

Title	On ribbon 2-knots. III. On the unknotting ribbon 2-knots in S^4
Author(s)	Yanagawa, Takaaki
Citation	Osaka Journal of Mathematics. 1970, 7(1), p. 165-172
Version Type	VoR
URL	https://doi.org/10.18910/7049
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Yanagawa, T.
Osaka J. Math.
7 (1970), 165-172

ON RIBBON 2-KNOTS III ON THE UNKNOTTING RIBBON 2-KNOTS IN S^4

TAKAAKI YANAGAWA

(Received September 8, 1969)

1. Introduction

Concerning the unknotting theorem for the pair (S^n, M^{n+2}) with the codimension 2, there are several remarkable results; by T. Homma in the case $n=1$ and $M^3=S^3$, by C.D. Papakyriakopoulos in the case $n=1$ and any 3-manifold M^3 , by J. Stallings in the case $n \geq 3$ and $M^{n+2}=S^{n+2}$ in the topological sense and by J. Levine in the case $n \geq 4$ and $M^{n+2}=S^{n+2}$ in the combinatorial sense, see [1], [2], [3], [4] and [5]. Confining ourselves to the case $M^{n+2}=S^{n+2}$, the unknotting theorem has not been solved in the case $n=2$.

In this paper, we will prove the following theorem which is an answer under an additional condition to the unknotting theorem in the case $n=2$ and $M^4=S^4$:

Theorem (2, 2). *For a ribbon 2-knot K^2 in S^4 , K^2 is unknotted in S^4 if and only if $\pi_1(S^4-K^2)=Z^1$.*

In this paper, everything will be considered from the combinatorial point of view.

2. Proof of Theorem

Lemma (2, 1)²⁾. *Let M^4 be a combinatorial 4-manifold and let γ be a simple closed curve in \mathring{M}^4 which is contractible to a point in \mathring{M}^4 . Then, γ bounds a non-singular, locally flat 2-ball in \mathring{M}^4 ³⁾.*

Proof. Since γ is contractible to a point in \mathring{M}^4 , there is a PL-map φ of a 2-ball D^2 into \mathring{M}^4 satisfying the following (1), (2) and (3):

- (1) $\varphi(D^2) \subset \mathring{M}^4$, $\varphi(\partial D^2) = \gamma$,
- (2) $\varphi(D^2)$ is in a general position in \mathring{M}^4 so that the self-intersection consists of a finite number of double points,

1) See [6] for the definition of the *ribbon 2-knots* in R^4 .

2) Cf. the result in [7], the proof of Lemma (2, 7).

3) \mathring{X} and ∂X mean the interior and the boundary of X respectively.

(3) there are at most a finite number of *locally knotted points* on $\varphi(D^2)$ which are different from the double points in (2).

Here, in (3), a point x of $\varphi(D^2)$ is called a *locally knotted point*⁴⁾ if the pair $(Lk(x, \varphi(D^2)), Lk(x, M^4))$ is a *knotted sphere-pair* for the combinatorial triangulation of M^4 for which $\varphi(D^2)$ is a subcomplex and the point x is a vertex. If there is a locally knotted point x of $\varphi(D^2)$, it is possible to exchange a non-singular 2-ball $St(x, \varphi(D^2))$, which may be not locally flat, for an immersed 2-ball $\rho(B^2)$ in a 4-ball $B^4 = St(x, M^4)$ by an immersion ρ of a 2-ball B^2 such that $\rho(\partial B^2) = \varphi(D^2) \cap \partial B^4$, $\rho(\dot{B}^2) \subset \dot{B}^4$ and that each pair $(\rho Lk(y, B^2), Lk(\rho(y), B^4))$ is unknotted for a fine subdivision of B^4 and each vertex y of B^2 . Perform the exchange for all locally knotted points of $\varphi(D^2)$. By making use of the general position theory, we have a *PL*-map φ' of D^2 into \dot{M}^4 satisfying the following (1'), (2') and (3'):

- (1') $\varphi'(D^2) \subset M^4$, $\varphi'(\partial D^2) = \gamma$,
- (2') $\varphi'(D^2)$ is in a general position in M^4 so that the self-intersection consists of a finite number of double points,
- (3') $\varphi'(D^2)$ has no locally knotted point.

