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Throughout this note, rings are associative rings with identity and modules are u-
nitary modules. Sometimes, we use the notation A% (resp. XA) to signify that the
module X considered is a left (resp. right) A-module. For each pair of subsets X and
M of a ring A, we set ί χ ( M ) = {α G X\aM = 0} and rM(X) = {a <Ξ M\Xa = 0}.

Following Baba and Oshiro [1], we call a pair (eA,A/) of a right ideal eA and
a left ideal Af in a ring A an z-pair if (a) e and / are local idempotents; (b) eA^
and AAf have essential socles; and (c) soc(eA^) = f A / f J and soc(^A/) = Ae/Je,
where J is the Jacobson radical of A.

Generalizing a result of Fuller [3], Baba and Oshiro [1] showed that for a local
idempotent e in a semiprimary ring A, eA^ is injective if and only if there exists a
local idempotent / in A such that (eA, Af) is an z-pair in A and r^/(£eA(^f)) = M
for every submodule M of Af/Af, and that for an i-pair (eA, A/) in a semiprimary
ring A the following are equivalent: (1) €AeeA is artinian; (2) AffAf is artinian; and
(3) both eAA and A A/ are injective.

Our aim is to extend the results mentioned above to perfect rings. Following Hara-
da [4], we call a module LA M-simple-injective if for any submodule N of MA every
θ : NA -> LA with Imθ simple can be extended to some φ : MA -> LA- For a local
idempotent e in a left perfect ring A, we will show that eA^ is A-simple-injective if
and only if there exists a local idempotent / in A such that (eA, Af) is an i-pair in
A and rAf(leA(M)) — M for every submodule M of AffAf, and that eA^ is injec-
tive if it is A-simple-injective and has finite Loewy length. We will show also that for
an ί-pair (eA, Af) in a left perfect ring A the following are equivalent: (1) eAe^A is
artinian; (2) AffAf is artinian; and (3) both eA^ and ^A/ are injective.

1. Localization and injective objects

Let A and B be abelian categories, F : A -» B and G : B -> A covariant functors,
and ε : IΛ -» GF and £ : FG -> \& homomorphisms of functors, where 1̂  : A — > A
and lβ : B ->> B are identity functors. We assume the conditions: (a) δp ° Fε = id^;
(b) Gδ oεo = idc; (c) F is exact; and (d) δ is an isomorphism.

REMARK 1. (1) By the conditions (a) and (b), for each pair of X G Ob (A) and
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M G Ob(B) we have a natural isomorphism

0χ,M : Horns (FX,M) -> RomΛ(X,GM),β ^ Gβ

with ΘX,M~I(OL) — OM °Fa for α G Hom^(X,GM). Namely, G is a right adjoint of
F. In particular, G is left exact.

(2) By the conditions (a), (b) and (d), G : B -ϊ A is fully faithful.
(3) By the conditions (a) and (d), Fε : F —> FGF is an isomorphism with

Fε"1 = δp.
(4) By the conditions (b) and (d), EG ' G —ϊ GFG is an isomorphism with

SG~ — Gδ.

Though the following lemmas are well known and more or less obvious, we in-
clude proofs for completeness.

Lemma 1.1. Let X G Ob(*4) be simple with FX φ 0. Then FX G Ob(β) is
simple.

Proof. Let β : FX —> M be a nonzero morphism in B. We claim β monic.
Note that β = δM ° F(Gβ o εx). Thus Gβ o εx : X -> GM is nonzero and monic, so
is β = δM°F(Gβoεx). D

Lemma 1.2. Let μ : Y —> X be an essential monomorphism in A with εy
monic. Then Fμ : FY —>• FX is an essential monomorphism in B.

Proof. Let β : FX ->• M be a morphism in B with β o Fμ monic. We claim β
monic. Since (Gβ o εx) o μ = Gβ o GFμ o εy — G(β o Fμ) o εy is monic, Gβ o εx

is monic and so is β = OM ° F(G/3 o εχ) D

Lemma 1.3. Let X G Ob(*4) be injective with εx monic. Then εx : X ->•
GFX is an isomorphism and FX G Ob(β). is injective.

