To see this, taking any element [M*]€Q,, we form (MXZ,, 1X o, f) where o
is the action of preiod p which interchanges elements of Z,={0, 1, ---, p—1}, and
f is given by (M x0)=x< X and f(Mxk)=T*x) for k>1. We then have an
element [M"XZ,, 1Xa, f] of Qu X, 7). The assignment [M"]—[M"XZ,,
1X o, f] induces a homomorphism 7;: Q,—Q,(X, 7) such that €,07,=1.

We may reduce the preceding theorem in the following form.

Corollary 2.1. The sequence

~ T A P
o = 0 (XXS, X)) — O, (X, T)— Q, (X, T) —>
Oy (XXSY, TXp)— -

is exact.

Proof. (1) Let [M* T, fl€0,(XxS", 7xp). Then [M/T]=0, and
z[M, T, fl=[M, T, =0 f1EQ.(X, 7) also satisfies [M/T]=0 in Q,.

(2) Nextif [M* % T, fl1€Q,_ (X, 1), P[M, T, fl=[MxS*, Tx p,fx1]in
Q, (XX S, 7Xp). Butsince Mx S'=0(Mx D*) and Q4 has no odd torsion,
0=[Mx S")=p[M x S*|T x p] implies [M X S*|Tx p]=0in Q,,_,.

If X is a point and 7=1, we have the following corollary.

Corollary 2.2. The sequence
- T A P .
o =>0,(S%, p) — Ou(Z,) — Qu_oZ) —> Qu_(S?, p)—>--+ is exact.

We can now reduce the Corollary 2.2. to an exact sequence in which only
free Z,-bordism groups and the Thom groups are concerned, and from which
some well-known properties of (,(Z,) are derivable.

Theorem 3. The sequence

’ 7[/

P N A
0-Qp, — Qs — Q4(Z,) — Q,_(Z,)—0 is exact, where P': Q,_;—>Q_,
is defined by P'[M" |=p[M"" "] and n': Q,_,—D,(Z,) is defined by »'[N""']
=[N]-[S% p].

Proof. We first recall that O,(S*, p)~Q,(S'/p). This is induced by
O[M™", T, fl=[M"|T, f] where f: M/T—S"/p is induced from f in the following
diagram:
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v L os

Iy

M|T— S'/p.

Also, 0,(S'/p)=0.,(S)~Q,_,. We now have Q,S", p)=Q,_,, so consider
next the following diagram

N A P
= Q,(Z p) —> Oy 1(Zp) - ‘Q L p) '—" Qn(ZP) — Qo z(Zp) -

k R /' \\
O\n 1(Zp) n Z(ZI’)

The theorem then follows by showing that the homomorphism A: Q4(Z,)—
04(Z,) is an epimorphism, and the homomorphisms &’ and =’ are compatible
with & and = respectively. The homomorphism A is surely an epimorphism
[2, 34.9]. Consider next the diagram

P
Qn—l(Zp) — Qn(Sl) P)
iy o =B
Qn—l — Qn_

where 7y: Q,_,—Q,_,(Z,) is defined by i, [M]=[Mx Z,, 1 X o] and p: O,(S*, p)

—Q,_, is defined by nof: O,(S?, p)—> Q”(Sl/p)—x> Q,_, with A the map
defined by sending [M™*, k)€ (,(S"/p) to [N*'=h""(x)], *€S"/p being a regular
value of . Taking any element [M]€Q,_,, we have Poi, [M]=[Mx Z,x S",
1 X o X p, ms1] which is equivariantly diffeomorphic to [MxZ,x S?, 1xXox 1, g]
by an equivariant diffeomorphism ¢ defined by @(x, k, t)=(x, k, p~%(t)). The
map g: M X Z,x S*—S"is defined by g(x, &, t)=p*(t). We then have a com-
mutative diagram

M><Z,,><S‘~i> St

b

MxS* — S'p

where g=nor,. And so QM xZ,xS', 1xXaox1,gl=[MxS", g1=€Q.(S"/p).
Moreover \[Mx S*, gl=[g (*)=Mx Z,]=p[M]. Hence pPi[M]=p[M]
=P'[M].

Finally, in the diagram



Borpism AND Maps oF Opp PRIME Periop 419

(S, p) — Bul(Z,)

Kl =~ =

/

Qs — 0,(Z))

where «: Q,_,—Q,(S", p) is an isomorphism defined by «[N]=[NXS", 1Xp, =,],
we have me[N]=n[NXS’, 1Xp, n,]=[MxS", 1Xp]=[N]-[S*, p]=='[N].
Since k=p ' the assertion follows.

This theorem yields immediate corollaries, which are well-known results
shown by Conner and Floyd in [2] in different way.

Corollary 3.1. For k>0, Q,(Z,)=0.

Proof. Since Q,,_, consists of 2-torsion, it is seen that &’ is an epimorphism
and z'=0. We thus get Q,(Z,)~0y_(Z,)~-~Q(Z,). But since Q(Z,)~
Q(BZ,)~Qy(pt.)=8%, we have Oy(Z,)=0. Hecne Q,(Z,)=0 for all k>0.