Let x be a double point of $\varphi'(D^2)$ and $x = \varphi'(y) = \varphi'(y')$ for just two points y, y' of D^2 . Then there is an arc α spanning y and a point y'' on ∂D^2 such that the image $\varphi'(\alpha)$ does not cross any double point of $\varphi'(D^2)$ except for x . Let V^4 be a regular neighborhood of $\varphi'(\alpha)$ in M^4 . Since V^4 is a 4-ball, there is a *PL*-homeomorphism ϕ of V^4 onto a standard 4-cube Δ^4 such that

- (i) Δ^4 ; $|x_1|, |x_2|, |x_3|, |x_4| \leq 2$
- (ii) $\phi\varphi'(\alpha)$; $0 \leq x_1 \leq 1$, $x_2 = x_3 = x_4 = 0$
- (iii) $\phi\varphi'(x)$; $x_1 = x_2 = x_3 = x_4 = 0$
- (iv) $\phi(V^4 \cap \varphi'(D^2))$; $\begin{cases} -2 \leq x_1 \leq 1, x_2 = x_3 = 0, |x_4| \leq 2 \\ x_1 = 0, |x_2|, |x_3| \leq 2, x_4 = 0 \end{cases} \dots (*)$

Let N^2 be the 2-ball in $\phi\varphi'(D^2)$ defined by the equation $(*)$ and let N'^2 be the 2-ball in Δ^4 defined as follows:

$$(v) \quad N'^2; \quad \begin{cases} 0 \leq x_1 < 2, |x_2| \leq 2, |x_3| = 2, x_4 = 0, \\ 0 \leq x_1 < 2, |x_2| = 2, |x_3| \leq 2, x_4 = 0, \\ x_1 = 2, |x_2|, |x_3| \leq 2, x_4 = 0. \end{cases}$$

If we consider a singular 2-ball $B'^2 = \phi^{-1}((\phi\varphi'(D^2) - N^2) \cup N'^2)$, then this 2-ball B'^2 is not only locally flat but also has a number of the double points less

4) See [8] p. 34.

than the number of those of $\varphi'(D^2)$. Moreover we have that $\partial B'^2 = \gamma$. Repeating this process, we have finally a *locally flat, non-singular 2-ball* B^2 such that $B^2 \subset \dot{M}^4$ and that $\partial B^2 = \gamma$. The proof is thus complete.

Let K^2 be a ribbon 2-knot in R^4 , then there is a 3-manifold W^3 satisfying the following properties:

- (1) $W^3 \approx B^3$ or $W^3 \approx \#(S^1 \times S^2) - \dot{B}^3$ ⁵⁾,
- (2) If $W^3 \not\approx B^3$, W^3 has a trivial system of 2-spheres $\{S_1^2, \dots, S_{2n}^2\}$ satisfying that
 - (i) a 2-link $\{S_1^2, \dots, S_{2n}^2\}$ is trivial in R^4 ,
 - (ii) $S_i^2 \cup S_{n+i}^2$ bounds a spherical-shell N_i^3 in W^3 ($i=1, \dots, n$)⁶⁾,
 - (iii) $W^3 - N_1^3 \cup \dots \cup N_n^3 \approx B^3 - \dot{\Delta}_1^3 \cup \dots \cup \dot{\Delta}_{2n}^3$,

see (3, 5) and (3, 6) in [6].

