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1. Introduction

Let I be a discrete groups. A I'-CW-complex X is said to be I'-finite if it satisfies
the following two conditions:

1. For each cell o of X, the isotropy subgroup I', of o is of finite order.
2. The orbit space X/T" is a finite complex.

In other words, X is I'-finite if the action of I' on X is proper and cocompact. For a
I'-finite I'-CW-complex X, define the equivariant Euler characteristic e(T', X) by

1

C(F,X) = Z(_l)dima IF0|

o€€

€Q

where £ is a set of representatives of I'-orbits of cells of X and |T',| is the order of
[',. We agree e(I', X) = 0 when X = (. The equivariant Euler characteristic and its
variants appear in various contexts of mathematics. See [3, 4, 9, 11] for instance. In
particular, when X is a manifold, the orbit space X/T" can be regarded as an orbifold
and e(T", X) is the orbifold Euler characteristic of X/T" in the sense of [11].

In this paper, we prove the formula expressing the Euler characteristic of the orbit
space of a I'-finite I'-CW-complex in terms of equivariant Euler characteristics. More
precisely, let X be a I-finite I'-CW-complex. For each v € T\, the centralizer Cr(vy)
acts on the fixed point set X”. In this way X7 is naturally a Cr(y)-finite Cr(~)-CW-
complex and hence e(Cr(7), X?) is defined for each y € I'. Our result is:

Theorem 1. Let I' be a discrete group, and X a I'-finite I'-CW-complex. Then

(1 X(X/T)= Y eCr(y),X"),

v€F(T)
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784 T. AKITA

where F(T') is a set of representatives of conjugacy classes of elements of finite order
inT.

Note that there are finitely many +’s in F(T") with X7 # () and hence the summation
in (1) makes sense.

In case a I'-finite '-CW-complex X is a smooth I'-manifold, then X” is a sub-
manifold of X for each v € T" of finite order, so that the terms e(Cr(y), X”) in (1)
can be regarded as orbifold Euler characteristics of orbifolds X7/Cr(7y). Thus Theo-
rem 1 gives the expression of the Euler characteristic of X/T" in terms of orbifold Euler
characteristics of X7/Cr(y).

When T is a finite group, a I'-finite '-CW-complex is simply a finite I'-CW-
complex, and Theorem 1 implies

@) X(X/T) = 15 Zx X7).

yer

Thus Theorem 1 is a generalization of the well-known equation (2) for finite group
actions. For the direct proof of the equation (2), see [6, p. 225].

If T is virtually torsion-free and X is a I'-finite I'-CW-complex such that X7 is
nonempty and Q-acyclic for every element v € T' of finite order, then e(Cr(v), X7)
coincides with the Euler characteristic x(Cr(7)) of the group Cr(y) for every v € T
of finite order, and Theorem 1 reduces to the following formula due to K. S. Brown
(cf. [5, p. 261)):

> (-1)idimg Hi(T,Q) = Y x(Cr()).

@ veF(T)

The rest of this paper is organized as follows. In §2, we introduce Hattori-Stallings
ranks of finitely generated projective QI'-modules, where QI' denotes the rational group
algebra of T'.

When X is a I'-finite I'-CW-complex, its cellular chain groups C;(X,Q) are finitely
generated projective QI'-modules. In §3, we will see that e(Cr(vy),X?) can be ex-
pressed in terms of Hattori-Stallings ranks of cellular chain groups.

In §4, we will prove Theorem 1. The proof is done by the spectral sequence
which converges to the homology of I" with coefficients in the cellular chain complex
C.(X,Q), together with properties of Hattori-Stallings ranks which will be discussed
in §2 and §3.

In the final section §5, we will consider the two special cases where (i) I' is a
finite group or (ii) I' is virtually torsion-free, and X" is nonempty and Q-acyclic for
every v € I of finite order, both of which are mentioned above.

Throughout this paper, we emply the following conventions unless otherwise stated:
I' is a discrete group and QI is its rational group algebra. A module over QI' is un-
derstood to be a left QI'-module.
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2. The Hattori-Stallings rank

The Hattori-Stallings rank was introduced by A. Hattori [8] and J. Stallings [10]
and was studied by H. Bass in detail [1]. The reader should refer to [2] and [5, Chapter
IX] for further detail of the Hattori-Stallings rank.

