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固液界面における和周波発生分光スペクトルの第一原理シミュレーション 
 

大戸 達彦 

大阪大学 大学院基礎工学研究科 物質創成専攻 

 

1．はじめに 

固液界面は、不均一触媒反応や電極反応の起こる

舞台である。固体と分子の相互作用はしばしば反応

活性障壁を下げる効果を持ち、化学反応が溶液中よ

りも加速されることがある。そうした固液界面の中

で、酸化チタン/水界面は光触媒作用の発見[1]以来、

最も盛んに研究されている界面の一つである。酸化

チタン表面は、光触媒作用だけでなく、紫外線照射

による超親水化[2]や、セルフクリーニングといった

効果も持つ。触媒反応は、酸化チタン表面に接する

わずかな量の水分子が引き起こすため、界面での微

視的な分子構造を知ることは、より効率の良い光触

媒の設計に結びつく。 

固液界面の分子構造を知るために、全原子分子動

力学（MD）シミュレーションが広く行われている。

全原子 MDシミュレーションでは、原子に働く力を

何らかのモデルにより記述した上でニュートン方程

式を解き、時間に対する各原子の位置（トラジェク

トリ）を得ることで、種々の物理量を計算すること

ができる。通常は、原子を質点と考えた上で、原子

間のポテンシャルをモデル化する。例えば原子間が

共有結合で結ばれていれば、その伸縮振動数に対応

する曲率を持つ調和型のポテンシャル、化学結合が

なく、van der Waals 相互作用が働くのみであれば

Lennerd-Jonesポテンシャルを設定する、といった具

合である。さらに、原子の位置には点電荷を置く。

水のように極性が大きい分子を扱う場合は、点電荷

の量が周囲の環境に応じて変動することを許容す

る、分極効果を取り入れることも多い。このような

モデル化は多くの分子に関してはよく機能するが、

固体のように電子が非局在化している場合は点電荷

と 2体相互作用による近似があまりうまくいかず、

モデル化に工夫が必要となる。 

適当なモデルを構築し、シミュレーションを行え

ば、コンピュータ上では平均的な分子の配向、ダイ

ナミクスを知ることができる。しかし、そのシミュ

レーションを信頼に足るものとするためには、実験

的にも観測可能な物理量を計算し、一致するかどう

かを議論することが重要である。界面に存在する分

子はバルクに比べて非常に少数であるため検出は困

難であるが、和周波発生(SFG)分光という手法を用い

れば、界面の分子に関する有益な情報を得ることが

できる[3]。 SFG 分光では、赤外線と可視光を同時

に照射し、2 次の非線形応答によって発生した、和

周波を持つレーザーを検出する。2 次の非線形応答

は等方的なバルクからは発生しないため、対称性の

破れた界面近傍わずか数 nm の範囲に存在する、赤

外・ラマン同時活性の振動モードを検出することが

できる。さらに、位相敏感な検出法[4]を用いること

により、2 次の非線形応答関数の虚部を求めること

で、双極子モーメントの向きをも知ることができる。

SFG分光スペクトルをシミュレーションして実験と

比較することで、シミュレーションが現実を正しく

反映したものかどうかを検証すると同時に、実験で

は直接見ることのできない分子・原子レベルの構造

に関する知見を得ることができる。我々は、モデリ

ングの難しい固液界面に関しても SFG スペクトル

をシミュレーションできるよう、手法開発に取り組

んできた。 

本稿では、はじめに酸化チタン/水界面に対して界

面での誘起電荷を再現できるような分極力場を構築

した事例を述べる。その後、より汎用性の高い第一

原理 MD法によって、短いトラジェクトリから SFG

スペクトルをシミュレーションする手法を紹介す

る。最後に、その手法をアナターゼ型酸化チタン

(101)/水界面に適用し、SFGスペクトルをシミュレー

ションして実験と比較した事例を述べて結びとす

る。 
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2．分極を考慮した固液界面用力場の構築 

MD 法において分極を考慮するモデルの一つに、

チャージレスポンスカーネル（CRK）法[5]と呼ばれ

