

Title	流動層シミュレーションの大規模化と高分解能化
Author(s)	辻, 拓也; 田中, 敏嗣
Citation	サイバーメディアHPCジャーナル. 2011, 1, p. 33-37
Version Type	VoR
URL	https://doi.org/10.18910/70447
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

流動層シミュレーションの大規模化と高分解能化

辻 拓也、田中 敏嗣 大阪大学 大学院工学研究科 機械工学専攻

1. はじめに

粉粒体を気流により流動化させる気系流動層は、 粉粒体の乾燥、造粒、混合などの各種粉粒体操作の 他、化学反応装置、石炭ガス化炉、燃焼炉など様々 な工業的応用に関連して用いられる[1]。気系流動層 では、粉粒体の濃厚相中に粒子濃度の希薄な「気泡」 と呼ばれる特徴的な中間スケールの構造(メゾスケ ール構造)が形成されることが知られている。気泡 が粉粒体の濃厚相中を上昇することによって、粉粒 体層中に大規模な対流を誘起し、さらに気流や粉粒 体の混合を促進するなど、流動層中の各種輸送現象 に大きな影響を及ぼす。このように流動層内の流動 現象には、粒子まわりのミクロスケールの流れから、 気泡などのメゾスケール構造と、これが引き起こす 装置規模の対流といったマクロスケールの流れまで 幅広い空間スケールが存在し、マルチスケール構造 を持つものとなっている。

流動層のような気流と粒子が高濃度で混在して存 在する、いわゆる高濃度固気二相流に対しても、著 者等のグループが提案した離散要素法[2](Discrete Element Method、以後 DEM)と数値流体力学

(Computational Fluid Mechanics、以後 CFD)をカッ プリングしたモデルにより、個々の粒子運動の視点 に基づく数値シミュレーションが可能となり[3]、 様々な応用が行われるようになっている。

他の DEM を用いた数値シミュレーションと同様、 流動層の DEM-CFD カップリングシミュレーション に関しても粒子数の課題は大きな問題の一つであ る。現実の工学的な問題に対する数値シミュレーシ ョンを行う場合には、数百万から数千万あるいはそ のオーダーを超える膨大な粒子数が必要となる。

他方、例えば粉粒体の濃厚相中での熱・物質輸送 特性を知るためには、流動する粒子群の間隙におけ る微視的な気流の流れを調べることも重要な課題で

ある。本稿では、著者等のグループで行った粒子数 が数百万オーダーの大規模数値シミュレーションに よる3次元気泡の空間構造に関する研究[4-6]と、微 視的な視点での固気二相流の高解像度数値シミュレ ーション[7]について紹介する。

2. 計算モデル上での空間スケールの取扱い

ここでは、流体は気体に限らず液体でもよいので、 流体・固体混相流という表現を用いて説明を行う。 流体・固体混相流の DEM-CFD カップリングシミュ レーションにおいて、粒子モデルの運動を、流体の 流れ場と相互作用を考慮してカップリングするモデ ルには、流体相のモデリングの視点に関して図1に 示す2種類の視点がある。

その一つは、図1(a)に示すように個々の粒子スケ ールよりもミクロな流れ場を、瞬時、瞬時で粒子表 面での流体の境界条件(流体速度が粒子表面速度と 一致)を満足するように厳密に解くミクロスケール モデルである。この微視的視点での数値解析では、 流体の流れの基礎式は、質量保存則と Navier-Stokes 方程式である。粒子表面は流体にとって移動境界と なり、界面の各部分に働く圧力とせん断力を介して、 粒子と流体は相互作用し合い、粒子に働く流体抵抗

図 2: 気流流れのミクロスケールモデルとメゾスケールモデル

などの流体力は粒子表面での圧力とせん断力を積分 して求められる。したがって、粒子に働く流体力を 求めるための流体力モデルなどは不要となる。流体 に関わるこのミクロな視点に基づく流体・固体混相 流の解析例としては埋め込み境界法、Lattice Boltzmann法、fictitious domain法などに基づくもの がある[7-11]。

上に述べた、個々の粒子スケールより微視的な視 点で流れを解像するミクロスケールモデルによる直 接数値解析は、流れの予測の精度は高くなるが、同 時に計算負荷も大きくなるため、例えば流動層内で 形成される気泡の3次元構造を捉える計算を行うこ とは現在でも困難である。計算機の能力の制約によ り、計算で取り扱える空間スケールの範囲には限界 があり、サブ粒子スケールから容器スケールまでの すべてのスケールを解像することはできない。した がって、気泡の3次元構造のような、より大きな空 間スケールを捉えるためには、解像する流れの最小 スケールを大きくしなければならない。図1(b)に示 すメゾスケールモデルはそのような流動モデルであ り、個々の粒子スケールよりも大きなスケールで局 所的に平均化された流れを取り扱う。ただし、気泡 の構造を解像するには、この局所平均の空間スケー ルは、発生する気泡のスケールに比べて十分小さな 必要がある。また、この流動モデルでは、粒子・流 体間の相互作用力は、経験則などに基づくモデルで 与える必要がある。熱・物質輸送の扱いに関しても 同様である。

