

Title	Injective pairs in perfect rings
Author(s)	Hoshino, Mitsuo; Sumioka, Takeshi
Citation	Osaka Journal of Mathematics. 35(3) P.501-P.508
Issue Date	1998
Text Version	publisher
URL	https://doi.org/10.18910/7051
DOI	10.18910/7051
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Hoshino, M and Sumioka, T. Osaka J. Math. 35 (1998), 501-508

INJECTIVE PAIRS IN PERFECT RINGS

MITSUO HOSHINO and TAKESHI SUMIOKA

(Received April 21, 1997)

Throughout this note, rings are associative rings with identity and modules are unitary modules. Sometimes, we use the notation $_AX$ (resp. X_A) to signify that the module X considered is a left (resp. right) A-module. For each pair of subsets X and M of a ring A, we set $\ell_X(M) = \{a \in X | aM = 0\}$ and $r_M(X) = \{a \in M | Xa = 0\}$.

Following Baba and Oshiro [1], we call a pair (eA, Af) of a right ideal eA and a left ideal Af in a ring A an *i*-pair if (a) e and f are local idempotents; (b) eA_A and $_AAf$ have essential socles; and (c) $\operatorname{soc}(eA_A) \cong fA/fJ$ and $\operatorname{soc}(_AAf) \cong Ae/Je$, where J is the Jacobson radical of A.

Generalizing a result of Fuller [3], Baba and Oshiro [1] showed that for a local idempotent e in a semiprimary ring A, eA_A is injective if and only if there exists a local idempotent f in A such that (eA, Af) is an *i*-pair in A and $r_{Af}(\ell_{eA}(M)) = M$ for every submodule M of Af_{fAf} , and that for an *i*-pair (eA, Af) in a semiprimary ring A the following are equivalent: (1) $_{eAe}eA$ is artinian; (2) Af_{fAf} is artinian; and (3) both eA_A and $_AAf$ are injective.

Our aim is to extend the results mentioned above to perfect rings. Following Harada [4], we call a module L_A *M*-simple-injective if for any submodule *N* of M_A every $\theta: N_A \to L_A$ with Im θ simple can be extended to some $\phi: M_A \to L_A$. For a local idempotent *e* in a left perfect ring *A*, we will show that eA_A is *A*-simple-injective if and only if there exists a local idempotent *f* in *A* such that (eA, Af) is an *i*-pair in *A* and $r_{Af}(\ell_{eA}(M)) = M$ for every submodule *M* of Af_{fAf} , and that eA_A is injective if it is *A*-simple-injective and has finite Loewy length. We will show also that for an *i*-pair (eA, Af) in a left perfect ring *A* the following are equivalent: (1) $_{eAe}eA$ is artinian; (2) Af_{fAf} is artinian; and (3) both eA_A and $_AAf$ are injective.

1. Localization and injective objects

Let \mathcal{A} and \mathcal{B} be abelian categories, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$ covariant functors, and $\varepsilon : \mathbf{1}_{\mathcal{A}} \to GF$ and $\delta : FG \to \mathbf{1}_{\mathcal{B}}$ homomorphisms of functors, where $\mathbf{1}_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ and $\mathbf{1}_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}$ are identity functors. We assume the conditions: (a) $\delta_F \circ F\varepsilon = \mathrm{id}_F$; (b) $G\delta \circ \varepsilon_G = \mathrm{id}_G$; (c) F is exact; and (d) δ is an isomorphism.

REMARK 1. (1) By the conditions (a) and (b), for each pair of $X \in Ob(\mathcal{A})$ and

 $M \in Ob(\mathcal{B})$ we have a natural isomorphism

 $\theta_{X,M} : \operatorname{Hom}_{\mathcal{B}}(FX,M) \to \operatorname{Hom}_{\mathcal{A}}(X,GM), \beta \mapsto G\beta \circ \varepsilon_X$

with $\theta_{X,M}^{-1}(\alpha) = \delta_M \circ F\alpha$ for $\alpha \in \text{Hom}_{\mathcal{A}}(X, GM)$. Namely, G is a right adjoint of F. In particular, G is left exact.

(2) By the conditions (a), (b) and (d), $G: \mathcal{B} \to \mathcal{A}$ is fully faithful.