Proof. Since Fεx is an isomorphism, F(Cokεχ) = CokFεχ = 0 and
Horru(Cokεχ,GFX) S Homβ(F(Cokεχ),FX) = 0. Thus, since εx : X -> GFX
is a split monomorphism, Cokεχ = 0. Hence for each M G Ob(β) we have a natural
isomorphism

τ?M : HomB(M,FX) -+ RomΛ(GM,X),β ^ εx~
l o Gβ.

Let v : N —ϊ M be a monomorphism in β. Since Gv is monic, Hom^Gi/, X) is epic

and so is Hom#(ι/, FX) = ηN~l ° Hom^Gi/, X) o T/M Π

REMARK 2. (1) An object M G Ob(β) is injective if and only if so is GM G
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Ob(A).
(2) The canonical monomorphism lmεχ -» GFX is an essential monomor-

phism for every X G Ob(.4) with FX / 0.

(3) If v : N -> M is an essential monomorphism in B, so is Gv : GN -» GM.

(4) For X G Ob (^4) with ε* monic, a monomorphism μ : Y -» X in ^4 is an

essential monomorphism if and only if so is Fμ : FY -> FX.

2. Infective pairs

Throughout the rest of this note, A stands for a ring with Jacobson radical J. For

an ί-pair (eA,Af) in A, we denote by Aι(eA,Af) the lattice of submodules X of

eAecA with ί e A ( r A f ( X ) ) = -X" and by Ar(eA, Af) the lattice of submodules M of

REMARK 3. Let (eA,^4/) be an z-pair in A. Let X be a submodule of eAe^A.

Then ΛTΛ/PO = 0 implies X C 4>ι(rΛ/PO) and thus rAf(leA(rAf(X))) C

Also, ^(ΓΛ/POJΓΛ/PO - 0 implies rAf(X) C rAff(teA(rAf(X))). Thus
G Ar(eA,Af). Similarly, έeA(M) G At(eA,Af) for every submodule M of

- It follows that Aι(eA, Af) is anti-isomorphic to Ar(eA,Af).

The following lemmas have been established in [5], [3], [1], [8], [6] and so on.
However, for the benefit of the reader, we provide direct proofs.

Lemma 2.1. Let e, f G A be idempotents and assume ieA(Af) = 0 =
ΓAf(eA). Then the following hold.

(1) For a two-sided ideal I of A, el = 0 if and only if If — 0.

(2) ίeA(I) = leA(If) far every right ideal I of A.

(3) TAJ (I) = ΓA/ (el) for every left ideal I of A.

Proof. (1) Assume el = 0. Then eAIf = elf = 0 and // C rAf(eA) = 0. By
symmetry, If = Q implies el = 0.

(2) Since // C /, leA(I) C t*A(If). For any x G teA(If), since xIAf =

xlf = 0, xl C teA(Af) = 0 and x G €eA(/) Thus *eΛ(//) C 4^(/).
(3) Similar to (2). D

Lemma 2.2. Let (eA, Af) be an i-pair in A. Then the following hold.
(1) eeA(Af) = Q = rAf(eA).

(2) eAffAf and eAe^Af have simple essential socles and soc(eA^)/ = soc(eAf/Af)
= soc(eAeeAf) = e(soc(AAf)).

Proof. (1) For any 0 φ x G eA, since soc(eA^) C xA, 0 ^ soc(e^l^)/ C

xAf and x # ί e A ( A f ) . Thus ieA(Af] = 0. Similarly rA/(eA) = 0.
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(2) Since by Lemma 1.1 soc(eAA)ffAf and eAee(soc(AAf)) are simple, and s-
ince by Lemma 1.2 soc(eAA)ffAf C eAffAf and eAee(soc(AAf)) C eAeeAf are
essential extensions, the assertion follows. D

Lemma 2.3. Let (eA, Af) be an i-pair in A. Then for any n > 1 e Jn = 0 if

and only if Jnf = 0, so that eAA and AAf have the same Loewy length.

