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1. Introduction 

Polyatomic systems are complex because there exist 

many degrees of freedom to characterize the system. 

Biomolecular systems are particularly interesting 

polyatomic systems because of their medical importance. 

Such systems are characterized by an ensemble of 

structures (conformational ensemble), by which we want 

to realize the system in 3N dimensional space (where N 

is number of atoms present in the system). The 

free-energy landscape (3N dimensional) is rugged with 

many local minima (deep and shallow) and pinholes. 

This ruggedness of free-energy landscape is a crucial 

bottleneck to quantitatively characterize a system. 

Therefore, we need efficient methods to sample 

conformations of the system such that the system can be 

described with sufficient accuracy.  

Any typical sampling method designed to obtain 

free-energy landscape suffer due to the ruggedness of 

energy landscape. In other words during the course of 

sampling the system may be trapped in a local minimum 

or basin. Therefore we need to come out of the basins 

and get in the basin not once, but many times if we are 

interested in computing thermodynamic quantities. 

Fortunately, a whole bunch of techniques have been 

proposed to overcome local basin problem, one of which 

is adaptive umbrella sampling (AUS) [1].  

Suppose we want to compute an ensemble of 

configuration related to a physical process, e.g. binding 

between two molecules – a process that samples between 

two extreme scenarios including bound and unbound 

states. Because such a process can be a rare event 

kinetically, we need to bias the system to sample 

between two such states. In AUS, we add a bias to the 

potential energy of the system in such a way that the 

resulting energy landscape is free from ruggedness. The 

bias is function of collective reaction-coordinate (λ) 

realizing the process that we want to sample. For 

example, λ may indicate inter-molecular distance (Fig. 

1). In AUS, more specifically we add a bias, which is 

negative of the potential of mean force (PMF) along λ, 

leading to modified energy, 

  (1) 

where, r denotes a configuration (3N-dimensional 

vector), and E is potential energy calculated by empirical 

force-field equations, T is temperature, R is universal gas 

constant and Pc is canonical probability distribution of λ 

at T. If we sample our system using equation (1) for 

sufficiently long time and generate a trajectory 

(time-sequence) of λ, the observed probability 

distribution of λ (Pobs(λ,T)) is uniform [2]. However, note 

that, if we know the canonical probability distribution in 

advance, we could compute PMF directly 

( ), which has ample of 

information to understand conformational details of an 

ensemble. The word ‘adaptive’ in AUS refers that the 

method aims to iteratively update canonical distribution 

function from an initial guess such that observed 

probability distribution converges to a uniform function 

along λ. The necessary update formula is, 

 (2), 

where λ is the given iteration step. 

One of the difficulty of AUS method is that it is still 

computationally expensive, as many iterations are 

required for convergence (uniformity of Pobs(λ,T)). 

Moreover, in many cases of simulation the method fails 
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Fig. 1. a) Schematic diagram of reaction coordinate (λ) used in VAUS. Top cartoon suggests λ based on distances within 

one molecule, while bottom cartoon suggests λ between two molecules (currently used). b) Ace-Ala5-NMe peptides 

system, dimerization of two peptides was studied. c) PDZ-GluR2 system as a more realistic example. PDZ is shown in 

green and GluR2 peptide is shown in magenta color. 

 

because of the sensitivity of the biasing function, and 

artificial ruggedness is introduced in the landscape due to 

wrong guess of the canonical distribution function and 

insufficient sampling in an iterative step. To resolve this, 

method Virtual-system coupled adaptive umbrella 

sampling (VAUS) is proposed previously [3], and herein 

improvements of VAUS will be discussed. 

