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1. Introduction

1.1. Background of thesis

Self-organized structure of living organisms has fascinated many scientists for centuries. How to
robustly generate the ordered structure against extrinsic environmental and/or internal genetic noise
(perturbation, disturbance) is a fundamental question for developmental biology. Morphogenesis
emerges from cooperative and competitive cell-cell interactions within a tissue, which is composed of
a large number of heterogeneous cell populations. When different clonal cell populations arise in a
tissue due to different gene expression, the different populations are often actively mixed or sorted,
consequently promoting or inhibiting the cellular interactions. The different mixing state is known to
be regulated by cellular mechanical forces, such as cell pressure and interfacial tension. Therefore,
study from a mechanical point of view would provide several perspectives on cell behaviors under
heterogeneous populations.

Researchers have long attempted to understand the biological phenomenon from physics and
mathematics. In the early 20th century, D’ Arcy Thompson explained the shape and structure of living
organism from physical and mathematical principle in his famous book “On Growth and Form”
(Thompson 1917). In this book, he proposed a structural similarity between bubbles in a foam and
cells in a tissue, and provided the concepts that cell shape and packing in living matter could be
explained by mechanical force such as tension and pressure. In the same 20th century, his idea inspired
F.T Lewis to study characteristics of cellular topology in epithelia. Lewis provided some empirical
laws which commonly applicable to multicellular organisms from quantitative observations, and he
also tried to understand the laws from mathematical concepts. At a later time, along with the advent
and progress of molecular biology, several molecules regulating cellular mechanics have been
identified, and revealed the molecular basis for supporting their findings. Additionally, theoretical
model based on cellular forces (e.g. cell bond tension and apical area contraction) also supported their
findings by successfully capturing the universal feature of the cells. For modern developmental
biology, many fundamental concepts have been provided through combining in silico and in vivo
experiments. This led me to use the combinatorial approaches to study the cellular behavior under

heterogeneous population.

1.2. Overview of epithelial tissue

Epithelial tissue is one of the four basic tissue types (epithelial, connective, muscle, and nervous tissue)
in many multicellular organisms including human. Epithelial tissue is a sheet of cells connected tightly
together, and exists as a part of organs. They can take several forms, which include hollow tubes, sacs,
and compound of the structures, and function for barrier, secretion or absorption. Given that simple

sheet structure can generate such complex structures and functions, it goes without saying that
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epithelial tissue is very fascinating for developmental biology. Additionally, epithelial tissues are
relevant to pathology, because many of cancers originate from epithelial tissues. Therefore, the
importance of epithelial tissues has been well illustrated in the fields of basic and applied researches.
Here, 1 first introduce structures of epithelium (1.3), especially in light of “cell topology” which the

properties characterizing planar network structure (1.4-1.6).

1.3. Structure of epithelium

1.3.1. Types of epithelium

Simple monolayer of epithelial tissues is typically classified to four types based on the morphology of
the cells (Gibson and Gibson 2009): (1) squamous cells with flat shape (width is larger than height),
(2) cuboidal cells with cube shape (width and height are approximately the same), (3) Columnar cells
with column shape (height is taller than width), (4) pseudostratified cells with showing interdigitated

nuclei positioning when sectioned, even though all cells still rest on the basement membrane.

1.3.2. Cell polarization

Cell polarization is a fundamental feature of epithelia which ensures the proper functions of diffusion
barrier, directional transport for secretion and absorption, and so on. In contrast, loss of cell
polarization leads to destruction of tissue homeostasis like tumor progression. Epithelial polarity is
established by maintaining three plasma membrane domains, ‘apical’, ‘lateral, and ‘basal’ domains
(Tepass et al. 2001). The apical and basolateral domains are separated by adherens junctions (AJs),
and the apical domain is further subdivided into the apical surface and the subapical complex/marginal
zone. In Drosophila, septate junctions (SJs) lie just basal to the AJs and form a trans-epithelial
diffusion barrier (Tepass et al. 2001), which is functionally analogous to tight junction in vertebrate
(Bilder 2001; Gibson and Gibson 2009; Gibson and Perrimon 2003). Molecules composing each
domains have been extensively studied. In Drosophila, subapical complex includes Bazooka-PARG6-
aPKC, AJs include cadherin, a-catenin, Armadillo (Drosophila B-catenin), Canoe (Drosophila Afadin),
and SJs include Neurexin 1V, Fasciclin 111, Scribble (Scrib), Disks Large (DIlg), Coracle, and Lethal
giant larvae (Lgl) (Bilder 2001; Gibson and Gibson 2009; Gibson and Perrimon 2003; Tepass et al.
2001). Some of the components of SJs, Scrib, Dlg, and Lgl ensures apical-basal polarity and function

as neoplastic tumor suppressors.

1.3.3. Planar network at adherens junctions

Epithelial tissue structure is formed by a sheet of tightly connected cells with adhesive molecules
between neighbors. Such cell-cell connectivity is represented by a planar network (cell packing
pattern) at adherens junction and known to reproduce some empirical properties regarding the planar

network structure (see Section 1.4). The mechanical coupling between neighbors at adherens junctions
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can lead to morphogenetic tissue deformations, such as expansion, contraction, or folding. Therefore,
understanding the regulation of apical planar network on the basis of physical properties in several

morphogenetic processes would provide mechanistic insight into the phenomenon.

1.4. Properties characterizing planar network structure in epithelial tissue

1.4.1. Difference in “cellular geometry” and “cellular topology”

Planar network structure in epithelial tissue is characterized by two properties, cellular geometry and
topology. Cellular geometry specifies cell shape, which implies several geometrical features such as
area, anisotropy, side lengths, and internal angles at tri-cellular junctions (Gibson and Gibson 2009;
Nagpal, Patel, and Gibson 2008). On the other hand, cellular topology specifies the connectivity
among cells in a tissue, which is determined solely by the number of sides (adherent neighbors) of
each cell. Specifically, when tissue is stretched in a way that individual cells respectively change their
shape but preserve local cellular connective relationships, this manipulation changes the cellular
geometry, but preserve cell topology. By contrast, manipulation that changes cell topology are
accompanied with a re-connection of cell-cell neighbor relationships, in which cell contacts are lost
or made. Modification of these two cellular properties is caused by various elementary cellular
processes, such as cell division, death, and rearrangement (cell intercalation) (see Section 1.5), and
the modification leads to the macroscopic deformation of epithelial tissue during morphogenesis or

pathogenesis.

1.4.2. Characteristics of cellular topology in epithelia

When apical section of cells is approximated to be polygonal in shape, cellular topology in tissue is
evaluated by “polygon class”, which is a distribution of polygon number (i.e., the number of adherent
neighbors) of each cell. The constant distribution of polygon class in tissue was shown in 1928 by F.T.
Lewis (Lewis 1928). Lewis noted that cells with different polygon numbers were present in
reproducible proportions in plant cucumber epidermal tissue. After the Lewis' pioneering work, the
distribution of polygon class has been measured in multiple organisms including animals (Drosophila,
Hydra, Xenopus) and plants (Allium, Euonymus, and Dryopteris) (Gibson et al. 2006; KORN and
SPALDING 1973; Zallen and Zallen 2004). They exhibit similar distributions with a peak of

hexagonal cells, high proportions of pentagonal and heptagonal cells, and lesser proportions of other

polygon types.

1.5. Cellular dynamics that change cell topology
For a proliferating epithelium, polygon type is changed by three fundamental cell behaviors including
cell division, cell intercalation and apoptosis. All of them associate with creating and destroying

polygon types, which consequently generate heterogeneity of epithelial topology. Here I show how
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each cell behavior changes cell topology.

15.1. Cell division

Following cell division, a mother cell produces two daughter cells, which can be interpreted as
destroying mother polygon cell and producing two new polygon cells. The polygon type of daughter
cells depends on the orientation of cleavage plane of cell division. Additionally, two cells abutting the
cleavage plane increase side number by one. Such transition rule of side number by cell division has
been shown to explain the equilibrium distribution of topology in proliferating tissue in the absence

of cell sorting and migration (Gibson et al. 2006).

1.5.2. Cell intercalation

Cell intercalation, namely cell rearrangement or T1 transition, is a process that adjacent four cells
dynamically change their arrangement: an edge shared by two contacting cells is shortened to
disappear and a new edge shared by the other two cells is created and lengthened, associating with

losing a side for the former two cells and gaining a side for the latter two cells.

1.5.3. Cell delamination

Two types of delaminating process have been described from studies in Drosophila epithelial tissue.
One of the cell delamination type, namely D1 delamination, proceeds with gradual disappearance of
junctions by cell intercalation, which leads to gradual decrease in apical cell area (Marinari et al. 2012).
As a consequence of the intercalation between a delaminating cell and its surrounding cells, the
topology of surrounding cells are changed. Another type of delamination, D2 delamination, proceeds
without junctional loss so as to form a rosette structure (a junction of five or more cells) leading to
apical surface shrink rapidly (Marinari et al. 2012). Because the rosette structure is transient and it
resolves instantly into an arrangement formed by tri-cellular junctions, this D2 type delamination also

results in the topological change of surrounding cells.

1.6. Cellular dynamics linked to cell topology
In many biological systems, it has been increasingly apparent that cell topology is linked to some

cellular geometry (i.e., cell area), as well as cellular behaviors (i.e., division, death, intercalation).

1.6.1. Cellarea

Differences in topology represented by the number of cell sides is known to connect with apical cell
area; cell area has a linear correlation with the number of cell sides. This correlated relationship is
known as Lewis’s law, which was made by Lewis in 1928 by observing two-dimensional cellular

structure in biological systems, such as cucumber epidermis and pigmented epithelium of the retina
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(Lewis 1928). This correlation is also confirmed in Drosophila (Farhadifar et al. 2007).

1.6.2. Cell fate

Differences in topology are also known to correlate with different cell fates (Heller et al. 2016). Heller
and colleagues performed live imaging in wing disc of Drosophila, and analyzed the topological
dynamics for specific cell classes selected based on their behavior (i.e., dividing cells, dying cells).
They found that cells in the entire tissue show a distribution with an average of approximately six
sides (see Section 1.4.2), however, dividing cells have on average one extra side, seven sides, distinctly
exhibiting a distribution shifted over by one (Gibson et al. 2006, 2014; Heller et al. 2016). This mitotic
shift in the frequency of polygon classes is observed several hours prior to division due to increasing
in side number of dividing cells twice faster than non-dividing cells. These results sugest that dividing
cells accumulate side number over time. In contrast, dying cells decrease side number on average prior
to being delaminated. Additionally, they also observed cell area of dividing cells is relatively large,

but the one of dying cells is small, consistent with Lewis’s law (See Section 1.6.1).

1.6.3. Cell intercalation (T1 transition)

Cell intercalation occurs among four connected cells, in which two pair of cells gain an edge and the
other two cells lose. From a live imaging of Drosophila wing disc, Heller and colleagues found that
cells that will lose an edge have larger side number before intercalation than the cells that will gain an
edge (Heller et al. 2016). In more detail, the cells that gain an edge are hexagons (6-sided) or pentagons
(5-sided) at the start of intercalation and changed to heptagons (7-sided) or hexagons (6-sided) at the
end of intercalation, whereas the cells that lose an edge are heptagons (7-sided) or hexagons (6-sided)
at the start and changed to hexagons (6-sided) or pentagons (5-sided) at the end. This was indicating

that original topology before intercalation affects the junctional dynamics during cell intercalation.

1.6.4. Tissue mechanics leading to cell intercalation

The mechanisms leading to the junction shortening and lengthening have been extensively studied in
gastrulation of Drosophila embryo, where germband elongates along its anterior-posterior (AP)
direction through intercalation. The studies led to the two models of the intercalation, global external
tissue scale tensile stress and local regulation of contractility. The global tensile stress is mainly
generated by the invagination of endoderm, which promotes AP-junction elongation and DV (dorso-
ventral)-junction shortening, which might facilitate polarized cell intercalation (Lye et al. 2015). This
may be correspond to the intercalation driven by “a passive force equilibrium mechanism” described
in wing disc epithelial tissue of Drosophila by Heller and colleagues, who showed that shorter
junctions are more likely to undergo intercalation (Heller et al. 2016). This passive mechanism may

be also relevant to a report that junctions are subject to stochastic fluctuations of edge length that
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trigger cell intercalations by chance as edge lengths decrease to zero (Curran et al. 2017). In this
framework, shorter junctions are likely to undergo intercalation, because they are more easily decrease
to zero. Together, these framework suggests that global stress biases junctional length along a specific
direction, which raises the probability to undergo cell intercalation to the shorter junctions.

In parallel with this global stress, local tensile forces generated by non-muscle Myosin Il
polarization also drives intercalation. Convergent extension driven by polarized Myosin Il was also
involved in gastrulation and neurulation (Lienkamp et al. 2012; Nishimura, Honda, and Takeichi 2012;
Nishimura and Takeichi 2008; Shindo and Wallingford 2014). Numerous recent studies further showed
the underling mechanism to control the Myosin Il polarization. During the germ band extension in
Drosophila, The expression of three Toll family receptors (Toll-2, Toll-6 and Toll-8) in overlapping
transverse stripes along AP axis provides positional information for the AP patterning, which polarizes
Myosin Il at DV-junctions and drives the polarized cell intercalation (Paré et al. 2014). As another
mechanism acting in parallel or downstream of Toll receptor signaling, G-protein-coupled receptors
(GPCRs) were also shown to be required for polarized myosin I1-driven intercalation. A ubiquitously
expressed GPCR, Smog regulates G proteins with other GPCRs (Mist and yet unknown GPCR),
resulting in activation of Myosin Il through the Rhol-Rok pathway (Kerridge et al. 2016). Whereas
Toll receptors and GPCR seem to act as the most upstream of polarized myosin Il-driven intercalation,
some additional actors were reported; Shroom (action- and Rho-kinase-binding protein) (Simdes,
Mainieri, and Zallen 2014), Abelson kinase (non-receptor tyrosine kinase) (Tamada, Farrell, and
Zallen 2012), Bazooka (Drosophila Par-3; polarity protein) (Simdes et al. 2010), Canoe (Drosophila
afadin; actin-binding protein) (Sawyer et al. 2011), and -catenin and E-cadherin (adhesion molecules)
(Levayer and Lecuit 2013; Rauzi, Lenne, and Lecuit 2010; Tamada et al. 2012). Another Myosin
Dachs, whose localization is defined by the asymmetric arrangement of protocadherin Fat-Dachsous
heterodimers between adjacent cells and Golgi kinase Four-jointed, is also known to drive intercalation
by increasing junction tension (Bosveld et al. 2012; Hale and Strutt 2015).

As shown above, junction dynamics at adherens junctions have been so far the main focus
of the research of cell intercalation. A recent report was shown the basolateral cellular mechanics also
contributes to drive intercalation (Sun et al. 2017). They showed the basolateral side of cells migrates
prior to the apical side, and the basolateral migration is regulated independent of apical junction
shortening. Furthermore, as a regulator of the basolateral migration, they identified tyrosine kinase
Src42A which modulates Racl-dependent protrusive motility. Such contribution of the basal
protrusions was also reported in the convergent extension of the mouse neural plate. Altogether, the
active migration at basal side of cells also plays a pivotal role in the cell intercalation.

While the most studies of cell intercalation were focused on the junction shortening, the
junction lengthening after forming a four-way vertex is also critical for the completion of intercalation.

In Drosophila wing development, Myosin Il concentration, which has raised during the shortening of
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junctions, turned to conversely decrease during the elongation of the newly formed junctions through
a regulation of the tumor suppressor PTEN (Bardet et al. 2013). Contrary to the decrease in Myosin Il
concentration at the newly formed junctions, Myosin Il accumulation near the vertex in the neighbor
cells also contributes to junction elongation (Collinet et al. 2015; Hara, Shagirov, and Toyama 2016).
In addition to such local junction dynamics, global tissue-scale mechanical force driven by the
invagination of the posterior midgut is also known to be involved in junction lengthening in
Drosophila germ band elongation (Collinet et al. 2015). In sum, these findings suggest that the process

of junction lengthening is not a passive relaxation process, but is a rather actively regulated process.

