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格子ゲージ理論におけるエンタングルメント・エントロピー

中川義之
新潟大学大学院自然科学研究科

1 はじめに
量子もつれは量子多体系が示す顕著な性質である。

量子もつれを示す有名な例はスピン一重項をつくるス
ピン 1/2の二粒子からなる量子力学系である。これは
Einstein-Podolsky-RosenによるEPRパラドックスの
思考実験の説明にもよく用いられる。この系の量子状
態は、それぞれの粒子からなる部分系の状態のテンソ
ル積としては表すことができず、エンタングル状態と
呼ばれる。この量子もつれの度合いを測る量がエンタ
ングルメント・エントロピーであり、系の基底状態が
量子的にどれだけ複雑かを表す。
近年、エンタングルメント・エントロピーは物性物

理や量子コンピューティング、量子情報など様々な分
野で盛んに研究されている [1]。その中でエンタングル
メント・エントロピーが量子系の秩序変数としての役
割を果たすことが明らかにされてきた。例えばイジン
グ模型でのエンタングルメント・エントロピーは、臨
界点で発散するが非臨界点で飽和するといった振る舞
いを示す。近年では古典的な秩序変数で特徴づけるこ
とのできないエキゾチックな量子相も発見されており、
エンタングルメント・エントロピーの重要性が指摘さ
れている。
強い相互作用の基礎理論である量子色力学（QCD）

でのエンタングルメント・エントロピーは特に興味深
い。QCDは高エネルギー（近距離）で相互作用が弱
くなる漸近自由なゲージ理論であり、高エネルギー現
象は摂動論を用いることでQCDの基本的自由度であ
るクォークとグルーオンの相互作用として良く記述さ
れることが知られている。一方低エネルギー（遠距離）
ではクォークやグルーオンは陽子や中性子といったハ
ドロン内部に閉じ込められており、ハドロンを有効自
由度として考えることで低エネルギー現象をうまく説
明することができる。これはQCDの世界では距離の
スケールが変わることで有効自由度がクォーク・グルー
オンからハドロンへと変化することを意味している。
この有効自由度の変化をエンタングルメント・エント
ロピーの観点から理解しようとするのがこの研究の動
機である。

ゲージ理論でのエンタングルメント・エントロピー
の計算は、ゲージ／重力対応を用いた研究で大きな進
展があった [2, 3]。ゲージ／重力対応というのは、ゲー
ジ理論と、次元の異なる空間上での重力理論との間に
ある等価性（双対性）であり、近年活発に研究が進め
られている。この等価性を用いることで、計算の難し
い強結合ゲージ理論における物理量を重力理論の立場
から計算することが可能になる。QCDと双対な重力理
論はまだ発見されていないが、QCDと良く似た性質を
もつ理論において、エンタングルメント・エントロピー
が非解析的な振る舞いをすることが示された [4, 5]。こ
れはある臨界距離を境に系の有効自由度が変化するこ
とを意味する。ではQCDでも同じように臨界距離の
ようなものが存在して、系の自由度がそこで突然変化
するのだろうか。
本稿では大阪大学サイバーメディアセンター及び核

物理研究センターのスーパーコンピュータNEC-SXを
用いて得られた格子ゲージ理論におけるエンタングル
メント・エントロピーに関する研究を紹介する1。

2 エンタングルメント・エントロピー
純粋状態 |Ψ〉に対するエンタングルメント・エント

ロピーは以下のように定義される。図 1のようにまず
全系を二つの部分系（領域）AとBに分ける。ここで
lを部分系Aの x方向のサイズとする。全系の密度行
列は ρ = |Ψ〉〈Ψ|で与えられる。この密度行列に対し
て領域Bの自由度に関してトレースをとった縮約密度
行列

ρA = TrBρ = TrB|Ψ〉〈Ψ| (1)

を考える。これは領域Aの自由度しか観測することが
できない観測者にとっての密度行列になる。ここで注
意すべきなのは、|Ψ〉は純粋状態であったにも関わら
ず、ρAは混合状態の密度行列になっている点である。
エンタングルメント・エントロピーは縮約密度行列の

1SU(2)での計算については [6]、Migdal-Kadanoff近似を用い
た SU(N)での計算については [7] を参照。
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図 1: エンタングルメント・エントロピーは全系を仮
想的に部分系に分割したときの量子相関として定義さ
れる。lは部分系Aの x方向の長さであり、y、z軸は
紙面と垂直な方向になっている。