3. 3 次元大規模並列計算

3.1 DEM シミュレーションと粒子数

個々の粒子を追跡する DEM 用いた数値シミュレ ーションでは、取り扱える粒子数は計算機の能力に 依存しており、計算機の発達とともに大きくなって きた。DEM を提案した Cundall & Strack[2]以後の、 著者等が DEM シミュレーションを行った粒子数の 推移を次に示す。

197 個(2D) : Cundall & Strack (1979) [2]

1000 個(3D) : 田中・石田・辻(1991) [12]

2400 個(3D) : 川口・田中・辻(1992) [3]

25000 個(3D) :川口・坂本・田中・辻(1998) [13]

900 万個(3D) : 藪本・辻・川口・田中(2007) [5]

括弧内の2Dおよび3Dはそれぞれ2次元計算および 3次元計算を示す。上記の著者等のグループによる 計算は、すべて気流の局所相平均流[13]に対するメ ゾスケールモデルと DEM のカップリング計算[3]に より行われたものである。このような粒子数の大規 模化は計算機環境の発展によるものであり、とくに 最近の約1千万個にせまる大規模化はクラスター型 コンピュータによる並列計算により達成されたもの である。並列計算を用いることにより、現在では1 億個レベルの計算も可能となっている。

3.2 3次元気泡構造

クラスター型コンピュータによる並列計算を用い て求められた流動層 3 次元流動化挙動の数値シミ ュレーションの結果を図2に示す[6]。ここでは局所 相平均流[14]に基づく DEM-CFD カップリングモデ ル[6]が用いられており、一片が1.2mの正方形断面

(a) 孤立した気泡の形成

(b) 大規模構造からの気泡形成

図 3:3 次元流動層中での気泡構造

形状をもつ流動層内での、粒径4mmの球形粒子450 万個の流動化が求められている。容器底部からは一 様な気流の流入が与えられている。その初期粒子層 高は約0.2mという浅い流動層である。その初期状 態において粒子層は鉛直方向に層状に色分けされて おり、流動化の様子を観察しやすくなっている。並 列計算を用いることにより、このように大規模な3 次元の気泡流動化挙動の数値シミュレーションが可 能となった。流動化挙動の時間発展に着目すると、 まず、正方形断面の四隅から大きな気泡が吹き抜け、 その後、壁面に沿って活発な気泡の発生が見られる とともに流路中央においても大きな気泡が発生して いる。

実験において、流動層内部での気泡の3次元構造 を観察することは困難であるが、数値シミュレーシ ョンではその内部を容易に可視化することができ る。図3に空隙率の等値面で可視化された流動層内 部で形成されている気泡の3次元構造を示す。図3 (a)および(b)のそれぞれの白い楕円内での気泡形成 に着目すると、(a)では単一の気泡が成長する過程が 捉えられている。これに対して、(b)では粒子層の底 部付近に大規模な紐状の空隙構造が形成され、そこ から複数の気泡が発生する過程が捉えられている。 (b)の結果における単一の気泡スケールよりもさら に大規模な構造の存在は、このように大規模な計算 を行って初めて確認できることであり、本大規模計 算の大きな成果である。

4. 微視的流動解析による高精度計算

4.1 微視的流動解析

3 章で結果を述べたように、メゾスケールモデル を用いることにより気泡などのメゾスケール構造の 挙動の表現が可能である。しかしながら、この種の モデル計算では、粒子・流体間に作用する流体力は、 Ergun式[15]やWen & Yuの式[16]などの経験式に基 づいて与えられ、これらの経験式が十分に整備され ていない、例えば、粒径の異なる2成分系の場合や、 粒径分布がある場合、メゾスケールモデルによる計 算は途端に困難となる。また流動層は、熱・物質輸 送に関係するプロセスでよく用いられるが、各種モ デルの改良なども検討を要する課題である。このよ うに、流れのメゾスケールモデルに対する各種モデ リングに関して、ミクロスケールモデルによる数値 シミュレーションへの期待は大きい。

