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In this note we give an alternative construction of the Sullivan finite com-
pletion for a ““good” space by only making use of the scandard techniques in
homotopy theory.

Lct ¢: X—Y be a based map of connected based spaces. We say that ¢
is a m4-finite completion of X if it is the finite completion on 7, and =,-finite
completion of the higher homotopy.

Theorem 0 (Sullivan [8, Theorem 3.1. ii), Corollary of proof]).

Let X be a connected based space with “‘good” homotopy groups. A map
c: X—Y is equivalent to the finite completion if and only if ¢ is a wy-finite com-
pletion.

Sullivan [8; Theorem 3.1. i)] also shows that sufficiently many spaces
have “‘good” homotopy groups. Thus, to construct Sullivan finite comple-
tion, it is enough to construct a my-finite completion.

Since our arguments are quite formal, analogous /-finite construction is
also available for a set / of primes.

1. =,-finite completion and Main Theorem

Let X be a connected based space and let {M},c; be a projective system
of finite mX-modules and = X-(equivariant) homomorphisms. Then we
have a projective system {H"(X, *; M,)},c; and compatible homomorphisms
H"(X, *; lim M;) > H"(X, *; M,), where H*(X, *; M;), H'(X, *; lim M) are
n-th cohomology groups with twisted coefficients M;, lim M; respectively.

Theorem 1.1. We have a natural isomorphism
H"(X, *; lim M) =1lim H*(X, *; M;).

Following [8], we say that # is a good group (resp. a weakly good group) if
H"(m; M) == colim H"(my; M)=H"(#; M)
(resp. H™(m; M) = H"(#; M))
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for the system of finite quotients {z,} of 7, each finite z-module M and all #.
We say that G is a good z-module (resp. a weakly good z-module) if

H"(G; A)=colim H"(G4; A) = H"(lim G,; A)<+ o0

(resp. H(G; A)=H"(lim G,; A)<+ )
for the system of finite z-quotients {G,}, all finite coefficient groups A and
all n. A connected based space X is said to have good (resp. weakly good)

homotopy groups if 7, X is good (resp. weakly good) and = X-modules =, X
are all good (resp. weakly good).

RemaARk 1. If G is a good z-module, G=G, (=lim G,).

REMARK 2. Sullivan does not use the finiteness condition H"(z; M)<<-- oo
(see [8]), so we omit it.

ReEMARK 3. We do not require that {z,}, {G,} have essentially countable
index sets. These conditions are inessential in the proof of Theorem 3.1 of [8].

Let X be a space with weakly good homotopy groups, and let ¢: X—Y
be a zy-finite completion. It is easy to see that ¢*: H(Y; M)=~H"(X; M)
(and therefore ¢*: H"(Y *; M)=H"(X, *; M)) for every finite 7,X-module M
by making use of Postnikov decompositions and Serre spectral sequences. Let
{M} be a projective system of finite 7,X-modules and 7z, X-homomorphisms.
It is easy to see that the canonical extensions n;jX'—>Aut M, of m X-actions
m X — Aut M; make {M,} a projective system of finite n/l\X-modules and n/l\X-
homomorphisms. Theorem 1.1 and the commutative diagram

sk
H™(Y, *; lim M,) —— H"(X, *; lim M)

lim H"(Y, *; M,.)c—*>limH”(X, *; M)
lead to
Corollary 1.2 (Technical Lemma). We have an isomorphism
H"(Y; lim M)=H"(X; lim M) .

Corollary 1.3 (Main Theorem). A space with weakly good (resp. good)
homotopy groups has a my-finite completion (resp. the Sullivan finite completion).

Proof. Let X be a connected based space with weakly good homotopy
groups, and let

v — X(n)P—(nZ X(n—1)— - = X(1) - *
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be its Postnikov decomposition, so that p(z) is a fibration with k-invariant
k(n)e H""(X(n—1); 7, X)=[X(n—1), Ly (7,X, n+1)]7.x (see [S]). Assume
that we have a zy-finite completion ¢(n—1): X(n—1)—Y(n—1). By Technical
N\
Lemma we have a unique extension k(r) in the diagram
¢(n—1
Xp—1) -, Y1)
[ |
Ly (7, X, n+1) —> L§ (7, X L), n+1).

