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1. Introduction

Let Γ be a discrete groups. A Γ-CW-complex X is said to be Γ-finite if it satisfies
the following two conditions:

1. For each cell σ of X, the isotropy subgroup Γσ of σ is of finite order.

2. The orbit space X/Γ is a finite complex.

In other words, X is Γ-finite if the action of Γ on X is proper and cocompact. For a
Γ-finite Γ-CW-complex X, define the equivarίant Euler characteristic e(Γ, X) by

where 8 is a set of representatives of Γ-orbits of cells of X and |Γ σ | is the order of
Γσ. We agree e(Γ, X] = 0 when X — 0. The equivariant Euler characteristic and its
variants appear in various contexts of mathematics. See [3, 4, 9, 11] for instance. In
particular, when X is a manifold, the orbit space X/Γ can be regarded as an orbifold
and e(Γ, X) is the orbifold Euler characteristic of X/Γ in the sense of [11].

In this paper, we prove the formula expressing the Euler characteristic of the orbit
space of a Γ-finite Γ-CW-complex in terms of equivariant Euler characteristics. More
precisely, let X be a Γ-finite Γ-CW-complex. For each 7 G Γ, the centralizer Cr(7)
acts on the fixed point set XΊ '. In this way XΊ is naturally a Cr(7)-finite Cr(7)-CW-
complex and hence e(Cγ(^}^XΊ) is defined for each 7 G Γ. Our result is:

Theorem 1. Let Γ be a discrete group, and X a Γ-finite Γ-CW-complex. Then

(1)
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where .F(Γ) is a set of representatives of conjugacy classes of elements of finite order

iπΓ.

Note that there are finitely many 7*5 in ^(Γ) with XΊ φ 0 and hence the summation

in (1) makes sense.

In case a Γ-finite Γ-CW-complex X is a smooth Γ-manifold, then XΊ is a sub-

manifold of X for each 7 G Γ of finite order, so that the terms e(Cp(7) ,^ 7 ) in (1)

can be regarded as orbifold Euler characteristics of orbifolds XΊ /Cr(7). Thus Theo-

rem 1 gives the expression of the Euler characteristic of X/Γ in terms of orbifold Euler

characteristics of XΊ /Cr(7).

When Γ is a finite group, a Γ-finite Γ-CW-complex is simply a finite Γ-CW-

complex, and Theorem 1 implies

(2)

Thus Theorem 1 is a generalization of the well-known equation (2) for finite group

actions. For the direct proof of the equation (2), see [6, p. 225].

If Γ is virtually torsion-free and X is a Γ-finite Γ-CW-complex such that XΊ is

nonempty and Q-acyclic for every element 7 G Γ of finite order, then e(Cr(7),-X"7)

coincides with the Euler characteristic χ(Cr(7)) of the group Cr(7) for every 7 G Γ

of finite order, and Theorem 1 reduces to the following formula due to K. S. Brown

(cf. [5, p. 261]):

The rest of this paper is organized as follows. In §2, we introduce Hattori-Stallings

ranks of finitely generated projective QΓ-modules, where QΓ denotes the rational group

algebra of Γ.

When X is a Γ-finite Γ-CW-complex, its cellular chain groups Ci(X,Q) are finitely

generated projective QΓ-modules. In §3, we will see that e(Cr(7),-X"7) can be ex-

pressed in terms of Hattori-Stallings ranks of cellular chain groups.

In §4, we will prove Theorem 1. The proof is done by the spectral sequence

which converges to the homology of Γ with coefficients in the cellular chain complex

£7*(JΓ, Q), together with properties of Hattori-Stallings ranks which will be discussed

in §2 and §3.

In the final section §5, we will consider the two special cases where (i) Γ is a

finite group or (ii) Γ is virtually torsion-free, and XΊ is nonempty and Q-acyclic for

every 7 G Γ of finite order, both of which are mentioned above.

Throughout this paper, we emply the following conventions unless otherwise stated:

Γ is a discrete group and QΓ is its rational group algebra. A module over QΓ is un-

derstood to be a left QΓ-module.
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2. The Hattori-Stallings rank

The Hattori-Stallings rank was introduced by A. Hattori [8] and J. Stallings [10]
and was studied by H. Bass in detail [1]. The reader should refer to [2] and [5, Chapter
IX] for further detail of the Hattori-Stallings rank.