Let QI' be the rational group algebra of I. Define [QI', QI'] be the additive sub-
group of QI' generated by a8 — Ba (o, 8 € QI'). Set T(Qr') = QI'/[Ql,Qr]. It
is easy to see that T(QI') is isomorphic to the Q-linear space spaned by the set of
conjugacy classes of elements of I, i.e.,

3) TQN = P Q- (),

Y€eC(T)

where C(T") is a set of representatives of conjugacy classes of elements of I' and (7y) is
the conjugacy class of +.

Let 7 : QI' — T(QI') be the natural projection. Under the identification (3), =
assigns 1- (y) € T(Qr') to v € QI

Let P be a finitely generated projective QI'-module. Then P is a direct summand
of a finitely generated free QI'-module F'. Choose such F' and let p : F' — P be the
natural projection and ¢ : P — F the inclusion. By fixing a basis of F, the composite
i o p can be identified with a square matrix M over QI'.

DEFINITION. Under these assumptions, the Hattori-Stallings rank rr(P) of a
finitely generated projective QI'-module P is defined by

rr(P) = n(trtM) € T(QI),
where trM is the trace of M.
Note that rr(P) is well-defined, i.e., it is independent of various choices made. Under
the identification (3), denote by rr(P)(7y) the coefficient of () in rp(P).

We recall some properties of the Hattori-Stallings rank, which will be used later.

Proposition 2 (cf. [1, §2 (2.5)]). If P, and P are finitely generated projective
QI'-modules, then

T'[*(Pl (&) P2) = T‘F(Pl) + T[*(Pg).
Proposition 3 (cf. [1, §6 (6.3)]). Let I be a subgroup of finite index of T, P a

finitely generated projective QU'-module. Regarding P as a finitely generated projective
QI -modules by the restriction of scalars, one has

e (P)(v) = (Cr(7), Cre (7)) - e (P)(7)
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for all v € I, where (Cr(vy),Cr+ (7)) is the index of Cr/(v) in Cr(%).

Let f : 'y — I'2 be a group homomorphism. Let P be a finitely generated
projective QI';-module. Then QI's ®qr, P is a finitely generated projective QI'z-
modules, where QI'z is regarded as a right QI'; -module via f. Let T(f) : T(QI';) —
T(Qr';) be the homomorphism induced by f.

Proposition 4 (cf. [1, §2 (2.9)]). Under these assumptions, one has

T, (QF2 ®aqr, P) = T(f)(rl"l (P))

In case I is a finite group, Hattori-Stallings ranks can be determined by the char-
acter:

Proposition 5 (cf. [1, §5 (5.8)]). Let I be a finite group. Let V be a QI'-module
which is finite dimensional over Q. Then V is finitely generated and projective, and
one has

-1
re(V)(7) = ;g,—f(v—)ﬁ

where x : T' = Q is the character of V.

3. Hattori-Stallings ranks and equivariant Euler characteristics

Now we consider the equivariant Euler characteristic e(I', X'). First we invoke the
following elementary lemma, which may be well-known.

Lemma 6. Let X be a I'-finite I'-CW-complex. Then its cellular chain group
Ci(X,Q) is a finitely generated projective QI'-module.

Proof. C;(X,Q) has a direct sum decomposition as a QI'-module:
@) Ci(X,Q = EPar eqr, Q
o

where o ranges representatives of I'-orbits of i-cells of X, I, is the isotropy subgroup
of o, Q is regarded as a left QI',-module with the trivial action of I',, and QI is
regarded naturally as a right QI',-module. Since X is I'-finite, each I, is a finite sub-
group of I', which implies that Q is always finitely generated projective QI',-module
(cf. Proposition 5). Thus QI' ®qr, Q is a finitely generated projective QI'-module. As
the number of I'-orbits of cells of X is finite, so is the number of direct summands in
(4), which yields the lemma. J

By Lemma 6, the Hattori-Stallings rank of C;(X,Q) can be defined.
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Lemma 7. Let X be a I'-CW-complex. Then
' 1
ro(Ci(X,Q)(1) = ) Ty

where o ranges representatives of I'-orbits of i-cells of X.

Proof. We have

ro(Ci(X,Q))(1) =rr (@ Qr' ®qr, Q) (1) by 4
=Y rr(Qr ®qr, Q)(1) by Proposition 2

- ZT(i)(TFa @)() by Proposition 4,

where o ranges representatives of I'-orbits of ¢-cells of X and T'(¢) : T(Ql';) —
T(Qr) is the map induced by the inclusion ¢ : I'; — I'. From Proposition 5 we
conclude

T(0)(re, (@)(1) = re, (@) = .
proving the lemma. O
By virtue of Lemma 7, we have
&) eI, X) = ) _(=1)'rr(Ci(X,Q)(1).