フォンノイマン・エントロピーとして定義される

SA = −TrρA ln ρA. (2)

ρAにはトレースアウトされた Bの量子自由度の情報
が入っており、SAは領域 Aしか観測できない場合に
生じる曖昧さを測る量となっている。エンタングルメ
ント・エントロピーがもつ特徴的な性質は文献 [8]に
まとめられている。

3 レプリカトリック

Z(l, ) = 

Z = 

… …

AB

t

x

図 2: αカットの入った系の模式図。領域 A(B)では
αβ(β)の間隔で周期的境界条件が課される。

エンタングルメント・エントロピーを計算するため
にここではレプリカトリックと呼ばれる方法を用いる。
導出の詳細は文献 [9]にゆずることとし、ここでは要

点を述べる。式 (2)で定義されるエンタングルメント・
エントロピーはSA = − limα→1 ∂/∂α lnTrAρ

α
A という

形に表すことができる。ここで系のコピー（レプリカ）
を α個用意し、時間方向にそれらをつなぎ合わせたの
ような変わった系を考える（図 2）。領域 Aにある自
由度は αβの間隔で時間方向に周期的境界条件が課さ
れるのに対し、Bにある自由度は βの周期の境界条件
が課される。β = aNt（aは格子間隔、Ntは時間方向
の格子点の数）は時間方向の格子の大きさである。こ
の系の分配関数を Z(l, α)とすると、縮約密度行列の
α乗のトレースは

TrραA =
Z(l, α)

Zα
(3)

と表すことができる。ここで Z = Z(α = 1)は図 1の
ような我々が考えている系の分配関数である。すると
エンタングルメント・エントロピーは

SA(l) = − lim
α→1

∂

∂α
ln

(
Z(l, α)

Zα

)
. (4)

で与えられる。一般的にエンタングルメント・エント
ロピーは紫外カットオフ（格子間隔の逆数）とともに
発散する項を含むため、格子状で計算する場合は lで
微分をとった量を考える方が都合が良い；

∂SA(l)

dl
= lim
α→1

∂

∂l

∂

∂α
F [l, α]. (5)

ここで F [l, α] = − lnZ(l, α)は αカットの入った系の
自由エネルギーである。このようにレプリカトリック
を用いると、図 2で模式的に描かれるようなα個のカッ
トをもった系の自由エネルギーを計算することで、エ
ンタングルメント・エントロピーを得ることができる。

4 格子QCDでのエンタングルメント・
エントロピーの評価

格子 QCDシミュレーションでは、式 (5)に含まれ
る微分は有限差分に置き換わり、

lim
α→1

∂

∂l

∂

∂α
F [A,α] → ∂

∂l
lim
α→1

(F [l, α+ 1]− F [l, α])

→ F [l + a, α = 2]− F [l, α = 2]

a
(6)

で見積もることになる。F [l, α = 1]は lに依存しない
ために ∂F [l, α = 1]/∂lの項は落ちる。あとは式 (6)の
中の自由エネルギーの差を計算すればいい。これは格
子QCDでは、二つの自由エネルギー F [l+ a, α = 2]、
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F [l, α = 2]に対応するような作用 Sl[U ]と Sl+a[U ]を
考えることで求めることができる [10, 11]。二つの作
用を補完する作用 Sint = (1 − γ)Sl[U ] + γSl+a[U ]で
ゲージ配位をアップデートすると、

F [l + a, α = 2]− F [l, α = 2]

= −
∫ 1

0
dγ

∂

∂γ
lnZ(l, γ)

=

∫ 1

0
dγ 〈Sl+a[U ]− Sl[U ]〉γ . (7)

というように、作用の差の期待値を補完変数で積分す
ることで求めることができる。ここで 〈·〉γは Sintを作
用として計算したときのモンテカルロ平均である。
ここでは式 (7)の作用の差を γ = 0から 1まで 0.1

刻みで評価し、拡張シンプソン法を用いて積分を評価
した。

5 シミュレーションの詳細と結果
本シミュレーションではウィルソンプラケット作用

を採用し、擬熱浴法を用いてゲージ配位を生成した。
そして 5000スウィープを熱化のために捨て、100ス
ウィープごとに式 (7)を計算した。
この計算では γのステップ数に加え、格子結合定数、

lを変えながらシミュレーションする必要がある。本
シミュレーションでは γ のステップ数が 11点、格子
結合定数を β = 5.70から 6.00まで 5点とさらにそれ
ぞれの β で l = 1から l = 5 − 6まで動かしている2。
また格子体積も 124と 164で計算している。このよう
に多くのパラメータを動かして計算する必要があるた
め、SXでは γ のステップ数に対してパラメータ並列
計算を行い、さらに βと lを変えた計算を異なるジョ
ブとして走らせた。
図 3は格子QCDシミュレーションで得られたゼロ

