

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Yanagawa, T. Osaka J. Math. 7 (1970), 165-172

ON RIBBON 2-KNOTS III ON THE UNKNOTTING RIBBON 2-KNOTS IN S⁴

TAKAAKI YANAGAWA

(Received September 8, 1969)

1. Introduction

Concerning the unknotting theorem for the pair $(Sⁿ, Mⁿ⁺²)$ with the codimension 2, there are several remarkable results; by T. Homma in the case $n=1$ and $M^3 = S^3$, by C.D. Papakyriakopoulos in the case $n=1$ and any 3-manifold *M*², by J. Stallings in the case $n \ge 3$ and $M^{n+2} = S^{n+2}$ in the topological sense and by J. Levine in the case $n \ge 4$ and $M^{n+2} = S^{n+2}$ in the combinatorial sense, see [1], [2], [3], [4] and [5]. Confining ourselves to the case $M^{n+2}=S^{n+2}$, the unknotting theorem has not been solved in the case $n=2$.

In this paper, we will prove the following theorem which is an answer under an additional condition to the unknotting theorem in the case $n{=}2$ and $M^4{=}S^4$:

Theorem (2, 2). For a ribbon 2-knot K^2 in S^4 , K^2 is unknotted in S^4 if and *only if* $\pi_1(S^4 - K^2) = Z$

In this paper, everything will be considered from the combinatorial point of view.

2. Proof of Theorem

Lemma $(2, 1)^2$. Let M^4 be a combinatorial 4-manifold and let γ be a simple *closed curve in M⁴ which is contractible to a point in M⁴ . Then,* γ *bounds a non-singular > locally flat 2-ball in ifr⁴* 3) .

Proof. Since γ is contractible to a point in \mathring{M}^4 , there is a PL-map φ of a 2-ball D^2 into \mathring{M} ⁴ satisfying the following (1), (2) and (3):

- (1) $\varphi(D^2) \subset \mathring{M}^4$, $\varphi(\partial D^2) = \gamma$,
- (2) $\varphi(D^2)$ is in a general position in \mathring{M}^4 so that the self-intersection consists of a finite number of double points,

¹⁾ See [6] for the definition of the *ribbon 2-knots* in *R⁴ .*

²⁾ Cf. the result in [7], the proof of Lemma (2, 7).

³⁾ \overrightarrow{X} and ∂X mean the interior and the boundary of X respectively.

(3) there are at most a finite number of *locally knotted points* on $\varphi(D^2)$ which are different from the double points in (2).

Here, in (3), a point x of $\varphi(D^2)$ is called a *locally knotted point*⁴⁾ if the pair $(Lk(x, \varphi(D^2)), Lk(x, M^*))$ *is a knotted sphere-pair* for the combinatorial triangulation of M^4 for which $\varphi(D^2)$ is a subcomplex and the point x is a vertex. If there is a locally knotted point x of $\varphi(D^2)$, it is possible to exchange a nonsingular 2-ball $St(x, \varphi(D^2))$, which may be not locally flat, for an immersed 2-ball $\rho(B^2)$ in a 4-ball $B^4 = \text{St}(x, M^4)$ by an immersion ρ of a 2-ball B^2 such that $\rho(\partial B^2) = \rho(D^2) \cap \partial B^4$, $\rho(\mathring{B}^2) \subset \mathring{B}^4$ and that each pair $(\rho Lk(y, B^2), Lk(\rho(y), B^4))$ is unknotted for a fine subdivision of B^4 and each virtex y of B^2 . Perform the exchange for all locally knotted points of $\varphi(D^2)$. By making use of the general position theory, we have a PL -map φ' of D^z into \mathring{M}^* satisfying the following (1'), (2') and (3'):

- $(1') \quad \varphi'(D^2) \subset M^4$
- (2') $\varphi'(D^2)$ is in a general position in M^4 so that the self-intersection consists of a finite number of double points,
- $(3')$ $\varphi'(D^2)$ has no locally knotted point.