(3) By the conditions (a) and (d), $F\varepsilon: F \to FGF$ is an isomorphism with $F\varepsilon^{-1} = \delta_F$.

(4) By the conditions (b) and (d), $\varepsilon_G : G \to GFG$ is an isomorphism with $\varepsilon_G^{-1} = G\delta$.

Though the following lemmas are well known and more or less obvious, we include proofs for completeness.

Lemma 1.1. Let $X \in Ob(\mathcal{A})$ be simple with $FX \neq 0$. Then $FX \in Ob(\mathcal{B})$ is simple.

Proof. Let $\beta : FX \to M$ be a nonzero morphism in \mathcal{B} . We claim β monic. Note that $\beta = \delta_M \circ F(G\beta \circ \varepsilon_X)$. Thus $G\beta \circ \varepsilon_X : X \to GM$ is nonzero and monic, so is $\beta = \delta_M \circ F(G\beta \circ \varepsilon_X)$.

Lemma 1.2. Let $\mu : Y \to X$ be an essential monomorphism in \mathcal{A} with ε_Y monic. Then $F\mu : FY \to FX$ is an essential monomorphism in \mathcal{B} .

Proof. Let $\beta : FX \to M$ be a morphism in \mathcal{B} with $\beta \circ F\mu$ monic. We claim β monic. Since $(G\beta \circ \varepsilon_X) \circ \mu = G\beta \circ GF\mu \circ \varepsilon_Y = G(\beta \circ F\mu) \circ \varepsilon_Y$ is monic, $G\beta \circ \varepsilon_X$ is monic and so is $\beta = \delta_M \circ F(G\beta \circ \varepsilon_X)$.

Lemma 1.3. Let $X \in Ob(\mathcal{A})$ be injective with ε_X monic. Then $\varepsilon_X : X \to GFX$ is an isomorphism and $FX \in Ob(\mathcal{B})$ is injective.

Proof. Since $F\varepsilon_X$ is an isomorphism, $F(\operatorname{Cok} \varepsilon_X) \cong \operatorname{Cok} F\varepsilon_X = 0$ and $\operatorname{Hom}_{\mathcal{A}}(\operatorname{Cok} \varepsilon_X, GFX) \cong \operatorname{Hom}_{\mathcal{B}}(F(\operatorname{Cok} \varepsilon_X), FX) = 0$. Thus, since $\varepsilon_X : X \to GFX$ is a split monomorphism, $\operatorname{Cok} \varepsilon_X = 0$. Hence for each $M \in \operatorname{Ob}(\mathcal{B})$ we have a natural isomorphism

$$\eta_M : \operatorname{Hom}_{\mathcal{B}}(M, FX) \to \operatorname{Hom}_{\mathcal{A}}(GM, X), \beta \mapsto \varepsilon_X^{-1} \circ G\beta.$$

Let $\nu : N \to M$ be a monomorphism in \mathcal{B} . Since $G\nu$ is monic, $\operatorname{Hom}_{\mathcal{A}}(G\nu, X)$ is epic and so is $\operatorname{Hom}_{\mathcal{B}}(\nu, FX) = \eta_N^{-1} \circ \operatorname{Hom}_{\mathcal{A}}(G\nu, X) \circ \eta_M$.

REMARK 2. (1) An object $M \in Ob(\mathcal{B})$ is injective if and only if so is $GM \in$

 $Ob(\mathcal{A}).$

(2) The canonical monomorphism $\operatorname{Im} \varepsilon_X \to GFX$ is an essential monomorphism for every $X \in \operatorname{Ob}(\mathcal{A})$ with $FX \neq 0$.

(3) If $\nu: N \to M$ is an essential monomorphism in \mathcal{B} , so is $G\nu: GN \to GM$.

(4) For $X \in Ob(\mathcal{A})$ with ε_X monic, a monomorphism $\mu : Y \to X$ in \mathcal{A} is an essential monomorphism if and only if so is $F\mu : FY \to FX$.