る方法がある。このモデルでは、各原子に電荷と、

外部電界に応じて電荷が移動する量を規定するパラ

メータ（カーネル）を設定することにより、ある原

子配置における各原子の電荷量を自己無撞着に決定

することができる。我々は、CRK法を援用して固体

表面の分極を表現する方法を開発した[6]。 CRK 法

を用いて固体の分極を表現するためには、非局在化

した固体中の電荷の動きを再現できる位置にカーネ

ルを設置する必要がある。酸化チタンのスラブモデ

ル（周期境界条件のもとで表面を表すためのモデル

の一つで、固体層と真空層を交互に繰り返すことで、

固体の表面と裏面との相互作用を排除したもの。表

面水平方向には周期境界条件が確保されている。）に

電界を印加すると、図１のように表面に電荷が誘起

される。誘起された電荷の分布は表面水平方向には

ほぼ一定であるため、図１のように一定間隔の面の

中心にカーネルを設置するという方法をとる。表面

近傍では多くの電荷が誘起されるため、表面近傍に

は密に、バルクでは粗にカーネルを配置する。CRK

は電荷密度が最大となる点（ワニエ中心）に置くと

良いが、固体中のワニエ中心は気相の分子の場合と

異なり、Tiや Oといった原子とは一致しないことが

多い。今回のモデリングにおいても、酸化チタンの

バルク部分に関しては特定の原子群の重心の位置、

つまり原子の場所とは異なる地点にカーネルを設置

している。 
         

 
図１ 固体表面における CRK構築の概念図[6]。 

我々は、清浄なルチル型酸化チタン(110)面に対し

て、第一原理計算で求めた誘起電荷から CRK パラ

メータを構築し、まずは一つの水分子を吸着させて

モデルの精度を確認した。図２に示したように、水

分子の吸着前後の電荷の差は第一原理計算の結果を

よく再現しており、界面での誘起電荷の様子を良く

表現できていると言える。この結果を踏まえ、新た

に構築した分極力場を用いてルチル型酸化チタン

(110)/水界面のシミュレーションを行い、界面近傍の

水の密度やダイナミクスに関する情報を得ている

[7]。 
         

 
図２ ルチル型酸化チタン表面に水が吸着した系の誘起

電荷。水が存在しない場合と比較し、第一原理計算によ

って計算した電荷の差を青線、CRKモデルから計算した

各カーネル（酸化チタン中のカーネルの位置はWで表さ

れている。）における電荷の差を赤いバーで示す[6]。 

 

3．第一原理分子動力学法による和周波発生分光ス

ペクトルのシミュレーション 

第 2章で述べたような力場モデルを用いた MDシ

ミュレーションは、原子間相互作用を古典的なモデ

ルで近似しているため、古典 MD法と呼ばれる。シ

ミュレーションの対象とする分子の性質をよく記述

することができる力場さえ与えられれば、古典 MD

法では～10万原子、～100 ns程度（水分子の場合、

図３参照）の系・時間スケールをシミュレーション

することができる[8]。 しかし、力場を用いたシミュ

レーションの場合には、対象となる系が少しでも変

わると新たな力場を構築する必要が生じる。例えば、

第 2章で構築した力場は清浄なルチル型酸化チタン

(110)面のものであるが、この表面に酸素欠陥や OH
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基が生じた場合、それぞれに対応した力場をまた新

たに構築する必要がある。また、力場を構築するた

めには、振動分光スペクトルや拡散係数などの物理

量を再現するようにパラメータを決定する必要があ

るが、界面に存在する分子はごくわずかであり、参

照すべき物理量を得ること自体が難しい。これらの

ことから、分子構造やダイナミクスがよく知られた

系に対して物理量を精密にシミュレーションしよう

と思った場合に古典力場は向いているが、例えば固

液界面のように、表面の構造がはっきりとはわから

ない状況から現実の構造を探っていくためには、経

験的なパラメータ設定に頼らない計算手法が望まし

い。 

 
図３ 第一原理MD（AIMD）、古典MD（FFMD）、粗視

化MD（CGMD）が取り扱える水分子の数とシミュレー

ション時間を、文献を基に色分けしたもの[8]。 

 