Let Δ_0^3 be a 3-ball in $W^3 - N_1^3 \cup \dots \cup N_n^3$, let S_0^2 be a boundary 2-sphere of Δ_0^3 and let $\beta_1, \dots, \beta_{2n}$ be a collection of mutually disjoint arcs spanning S_0^2 and S_1^2, \dots, S_{2n}^2 in $W^3 - N_1^3 \cup \dots \cup N_n^3 \cup \dot{\Delta}_0^3$ respectively. Moreover, let U_λ^3 be a regular neighborhood of the arc β_λ in $W^3 - N_1^3 \cup \dots \cup N_n^3 \cup \dot{\Delta}_0^3$ where $U_\lambda^3 \cap S_\lambda^2 = e_\lambda^2$ and $U_\lambda^3 \cap S_0^2 = e_\lambda'^2$ are 2-balls such that $e_\lambda'^2 \cap e_\mu'^2 = \emptyset$ ($\lambda \neq \mu, \lambda, \mu = 1, \dots, 2n$). Since the 2-link $\{S_0^2, \dots, S_{2n}^2\}$ is trivial in R^4 , there is an isotopy ξ of R^4 by which $\xi(S_\lambda^2)$ ($\lambda=0, \dots, 2n$) are moved into the position given by the equations below:

$$\begin{aligned} \xi(S_0^2); \quad & x_1^2 + x_2^2 + x_3^2 = 1, \quad x_4 = 0 \\ \xi(S_i^2); \quad & (x_1 - 4i)^2 + x_2^2 + x_3^2 = 1, \quad x_4 = 0 \\ \xi(S_{n+i}^2); \quad & (x_1 - 4i)^2 + x_2^2 + x_3^2 = 2, \quad x_4 = 0 \\ \xi(N_i^3); \quad & 1 \leq (x_1 - 4i)^2 + x_2^2 + x_3^2 \leq 2, \quad x_4 = 0 \quad (i = 1, \dots, n). \end{aligned}$$

Moreover, we may suppose that the center line $\xi(\beta_\lambda)$ of the tube $\xi(U_\lambda^3)$ is given by the equations below:

$$\begin{aligned} x_1 &= 4i, \quad x_2 = 0, \quad x_3 = 1 - x_4, \quad x_4 \geq 0 \\ &\text{in the neighborhood of } \xi(\beta_i \cap S_i^2), \\ x_1 &= 4i, \quad x_2 = 0, \quad x_3 = \sqrt{2} - x_4, \quad x_4 \leq 0 \\ &\text{in the neighborhood of } \xi(\beta_{n+i} \cap S_{n+i}^2) \\ &\quad (i = 1, 2, \dots, n). \end{aligned}$$

Theorem (2. 2)'. *For a ribbon 2-knot K^2 in R^4 , K^2 is unknotted in R^4 , if and only if $\pi_1(R^4 - K^2) = \mathbb{Z}$.*

5) B^3 means a 3-ball and \approx means to be homeomorphic to.

6) $N_i^3 \approx S^2 \times [0, 1]$.

The proof of this theorem is divided into two steps, and the second-step of the proof will be given later after we have proved two lemmas (2, 3) and (2, 4). Since K^2 is a ribbon 2-knot in R^4 , it bounds a 3-manifold W^3 previously described, therefore if $W^3 \approx B^3$, we have nothing particular to say. Hence, in the following discussion we will consider the case that $W^3 \not\approx B^3$. Consider the trivial system $\{S_1^2, \dots, S_{2n}^2\}$ and the isotopy ξ of R^4 as before. Let \tilde{K}^2 be a 2-knot in R^4 such that

$$\tilde{K}^2 = \xi\left(\bigcup_{\lambda=0}^{2n} S_\lambda^2 - \bigcup_{\lambda=1}^{2n} (\mathcal{E}_\lambda^2 \cup \mathcal{E}_\lambda'^2)\right) \cup \xi\left(\bigcup_{\lambda=1}^{2n} \partial U_\lambda^3 - \bigcup_{\lambda=1}^{2n} (\mathcal{E}_\lambda^2 \cup \mathcal{E}_\lambda'^2)\right).$$

Then, since two 2-spheres $\xi(K^2)$ and \tilde{K}^2 bound a 3-manifold which is a sub-complex of $\xi(W^3)$ and which is homeomorphic to $S^2 \times [0, 1]$ in R^4 , \tilde{K}^2 belongs to the 2-knot-type $\{\xi(K^2)\}$ which coincides with the 2-knot-type $\{K^2\}$.