Let *x* be a double point of $\varphi'(D^2)$ and $x = \varphi'(y) = \varphi'(y')$ for just two points y, y' of D^2 . Then there is an arc α spanning y and a point y'' on ∂D^2 such that the image $\varphi'(\alpha)$ does not cross any double point of $\varphi'(D^2)$ except for x. Let V^* be a regular neighborhood of $\varphi'(\alpha)$ in M^* . Since V^* is a 4-ball, there is a PL-homeomorphism ϕ of V^* onto a standard 4-cube Δ^* such that

- (i) Δ^4 ; $|x_1|, |x_2|, |x_3|, |x_4| \leq 2$
- $\phi \phi'(\alpha); 0 \le x_1 \le 1, x_2 = x_3 = x_4 = 0$
- **(iii)** $\phi \phi'(x)$; $x_1 = x_2 = x_3 = x_4 = 0$

$$
\text{(iv)} \quad \phi(V^*\cap \varphi'(D^2)); \begin{cases} -2 \leq x_1 \leq 1, \ x_2 = x_3 = 0, \ |x_4| \leq 2 \\ x_1 = 0, \ |x_2|, \ |x_3| \leq 2, \ x_4 = 0 \cdots (*) \end{cases}.
$$

Let N^2 be the 2-ball in $\phi \varphi'(D^2)$ defined by the equation (*) and let N'^2 be the 2-ball in Δ^4 defined as follows:

(v)
$$
N'^2
$$
; $\begin{cases} 0 \le x_1 < 2, & |x_2| \le 2, & |x_3| = 2, & x_4 = 0, \\ 0 \le x_1 < 2, & |x_2| = 2, & |x_3| \le 2, & x_4 = 0, \\ x_1 = 2, & |x_2|, & |x_3| \le 2, & x_4 = 0. \end{cases}$

If we consider a singular 2-ball $B'^{2} = \phi^{-1}((\phi \varphi'(D^{2}) - N^{2}) \cup N'^{2})$, then this 2-ball B'^2 is not only locally flat but also has a number of the double points less

⁴⁾ See [8] p. 34.

RIBBON 2-KNOTS III 167

than the number of those of $\varphi'(D^2)$. Moreover we have that $\partial B'^2 = \gamma$. Repeating this process, we have finally *a locally flat, non-singular 2-ball B²* such that $B^2 \subset \mathring{M}$ ⁴ and that $\partial B^2 = \gamma$. The proof is thus complete.

Let K^2 be a ribbon 2–knot in R^4 , then there is a 3–manifold W^3 satisfying the following properties :

- $(W^3 \approx B^3 \quad \text{or} \quad W^3 \approx \#(S^1 \times S^2) \mathring{B}^{3 \text{57}}\,,$
- (2) If $W^3 \nless B^3$, W^3 has a trivial system of 2-spheres $\{S^2_1, \dots, S^2_{2n}\}$ satisfying that
- (i) a 2-link ${S_1^2, \dots, S_{2n}^2}$ is trivial in R^4 ,
- (ii) $S_i^2 \cup S_{n+i}^2$ bounds a spherical-shell N_i^3 in W^3 (*i*=1, …, *n*)⁶),
- (iii) $W^3 \mathring{N}_1^3 \cup \cdots \cup \mathring{N}_n^3 \approx B^3 \mathring{\Delta}_1^3 \cup \cdots \cup \mathring{\Delta}_2^3$

see (3, 5) and (3, 6) in [6].

