

Title	電子状態計算に基づくナノスケール物質の物性解明と 物質設計
Author(s)	岡田,晋;丸山,実那;山中,綾香
Citation	サイバーメディアHPCジャーナル. 2014, 4, p. 49-52
Version Type	VoR
URL	https://doi.org/10.18910/70485
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

電子状態計算に基づくナノスケール物質の物性解明と物質設計

岡田 晋、丸山 実那、山中 綾香 筑波大学大学院 数理物質科学研究科

1. はじめに

半導体デバイスの集積化、高速化に伴う計算機の 性能向上は、これまで困難であったナノスケールを 有する物質系に対する高精度な物性計算を容易にし た。実際、90年代では、60個の炭素原子からなるサ ッカーボール状分子である C60 フラーレンの高精度 な電子状態計算の実施には、大学の大型計算機セン ターにある、SX-4や VPP500 といったベクトル型の スーパーコンピュータを用いる以外に手段は無かっ た。しかし、今では同じ系を手持ちのノート PC で 難なく計算することが可能となっている。つまり、 今日ではナノスケール物質に対する計算科学のプラ ットホームは完全にコモディティーベースの計算機 に移行している。そのような現状の中、大型計算機 センターに設置されている計算機を用いた計算物質 科学研究の一つの潮流は、超大規模計算や超高精度 計算の方向に向かっている。そのような大規模計算 の例として、2011年にゴードンベル賞を受賞した、 京コンピュータを用いた 10 万個のシリコン原子系 の実空間法による第一原理計算が上げられる。この 計算では、京コンピュータにおいて3ペタフロップ ス(実行効率で40%)をたたき出し、まさに京コン ピュータのパフォーマンスをフルに使った成果と言 える。この計算は半導体デバイス中で用いられるシ リコンナノワイヤの実サイズの計算と言う意味でも 非常に重要な成果である。

ナノスケールを有する物質のサイエンスに着目す ると、その物性現象が必ずしもサイズだけに依存し ていないことがわかる。すなわち、同じサイズにお いても、僅かな原子構造の違いによって全く異なる 物性現象の発現があり得る。有名な例としてカーボ ンナノチューブの電子構造があげられる。CNT で は、同じ直径を有していても、円周方向の原子配列

の違いに依存して、半導体、金属となることが知ら れている。この場合、サイズは固定されたパラメー タで、その下で形状というパラメータ空間での物性 探索となる。この形状と言うパラメータ空間は、一 見非常に狭いように感じられるが、ナノスケールを 有する物資系の原子数が数百個程度であり、その可 能な配置の組み合わせが形状の鍵になることに注意 すると、非常に広いパラメータ空間での物性探索と なる。そのような問題を包含する現象に対しては、 速やかに可能なパラメータ下での電子物性解明が実 行出来る環境が必要不可欠のものである。すなわち、 単体で程々の実行性能と、コモディティーシステム と比して広いメモリーバンド幅を有する大型計算機 システムがナノスケール物質科学の推進を加速する ものである。本稿では、そのような多様な物性現象 が期待される系として、我々の最近の研究成果であ る種々のナノカーボン物質複合系の電子物性に関す る NEC SX-8, SX-9 上での計算の成果を紹介する。

2. 計算手法

通常、孤立したナノカーボン物質、特に3配位炭 素原子からなるグラファイト系ナノ物質の電子物性 は原子サイト間の電子の飛び移りを考えた強束縛近 似(TBA)により、十分に定性的な記述が可能である ことが知られている。しかし、異種物質が導入され た複合構造体中に於いては、異種物質とグラフェン 間の相互作用が自明ではなく、TBA を超えた取り扱 いが必要となってくる。ここでは、密度汎関数理論 (DFT)に基づく第一原理電子状態計算の手法を適用 した。すなわち、Kohn-Sham 方程式と呼ばれる、一 体のシュレーディンガー方程式に類似した非線形の 方程式を自己無撞着に解くことにより、系の基底状 態を求めるものである。実際の DFT 計算に際して

