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Virtual system Coupled Adaptive Umbrella Sampling: An efficient method to
compute potential of mean force along a reaction-coordinate

Bhaskar Dasgupta
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1. Introduction

Polyatomic systems are complex because there exist
many degrees of freedom to characterize the system.
Biomolecular systems are particularly interesting
polyatomic systems because of their medical importance.
Such systems are characterized by an ensemble of
structures (conformational ensemble), by which we want
to realize the system in 3N dimensional space (where N
is number of atoms present in the system). The
free-energy landscape (3N dimensional) is rugged with
many local minima (deep and shallow) and pinholes.
This ruggedness of free-energy landscape is a crucial
bottleneck to quantitatively characterize a system.
Therefore, we need efficient methods to sample
conformations of the system such that the system can be
described with sufficient accuracy.

Any typical sampling method designed to obtain
free-energy landscape suffer due to the ruggedness of
energy landscape. In other words during the course of
sampling the system may be trapped in a local minimum
or basin. Therefore we need to come out of the basins
and get in the basin not once, but many times if we are
interested in computing thermodynamic quantities.
Fortunately, a whole bunch of techniques have been
proposed to overcome local basin problem, one of which
is adaptive umbrella sampling (AUS) [1].

Suppose we want to compute an ensemble of
configuration related to a physical process, e.g. binding
between two molecules — a process that samples between
two extreme scenarios including bound and unbound
states. Because such a process can be a rare event

kinetically, we need to bias the system to sample

between two such states. In AUS, we add a bias to the

potential energy of the system in such a way that the
resulting energy landscape is free from ruggedness. The
bias is function of collective reaction-coordinate (A)
realizing the process that we want to sample. For
example, A may indicate inter-molecular distance (Fig.
1). In AUS, more specifically we add a bias, which is
negative of the potential of mean force (PMF) along A,
leading to modified energy,

E, (r)=E(r)+RTInP,(A(r).T) (1)
where, r denotes a configuration (3N-dimensional
vector), and E is potential energy calculated by empirical
force-field equations, T is temperature, R is universal gas
constant and P is canonical probability distribution of A
at T. If we sample our system using equation (1) for
sufficiently long time and generate a trajectory
(time-sequence) of A, the observed probability
distribution of & (Pobs(A,T)) is uniform [2]. However, note
that, if we know the canonical probability distribution in
could

advance, we

( PMF =-RT In R,().(r),T) ), which has ample of

compute PMF  directly
information to understand conformational details of an
ensemble. The word ‘adaptive’ in AUS refers that the
method aims to iteratively update canonical distribution
function from an initial guess such that observed
probability distribution converges to a uniform function

along L. The necessary update formula is,

(v+1)

P, (A,T)"*" =P, (A,T)" + InP,,, (A,T)" ),

where A is the given iteration step.

One of the difficulty of AUS method is that it is still
computationally expensive, as many iterations are
required for convergence (uniformity of Pos(A,T)).

Moreover, in many cases of simulation the method fails
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Fig. 1. a) Schematic diagram of reaction coordinate (A) used in VAUS. Top cartoon suggests A based on distances within

one molecule, while bottom cartoon suggests A between two molecules (currently used). b) Ace-Alas-NMe peptides

system, dimerization of two peptides was studied. ¢c) PDZ-GIuR2 system as a more realistic example. PDZ is shown in

green and GluR2 peptide is shown in magenta color.

because of the sensitivity of the biasing function, and
artificial ruggedness is introduced in the landscape due to
wrong guess of the canonical distribution function and
insufficient sampling in an iterative step. To resolve this,
method Virtual-system coupled adaptive umbrella
sampling (VAUS) is proposed previously [3], and herein

improvements of VAUS will be discussed.