2. Injective pairs

Throughout the rest of this note, A stands for a ring with Jacobson radical J. For an *i*-pair (eA, Af) in A, we denote by $\mathcal{A}_{\ell}(eA, Af)$ the lattice of submodules X of eAeeA with $\ell_{eA}(r_{Af}(X)) = X$ and by $\mathcal{A}_{r}(eA, Af)$ the lattice of submodules M of Af_{fAf} with $r_{Af}(\ell_{eA}(M)) = M$.

REMARK 3. Let (eA, Af) be an *i*-pair in A. Let X be a submodule of $_{eAe}eA$. Then $Xr_{Af}(X) = 0$ implies $X \subset \ell_{eA}(r_{Af}(X))$ and thus $r_{Af}(\ell_{eA}(r_{Af}(X))) \subset r_{Af}(X)$. Also, $\ell_{eA}(r_{Af}(X))r_{Af}(X) = 0$ implies $r_{Af}(X) \subset r_{Af}(\ell_{eA}(r_{Af}(X)))$. Thus $r_{Af}(X) \in \mathcal{A}_r(eA, Af)$. Similarly, $\ell_{eA}(M) \in \mathcal{A}_\ell(eA, Af)$ for every submodule M of Af_{fAf} . It follows that $\mathcal{A}_\ell(eA, Af)$ is anti-isomorphic to $\mathcal{A}_r(eA, Af)$.

The following lemmas have been established in [5], [3], [1], [8], [6] and so on. However, for the benefit of the reader, we provide direct proofs.

Lemma 2.1. Let $e, f \in A$ be idempotents and assume $\ell_{eA}(Af) = 0 = r_{Af}(eA)$. Then the following hold.

(1) For a two-sided ideal I of A, eI = 0 if and only if If = 0.

(2) $\ell_{eA}(I) = \ell_{eA}(If)$ for every right ideal I of A.

(3) $r_{Af}(I) = r_{Af}(eI)$ for every left ideal I of A.

Proof. (1) Assume eI = 0. Then eAIf = eIf = 0 and $If \subset r_{Af}(eA) = 0$. By symmetry, If = 0 implies eI = 0.

(2) Since $If \subset I$, $\ell_{eA}(I) \subset \ell_{eA}(If)$. For any $x \in \ell_{eA}(If)$, since xIAf = xIf = 0, $xI \subset \ell_{eA}(Af) = 0$ and $x \in \ell_{eA}(I)$. Thus $\ell_{eA}(If) \subset \ell_{eA}(I)$. (3) Similar to (2).

Lemma 2.2. Let (eA, Af) be an *i*-pair in A. Then the following hold. (1) $\ell_{eA}(Af) = 0 = r_{Af}(eA)$.

(2) eAf_{fAf} and $_{eAe}eAf$ have simple essential socles and $\operatorname{soc}(eA_A)f = \operatorname{soc}(eAf_{fAf})$ = $\operatorname{soc}(_{eAe}eAf) = e(\operatorname{soc}(_AAf)).$

Proof. (1) For any $0 \neq x \in eA$, since $\operatorname{soc}(eA_A) \subset xA$, $0 \neq \operatorname{soc}(eA_A)f \subset xAf$ and $x \notin \ell_{eA}(Af)$. Thus $\ell_{eA}(Af) = 0$. Similarly $r_{Af}(eA) = 0$.

(2) Since by Lemma 1.1 $\operatorname{soc}(eA_A)f_{fAf}$ and $_{eAe}e(\operatorname{soc}(_AAf))$ are simple, and since by Lemma 1.2 $\operatorname{soc}(eA_A)f_{fAf} \subset eAf_{fAf}$ and $_{eAe}e(\operatorname{soc}(_AAf)) \subset _{eAe}eAf$ are essential extensions, the assertion follows.

Lemma 2.3. Let (eA, Af) be an *i*-pair in A. Then for any $n \ge 1$ $eJ^n = 0$ if and only if $J^n f = 0$, so that eA_A and $_AAf$ have the same Loewy length.

Proof. By Lemmas 2.2(1) and 2.1(1).

Lemma 2.4. Let (eA, Af) be an *i*-pair in A. Let N, M be submodules of Af_{fAf} with $N \subset M$ and M/N simple. Assume $N \in \mathcal{A}_r(eA, Af)$. Then the following hold.

(1) $_{eAe}\ell_{eA}(N)/\ell_{eA}(M)$ is simple.