 

2. Theory: 

2.1. Virtual-system coupled adaptive umbrella 

sampling: 

In VAUS, we simulate the molecular system (i.e., real 

system) by coupling it to a virtual system. The virtual 

system is defined by an array of virtual states. A virtual 

state (vk) is defined along reaction coordinate λ and 

bounded by λk,min and λk,max. Two virtual states are 

overlapping in  if they are consecutive (i.e. vk and vk±1), 

but non-overlapping otherwise (e.g. vk and vk±2). A 

construction is shown in Fig. 2. Two extreme limits of  

( and ) denote the 

conformational space in which we are interested. During 

simulation the real molecular system is confined to a 

virtual state for a predetermined steps of integration (fint), 

after which transition between two consecutive virtual 

states (vl and vk) are possible based on a probabilistic 

criteria. After fint steps instantaneous value of λ of the 

real molecular system is checked to be in the overlapping 

region of virtual states. If this is true, then the total 

coupled system (real + virtual) transitions from current 

virtual state to the allowed virtual state (vl to vk). In this 

way, one effectively samples more in a given window of 

 covering wider conformational variety. Therefore, the 

biasing function is more trained. The theory and actual 

procedures of VAUS is detailed elsewhere [2]. In 

summary, we use a modified version of equation 1 and 2 

as given below, 

 (3), and 

(4), 

where, probability distributions are jointly parameterized 

by λ and vk. 

 Although VAUS was successful in a previous case 
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Fig. 2: Virtual-states used in a) Ala-pentapeptide 

simulation (see Fig. 1b) and b) PDZ-GluR2 simulation 

(see Fig. 1c). 

aimed to sample between bound and unbound states of a 

dimerization process [3], we found that the method 

failsto converge in many cases. For example, when we 

aim to sample a dimerization process of two molecules 

with large conformational variety owing to their 

flexibility. One such generic system composed of two 

peptides where each one is Ace-(Ala)5-NMe (where Ace 

and NMe are acetyl and N-methyl groups) with no 

significant conformational preference of the peptide 

chain. The simulations with VAUS method becomes very 

computationally demanding due to 1) sensitivity of the 

biasing forces, 2) finite sampling in each iteration, 3) 

transition between two virtual states may bring about 

abrupt change in biasing forces due to mismatch of 

probability distribution in the overlapping regions and 4) 

initial guess of bias is not trained over sufficient 

conformational space. To solve these problems, recently 

we improved VAUS method, which are briefly discussed 

below. 

2.2. Markov approximated observed probability 

distribution calculation: 

Typically observed probability distribution is 

calculated from the λ values recorded during the 

simulation by using number of counts in bins along λ. 

This disregards time-sequence of λ. To use 

time-sequence information we first discretize sampling 

space of λ by using definitions of the bins along λ, then 

we calculate bin-to-bin transition counts from the 

recorded trajectory of λ. This gives us a transition 

probability matrix for transitions between bins for a 

particular virtual state, which is referred as intra-virtual 

state transition probability matrix. In a similar way, one 

can look at trajectory of λ as a sequence of virtual states, 

because during the simulation total system transitions 

from one virtual state to other. Therefore, one can 

calculate transition probability matrix between virtual 

states, which is referred as inter-virtual state transition 

probability matrix. Such transition probability matrices 

can be used to calculate Markov approximated 

equilibrium counts in each bin, which is free from 

artifacts of short simulation trajectories. Correspondingly 

the biasing functions become better trained. 

2.3. Iterative polynomial fitting to the observed 

probability distributions: 

In VAUS we calculate observed probability 

distributions jointly parameterized by λ and vk, which 

means that for each virtual state a certain piece of 

probability distributions is obtained. Typically such 

pieces of probability distributions are parameterized by 

n-order polynomials, which require considerable manual 

intervention. However, pieces of distributions may not 
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match smoothly in the overlapping regions. For this we 

invented iterative automatic polynomial fitting. In this 

approach, n-order polynomials are used to fit a piece of 

probability distribution with varying polynomial order 

from 2 to 10 and finding best order that minimizes fitting 

error. Such an initial fitting uses data from adjacent 

virtual states (±1 or ±2). Next these fitting parameters are 

used to reproduce distribution data, which again fitted by 

polynomials. This process is iterated until we get smooth 

matching of distributions in the overlapping region. Such 

technical improvement greatly alleviates abrupt change 

of forces due to virtual state transitions during 

simulations. 