Proof. By Lemmas 2.2(1) and 2.1(1). D

Lemma 2.4. Let (eA,Af) be an i-pair in A. Let N, M be submodules of
Af/Af with N C M and M/N simple. Assume N G Λr(eA, A f ) . Then the following
hold.
(1) eAeίeA(N)/leA(M) is simple.
(2) Mz

Proof. (1) Let α G M with α £ N. Then M = N + a f A f . Also, since
M φ N = rAf(teA(N)), ίeA(M) C leA(N) with leA(N) / 'ίeA(M) + 0. Since
0 + ίeA(N)M = EeA(N)afAf and ίeA(N}afJf = 0, ίeA(N)afAf = soc(eAffAf).
Thus by Lemma 2.2(2) ίeA(N)a = soc(eAeeAf) and, since £eA(M)a — 0,
eAeteA(N)/eeA(M) * SOc(eAeeAf).

(2) Since teA(M) C ίeA(N) C eAeeA with ίeA(M) G Aι(eA,Af) and
£eA(N} I 'ίeA(M) simple, we can apply the part (1) to conclude that
rAf(teA(M))/rAf(teA(N)) is simple. Thus rAf(ίeA(N)) = NcM C rAf(teA(M))
with both rAf(leA(M))/rAf(leA(N)) and M/N simple, so that M = rAf(ίeA(M)).

D

Lemma 2.5. Let (eA, Af) be an i-pair in A. Then M G Ar(eA, Af) for every
submodule M of Af/Af of finite composition length.

Proof. Lemma 2.4(2) together with Lemma 2.2(1) enables us to make use of
induction on the composition length. D

Lemma 2.6. Let (eA,Af) be an i-pair in A. Then eAezA and Af/Af have the
same composition length.

Proof. By symmetry, we may assume Af/A/ has finite composition length. Let
0 = MO C MI C ••• C Mn = Af be a composition series of A f f A f . Put X{ —
ίeA(Mi) for 0 < i < n. Since by Lemma 2.5 Mi G Λr(eA,Af) for all 0 < i < n, by
Lemmas 2.4(1) and 2.2(1) we have a composition series 0 = Xn C C X\ C XQ =
eA Of eAeCA. D
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Lemma 2.7. Let (eA, A}} be an i-pair in A. Then the following are equivalen-

t.

(1) eAA is A-simple-injective.

(2) ίeA(M) = teA(N] implies N = M for submodules TV, M of AffAf with N C

M.

(3) M G Ar(eA,Af) for every submodule M of A f / A f .

Proof. (1) => (2). Let N, M be submodules of AffAf with N C M and

M/N φ 0. Since (MA/NA)f Ξ M/N φ 0, there exist submodules K, I of MAA

such that NA C K C I and 7/if = f A / f J . Let μ : IA ->• AΛ denote the in-

clusion. Since we have θ : I A ->• eA^ with Im0 = soc(eA^) and Ker0 = K,

there exists φ : AA -> eA^ with φ o μ = θ. Then 0(1)7 = 0(7) = 0(7) ̂  0

and 0(1)# = 0(70 = Θ(K) = 0. Thus 0(1) G 4^*0 and 0(1) g 4^(/) Since

4^(M) - £e^(MΛ) C ίeA(I) C 4A(^) C leA(NA) = teA(N), teA(I) φ CeA(K)
implies ίeA(M)ϊieA(N).

(2) =^ (3). Let M be a submodule of A f / A f and put L = rAf(teA(M}). Then
M C L and ίeA(L) = eeA(rAf(eeA(M))) = ίeA(M). Thus M = L.

(3) => (1). Let 7 be a nonzero right ideal and μ : IA ->• ^4^ the inclusion.

Let θ : IA -> eA^ with Im0 = soc(eA^) and put K = Ker0. Then by Lem-

ma 1.1 If/Kf/Af - (I/K)ffAf is simple, so is C A e ί e A ( K f ) / ' ί e A ( I f ) by Lemma
2.4(1). Let a G If with α g 7ί/. Then, since ίeA(Kf)a ^ 0 and leA(If)a = 0,

eAe^eA(Kf)a is simple. Thus by Lemma 2.2(2) ίeA(Kf)a = soc(eAA)f, so that

0(α) = 0(α/) = 0(α)/ = 6α with 6 G ίeA(Kf). Define 0 : AA -̂  eAA by 1 H> 6.

