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キロテスラ級磁場下における超高強度レーザープラズマ相互作用の物理 
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大阪大学 レーザー科学研究所 

 

1．はじめに 

1994 年の CPA 技術の発見[1]により、レーザーの

出力は飛躍的に向上し、2 PWという大出力レーザー

を建設することが可能となっている。この出力のレ

ーザー光を数ミクロン程度のスポットまで絞ると、

1022 W/cm2という超高強度の光を作り出すことがで

きる。我が国では、量子科学技術研究開発機構関西

光科学研究所にて開発されている J-KAREN レーザ

ーがこのような超高強度レーザー装置に該当し、そ

の各種パラメータは 30 J、30 fs、1 PWとなる見込み

である[2]。また、大阪大学レーザーエネルギー学研

究センターには、レーザー強度では 1020 W/cm2程度

と劣っているもののエネルギー量で J-KAREN レー

ザーを大きく上回る LFEXレーザーがあり、世界最

高の出力性能を誇っている[3]。そのパラメータは 3 

kJ、1.5 ps、2 PWである。また、世界的にも大出力

超高強度レーザーの建造が急ピッチで進められてお

り、今後、米国、欧州、中国などで複数の装置が稼

働する見通しである。これらのレーザーは主に、核

融合、核物理、宇宙物理といった基礎研究から、発

生する高エネルギー量子線の基礎研究応用・医療応

用といった応用研究まで幅広く利用される。このよ

うな状況の中、阪大レーザー研では、FIREXプロジ

ェクトという高速点火レーザー核融合研究プロジェ

クトが立ちあげられ、今日まで精力的な研究が実

験・理論の両面から行われてきている[3]。 

高速点火方式レーザー核融合のシナリオを、図１

に示す。まず、爆縮レーザーを四方八方から照射す

る（①）。これにより、ターゲット表面は瞬時にプラ

ズマ化し、プラズマ膨張の反作用によりターゲット

が圧縮される（②）。そして、最大圧縮時に、噴出プ

ラズマのないコーン内に超高強度レーザーを投入し

コーンとの相互作用により生成された高エネルギー

電子を用いてコアを加熱する（③）。最後に点火・燃

焼が起こる（④）。研究グループは、これまでの研究

により、本方式の数々の課題を明らかにし、それら

の克服に向けて研究を進めてきた。近年大きな問題

となっていることの１つに、図１のステップ③にお

いて生成される高エネルギー電子が大きな発散角を

持ち、生成点がコアから離れていると爆縮コアにエ

ネルギーを落とせないというものがある。そのよう

な中、2013年に高出力レーザーを用いることで、実

験室においてキロテスラ級の強磁場を生成できるこ

とが報告され、強磁場を使って、レーザー生成高エ

ネルギー電子を効率よくコアまで輸送する方法が提

案された[4、5]。 

図１ 高速点火方式レーザー核融合のシナリオ 

 

磁場とプラズマとの歴史は長く、磁場閉じ込め核

融合や宇宙プラズマでは数多くの研究がなされてき

ているが、レーザープラズマの分野ではそれほど研

究例は多くない。レーザープラズマの特徴として、

非常に短い時間スケール（プラズマ振動の時間スケ

ール）と超高強度の電磁波（電子が相対論領域まで

加速される程強い電場）、そして生成されるプラズマ

が高エネルギー密度状態であることが挙げられる。

近年生成可能になった強磁場環境と高エネルギー密

度状態（レーザー生成プラズマ）の二つの極限状態

の組み合わせは、これまで実験することのできなか

ったパラメータ領域であり、未踏の研究領域である。 

本研究では、強磁場中の超高強度レーザーとプラ

ズマとの相互作用について相対論的電磁粒子コード

を用いた計算機シミュレーションを行い、その物理

を明らかにする。 
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2．相対論的電磁粒子コード 

相対論的電磁粒子コードとは、荷電粒子の運動方

程式およびMaxwell方程式をカップリングして解く

コードであり、電磁場とプラズマとの相互作用を自

己無道着に解くことができる。電磁場は格子量とし

て扱われ、Maxwell 方程式を時間・空間的に差分化

する。荷電粒子は粒子として扱い、運動方程式を時

間的に差分化する。計算のアルゴリズムは図２に示

すような順になり、①粒子の位置・速度から電荷密

度・電流密度を計算、②電荷密度・電流密度から電

磁場を更新、③電磁場から力を計算、④力から粒子

の位置・速度を更新となる。このループを計算した

い時間分だけ繰り返し、計算を実行する。粒子コー

ドの詳細については、C. K. Birdsallの本などを参照

されたい[6]。 

図２ 粒子コードの計算アルゴリズム 

一般に、粒子コードでは、電磁場よりも荷電粒子

の計算が重たいため、粒子のループについて並列化

を行うことで大幅な計算時間の短縮が可能となる。

また、大規模な計算をする場合には、大量のメモリ

が必要となるため、領域分割による並列化を行い、

担当する領域の電磁場と粒子のみを解くようにすれ

ばよい。 

 