Thus we have Y(n) and ¢(n): X(n)—Y(n) with desired properties. Induc-
tively we obtain a z-finite completion, which is the finite completion of X by
Theorem 0 if X has good homotopy groups. This completes the proof.

2. Proof of Theorem 1.1

In this section we construct a spectral sequence
(2.1) lim® H* (X, *; M,) = H*¢")(X, %; lim M) .

Thus, to prove Theorem 1.1, it is enough to prove that lim* H* (X, %; M;)=0,
§>0. So we must consiruct a second spectral sequence which is analogous
one due to Araki-Yosimura [1].

(22) lim* H*!(Xo, %; M) = H* (X, %; M)

where {X,} is the diagram of finite connected pointed subspaces of X, M is
a finite 7-X-module. Since H"(X,, *; M) are all finite groups by definition
(see [5]), we have lim’ H™(X,, *; M)=0, s>0, and therefore H™(X, %; M)==
lim H"(X,, *; M), so that we can give H™(X, *; M) a compact Hausdorff
topology. For the projective system {H™(X, *; M)} of compact Hausdorff
abelian groups and continuous homomorphlsms lim* H™(X, %; M;)=0, s>0,
therefore Theorem 1.1 is proved.

To construct spectral sequences (2.1), (2.2) we use simplicial notations in
[3; Part II], [4] and [6].

Let X be an one vertexed fibrant simplicial set and let {M,} be a projective
system of finite =z, X-modules. Put K(i)=K(M;, n), K(v)= K(lim M;, n),
L(z)zK(z)}meX and L(w):K(w)ﬂXszlX. We have canonical fibrations

1 1

0(): L(i)— Wm X, 6(w): L(o)—> WrX, and thus we obtain the fibrations
0(i)x: homy (X, L(7))—homy (X, Wan) O(w)x: homy (X, L(w))—homy (X,
W, X), where homy(X, Y) is the pointed simplicial function space (see [3;
Ch. V III, 4]). Since X is an one vertexed fibrant simplicial set, we have
the canonical map 6: X— Wr, X defined by the twisting function 7(x)=
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[0,0;+++0,x], x€X, (see [5]). Put F(i)=0(i)5'0, F(0)=0(w)5x'0, where 0 is
regarded as a vertex of homy(X,Wr,X). We can define abelian group
siructures on F(i), and F(w), for any k by fibrewise additions (see [5]), and
these group structures commute with the simplicial structures. So that we
obtain a projective system of simplicial abelian groups {F(i)};c; and compatible
simplicial abelian group homomorphisms p(i): F(w)— F(7). By Bousfied-Kan
[3; Ch. XI, 7.1] we define the spectral sequence

(2.3) lim’® 7,F(i) = m;_,holim F(5) .

Examining the functors IT*, Tot, and Tot (see [3; Ch. X, XI]), we find
that the tower of fibrations

holim F(z) --+— Tot, [T*F(i) - Tot,_,JI*F(s) —---— Tot_, [T*F(7)
is a tower of simplicial abelian groups. So that we have

Proposition 2.4. The spectral sequence (2.3) is that of abelian groups.

Let {F(w)};<; be the constant projective system. Since / is a directed set,
the opposite category is a “left filtering” and the trivial map I— is left cofinal
(see [3; Ch.XI, 9.3]), which induces the homomorphism of simplicial abelian
groups F(w)—holim F(w) and is a homotopy equivalence (see [3; Ch. XI,
9.1,9.2 and 9.4]). Canonical homomorphisms p(7)’s induce the homomorphism
of simplicial abelian groups holim F(w)—holim F(7). By Fibration lemma
(see [3; Ch. XI, 5.5]) and right adjointness of the functor holim we have the
maps of fibrations

holim F(w) — holim hom(X, L()) — holim hom(X, Wz, X)
y I
holim F(¢) — holim homy(X, L(z)) — holim homy(X, W=, X) .