(2) $M \in \mathcal{A}_r(eA, Af).$

Proof. (1) Let $a \in M$ with $a \notin N$. Then M = N + afAf. Also, since $M \neq N = r_{Af}(\ell_{eA}(N)), \ell_{eA}(M) \subset \ell_{eA}(N)$ with $\ell_{eA}(N)/\ell_{eA}(M) \neq 0$. Since $0 \neq \ell_{eA}(N)M = \ell_{eA}(N)afAf$ and $\ell_{eA}(N)afJf = 0, \ell_{eA}(N)afAf = \operatorname{soc}(eAf_{fAf})$. Thus by Lemma 2.2(2) $\ell_{eA}(N)a = \operatorname{soc}(e_{Ae}eAf)$ and, since $\ell_{eA}(M)a = 0$, $e_{Ae}\ell_{eA}(N)/\ell_{eA}(M) \cong \operatorname{soc}(e_{Ae}eAf)$.

(2) Since $\ell_{eA}(M) \subset \ell_{eA}(N) \subset {}_{eAe}eA$ with $\ell_{eA}(M) \in \mathcal{A}_{\ell}(eA, Af)$ and $\ell_{eA}(N)/\ell_{eA}(M)$ simple, we can apply the part (1) to conclude that $r_{Af}(\ell_{eA}(M))/r_{Af}(\ell_{eA}(N))$ is simple. Thus $r_{Af}(\ell_{eA}(N)) = N \subset M \subset r_{Af}(\ell_{eA}(M))$ with both $r_{Af}(\ell_{eA}(M))/r_{Af}(\ell_{eA}(N))$ and M/N simple, so that $M = r_{Af}(\ell_{eA}(M))$.

Lemma 2.5. Let (eA, Af) be an *i*-pair in A. Then $M \in A_r(eA, Af)$ for every submodule M of Af_{fAf} of finite composition length.

Proof. Lemma 2.4(2) together with Lemma 2.2(1) enables us to make use of induction on the composition length. \Box

Lemma 2.6. Let (eA, Af) be an *i*-pair in A. Then $_{eAe}eA$ and Af_{fAf} have the same composition length.

Proof. By symmetry, we may assume Af_{fAf} has finite composition length. Let $0 = M_0 \subset M_1 \subset \cdots \subset M_n = Af$ be a composition series of Af_{fAf} . Put $X_i = \ell_{eA}(M_i)$ for $0 \le i \le n$. Since by Lemma 2.5 $M_i \in \mathcal{A}_r(eA, Af)$ for all $0 \le i \le n$, by Lemmas 2.4(1) and 2.2(1) we have a composition series $0 = X_n \subset \cdots \subset X_1 \subset X_0 = eA$ of eAeeA.

Lemma 2.7. Let (eA, Af) be an *i*-pair in A. Then the following are equivalent.

- (1) eA_A is A-simple-injective.
- (2) $\ell_{eA}(M) = \ell_{eA}(N)$ implies N = M for submodules N, M of Af_{fAf} with $N \subset M$.
- (3) $M \in \mathcal{A}_r(eA, Af)$ for every submodule M of Af_{fAf} .

Proof. (1) \Rightarrow (2). Let N, M be submodules of Af_{fAf} with $N \subset M$ and $M/N \neq 0$. Since $(MA/NA)f \cong M/N \neq 0$, there exist submodules K, I of MA_A such that $NA \subset K \subset I$ and $I/K \cong fA/fJ$. Let $\mu : I_A \to A_A$ denote the inclusion. Since we have $\theta : I_A \to eA_A$ with $\operatorname{Im} \theta = \operatorname{soc}(eA_A)$ and $\operatorname{Ker} \theta = K$, there exists $\phi : A_A \to eA_A$ with $\phi \circ \mu = \theta$. Then $\phi(1)I = \phi(I) = \theta(I) \neq 0$ and $\phi(1)K = \phi(K) = \theta(K) = 0$. Thus $\phi(1) \in \ell_{eA}(K)$ and $\phi(1) \notin \ell_{eA}(I)$. Since $\ell_{eA}(M) = \ell_{eA}(MA) \subset \ell_{eA}(I) \subset \ell_{eA}(K) \subset \ell_{eA}(NA) = \ell_{eA}(N), \ \ell_{eA}(I) \neq \ell_{eA}(K)$ implies $\ell_{eA}(M) \neq \ell_{eA}(N)$.