は、電子間の交換相関相互作用として局所密度近似 (LDA)、原子イオンの取り扱いに関しては擬ポテン シャルを用いた。さらに、波動関数は平面波によっ て展開した。このような取り扱いにより、ナノカー ボン物質との相互作用が不明な異種物質を含む複合 構造体の電子物性を定性的、かつある程度の定量性 を持って議論することが可能である。さらに、外部 電界も広義の異種物質として看做し、電界下でのナ ノカーボン物質の物性の探索を行うため、有効遮蔽 媒質法と呼ばれる方法を DFT と組み合せて適用し た。すなわち、電界を計算に用いた単位包の端に設 置された有効遮蔽媒質を用いて生成させ、その下で の電子のポアソン方程式を Kohn-Sham 方程式と同 時に自己無撞着に解くことで電界下における量子論 的な基底状態の電子密度を与えることが可能であ る。

3. 電界下での有限長 CNT の電子物性

CNT は次世代半導体デバイス候補として多くの注 目を集めている。種々の電子デバイス中に於いて、 一般に CNT は既存のテクノロジーを担う異種物質 との複合構造の形成が本質となっている。たとえば、 CNT を担持する基板や電極金属などが上げられる。 これらの現実の物質に加えて、電子デバイスにおい ては電界という広義の異種物質の存在もデバイス機 能制御においては避けて通れない問題である。実際、 電界効果トランジスタ応用において、CNT は電荷蓄 積に関わる鉛直電界と、電流制御に関わる平行電界 の二つの電界に晒されることとなる。ここでは、平 行電界下におかれた有限長 CNT の電界による電子 物性変調、特に電界遮蔽効果に対する CNT の形状依 存性を紹介する[1,2]。

図1:計算に電界下での有限長 CNT の構造モデル

図1に計算に用いた構造モデルを示す。2つの完 全導体からなる対向電極の間に有限長の CNT を配 置し、電極間に電位差 0.25V/Åを印加する。電極間 に挟み込む CNT は直径が7Åで円周方向の原子配列 がアームチェア型の CNT(a-CNT)と、直径が7Åで円 周方向の原子配列がジグザグ型の CNT(z-CNT)を考 えた。これらの有限長の CNT の端の炭素原子は全て 水素原子で終端されており、ゼロ電界の下で構造の 最適化により安定構造を決定し、安定構造の下で電 界を CNT に印加した。

図2(a)に電界下における a-CNT の静電ポテンシ ャルの原子位置依存性を示す。外部電界の存在によ り右肩上がりのポテンシャルのプロファイルを見る ことが出来る。このポテンシャルをより詳細に眺め てみると興味深い事実に気がつく。すなわち、ポテ ンシャルの勾配が原子位置に強く依存し階段状に振 る舞う様子をみることができる。これは、なんらか の詳細な原子構造、もしくは原子位置での外部電界 遮蔽の強弱が存在していることを示唆している。そ こで、炭素結合間距離に着目して有限長 a-CNT の構 造解析を行うと、ポテンシャルの階段状変調とボン ド長の間に強い相関が存在していることがわかった。 ポテンシャル勾配の小さい領域が炭素結合長の短い 領域(ボンド長=1.41 Å以上)と、ポテンシャル勾配 の大きい領域がボンドの長い領域(ボンド長=1.42 A以下)と一対一で対応している。このボンド長に 依存した遮蔽の強弱は、共有結合に於ける電荷密度 で説明できる。すなわち電荷密度が高くボンド長の 短い2重ボンドにおいて、電荷による強い遮蔽が平

坦なポテンシャル勾配を生み出す。他方、結合長の 短い1重ボンド領域では、電荷密度の低いために遮 蔽効果が弱く急なポテンシャル勾配となる。この事 実は、ナノスケールを有する炭素ネットワーク物質 に於いて、その電子物性がごく僅かな構造の違い、 ここでは0.01Åのオーダーの違いに依存すると言う ことを示している。

では、原子配列の違いは何を生み出すであろう か?図2(b)に平行電界下における z-CNT の静電ポ テンシャルの原子位置依存性を示す。驚くべきこと に、端近傍の原子サイトにおいてポテンシャルが激 しく振動していることがわかる。特に端とその一個 内側の原子サイト間のポテンシャル勾配が外部電界 に対して逆向きの勾配となっていることがわかる。 すなわち、z-CNT の端では外部電界に対して過剰な 遮蔽が誘起されることを示している。この過剰な遮 蔽は端の原子配列にのみ依存し、直径に依存してい ないことが、直径の異なる z-CNT に対する同様の計 算から明らかになった。実際、直径が 6Å、8Åの z-CNT でも同様の過剰遮蔽の発現が見られる。この 特異な遮蔽現象はz-CNTの端のジグザグ型の原子配 置が誘起する特異な端局在状態(エッジ状態)によ るものであることが詳細な電子構造解析から明らか になった。

