

Title	光メタ表面における共鳴電磁場の大規模数値計算
Author(s)	岩長, 祐伸
Citation	サイバーメディアHPCジャーナル. 2015, 5, p. 27-30
Version Type	VoR
URL	https://doi.org/10.18910/70497
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

光メタ表面における共鳴電磁場の大規模数値計算

岩長 祐伸 物質・材料研究機構

1. はじめに

2000年以降、ナノテクのキーワードのもとに人工 ナノ構造の研究が盛んになって15年が経つ。物理、 化学、バイオなどの広い分野で多様なナノテクノロ ジーが進展してきたが、その1つにメタマテリアル と名付けられた人工的なサブ波長周期構造で電磁波 を制御する研究分野がある。電磁波が光である場合 を考えると、その波長は空気中で 500 nm 程度である から、サブ波長は 500 nm 以下、典型的には数分の1 程度を意味するので、人工ナノ構造で光を制御する ことになる。この精度で人工構造を作製するために は電子線描画リソグラフィ法と同程度以上のナノ加 工精度が必要となり、3 次元的に集積することは非 常に困難である。したがって、数層程度の構造で光 メタマテリアルを作製することが現実的になる。こ の光の波長より薄いメタマテリアル構造は表面構造 と見なすこともでき、メタ表面と呼ばれる。

図1:基板上に作製されたメタ表面と照射される電磁波 (光)の波長の関係。厚さ *d* << 波長。周期 *a* はサブ波長 から波長程度が想定される。メタ表面は金属(金色)と絶 縁体(水色)からなることを模式的に示している。

第一原理的に考えると、電磁波と電磁波に対する 人工ナノ構造の応答は量子電磁気学の範疇に入るが、 実用的な計算としては古典電磁気学に基づいて計算 を実行すれば、実験データを再現できる場合がほと んどである。逆に、量子電磁気学的な効果が明示的 に確認されたメタマテリアルおよびメタ表面はこれ まで報告されたことがない。したがって、電磁波の 対するマクスウェル方程式を人工ナノ構造に適用し て解くことが基本方針となる。図1に概念図を示す ように人工ナノ周期構造は不均一な電磁波媒体であ るから、境界条件および電磁波の固有モードが複雑 になる。このため数値計算が大規模化し、大きな計 算量とメモリを必要とすることになる。筆者はこの 10 年近く人工ナノ周期構造における電磁場を数値 的に高精度に求めることを行ってきた。なお、参考 文献[1]ではこれまでの適用例や MPI 化による高速 化などの進展が年次順に報告してきた。

2. 計算アルゴリズム: RCWA 法+散乱行列法

周期構造におけるマクスウェル方程式の解法として、空間座標 r と時間 t からフーリエ変換

$$(\mathbf{r},t) \rightarrow (\mathbf{k},\omega)$$
 (1)

によって、波数ベクトル k と周波数ω に変数変換す るのが便利である。図1にも示しているように平面 波は波数ベクトル k で向きが指定され、その電場ベ クトルも

$$\mathbf{E} \propto \exp(i\mathbf{k} \cdot \mathbf{r} - i\omega t) \tag{2}$$

と表されるからである。マクスウェル方程式をフー リエ変換表示することで、方程式をフーリエ係数の 行列方程式に書き換えることができる点も数値計算 を実行するうえでの利点である。

しかしながら、金属を含むナノ構造では単純にフ ーリエ変換しても数値計算が収束しないことが 1970年代から1990年代後半までの30年間近くにわ たる難題であった。その解決法が最終的に示された のは1997年である[2]。手短にその方法について述 べる。例として、マクスウェル方程式の1つ

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial [\mu_0 \mu \mathbf{H}(\mathbf{r}, t)]}{\partial t}$$
(3)

について周期構造が xy 面に平行に広がっているとして、式(3)の y 成分を E_xを消去して書き下すと、

$$\partial_{z}E_{x} = i\omega\mu_{0}H_{y} - \frac{1}{i\omega\varepsilon_{0}}\partial_{x}\left[\frac{\partial_{x}H_{y} - \partial_{y}H_{x}}{\varepsilon(x, y)}\right] \quad (4)$$

となる。ここで H は磁場ベクトル、 μ_0 は真空中の透 磁率、 μ は物質によって決まる非透磁率(本稿では 1 に等しい)、 ϵ_0 は真空中の誘電率、 ϵ は非誘電率で 周期構造を反映して $x \ge y$ の関数である。各周期層 内において電磁場成分は

$$E_{x}(x, y, z) = \sum_{m,n} E_{xmn}(z) \exp(i\alpha_{m}x + i\beta_{n}y) \quad (5)$$