(2) \Rightarrow (3). Let M be a submodule of Af_{fAf} and put $L = r_{Af}(\ell_{eA}(M))$. Then $M \subset L$ and $\ell_{eA}(L) = \ell_{eA}(r_{Af}(\ell_{eA}(M))) = \ell_{eA}(M)$. Thus M = L.

(3) \Rightarrow (1). Let *I* be a nonzero right ideal and $\mu : I_A \to A_A$ the inclusion. Let $\theta : I_A \to eA_A$ with $\operatorname{Im} \theta = \operatorname{soc}(eA_A)$ and put $K = \operatorname{Ker} \theta$. Then by Lemma 1.1 $If/Kf_{fAf} \cong (I/K)f_{fAf}$ is simple, so is ${}_{eAe}\ell_{eA}(Kf)/\ell_{eA}(If)$ by Lemma 2.4(1). Let $a \in If$ with $a \notin Kf$. Then, since $\ell_{eA}(Kf)a \neq 0$ and $\ell_{eA}(If)a = 0$, ${}_{eAe}\ell_{eA}(Kf)a$ is simple. Thus by Lemma 2.2(2) $\ell_{eA}(Kf)a = \operatorname{soc}(eA_A)f$, so that $\theta(a) = \theta(af) = \theta(a)f = ba$ with $b \in \ell_{eA}(Kf)$. Define $\phi : A_A \to eA_A$ by $1 \mapsto b$. Then, since by Lemmas 2.2(1) and 2.1(2) $b \in \ell_{eA}(K)$, and since I = K + aA, we have $\phi \circ \mu = \theta$.

Lemma 2.8. Let (eA, Af) be an *i*-pair in A. Assume eA_A is injective. Then the canonical homomorphism $_{eAe}eA_A \rightarrow _{eAe}\operatorname{Hom}_{fAf}(Af, eAf)_A$, $a \mapsto (b \mapsto ab)$, is an isomorphism and eAf_{fAf} is injective.

Proof. By Lemmas 2.2(1) and 1.3.

3. Injective pairs in perfect rings

In this section, we extend results of Baba and Oshiro [1] to left perfect rings. We refer to [2] for perfect rings. We abbreviate the ascending (resp. descending) chain condition as the ACC (resp. DCC).

REMARK 4. (1) Let (eA, Af) be an *i*-pair in A. Then, since $\mathcal{A}_{\ell}(eA, Af)$ is anti-isomorphic to $\mathcal{A}_r(eA, Af)$, $\mathcal{A}_{\ell}(eA, Af)$ satisfies the ACC (resp. DCC) if and only if $\mathcal{A}_r(eA, Af)$ satisfies the DCC (resp. ACC).

(2) Let $e \in A$ be an idempotent. Then, since eAeeAe appears as a direct sum-

mand in eAeeA, eAeeA is artinian if and only if it has finite composition length.

(3) Every module L_A with $soc(L_A) = 0$ is A-simple-injective.

Lemma 3.1 (cf. [1, Proposition 5]). Let (eA, Af) be an *i*-pair in A. Assume $\mathcal{A}_r(eA, Af)$ satisfies the ACC and fAf is a left perfect ring. Then Af_{fAf} is artinian and $M \in \mathcal{A}_r(eA, Af)$ for every submodule M of Af_{fAf} .

Proof. It follows by Lemma 2.5 that there exists a maximal element M in the set of submodules of Af_{fAf} of finite composition length. We claim $M = Af_{fAf}$. Otherwise, there exists a submodule L of Af_{fAf} with $M \subset L$ and L/M simple, a contradiction. Thus Af_{fAf} has finite composition length and again by Lemma 2.5 the last assertion follows.

Proposition 3.2. Let (eA, Af) be an *i*-pair in a left perfect ring A. Then the following are equivalent.

(1) $_{eAe}eA$ is artinian.

(2) $\mathcal{A}_{\ell}(eA, Af)$ satisfies both the ACC and the DCC.