Let Δ_0^3 be a 3-ball in $W^3 - N_1^3 \cup \cdots \cup N_n^3$, let S_0^2 be a boundary 2-sphere of Δ_0^3 and let $\beta_1, \cdots, \beta_{2n}$ be a collection of mutually disjoint arcs spanning S_0^2 and S_1^2, \cdots, S_{2n}^2 in $W^3 - N_1^3 \cup \cdots \cup N_n^3 \cup \mathring{\Delta}_0^3$ respectively. Moreover, let U_λ^3 be a regular neighborhood of the arc β_λ in $W^3-\mathring{N}_1^3\cup\cdots\cup\mathring{N}_n^3\cup\mathring{\Delta}^3_0$ where $\,U^3_\lambda\cap S^2_\lambda\!\!=\!e_\lambda^2\,$ and $U_{\lambda}^3 \cap S_0^2 = e_{\lambda}^{\prime^2}$ are 2-balls such that $e_{\lambda}^{\prime^2} \cap e_{\mu}^{\prime^2} = \emptyset$ ($\lambda \neq \mu$, λ , $\mu = 1, \dots, 2n$). Since the 2-link $\{S_0^2, \dots, S_{2n}^2\}$ is trivial in R^* , there is an isotopy ξ of R^* by which $\xi(S_2^2)(\lambda=0, \cdots, 2n)$ are moved into the position given by the equations below:

$$
\xi(S_0^2); x_1^2+x_2^2+x_3^2=1, x_4=0
$$

\n
$$
\xi(S_i^2); (x_1-4i)^2+x_2^2+x_3^2=1, x_4=0
$$

\n
$$
\xi(S_{n+i}^2); (x_1-4i)^2+x_2^2+x_3^2=2, x_4=0
$$

\n
$$
\xi(N_i^3); 1 \leq (x_1-4i)^2+x_2^2+x_3^2 \leq 2, x_4=0 (i=1,\dots,n).
$$

Moreover, we may suppose that the center line $\xi(\beta_\lambda)$ of the tube $\xi(U^3_\lambda)$ is given by the equations below :

> $x_1 = 4i$, $x_2 = 0$, $x_3 = 1-x_4$, $x_4 \ge 0$ in the neighborhood of $\xi(\beta_i \cap S_i^2)$, $x_1 = 4i$, $x_2 = 0$, $x_3 = \sqrt{2-x_4}$, $x_4 \leq 0$ in the neighborhood of $\mathcal{E}(\beta_{n+i} \cap S_{n+i}^2)$ $(i = 1, 2, \cdots, n).$

Theorem (2. 2)'. For a ribbon 2-knot K^2 in R^4 , K^2 is unknotted in R^4 , if *and only if* $\pi_1(R^4 - K^2) = Z$.

⁵⁾ B^3 means a 3-ball and \approx means *to be homeomorphic to*.

⁶⁾ $N_i^3 \approx S^2 \times [0, 1].$

The proof of this theorem is divided into two steps, and the second-step of the proof will be given later after we have proved two lemmas (2, 3) and (2, 4). Since K^2 is a ribbon 2–knot in R^4 , it bounds a 3–manifold W^3 previously described, therefore if $W^3 \approx B^3$, we have nothing particular to say. Hence, in the following discussion we will consider the case that $W^3 \nless B^3$. Consider the trivial system ${S_1^2, \dots, S_{2n}^2}$ and the isotopy ξ of R^4 as before. Let \tilde{K}^2 be a 2-knot in R^4 such that

$$
\tilde{\mathcal{K}}^2 = \xi \left(\begin{smallmatrix} 2n \\ \bigcup \\ \lambda=0 \end{smallmatrix} S^2_{\lambda} - \begin{smallmatrix} 2n \\ \bigcup \\ \lambda=1 \end{smallmatrix} \left(\mathring{e}^2_{\lambda} \ \cup \ \mathring{e}^{\prime \, 2}_{\lambda} \right) \right) \ \cup \ \xi \left(\begin{smallmatrix} 2n \\ \bigcup \\ \lambda=1 \end{smallmatrix} \partial \ U^3_{\lambda} - \begin{smallmatrix} 2n \\ \bigcup \\ \lambda=1 \end{smallmatrix} \left(\mathring{e}^2_{\lambda} \ \cup \ \mathring{e}^{\prime \, 2}_{\lambda} \right) \right).
$$

Then, since two 2-spheres $\xi(K^2)$ and \tilde{K}^2 bound a 3-manifold which is a sub- $\mathcal{C} = \mathcal{C}$ complex of $\xi(W^3)$ and which is homeomorphic to $S^2{\times}[0,1]$ in $R^4,\,\tilde{K}^2$ belongs to the 2-knot-type $\{\xi(K^2)\}\$ which coincides with the 2-knot-type $\{K^2\}.$