4.2 2次元噴流層内の微視的流動解析

梶島らにより提案された体積力型埋め込み境界法 [9]により流体計算を行い、これを DEM とカップリ ングすることにより、2 次元噴流層内の流動シミュ レーションを行った[7]。サブ粒子スケールの流動構 造を解像するため、流体の計算格子は粒径に比べて 小さく取られる。体積力型埋め込み境界法では、固 定された直交格子を用いて、粒子の占めている空間 も含めて流体の流れ場として計算を行う。その際、 付加的な外力を加えることにより粒子表面での境界 条件を満足させる。

2次元流動層内の流動の計算結果を図4に示す[7]。 噴流層容器の寸法は幅 70.4 mm、奥行きが 20 mm、 粒子は直径 3.2 mm、密度 910 kg/m³の球形粒子であ

(a) 流路中央断面
(b) 壁面近傍
(c) 図 4: 微視的数値シミュレーションにより求められた気流の流れ

り、2472 個の粒子が充填されている。その流動化前 の初期層高は55 mm である。このように2次元噴流 層といっても、完全な2次元ではなく、粒子も流体 も3次元の計算を行っている。容器底部では中央の 幅8.8 mmの気流流入口から4.8 m/sの一様流速で、 空気を仮定した気流が流入する。採用されている流 体計算の格子幅は0.4 mm であり、粒径の1/8 の空間 分解能をもつ。

図 4(a)および(b)は、それぞれ、流路中央断面およ び奥行き方向の壁面から 0.2mm(粒径の 1/16)の断 面における粒子断面分布と流体速度場を示している [7]。流体の速度場は細かく分かりにくいが、流速の 大きな部分は白く表示されている。まず、噴流層中 央の噴流部で大きな気流速度を取っており、噴流層 の流動パターンが現れていることが分かる。粒子間 隙の細かい流れ場に着目すると、とくに(b)の壁面近 傍の流れにおいて、中央の噴流部から斜め上方に向 かう高流速の筋状の流れのパーンが形成されている ことが分かる。このような粒子スケールのパターン はメゾスケールモデルでは解像されないものであ り、壁面付近での粒子挙動にどのように影響するの か興味深い。

なお、このような高濃度場では、粒子間隙に粒径

と比べても非常に小さな流れの空間スケールが存在 するため、本計算で採用されている粒径の 1/8 の空 間分解能では、まだ解像度は十分ではなく、今後、 さらに精度を上げることが望まれる。

5. おわりに

DEM-CFD カップリングモデルによる流動層内流 動シミュレーションについて、流体流れ場のメゾス ケールモデルと並列計算を用いた大規模計算、およ びミクロスケールモデルによる2次元噴流層内流動 に対する計算結果について著者らの研究結果を用い て現状を紹介した。今後はミクロスケールモデルに よる計算により、ミクロスケールにおける粒子・流 体混相系の物理の理解の深化とメゾスケールモデル における各種モデルの改善への寄与が期待できる。 本稿で示した結果は、大規模計算が可能となって初 めて得られるものである。今後の並列計算機のさら なる発展により、より現実的な課題への展開が可能 となるものと大きく期待する。

参考文献

- (1) 例えば, 流動層ハンドブック, 培風館, (1999).
- (2) P. A. Cundall and O. D. L. Strack, *Géotechnique*, 29, 47-65, (1979).
- (3) 川口寿裕ら, *日本機械学会論文集*, 58-551B, 2119-2125, (1992).

- (4) 辻拓也ら, 粉体工学会誌, 44-3, 173-179, (2007).
- (5) 藪本恵三ら, Proc. 13 SCEJ Symp. on Fluidization & Particle Processing, 253-258, (2007).
- (6) T. Tsuji, et al., Powder Tech., 184, 132-140, (2008).
- (7) T. Tsuji, et al., Proc. of International Conference on Multiphase Flow, CD-ROM No. 13.1.2, (2010).
- (8) T. -W. Pan, et al., J. Fluid Mech., **451**, 169-191, (2002).
- (9) T. Kajishima, et al., JSME Int. B, 244, 526-535, (2001).
- (10) M. A. van der Hoef, et al., Annu. Rev. Fluid Mech., 40, 47-70, (2008).
- (11)桑木賢也ら, 化学工学会第41 回秋季大会研究発 表講演要旨集, CD-ROM No.C218, (2009).
- (12)田中敏嗣ら、日本機械学会論文集,75-534B, 60-67,(1991).
- (13)川口寿裕ら、日本機械学会論文集、64-619B、 717-723、(1998).
- (14) T. B. Anderson and R. A. Jackson, *I & EC Fundamentals*, **6**, 527-539, (1967).
- (15) S. Ergun, Chem. Eng. Prog., 48-2, 89-94, (1952).
- (16) C. Y. Wen and Y. H. Yu, Chem. Eng. Prog. Symposium Series, 62-62, 100-111, (1966).