Then, since by Lemmas 2.2(1) and 2.1(2) b G 4^(^0, and since 7 = if + αA, we
have φo μ = θ. Π

Lemma 2.8. Lei (e-4, A/) fc^ an z-/?aιr m A. Assume eAA is injective. Then

the canonical homomorphism eAeeAA —> eAefίomfAf(Af,eAf)A, a ι-> (6 κ-> aft), w

an isomorphism and eAf/Af is injective.

Proof. By Lemmas 2.2(1) and 1.3. D

3. Injective pairs in perfect rings

In this section, we extend results of Baba and Oshiro [1] to left perfect rings.

We refer to [2] for perfect rings. We abbreviate the ascending (resp. descending) chain

condition as the ACC (resp. DCC).

REMARK 4. (1) Let (eA,Af) be an z-pair in A. Then, since At(eA,Af) is

anti-isomorphic to Ar(eA,Af), Aι(eA,Af) satisfies the ACC (resp. DCC) if and on-

ly if Ar(eA,Af) satisfies the DCC (resp. ACC).

(2) Let e G A be an idempotent. Then, since eAeeAe appears as a direct sum-
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mand in eAeeA, eAe^A is artinian if and only if it has finite composition length.

(3) Every module LA with SOC(LA) = 0 is A-simple-injective.

Lemma 3.1 (cf. [1, Proposition 5]). Let (eA,Af) be an i-pair in A. Assume
Ar(eA, Af) satisfies the ACC and f A f is a left perfect ring. Then AffAf is artinian

and M G Ar(eA, Af) for every submodule M of AffAf

Proof. It follows by Lemma 2.5 that there exists a maximal element M in the
set of submodules of AffAf of finite composition length. We claim M = AffA/ Oth-
erwise, there exists a submodule L of AffAf with M C L and L/M simple, a con-
tradiction. Thus AffAf has finite composition length and again by Lemma 2.5 the last
assertion follows. D

Proposition 3.2. Let (eA, Af) be an i-pair in a left perfect ring A. Then the
following are equivalent.
(1) eAecA is artinian.
(2) Aι(eA,Af) satisfies both the ACC and the DCC.
(3) Aι(eA,Af) satisfies the ACC.

Proof. The implications (1) => (2) => (3) are obvious.

(3) =» (1). Since the ascending chain leA(Af) C teA(Jf) C teA(J2f) C •••
in Aι(eA,Af) terminates, ίeA(Jnf) = leA(Jn+l f ) for some n > 0. We claim
£eA(Jnf) — eA. Suppose otherwise. Then there exists a submodule M of eAA

with ί e A ( J n f ) C M and M/ίeA(Jnf) simple. Since MJ C teA(Jnf], MJn+1/

C ίeA(Jnf}Jnf = 0 and M C CeA(Jn+l f) = ίeA(Jnf), a contradiction. Thus
teA(Jnf) = eA and by Lemma 2.2(1) Jnf C rAf(ίeA(Jnf)} = 0. Then by Lemma
2.3 eJn = 0 and eAe is a semiprimary ring. Thus by Lemma 3.1 eAe^A is artinian.

π

Lemma 3.3. Let e G A be a local idempotent. Assume eAA is A-simple-
injective and has nonzero socle. Then soc(eA^) is simple.

Proof. Let 5 be a simple submodule of ^oc(eAA)A- We claim 5 = s
Suppose otherwise. Let π : soc(e^4^) — ϊ SA be a projection and μ : soc(eΛ^) — > eAA,
v : SA — > ^AA inclusions. There exists φ : eAA — > ^AA with φ o μ = v o π. Since
π is not monic, φ is not an isomorphism. Thus φ(e) G eJe and (e — φ(e)) is a unit
in eAe. For any x G 5, since φ(e)x = φ(x) — π(x) = x, (e — φ(e))x — 0 and thus
x = 0, a contradiction. Π

Lemma 3.4 (cf. [1, Proposition 2]). Let A be a semiperfect ring and e G A a
local idempotent. Assume eAA is A-simple-injective and has finite Loewy length. Then
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eAA is injective.