1.7. Overview of cell competition

Cell competition is a fitness-comparison mechanism within heterogeneous epithelial tissue due to
mutations and/or stochastic changes in gene expression. During competition, cells with lower fitness
(losers) are eliminated via apoptosis, and the space left by apoptotic cells is selectively occupied by
cells with higher fitness (winners). This elimination occurs in heterogeneous tissue where loser cells
coexist with winners, but not under homogeneous tissue consisting only of cells with equal fitness.
Cell competition phenomenon could play a fundamental role in ensuring tissue homeostasis as well as
cancer progression in both Drosophila and mammals. So far, several mutations have been shown to
cause differences in fitness, resulting in winners and losers and triggering context-dependent
elimination of losers. Such mutations include those that cause differential growth, disruption of apico-
basal polarity, sharp differences in the expression of signaling. Here, | first describe what mutations
induce cell competition (Section 1.8), how these mutations affect cell fitness and drives context-
dependent elimination of losers (Section 1.9), and show physiological roles of cell competition
(Section 1.10).

1.8. Inducers of cell competition

1.8.1. Growth differential

Cell competition phenomenon was first described more than 30 years ago by Morata and Ripoll, who
showed in mosaics of Minute (M), which encodes ribosomal protein (Marygold et al. 2007), in growing
epithelial tissue of Drosophila (Morata and Ripoll 1975). The homozygous flies (M/M), which lack
both alleles of Minute gene, are lethal, but heterozygous flies (M/+) are viable. The M/+ flies showed
a developmental delay due to slower proliferation rate driven by reduction of biosynthetic activity, but
reached normal body size without major defects of patterning, indicating that M/+ cells are viable.
However, M/+ cells induced in a tissue with wild-type background do not contribute to adult organism,
suggesting that M/+ cells which coexist with wild-type cells are eliminated from the tissue. Subsequent
work on Minute in flies, it has been shown that mammalian Minute gene called Bst, which encodes

Rpl24 riboprotein, also drives context-dependent elimination of heterozygous cells in chimeras (Oliver
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2004). This was strongly suggesting that cell competition driven by ribosomal activity is conserved
across evolutionary phyla.

The contribution of the effects of translational activity to cell competition was later confirmed
in Drosophila by analysis of different dose of Myc, a transcription factor regulating cell growth and
ribosome biogenesis (Johnston et al. 1999). Similar to the Minute case, the Heterozygous Myc mutant
cells are viable, but eliminated under condition confronting with wild-type cells (Johnston et al. 1999).
Moreover, in contrast, wild-type cells are eliminated if they are surrounded by cells expressing higher
levels of Myc than wild-type cells (de la Cova et al. 2004; Moreno and Basler 2004). In this case, unfit
cells are no longer outcompeted, as wild-type cells rather become losers, contrary to the classical type
of cell competition, in which wild-type cells eliminate unfit cells (M/+) and become winners. For this
reason, Myc is considered as super-competitors (Moreno and Basler 2004). This finding of super-
competition further supported the concept of cell competition, a mechanism that comparing relative
fitness levels, rather than absolute one. Subsequently, the myc-induced cell competition has been
shown to be conserved in early mouse embryos (Claveria et al. 2013; Sancho et al. 2013),
demonstrating that cells with lower levels of Myc were eliminated in mosaic mouse embryos.
Importantly, Claveria and Sancho showed that endogenous cell death occurs in the mouse embryo
through differential expression of Myc, providing the first evidence that cell competition functions in
normal development. Additionally, the similar function of Myc has been shown in adult mouse
cardiomyocytes (Villa del Campo et al. 2014), indicating that cell competition is not restricted to
development, but occurs in adult life.

The study of Minute- and Myc-induced cell competition suggested that the differential growth
caused by a difference in translational activity involves in loser cell apoptosis. The role of differential
growth for cell competition was demonstrated by showing that Minute- induced cell competition was
suppressed in starved flies. This was suggesting that the suppression of growth advantage of wild-type
over M/+ by starvation was sufficient to stop cell competition (Simpson 1979). Additionally, the fact
that cell competition does not occur after developmental growth ceases support for the role of
differential growth (Simpson and Morata 1981). While not all of the competition scenarios associate
with differential growth (see last paragraph in this section), it has been considered as a key contributor
to cell competition.

Another example of cell competition associating with differential growth is driven by Hippo
pathway, which has emerged as a conserved key regulator of growth. The components of Hippo
pathway are Hpo/Mst and Wts/Lats (core kinases), and Sav and Mats/Mob (adaptors), which prevent
the nuclear accumulation of the transcriptional cofactor Yki/Yap. Repression of Hippo pathway drives
Yki/Yap accumulation in nuclei and promotes the expression of multiple targets (i.e., cyclin E, 1APS),
leading to promotion of cell proliferation and suppression of apoptosis. Similar to Myc overexpressing

cells, such overgrowing cells with Hippo pathway deficiency, or cells overexpressing YKki act as super-
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competitors, which eliminate their surrounding wild-type cells by inducing apoptosis. As YKki up-
regulates transcription of Myc (Neto-Silva, de Beco, and Johnston 2010; Ziosi et al. 2010), some part
of cell competition driven by Hippo pathway is mediated by Myc. Indeed, Myc down-regulation in
Yki-overexpressing clones suppress their super-competitive behavior (Neto-Silva et al. 2010; Ziosi et
al. 2010). Yet, Hippo-dependent competition is not fully explained by Myc regulation, because Myc
overexpression does not rescue the elimination of Yki mutant clones (Ziosi et al. 2010). Moreover,
there is an additional key difference in macroscopic appearance between Hippo- and Myc-induced cell
competitions. Myc-induced cell competition does not change final tissue size, whereas Hippo-induced
competition does change and overcome organ size control (Vincent, Fletcher, and Baena-Lopez 2013).
This difference might be due to Hippo pathway regulating contact inhibition, which is a mechanism
to terminate growth at target size of organs (Gumbiner and Kim 2014). Therefore, some part of Hippo-
induced competition is mediated by Myc, but it constitute other mechanisms.

In earlier examples, growth difference is always associated with cell competition. There are
however, exceptions to this rule. Ectopic induction of hyper-proliferating clones, which activate
insulin pathway (an effector of the insulin growth pathway; (Bohni et al. 1999)) or overexpress cell
cycle regulators (Cyclin D and Cdk4), promotes growth activity, however, does not lead to elimination
of surrounding cells (de la Cova et al. 2004). Additionally, cell competition occurs even in post-mitotic
follicle cells in the adult Drosophila ovary (Tamori and Deng 2013). These findings indicate that
growth difference does not always drive elimination of losers. Yet, we still do not know why most of
the cell competition winners show higher growth activity than losers, and the role of growth difference
in cell competition. Based on a recent finding that differential growth induces mechanical stress and
eliminate slower proliferating cells during RasV*?-induced competition (Levayer, Dupont, and Moreno
2016), differential growth would not be a general, but a parallel mechanism of cell competition (See

Section 1.9.3 for the contribution of tissue mechanics in cell competition).

1.8.2. Cell polarity

Mutant cells for apico-basal determinants, Scribble (Scrib), Lethal giant larvae (Lgl) and Discs large
(Dlg) have been linked to cell competition. In homotypic environment, these mutant cells are viable
and proliferate indefinitely until forming a multilayered and massive neoplastic tumors with exhibiting
Yki up-regulation (Bilder 2004; Chen et al. 2012; Doggett et al. 2011; Grzeschik, Parsons, Allott, et
al. 2010; Sun and Irvine 2011). By contrast, in heterotypic environment, in which mutant cells are
surrounded by wild-type cells, they become losers and eliminated by suppression of Yki activity
through activation of Jun N-terminal kinase (JNK) signaling (Brumby 2003; Chen et al. 2012; Froldi
etal. 2010; Grzeschik, Parsons, and Richardson 2010; Igaki et al. 2009; Menéndez et al. 2010; Ohsawa
et al. 2011; Tamori et al. 2010). Other factors associating with polarity are also related to cell

competition. Mutant cells with Mahjong (Mahj; a binding partner of Lgl) are eliminated through JNK-
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induced apoptosis as they confront with wild-type cells. Additionally, cells overexpressing the apical
determinant Crumbs (Crb) were also eliminated by apoptosis when surrounded by wild-type cells,
whereas crumbs mutant cells turn to become super-competitor and induce apoptosis of surrounding
wild-type cells (Hafezi, Bosch, and Hariharan 2012).

In contrast to original cell competition (Minute- and Myc-induced competition; see Section
1.8.1), this type of competition derived from polarity defects is not a consequence of growth difference,
because polarity-deficient loser cells are eliminated despite their tumorigenic potential with faster
proliferation. Moreover, apoptosis of Igl mutant cells has been observed even when their growth was
induced by Yki or Ras activation (Menéndez et al. 2010). Thus the mechanisms leading to cell

competition are different from the original one.

1.8.3. Steep differences in signaling activity to affect survival factors

Cell competition has been shown to occur downstream of many different signaling pathways, leading
to proposal of conserved signaling pathways to act as “survival factors”, which determine cell survival
depending on their dose; Such factors are essential for cells to stay alive, and cause death as being
deprived of them. Those factors include BMP/Dpp, WNT/Wingless (Wg), JAK-STAT, and
Ras/Raf/MAPK pathways.

For BMP/Dpp morphogen, which regulates growth and patterning (Hamaratoglu, Affolter, and
Pyrowolakis 2014), cells with low levels of BMP/Dpp morphogen are eliminated as losers in
Drosophila and in mammals (Burke and Basler 1996; Moreno, Basler, and Morata 2002; Sancho et al.
2013). For Another morphogen Wg, which regulates patterning, growth and cell survival (Clevers
2006), Wg-deficient cells become losers, whereas Wg-activated cells become super-competitors and
triggers apoptosis in wild-type neighbors in Drosophila (Vincent et al. 2011). Similarly, for JAK-STAT
pathway, which involves in the regulation of growth and tissue size (Arbouzova 2006; Li 2008),
JAK/STAT-deficient cells become losers, whereas JAK/STAT-activated cells become super-
competitors and induces apoptosis in surrounding wild-type cells in Drosophila (Rodrigues et al. 2012).
Additionally, for Ras/Raf/MAPK pathway, which is known as a regulator of cell survival (Molina and
Adjei 2006), MAPK signaling deficient cells are eliminated by wild-type neighbors, whereas cells
expressing activated form of Ras produces super-competitors and eliminate their adjacent wild-type
cells in Drosophila (Karim and Rubin 1998; Prober and Edgar 2000). These studies suggest that

signaling pathway regulating survival factors are required for cell competitiveness.

1.9. Factors to determine cellular fitness
As described in the previous section 1.8, cell competition could be induced by many inputs, however,
the output characteristics are similar. This is suggesting that the different signals share some common

ground mechanisms. Here | describe the three proposed models to account for the context-dependent
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competition scenario: Ligand capture model (Section 1.9.1), Fitness comparison model (Section 1.9.2),

and Mechanical model (Section 1.9.3).

1.9.1. Ligand capture model: Competition for survival factors

Ligand capture model hypothesize that cells are competing for the amount of secreted molecules
required for their survival (namely, “survival factors”) (Raff 1992). If a cell has more receptors or high
endocytosis rate, it capture higher amount of the factors, leading to killing the neighboring cells due
to restriction of the factor to access. In the case of cell competition in Drosophila wing disc, Dpp
ligand is proposed to play a role for the survival factor. This hypothesis was first suggested from the
observation that loser cells of Minute- and Myc-induced competition show lower levels of Dpp
signaling (Moreno and Basler 2004; Moreno et al. 2002; Tyler et al. 2007) and the elimination of losers
can be rescued by the activation of the signaling pathway (Moreno and Basler 2004; Ziv et al. 2009).
There is, however, some debates for this hypothesis due to some contradictory observations (see
detailed debates for the reviews (Amoyel and Bach 2014)), suggesting the involvement of some other

survival factors and/or other mechanisms for the context-dependent cell competition.

1.9.2. Fitness comparison model

The alternative model hypothesizes that cells compare their relative fitness levels by using secreted or
membrane proteins as “fitness markers”. While it has not been identified the marker protein that
functions universally in different kinds of competition scenario, some responsible molecules have been
gradually apparent.

One of such marker proteins is transmembrane calcium channel Flower, which was identified
by expression profiling analysis in Myc-dependent competition (Rhiner et al. 2010). Flower encodes
three different splice isoforms, Flower"?, Flower'°A and Flower'ese8, Ubiquitous form flower"® is
expressed throughout normal tissue but down-regulated in losers during competition. In contrast, the
other isoforms, flower'®* and flower'°*®, are detected only in losers. The expression of flower'®s is
required and sufficient for loser elimination. Importantly, this expression pattern of distinct isoforms
was observed in competition induced by Myc, Minute, scribble mutant, and Dpp pathway. Additionally,
the same expression profiling analysis revealed another marker for multiple types of losers, Sparc,
which is a secreted extracellular matrix protein (Portela et al. 2010). Contrary to Flower's, Sparc
upregulation in losers protects them against apoptosis. These results suggest that the decision of loser
elimination was tightly regulated by balancing the expression levels of proteins with opposite
functions (pro-apoptotic vs protective).

Another proposed fitness marker protein has been identified by focusing on the conceptual
similarities between innate immunity and cell competition (Meyer et al. 2014). In Drosophila, Toll

and immune deficiency (IMD) signaling pathways govern the innate immune system to recognize
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pathogens as non-self. Interestingly, the pathways also mediate the recognition and elimination of loser
cells during cell competition. In both of the widely studied two models of cell competition, Myc- and
Minute-induced cell competition, Toll-related receptors (TRRs) and extracellular ligand Spétzle
involve in the elimination of losers to induce NF«B transcription factor-dependent activation of pro-
apoptotic genes. Moreover, the combination of signaling modules are different in accordance with two
distinct types of competition. In Myc-induced competition, four of the nine TRRs encoded in
Drosophila (Toll-2, Toll-3, Toll-8, Toll-9) and a NF«B factor (Relish) are required for loser elimination,
whereas in Minute-induced competition, only two of TRRs (Toll-3, Toll-9) and NF«B factors (Dorsal
and Dif) are required. Those results indicate that ancient innate immune defense response is adopted
for measurement of internal tissue fitness during competition.

For tumor-suppressive cell competition induced by polarity-deficient cells, cell-surface ligand-
receptor system was shown to function as fitness marker (Yamamoto et al. 2017). When wild-type
winner cells encounter with polarity-deficient loser cells, the winners re-localize the ligand Sas to the
lateral cell surface, which is normally localized at the apical surface of epithelial cells (Schonbaum et
al. 1992). On the other hand, losers re-localize the receptor PTP10D to the lateral surface, which is
also normally localized at the apical surface of epithelial cells. This lateral accumulation of Sas and
PTP10D drives trans-activation of Sas-PTP10D signaling and leads to suppression of EGFR signaling
in loser cells. This EGFR signaling suppression enables to activate JNK signalling in the loser cells to
drive cell elimination. In contrast, in the absence of the Sas-PTP10D signaling, the elevated EGFR
signaling cooperates with JNK signaling to inactivate Hippo pathway, leading to overgrowth of the

polarity-deficient cells.

1.9.3. Mechanical model

The alternative possible mechanism of fitness sensing is triggered by mechanical stress. The model
was first proposed from the study using a mathematical model, which suggested that mechanical stress
induced by heterogeneous growth could feedback on the rate of cell division and apoptosis (Shraiman
2005): compression of slower dividing cells adjacent to faster dividing cells would trigger apoptosis
during cell competition. Such mechanical effects on the elimination of cells from epithelia are
experimentally observed in a non-competitive situation. In pupal notum of Drosophila, tissue
overcrowding by proliferation induces cell delamination, which buffers epithelia against growth
variation (Marinari et al. 2012). Another experimental observations in human, canine and zebrafish
cells also show that extrusion occurs as a consequence of overcrowding (Eisenhoffer et al. 2012).
These studies in a non-competitive situation was suggested that mechanical state of cells could be an
important contributor to cell competition. Indeed, more recently, it has been shown that over-
proliferation induced by activation of oncogenic Ras induces crowding into their surrounding wild-

type cells, which results in death of the crowded cells (Levayer et al. 2016). Additionally, mechanical
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stress-induced cell competition has been reported in the competition between wild-type and Scribble
knockdown cell population (Wagstaff et al. 2016). They showed in Madin-Darby canine kidney
(MDCK) cells that Scribble knockdown cells are hypersensitive to cell compaction, and crowding
induced by interaction with wild-type cells is sufficient to eliminate the Scribble knockdown cells.
Thus, mechanical model could function as an alternative mechanism for eliminating less-fit cells

during cell competition.

1.10. Role of cell competition in tissue homeostasis and tumor promotion

Cell competition is widely conserved between invertebrates and mammals. This suggests that
the ability of cells for sensing the relative fitness is relevant to several fundamental physiological
processes. One of the proposed roles of cell competition is tissue size control, because tissue final size
undergoing Minute- and Myc-induced cell competition was not affected and was similar to control
tissue size (de la Cova et al. 2004; Morata and Ripoll 1975). Indeed, inhibition of apoptosis in
Drosophila wing tissue does not affect mean of the wing size, however, it leads to greater variability
in wing size (de la Cova et al. 2004). This suggests that fixed size of final tissue is obtained by
balancing the rate of growth and apoptosis through cell competition.