Let B_i^3 be a 3-ball bounded by the 2-sphere $\xi(S_i^2)$:

$$B_i^3; (x_1 - 4i)^2 + x_2^2 + x_3^2 \leq 1, \quad x_4 = 0 \quad (i = 0, 1, 2, \dots, n).$$

First-step of the proof of (2, 2)': Each 3-ball B_i^3 bounded by the 2-sphere $\xi(S_i^2)$ ($i = 1, \dots, n$) in R^4 does not meet any arc $\xi(\beta_\lambda)$ except for the end points ($\lambda = 1, \dots, 2n$).

Since we can find a regular neighborhood U_λ^3 of β_λ so fine that $\xi(U_\lambda^3) \cap B_i^3 = \emptyset$ because $\xi(\beta_\lambda) \cap B_i^3 = \emptyset$ for all i and λ ($i = 1, \dots, n$, $\lambda = 1, \dots, 2n$), the 2-knot \tilde{K}^2 bounds a 3-ball $B_0^3 \cup B_1^3 \cup \dots \cup B_n^3 \cup B_{n+1}^3 \cup \dots \cup B_{2n}^3 \cup \xi(U_1^3) \cup \dots \cup \xi(U_{2n}^3)$, where the 3-ball B_{n+i}^3 is bounded by $\xi(S_{n+i}^2)$ in the neighborhood of $\xi(N_i^3) \cup B_i^3$ in R^4 so that $B_{n+i}^3 \cap B_j^3 = \emptyset$, $B_{n+i}^3 \cap \xi(U_\lambda^3) = \emptyset$ ($\lambda \neq n+i$) and $= \xi(e_\lambda^2)$ ($\lambda = n+i$) ($i, j = 1, \dots, n$, $\lambda = 1, \dots, 2n$): for a sufficiently small $\varepsilon (< 0)$,

$$B_{n+i}^3; \begin{cases} (x_1 - 4i)^2 + x_2^2 + x_3^2 = 2, & -\varepsilon \leq x_4 \leq 0 \\ (x_1 - 4i)^2 + x_2^2 + x_3^2 \leq 2, & x_4 = -\varepsilon \end{cases} \quad (i = 1, 2, \dots, n).$$

If there is a 3-ball B_i^3 which meets some arcs $\xi(\beta_\lambda)$ ($1 \leq i \leq n$, $1 \leq \lambda \leq 2n$), we will consider how to remove the intersection of the 3-ball B_i^3 and the arcs $\xi(\beta_\lambda)$ without changing the 2-knot-type of \tilde{K}^2 . We need following two lemmas (2, 3) and (2, 4) to remove the intersection.

Lemma (2, 3). *If there are an arc b in $R^4 - \tilde{K}^2$ and a subarc β'_λ of the arc β_λ ($1 \leq \lambda \leq 2n$) such that the simple closed curve $\gamma = b \cup \xi(\beta'_\lambda)$ is contractible in $R^4 - \tilde{K}^2$, then there exists an isotopy η of R^4 by which $\eta(\tilde{K}^2) = \tilde{K}^2$ and $\eta \xi(\beta_\lambda) = \xi(\beta_\lambda - \beta'_\lambda) \cup b$.*

Proof. Since β_λ is contained in \mathring{U}_λ^3 except two end points, we can triangulate R^4 so that the regular neighborhood $N(\tilde{K}^2)$ of \tilde{K}^2 in R^4 does not meet $\xi(\beta_\lambda)$. If we apply (2, 1) to the 4-manifold $M^4 = R^4 - \mathring{N}(\tilde{K}^2)$ and the simple closed

curve $\gamma = b \cup \xi(\beta'_\lambda)$, the simple closed curve γ bounds a locally flat 2-ball B^2 in \mathring{M}^4 . Therefore there exists a combinatorial 4-ball B^4 containing B^2 in its interior and contained in $R^4 - \tilde{K}^2$. Now, we have easily an isotopy which is identical on ∂B^4 and transfers the subarc $\xi(\beta'_\lambda)$ onto the arc b . Hence, the proof is complete.