2. Theory:

2.1. Virtual-system coupled adaptive umbrella
sampling:

In VAUS, we simulate the molecular system (i.c., real
system) by coupling it to a virtual system. The virtual
system is defined by an array of virtual states. A virtual
state (vi) is defined along reaction coordinate A and
bounded by Aimin and Aimax. Two virtual states are
overlapping in A if they are consecutive (i.e. vk and viz1),
but non-overlapping otherwise (e.g. vk and viw). A
construction is shown in Fig. 2. Two extreme limits of A

( max{lk,max} and min{lk,mm} )

conformational space in which we are interested. During

denote  the

simulation the real molecular system is confined to a
virtual state for a predetermined steps of integration (fin),
after which transition between two consecutive virtual
states (vi and vi) are possible based on a probabilistic
criteria. After fin steps instantaneous value of A of the
real molecular system is checked to be in the overlapping
region of virtual states. If this is true, then the total
coupled system (real + virtual) transitions from current
virtual state to the allowed virtual state (v to vi). In this
way, one effectively samples more in a given window of
A covering wider conformational variety. Therefore, the
biasing function is more trained. The theory and actual
procedures of VAUS is detailed elsewhere [2]. In
summary, we use a modified version of equation 1 and 2

as given below,

E,(r)=E(r)+ RTInP,(A(r),v,,T)  (3),and

0P, (A,v, T)** = 1P, (A,v,.T)" +1nP,,, (A,v, . T)" (4),

where, probability distributions are jointly parameterized
by A and vi.

Although VAUS was successful in a previous case
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Fig. 2: Virtual-states used in a) Ala-pentapeptide
simulation (see Fig. 1b) and b) PDZ-GluR2 simulation
(see Fig. 1c¢).

aimed to sample between bound and unbound states of a
dimerization process [3], we found that the method
failsto converge in many cases. For example, when we
aim to sample a dimerization process of two molecules
with large conformational variety owing to their
flexibility. One such generic system composed of two
peptides where each one is Ace-(Ala)s-NMe (where Ace
and NMe are acetyl and N-methyl groups) with no
significant conformational preference of the peptide
chain. The simulations with VAUS method becomes very

computationally demanding due to 1) sensitivity of the

biasing forces, 2) finite sampling in each iteration, 3)
transition between two virtual states may bring about
abrupt change in biasing forces due to mismatch of
probability distribution in the overlapping regions and 4)
initial guess of bias is not trained over sufficient
conformational space. To solve these problems, recently
we improved VAUS method, which are briefly discussed
below.

2.2. Markov approximated observed probability
distribution calculation:

Typically observed probability distribution is
calculated from the A values recorded during the
simulation by using number of counts in bins along A.
This disregards time-sequence of A. To wuse
time-sequence information we first discretize sampling
space of A by using definitions of the bins along A, then
we calculate bin-to-bin transition counts from the
recorded trajectory of A. This gives us a transition
probability matrix for transitions between bins for a
particular virtual state, which is referred as intra-virtual
state transition probability matrix. In a similar way, one
can look at trajectory of A as a sequence of virtual states,
because during the simulation total system transitions
from one virtual state to other. Therefore, one can
calculate transition probability matrix between virtual
states, which is referred as inter-virtual state transition
probability matrix. Such transition probability matrices
can be wused to calculate Markov approximated
equilibrium counts in each bin, which is free from
artifacts of short simulation trajectories. Correspondingly
the biasing functions become better trained.

2.3. Iterative polynomial fitting to the observed
probability distributions:

In VAUS we calculate observed probability
distributions jointly parameterized by A and vy, which
means that for each virtual state a certain piece of
probability distributions is obtained. Typically such
pieces of probability distributions are parameterized by

n-order polynomials, which require considerable manual

intervention. However, pieces of distributions may not

_9_



match smoothly in the overlapping regions. For this we
invented iterative automatic polynomial fitting. In this
approach, n-order polynomials are used to fit a piece of
probability distribution with varying polynomial order
from 2 to 10 and finding best order that minimizes fitting
error. Such an initial fitting uses data from adjacent
virtual states (=1 or £2). Next these fitting parameters are
used to reproduce distribution data, which again fitted by
polynomials. This process is iterated until we get smooth
matching of distributions in the overlapping region. Such
technical improvement greatly alleviates abrupt change
of forces due to virtual state transitions during
simulations.