Another role of cell competition for ensuring tissue homeostasis is tumor suppression by
eliminating the potentially cancerous cells as losers. This is applicable to the case of competition
driven by polarity deficiency, in which wild-type cells eliminate oncogenic potential cells (Brumby
2003; Chen et al. 2012; Froldi et al. 2010; Grzeschik, Parsons, and Richardson 2010; Igaki et al. 2009;
Menéndez et al. 2010; Norman et al. 2012; Ohsawa et al. 2011; Tamori et al. 2010). Because the
polarity deficient cells have the ability to overgrowth and form a precancerous field in the absence of
cell competition, the cell competition mechanisms to eliminate the abnormal cells would suppress
tumorigenesis.

Contrary to these homeostatic functions, there is potentially a dark side of cell competition: If
abnormal cells acquire a higher fitness than wild-type cells, they could eliminate wild-type neighbors,
resulting in the promotion of tumor expansion rather than suppression. This paradigm is applicable to
super-competition, where wild-type cells are killed (de la Cova et al. 2004; Moreno and Basler 2004;
Rodrigues et al. 2012; Tyler et al. 2007; Vincent et al. 2011; Ziosi et al. 2010). Indeed, myc, a factor
of inducing super-competition, has been shown to be frequently overexpressed in human cancers
(Pelengaris, Khan, and Evan 2002). In addition, activity of Hippo pathway is also frequently
deregulated in different human cancers (Harvey, Zhang, and Thomas 2013). The altered expression
and regulation of these super-competitors in cancers suggest that super-competition can contribute to
cancer progression. Additionally, super-competition has been also proposed to contribute to field
cancerization (Rhiner and Moreno 2009), clinical observation in which multiple tumor foci appears

within the same tissue (Slaughter, Southwick, and Smejkal 1953). Taken together, the fitness
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comparison mechanisms not only ensure tissue homeostasis, but also promote tumorigenesis when the
mechanisms are hijacked by abnormal cells. Thus, the revealed insights of key parameters for cell
competition help understanding many aspect of physiological processes, and provide therapeutic

strategies for pathological development.

1.11. Aim of this thesis

The aim of this thesis is to understand how the cell-level behaviors (cell division, death, migration)
influence on the physiological phenomenon observed at cell-population levels from a view point of
tissue mechanics. In general, there are gaps between cell- and tissue-level behaviors in vivo, because
many cell-level behaviors are entangled in a complex manner and produce tissue-level behaviors. In
contrast to the in vivo case, theoretical model has advantage to separately control individual parameters
of cell behaviors. Hence, in this thesis, 1 combined Drosophila experiments and cell vertex model
simulations to study cell heterogeneity caused by difference in mechanical tension or cell growth. The
in silico predictions and in vivo verifications are linked by quantitative analysis so as to provide the
mechanistic ground of the cell behavior under heterogeneous population in a synergistic manner. In
chapter 2, | present the competitive cell interactions leading to disruption of tissue homeostasis. In
chapter 3, mechanical basis contributed to clone shape of distinct genotypes is identified by developing

a pipeline to infer cell mechanics.
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2. Competition for space controlled by apoptosis-induced

change of local epithelial topology

Some experimental figures in this chapter (Fig. 2.1a, 2.2a’, Fig. S2.1, S2.4d) were obtained in
collaboration with my colleagues, Y. Sando and D. Umetsu. I clarified my own contribution in each

caption.

2.1. Abstract

During the initial stage of tumor progression, oncogenic cells spread despite spatial confinement
imposed by surrounding normal tissue. This spread of oncogenic cells (winners) is thought to be
governed by selective Killing of surrounding normal cells (losers) through a phenomenon called “cell
competition” (i.e. supercompetition). Although the mechanisms underlying loser elimination are
increasingly apparent, it is not clear how winner cells selectively occupy the space made available
following loser apoptosis. Here, I combined live imaging analyses of two different oncogenic clones
(YKi/YAP-activation and Ras-activation) in the Drosophila epithelium with computer simulation of
tissue mechanics to elucidate such a mechanism. Contrary to the previous expectation that cell volume
loss after apoptosis of loser cells was simply compensated for by the faster proliferation of winner
cells, | found that the lost volume was compensated for by rapid cell expansion of winners.
Mechanistically, the rapid winner-dominated cell expansion was driven by epithelial junction
remodeling following apoptosis, which causes re-connection of local cellular connectivity (cell
topology) in a manner that selectively increases winner apical surface area. In silico experiments
further confirmed that repetition of loser elimination accelerates tissue-scale winner expansion through
topological changes over time. The proposed mechanism for linking loser death and winner expansion
provides a new perspective on how tissue homeostasis disruption can initiate from an oncogenic

mutation.

2.2. Introduction

Primary tumors originate from a single transformed cell containing oncogenic mutations despite being
spatially confined by surrounding normal tissue. It is increasingly apparent that oncogenic cell spread
within tissue is driven not only simply by a higher rate of proliferation, but also by a phenomenon
called “cell competition” (Eichenlaub et al. 2016; Suijkerbuijk et al. 2016). Cell competition is a
process in which “winner” cells (e.g., certain oncogenic mutant cells) induce apoptosis in neighboring
“loser” cells (e.g., normal host cells), and thus spread their territory (Eichenlaub et al. 2016; Johnston
et al. 1999; de la Cova et al. 2004; Levayer et al. 2016; Moreno and Basler 2004; Suijkerbuijk et al.

2016; Tyler et al. 2007). Because inhibiting loser apoptosis is sufficient to halt winner spread
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(Eichenlaub et al. 2016; Li and Baker 2007; Martin, Herrera, and Morata 2009; Moreno and Basler
2004; Suijkerbuijk et al. 2016), loser apoptosis seems to play an active role in promoting winner spread
within the tissue. However, it is unclear how loser apoptosis impacts surrounding cells to produce
selective occupation by winner cells.

Cell competition can be considered as processes of destruction (loser apoptosis) and
reconstruction (winner takeover) of the epithelial tissue structure (Bove et al. 2017; Claveria et al.
2013; Eichenlaub et al. 2016; Igaki et al. 2009; Johnston et al. 1999; Kajita et al. 2014; de la Cova et
al. 2004; Levayer et al. 2016; Levayer, Hauert, and Moreno 2015; Li and Baker 2007; Li, Kale, and
Baker 2009; Martin et al. 2009; Moreno and Basler 2004; Ohsawa et al. 2011; Simpson 1979; Simpson
and Morata 1981; Suijkerbuijk et al. 2016; Tyler et al. 2007; Wagstaff et al. 2016; Yamamoto et al.
2017). Epithelial tissue consists of a sheet of tightly packed cells connected with adhesive junctions.
This local cell-cell connectivity (“cell topology” (Farhadifar et al. 2007; Gibson et al. 2006)) is
represented by a distribution of the number of sides (adherent neighbors) of each cell. Because the
side number positively correlates with the apical surface area (known as Lewis’s law conserved in
epithelial tissue (Farhadifar et al. 2007; Lewis 1928)), topological change is associated with cellular
expansion or contraction. In the case of cell competition, apoptosis could change the topology of
neighboring cells through cell delamination or extrusion, which is followed by consecutive junctional
remodeling (cell intercalation) between a dying cell and its surviving neighbors (Levayer et al. 2016;
Marinari et al. 2012). Topological change driven by loser apoptosis might therefore allow winner cells
to spread with increasing their side number. This idea prompted us to investigate whether cell topology
changes in the vicinity of apoptotic cells contribute to winner takeover during competition.

Using generalized mechanical simulations and in vivo imaging of Drosophila oncogenic clones,
I show when and how winner cells selectively expand to compensate for local tissue volume loss after
apoptosis of a loser cell. Following induction of locally overgrowing winners, slowly dividing normal
cells adjacent to rapidly dividing winners show anisotropic distortion, as reported previously (Legoff,
Rouault, and Lecuit 2013; Mao et al. 2013; Pan et al. 2016; Vincent et al. 2013). Immediately following
apoptosis of the anisotropic normal cell, the space previously occupied by the apoptotic loser cell was
filled by rapid cell expansion of adjacent winner cells. The winner cell expansion was unexpected,
because previous studies mostly focused on cell division as the compensatory mechanism to fill space
(e.g. “compensatory proliferation”) (Di Gregorio, Bowling, and Rodriguez 2016; Levayer and Moreno
2013; Li et al. 2009; Pellettieri and Alvarado 2007; Tamori and Deng 2011). As a mechanism
underlying this compensatory cell expansion of winners, | found that apoptosis of anisotropic losers
adjacent to winners causes directionally biased cell intercalations, which re-establishes local cellular
connectivity (cell topology) in a manner that selectively increases the apical surface area of winners.
Importantly, such topological dynamics were verified with in silico and in vivo experiments in two

different oncogenic genotypes (activated-Yki and Ras), where the over-proliferating population
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triggers apoptosis in surrounding cells with slower proliferation. Furthermore, repetition of topological
changes through the apoptosis of losers in immediate contact with winners, as observed in many cell
competition systems (Amoyel and Bach 2014), accelerates the tissue-scale expansion of winners in
silico. Such rapid cell turnover via topological changes may disrupt tissue homeostasis to facilitate
tumor initiation.

2.3. Material and Methods

2.3.1. Drosophila strains and genetics

Strains used for imaging fluorescently-labeled mitotic clones (Lee and Luo 1999; Xu and Rubin 1993)
in fixed larval imaginal discs (Fig. 2.1a—c, S2.1h—-i’): ubxFLP; Act>y*>Gal4, UAS-GFP; FRT82B,
Tub-Gal80 (82B tester), ubxFLP; FRT42D, Tub-Gal80; Act>y">Gal4, UAS-GFP (42D tester),
ubxFLP; Tub-Gal80, FRT40A; Act>y*>Gal4, UAS-GFP (40A tester). Additional strains used were as
follows: wts*! (from T. Xu), hpo***" (from D.J. Pan), UAS-sqh-RNAi (Bloomington Stock Center
32439), UAS-shg-RNAI (Vienna Drosophila Resource Center #27081). Strains used for notum live
imaging (Fig. 2.2, 2.4, 2.5, S2.1, S2.4). y, w, hs-flp; DE-Cad::GFP; Act>CD2>GAL4, UAS-
CD8.mCherry, P{tubP-GAL80ts}20 (Bloomington Stock Center 7019), UAS-YKi:V551H1ASI68AS250A
(Bloomington Stock Center 28817), UAS-Ras"? (from T. Xu).

2.3.2.  Immunohistochemistry and fixed-sample imaging

Cross and offspring were kept at 25°C until dissection. Larval tissues were stained with standard
immunohistochemical procedures using rat anti-Drosophila E-cadherin antibody DCAD?2
(Developmental Studies Hybridoma Bank (dshb.biology.uiowa.edu), 1:20) and Alexa 647-conjugated
phalloidin (Molecular Probes, 1:50). Specimens were mounted with 4',6-diamidino-2-phenylindole
(DAPI)-containing SlowFade Gold Antifade Reagent (Molecular Probes). Images were taken on Leica
TCS-SP8 or Zeiss LSM700 confocal microscopes. Images shown in Fig. 2.1a, S2.1h, i are sum

projections.

2.3.3. Calculation of cell shape anisotropy

To evaluate cell shape anisotropy, | used two calculation method, “cell anisotropy” and “clone-
boundary-oriented cell anisotropy”. Cell anisotropy was calculated from the inertial tensor of each cell
using the positions of the vertices (Fletcher et al. 2013). The anisotropy «i of a cell i is represented by

the length of long axis | and short axis s calculated from the eigenvalues of the tensor:
o =— Eq. (2.1)

Clone-boundary-oriented cell anisotropy c; of a cell i is represented by the product of cell anisotropya;

(Eg. 2.1) and cosine 6;, angle of its long axis relative to the clone boundary edges j:
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¢ =a; < cos2b; >; Eg. (2.2)

where < >j denotes the average for all boundary edges belonging to cell i.

2.3.4. Analysis of cell area and shape in fixed-sample imaging

Positions of vertices (junctions) of wild-type cells located at the clone boundary were manually
extracted with ImageJ or Fiji. Because epithelial cells in the wing disc are columnar in shape, each
vertex was measured at the focal plane of the apical surface, identified by anti-E-cadherin or phalloidin
staining. The cell area was calculated from the positions of the vertices by considering a cell a polygon.

Strength of cell shape anisotropy was calculated using Eq. 2.1 (Fig. 2.1a, b, S2.1h’, 1°).

2.3.5. Live imaging of pupal notum

Live imaging was performed in the pupal notum rather than the wing disc because the notum does not
require ex vivo cultivation and is easy to handle. Cross and offspring were kept at 18°C for 7-9 days
and then subjected to heat shock at 33°C or 34°C for 30 minutes to induce somatic clones. Larvae
were then kept at 18°C. 78.5-81.5 hours or 94-98 hours after heat shock, white prepupae (WPP) were
collected. Collected WPPs were switched to 29°C to express the UAS-YKi:V55111ASI68AS250A transgene,
while WPPs were raised for 8 hours at 18°C and switched to 29°C to express the UAS-Ras"? following
earlier studies (Levayer et al. 2016). The pupae were then imaged at 29°C between 15.5-33.5 hours
(Yki) or 16-27 hours (RasV'?) after temperature shift. Pupae for image acquisitions were prepared
using a modified previously described protocol (Koto, Kuranaga, and Miura 2009) or (Umetsu, Aigouy,
et al. 2014). The pupal case of the staged pupae was carefully removed at the top of the notum. The
exposed notum was placed directly on a coverslip and imaged. The nota close to the scutum region
were taken on Leica TCS SP5 or SP8 confocal laser scanning microscopes. Z-stacks (0.8 pum/slice)
were taken every 4 minutes. Images shown in Figs. 2.2a, a’, b, 2.4c, 2.5¢, S2.4d, e were maximum
projections. For Fig. 2.2a’ and S2.4d, the maximum projection was performed by subdividing the
picture in 256x256-pixel windows to avoid reflecting cuticle wrinkles in the projected image. Tissue-
scale images shown in Fig. 2.2a, a’, 2.4c, S2.4d were processed through the subtract background

function in Fiji.

2.3.6. Cell delamination analysis in live imaging

Temporal change in cell area for apoptotic cells and surrounding cells (Fig. 2.2, 2.4, 2.5, S2.4) was
quantified by segmentation in Fiji plugin Tissue Analyzer (Aigouy et al. 2010; Aigouy, Umetsu, and
Eaton 2016). When cells surrounding a dying cell were delaminated or underwent mitosis during
guantification (40 minutes before until 24 minutes after delamination complete), the contribution of a
single apoptotic event on the captured area of surviving neighbors cannot be precisely determined;

therefore, | excluded the apoptosis event from the quantification analysis. | also exclude apoptosis
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inside of the midline [inside of the two most central lines of sensory organ precursors (SOP)], where
spontaneous cell delamination occurs independently of cell competition. Cell anisotropy (Fig. S2.4a,
b, ¢, g) was calculated using Eg. 2.1. Clone-boundary-oriented cell anisotropy (Fig. 2.2g-h’, 2.5a’, a”,
d’, d”, S2.4¢”) was calculated using Eq. 2.

The normalized frequency of each type of intercalation (Fig. 2.5d’—g’, d”’—g”’) was obtained by
dividing the number of occurrences of each intercalation type by the total number of intercalations
during a single apoptosis event (Fig. 2.5b). When multiple intercalations (T1 transition) and/or T2
transition take place at a time (during a single time interval: 4 minutes), the type of cell intercalations
were distinguished by estimating intercalated edges from the arrangement of cell neighbor relations.
When more than two types of edges are estimated, the probability for occurrences for each
intercalation type was calculated as n/na.. (n: number of estimated edges for a given intercalation type,
naLL: total number of estimated edges). See Fig. S2.4e—f for details. Note that, when additional
intercalations were observed soon after apoptosis (from 16 to 24 minutes after delamination complete),
the cell topologies were not stably determined; therefore, the apoptosis events from the current

intercalation analysis were excluded.