Let QΓ be the rational group algebra of Γ. Define [QΓ, QΓ] be the additive sub-
group of QΓ generated by aβ - βa (α,/3 G QΓ). Set T(QΓ) = QΓ/[QΓ,QΓ]. It
is easy to see that T(QΓ) is isomorphic to the Q-linear space spaned by the set of
conjugacy classes of elements of Γ, i.e.,

(3) T ( Q Γ ) ^ ® Q ( 7 ),

where C(Γ) is a set of representatives of conjugacy classes of elements of Γ and (7) is
the conjugacy class of 7.

Let π : QΓ -» T(QΓ) be the natural projection. Under the identification (3), π

assigns 1 (7) G T(QΓ) to 7 £ QΓ.
Let P be a finitely generated projective QΓ-module. Then P is a direct summand

of a finitely generated free QΓ-module F. Choose such F and let p : F — >• P be the
natural projection and i : P °-̂  F the inclusion. By fixing a basis of F, the composite
ί o p can be identified with a square matrix M over QΓ.

DEFINITION. Under these assumptions, the Hattorί-Stallίngs rank r?(P) of a
finitely generated projective QΓ-module P is defined by

rr(P) - π(trM) G T(QΓ),

where trM is the trace of M.

Note that ?τ(P) is well-defined, i.e., it is independent of various choices made. Under
the identification (3), denote by rγ(P)(^) the coefficient of (7) in nr(P).

We recall some properties of the Hattori-Stallings rank, which will be used later.

Proposition 2 (cf. [1, §2 (2.5)]). If P\ and P 2 are finitely generated projective

QΓ '-modules, then

Proposition 3 (cf. [1, §6 (6.3)]). Let Γ be a subgroup of finite index ofY, Pa

finitely generated projective QΓ '-module. Regarding P as a finitely generated projective

QΓ' -modules by the restriction of scalar s, one has
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for all 7 G Γ', where (Cr(7),Cr'(7)) is the index ofCrf("f) in Cr(7).

Let / : Γi — > Γ 2 be a group homomorphism. Let P be a finitely generated

projective QΓi -module. Then QΓ2 ®QΓI P is a finitely generated projective QΓ2-

modules, where QΓ2 is regarded as a right QΓi -module via /. Let T(f) : T(QΓι) -)•

T(QΓ 2) be the homomorphism induced by /.

Proposition 4 (cf. [1, §2 (2.9)]). Under these assumptions, one has

In case Γ is a finite group, Hattori-Stallings ranks can be determined by the char-

acter:

Proposition 5 (cf. [1, §5 (5.8)]). Let Γ be a finite group. Let V be a QΓ-module

which is finite dimensional over Q. Then V is finitely generated and projective, and

one has

where \ : Γ —>• Q is the character of V.

3. Hattori-Stallings ranks and equivariant Euler characteristics

Now we consider the equivariant Euler characteristic e(Γ, X). First we invoke the

following elementary lemma, which may be well-known.

Lemma 6. Let X be a T-finite T-CW-complex. Then its cellular chain group

d (X) Q) is a finitely generated projective QΓ-module.

Proof. d(X,Q) has a direct sum decomposition as a QΓ-module:

(4) C i ( X , Q ) ^ ® Q Γ ® Q r σ Q ,

where σ ranges representatives of Γ-orbits of z-cells of X, Γ σ is the isotropy subgroup

of σ, Q is regarded as a left QΓσ-module with the trivial action of Γ σ , and QΓ is

regarded naturally as a right QΓσ-module. Since X is Γ-finite, each Γ σ is a finite sub-

group of Γ, which implies that Q is always finitely generated projective QΓσ-module

(cf. Proposition 5). Thus QΓ ®Qrσ Q is a finitely generated projective QΓ-module. As

the number of Γ-orbits of cells of X is finite, so is the number of direct summands in

(4), which yields the lemma. Π

By Lemma 6, the Hattori-Stallings rank of d(X,Q) can be defined.
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Lemma 7. Let X be a Y-CW-complex. Then

where σ ranges representatives of T-orbits of i-cells of X.

Proof. We have

Q I (1) by (4)
J

(g)QΓσ Q)(l) by Proposition 2

= y^ T(i)(rΓσ (Q))(l) by Proposition 4,

where σ ranges representatives of Γ-orbits of z-cells of X and T(ϊ) : T(QΓ σ ) ->
T(QΓ) is the map induced by the inclusion i : Γ σ <-> Γ. From Proposition 5 we
conclude

proving the lemma.