Let B^3 ^{*k*} be a 3-ball bounded by the 2-sphere $\xi(S^2)$.

$$
B_i^3; (x_1-4i)^2+x_2^2+x_3^2\leq 1, x_4=0 \qquad (i=0, 1, 2, \cdots, n).
$$

First-step of the proof of $(2, 2)'$: Each 3-ball B_i^3 bounded by the 2-sphere $\xi(S_i^2)$ (i=1, \cdots , *n*) in R_0^3 does not meet any arc $\xi(\beta_\lambda)$ except for the end points $(\lambda=1, \cdots, 2n).$

Since we can find a regular neighborhood U^3_λ of β_λ so fine that $\xi(U^3_\lambda)\cap B^3_\ell$ $=0$ because $\xi(\beta_\lambda) \cap B_i^3 = \emptyset$ for all *i* and λ (*i*=1, ···, *n*, λ =1, ···, 2*n*), the 2-knot \tilde{K}^2 bounds a 3-ball $B_0^3 \cup B_1^3 \cup \cdots \cup B_n^3 \cup B_{n+1}^3 \cup \cdots \cup B_{2n}^3 \cup \xi(U_1^3) \cup \cdots \cup \xi(U_{2n}^3)$, where the 3-ball B_{n+i}^3 is bounded by $\xi(S_{n+i}^2)$ in the neighborhood of $\xi(N_i^3)\cup B_i^3$ in R^4 so that $B_{n+i}^3 \cap B_j^3 = \emptyset$, $B_{n+i}^3 \cap \xi(U_\lambda^3) = \emptyset$ $(\lambda+n+i)$ and $=\xi(e_\lambda^2)$ $(\lambda=n+i)$ $(i, j=1, \dots, n, \lambda=1, \dots, 2n)$: for a sufficiently small $\mathcal{E}(<0)$,

$$
B_{n+i}^{3} ; \begin{cases} (x_{1} - 4i)^{2} + x_{2}^{2} + x_{3}^{2} = 2, -\varepsilon \leq x_{4} \leq 0 \\ (x_{1} - 4i)^{2} + x_{2}^{2} + x_{3}^{2} \leq 2, x_{4} = -\varepsilon \\ (i = 1, 2, \cdots, n). \end{cases}
$$

If there is a 3-ball B_i^3 which meets some arcs $\xi(\beta_\lambda)$ $(1 \leq i \leq n, 1 \leq \lambda \leq 2n)$, we will consider how to remove the intersection of the 3 -ball $B_i³$ and the arcs $\xi(\beta_{\lambda})$ without changing the 2–knot-type of \tilde{K}^{2} . We need following two lemmas (2, 3) and (2, 4) to remove the intersection.

Lemma (2, 3). If there are an arc b in $R^4 - \tilde{K}^2$ and a subarc β'_λ of the arc β_λ ($1 \leqq \lambda \leqq 2n$) such that the simple closed curve $\gamma =$ b $\cup \xi(\beta'_\lambda)$ is contractible in *R*⁴— \tilde{K} ², then there exists an isotopy η of R⁴ by which $η(\tilde{K}$ ²)= \tilde{K} ² and $ηξ(β_λ)$ $=\xi(\beta_{\lambda}-\beta_{\lambda}')\cup b.$

Proof. Since β_λ is contained in \check{U}^3_λ except two end points, we can triangulate *R*⁴ so that the regular neighborhood $N(\tilde{K}^2)$ of \tilde{K}^2 in R^4 does not meet $\xi(\beta_\lambda)$. If we apply (2, 1) to the 4-manifold $M^4 = R^4 - \overset{\circ}{N}(\tilde{K}^2)$ and the simple closed

curve $\gamma = b \cup \xi(\beta'_\lambda)$, the simple closed curve γ bounds a locally flat 2-ball B^2 in \mathring{M} ⁴. Therefore there exists a combinatorial 4-ball B ⁴ containning B ² in its interior and contained in $R^4 - \tilde{K}^2$. Now, we have easily an isotopy which is identical on ∂B^4 and transfers the subarc $\xi(\beta'_\lambda)$ onto the arc *b*. Hence, the proof is complete.