非経験的に安定な電子状態・構造を求めるための

計算手法が、第一原理計算である。第一原理計算で

は、与えられた構造に対してシュレディンガー方程

式を解く（もちろん一定の近似は必要となる）こと

で電子密度の空間分布を求め、未知の構造に対して

もエネルギーと力を計算することが可能である。た

だし、その代償として、計算コストが非常に高いと

いう問題がある。図３に示したように、高々500 個

程度の水分子に対して、100 ps程度の時間しかシミ

ュレーションすることができない。このような限ら

れたスケールのシミュレーションでは、統計平均量

の収束が著しく不利となる。 

我々は、通常は少なくとも 1 nsのトラジェクトリ

が必要であった SFGスペクトルを、100 ps程度のト

ラジェクトリから計算できるよう、新たな速度・速

度相関関数を導出した[9]。この相関関数を用い、は

じめに空気/水界面のSFGスペクトルを計算した[9]。

図４のように、3700 cm-1に表面に突き出た OH結合

の伸縮に由来する正のピーク、3400cm-1付近に周囲

の水分子と水素結合した OH結合の伸縮に由来する

負のピークが見られ、最新の実験結果[10]ともよく

一致する。その後、脂質/水界面[11]、空気/TMAO水

溶液界面[12]にもこの手法を応用している。 

 
図４ 第一原理MDを用いてシミュレーションした空気/

水界面の SFGスペクトル。密度汎関数と van der Waals相

互作用の有無を組み合わせて 4種類の手法を用い、それ

ぞれ 80psのトラジェクトリから計算を行った[9]。 

 

4．第一原理分子動力学法によるアナターゼ型酸化

チタン(101)/水界面のシミュレーション 

4.1 計算方法 

比較する実験において酸化チタンの膜がスピンコ

ートで作製されたことから、熱力学的に最も安定な

面と言われるアナターゼ型酸化チタン(101)面[13]を

シミュレーションすることとした。表面は、清浄な

表面と OH基が吸着した表面の２種類を用意した。

11.5 Å× 10.4 Åの広さを持つユニットセルに５層の

酸化チタンスラブと水分子（実際には、時間刻みを

大きくするために重水を使用した）45個を投入し、

CP2K プログラム[14]を用いて第一原理 MD を行っ

た。CP2K プログラムは密度汎関数法に基づいたプ

ログラムであり、汎関数は BLYPを用い、Grimmeの
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方法[15]を用いて van der Waals相互作用を取り込ん

だ。基底関数は DZVPを用い、系の温度は CSVR法

を用いて 320K に保ちながらシミュレーションを行

った。 

 
4.2 結果と考察 

第一原理MDシミュレーションから計算した SFG

スペクトルを図５に示す。清浄なアナターゼ型酸化

チタン(101)/水界面では 2 次の応答関数の虚部は水

の振動と共鳴する範囲の周波数ですべて正となっ

た。このことは、水分子の双極子モーメントが全体

的に酸化チタン表面を向いていることを示してい

る。一方、ヒドロキシル基を持つアナターゼ型酸化

チタン(101)/水界面では、表面のヒドロキシル基の水

素が水の方向に向いており、これが 3500 cm-1付近に

負のピークを与える。一方、このヒドロキシル基と

水素結合としている OH結合の伸縮振動に由来する

シグナルは正のピークを与え、またその振動数は強

い水素結合のために 3100 cm-1と小さくなっている。

このことから、アナターゼ型酸化チタン(101)表面に

おいては、表面にヒドロキシル基が存在すれば正と

負のピークからなる SFGスペクトル、清浄表面であ

ればすべて正の SFG スペクトルが観測されること

が予測される[16]。 

図５ 第一原理MDによるアナターゼ型酸化チタン(101)/

水界面の SFGスペクトル（2次の応答関数の虚部）と界

面構造のスナップショット[16]。 

上記の計算結果を、測定結果と比較する。実験で

は、スピンコートによって 1.5 μmの厚さの酸化チタ

ン膜をフッ化カルシウム上に製膜し、即座に 2 mm

の厚さの水と接触させる。紫外線を照射して超親水

性（水と表面との接触角が０°）となったことを確

認した上で、酸化チタン側からレーザーを照射して

SFGスペクトルを測定した。酸化チタン/水界面に対

する SFGスペクトル測定は以前にも報告がある[17]