(3) $\mathcal{A}_{\ell}(eA, Af)$ satisfies the ACC.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (1)$. Since the ascending chain $\ell_{eA}(Af) \subset \ell_{eA}(Jf) \subset \ell_{eA}(J^2f) \subset \cdots$ in $\mathcal{A}_{\ell}(eA, Af)$ terminates, $\ell_{eA}(J^n f) = \ell_{eA}(J^{n+1}f)$ for some $n \geq 0$. We claim $\ell_{eA}(J^n f) = eA$. Suppose otherwise. Then there exists a submodule M of eA_A with $\ell_{eA}(J^n f) \subset M$ and $M/\ell_{eA}(J^n f)$ simple. Since $MJ \subset \ell_{eA}(J^n f)$, $MJ^{n+1}f \subset \ell_{eA}(J^n f)J^n f = 0$ and $M \subset \ell_{eA}(J^{n+1}f) = \ell_{eA}(J^n f)$, a contradiction. Thus $\ell_{eA}(J^n f) = eA$ and by Lemma 2.2(1) $J^n f \subset r_{Af}(\ell_{eA}(J^n f)) = 0$. Then by Lemma 2.3 $eJ^n = 0$ and eAe is a semiprimary ring. Thus by Lemma 3.1 $_{eAe}eA$ is artinian.

Lemma 3.3. Let $e \in A$ be a local idempotent. Assume eA_A is A-simpleinjective and has nonzero socle. Then $soc(eA_A)$ is simple.

Proof. Let S be a simple submodule of $\operatorname{soc}(eA_A)_A$. We claim $S = \operatorname{soc}(eA_A)$. Suppose otherwise. Let $\pi : \operatorname{soc}(eA_A) \to S_A$ be a projection and $\mu : \operatorname{soc}(eA_A) \to eA_A$, $\nu : S_A \to eA_A$ inclusions. There exists $\phi : eA_A \to eA_A$ with $\phi \circ \mu = \nu \circ \pi$. Since π is not monic, ϕ is not an isomorphism. Thus $\phi(e) \in eJe$ and $(e - \phi(e))$ is a unit in eAe. For any $x \in S$, since $\phi(e)x = \phi(x) = \pi(x) = x$, $(e - \phi(e))x = 0$ and thus x = 0, a contradiction.

Lemma 3.4 (cf. [1, Proposition 2]). Let A be a semiperfect ring and $e \in A$ a local idempotent. Assume eA_A is A-simple-injective and has finite Loewy length. Then

 eA_A is injective.

Proof. Let I be a nonzero right ideal and $\mu : I_A \to A_A$ the inclusion. Let $\theta : I_A \to eA_A$. We make use of induction on the Loewy length of $\theta(I)$ to show the existence of $\phi : A_A \to eA_A$ with $\theta = \phi \circ \mu$. Let $n = \min\{k \ge 0 | \theta(I)J^k = 0\}$. We may assume n > 0. Since eA_A has nonzero socle, by Lemma 3.3 soc (eA_A) is simple and soc $(eA_A) = \theta(I)J^{n-1} = \theta(IJ^{n-1})$. Let μ_1 and θ_1 denote the restrictions of μ and θ to IJ^{n-1} , respectively. Then $\operatorname{Im} \theta_1 = \operatorname{soc}(eA_A)$ and there exists $\phi_1 : A_A \to eA_A$ with $\phi_1 \circ \mu_1 = \theta_1$. Since $(\theta - \phi_1 \circ \mu)(I)J^{n-1} = 0$, by induction hypothesis there exists $\phi_2 : A_A \to eA_A$ with $\phi_2 \circ \mu = \theta - \phi_1 \circ \mu$. Then $\theta = (\phi_1 + \phi_2) \circ \mu$.

Lemma 3.5 (cf. [1, Proposition 4]). Let A be a semiperfect ring and $e \in A$ a local idempotent. Assume eA_A is A-simple-injective and has essential socle. Then there exists a local idempotent $f \in A$ such that (eA, Af) is an i-pair in A.