Lemma (2, 4). If $\pi_1(R^4-\tilde{K}^2)=Z$ and an arc $\xi(\beta_\lambda)$ $(1 \leq \lambda \leq 2n)$ pierces *through a 3–ball* B_i^3 $(1 \leq i \leq n)$ at a point A, there are an arc b in R^4 – \tilde{K}^2 and a *subarc β'_λ* on the arc β_λ containning A such that the simple closed curve b∪ξ(β'_λ) *is contractible in R⁴* \tilde{K}^2 *.*

Proof. For convenience's sake, we may suppose that $\xi(\beta_\lambda)$ is given in the neighborhood of the point A as follows :

$$
\xi(\beta_{\lambda}); x_1 = 4i, x_2 = x_3 = 0, -1 \le x_4 \le 1.
$$

Consider the cross-sections of $\xi(S_i^2)$, $\xi(S_{n+i}^2)$ and $\xi(N_i^3)$ by the hyperplane P; $x_3=0$. Then, we have the following figure Fig. (1).

Place $\xi(U_{\lambda}^3)$ in a general position with respect to the hyperplane P, then the cross-section $\xi(U^3_\lambda)\cap P$ is at most 2-dimensional, and we can find an arc *b* spanning two points A_+ and A_- in $P-P\cap \tilde{K}^2$ as follows:

$$
b\,;\;\begin{cases} x_1=4i, & 0\!\leq\! x_2\!\leq\!2, \quad x_3=0, \quad x_4=\!\varepsilon \\ x_1=4i, & x_2=2, \quad x_3=0, \quad -\!\varepsilon\!\leq\! x_4\!\leq\!\varepsilon \\ x_1=4i, \quad 0\!\leq\! x_2\!\leq\!2, \quad x_3=0, \quad x_4\!\!=\!-\!\varepsilon \,, \end{cases}
$$

see Fig. (2).

Since the 2–knot \tilde{K}^{z} bounds the orientable 3–manifold $\tilde{W}^{\text{3}}{=}\xi (N_1^3 \cup \cdots \cup$ $N_n^3 \cup U_1^3 \cup \cdots \cup U_{2n}^3 \cup \Delta_0^3$ in R^4 , we will give an orientation induced from the orientation of \tilde{W} ³ for \tilde{K} ². Then, the trivial link $\xi(S^2_\ast \cup S^2_{n+i}) \cap P$, which bounds an annulus $\xi(N_i^3) \cap P$ in P, can be given the orientation induced from that of $\xi(N_i^3) \cap P$, see Fig. (1) again. Since $\tilde{K}^2 \cap P$ is a cross-section of a 2-knot \tilde{K}^2 , the simple closed curves c_i and c_{n+i} represent the generator of $H_1(R^4-\tilde{K}^2)$, see Fig. (2) again. Therefore, the loop $w\gamma w^{-1}$ represents an element of the commutator subgroup of $\pi_1(R^4\!-\!\tilde{K}^2)$ for any arc w from the base-point to a point on $\gamma,$ where the simple closed curve γ is $b \cup \xi(\beta'_\lambda)$ for the segment $\xi(\beta'_\lambda)$ between A_+ and $A_$ on $\xi(\beta_\lambda)$. Now, $w\gamma w^{-1}$ ~0 for any arc w, because $\pi_1(R^4-\tilde{K}^2)=Z$; that is, γ is contractible in $R^4 - \tilde{K}^2$.

Second-step of the proof of $(2, 2)'$ **:** There is a 3-ball B_i^3 which meets some arcs $\xi(\beta_\lambda)$.