2.3.7. Analysis of cell shape, topology, and delamination in live imaging

Clonal cells were identified in the Tissue Analyzer and projected onto the segmented image (Fig. 2.2a,
a’, 2.4d, S2.4d). Cell anisotropy (Fig. 2.2a, a’ right, “cell-stretch” in “Viewer” tab), side number (Fig.
2.4e, S2.4d, “packing-no cutoff” in “Viewer” tab) and cell area (Fig. 2.4f, S2.4d, “image color coder”
in “Misc” tab) were visualized by Tissue Analyzer. For the plots of normalized area as a function of
side number (Fig. 2.4g, S2.4d’), SOPs and their primary neighbors and pupal midline region were
excluded from the data. In addition, I did not plot data points when the sample number was less than
10. Note that the definition of cell anisotropy in Fig. 2.2a, a’ (see (Aigouy et al. 2010)) is different
from the one shown in Fig. S2.4a, b, c, g (see Eq. 2.1) and Fig. 2.2h, h’, 2.5a’,a”, d’, d”, S2.4g’ (see
Eqg. 2.2).

2.3.8. Statistical analysis

Scatter plots: Error bars represent standard deviation (s.d.) or standard error (s.e.) of the mean as
specified in figure legends. Box plots: The upper/lower hinge and middle line represent the 25%/75®
and 50" percentiles (“boxplot” function in R environment). Statistical test: Fisher’s exact test (two-
sided), Wilcoxon rank sum test (two-sided), Wilcoxon signed rank test (two-sided), Welch’s t-test
(two-sided, normality and homoscedasticity were tested by Kolmogorov-Smirnov test and F-tests,
respectively). Smirnov-Grubbs testing was performed to detect outliers (P-values < 104). Correlation
coefficients and significance test were based on Pearson's product-moment correlation coefficient. All

calculations and plots were performed with Microsoft Excel or R environment.
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2.3.9. Vertex model formulation

The cell-vertex model quantitatively accounts for the packing geometry of normal epithelial cells and
predicts the forces that act at cell-cell interfaces, where cell configurations are described as polygons
whose vertices form tricellular junctions that are subject to mechanical force (Farhadifar et al. 2007;
Gibson et al. 2011; Honda 1983). Cells change their shape based on the force balance of cell packing.
The primary model used here is represented by the ordinary differential equations of the position

vector of each vertex (Gibson et al. 2011):
i—f{ = Fiension T Fpressure = L<jeE(), acF(i)> (Gij (dij — L) + ni—ju) Eqg. (2.3)

E(i) is the set of edges incident to vertex i, and F(i) is the set of faces to which vertex i belongs.
The tensional force Fension IS exerted to a vertex i by the connecting edges between vertices i and j,
where the edge length dj; converges to the preferred length lo. The internal pressure Fpressure i exerted
on a vertex i by the cell face a to which a vertex i belongs, where Fpressure increases as the area of cell
a (A,) decreases and the edge length (dj;) increases. The magnitude of Fension and Fpressure are controlled
by the parameters Gjj and nw, respectively. For all figures in this paper, except for Fig. S2.1f, g, S2.3a—
f, i (examining the parameter dependency) and Fig. S2.2 (using the other model formulation), the
parameter values were set at Gjj= 5, lo=0.0001, and ny= 1. The parameter accounted for cell packing
geometry in Drosophila (Fig. S2.1a, b), and did not dramatically affect the emergence of cell
deformation due to differential proliferation rates (Fig. S2.1f, g, S2.3a—b) or asymmetric area
expansion induced by apoptosis (Fig. S2.3c, e, i).

To test validity of the numerical results independent of the model details, 1 also examined
another vertex model (Farhadifar et al. 2007) assuming three types of forces, Farea elasticity, Ftension, and
Feontractility:

dx; 0E
dt _ !areaelastisity + Ftension + Fcontractility = T 3

) .- - , i Eq. (2.4)
E=ZYalag =1+ A% 5 lij + 5 ala

The area elasticity Farea elasticity IS €xerted on a vertex i by the face « to which a vertex i belongs, where
area of cell o (a,) approaches the normalized preferred area of unity. The tension Fiension iS exerted on
a vertex i by the connecting edges between vertices i and j, where Feension increases as the edge length
between vertices i and j (lij) increases. The contraction Feontractility 1S exerted to a vertex i by the
contractility of cell perimeter I,, which is provided by actomyosin contractile force. The parameters
were setto A = 0.06 and I = 0.02 (Fig. S2.1a, b, and S2.2).

Both models (Eq. 2.3 and Eq. 2.4) were integrated numerically using the Euler method with
free boundary conditions. To achieve a mechanical equilibrium of tissue state, the position vector of

each vertex was calculated after each step until the total velocity of all vertices dropped below a
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threshold of 1.0. Cell intercalation was incorporated when edges with a length below the threshold
0.001 were maintained for 8.3x10* normalized time [/loser cell cycle], noting that the intercalation
during apoptotic cell delamination was introduced independent of this rule (see Section “Apoptosis

simulations”).

2.3.10. Proliferation in simulations
Each cell divides when the residence time t in the cell cycle becomes zero. Total duration of cell cycle
obeys gamma distribution with the following probability densities:

k
exp(—3)

— t+k—-1

where I'(k) is the gamma function with k = 25.0, following an earlier report (Wartlick et al. 2011).
The average and the standard deviation are given by T and T/Vk, respectively, with T = 6 for slower
dividing cells (T;,,,). In case of the differential proliferation, the average cell cycle of slower dividing
cells (Ty0,) divided by that of faster dividing cells (%) represents a ratio of the division rates of
clones (i.e., m/m). The simulation time is represented in normalized time [/loser cell cycle],
which is divided by T, (loser cell cycle). Although the cell area decreases to half of the original
cell area after cell division, it increases subsequently as the cell achieves mechanical equilibrium,
following the model formulations (Eq. 2.3 and Eq. 2.4). The orientation of the mitotic cleavage plane
obeys the long axis rule (Gibson et al. 2011), where the plane passing through the shorter axis is
defined by calculating inertial tensor of each cell using the position of the vertices (Fletcher et al.
2013).

2.3.11. Apoptosis in simulations

For apoptotic cell delamination, several cell intercalation (T1) events were introduced sequentially
(Levayer et al. 2016; Marinari et al. 2012) to incorporate the loss of junctional neighbors (1
intercalation / 1.7x10- normalized time [/loser cell cycle]). As the apoptotic cell becomes triangular
in shape, it is eliminated by the T2 transition (Farhadifar et al. 2007; Honda 1983). The intercalation
was preferentially introduced on the shorter edge of the apoptotic cell, following the probability P;
(except for Fig. 2.6b and Fig. S2.6b, b’):

e Bl

= Zje_Blj

P, Eq. (2.6)

where |; and g are the length of edge i and a parameter, respectively. The denominator is a
normalization factor of summation of every edge j in an apoptotic cell. P; for each edge was
recalculated at every time before intercalation. The parameters were set to 5 = 10 for (Eq. 2.3; except
for Fig. 2.7, randomized intercalation) and 8 = 9.4 for (Eq. 2.4) to ensure equal probability between of

two formulations. For randomized intercalation in Fig. 2.7, | set 5 = 0 to provide the same probability
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for any edge with variable length. Vertex model parameters (Gj and ny in Eg. 2.3) during the
delaminating process were kept constant (delamination type 1), except for delamination type Il in Fig.
S2.3d-f. In delamination type Il, apical surface of dying cells shrink rapidly by increasing the line
tension parameter Gjj (Eqg. 2.3) and/or decreasing the pressure parameter ny (Eq. 2.3) before repeated
cell intercalation. For the repetitive induction of apoptosis into multiple loser cells in Fig. 2.7, S2.7,
apoptotic cells were randomly selected from a target region of slower dividing cells. A single apoptosis

event occurred every five cell divisions in faster dividing clones.

2.4. Results
2.4.1. Differential proliferation induces local anisotropic distortion in slower dividing cells at the
clone boundary and compression in faster dividing cells

To examine the cellular interaction during cell competition from a geometric perspective, clones of
green fluorescent protein (GFP)-expressing Hippo pathway-mutant cells (winners; wts*!) that rapidly
proliferate and outcompete surrounding normal cells (losers; wild-type) in Drosophila wing discs
(Tyler et al. 2007) was induced in collaboration with my colleague, Y. Sando. Quantitative image
analysis of apical cell shapes revealed two geometric alterations. First, wild-type cells directly adjacent
to wts*! clones showed significantly larger anisotropic distortions (Fig. 2.1a, orange) than those
directly adjacent to wild-type control clones (Fig. 2.1a, blue and 1b; see Methods for the fly strains
and cell anisotropy definition), which was consistent with earlier reports (Legoff et al. 2013; Mao et
al. 2013). Second, the apical cell area of wts** clones was smaller than that of wild-type clones (Fig.
2.1c), indicating that Hippo pathway-mutant cells surrounded by wild-type cells are packed at a higher
density.

I next examined whether the ectopic induction of over-proliferating cells was sufficient to cause
these two geometric alterations (Fig. 2.1b, c) in the vertex model. The vertex model is widely used to
study mechanical deformation of multicellular tissue in response to cell bond tension and apical area
contraction (Farhadifar et al. 2007; Fletcher et al. 2013; Gibson et al. 2011; Honda 1983; Lee and
Morishita 2017) (Eqg. 2.3 in Methods, Fig. S2.1a, b). | introduced two clonal cell populations with
different division rates into the model (Fig. 2.1d, Fig. S2.1c). | confirmed anisotropic deformation of
slower dividing cells localized at the clone boundary (Fig. 2.1d middle, 1e, Fig. S2.1d), which is
consistent with the wild-type cells directly adjacent to the wts*! clone in the Drosophila experiment
(Fig. 2.1b) and earlier simulation studies (Mao et al. 2013; Pan et al. 2016). In addition, faster dividing
cells were smaller than surrounding slower dividing cells (Fig. 2.1d bottom, 2.1f, Fig. S2.1e), similar
to the wts*! cells in the Drosophila experiment (Fig. 2.1c). These results were consistent irrespective
of different mechanical parameter values (Fig. S2.1f, g) or formulations (another often used type Eq.
2.4; Fig. S2.2a—c). These deformations were never observed when two cell populations had identical

division rates (Fig. 2.1d, leftmost), and they were more apparent with greater differences in cell

27



division rates (Fig. 2.1e, ). These simulations suggest that differential proliferation rates are sufficient
to reproduce two geometrical alterations in the Drosophila epithelium (Fig. 2.1b, c).

I also examined the anisotropic cell deformation in the setting of differential tension between
clonal and non-clonal cells since juxtaposition of wild-type and aberrant cells often affects junction
mechanics (Bielmeier et al. 2016; Bosveld, Guirao, et al. 2016). In silico experiments with all tension
conditions showed that slower dividing cells at the clone boundary always exhibited higher anisotropy
than those with identical proliferation rates (Fig. S2.3a—b), demonstrating that differential tension does
not have considerable influence on the cell anisotropy. Consistently, in vivo observation showed that
the wild-type cell anisotropy beside clone was maintained even under modulation of junction
contractility or adhesion in Hippo pathway mutant clones (Fig. S2.1h-i). Collectively, these results
suggest that localized over-proliferation induces anisotropic deformation in slower dividing cells at

the clone boundary under differential tension.

2.4.2. Winner cells expand into spaces originally occupied by apoptotic loser cells with higher
cell anisotropy
Live imaging of cell competition was performed (Bove et al. 2017; Kajita et al. 2014; Levayer et al.
2016, 2015; Ohsawa et al. 2011) in the Drosophila pupal notum to examine how space previously
occupied by apoptotic loser cells is replaced. | induced faster dividing winner clones overexpressing
an activated YKi (UAS-YKki:V5SH1HASIBAS250A. hereafter called YKi clones) (Oh and Irvine 2009), a
transcriptional co-activator that acts downstream of the Hippo pathway (Fig. 2.2a left). | observed that
wild-type loser cells near YKki winner clones progressively took on anisotropic shapes (Fig. 2.2a, right,
Fig. S2.1j), especially those between the Yki clones. The wild-type loser cells were subsequently
eliminated from the tissue (Fig. 2.2b) by sequential cell intercalations from the shorter edges of a dying
cell (Fig. 2.2c, d). Upon repetitive loser apoptosis, compacted YKki winner cells, which might be due
to their rapid proliferation, appeared progressively larger. At the level of individual apoptosis, winner
cells adjacent to apoptotic cells selectively replaced the space originally occupied by apoptotic loser
cells through cell expansion; the area of faster dividing winner cells surrounding a dying cell increased,
whereas the change in the area of slower dividing loser cells was negligible (Fig. 2.2e, f). In
collaboration with my colleague, D. Umetsu, | examined another oncogenic winner-clone induced by
an activated form of Ras (UAS-Ras"?), which proliferates rapidly and outcompetes surrounding wild-
type cells in Drosophila (Karim and Rubin 1998; Levayer et al. 2016). The Ras'*? winner cells also
expanded to compensate for wild-type loser cell apoptosis (Fig. 2.2a’, d’, f*). The compensatory cell
expansion of winners following apoptosis was unexpected considering the accepted hypothesis that
lost territory is replaced as a result of winner-cell proliferation (Di Gregorio et al. 2016; Levayer and
Moreno 2013; Pellettieri and Alvarado 2007; Tamori and Deng 2011). Moreover, | found that the

winners’ expansion was mediated by the anisotropic deformation of dying loser cells (Fig. 2.1b); the
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acquired area of Yki or RasV*? winner cells positively correlated with anisotropy of dying loser cells
(Fig. S2.4a, g) that were oriented in parallel to the clone boundary (hereafter I call “clone-boundary-
oriented anisotropy”; Fig. 2.2g, h, h’, Fig. S2.4g”).

I then applied a vertex model to determine whether winners used cell expansion to compensate
for the volume lost after apoptosis of anisotropic loser cells. | incorporated apoptosis into the
simulation based on the following experimental observations (Fig. 2.2): (1) the target of apoptosis was
slower dividing cells directly adjacent to faster dividing clones, (2) dying cell removal was induced
by junctional loss due to sequentially introduced cell intercalations (Levayer et al. 2016; Marinari et
al. 2012) from the shorter edges of dying cells (Fig. 2.3a, see Methods for the settings to simulate
apoptosis). Consistent with the previous experiments, the surrounding winner cells dominated
expansion following apoptosis (Fig. 2.3b). This winner-cell expansion was repeatedly observed in
independent simulations that separately induced apoptosis in each individual loser cell at the clone
boundary under differential proliferation rates (Fig. 2.3c, Fig. S2.5a), but it did not occur in the setting
of identical proliferation rates (Fig. 2.3¢’, Fig. S2.5a). This winner-cell expansion was consistently
observed in several different model setups [formulation (Eq. 2.4; Fig. S2.2d), delamination process
(Fig. S2.3d-f), and differential tension conditions in clonal and non-clonal cells (Fig. S2.3c)].
Moreover, consistent with in vivo experiments, the rapidly dividing winner cells increasingly expanded
as clone-boundary-oriented anisotropy of dying loser cells increased (Fig. 2.3d, Fig. S2.2e, ¢’, S2.39).
I note that the rapid proliferation of winners in itself was not directly involved in the compensation
process following apoptosis, because winner cells took over the territory of apoptosis despite ceasing
all cell proliferation during the apoptotic simulation (Fig. S2.3i). Therefore, | concluded that the
emergent property under differential proliferation (i.e., local anisotropic distortion of apoptotic loser
cells (Fig. 2.1)), rather than differential proliferation in itself, has a key role in the compensatory

expansion of winner cells.

2.4.3. Local topological change near apoptosis accompanies winner-dominated cell expansion

I then focused on cells immediately adjacent to an apoptotic cell to examine their contribution to
winner-dominated cell expansion, because the territory lost to apoptosis was primarily occupied by
the immediate neighbors, and cells located more than two cell distances away from the apoptotic cell
acquired much smaller area (Fig. S2.3h, h’). I initially hypothesized that rapid winner-cell expansion
was the result of a local compression difference between winner and loser cells surrounding the
apoptosis (compression hypothesis; Fig. 2.4a), because more compressed cells (Fig. 2.1c, f) may
generate stronger outward pushing forces that are enough to increase their cell area. To address this
hypothesis, | tested whether compressed smaller cells adjacent to apoptosis were more likely to expand
than larger cells. This hypothesis, however, seems not to be the case, because | observed that the cell

area before apoptosis and their acquired area after apoptosis only correlated weakly, both in silico (Fig.
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2.4a’) and in in vivo experiments with Yki and RasV'? (Fig. 2.4a”, a’’). Additionally, in simulation,
winner cells still took over the territory of apoptotic losers even if the tissue-scale pushing forces
globally generated by release of winner-clone compression was suppressed during apoptosis by
reducing the pressure parameter of all cells in winner clone (Fig. S2.3i). These results suggested that
local and global compression was insufficient to drive the process of rapid compensatory expansion
of winner cells, while winner compression was required for anisotropic deformation of loser cells (Fig.
2.1).