温度でのエンタングルメントエントロピー SA(l)の l

微分を表している。領域 Aと Bの境界面の面積 |∂A|
で規格化されている。まず異なる体積（124と 164）の
結果が統計誤差の範囲内で一致しているのがわかる。
これはエンタングルメント・エントロピーが二つの領
域の境界面の面積に比例すること、つまり面積則にし
たがうことを示している。熱的エントロピーが一般的
に体積則に従うのと対照的である。
図からわかるように、エンタングルメント・エント

ロピーの l微分は lとともに小さくなっている。ゲー
ジ／重力対応を用いることで、いくつかの強結合ゲー

2ここの β は格子結合定数であり、レプリカ法の説明のときに
用いた β = aNt とは異なる。図 3での β も格子結合定数である。
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図 3: （上図）ゼロ温度でのエンタングルメント・エン
トロピーの l微分。領域 Aと B の境界面の面積 |∂A|
で規格化されている。破線はベキ関数 c/ldでフィット
して得られた結果である。フィット値はそれぞれ c =

0.149(48)、d = 3.06(20)である。（下図）上図のゼロ
付近をズームアップしたもの。

ジ理論ではこの減少がある臨界距離 l∗まで続き、l∗で
不連続になって l > l∗ でゼロになることが示された
[4, 5]。しかし我々のシミュレーションではこのような
非解析的な変化は見られなかった。∂SA/∂l は l の増
加とともに急激に減少するために、lが大きいところ
ではシグナル・ノイズ比が小さくなる。そのためゲー
ジ／重力対応で見られたような臨界距離が存在する可
能性を完全に排除することはできないが、少なくとも
0.4− 0.5[fm]以下にそのような臨界距離が存在しない
ことは結果から見て取れる。これは距離スケールの変
化に伴うクォーク・グルーオンからハドロンへの有効自
由度の変化が、相転移的に変化するのではなく緩やか
に一方から他方へと変わっていくことを示唆している。
lが小さい領域ではエンタングルメント・エントロ

ピーが 1/l2 でスケールすること、つまり ∂SA/∂l は
1/l3で小さくなることが次元解析から期待される。こ
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の振る舞いを確かめるために、ベキ関数∂SA/∂l = c/ld

でシミュレーション結果をフィットし、c = 0.149(48)、
d = 3.06(20) (χ2/NDF = 0.192)というフィット値を
得た。これは次元解析から期待される d = 3と良く一
致している。

6 まとめ
本稿では大阪大学サイバーメディアセンターのスー

パーコンピュータNEC-SXを用いて得られた格子ゲー
ジ理論におけるエンタングルメント・エントロピーに
関する研究を紹介した。
サイバーメディアセンター、および核物理研究

センターにおけるスーパーコンピュータ NEC-SX

は比較的自由に利用することが可能であり、数
値計算を行う研究者にとって極めて有用である。
サイバーメディアセンターの大規模計算機シス
テムのホームページ（http://www.hpc.cmc.osaka-

u.ac.jp/j/service/sx.html）にはログイン方法からバ
ッチリクエスト用のスクリプトの作成法、リアル
タイムでのバッチジョブの情報など、計算機の利
用に必要な情報が充実している。さらにベクト
ル演算機である NEC-SX でプログラムを高速化
させるためのベクトル化・並列化に関する資料
も、サイバーメディアセンター大規模計算機シス
テム・ポータルサイト（http://www.hpc.cmc.osaka-

u.ac.jp/j/service/portal.html）に集められている。
スーパーコンピュータの利用に関する講習会も定期的
に開かれているため、これらは新規ユーザーにとって
もフレンドリーだと思われる。ただ一方でそうしたと
ころで得られるはずの情報が見つけられないという話
も聞くため、スーパーコンピュータの利用に際して必
要な情報がどこで得られるかということについて周知
を強化することで、新規を含めたユーザーの利用環境
がより向上されるのではないかと考えている。
最後に、スーパーコンピュータの管理、運営、メン

テナンスに関わられている多くの方々に感謝する。
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