トポロジカル欠陥を有する2次元炭素シートの物質設計

グラフェンは蜂の巣格子故に、原子欠陥やトポロ ジカル欠陥の導入による多様な物性変調が実現され る。これらの導入された欠陥は、パーフェクトな6 員環ネットワークにとってある種の不純物(あきら かに点欠陥、他の多角形員環は"不純"要素となる のが容易に想像可能)として振る舞う。すなわち、 種々の欠陥を有するグラフェンもナノカーボンと異 種物質複合構造体としての視点から眺めることが可 能である。ここでは、極限までトポロジカル欠陥を 包含する2次元炭素ネットワークの物質設計とその 物性解明の結果を示す[3]。ここでは、5員環が3つ からなる環状炭化水素分子、アセペンタレン(C₁₀ H₆) に着目した。この分子は結合交代を考えないと3回 対称軸を有しており、この分子をユニットとした内 部構造を持つ蜂の巣格子を構築することが可能であ る。しかしながら、アセペンタレンはお椀状の分子 であり、そのまま重合させてネットワーク構造を構 築しても、平面状の構造が得られる保証は無い。す なわち、分子の形状を反映した凸凹のリップルを有 する2次元ネットワークとなる可能性がある。

図3:5員環 sp2 ネットワークの全エネルギーの格子定数

依存性

図 4:5 員環 sp2 ネットワークの構造。(a)ユニットセルを 構成する原子構造。(b)最安定構造の上面図と側面図

図3にアセペンタレンを構成単位とする5員環ネ ットワークシートの全エネルギーの格子定数依存性 を示す。格子定数a=7.1Åで全エネルギー0.6eV/atom で極小をとり準安定構造が存在することがわかる。 また興味深いことに、構造最適化の初期構造として お椀状のアセペンタレン構造を仮定したにもかかわ らず、準安定構造は完全な平面構造となることがわ かる(図4)。またこの平面構造は熱擾乱等に対して 非常にロバストであることが第一原理分子動力学計 算の結果から明らかになった。さらに興味深いこと に、このシートは完全に電子的に飽和した sp^2 炭素 ネットワーク、すなわち全ての炭素原子が3配位を 有しており、局所的に完全にグラフェンの炭素と等 価であるにも関わらず、逆格子空間の中心(Γ点) 近傍に平坦なバンドが発現することがわかった。さ らに、この平坦バンドがフェルミレベルにかかるこ とによりスピン分極がシート上に誘起されることが 明らかになった。図5にシート上に誘起された分極 スピン密度の空間分布を示す。図から明らかなよう に、分極下スピンは強磁性的にシート上に広がって おり、そのスピンモーメントは0.62 μ g/nm²となるこ とがわかった。この結果は、5 員環のみからなる 2 次元 sp^2 炭素シートが強磁性炭素同素体の候補とな り得ることを示したものである。

図5:5員環 sp2 ネットワークのスピン密度空間分布

5. まとめ

本稿では異種物質によるグラフェンの電子物性変 調について、最近の我々の研究の成果を中心に紹介 した。ここでは、異種物質としてグラフェンのデバ イス動作時に本質となる外部電界、トポロジカルな 欠陥に着目し、これらがグラフェンの特徴的な電子 構造を大きく変調すること、全く予期せぬ特異な物 性を誘起することを密度汎関数理論に基づく第一原 理電子状態計算から明らかにした。

参考文献

- Yamanaka and S. Okada: Electronic Properties of Carbon Nanotubes under an Electric Field", Appl. Phys. Express, 5, 095101 (2012).
- (2) Yamanaka and S. Okada: ``Anomalous Electric-Field Screening at Edge Atomic Sites of Finite-length Zigzag

Carbon Nanotubes", Appl. Phys. Express 6, 045101 (2013).

(3) M. Maruyama and S. Okada: "A Two-dimensional sp2 Carbon Network of Fused Pentagons: All Carbon Ferromagnetic Sheet" Appl. Phys. Express 6, 095101 (2013).