が、位相敏感な手法で測定が行われたのは今回が初

めてである。測定した 2次の応答関数の虚部は、3100 

cm-1 の正のピークと 3400 cm-1 の負のピークからな

り、2 種類の水が存在することを示唆する。この結

果はシミュレーションと良く一致しており、解離し

てヒドロキシル基となった水と、強い水素結合を持

つ 2種類の水が存在することを示している。バルク

の水の OH 伸縮振動の振動数は 3400 cm-1程度であ

り、3100 cm-1という低い振動数を持つ水分子の存在

は酸化チタン/水界面に特有のものである。強い水素

結合によって界面と水の相互作用が強められた結

果、超親水性が実現し、またそのためにはヒドロキ

シル基の存在が必要であることがシミュレーション

と実験から明らかになった。 

 

 
図６ (a) SFGスペクトル検出の模式図と(b)SFGスペク

トル。(c)位相敏感法によって検出された 2次の応答関数

の虚部と実部。(d)位相敏感法での測定結果から構築した

SFGスペクトルと通常の SFGスペクトルの比較[16]。 
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方法[15]を用いて van der Waals相互作用を取り込ん

だ。基底関数は DZVPを用い、系の温度は CSVR法

を用いて 320K に保ちながらシミュレーションを行

った。 

 
4.2 結果と考察 

第一原理MDシミュレーションから計算した SFG

スペクトルを図５に示す。清浄なアナターゼ型酸化

チタン(101)/水界面では 2 次の応答関数の虚部は水

の振動と共鳴する範囲の周波数ですべて正となっ

た。このことは、水分子の双極子モーメントが全体

的に酸化チタン表面を向いていることを示してい

る。一方、ヒドロキシル基を持つアナターゼ型酸化

チタン(101)/水界面では、表面のヒドロキシル基の水

素が水の方向に向いており、これが 3500 cm-1付近に

負のピークを与える。一方、このヒドロキシル基と

水素結合としている OH結合の伸縮振動に由来する

シグナルは正のピークを与え、またその振動数は強

い水素結合のために 3100 cm-1と小さくなっている。

このことから、アナターゼ型酸化チタン(101)表面に

おいては、表面にヒドロキシル基が存在すれば正と

負のピークからなる SFGスペクトル、清浄表面であ

ればすべて正の SFG スペクトルが観測されること

が予測される[16]。 

図５ 第一原理MDによるアナターゼ型酸化チタン(101)/

水界面の SFGスペクトル（2次の応答関数の虚部）と界

面構造のスナップショット[16]。 

上記の計算結果を、測定結果と比較する。実験で

は、スピンコートによって 1.5 μmの厚さの酸化チタ

ン膜をフッ化カルシウム上に製膜し、即座に 2 mm

の厚さの水と接触させる。紫外線を照射して超親水

性（水と表面との接触角が０°）となったことを確

認した上で、酸化チタン側からレーザーを照射して

SFGスペクトルを測定した。酸化チタン/水界面に対

する SFGスペクトル測定は以前にも報告がある[17]

が、位相敏感な手法で測定が行われたのは今回が初

めてである。測定した 2次の応答関数の虚部は、3100 

cm-1 の正のピークと 3400 cm-1 の負のピークからな

り、2 種類の水が存在することを示唆する。この結

果はシミュレーションと良く一致しており、解離し

てヒドロキシル基となった水と、強い水素結合を持

つ 2種類の水が存在することを示している。バルク

の水の OH 伸縮振動の振動数は 3400 cm-1程度であ

り、3100 cm-1という低い振動数を持つ水分子の存在

は酸化チタン/水界面に特有のものである。強い水素

結合によって界面と水の相互作用が強められた結

果、超親水性が実現し、またそのためにはヒドロキ

シル基の存在が必要であることがシミュレーション

と実験から明らかになった。 

 

 
図６ (a) SFGスペクトル検出の模式図と(b)SFGスペク

トル。(c)位相敏感法によって検出された 2次の応答関数

の虚部と実部。(d)位相敏感法での測定結果から構築した

SFGスペクトルと通常の SFGスペクトルの比較[16]。 
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