3．強磁場下レーザープラズマ相互作用 

3．1 シミュレーション条件 

考える系はシンプルかつ実験に近いものを扱い、

複数回の実行が可能な計算規模（時空間サイズ）に

設定した。レーザーやプラズマのパラメータは実験

に近い条件をなるべく採用した。レーザーは空間的

にはガウシアン、時間的には矩形のプロファイルを

持つものを想定し、最大強度 4×1018 W/cm2、波長 1 

m、スポット径(FWHM)20 m、パルス幅半無限の

直線偏光とした。ターゲットは、レーザーのメイン

パルスに先行する比較的低強度ではあるが長パルス

であるプリパルスによってあらかじめプラズマ化・

膨張しているとして、スケール長 20 mのプリプラ

ズマ付き CHプラズマを置いた（図３）。そして、外

部磁場として x方向に平行磁場を印可した。外部磁

場強度は 0、0.5、1、5 kTと振って 500 fsのシミュ

レーションを実施した。  

 

図３ ターゲットの初期電子密度 

 
3．2 電場、電子密度、磁場における構造形成 

図４に 500 fsにおけるレーザー周期平均電場強度

および電子密度の二次元プロファイルを示す。磁場

なしと 0.5 kTとでは大きな違いはないが、5 kTの場

合には、レーザー場のフィラメント構造が磁力線方

向に直線的に伸びる傾向があることがわかった。 

 

図４ 外部磁場なし(1)と外部磁場(2)0.5 kT、(3)5 kT

の場合の t = 500 fsにおけるレーザー周期で平均し

た電場強度(a)と電子密度(b)の二次元プロファイル 
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これに付随して、電子密度プロファイルにおける構

造も直線的になっている。この現象は外部磁場によ

って磁力線垂直方向の運動が阻害されたことによる

ものであると考えられる。図５に、外部磁場が 0.5

および 5 kTの場合の 500 fsにおけるレーザー周期平

均磁場 Bxの二次元プロファイルを示す。磁場 Bxに

おいても構造形成が起きており、初期に印加した磁

場が強められている箇所と弱められている箇所があ

ることがわかる。この磁場の強弱は、レーザー場お

よび電子密度における構造形成と同じ場所にできて

おり、フィラメント内では、電子の排斥が起こって

おり、磁場が弱くなっていた。そして、フィラメン

ト周辺部では、押し退けられた電子の堆積および磁

場の圧縮が起き、初期磁場よりも強い磁場が生じて

いることがわかった。 

 
図５ 外部磁場が(a)0.5 kTおよび(b)5 kTの場合の t 

= 500 fsにおけるレーザー周期で時間平均した x方

向磁場の二次元プロファイル 

 

3．3高エネルギー電子特性 

x = 4 mの位置（図３参照）を通過する高エネル

ギー電子を観測することで、強磁場下の超高強度レ

ーザープラズマ相互作用によって生成される高エネ

ルギー電子の特性をみた。図６に電子ビームフルー

エンスの y方向分布を示す。新たにシミュレーショ

ンを２つ行ったため、磁場なし、外部磁場 0.1、0.5、

1.0、5.0 kTの５つのケースのデータを載せている。

図よりわかるように、外部磁場が 0.1 kTの場合は、

磁場なしの場合とほとんど結果が変わらないが、0.5 

kT を超えてくると電子ビームが局在化してくる。1 

kTの場合では、磁場による電子ビームのガイド効果

が顕著に現れており、半値全幅で 23 mとレーザー

のスポット径とほぼ同じ値が得られている。さらに

外部磁場が 5 kTの場合には、電子ビームフルーエン

ス分布にも構造がでており、この構造はフィラメン

ト構造を反映していることがわかった。5 kTという

強い外部磁場下では、超高強度レーザーによって生

成される MeV電子でも、そのラーモア半径が 1 m

と非常に小さくなるため、生成点における高エネル

ギー電子の分布がそのまま維持されて伝播している

と考えられる。 

 
図６ ターゲット後方(x = 4 μm )で計測した電子

ビームフルーエンスの外部磁場強度依存性 

 

4．おわりに 

本研究では、強磁場中の超高強度レーザープラズ

マ相互作用の電磁粒子シミュレーションを行い、外

部磁場印加による、電磁場、電子密度における特徴

的な構造形成および顕著な電子ビームガイド効果を

明らかにした。最後に、若手・女性研究者支援萌芽

枠採用により本研究を大きく進展させることができ

ましたことに深く感謝申し上げます。 
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