By virtue of Lemma 7, we have

(5) e(Γ,X) = Σ(
i

Together with the result of K. S. Brown [4], we obtain the relation between the Hattori-

Stallings rank of Ci(X,Q) and e(Cγ(^),XΊ) as follows:

Proposition 8. Let X be a Γ-finite Γ-CW-complex. Then

(6) e(CΓ(7

ev^ry 7 G Γ.

Proof. A direct consequence of the equality (5) and [4, Theorem 3.1 (iii)]. Π
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4. Proof of Theorem 1

Let X be a Γ-finite Γ-CW-complex. Let H*(Γ,C*(X,Q)) be the homology of Γ

with coefficients in the cellular chain complex C*(X,Q), which is isomorphic to the

Borel homology (equivariant homology) fff(X,Q) (cf. [5, Chapter VII]). Since the

isotropy subgroup of every cell of X is finite, the Borel homology of X is isomorphic

to the rational homology of the orbit space:

(7) tf*(Γ,C*(X,Q)) * H(X,Q) = £

Lemma 9. Let X be a Y-finite Γ-CW-complex. Then

(- ! )* dimQ fΓί(Γ, C,(X, Q)) - Σ ( - l ) < dimQ Q ® Q Γ Ci(X, Q).

Proof. Consider the spectral sequence

(cf. [5, §VΠ.5 and §VΠ.7]). Since Ci(X,Q) is a projective QΓ-module for all i, we

have

p i ^ r ( * , Q ) j = 0
< J~

As dimQ Q (g)Qr Ci(X, Q) < oo for all z, we obtain the desired equation.

Now we prove Theorem 1. By Proposition 4 (take Γ 2 to be the trivial subgroup),

(8)

Hence

χ(X/Γ) = ^ ( - l ) M i m Q ^ ( Γ , α ( J ί , Q ) ) by (7)

, Q) by Lemma 9

by (8)



EULER CHARATERISTICS OF ORBIT SPACES 789

Σ
7€C(Γ) i /

by Proposition 8.

For an element 7 of infinite order, we have XΊ = 0 and hence e(Cγ(^)^XΊ) = 0,
which proves Theorem 1.

5. Remarks

5.1. Finite group actions

Suppose that Γ is a finite group. Let X be a finite Γ-complex. By Proposition 5,
we have

By Theorem 1, we have

= X(XΊ] = — V | Γ |

|Γ|
' '

7€C(Γ)

Since |Γ |/ |Cr(τ) | 1S the cardinality of the conjugacy class (7), we obtain

Hence Theorem 1 implies the well-known equality for finite group actions.

5.2. Euler characteristics of groups

Suppose that Γ is a group of finite homological type, then one can define its Euler

characteristic χ(Γ) in the sense of C. T. C. Wall [12]. See [5, Chapter IX] for relevant

definitons. Suppose in addition the centralizer Cr(7) is of finite homological type

for every 7 G Γ of finite order. Under these assumptions, K. S. Brown obtained the

following formula:

(9) χ(Γ)= χ(CH7)),
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where χ(Γ) is the naive Euler characteristic of Γ defined by χ(Γ) = J^(—l)*diπiQ

Hi(Γ,Q) (cf. [5, p. 261]). This formula was used by J. Harer and D. Zagier in the

computation of the Euler characteristic of the moduli space of curves [7].

We will give a relation between the equation (9) and Theorem 1. Let Γ be a

discrete group and X a Γ-finite Γ-CW complex such that XΊ is nonempty and Q-

acyclic for every 7 e Γ of finite order. If Γ is virtually torsion-free, then Cr(7) i s of

finite homological type for every 7 G Γ of finite order (including 7 = 1), and χ(Cp(7))

coincides with e(Cγ(^),XΊ) (cf. [4, pp. 111-112]). In this case the equation (1) in

Theorem 1 reduces to the equation (9), since

ff*(Γ,Q) * H?(X,Q) * H*(X/T,Q).

However, we claim the equation (9) for this special case can be deduced without

the use of the spectral sequence appeared in the proof of Lemma 9. To see this, observe

ε : C* (X, Q) —>• Q is a protective resolution of Q over QΓ, where Q is regarded as a

QΓ-module with the trivial Γ-action and ε is the augmentation. Hence

i(X, Q)).

Now the claim follows from this together with (8) and Proposition 8.
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