Since holim homy( , )=homy(, holim ) (see [3; Ch. XI. 7.6]) the above diagram
is obtained by applying homy(X, ) to the following diagram (of fibrations)

holim L(w) — holim W=, X

V I
holim L(i) — holim WX

To prove that holim F(w)— holim F(z) is a weak homotopy equivalence it is
enough to prove that the corresponding map of the fibres of the above diagram,
holim K(w)— holim K(7), is a (weak) homo‘opy equivalence. It is proved by
routine spectral sequence arguments (see [3; Ch. XI, 7.1 and 7.2]). Thus we
have

Proposition 2.5. The canonical homomorphism F(w)— holim F(7) is a weak
homotopy equivalence.
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It is easy to see that mF(1)=H"(X, %: M,), mF(0)=H"(X, *; lim M)
(see [5]). Put @=i or ». It remains to consider what z,F(a) is, or in other
words, what Q*F(a) is.
We have the canonical isomorphism ¢: hom(S* hom(X, L(a))—
hom (X, hom(S*, L(a)) defined by
d(f)x, @), b) = f(y, b*a)(b*x, (0, 1, -, p)  for
f€hom(S*, hom(X, L(«))),, x€X,, a€A[n],, yE S} and beA[g],, where
hom(, )=homy( IIx, ). The inverse 4 is also defined by
V()(, a)x, b) = g(x, b*a)(b*y, (0, 1, -+, p))  for
g €hom(X, hom(S* L(a))),, yES;, ac An],, x€ X, and beAlq],. Let
N(a) (Chom(S*, L(a))) be the simplicial set defined by
u -
N(a), = (ul(S*x Algl, *x Alg]) — (L(a), WmX)

p, 6@
Alq] — WmX
with the usual simplicial structure. We have the map gq(a): N(a)—> Wr,X,
g(a)(w)=0(a)(u(*, (0, 1, -+-, ¢))) which induces the map g(a)x: homy(X, N(a))—
hom(X, WmX). Then we have the following

Lemma 2.6. ¢(Q*F(a))=q(a)%'6.

Lemma 2.7. We have an isomorphism Q”K(a) >< WmX — N(a) as a map
of spaces over Wr,X.

By these lemmas we have
Proposition 2.8. 7, F(a)=H"*(X, %; M,).

Thus by Proposition 2.4, 2.5, 2.8 and the spectral sequence (2.3) we can
construct the first spectral sequence (2.1).

Proof of Lemma 2.6. Straightforward, routine calculations complete the
proof.

Proof of Lemma 2.7. Define \: Q"K(a) >< Wrle — N(a) and p: N(a)—
Q”K(oc) >< Wan by

Mk, 2)(y, @) = (mX)@(0, a)k(y, a) for
(h, w) € (@K(@) x WmX), and (3, Q)= (3, (@ @, -, a,) €(S* x Alg)),

() = (B, O(a)(u(*, (0, 1, -+, ¢))) and
h'(y, @) = 7(m: X)(O(a)(u(*, (0, a)))y, a) for
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u=(l, 0(a)(u(*, )))EN(a), and (y, a)E(S* X A[g]),, where all the bundles are
written by T.C.P.’s (i.e. L(a)=K(«) X W, X, QK (cr) XXWmX =0*K(a) X
T 7!1 ] ,tl

(X
W, X). These maps are all well defined, simplicial and inverse to each other.
This completes the proof.

We next construct the second spectral sequence (2.2). By making use of
[3; Ch. XII, Corollary 3.6] we have the map hocolim X,— colim X,=X which
is a weak equivalence. Let F’'(a) (resp. F'(»)) be the fibre of the fibration
homy(X,, L)—>hom(X,, W= X) with base point g,x,: X,—X—>W=.X (resp.
homy (X, L)—homy(X, WX )), where L=Lg, (M, n). Since homy(hocolim, )
=holim homy( , ) (see [3; Ch. XII, Proposition 4.1]) we have the following
diagram of fibrations

holim F'(a)
V
holim homy(X,, L) = homy(hocolim X,, L) <  homy(X, L)
y

F ~  Fl(o)

R

holim homy(X,, WmX) = homy(hocolim X, W X ) <= homy(X, Wr, X )
which leads to

Proposition 2.9. The canonical homomorphism (of simplicial abelian groups)
F’(w)—holim F'(at) is a weak homotopy equivalence.

By Proposition 2.8, 2.9 and the spectral sequence (2.3) we can construct
the spectral sequence (2.2).
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