Corollary 3.2. For k>0, Q,415(Z ) ~Qup11(Z ).
Proof. Since Q. , consists of 2-torsion, the result follows immediately.
Corollary 3.3. The sequence

7 A .
0= Quu/pQue — Qupii(Z) — Qup_1(Z,)—0 is exact.

4. Weakly complex bordism groups

Being given a 2k-plane bundle £ over a space X, a complex structure for &
is a homotopy class of maps J mapping each fiber of £ linearly into itself and
having J*’=—1. If X is a finite dimensional CW complex and if & is a real n-
plane bundle over X, a weakly complex structure for £ is complex structure for
the Whitney sum, £4-&*" of £ and the trivial (2k—n)-plane bundle, 2k--2> dim
X; this is independent of k. A weakly complex oriented manifold is a pair
consisting of a differentiable oriented manifold M and a weakly complex structure
on the tangent bundle of M. Let G be a compact Lie group acting differentiably
on M. If§: E—M is the tangent bundle to M, then G acts on the Whitney sum
¢+€*% " as a group of bundle maps, acting trivially on the trivial bundle.
An invariant complex structure is a complex structure which commutes with the
action of G. A wealky complex action of the compact Lie group G on the
differentiable manifold M is a pair consisting of a differentiable action of G on
M and an invariant weakly complex structure for the action. Consider a free
weakly complex action of Z, on a closed manifold M ; denote the pair by (M, T)
where T: M —M is a map of odd prime period. There is a natural equivariant
Z ,-bordism group of such pairs, denoted by QY(Z,). The weakly complex
bordism groups of the form QF(X) and Q¥(X, 7) are also constructed in the
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same way. As in the case of Z,-bordism groups, we have Q¥(Z,)~QJ(BZ,),
and as an QY-module, a generating set of QY(Z,) is given by {[S**7, p]},
p=exp (2=i[p), [1, p. 63].

We can also introduce the Smith homomorphism A: QY(Z,)— Q% «(Z,) as
follows. Given [M*, T1€Ql(Z,) and 2m-+1>n, there is a unique equivariant
homotopy class of equivariant maps @: (M*, T)—(S*"**, p) which is transverse
regular on the invariant S*”*'cCS***'. Let ¢ (S*™ )=N""? The closed
invariant submanifold NV C M has a trivial complex normal bundle. An invariant
weakly complex structure on N is uniquely determined by this normal bundle
together with the weakly complex structure on M. The Smith homomorphism
A: QJ(X, 7)—=Q (X, 7) is defined by A[M, T, f{]=[N, T |N, f|N].

We then obtain some results analogous to those of the preceding section,
we now collect them in a theorem.

Theorem 4. The following sequences (1)—(5) are exact.
A
(1) = QUX X S*, TX p) —> QY(X, 7) —> QU (X, 7)
P
—_— Q,l.]_l(XX Sl, TXP)_>"'
~ _ A
(2) - —DYXXS", 7X p) — QY(X, T) —> QU4(X, T
P
S DU (X XS, TX P
. r o A P _
(3) = OI(SY, p)—— Q(Z,) — QL A(Z,) — OILA(SY, p)—>-+,
/ / _ A _
4) 0-QY, — QY —— OY(Z,) —> BY 4(Z,)—0,

3 A
(5) 0—QE/pQY ——> O ir(Z,) —> O 1(Z,)—0. We also have
(6) For k>0, O%(Z,)=0.

Proof. The assertion (6) is proved by the fact that Qf,_,=0, [4, Cor. to Th.
3], and (1)—(5) are verified in the same way given in the preceeding section.

5. The Q-module structures of é*(Zs) and O«(Z;)

In this section we compute é*(Za) and Ox(Z,), and determine their Q-
module structures.
We shall use several facts shown by Conner and Floyd in [2, 46.1-46.3].
Consider the generating set [a,,._,: k=1, 2, «--} for Q4(Z,) where a,_,
=[S?", p] and p=exp (27i/3). There exist closed oriented manifolds M*,
k=1, 2, -.- such that for each &,

Baok-1 = 3a2k-1+[M4]a2k—5+[Ms]azk—9+ e =10

in OQ4(Z;). And Q.(Z,) is isomorphic as an Q-module to the quotient of the
free Q-module generated by «;,, a, -+ by the submodule generated by 3,, 3;, -
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We shall need three bordism groups of S*-actions, Q4(S*), a bordism group
of free S'-action, O4(S") and M, (S"), two bordism groups of semi-free S*-actions
which are entirely analogues of the bordism groups Q«(Z,), O«(Z,) and M«(Z,)
studied in §2. They are just formed from the latters by replacing Z;-actions by
S'-actions. For such bordism groups we have an exact sequence

> ]
0 = Ou(SY) —o> Hx(S?) —> Qx(S?) =0

which is verified in the same way given in §2, (cf. [7]), where the homomorphisms

v and  are entirely analogues of » and 8.
Meanwhile we have obtained in Corollary 1.2 the exact sequence