2.4 De-sensitization of biasing forces:

The update formula in equation 4 needs to be
differentiated because we need forces to follow equations
of motion. When each term is parameterized by a
polynomial, the equation can be viewed as perturbing
equation in which canonical distribution is modified by
observed distribution in each iterative step. If there is
error in current simulation then that will be reflected in
polynomial parameterizing observed distribution, making
simulation sensitive to the estimation of polynomial
coefficients. To de-sensitize the bias a scaling factor is
multiplied to those coefficients. We have used a scaling
factor of 0.5.

2.5 Initial seed of conformations:

To initiate VAUS, the set of starting conformations
should be exhaustively distributed in the configuration
space. For this, the system box was split to many
rectangular grids and one of the peptide chains was fixed
in space and let the other peptide chain diffuse to
different grids. We developed an algorithm to traverse all
grids by a path most efficiently by combining
enumerations of depth-first search. The diffusing peptide
chain was allowed to follow the path by an advanced
steered molecular dynamics. The break points in the path
centers

are  approximately of grids, and the

conformations that reach those break points were used to

the initiate canonical simulation under VAUS. This way a
large conformational ensemble was retrieved in the first

canonical iterative step.

3. Results:
3.1. Binding between Ace-(Ala)s-NMe peptides by
VAUS:

We have used this improved version of VAUS
procedure to simulate binding between two
Ace-(Ala)s-NMe peptides. The simulation involves a box
with two peptide chains in explicit water. The system is
equilibrated by usual NPT and NVT simulations. The use
of grid-based initialization is not used in VAUS
simulation. To compare the effectiveness of grid-based
initialization in another iterative simulation of VAUS,
221 initial conformations were used which sample
exhaustively binding and unbinding poses. The iterative
simulations were rerun many times in order to improve
our method. Namely, Markov approximated probability
distribution calculation and automatic iterative fitting
method need to be tested properly. For this, a large
GPU-cluster machine was required. We have used Osaka
University Cybermedia center GPU computing facility
for such an advanced method development. We tested
our method to compute potential of mean force along the
reaction coordinate for the above Ala-pentapeptide
binding (Fig. 3).

In our simulation designing a collective reaction
coordinate is of prime importance. The current reaction
coordinate properly envisions a binding process, because
it is based on inter-peptide distance. The reaction
coordinate is the distance between geometric centers of
the sets of atoms from peptide chains. However, one
must be careful in selecting atoms in peptide chains.
After a number of trial-and-error we use Ca and carbonyl
O-atom of each Ala-residue to define set of atoms in a
peptide chain.

3.2. Active site remodeling during p-sheet

augmentation reaction:

To test our method for binding of a larger biomolecular
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Fig. 3. Final PMF as obtained from Ala-pentapeptide
dimerization study.
complex, we are currently simulating a p-sheet
augmentation reaction occurring in a protein-peptide
binding. The protein contains PDZ domain (87
amino-acid residues) that binds a small 5-residue peptide
from C-terminal of GIluR2 receptor protein. The
interaction interface consists of B-sheet formed by two
B-strands from PDZ domain and one pB-strand from
S-residue peptide. ~ We are interested in how the
interactions remodel itself and forms a stable complex.
The VAUS simulation is used with the reaction
coordinate defining inter-molecular distance between
two interfaces. The C-peptide fragment is allowed to
diffuse out from the interface up to 10 A. The whole
system with water molecules and ions is composed of
18851 atoms, which is large compared to other systems
treated by AUS or multicanonical molecular dynamics
simulation.

The simulation is currently under operation. However,
thanks to the computing facility of Osaka University
Cybermedia center, we could parameterize initial

simulation details and protocol of our method.

5. Conclusion

We developed a new method to simulate binding event
between two molecules. Presently we performed
Ala-pentapeptide dimerization to demonstrate capability
of our method. We are performing the binding simulation
in much larger biomolecular system. The ongoing
simulation will provide valuable insight about binding
mechanism and putative conformations related to loosely

bound states for PDZ domain and C-terminal fragment

from GIuR2 receptor.
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