As another hypothesis that locally mediates expansion, | focused on changes in local cellular
connectivity (cell topology) driven by junctional remodeling (cell intercalation) upon apoptosis (Fig.
2.2b, 2.3a). In epithelial cells in non-competitive tissue, there is a positive correlation between cell
area and the side number representing local cellular connectivity (Lewis’s law; Fig. S2.1b) (Farhadifar
et al. 2007; Heller et al. 2016; Lewis 1928). Based on this Lewis’s law, an increase or decrease of
side/edge number in each cell adjacent to apoptosis would be associated with cell area expansion or
contraction (topology hypothesis; Fig. 2.4b). I first confirmed that both winner (Yki or RasV'?) and
loser (wild-type) cells in competitive tissues obey this law (Fig. 2.4¢c—g, Fig. S2.4d, d”), similar to non-
competitive normal tissue. | then examined the topological changes following apoptosis and found
that cells adjacent to apoptosis showed a strong positive correlation between the captured area and
change in side number after apoptosis both in silico (Fig. 2.4b’) and in in vivo experiments with YKi
and RasV*? (Fig. 2.4b”, b>’). This suggests that cell intercalations during delamination lead to
simultaneous increases in the side number and area of winner cells. These results prompted us to

further test the topology hypothesis as a possible mechanism for winner-cell compensatory expansion.

2.4.4. Occurrence of directionally biased cell intercalation upon apoptosis correlates with
winner-specific increase in cell area.
To understand how intercalations following apoptosis selectively increase winner side number and
area, | first analyzed where cell intercalations took place relative to the clone boundary. Pupal notum
junctions are reportedly subject to stochastic fluctuations of edge length that trigger cell intercalations
by chance as edge lengths decrease to zero (Curran et al. 2017). This framework suggests that shorter
junctions are more likely to undergo intercalation, and in vivo observations consistently showed a
higher probability of intercalation at shorter edges (Fig. 2.2d, d”). In anisotropic dying cells caused by
differential proliferation rates (Fig. 2.1), edges perpendicular to the clone boundary were shorter than
other edge types (Fig. 2.5a, a’, a”, Fig. S2.4b, S2.5b; see Fig. 2.5b for edge classification), suggesting
that these perpendicular edges were more likely to be eliminated by cell intercalation. Indeed, both in
silico and in vivo experiments with Yki and RasV? indicated that cell intercalation likely occurred in
a manner to eliminate the perpendicular edges (perpendicular intercalation) during anisotropic loser
cell delamination (Fig. 2.5d, d’, d”, Fig. S2.2f, f’, S2.4c, S2.5c¢; see Fig. 2.5b, c, Fig. S2.4e—f for the
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definition of normalized frequency of cell intercalation). Moreover, the increased frequency of
perpendicular intercalation during an apoptotic event increased the side number and area of winner
cells after apoptosis, but not that of loser cells (Fig. 2.5g, g’, g, Fig. S2.2i, S2.4h”, S2.5f). | did not
observe this effect for the two other types of intercalation that occurred at boundary and non-boundary
edges (Fig. 2.5e—f, Fig. S2.2g, h, S2.4h, h’, S2.5d, ). Thus, perpendicular intercalation frequency
during each apoptosis event uniquely correlates with selective increases in winner side number and

occupied area.

2.4.5. Perpendicular intercalation directly drives winner-compensatory cell expansion

I next asked how the perpendicular intercalation selectively drives winner-cell expansion. Of the four
cells involved in intercalation upon apoptosis (one dying cell and three surviving cells; Fig. 2.6a,
upper), two surviving cells gain a single side, whereas the other surviving cell and the dying cell each
lose a side after an intercalation event (Fig. 2.6a, upper). Based on this rule, 1 comprehensively
calculated topology changes (side number) in winner and loser cells for all geometrically possible
intercalations (Fig. 2.6a, lower). Notably, perpendicular intercalation uniquely increases winner-cell
side number, whereas boundary and non-boundary intercalations mainly increase for loser cells. In
silico experiments were performed to determine whether perpendicular intercalation is sufficient to
drive winner-dominated cell expansion. In the simulation, I introduced a directionally biased event of
boundary, non-boundary, or perpendicular intercalation upon apoptosis under identical proliferation
conditions (Fig. 2.6b, Fig. S2.5i) where intercalation is typically unbiased (Fig. S2.5g, h). This allowed
us to examine the contribution of directionally biased intercalation to winner-cell expansion (topology
hypothesis; Fig. 2.4b) in the absence of winner compression (compression hypothesis, Fig. 2.4a). By
introduction of biased perpendicular intercalation during apoptosis, clonal cells directly in contact with
apoptosis consistently increased both their side number and area averaged for each apoptotic event,
whereas non-clonal cells in direct contact with apoptosis did not (Fig. 2.6b, right). In contrast, neither
side number nor area of clonal cells increased upon the prioritized induction of boundary and non-
boundary intercalations (Fig. 2.6b, left and middle). This indicates that frequent perpendicular

intercalation upon apoptosis directly increases side number and area in winner cells.

2.4.6. Repetitive topological change by perpendicular intercalation accelerates tissue-scale
occupation by winners

Finally, 1 examined the long-term topological change upon sequential induction of apoptosis in

multiple loser cells at clone boundaries (Fig. 2.7a). After simulating repetitive apoptosis where

intercalations occur from shorter edges according to in vivo regular rule as shown in Fig. 2.2d, d’,

winner clones took over almost 100% of the total cell area that was lost to apoptosis (Fig. 2.7d, purple),

and consequently, winner cells spread more rapidly than in the absence of apoptosis (middle and left
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panels of Fig. 2.7b; Fig. 2.7¢, purple and black). This long-term expansion of winner cells was ensured
by stably maintaining anisotropy of loser cells during multiple apoptosis events (Fig. 2.7¢e) in which
loser cells that were newly faced with clone boundaries after apoptosis subsequently became
anisotropic (Fig. S2.6). Due to the maintenance of a high-degree of cell anisotropy, the frequency of
perpendicular intercalation remained high during apoptosis (Fig. 2.7f). This allowed winner cells at
the outermost layer of the clone persistently increased their side number and area for a long-term
during clone development (Fig. S2.7a—c). Additionally, winner cells inside clones (i.e., more than two
cell distances away from the clone boundary) also slightly expanded on a longer time scale (Fig. S2.7e,
inside) without changing side number (Fig. S2.7d, inside), possibly due to an accumulation of minor
relaxations of mechanical compression (Fig. S2.3h, acquired area of winner cells localized to two- or
three cells away from apoptotic cells). I note that this increase in cell area by mechanical relaxation
was relatively modest compared to the dramatic area expansion as a result of cell topological change
at the clone border (Fig. S2.7d, e). These results suggest that topological change driven by frequent
perpendicular intercalation is still critical for long-term winner-clone spreading. Accordingly, |
incorporated random directionality into intercalations following apoptosis under differential
proliferation rates to assess whether winner-clone spreading is disrupted by the unbiased occurrence
of three intercalation types (randomized intercalation; right panels of Fig. 2.7b). | found that clone
spreading speed was reduced (Fig. 2.7c, light-blue) due to equal and simultaneous increases in the side
number and cell area of both winner and loser cells (Fig. S2.7b, ¢ bottom panel). As such, the net
increase in winner-clone area after loser apoptosis was reduced to approximately 50% of the total area
lost to apoptosis (Fig. 2.7d, light-blue), confirming that topological change at the clone boundary
significantly contributed to winner-clone spreading.

Because topological change due to apoptosis is limited to cells in direct contact with apoptotic
cells, loser death restricted nearby winner clones, as seen in many cell competition systems (Amoyel
and Bach 2014), would promote winner-clone spreading. | examined in silico whether the restricted
death actually improves winner expansion by comparing it to a scenario in which apoptotic cells were
spatially scattered in slower dividing cell population. | found winner clones most effectively occupied
the apoptotic territory when loser apoptosis was restricted to the clone boundary (Fig. S2.7f-h, up to
1-cell distance). On the other hand, occupation efficiency was reduced when apoptosis had a more
scattered spatial distribution (Fig. S2.7f-h, up to 3- or 5-cell distance), and further dropped down to
baseline (no apoptosis) when death had a completely random distribution (Fig. S2.7f-h, all slower
dividing cells). Collectively, | can conclude that repetitive cell topology changes due to frequent

perpendicular intercalation at the clone periphery accelerates tissue-scale occupation by winner cells.

2.5. Discussion
It has long been acknowledged that loser apoptosis is limited to within several cell diameters away
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from winner clones in many cell competition systems (Amoyel and Bach 2014). However, it was
unclear how this localized apoptosis influences subsequent winner tissue occupation. Here, | showed
that localized apoptosis adjacent to the clone boundary efficiently accelerates winner-clone expansion
through cell topological changes, indicating that regulating topology might have a major contribution
to tissue takeover by winners (Fig. 2.7, Fig. S2.7). | also identified the mechanisms underlying these
topological alterations (Fig. 2.7g): Anisotropic loser cells driven by localized overgrowth (Fig. 2.1)
undergo apoptosis, producing a non-cell-autonomous increase in the side numbers and areas of
surrounding winner cells (Fig. 2.2, 2.3). Such selective winner expansion is regulated by directionally
biased cell intercalation (Fig. 2.5, 2.6), which occurs as a consequence of perpendicular edge
shortening in anisotropic apoptotic cells (Fig. 2.2d, d’, 2.5a, a’, a’). Although polarized actomyosin-
dependent mechanical tension is well known to bias intercalation direction in many morphogenetic
processes (Guirao and Bellaiche 2017; Heisenberg and Bellaiche 2013), the Hippo pathway mutant
clone in the Drosophila epithelium did not accumulate myosin Il or increase tension at the radial
junction (i.e., perpendicular edge), but did at the circumferential junction (i.e., non-boundary edge) of
wild-type cells surrounding clones (Legoff et al. 2013; Mao et al. 2013). The compensatory expansion
of winner cells upon apoptosis should therefore be achieved by stochastic junction loss at the shorter
perpendicular edges rather than greater tension due to active myosin enrichment.

In addition to perpendicular intercalation, theoretical analysis indicates that a specific boundary
intercalation subtype increases winner-cell side number and area following apoptosis (top row of Table
in Fig. 2.6a). Because the subtype only occurs when all surviving cells involved in the intercalation
were winners, it should be frequent when an apoptotic cell shares more sides with winner cells. This
situation in which the boundary intercalation subtype is more frequent than perpendicular intercalation
might be rare in YKki- or Ras-activating clones with fewer shared sides due to cell sorting (Bosveld,
Guirao, et al. 2016), but frequent in Myc- or Minute-dependent competition, where winner and loser
cells actively mix to increase their shared sides (Kale, Rimesso, and Baker 2016; Levayer et al. 2015;
Li et al. 2009). Moreover, regarding the expansion process, intercalation-mediated space filling does
not require cell division (Fig. S2.3i). This fact is supported by live notum imaging that shows winner
expansion even after growth arrest. Therefore, intercalation-mediated winner expansion might
contribute to the competition scenario without proliferation (e.g., post-mitotic tissue (Tamori and Deng
2013)). Future examination of the relative contributions of intercalation subtypes in various cell
competition scenarios would clarify the topological dynamics that lead to selective winner expansion.

Given the knowledge that a striking increase in cell apical area stimulates proliferation through
feedback regulation by mechanical signaling pathways in hon-competitive tissue (Aragona et al. 2013;
Gudipaty et al. 2017), | expected that the dramatic increase in winner-cell area that follows loser
apoptosis (Fig. 2.7b) would facilitate winner proliferation. As such, the increase in cell area by

topological change is transformed into the increase in cell number, which could further accelerate
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long-term clone expansion. It was recently suggested that mechanical or morphological consequences
of cell loss affect the division orientation of winner cells, which colonize lost territory (Kale et al.
2016; Li et al. 2009). Therefore, examination of the contribution of positive feedback on winner
division rate and orientation in silico (Lee and Morishita 2017) and in vivo would provide a more
comprehensive understanding of winner-clone spreading. Although it was difficult to detect this
positive feedback effect on cell division with live imaging in notum, due to growth arrest during
terminal differentiation, it will be interesting to monitor the contribution of cell expansion to division

in actively growing tissue.
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2.6. Figures
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Fig. 2.1. Differential proliferation induces local anisotropic distortion in slower dividing cells at
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the clone boundary and compression in faster dividing cells.

(a) Apical cell-cell junctions are marked by E-cad in the hinge region of Drosophila wing discs in
representative clones: green fluorescent protein (GFP)—expressing cells are wild-type (WT clone, left)
and wts* (wts*! clone, left) cells, respectively, whereas non-GFP-expressing cells are wild-type cells
(WT clone and wts*! clone, left). Scale bar, 10 pum. Wild-type cells directly adjacent to the GFP-
expressing clones were extracted, with black vertices representing tricellular junctions at the clone
boundary and bars representing cell anisotropy (WT clone, right, blue and wts*! clone, right, orange).
The samples were prepared by Y. Sando and imaged by Y. Sando and me. (b) Left: The distribution of
cell anisotropy directly adjacent to wild-type and wts*! clones. Right: The fraction of cells whose
anisotropy value is greater than 0.38. This threshold value was ranked in the top 5% of the value in
the case inducing wild-type clones. Fisher’s exact test was performed. (c) Plot of apical area of non-
GFP-expressing (gray) and GFP-expressing (green) cells at the clone boundary normalized to the
average area of the non-GFP-expressing cells. Wilcoxon rank sum testing was performed. (d) Top:
Close-up images of simulated clone at the indicated division rate ratios [clone (green) / non-clone
(white)] when the number of clonal cells (green) is 1000. Middle: Anisotropy of non-clonal cells (top,
white) along the clone boundary in the same field. Bottom: Cell area of clonal cells (top, green) in the
same field. (e, ) Average anisotropy of non-clonal cells along the clone boundary (e) and average area
of clonal cells directly adjacent to the clone boundary (f) were plotted as a function of the division rate
ratio. Simulation setup is identical to panel d. Error bars represent s.d. for 10 clones simulated at each

division rate ratio. a.u., arbitrary unit.
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Fig. 2.2. Winner cells expand into spaces originally occupied by apoptotic loser cells with higher
cell anisotropy in Drosophila.

(a, a”) Left: Z projection of a snapshot (22.47 hours after Gal4-mediated transcription activation) taken
during live imaging of pupal notum (anterior direction along the anterior-posterior axis is upward)
with adherens junctions (indicated by E-cad::GFP; magenta) and clones overexpressing
YKi:\VV5SHIASIBASZ0A (green, a: y, w, hs-flp; DE-Cad::GFP; Act>CD2>GAL4, UAS-CD8.mCherry x
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P{tubP-GAL80ts}20; UAS-Yki:V5S1ASI68ASZS0A) or RasV12 (green, a’: y, W, hs-flp; DE-Cad::GFP;
Act>CD2>GAL4, UAS-CD8.mCherry x P{tubP-GAL80ts}20; UAS-RasV12). Right: Image
segmentation based on adherens junction localization shown in left panel. Strength and orientation of
cell anisotropy (Aigouy et al. 2010) are indicated by brown. The sample preparations and imaging
were done by me for (a) and D. Umetsu for (a’). For both panels (a, a’), investigation of experimental
conditions and constructions of fly lines were performed by me. (b) Time course of a loser
delamination through repeated cell intercalations (known as D1-type delamination [7,20]). Schematic
drawings (lower panels) represents intercalations (o, ®, A, A). Fly genotype is the same as in a. (c)
Schematic of cell intercalation (T1 transition) and T2 transition. (d, d’) Cell intercalation probability
as a function of edge length in dying cells 40 minutes before completion of apoptosis next to clones
overexpressing YKki:\VV/5SHIASIB8AS20A (d) or RasV? (d’). Each edge length was normalized to the
averaged edge length of its belonging dying cell. Cell intercalation probability was determined
whether intercalation occurred (probability = 1) or not (probability = 0) (see more details in Fig. S2.4e—
f). Each black point represents data calculated from a single cell intercalation event. Red dots represent
binning of the averaged cell intercalation probability for every 0.3 normalized edge lengths. Error bars
represent s.e. (€) Temporal change in cell area subtracted from value observed 40 minutes before
delamination complete [Time = 0 (min)] was plotted for adjacent UAS-YKki:V5S1HASIBAS250A (thin green
line), wild-type cells (thin gray line) and an apoptotic cell (magenta line) in (b). The averaged acquired
area is shown for faster (thick green line) and slower (thick black line) dividing cells. (f, £?) Box plots
of acquired area after apoptosis, which was obtained by averaging temporal change in cell area (e,
thick lines) from 16 to 24 minutes after delamination complete, upon induction of clones
overexpressing YKi:VV5S111ASI68AS250A (f) or RasVi2 (). The upper and lower hinges and middle line
represent the 25%, 75M and 50" percentiles, respectively. White Xs represent the averaged value.
Wilcoxon signed rank testing was performed after excluding a dataset of outlier [a red dot in (f’, Ras)]
detected with the Smirnov-Grubbs test. All subsequent Ras analyses were performed excluding the
outlier dataset. (g) Schematic of clone-boundary-oriented cell anisotropy (Eg. 2.2 in Methods), which
considers both anisotropy strength (a; Eq. 2.1) and its orientation relative to the clone boundary ().
(h, h’) Acquired area after apoptosis (f, f”) was plotted as a function of the clone-boundary-oriented
anisotropy of apoptotic cells (Eq. 2.2 in Methods) 40 minutes before delamination completion and
upon induction of clones overexpressing YKki:\/55111ASI68AS250A () or RasV1? (h”). Error bars represent

s.d. for data collected 16 to 24 minutes after delamination completion.
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Fig. 2.3. Winner cells expand into spaces originally occupied by apoptotic loser cells with higher
cell anisotropy in simulations.