%

Together with the result of K. S. Brown [4], we obtain the relation between the Hattori-
Stallings rank of C;(X,Q) and e(Cr(7), X") as follows:

Proposition 8. Let X be a I'-finite I'-CW-complex. Then

©) e(Cr(y), X7) = 3 (-1 (C(X, Q)(7)

i
for every v € T.

Proof. A direct consequence of the equality (5) and [4, Theorem 3.1 (iii)]. O
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4. Proof of Theorem 1

Let X be a I'-finite -CW-complex. Let H,(T',C.(X,Q)) be the homology of I'
with coefficients in the cellular chain complex C.(X,Q), which is isomorphic to the
Borel homology (equivariant homology) HZ(X,Q) (cf. [5, Chapter VII]). Since the
isotropy subgroup of every cell of X is finite, the Borel homology of X is isomorphic
to the rational homology of the orbit space:

) H,([,Cu(X,Q)) = H(X,Q) = H.(X/T, Q.
Lemma 9. Let X be a I'-finite I'-CW-complex. Then

> (=1)* dimg H;(T, Cu(X, Q) = Y (—1)' dimg Q ®qr Ci(X, Q).

i (2
Proof. Consider the spectral sequence
E}; = H;(T,Ci(X,Q)) = H;4;(T,C.(X,Q))

(cf. [5, §VILS and §VIL7]). Since C;(X,Q) is a projective QI'-module for all i, we
have

Bl o~ Q®qr Ci(X,Q j=0
Moo i#0.

As dimg Q ®qgr Ci(X,Q) < oo for all 4, we obtain the desired equation. OJ

Now we prove Theorem 1. By Proposition 4 (take I'y to be the trivial subgroup),

®) dimg(Q ®qr Ci(X,Q) = Y rr(Ci(X,Q)(v)-
veC(T)
Hence
X(X/T) =Y (~1)" dimg H;(T', C. (X, Q) by (7)
= (~1)" dimg Q ®qr Ci(X,Q) by Lemma 9

= E("l)i ( > rr(Ci(X,Q))(v)) by (8)

Y€C(T)
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> (Z(—lr‘rr(ci(x,@))(v))

~v€C(T)

= Z e(Cr(v), X7) by Proposition 8.
YeC(T)

For an element v of infinite order, we have X” = () and hence e(Cr(y),X”) = 0,
which proves Theorem 1.

5. Remarks

5.1. Finite group actions

Suppose that I is a finite group. Let X be a finite I"-complex. By Proposition 5,
we have

e(Cr(1).X7) = Y (-D'reyy (GO, Q)) = 22

By Theorem 1, we have

L ME) L
XX = 2 Gl T T 2, e

Since |T'|/|Cr(7)] is the cardinality of the conjugacy class (), we obtain

x(X/T) = I ZX (X7).

~er

Hence Theorem 1 implies the well-known equality for finite group actions.

5.2. Euler characteristics of groups

Suppose that I" is a group of finite homological type, then one can define its Euler
characteristic x(I') in the sense of C. T. C. Wall [12]. See [S, Chapter IX] for relevant
definitons. Suppose in addition the centralizer Cr(vy) is of finite homological type
for every v € T' of finite order. Under these assumptions, K. S. Brown obtained the
following formula:

©) )= Y x(Cr(v),

v€F(T)
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where X(T') is the naive Euler characteristic of T' defined by x(T') = Y_,(—1)* dimg
H,(T',Q) (cf. [5, p. 261]). This formula was used by J. Harer and D. Zagier in the
computation of the Euler characteristic of the moduli space of curves [7].

We will give a relation between the equation (9) and Theorem 1. Let I' be a
discrete group and X a I'-finite I-CW complex such that X7 is nonempty and Q-
acyclic for every v € T of finite order. If I" is virtually torsion-free, then Cr(vy) is of
finite homological type for every v € T of finite order (including v = 1), and x(Cr(7))
coincides with e(Cr(y), X7) (cf. [4, pp. 111-112]). In this case the equation (1) in
Theorem 1 reduces to the equation (9), since

H,(T,Q) = HI (X,Q) = H.(X/T,Q).

However, we claim the equation (9) for this special case can be deduced without
the use of the spectral sequence appeared in the proof of Lemma 9. To see this, observe
e: Cu(X,Q) = Q is a projective resolution of Q over QI', where Q is regarded as a
QI'-module with the trivial I'-action and ¢ is the augmentation. Hence

X(T) = ) (~1) dimg(Q ®qr C(X, Q).

i
Now the claim follows from this together with (8) and Proposition 8.
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