2.4 De-sensitization of biasing forces: 

The update formula in equation 4 needs to be 

differentiated because we need forces to follow equations 

of motion. When each term is parameterized by a 

polynomial, the equation can be viewed as perturbing 

equation in which canonical distribution is modified by 

observed distribution in each iterative step. If there is 

error in current simulation then that will be reflected in 

polynomial parameterizing observed distribution, making 

simulation sensitive to the estimation of polynomial 

coefficients. To de-sensitize the bias a scaling factor is 

multiplied to those coefficients. We have used a scaling 

factor of 0.5. 

2.5 Initial seed of conformations: 

To initiate VAUS, the set of starting conformations 

should be exhaustively distributed in the configuration 

space. For this, the system box was split to many 

rectangular grids and one of the peptide chains was fixed 

in space and let the other peptide chain diffuse to 

different grids. We developed an algorithm to traverse all 

grids by a path most efficiently by combining 

enumerations of depth-first search. The diffusing peptide 

chain was allowed to follow the path by an advanced 

steered molecular dynamics. The break points in the path 

are approximately centers of grids, and the 

conformations that reach those break points were used to 

the initiate canonical simulation under VAUS. This way a 

large conformational ensemble was retrieved in the first 

canonical iterative step. 

 

3. Results: 
3.1. Binding between Ace-(Ala)5-NMe peptides by 

VAUS: 

We have used this improved version of VAUS 

procedure to simulate binding between two 

Ace-(Ala)5-NMe peptides. The simulation involves a box 

with two peptide chains in explicit water. The system is 

equilibrated by usual NPT and NVT simulations. The use 

of grid-based initialization is not used in VAUS 

simulation. To compare the effectiveness of grid-based 

initialization in another iterative simulation of VAUS, 

221 initial conformations were used which sample 

exhaustively binding and unbinding poses. The iterative 

simulations were rerun many times in order to improve 

our method. Namely, Markov approximated probability 

distribution calculation and automatic iterative fitting 

method need to be tested properly. For this, a large 

GPU-cluster machine was required. We have used Osaka 

University Cybermedia center GPU computing facility 

for such an advanced method development. We tested 

our method to compute potential of mean force along the 

reaction coordinate for the above Ala-pentapeptide 

binding (Fig. 3). 

In our simulation designing a collective reaction 

coordinate is of prime importance. The current reaction 

coordinate properly envisions a binding process, because 

it is based on inter-peptide distance. The reaction 

coordinate is the distance between geometric centers of 

the sets of atoms from peptide chains. However, one 

must be careful in selecting atoms in peptide chains. 

After a number of trial-and-error we use Cα and carbonyl 

O-atom of each Ala-residue to define set of atoms in a 

peptide chain. 

3.2. Active site remodeling during β-sheet 

augmentation reaction: 

To test our method for binding of a larger biomolecular  
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Fig. 3. Final PMF as obtained from Ala-pentapeptide 

dimerization study. 

 

complex, we are currently simulating a β-sheet 

augmentation reaction occurring in a protein-peptide 

binding. The protein contains PDZ domain (87 

amino-acid residues) that binds a small 5-residue peptide 

from C-terminal of GluR2 receptor protein. The 

interaction interface consists of β-sheet formed by two 

β-strands from PDZ domain and one β-strand from 

5-residue peptide.  We are interested in how the 

interactions remodel itself and forms a stable complex. 

The VAUS simulation is used with the reaction 

coordinate defining inter-molecular distance between 

two interfaces. The C-peptide fragment is allowed to 

diffuse out from the interface up to 10 Å. The whole 

system with water molecules and ions is composed of 

18851 atoms, which is large compared to other systems 

treated by AUS or multicanonical molecular dynamics 

simulation. 

The simulation is currently under operation. However, 

thanks to the computing facility of Osaka University 

Cybermedia center, we could parameterize initial 

simulation details and protocol of our method. 

 

5．Conclusion 

We developed a new method to simulate binding event 

between two molecules. Presently we performed 

Ala-pentapeptide dimerization to demonstrate capability 

of our method. We are performing the binding simulation 

in much larger biomolecular system. The ongoing 

simulation will provide valuable insight about binding 

mechanism and putative conformations related to loosely 

bound states for PDZ domain and C-terminal fragment 

from GluR2 receptor. 
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