(a) Time course of an apoptotic delamination with repeated cell intercalation (o, ®, A, A). Apoptosis
(magenta) was induced in a slower dividing cell (white) directly adjacent to the clone boundary when
the number of faster dividing cells (green) was 1000. (b) Temporal change in cell area subtracted from
pre-apoptosis value (normalized time [/loser cell cycle] = 8.3x10-%) was plotted for adjacent faster
(thin green line), slower (thin gray line) dividing cells and an apoptotic cell (magenta line) in a. The
averaged acquired area for faster (thick green line) and slower (thick black line) dividing cells is shown.
The step-like decreases in apoptotic cell area indicate six intercalation events. (¢, ¢’) Differential (c)
and identical (c”) proliferation rates. Left: Displacement of cells surrounding apoptotic cell at the time
before and after apoptosis is shown by arrows; the ends of the arrows show the position of cell

centroids at normalized time [/loser cell cycle] = 8.3x102 (tail end of arrow) and 2.5x10-2 (arrowhead).
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The displacement of clonal cells (green) was oriented toward the apoptotic cell (magenta) with
differential proliferation rates (c) and randomly oriented with identical proliferation rates (c’). Middle:
Overlay of pre- and post-apoptotic images at normalized time [/loser cell cycle] = 8.3x103 (light gray)
and 2.5x102 (dark gray), respectively. Right: Averaged acquired area (b, thick lines) after apoptosis
completion (normalized time [/loser cell cycle] = 2.5x10?) when apoptosis was independently
introduced into all non-clonal cells (white) directly adjacent to clone boundary. Wilcoxon signed rank
testing was performed after excluding datasets of outliers [three and four red dots in upper and bottom
panels, respectively] detected with the Smirnov-Grubbs test. Subsequent simulation analyses were
performed excluding the outlier datasets. (d) Averaged acquired area after apoptosis (c, right) plotted
as a function of clone-boundary-oriented anisotropy (Eg. 2.2 in Methods) of apoptotic cells
immediately before cell death (normalized time [/loser cell cycle] = 8.3x103). As shape anisotropy of
apoptotic cells increased, the dominance of winner-cell expansion became more pronounced. The
division rate ratio (green/white) = 3 for (a, b, ¢, d) and 1 for (c’).
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Fig. 2.4. Two hypothetical mechanisms of winner-dominated cell expansion

(a) Compression hypothesis. Compressed, faster dividing winner cells (green) should occupy the space
left by the apoptotic cells (magenta) because the apical area of these compressed cells is smaller than
their preferred area. Therefore, the winner cells (green) are more likely than the non-compressed loser
cells (white) to expand when space becomes available. (a’, a”, a’’) Compression hypothesis testing
(a). Area acquired by individual surviving cells directly in contact with apoptotic cells as a function of
initial pre-apoptotic area of the surviving cells, which reflects degree of mechanical compression. The
pre-apoptotic area was measured at a normalized time [/loser cell cycle] = 8.3x102 in silico (a”) and
40 minutes before apoptosis completion in vivo [YKki:VV/5SH1HASIE8AS250A (3 'RasV1? (a>)]. Temporal
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average of the acquired areas of cells directly in contact with apoptosis and s.d. (error bars) in vivo
were calculated 16-24 minutes after apoptosis completion. See the definition of acquired area for Fig.
2.2e or 2.3b (thin lines). Corr. coef., Pearson correlation coefficient. (b) Topology hypothesis. Winner-
specific increase in number of cell sides should lead to takeover of the space left by the apoptotic cells
(magenta) according to Lewis’s law (Lewis 1928). The numerals indicate the number of cell sides. (b’,
b”’, b>*) Topology hypothesis testing (b). Area acquired by individual surviving cells directly in
contact with apoptotic cells as a function of side number change, which was calculated by subtracting
the initial side number {normalized time [/loser cell cycle] = 8.3x107 in silico (b”), 40 minutes before
apoptosis completion in vivo [YKki:VV/5S11IASI68AS250A (b)Y RasVi2 (b™°)]} from the final side number
[normalized time [/loser cell cycle] = 2.5x1072 in silico (b’), average for 16-24 minutes after apoptosis
completion in vivo (b, b’”)]. The y-axis value is the same as that in (a’, a”, a’”’). Corr. coef., Pearson
correlation coefficient. (c) Z projection of a live pupal notum upon induction of clones overexpressing
YKi:\VV5SHIASIBASZ0A (25 hours after Gal4-mediated transcription activation). Fly genotype and
image frame is the same as in Fig. 2.2a; the anterior direction is upward. (d) Image segmentation for
adherens junctions shown in c. Green and gray cells represent YKki-overexpressing and wild-type cells
at clone boundary, whereas light green and white cells represent YKki-overexpressing and wild-type
cells located two cell distances or more away from clone boundary. (e, f) Side number (e) and area (f)
of each cell shown in c are indicated by colors. White line represents clone boundary. (g) Averaged
area of cells with n-sides (An) normalized by that of all cells for each cell category (A) (i.e. An/A where
<> denotes the population average) at 25-26 hours after Gal4-mediated transcription activation. Cells
were classified into four categories: green and gray solid lines are Yki-overexpressing and wild-type
cells, respectively, at the clone boundary (green and gray cells in d), whereas green and gray broken
lines are Yki-overexpressing and wild-type cells, respectively, located at a distance of two cells or

more away from the clone boundary (light green and white cells in d). Error bars represent s.e.
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Fig. 2.5. Topological change by directionally biased cell intercalation upon apoptosis correlates
with winner-specific increase in cell area.

(a, a’, a”) The length distribution of three types of edges introduced in (b, inset) as a function of
anisotropy of an apoptotic cell before death. The x-axis values are the same as that in Fig. 2.2h, h’ for
experiments and in Fig. 2.3d for simulation. The y-axis values of experiment [YKi:\/55111AS168A,5250A

(a”), RasV!? (a”)] are the same as those in the x-axis of Fig. 2.2d, d’. (b) A calculation example for the
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“normalized frequency of cell intercalation” for each type used in d—g”. Green circled numbers 1, 2,
and 3 indicate clonal cells, whereas black circled numbers 4, 5, and 6 indicate non-clonal cells. The
normalized frequency was calculated by dividing the sum of the probability of each intercalation event
by the total number of intercalation events. The classification of edges was determined each time after
an intercalation. Inset: Classification of edges belonging to apoptotic loser cells (right, magenta cell).
Boundary edge (red): edges on the clone boundary. Non-boundary edge (orange): edges between the
two vertices, neither of which are at the clone boundary. Perpendicular edge (blue): edges located
perpendicular to clone boundary. (c) Examples of three types of cell intercalation, which are classified
according to the types of disappearing edges (b, inset), in pupal notum. Fly genotypes are the same as
in Fig. 2.2a. (d, d’, d”) Normalized frequency of three intercalation types observed in a single
apoptosis event as a function of anisotropy of an apoptotic cell before death. The x-axis values for
simulation (d) and experiment [Yki:\/55111ASI68AS250A (4*) RasV1? (d”)] are the same as in (a, a’, a”).
(e,e’, e, f, £, 1, g, g, g”) Averaged acquired area of winner cells (green) and loser cells (gray) as a
function of normalized frequency of boundary (e, ¢’, €”), non-boundary (f, >, ), and perpendicular
(g, g, ) intercalation in simulations (e, f, g) and experiments [YKi:\VV5SIIASIBAS20A (&> 7 o),
RasV!? (e, £, g”)]. The x-axis values are the same as the y-axis (d) for simulations and in (d’, d”)
for experiments, whereas the value and error bars in the y-axis corresponds to y-axis in Fig. 2.3d for

simulation and a subset of Fig. 2.2h, h’ for experiment.
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Fig. 2.6. Topological change by perpendicular intercalation drives winner-dominated cell
expansion.

(a) Upper: Schematic diagram of the topological changes in three cells directly in contact with the
apoptotic cell (magenta) that are directly involved in cell intercalation during apoptotic delamination
(Fig. 2.3a). After intercalation, side number is reduced by one for one adjacent cell (-1, open circles),
but is increased by one for the other two cells (+1, filled circles). Lower: Three types of cell
intercalation (Fig. 2.5c) were divided into six subtypes based on all possible combinations of cell
configuration. Total change in side number after intercalation is shown for clonal (green columns) and
non-clonal (gray columns) cells. Advantage in cell expansion represents cells with a greater increase
in total side number. All topological changes are maintained whenever side number of apoptotic cell
is more than 4 before apoptosis. (b) Top, schematic representation of the indicated intercalation types.
Lower boxplots, change in side number (upper boxplots) and cell area (bottom boxplots) averaged for
each apoptotic event. Apoptotic simulation was performed with a predetermined order of directionally
biased cell intercalation under identical division rate conditions. The simulation setup (except for the
directional bias in intercalation) and figure preparation were the same as for Fig. 2.3¢’. Wilcoxon

signed rank testing was performed.
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Fig. 2.7. Robust repetition of topological change by perpendicular intercalation accelerates the

tissue-scale occupation by winners.

(a) Loser cells that will start to undergo apoptosis within the next 50 (normalized time [/loser cell

cycle]) are shown in magenta. Apoptosis was induced in about 40 cells adjacent to winners while the

number of faster dividing winner cells (Nsaster, green) increased from 500 to 700 cells. (b) Close-up of

colored winner-clone when Nraster is 700. Change in side number is shown by subtracting initial (Nfaster

=500) from final (Naster = 700) side number (upper 3 panels). The log of the ratio of the final cell area

over initial cell area is shown (lower 3 panels). Simulation setups were without apoptosis (left); with
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apoptosis where intercalations occur from shorter edges according to in vivo regular rule as shown in
Fig. 2.2d, d’ (middle; regular intercalation); and with apoptosis where three intercalation types occur
randomly (right; randomized intercalation). The number of winner-cell divisions and initial clone (a,
normalized time = 0 [/loser cell cycle]) were the same for the three simulation setups. (c) Temporal
change in clone area with no apoptosis (black), apoptosis with regular intercalation (purple) and
apoptosis with randomized intercalation (light-blue). Error bars represent s.d. (d) Net increase in clone
area as a result of apoptosis calculated by subtracting clone area from that value in the absence of
apoptosis as a function of total area of apoptosis. Dashed/dotted lines indicate cases in which winner
clones capture 100%/50% of the territory made available by apoptosis. () Temporal change in
anisotropy of apoptotic cells (measured at 1.7x102 normalized time [/loser cell cycle] before starting
to undergo apoptosis). The values were clearly larger than those under conditions of identical
proliferation rate without apoptosis (dashed line). Error bars represent s.e. (f) Temporal change in
normalized frequencies of three types of cell intercalation (see calculation method in Fig. 2.5b, S2.4e—
f), which were averaged for every 33.3x10-3 (normalized time [/loser cell cycle]). Error bars represent
s.e. Division rate ratio (green/white) = 3 for all panels. (g) Schematic diagram of the winner-dominated
expansion toward the space of apoptosis. Inset: Solid lines are based on my findings, whereas dashed

lines represent speculation suggested in previous reports.
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Fig. S2.1. Cell deformation due to differential proliferation rates robustly appeared in silico and
in vivo (related to Fig. 2.1).

(a, b) Cell packing topologies under conditions of identical division rate in simulations (Eq. 2.3 and
Eq. 2.4) account for that of normal epithelial cells in Drosophila (Farhadifar et al. 2007). Frequency
distribution of side number (i.e., n-side cells) (a). Average area of cells with n-side (An) normalized to
that of all cells (A) (i.e., An/A where < > denotes the population average) (b). Error bars represent s.d.
for 10 simulations. (c—g) Additional simulation analysis for Fig. 2.1 using Eq. 2.3. (c) Time course of
the simulated proliferation process under conditions of identical (upper) or differential (lower)
proliferation rate, where the number of clonal cells (green) is 100 (far left), 300, 500, 700, or 900 (far
right). (d, e) Cell anisotropy of non-clonal cells located directly adjacent to the clone boundary (d) and
area of clonal cells (e) as a function of number of cells inside of a clone, under conditions of identical
(closed circles) and differential (open circles) proliferation rate. Error bars represent s.d. for 10
simulations of each clone at each of the tested times and division rate ratios. (f, g) Robustness of cell
deformation under identical and differential proliferation rate (representing “Ratio 1” and “Ratio 3,”
respectively) with respect to model mechanical parameters: Four different line tension parameter

values (Gjj = 1, 5, 10, 20) were examined, while the other parameters were kept constant (nh =1, lp=
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0.0001). Cell anisotropy of non-clonal cells (white cells in c) directly adjacent to the clone boundary
(f). Area of clonal cells (green cells in c) beside the clone boundary, which is normalized by that of
non-clonal cells (white in c) beside clone (g). Increased cell anisotropy and decreased area under
differential proliferation rate were reproducible on all tested parameters. Error bars represent s.d. for
10 simulations. The number of clonal cells was 1000 in the simulation. (h, i, h’, i’) Additional
experimental analysis for Fig. 2.1a, b. Hippo pathway mutant clones induce anisotropy in slower
dividing wild-type cells directly adjacent to the clone even with modulation of junction contractility
or adhesion in Drosophila wing disc hinge region. Genotypes of clones (green) are shown at top of
panels in (h) and (i). Images for WT (h) and wts*! (i) are identical to those in Fig. 2.1a (left). See
Methods for the strain preparation. The samples were prepared by Y. Sando and imaged by Y. Sando
and me. Scale bar, 10 um. (h’, i’) Fraction of cells whose anisotropy values if greater than 0.38 (see
Fig. 2.1b right for definition). Values for WT (h’, i’) and wts*! (i*) are identical to those in Fig. 2.1b
(right). Statistical test is a Fisher’s exact test compared with WT (h’,i’, blue), hpo*>*’ (h’, gray), or
wts*t (i’, gray). (j) Additional experimental analysis for Fig. 2.2a, a’. The distribution of cell
anisotropy of wild-type cells directly adjacent to clones overexpressing P{tubP-GAL80ts}20 (control,
blue), P{tubP-GAL80ts}20; UAS-YKki:V5S1IASIBAS250A (v \/5SIIASI68ASZS0A ~ Qrange), and P{tubP-
GALS80ts}20; UAS-Ras"*? (Ras"*?, Yellow) in Drosophila pupal notum.
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Fig. S2.2. All the series of events leading to winner-dominated cell expansion robustly occurred
in another well-used type of cell-vertex model simulation (related to Fig. 2.1, Fig. 2.3, and Fig.
2.5).