A v 0 _
0 — Ox(Z)) —> Mx(Z) —> Q4(Z)) = 0

where é*(Zs)zO*(Za)/J and J is an ideal of O4(Z,) which is generated by
[Z;, o]
Consider now the following diagram
0
y
B K=ker 2\

) n 3 i)
0 = Ox(SY) —> THx(S") —> Q4(S?) — 0
A A A
0 = Ou(Z) —> HMs(Z) — fz*i(za) -0

0

where A is the homomorphism defined by sending an S*-action [M, 7] to a Z;-
action [M, T]. B will be defined in the following.
We also need some results given in [5]. First, we have

‘Q‘*(Sl) = gln'azkﬂ ’

a free Q-module generated by @,,_,=[S*"', 7] where 7, is the usual free S'-
action on S**7! given by 7,(2,(20, 2,, =y Zok_1))=(20, 12;, ***, t2pp_y), tES™

Next, we need the fact that

M(S?) = Mx(Z;) = 23 Q(BU(k)) = Q[b,, 0,, 0,, -]

is a polynomial algebra in 6,, §,, -, where §,=[E*>— %], E&>—* is the trivial 2-plane
bundle over a point %, and §,=[5—CP(z)], 7—CP(7) is the complex line bundle
over an ¢-dimensional complex projective space CP(z) induced from the universal
bundle over BU(1) by the inclusion : CP(1)—BU(1).

We then see immediately that
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K=kerrn=>Q-8,,
=1

a free Q-module, where By=3a,,_,+[M 10y _s+[M*]0%_o+ -, and NMBr)=
Ba-1=0 in Ox(Z,).
Let B, be defined by
By = 305+ [MA105 4 [M710 "+ - € THa(S")
and let

B=E‘Q'Bk!

k21

a free Q-module, which is evidently a submodule of H«(S™).
We then have

Lemma 1. 5(04(S"))NB = {0}.

Proof. Since 3(08)=a,._,, 3(By)=~B, which implies 3| B: B~K. Assume
now that ¥(O«(S*")) and B have a non-zero element, say «, in common. Then
aED(Ox(S")) implies 0(a)=0. The same element a==0 in B, which is isomorphic
to K, implies (a)=+01in K. Thisis a contradiction. The assertion thus follows.

Lemma 2. 1(O4(Z)=B®(Ox(SY).

Proof. The diagram

v )
=N A
A v (.
0 — Ow(Z,) —> Mw(Z;) —> 04 (Z;) — 0
commutes, and My (S)=M«(Z,). Hence
W(Ox(Zy)) = ker (Ao8) = 3 (ker 1) = 8-(K)
— B+ker d = B+5(Ox(SY).
But BN 5(O4(S"))={0} by Lemma 1, we thus have
v(Ox(2)) = BEHOKS).

We may now have the Q-module structure of C/\7*(Za) as follows.

Theorem 5. é*(Za) ~ 2 Q-B.DO«(S?) as free Q-module.
k21

We go on to study the Q-module structure of Ox(Z;). Let u=[Z;, o], and
let u, be an element of D4(Z,) such that »(u,)=28, for each k> 1.
We then obtain the following
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Theorem 6. O«(Z)~ 3 Q- uiDO«(S") as free Q-module.
k20

Proof. We already have the exact sequence

0= Oy %5 04(Z) > H(Z) — > 4(Z) — 0,
(Corollary 1.1). And from the construction of B, and p,, it is evident that
v Qe e~ 3 Q-B,.  Recall that Oy(Z)=0Ox(Z)I, I=Q-[Z,, o]=0" o,
S0 g;(Z3)~Q~k;:+( ; Q- upPO(S"). But Q- u,=ker v, we thus have

Ox(2) ~ Q- i ®( T 2 sBOX(S)) -

The theorem follows.

ReMarks (1) The Q-module structure of O4(S?) is determined by Uchida
in [7] and independently by us in [5]. 'The result is as follows. For any element
[M*, T1€0x(S"), consider (M X D?, 1X7,) and (M X D?, 7X7,) where 7, is the
usual S'-action on D?. Then 0(M X D? 1 xXT1)=(Mx S, 1 X7,) and o(M X D?,
TXT)=(MxS', TXT,) are equivariantly diffeomorphic by an equivariant
diffeomorphism @: M X S'—>Mx S* defined by ¢(x, t)=(t(x), t), [2. P. 119].
And form (M***, ) from (MXxD?, 1xX7)U(—MxD? 7XT7,) by identifying
(MxS* 1x7)and (M xS, 7X7,) via . We may then define an Q-map T:
O (SN0, S by T[M*", T]=[M"*?, 7']. Let o,=[CP(i+1), 7], 7(¢,[20, 2,
vy Zia)=[t20, 2, ***s 2], tES'.  Then F,=CP(i)U{a point} and ?(o;)=
0;—0¢™.  And using such [CP(i+1), T|€O4(S?) and T, we have

O«(S) =~ 3} Q-TYo(cir:-cld)
I+ 5120
as a free Q-module.

(2) The Theorem 6 gives a partial answer to the statement of Conner and
Floyd in the last page of [3].
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