Lemma (2, 4). *If $\pi_1(R^4 - \tilde{K}^2) = Z$ and an arc $\xi(\beta_\lambda)$ ($1 \leq \lambda \leq 2n$) pierces through a 3-ball B_i^3 ($1 \leq i \leq n$) at a point A , there are an arc b in $R^4 - \tilde{K}^2$ and a subarc β'_λ on the arc β_λ containing A such that the simple closed curve $b \cup \xi(\beta'_\lambda)$ is contractible in $R^4 - \tilde{K}^2$.*

Proof. For convenience's sake, we may suppose that $\xi(\beta_\lambda)$ is given in the neighborhood of the point A as follows:

$$\xi(\beta_\lambda); x_1 = 4i, \quad x_2 = x_3 = 0, \quad -1 \leq x_4 \leq 1.$$

Consider the cross-sections of $\xi(S_i^2)$, $\xi(S_{n+i}^2)$ and $\xi(N_i^3)$ by the hyperplane P ; $x_3 = 0$. Then, we have the following figure Fig. (1).

Fig. 1

Fig. 2

Place $\xi(U_\lambda^3)$ in a general position with respect to the hyperplane P , then the cross-section $\xi(U_\lambda^3) \cap P$ is at most 2-dimensional, and we can find an arc b spanning two points A_+ and A_- in $P - P \cap \tilde{K}^2$ as follows:

$$b; \begin{cases} x_1 = 4i, & 0 \leq x_2 \leq 2, \quad x_3 = 0, \quad x_4 = \varepsilon \\ x_1 = 4i, & x_2 = 2, \quad x_3 = 0, \quad -\varepsilon \leq x_4 \leq \varepsilon \\ x_1 = 4i, & 0 \leq x_2 \leq 2, \quad x_3 = 0, \quad x_4 = -\varepsilon, \end{cases}$$

see Fig. (2).

Since the 2-knot \tilde{K}^2 bounds the orientable 3-manifold $\tilde{W}^3 = \xi(N_1^3 \cup \dots \cup N_n^3 \cup U_1^3 \cup \dots \cup U_{2n}^3 \cup \Delta_0^3)$ in R^4 , we will give an orientation induced from the orientation of \tilde{W}^3 for \tilde{K}^2 . Then, the trivial link $\xi(S_i^2 \cup S_{n+i}^2) \cap P$, which bounds an annulus $\xi(N_i^3) \cap P$ in P , can be given the orientation induced from that of $\xi(N_i^3) \cap P$, see Fig. (1) again. Since $\tilde{K}^2 \cap P$ is a cross-section of a 2-knot \tilde{K}^2 , the simple closed curves c_i and c_{n+i} represent the generator of $H_1(R^4 - \tilde{K}^2)$, see Fig. (2) again. Therefore, the loop $w\gamma w^{-1}$ represents an element of the commutator subgroup of $\pi_1(R^4 - \tilde{K}^2)$ for any arc w from the base-point to a point on γ , where the simple closed curve γ is $b \cup \xi(\beta_\lambda')$ for the segment $\xi(\beta_\lambda')$ between A_+ and A_- on $\xi(\beta_\lambda)$. Now, $w\gamma w^{-1} \sim 0$ for any arc w , because $\pi_1(R^4 - \tilde{K}^2) = Z$; that is, γ is contractible in $R^4 - \tilde{K}^2$.

Second-step of the proof of (2, 2)': There is a 3-ball B_i^3 which meets some arcs $\xi(\beta_\lambda)$.