(a—i) All results in this figure were obtained in Eq. 2.4. (a—c) Cell deformations under identical and
differential proliferation rate [representing ‘“Ratiol” and ‘“Ratio3”, respectively, in (b) and (¢)].
Consistent with the results shown in Fig. S2.1f,g (using Eq. 2.3), anisotropy of slower dividing cells
directly adjacent to the clone boundary increased (b) and the normalized area of faster dividing cells
at the clone boundary decreased (c). See Fig. S2.1f, g for definition of these measures. Error bars
represent s.d. of 10 simulations of each clone at each tested division rate. (d—i) Apoptosis simulation.
(d) Median of averaged acquired area of clonal cells (green) was larger than that of non-clonal cells
(white) at division rate ratio = 3 (Wilcoxon signed rank test; P < 2.2x106), whereas it was smaller
at division rate ratio [clone (green) / non-clone (white)] = 1 (Wilcoxon signed rank test; P =
1.1x10%). (e, €’) The positive correlation between winner-cell expansion and shape anisotropy of
apoptotic cells was consistent with the results obtained using Eq. 2.3 [Fig. S2.3g for (e), Fig. 2.3d for
(e”)]. The y-axis values in (e) and (e’) are the same. (f, f*) Frequency of boundary (red), non-boundary
(orange), and perpendicular (blue) intercalations observed in a single event of apoptosis as a function
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of shape anisotropy of an apoptotic cell before death were consistent with the results obtained using
Eqg. 2.3 [Fig. S2.5c¢ for (f), Fig. 2.5d for (f*)]. The y-axis values in (f) and (f*) are the same. (g—i) The
acquired area averaged over faster dividing cells adjacent to apoptosis was plotted as a function of the
frequency of cell intercalation. This tendency was consistent with Fig. 2.5e—g. See corresponding
legends in main figures for method and plot setup. Unless noted (upper panel of a, “Ratiol” in b and
¢, left panel of d), the division rate ratio [clone (green) / non-clone (white)] = 3 for all panels. The

number of clonal cells (green) was 200 for all panels. Corr. coef., Pearson correlation coefficient.
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Fig. S2.3. Robust expansion of winner cells occurred with different mechanical parameters
between clonal and non-clonal cells and in different apoptosis conditions in simulation (related
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to Fig. 2.1, Fig. 2.3, and Fig. 2.5).

(a—c) Simulations under different combinations of relative line tension parameters (Gp / G and G¢/ G;
Eqg. 2.3) with the conditions of differential proliferation rate. (a) G is default tension parameter at edges
between non-clonal cells (white) (left); Gy is clone boundary tension parameter at edges on clone
boundary (middle); and Gc is inner clonal tension parameter at edges between clonal cells (green)
(right). (2”) Close-up images of clone boundary. Note that the model did not work at the parameter
indicated by N.D. due to divergence of simulations. (b, ¢) Cell anisotropy of slower dividing cells
(white cells in a”) directly adjacent to clone boundary (b) and averaged acquired area after apoptosis
of slower and faster dividing cells directly in contact with apoptotic cells (gray and green box plots,
respectively) (c). Numerals (i—viii) correspond to those in a’. Wilcoxon signed rank testing was
performed. All simulations were conducted with 1000 faster dividing cells (green). The division rate
ratio [clone (green) / non-clone (white)] = 3 for all panels. (d—f) Simulations with respect to different
model settings of apoptosis (Eq. 2.3). (d) Two types of cell-delaminating processes were numerically
simulated. The area of the apoptotic cell (magenta) was decreased through junctional loss by repeated
cell intercalation (red edges) while (1) keeping the mechanical parameter values constant
(delamination type I; model for the D1 delamination (Levayer et al. 2016; Marinari et al. 2012)), or
(2) either increasing the value of the line tension parameter (Gijj) or decreasing the value of the pressure
parameter (ny) (Eq. 2.3) before repeating the cell intercalation (delamination type I1; model for the D2
delamination (Levayer et al. 2016; Marinari et al. 2012)). Note that while D2 delamination leads to
transitory rosette formation after rapid apical surface shrinkage (Marinari et al. 2012), the model |
used did not reproduce the intermediate rosette structure due to model limitation on tricellular
junctions. (e) Averaged acquired area after apoptosis of slower and faster dividing cells directly in
contact with apoptotic cells (gray and green box plots, respectively). G and ny represent parameters
of apoptotic cells, whereas Go and nwo represent those of non-apoptotic cells. Both delaminating
processes showed winner-dominated cell expansion. The measurement method and box plot setup are
identical to Fig. 2.2f, f*. Plots of delamination type I (e, the two leftmost boxplots) are identical with
Fig. 2.3c. Wilcoxon signed rank testing was performed. (f) Normalized frequency of boundary
(red), non-boundary (orange), and perpendicular (blue) intercalations observed during apoptosis. As
the anisotropic shape of dying cells was maintained during delamination type Il, perpendicular
intercalation dominated similarly to that which occurred during delamination type I. All apoptotic
simulations were conducted with 1000 faster dividing cells (green). The division rate ratio [clone
(green) / non-clone (white)] = 3. (g) Winner cells expanded more dominantly with increasing
anisotropy (Eq. 2.1) of dying loser cells. The y-axis value is the same as Fig. 2.3d. Corr. coef., Pearson
correlation coefficient. (h, h”) Averaged acquired areas after apoptosis of cells directly adjacent to
apoptotic cells (1-cell neighbors; h”) and cells at two or three cells away from the apoptotic cell (2-

cell neighbors or 3-cell neighbors; h”). Slower and faster dividing cells are shown in gray and green
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box plots, respectively. The plot setup is identical to that in Fig. 2.2f, f*. (i) Averaged acquired area
after apoptosis of slower and faster dividing cells directly adjacent to apoptotic cells (gray and green
box plots, respectively) under simulation with ceasing all cell proliferation during apoptosis
(represented by “Stop proliferation”), or simulation reducing pressure in the faster dividing clone
during apoptosis [represented by “Reduced pressure in winner clone”; ny©'°" / nyNerelone = 0,72, where
nKCo" and nyNon-elone represent pressure parameters (Eq. 2.3) of clonal (faster dividing) and non-clonal
(slower dividing) cells]. The box plots represented by “Control” are the same as in Fig. 2.3c, which
was obtained without additional parameter manipulations. Winner cells still dominated expansion in
the absence of the global tissue-scale pushing force generated by winner cells. Wilcoxon signed

rank testing was performed for (h) and (i).
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Fig. S2.4. The dynamics of winner-dominated cell expansion in vivo (related to Fig. 2.2, Fig. 2.4

and Fig. 2.5).
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(a-c) Acquired areas after apoptosis (a), length distributions of three edge types (b), and normalized
frequencies of three intercalation types observed in a single apoptosis event (c) were plotted as a
function of anisotropy (Eq. 2.1 in Methods) of apoptotic cells 40 minutes before complete
delamination. The averaged values and error bars on the y-axes are the same as Fig. 2.2h for (a), Fig.
2.5a’ for (b), and Fig. 2.5d’ for (¢). (d) Top-left: Z projection of a live pupal notum (25 hours after
Gal4-mediated transcription activation). The fly genotype and image frame are the same as in Fig.
2.2a’; the anterior direction is upward. The sample preparations and imaging were done by D. Umetsu.
Top-right: Image segmentation for adherens junctions. Green and gray cells represent RasV!2-
overexpressing and wild-type cells at the clone boundary, and light green and white cells represent
RasV1%-overexpressing and wild-type cells located two-cell-distance or more away from the clone
boundary. Bottom: Side number (left) and area (right) of each cell are indicated with colors. The white
line represents the clone boundary. (d) Averaged area of cells with n-sides (An) normalized by that of
all cells for each cell category (A) (i.e. An/A where < > denotes the population average) 24-25 hours
after Gal4-mediated transcription activation. Cells were classified into four categories: green and gray
solid lines are RasV*2-overexpressing and wild-type cells, respectively, at the clone boundary (green
and gray cells in d, Top-Right), and green and gray broken lines are RasV'?-overexpressing and wild-
type cells, respectively, located two cells or more away from the clone boundary (light green and white
cells in d, Top-Right). Error bars represent s.e. (e—f) Inference method of intercalated edges when
multiple intercalations (T1 transition) and/or T2 transition occurred simultaneously. (e, €’) An example
of cell intercalation upon apoptosis. Pentagonal dying cell (magenta in bottom panels of e) is
delaminated by sequential occurrence of two T1 transitions (intercalations) and one T2 transition. The
first T1 transition is a perpendicular intercalation (i.e., an edge belonging to cell “4” in (e) is lost; e),
whereas the type of second T1 transition cannot be distinguished due to the simultaneous occurrence
of T1 and T2 transitions among the four cells (cells “17, “2”, “3”, and “5”). Fly genotype is the same
as in Fig. 2.2a. (e””) All geometrically possible combinations of cell rearrangement during the latter
half of the delaminating process (right two panels in e), in which the quadrangular dying cell
disappears through a second T1 transition and a T2 transition. Because the quadrangular cell has four
edges, there are four possible patterns of rearrangement. Four candidate rearrangements are narrowed
down to two (black dashed boxes) that are consistent with cell geometry after delamination complete
(rightmost panels in €): boundary or non-boundary intercalation is estimated to occur in the second T1
transition. Numerical cell labels correspond to those in the bottom panels of e. (f) Method of
calculation of normalized frequency for each type of intercalation. Dashed box labeled “15t T1” or “2
T1” represents the probability of each type of intercalation for each T1 event. Probability of
perpendicular intercalation at 15 T1 is 1, whereas that of boundary and non-boundary intercalations in
the second T1 is 0.5 because the number of candidates is two (e”’). Dashed box labeled “Total T1

occurrence” represents total number of T1 events (1%t and 2"%) during apoptosis. (g, g’, h—h”) The y-
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axis values for all panels are the acquired areas after apoptosis without averaging for individual
apoptosis events (thin lines in Fig. 2.2e). The x-axis values are the same as Fig. S2.4a for (), Fig. 2.2h
for (g”), Fig. 2.5¢’ for (h), Fig. 2.5f” for (h’), and Fig. 2.5g’ for (h”").
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Fig. S2.5. In silico examination of the contribution of biased cell intercalations upon apoptosis
(related to Fig. 2.3, Fig. 2.5 and Fig. 2.6).

(a) Time course of apoptosis under identical and differential proliferation rates shown in Fig. 2.3¢’, c,
where the figures were rotated 90 degrees. (b, ¢) Length distributions of three edge types (b), and
normalized frequency of three intercalation types observed in a single apoptosis event (c) was plotted
as a function of cell anisotropy (Eg. 2.1 in Methods) of apoptotic cells immediately before cell death
(normalized time [/loser cell cycle] = 8.3x10-%). The y-axis values are the same as in Fig. 2.5a for (b)
and Fig. 2.5d for (c). (d—f) Change in side number of winner cells (green) after apoptosis was positively
correlated with the normalized frequency of perpendicular intercalation (f), but not with that of
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boundary and non-boundary intercalation (d, ). The correlation of loser cells (gray) was generally
opposite that of winner cells. The values of normalized frequency of each type of intercalation is the
same as in Fig. 2.5e—g. The division rate ratio [clone (green) / non-clone (white)] = 3 for all panels.
(9) The length distribution of three types of edges as a function of cell anisotropy of an apoptotic cell
immediately before death (normalized time [/loser cell cycle] = 8.3x10-%) under conditions of identical
division rate is shown. The distributions were nearly identical for the three types of edges. (h)
Normalized frequency of boundary (red), non-boundary (orange), and perpendicular (blue)
intercalations when apoptosis was independently introduced into all non-clonal cells directly adjacent
to clones with 1000 clonal cells. Data for identical (left) and differential (right) proliferation rate are
shown. Normalized frequency of the three types of intercalation was nearly identical under identical
division rate (left). (i) Apoptotic simulations with a predetermined order of directionally biased cell
intercalations with identical division rates. Time course of apoptosis with biased occurrences of
boundary (upper), non-boundary (middle) and perpendicular (lower) intercalation shown in Fig. 2.6b.
Arrowheads indicate the shortest edge in each edge type that is lost via cell intercalations in the next
frame. The numerals within cells indicate the numbers of cell sides. Under perpendicular intercalation,
one of the two clonal cells decreased the side number (from 7 to 6; i.e. -1), but the other cell increased
(from 5 to 8; i.e. +3). Thus, the clonal cells increase their side number on average [i.e. +1 (= (-1+3) /
2)]. Likewise, the averaged side number change (left end) was calculated for non-clones and clones
for each intercalation type. Note that with a bias favoring boundary intercalation, dying cells have only
non-boundary edges after experiencing sequential induction of boundary intercalations; therefore,
only non-boundary intercalations take place after that (upper, right three panels). Under a bias favoring
non-boundary intercalation, dying cells only have boundary and perpendicular edges after
experiencing sequential induction of non-boundary intercalations; therefore, boundary and/or

perpendicular intercalations take place after that (middle, right two panels).
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Fig. S2.6. Anisotropic distortion of loser cells at the clone boundary is maintained despite
repeated apoptosis (related to Fig. 2.7).

(a-b’) Differential proliferation-induced cell anisotropy was maintained in the presence of apoptosis.
(a, a°) To analyze the effects of apoptosis on the emergence of anisotropic cells, | compared the
anisotropy of slower dividing cells in contact with the clone boundary at time points “before” (a left;
normalized time [/loser cell cycle] = 8.3x10%) and “after” (a right; normalized time [/loser cell cycle]
= 2.5x10%) apoptosis. The cell originally in contact with the clone boundary before apoptosis
(apoptotic cell; magenta) and the slower dividing cells newly in contact with the clone boundary after
apoptosis (gray) are shown (a’). Anisotropy immediately after apoptosis (gray) was slightly reduced
compared with that before apoptosis (magenta) (a’, left two plots), but still higher than that under
conditions of identical division rate (a’, right two plots). The number of clonal cells was 1000. (a”)
The average anisotropy of gray cells in (a) increased over time up to that of the apoptotic cell
immediately before death (magenta broken line). Division rate ratio [clone (green) / non-clone (white)]
= 3. Error bars represent s.d. of 260 independent apoptosis simulations. P-values are based on Welch’s
t-test at the indicated times compared with the apoptotic cell immediately before death (normalized
time [/loser cell cycle] = 8.3x10%; magenta broken line); n.s. (not significant), P > 0.01; **P < 103,
***p < 104 (b) Robustness of cell anisotropy as a function of apoptosis rate (number of apoptosis
events/cell cycle/cell). Note that apoptosis was not induced at apoptosis rate = 0. Apoptosis was

simulated by incorporation of cell delamination in slower dividing cells (white cells in b’) directly
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adjacent to the clone boundary under conditions of differential proliferation rates (division rate ratio
[clone (green) / non-clone (white)] = 3), while the number of faster dividing winner cells increased
from 1 to 3000 cells. Apoptotic cell delamination was simulated by repeating cell intercalation from
the shortest edge in an apoptotic cell. When the apoptosis rate is lower than cell division rate (black
solid line), anisotropy of slower dividing cells directly adjacent to the clone boundary (black circles
with solid line) was 2-fold higher than that of the control (brown line, which represents anisotropy
under identical division rate without apoptosis). Error bars represent s.d. of 10 simulations of each
clone at each tested apoptosis rate. Anisotropy was measured when the number of clonal cells (green)
= 3000 in simulations. (b”) Close-up snapshots of clone boundary under different apoptosis rates in
simulations, where the numerals indicate apoptosis rate given in b. Division rate ratio [clone (green) /

non-clone (white)] = 3.
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Fig. S2.7. Robust expansion of winner cells occurred under repetitive apoptosis during long-term

clone development (related to Fig. 2.7)

(a—e) Apoptosis simulations, with the setting described in Fig. 2.7. (a—c) Sum of changes in side

number (b) and cell area (c) per indicated layers, which are classified according to the location in

relation to clone boundary (a), with layer 1 (cells located immediately adjacent to the clone boundary),

layer 2 (cells next to layer 1), and layer 3 (cells next to layer 2). (b, ¢) Green and gray lines represent

faster and slower dividing cells and different markers represent different layers defined in (a). Layers

are identified at every time point. Error bars represent s.d. of five simulations of each clone at each

simulation setup. (d, e) Difference between the final and initial side number per cell (d) and fold

change in cell area per cell (e; log scale) in the presence and absence of apoptosis. See the definition
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of the criteria and simulation setups for Fig. 2.7b. Box plot setup is identical to that in Fig. 2.2f, {”.
259 IS average of the values ranked in the top 25% for each box plot in e. Wilcoxon rank sum testing
was performed. (f—h) Winner-clone expansion varied depending on the spatial distribution of apoptosis.
The division rate ratio (clonal/non-clonal = 3) and total numbers of apoptosis events (about 40 cells)
were the same for all panels. Simulation setups other than the target regions of apoptosis were the
same as in Fig. 2.7. (f) Slower dividing cells for targeting apoptosis are marked in purple (directly
adjacent to clone boundary), blue (up to 3-cell distance away from clone boundary), light-blue (up to
5-cell distance away from clone boundary), and orange (all slower dividing cells). Apoptotic cells
were randomly selected from these regions. All faster dividing cells are marked in green. (g) Temporal
change in clone area. The line colors (purple, blue, light-blue, orange) are as in (). The black line is
the case without apoptosis, which is the same as in Fig. 2.7c. (h) The net increase in clone area due to
apoptosis was calculated by subtracting the clone area from that value in the absence of apoptosis as
a function of total area of apoptosis. Dashed/dotted lines indicate cases in which winner clones capture

100%/50% of the territory made available by apoptosis.
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3. Inference of Cell Mechanics in Heterogeneous Epithelial

Tissue Based on Multivariate Clone Shape Quantification

Some figures in this thesis (Fig. 3.1, Fig. S3.1, S3.2, S3.4, S3.11) were obtained in collaboration with

my colleague, D. Umetsu. I clarified my own contribution in each caption.