Proof. By Lemma 3.3 $S_A = \operatorname{soc}(eA_A)$ is simple. Let $f \in A$ be a local idempotent with $Sf \neq 0$. We claim that (eA, Af) is an *i*-pair in A. Let $0 \neq a \in Sf$. It suffices to show $a \in Ab$ for all $0 \neq b \in Af$. Let $0 \neq b \in Af$. Define $\alpha : fA_A \to aA_A$ by $x \mapsto ax$ and $\beta : fA_A \to bA_A$ by $x \mapsto bx$. Since $\operatorname{Ker} \beta = r_{fA}(b) \subset fJ = r_{fA}(a) = \operatorname{Ker} \alpha$, we have $\theta : bA_A \to aA_A = S_A$ with $\alpha = \theta \circ \beta$. Let $\mu : S_A \to eA_A$, $\nu : bA_A \to A_A$ be inclusions. Then there exists $\phi : A_A \to eA_A$ with $\phi \circ \nu = \mu \circ \theta$ and $a = \alpha(f) = \theta(\beta(f)) = \theta(b) = \phi(b) = \phi(1)b \in Ab$.

Theorem 3.6 (cf. [1, Theorem 1]). Let A be a left perfect ring and $e \in A$ a local idempotent. Then the following are equivalent.

- (1) eA_A is A-simple-injective.
- (2) There exists a local idempotent $f \in A$ such that (eA, Af) is an *i*-pair in A and $M \in \mathcal{A}_r(eA, Af)$ for every submodule M of Af_{fAf} .

Proof. By Lemmas 3.5 and 2.7.

Theorem 3.7 (cf. [1, Theorem 2]). Let (eA, Af) be an *i*-pair in a left perfect ring A. Then the following are equivalent.

- (1) $_{eAe}eA$ is artinian.
- (2) Af_{fAf} is artinian.
- (3) Both eA_A and $_AAf$ are injective.

Proof. (1) \Leftrightarrow (2). By Lemma 2.6.

(2) \Rightarrow (3). By Lemmas 2.6, 2.5 and 2.7 both eA_A and $_AAf$ are A-simpleinjective. Also, by Lemma 2.3 both eA_A and $_AAf$ have finite Loewy length. Thus by Lemma 3.4 both eA_A and $_AAf$ are injective.

(3) \Rightarrow (1). By Lemma 2.8 the canonical homomorphism

$$_{eAe}eA_A \rightarrow _{eAe}\operatorname{Hom}_{fAf}(Af, eAf)_A$$

is an isomorphism and eAf_{fAf} is injective. Similarly, the canonical homomorphism ${}_{A}Af_{fAf} \rightarrow {}_{A}\operatorname{Hom}_{eAe}(eA, eAf)_{fAf}$ is an isomorphism and ${}_{eAe}eAf$ is injective. It follows that ${}_{eAe}eAf_{fAf}$ defines a Morita duality. Thus by [7, Theorem 3] eAe is left artinian and ${}_{eAe}eA$ has finite Loewy length. Since the canonical homomorphism ${}_{eAe}eA \rightarrow {}_{eAe}\operatorname{Hom}_{fAf}(\operatorname{Hom}_{eAe}(eA, eAf), eAf)$ is an isomorphism, it follows by [7, Lemma 13] that ${}_{eAe}eA$ has finite composition length.

REMARK 5. In Theorem 3.7 the assumption that A is left perfect cannot be replaced by a weaker condition that A is semiperfect (see [7, Example 1]).

References

- [1] Y. Baba and K. Oshiro: On a theorem of Fuller, J. Algebra, 154 (1993), 86-94.
- H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488.
- [3] K.R. Fuller : On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
- [4] M. Harada: Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29 (1992), 435–446.
- [5] T. Kato: Torsionless modules, Tôhoku Math. J. 20 (1968), 234-243.
- [6] M. Morimoto and T. Sumioka: Generalizations of theorems of Fuller, Osaka J. Math. to appear.
- [7] B.L. Osofsky: A generalization of quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.
- [8] T. Sumioka and S. Tozaki: On almost QF-rings, Osaka J. Math. 33 (1996), 649-661.

M. Hoshino Institute of Mathematics University of Tsukuba Ibaraki, 305-0006 Japan

T. Sumioka Department of Mathematics Osaka City University Osaka, 558-8585 Japan