Since the 2-knot \tilde{K}^2 constructed by making use of W^3 , S_λ^2 and U_λ^3 and bounding the 3-manifold $\tilde{W}^3 = \xi(N_1^3 \cup \dots \cup N_n^3 \cup U_1^3 \cup \dots \cup U_{2n}^3 \cup \Delta_0^3)$ in R^4 belongs to the 2-knot-type $\{K^2\}$, it is sufficient to prove that \tilde{K}^2 is unknotted. On the other hand, by making use of (2, 4) and (2, 5), there exists an isotopy η of R^4 such that $\eta(\tilde{K}^2) = \tilde{K}^2$ and that $\eta\xi(\beta_\lambda)$ ($\lambda = 1, \dots, 2n$) does not meet any 3-ball B_i^3 ($i = 1, \dots, n$). Since $\xi(\beta_\lambda) \subset \xi(\tilde{U}_\lambda^3)$, so $\eta\xi(\beta_\lambda) \subset \eta\xi(\tilde{U}_\lambda^3)$. Take a sufficiently fine tube (a regular neighborhood in U_λ^3) \tilde{U}_λ^3 of the arc β_λ in U_λ^3 so that $\eta\xi(\tilde{U}_\lambda^3)$ does not meet any B_i^3 ($i = 1, \dots, n$) and that $\tilde{U}_\lambda^3 \cap S_\lambda^2 = f_\lambda^2$ and $\tilde{U}_\lambda^3 \cap S_0^2 = f_\lambda'^2$ are 2-balls in e_λ^2 and $e_\lambda'^2$ respectively ($\lambda = 1, \dots, 2n$). Then, the fusion $K^{*2} = \eta\xi(\bigcup_{\lambda=0}^{2n} S_\lambda^2 - \bigcup_{\lambda=1}^{2n} (f_\lambda^2 \cup f_\lambda'^2)) \cup \eta\xi(\bigcup_{\lambda=1}^{2n} \partial \tilde{U}_\lambda^3 - \bigcup_{\lambda=1}^{2n} (f_\lambda^2 \cup f_\lambda'^2))$ not only belongs to $\{\tilde{K}^2\}$ which coincides with $\{K^2\}$, but also the tubes $\eta\xi(\tilde{U}_\lambda^3)$ ($\lambda = 1, \dots, 2n$) does not meet any 3-ball B_i^3 ($i = 1, \dots, n$). Since we can construct a 3-ball bounded by the 2-knot K^{*2} in R^4 as we have done in the first-step of the proof, the 2-knot K^{*2} is unknotted in R^4 . This implies that \tilde{K}^2 is unknotted, and the proof is thus complete.

From (2, 2)', we have easily the main theorem of this paper:

Theorem (2, 2). *For a ribbon 2-knot K^2 in S^4 , K^2 is unknotted in S^4 , if and only if $\pi_1(S^4 - K^2) = Z$.*

Corollary (2, 3). *Let K^2 be a 2-knot in R^4 satisfying the following (1), (2) and (3). Then K^2 is unknotted in R^4 ;*

- (1) *a 2-node $K^2 \cap H_+^4$ contains no minimum,*
- (2) *the 2-nodes $K^2 \cap H_+^4$ and $K^2 \cap H_-^4$ are symmetric each other with respect to the hyperplane R_0^3 ,*
- (3) *the knot $k = K^2 \cap R_0^3$ is unknotted in R_0^3 .*

Proof. This follows from (2, 2)'. Since K^2 satisfies (1) and (2), K^2 is a

ribbon 2-knot, see [6]. Moreover there is a homomorphism of $\pi_1(R_0^3 - k)$ onto $\pi_1(R^4 - K^2)$, cf. p. 132-6 in [9]. Then, it is easy to see that $\pi_1(R^4 - K^2) = Z$ as $\pi_1(R_0^3 - k) = Z$ by the condition (3). (2, 3) is a proposition analogous to the theorem in [11].