Since the 2-knot \tilde{K}^2 constructed by making use of W^3 , S^2_λ and U^3_λ and bounding the 3-manifold $\tilde{W}^3 = \xi(N_1^3 \cup \cdots \cup N_n^3 \cup U_1^3 \cup \cdots \cup U_{2n}^3 \cup \Delta_0^3)$ in R^4 belongs to the 2-knot-type $\{K^2\}$, it is sufficient to prove that \tilde{K}^2 is unknotted. On the other hand, by making use of $(2, 4)$ and $(2, 5)$, there exists an isotopy η of R ⁴ such that $η(\tilde{K}^2)=\tilde{K}^2$ and that $ηξ(β_λ)$ $(λ=1, ۰۰۰, 2n)$ does not meet any 3-ball B_i^s (*i*=1, ..., *n*). Since $\xi(\hat{\beta}_\lambda) \subset \xi(\hat{U}_\lambda^s)$, so $\eta \xi(\hat{\beta}_\lambda) \subset \eta \xi(\hat{U}_\lambda^s)$. Take a sufficiently fine tube (a regular neighborhood in U_λ^3) \tilde{U}_λ^3 of the arc β_λ in U_λ^3 so that $\eta\xi(\tilde{U}_{\lambda}^3)$ does not meet any \tilde{B}_i^3 $(i=1, \dots, n)$ and that $\tilde{U}_{\lambda}^3 \cap S_{\lambda}^2 = f_{\lambda}^2$ and $\tilde{U}_\lambda^3 \cap S_0^2 = f_\lambda'^2$ are 2-balls in e_λ^2 and $e_\lambda'^2$ respectively $(\lambda = 1, \dots, 2n)$. Then, then $\text{fusion}\quad K^{*^2} = \eta\xi\big(\stackrel{2\pi}{\cup}S^2_\lambda-\stackrel{2\pi}{\cup}(f^2_\lambda\cup f^{\prime\,2}_\lambda)\big)\cup\eta\xi\big(\stackrel{2\pi}{\cup}\partial\widetilde{U}^3_\lambda-\stackrel{2\pi}{\cup}(f^2_\lambda\cup f^{\prime\,2}_\lambda)\big)\quad\text{not only}$ belongs to $\{\tilde{K}^2\}$ which coincides with $\{K^2\}$, but also the tubes $\eta\xi(\tilde{U}^3_{\lambda})\,(\lambda\!=\!1,\,\cdots\,,$ *2n*) does not meet any 3-ball B_i^3 (*i*=1, \cdots , *n*). Since we can construct a 3-ball bounded by the 2-knot K^{*^2} in R^4 as we have done in the first-step of the proof, the 2-knot K^{*^2} is unknotted in R^4 . This implies that \tilde{K}^2 is unknotted, and the proof is thus complete.

From (2, 2)', we have easily the main theorem of this paper:

Theorem (2, 2). For a ribbon 2–knot K^2 in S^4 , K^2 is unknotted in S^4 , if and *only if* $\pi_1(S^4 - K^2)$

Corollary (2, 3). Let K^2 be a 2-knot in R^4 satisfying the following (1), (2) and (3). Then K^2 is unknotted in R^4 ;

- (1) a 2-node $K^2 \cap H^4$ containes no minimum,
- (2) the 2–nodes $K^2 \cap H^4_+$ and $K^2 \cap H^4_-$ are symmetric each other with respect *to the hyperplane* R_0^3 ,
- (3) the knot $k = K^2 \cap R_0^3$ is unknotted in R_0^3 .

Proof. This follows from $(2, 2)'$. Since K^2 satisfies (1) and (2), K^2 is a

ribbon 2–knot, see [6]. Moreover there is a homomorphism of $\pi_1(R_0^3-k)$ onto $\pi_1(R^4 - K^2)$, cf. p. 132-6 in [9]. Then, it is easy to see that $\pi_1(R^4 - K^2) = Z$ as $\pi_1(R_0^3-k)=Z$ by the condition (3). (2, 3) is a proposition analogous to the theorem in [11].

The converse of (2, 3) is not always true, see the remark below:

REMARK. *There is an unknotted 2-knot K2 Ό which satisfies* (1) *and* (2) *in* (2, 3) *but does not satisfy* (3) *in* (2, 3), *see the following example.*

The knot *k* in R_0^3 , described in Fig. (3), is knotted in R_0^3 , although its Alexander polynomial $\Delta(t)=1$, see Fig. (13) on p. 151 in [10].