のように周期関数 $\exp(i\alpha_m x + i\beta_n y)$ を使って表現で き、 E_{xmn} がフーリエ係数である。ただし、x 方向の 周期を a_x 、y 方向の周期を a_y とすると、整数m とnを用いて $\alpha_m = k_x + 2\pi m/a_x$, $\beta_n = k_y + 2\pi n/a_y$ である。 なお、図1では3層の周期積層構造からなっている。 式(4)を逆積ルール[2]を用いて正しくフーリエ変換 表示すると、

$$\frac{\omega\varepsilon_0}{i}\partial_z E_{xmn} = \frac{\omega^2}{c^2}H_{ymn} - \alpha_m \sum_{j,l} \left[\!\left[\varepsilon\right]\!\right]_{mn,jl}^{-1} (\alpha_j H_{yjl} - \beta_j H_{xjl})$$
(6)

となる(c:は真空中の光速)。式(6)で不連続関数 1/ε を行列化したものではなく、εで行列化した後、逆行 列を取っていることが分かる。これが逆積ルール

(Inverse Fourier factorization) と呼ばれる式変形であ る。数学的には単純なフーリエ変換が各点収束であ るのに対して、逆積ルールを使うと概ね一様収束と なる。このため、数値計算における収束速度に格段 の向上が見られる。余談ながら、数理現象を記述す る方程式において、不連続な係数(物質定数など) が物理量と積になって現れることはよくある。した がって、電磁場の方程式に限らず、この逆積ルール は有効であると考えられる。

さて、式(6)のようなフーリエ係数表示のマクスウ ェル方程式をまとめると次式のようになる。

$$\partial_{z} \begin{pmatrix} \langle E_{x} \rangle \\ \langle E_{y} \rangle \\ \langle H_{x} \rangle \\ \langle H_{y} \rangle \end{pmatrix} = \begin{pmatrix} 0 & F \\ G & 0 \end{pmatrix} \begin{pmatrix} \langle E_{x} \rangle \\ \langle E_{y} \rangle \\ \langle H_{x} \rangle \\ \langle H_{y} \rangle \end{pmatrix}$$
(7)

ただし、電磁場のフーリエ係数ベクトルを 〈●〉 と表示している。式(7)は各周期層における電場固有モー

ドを解くための固有方程式であり、数値計算に適し た行列形式に書き換えられている。式(7)の固有ベク トルが電磁固有モードの電磁場分布を表す。実際の 数値計算では式(5)の Floquet-Fourier 展開を数百次 までとることになるため、式(7)右辺の行列は最終的 に 10000×10000 次の一般複素数行列となる。このた め、大きな計算量とメモリが必要となるのである。 実際の計算では式(7)をさらに変形してサブ行列Fと 同じ次数の固有値方程式に縮約して計算量を落とす ことになるが、ここでは割愛する。

一般のメタ表面は周期層の任意の積層構造からな るため、各周期層の固有モードを数値的に発散しな いように散乱行列アルゴリズム[3]を使って、入射波 に対するメタ表面としての応答を算出することにな る。この際に多数の行列演算が生じる。従って、大 規模数値計算を実行する上で行列演算を得意とする ベクトル型のスーパーコンピュータが望ましいこと もあり、筆者は SX-9 を使用してきた。

この節で述べた方法は Rigorous Coupled-Wave Analysis (RCWA) 法または Fourier Modal Method と 呼ばれている。散乱行列アルゴリズムと組み合わせ ることで汎用的に周期構造を数値できるソフトウェ アとして市販されている。直接比較したことはない ものの種々の情報を総合すると、筆者が行ったスー パーコンピュータ上での実行はメモリの制約が少な く (SX-9 では最大 1 TB が使用可能だった)、大規模 かつ高精度、高速に実行できる長所があった。

3. メタ表面の研究例

この節では、前節の方法を実際にメタ表面に適用した最近の結果を紹介する。

メタ表面ではわずか数層で光を完全に吸収できる 構造を設計することができる。図2は厚さ250 nm 程 度のシリコン(Si) 平板に穴開けナノ加工[4]を施し た後、金(Au)を垂直蒸着して作製するメタ表面の 模式図を示している[5-7]。円孔の周期は410.5 nm と して、円孔直径は190 nm から300 nm の間でナノ加 工上の工夫によって制御した[7]。設計の意図として は Si 平板に円孔の開いたフォトニック結晶平板と 上下層にある金のナノ構造が組み合わさることで、 電磁固有モードもフォトニックモードとプラズモニ ックモードが混合することで新しい共鳴状態が現れ ることを期待した。

図2:メタ表面概念図。Si 平板(厚さ250 nm 程度)に穴 開けナノ加工した後、Au 蒸着によって作製した。図は[7] から引用。

このメタ表面は反射光のみが生じる反射型表面で あり、反射スペクトルを図 3(a)(b) に示している(a: 測定、b:数値計算)。図中の1~6はそれぞれ1次か ら6次の共鳴モードを示している。スペクトル形状 の特徴が測定と実験でよい一致を示している。

図3:(a) 測定反射スペクトル。(b) 数値計算による反射 スペクトル。(a),(b)は[6]から引用。(c) 光吸収スペクトル。

反射率Rから光吸収率Aを

A

$$=100 - R(\%)$$
 (8)