The converse of (2, 3) is not always true, see the remark below:

REMARK. *There is an unknotted 2-knot K^2 ⁷⁾ which satisfies (1) and (2) in (2, 3) but does not satisfy (3) in (2, 3), see the following example.*

The knot k in R_0^3 , described in Fig. (3), is knotted in R_0^3 , although its Alexander polynomial $\Delta(t) = 1$, see Fig. (13) on p. 151 in [10].

Fig. 3

3. A generalization to the higher dimensional case

Let K^m be a locally flat m -sphere in R^{m+2} and let W^{m+1} be a $(m+1)$ -manifold satisfying the following (1), (2) and (3):

- (1) $W^{m+1} \subset R^{m+2}$, $\partial W^{m+1} = K^m$,
- (2) $W^{m+1} \approx B^{m+1}$ or $W^{m+1} \approx \#(S^1 \times S^m) - \overset{\circ}{B}{}^{m+1}$,
- (3) if $W^{m+1} \not\approx B^{m+1}$, W^{m+1} has a trivial system of m -spheres $\{S_1^m, \dots, S_{2n}^m\}$ such that
 - (i) the locally flat m -link $\{S_1^m, \dots, S_{2n}^m\}$ is combinatorially trivial in R^{m+2} ,
 - (ii) $S_i^m \cup S_{n+i}^m$ bounds a spherical-shell N_i^{m+1} in W^{m+1} ⁸⁾,
 - (iii) $W^{m+1} - \overset{\circ}{N}_1^{m+1} \cup \dots \cup \overset{\circ}{N}_n^{m+1} \approx B^{m+1} - \overset{\circ}{\Delta}_1^{m+1} \cup \dots \cup \overset{\circ}{\Delta}_{2n}^{m+1}$ ⁹⁾.

Then, we have the following theorem in the same way as (2, 2).

Theorem (3, 1). *Let K^m be a locally flat m -sphere in S^{m+2} and $(m+1)$ -manifold W^{m+1} satisfying the above conditions. Then, K^m is unknotted¹⁰⁾ in S^{m+2} , if and only if $\pi_1(S^{m+2} - K^m) = Z$.*

KOBE UNIVERSITY

7) Prof. R.H. Fox named this 2-knot *Terasaka-Kinoshita 2-sphere*.

8) $N_i^{m+1} \approx S^m \times [0, 1]$.

9) $\Delta_1^{m+1}, \dots, \Delta_{2n}^{m+1}$ are disjoint $(m+1)$ -simplices in a $(m+1)$ -ball B^{m+1} .

10) At least *topologically* unknotted.

References

- [1] T. Homma: *On Dehn's Lemma for S^3* , Yokohama Math. J. **5** (1957), 223–244.
- [2] C.D. Papakyriakopoulos: *On Dehn's lemma and the asphericity of knots*, Ann. of Math. **66** (1957), 1–26.
- [3] A. Shapiro and J.H.C. Whitehead: *A proof and extension of Dehn's lemma*, Bull. Amer. Math. Soc. **64** (1958), 174–178.
- [4] J. Stallings: *On topologically unknotted spheres*, Ann. of Math. **77** (1963), 490–503.
- [5] J. Levine: *Unknotting spheres in codimension two*, Topology **4** (1965), 9–16.
- [6] T. Yanagawa: *On ribbon 2-knots*, Osaka J. Math. **6** (1969), 447–464.
- [7] R. Penrose, E.C. Zeeman and J.H.C. Whitehead: *Imbeddings of manifolds in Euclidean space*, Ann. of Math. **73** (1961), 154–212.
- [8] S. Suzuki: *Local knots of 2-spheres in 4-manifolds*, Proc. Japan Acad. **45** (1969), 34–38.
- [9] R.H. Fox: *A quick trip through knot theory*, Top. of 3-manifolds and related topics., edited by M.K. Fort Jr. Prentice Hall, 1962.
- [10] S. Kinoshita and H. Terasaka: *On unions of knots*, Osaka Math. J. **9** (1957), 131–153.
- [11] F. Hosokawa: *On trivial 2-spheres in 4-space*, The Quart. J. Math. (2) **19** (1968), 249–256.