Proof. Let / be a nonzero right ideal and μ : I A —> A A the inclusion. Let
θ : I A —> eAA We make use of induction on the Loewy length of Θ(I) to show the
existence of φ : AA -> eAA with θ = φoμ. Let n - min{fc > 0|0(/) Jk = 0}. We may
assume n > 0. Since eAA has nonzero socle, by Lemma 3.3 soc(eA^) is simple and
soc(eAA) = θ(I)Jn~l = θ(IJn-1}. Let μi and θ\ denote the restrictions of μ and
θ to IJn~l, respectively. Then Im#ι = soc(eAA) and there exists φ\ : A A —> eAA
with φι oμi = θι. Since (θ — φι oμ)(/)Jn~1 = 0, by induction hypothesis there exists

φ2 : AA -> eAA with </>2 ° μ = 0 - φι o μ. Then θ = (φι + φz) o μ. Π

Lemma 3.5 (cf. [1, Proposition 4]). Let A be a semiperfect ring and e G A
a local idempotent. Assume eAA is A-simple-injective and has essential socle. Then
there exists a local idempotent f G A such that (eA, Af) is an i-pair in A.

Proof. By Lemma 3.3 SA = soc(eA^) is simple. Let / G A be a local idem-
potent with Sf φ 0. We claim that (eA,Af) is an z-pair in A. Let 0 φ a G S f . It
suffices to show a G Ab for all 0 φ b G Af. Let 0 ̂  b G A/. Define α : /A^ -» α^U
by x ^ ax and /? : /A^ -> 6^ by x ι-» bx. Since Ker/3 = 77,4(6) C fJ —

ΓfA(ά) — Kerα, we have θ : bAA -> &AA = SA with a — θ^β. Let μ : SA -> eAA,
v : bAA -> ^4,4 be inclusions. Then there exists φ : AA -> eAA with 0 o v — μ o θ and
α = α(/) - θ(β(f)) = θ(b) = φ(b) = φ(l)b G Ab. D

Theorem 3.6 (cf. [1, Theorem 1]). Let A be a left perfect ring and e G A a
local idempotent. Then the following are equivalent.
(1) eAA is A-simple-injective.
(2) There exists a local idempotent f G A such that (eA,Af) is an i-pair in A and

M G Ar(eA, Af) for every submodule M of Af/Af-

Proof. By Lemmas 3.5 and 2.7. D

Theorem 3.7 (cf. [1, Theorem 2]). Let (eA,Af) be an i-pair in a left perfect
ring A. Then the following are equivalent.
(1) eAeeA is artinian.

(2) AffAf is artinian.
(3) Both eAA and AAf are injective.

Proof. (1) & (2). By Lemma 2.6.
(2) =» (3). By Lemmas 2.6, 2.5 and 2.7 both eAA and AAf are A-simple-

injective. Also, by Lemma 2.3 both eAA and AAf have finite Loewy length. Thus by
Lemma 3.4 both eAA and AAf are injective.
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(3) =>(!). By Lemma 2.8 the canonical homomorphism

eAeeAA ->• eAeHomfAf(Af,eAf)A

is an isomorphism and eAffAf is injective. Similarly, the canonical homomorphis-
m A A f f A f -» AKomeAe(eA,eAf)fAf is an isomorphism and eAeeAf is injective.

It follows that eAeeAffAf defines a Morita duality. Thus by [7, Theorem 3] eAe is
left artinian and eAe^A has finite Loewy length. Since the canonical homomorphism

eAecA -» eAeRomfAf(UomeAe(eA^eAf),eAf) is an isomorphism, it follows by [7,
Lemma 13] that eAezA has finite composition length. D

REMARK 5. In Theorem 3.7 the assumption that A is left perfect cannot be re-
placed by a weaker condition that A is semiperfect (see [7, Example 1]).
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