によって求めることができ、数値計算による光吸収 スペクトルを図 3(c) に示している。後出の実験に対 応して Si 平板の厚さを 200 nm とした。光吸収が 80% を超える共鳴モードが複数あり、とくに 6 次モード は 100% に近い光吸収率を示している。

図4は6次の共鳴電磁場分布を示している。図2 のxz断面を見ている。入射光をx偏光としているの で、(a) *E*_x成分、(b) *H*_y成分のスナップショットを示 している。共鳴的な電場は円孔と底の Au 円板に局 在し、共鳴磁場は高次のフォトニック導波路モード の特徴を有している。このようにプラズモン共鳴と フォトニック導波路モードが混成した新しい電磁場 モードがこのメタ表面の特徴である[6]。

図4:6 次の共鳴電場分布 (スナップショット)。(a) E_x 成分。(b) H_y 成分。入射光は $E_x=1, H_y=1$ と設定した。(a), (b) は[6]から引用。

図2のメタ表面における高い光吸収率のモードは 同時に高放射率モードでもある(キルヒホッフの法 則)[8]。したがって、メタ表面上に置かれた量子発 光体は通常の環境(例えば平坦基板上)と比べて顕 著な発光増強を示すことが期待される。実際に発光 増強効果があるかを検証する実験を行った。

図5は発光増強実験結果の一例である。図5(a)は 有機色素分子を分子が個別かつ離散的に分散する程 度の低濃度の溶液をメタ表面上に微量分散する概念 図を示している。中央付近の青い1 cm 四方がメタ表 面である。人工ナノ構造の大面積な作製は UV なお インプリント法によって実施した[5]。ピペットで分 散した微量溶液は即座に基板全面に広がり、空気中 で速やかに乾燥した。図 5(b)はメタ表面上での観測 された発光 (FL) スペクトル (赤線) と平坦な Au 膜上で観測された蛍光スペクトルを示している。用 いたメタ表面は円孔直径 (D) 250 nm であり、その測 定反射スペクトルを破線で示している。記号(2)、(3) はそれぞれ2次、3次の共鳴モードを意味している。 図 5(b)では 100 倍を超える発光強度の増強が観測さ れ、とくに 990 nm では 450 倍に達している。大きな 発光増強効果は、分子の蛍光センシング用の基板と して、このメタ表面が有望であることを示している。 高い感度が得られたことから、短時間の検出・診断 への応用が期待できると考えている。

図5:(a) 実験模式図。(b) 発光増強を示す蛍光(FL) スペクトル(実線)。使用したメタ表面の測定反射スペクトル(破線)。記号(2)、(3)はそれぞれ2次、3次共鳴を示している。(b)は[7]から引用。

4. まとめと展望

本稿ではメタ表面における電磁場計算法について 概説し、蛍光センシング基板として有望なメタ表面 の実例について実験結果を交えて述べてきた。

このほかにも光学顕微鏡の空間分解能力を超解像 まで高めるメタマテリアルレンズアレーの研究[9] や二酸化炭素のその場検出ができる2波長赤外光源 メタ表面の研究 [10] など特色あるメタマテリアル、 メタ表面の研究を行った。 SX-ACE に移行してメモリ上限が大幅に下がり、 従来のコードはそのまま使用できなくなったが、ご く最近メモリ圧縮版のコードも NEC 社の協力で実 装できた。さらなる研究の進展に活用できるものと 期待している。

謝辞

本研究の数値計算は HPCI システム研究プロジェ クトの支援を受け(ID: hp140068)、大阪大学サイバ ーメディアセンターの SX-9 上で実行する際にはジ ョブ時間制限などの変更に柔軟な対応をいただきま した。これらの支援にこの場を借りて感謝申し上げ たい。また、本稿で紹介した一連のメタ表面の研究 は文部科学省科研費 20109007 と日本学術振興会科 研費 26706020 の助成を受けました。

参考文献

- (1) 岩長祐伸、東北大学サイバーサイエンスセンタ 一大規模科学計算システム広報(SENAC) 39 (3), 25-32 (2006); 40 (3), 5-14 (2007); 41 (3), 43-51 (2008); 42 (4), 9-18 (2009); 44 (2), 49-56 (2011); 45 (3), 9-16 (2012); 46 (4), 13-18 (2013).
- (2) L. Li, J. Opt. Soc. Am. A 14, 2758–2767 (1997).
- (3) L. Li, J. Opt. Soc. Am. A 13, 1024–1035 (1996).
- (4) B. Choi, M. Iwanaga, T. Ochiai, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, Appl. Phys. Lett. 105, 201106 (2014).
- (5) B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, J. Micro/Nanolith. MEMS MOEMS 13, 023007 (2014).
- (6) M. Iwanaga and B. Choi, Nano Lett. 15, 1904–1910 (2015).
- (7) M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, J. Nanomater. **2015**, 507656 (2015).
- (8) J.-J. Greffet and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 15, 2735–2744 (1998).
- (9) M. Iwanaga, Appl. Phys. Lett. 105, 053112 (2014).
- (10) H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, Appl. Phys. Lett. 105, 121107 (2014).