3. A generalization to the higher dimensional case

Let $K^{\textit{m}}$ be a locally flat m-sphere in $R^{\textit{m}+2}$ and let $W^{\textit{m}+1}$ be a $(\textit{m}+1)$ -manifold satisfying the following (1) , (2) and (3) :

- $(W^{m+1} \subset R^{m+2}, \quad \partial W^{m+1} = K^m,$
- $(W^{m+1} \approx B^{m+1} \text{ or } W^{m+1} \approx \#(S^1 \times S^m) \mathring{B}^{m+1},$
- (3) if $W^{m+1} \neq B^{m+1}$, W^{m+1} has a trivial system of m-spheres ${S_1^m, \dots, S_{2n}^m}$ such that
- (i) the locally flat m-link $\{S_1^m, \dots, S_{2n}^m\}$ is combinatorially trivial in R^{m+2} ,
- (ii) $S_i^m \cup S_{n+i}^m$ bounds a spherical-shell N_i^{m+1} in W^{m+1} 8),
- $(\mathrm{iii})\quad W^{\textit{m}+1}-\mathring{N}_1^{\textit{m}+1}\cup \cdots \cup \mathring{N}_n^{\textit{m}+1} \!\approx\! B^{\textit{m}+1}-\mathring{\Delta}_1^{\textit{m}+1}\cup \cdots \cup \mathring{\Delta}_{2n}^{\textit{m}+1} \cdot ^{\textit{s}}$

Then, we have the following theorem in the same way as (2, 2).

Theorem (3, 1). Let K^m be a locally flat m-sphere in S^{m+2} and $(m+1)$ *manifold* W^{m+1} *satisfying the above conditions. Then,* K^m *is unknotted* ¹⁰⁾ in S^{m+2} , *if and only if* $\pi_1(S^{m+2}-K^m)=Z$.

KOBE UNIVERSITY

⁷⁾ Prof. R.H. Fox named this 2-knot *Terasaka-Kinoshita 2-sphere.*

⁸⁾ $N^{m+1}_{i} \approx S^{m} \times [0, 1].$

⁹⁾ Δ_1^{m+1} , \cdots , Δ_{2n}^{m+1} are disjoint $(m+1)$ -simplices in $a(m+1)$ -ball B^{m+1} .

¹⁰⁾ At least *topologically* unknotted.

References

- [1] T. Homma: *On Dehn's Lemma for S*,* Yokohama Math. J. 5 (1957), 223-244.
- [2] C.D. Papakyriakopoulos: *On Dehn's lemma and the asphericity of knots,* Ann. of Math. 66(1957), 1-26.
- [3] A. Shapiro and J.H.C. Whitehead: *A proof and extension of Dehn's lemma,* Bull. Amer. Math. Soc. 64 (1958), 174-178.
- [4] J. Stallings: *On topologίcally unknotted spheres,* Ann. of Math. 77 (1963), 490-503.
- [5] J. Levine: *Unknotting spheres in codimension two,* Topology 4 (1965), 9-16.
- [6] T. Yanagawa: *On ribbon 2-knots,* Osaka J. Math. 6 (1969), 447-464.
- [7] R. Penrose, E.G. Zeeman and J.H.C. Whitehead: *Imbeddings of manifolds in Euclidean space,* Ann. of Math. 73 (1961), 154-212.
- [8] S. Suzuki: *Local knots of 2-spheres in ^-manifolds,* Proc. Japan Acad. 45 (1969), 34-38.
- [9] R.H. Fox: *A quick trip through knot theory,* Top. of 3-manifolds and related topics., edited by M.K. Fort Jr. Prentice Hall, 1962.
- [10] S. Kinoshita and H. Terasaka: *On unions of knots,* Osaka Math. J. 9 (1957), 131-153.
- [11] F. Hosokawa: *On trivial 2-spheres in 4-space,* The Quart. J. Math. (2) **19** (1968), 249-256.