3.1. Abstract

Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in
undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity
causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell—cell
interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The
boundary shape could alter the degree of cell-cell contacts and thus influence the physiological
consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting
that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise
inference of mechanical tension loaded at each cell—cell contacts has been extensively developed, there
has been little progress on how to distinguish the population-boundary geometry and identify the cause
of geometry in heterogeneous tissues. In collaboration with D. Umetsu, | developed a pipeline by
combining multivariate analysis of clone shape with tissue mechanical simulations. Clones with four
different genotypes within Drosophila wing imaginal discs was examined: wild-type, tartan (trn)
overexpression, hibris (hbs) overexpression, and Eph RNAI. Although the clones were previously
known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown.
By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on
individual cell shapes, | found the optimal criteria to distinguish not only among the four genotypes,
but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled
us to quantitatively compare experimental data with tissue mechanical simulations. As a result, the
mechanical basis contributed to clone shape of distinct genotypes was identified. The present pipeline
will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in

a non-invasive manner.

3.2. Introduction

There are intrinsic differences among cells within any population, even in genetically uniform
populations such as clonal populations of bacteria, yeasts, and undifferentiated plant and animal cells
(Eldar and Elowitz 2010; Elowitz 2002; Itzkovitz et al. 2011; Meyer and Roeder 2014; Raj and van
Oudenaarden 2008; Raser 2004). The non-genetic (isogenic) heterogeneity stems from intrinsic noise

due to stochastic fluctuations in gene expression and extrinsic noise due to stochastic changes in
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upstream signal transduction (Paulsson 2004; Shibata and Fujimoto 2005). Theoretical and
experimental discrimination between intrinsic and extrinsic noise (Elowitz 2002; Swain, Elowitz, and
Siggia 2002) promoted an understanding of not only the molecular mechanisms but also the functional
significance of the non-genetic heterogeneity (Eldar and Elowitz 2010; Raj and van Oudenaarden
2008). Genetic heterogeneity in tissues arises from spontaneous mutations in cell lineages. The
emergence of cellular heterogeneity in epithelial tissues alters the morphology of the boundaries
between neighboring populations and thereby affects the cellular geometry in the tissue. Alterations
of the geometrical cellular configuration between clonal populations (clones) often have physiological
consequences. Clonal segregation caused by Eph receptors has been shown to play a tumor-
suppressive role in colorectal cancer by compartmentalizing the cancer cells and thereby limiting their
invasion into normal tissues (Cortina et al. 2007; Porazinski et al. 2016). In the context of the cell
competition, known as the tissue homeostatic system, to eliminate unfit cells from heterogeneous
populations (Amoyel and Bach 2014; Morata and Ballesteros-Arias 2015; Vincent et al. 2013), the
intermingling of cells at clonal boundaries facilitates the competition by increasing the contact length
between competing genotypes, so-called winner and loser cells (Levayer et al. 2015; Levayer and
Moreno 2016). Those insights suggest the potential to predict physiological consequences (e.g., tumor
malignancy) based on the quantification of clone shapes. Therefore, the establishment of a pipeline
that combines the quantification of clone shapes with an analysis of the physical mechanisms
underlying the clone shapes would be beneficial.

A major contributing factor for clone shape is mechanical interactions at the cell-cell interface.
Cell-cell adhesion mediated by adhesion molecules and contractility exerted by the actomyosin
network contribute to the tension on the cell-cell interface (Lecuit and Lenne 2007). The differential
adhesion and contractility among genetically heterogeneous cells have been experimentally shown to
play a major role in cell segregation by driving or guiding cell rearrangements (Krieg et al. 2008;
Maitre et al. 2012; Maitre et al. 2016; Nose, Nagafuchi, and Takeichi 1988). The role of such
mechanical cell-cell interactions on cell sorting has been also theoretically studied using computer
simulations of tissue mechanics (Brodland 2002; Graner and Glazier 1992). More recently,
experimental evidence in combination with models has shown that the alteration of boundary
morphology can be explained by the tissue anisotropy of mechanical tension at the cell-cell interface
(Aliee et al. 2012; Landsberg et al. 2009; Monier et al. 2010; Rudolf et al. 2015). The relative strength
of such mechanical tension (or stress) has been estimated non-invasively from time lapse of cell shape
dynamics (Brodland et al. 2010; Chiou, Hufnagel, and Shraiman 2012; Ishihara and Sugimura 2012;
Nier et al. 2016) or images of fixed tissue (Brodland et al. 2014), and invasively using physical
perturbation (e.g., laser ablation of cell junctions) [(Sugimura, Lenne, and Graner 2016), and reference
therein]. Moreover, a recent study showed that the “clone tension,” which is defined by the average

strength of the junctional tension inside and on the border of the clone relative to that on the outside,
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uniquely distinguishes smoothed and convoluted clone shapes (Bosveld, Guirao, et al. 2016). Hence,
reliable quantification of clone shape should make it possible to identify the averaged strength of
tensions in heterogeneous tissue.

Although several quantification methods for clone shape, such as circularity (Chang et al. 2011;
Milan, Pérez, and Cohen 2002) and cell mixing index (Levayer et al. 2015; Umetsu, Aigouy, et al.
2014), have been established, each has been applied only independently. It is not known whether those
methods can be applied to any clone shape or are suited for some particular clone shape. Moreover, it
has been unknown whether such methods are sufficient to distinguish clone shapes or the other
methods (e.g. cell area) are required. The combinatorial use of multiple quantitative methods would
more reliably evaluate the clone shapes of various genotypes.

This study provides a pipeline to quantify the clone shape difference and identify the cause of
the difference by combining a multivariate quantitative analysis of clone shape with computer
simulations of tissue mechanics (Fig. 3.1A). Using fixed Drosophila wing imaginal discs, | and my
colleague D. Umetsu examined four genotypes (wild-type control, tartan (trn) overexpression, and
Eph RNAI, hibris (hbs) overexpression), which exhibit smoothed or convoluted clone morphologies
yet have unknown cell mechanical properties. Clones that overexpress Drosophila trn, which encodes
leucine rich repeat-containing transmembrane proteins (Milan et al. 2001, 2002; Sakurai et al. 2007),
adopt a smooth shape. The knockdown of Eph, which encodes tyrosine kinases of the Eph receptor
protein family, also generates round clones (Umetsu, Dunst, and Dahmann 2014). In contrast, the
overexpression of hbs, an immunoglobulin superfamily member, leads to the separation of the hbs-
overexpressing cells and their partial mixing into surrounding cells (Bao et al. 2010), resulting in a
convoluted clone morphology. | used multiple cell-based criteria to quantify the clone morphology.
While no single criterion alone was able to distinguish all four genotypes, by combinatorial use of
multiple criteria, | distinguished the four genotypes with optimal criteria. Based on the quantitative
criteria, | compared experimental results with vertex model simulations, which | explored in a wide
range of differential tensions. The comparison enabled us to estimate different contribution of clone
tensions and tension parameters to clone morphologies of distinct genotypes, noting that the force
inference of individual cells over entire tissue is beyond the scope of the present paper. The present
multivariate clone shape quantification could be extended to estimate genetic and non-genetic cell

mechanics of heterogeneous populations (e.g. tumorigenic environment) in a non-invasive manner.

3.3. Material and Methods

3.3.1. Drosophila strains and genetics

y w hs-flp; DE-Cad::GFP; Act>CD2>GAL4, UAS-DsRed was used as the tester-stock genotype in
experiments. The tester stock with RNAI lines were crossed and raised the offspring at 25 °C for 3

days. The offspring were subjected to heat shock at 37 °C for 40 min to induce somatic clones (Fig.
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3.1K). The larvae were subsequently kept at 25 °C for 3 days before dissection. The following
transgenic strains were used in this study: UAS-trn (Sakurai et al. 2007), UAS-hbs (Dworak et al.
2001), and UAS-ds-Eph (Vienna stock center, 4771). The construction of strains and cross experiments
were performed by my collaborator Dr. D. Umetsu. Hereafter, | refer to the Drosophila tester-stock

clone as the wild-type.

3.3.2. Immunohistochemistry

Larvae were hand dissected to obtain wing imaginal discs, which were fixed in PBS with 4%
formaldehyde for 40 min at room temperature. The fixed samples were washed three times with PBT
(PBS with 0.1 % triton) and mounted them on a glass slide. Immunohistochemistry experiments were

performed by my collaborator Dr. D. Umetsu.

3.3.3.  Imaging and image processing

Images were obtained with a Leica SP8 confocal scanning microscope with a 40x NA 1.300il objective.
Adherens junctions were visualized with the localization of a GFP knock-in for DE-Cadherin (Huang
et al. 2009) and used them for image segmentation. The GFP signals derived from columnar cells of
the wing pouch were manually selected before making a z-stack projection. The z-stack images were
projected by the maximum projection in Fiji (http://fiji.sc) and used them for further quantitative

analysis. Average pixel size for each cell junction was 8.4 (Fig. S3.11).

3.3.4. Clone shape quantification

Segmentation, cell tracking, and bond tracking (Fig. 3.1P-S) were performed using the ImageJ plugin
Tissue Analyzer (Aigouy et al. 2016). The clones were projected onto the segmented images and
identified cells in the clones using Tissue Analyzer. Possible error rates were roughly estimated by
having 5 unexperienced individuals hand-correct a segmentation mask for one of the images used in
this study. The error rate was estimated in 4 ways as follows (Fig. S3.4); 1) the mean rate of hand-
corrections made after auto-segmentation (0.84 % of all cell junctions), 2) the mean rate of hand-
corrections made by another person after the 1st round of hand-correction (0.28 % of all cell junctions),
3) the mean rate of hand-correction made by 1st and 2nd round of hand-correction in total (1.12 % of
all cell junctions), and 4) the mean final discrepancy rate between 2 individuals (0.23 %, max. 0.44 %).
Note that the correction rate highly depends on original image quality therefore the rate would be
variable among images.

The clone shapes was quantified using multiple criteria. Circularity is a measure that calculates
the ratio between the perimeter and the area of a clone and has been used to evaluate clone shapes (Fig.
3.1C). The following cell-based criteria were also used: cell area (Fig. 3.1D), cell edge length (Fig.
3.1E), clone boundary angle (Fig. 3.1F), and three types of cell mixing index (Fig. 3.1G) [i.e., mutant
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(MT; Fig. 3.1H), boundary of mutant (BDMT; Fig. 3.11), and boundary of wild-type (BDWT; Fig.
3.10)].

3.3.5.  Principal Component Analysis (PCA)
I performed PCA of the multi-dimensional criteria for clone shape using the R environment for
statistical computing (R Development Core Team 2015) with the “prcomp” function. The results were

plotted using the “ggbiplot” function (R package version 0.55._http://github.com/vgv/ggbiplot). PCA

was applied to both open and closed clones in the wing imaginal discs using the six criteria (Fig. 3.1D—
J) excluding circularity. I standardized the variables to have zero mean and unit variance before the
analysis. Factor loadings (Fig. 3.3K), which were given by the correlation coefficient between
observed variables (criteria) and principal components (PCs), represent the contribution of criteria on
PCs. The range of the value is -1.0 to 1.0. The value of -1.0 and 1.0 for the criteria indicates a perfect

negative and positive correlation with the PCs, respectively.

3.3.6. Cell vertex model

The cell vertex model quantitatively accounts for the packing geometry of normal epithelial cells and
predicts the forces that act at cell-cell interfaces, where cell configurations are described as polygons
whose vertices form tri-cellular junctions subjected to mechanical force [(Farhadifar et al. 2007;
Gibson et al. 2011; Honda 1983); Fig. 3.1A]. The model can reproduce stable force balance
configurations of the adherens junctions network, which depend on mechanical parameters
characterizing the cell bond tension and apical area contraction. Cells change their shape based on the
force balance of cell packing. The model is represented by balance of three types of mechanical force

exerted on a vertex (Farhadifar et al. 2007):

- oE
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where x; and E are the position vector of each vertex and the energy function. Farea elasticity denotes the
area elasticity, which decreases as the area of cell o (a,) approaches the normalized preferred area of
unity. The line tension (Fension) between vertices i and j (lij) is provided by the cell-cell adhesion
mediated by adhesion molecules and the contractility exerted by actomyosin. The contraction (Farea
elasticity) OF the cell perimeter |, is provided by actomyosin ring. | set the contractility parameter » =
0.04 and the line tension parameter y = 0.12 as the control values to account for the cell packing
geometry in Drosophila wild-type clones (Farhadifar et al. 2007). The line tension at the clone
boundary (y,) and at the inner clonal edges (yc) can differ from y. Each clone was generated from a
single cell by dividing them to be 40 cells in total, which is close to the average number of cells in

Drosophila wild-type clones. | performed 5 independent simulations for each parameter by changing
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the seed of the random number generator.

| integrated the vertex model numerically using the Euler method with free boundary conditions.
To achieve a mechanical equilibrium of the tissue state, | calculated the position vector of each vertex
after each step until the total velocity of all vertices dropped below a threshold of 1.0. The cell division
time (cell cycle) t of each cell in the cell vertex model obeys a Gamma distribution with the following
probability densities: p(t) = t*~texp(—kt/T)(T/k)~*/I'(k), where I'(k) is the gamma function
with k = 25.0 (Mumcu 2011). The average and standard deviation are given by T and T/Vk,
respectively. Cells were divided when the residence times in the cell cycle became zero. Although the
cell area decreases to half the original cell area after cell division, it increases as the cell achieves a
mechanical equilibrium of energy (Eq. 3.1). The mitotic cleavage-plane orientation obeys the long
axis rule (Bosveld, Markova, et al. 2016; Gibson et al. 2011), where the plane passing through the
shorter axis is defined by calculating the inertial tensor of each cell using the positions of the vertices
(Fletcher et al. 2013). Cell intercalation (T1 transition) was incorporated when the edge length dropped
below a threshold of 0.01. Apoptosis (T2 transition) was introduced into triangular cells (containing 3
vertices) whose area became below a threshold of 0.03 to replace them by a single vertex. In addition,
cells which were squeezed and reduced their cell area below a threshold of 0.001 were eliminated by
repeating the cell topological changes (T1 and T2 transition) even if the cells containing more than 3
vertices. The number of apoptotic events (during proliferation of a clone from a single cell to 40 cells)
depends on the model parameters as seen in earlier studies on homogeneous tissue (Farhadifar et al.
2007). The apoptotic rate (number of apoptotic events/cell cycle) was 0 (yu/y=0.5, yc/y=1.0, Fig.
3.4A(1)), 1.5 (y/y=1.0, yc/y=1.8, Fig. 3.4A(ii)), 0 (yo/y=0.5, y¢/y=1.0, Fig. 3.4A(iii)), O (yv/y=1.0,
ve/y=1.0, Fig. 3.4A(iv)), 0.08 (yv/y=1.6, yc/y=1.0, Fig. 3.4A(V)), 0 (yo/y=1.0, yc/y=0, Fig. 3.4A(vi)), 0
(yo/y=1.6, yc/y=0, Fig. 3.4A(vii)).

3.3.7.  Clone tension
Clone tension is given by the balance of line tension parameters (Eq. 3.1) at the three types of edges

represented by vy, yb, and yc (Bosveld, Guirao, et al. 2016):

~ _ OF _ _Ytye
T=5.= b 2 ).

It represents the energy cost E (Eq. 3.1) per unit length of changes in the clone boundary length L (Fig.
3.1C) followed by cell intercalation. Because the differential of elastic energy 9E/dL should be
negative to satisfy a stable equilibrium, the sign of the clone tension & influences the evolution of the
clone boundary length L. At negative &, boundary length change 5L should be positive to increase the
contact between different cell populations, leading to a convoluted clone boundary. In contrast, at
positive &, L should be negative to decrease the contact between different cell populations, leading

to a smoothed clone boundary. | used dimensionless clone tension ¢ = &/y (Bosveld, Guirao, et al.
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2016) in this study.

3.3.8. Projection of the simulation data onto the PCA space of the experimental data

To quantitatively compare the multivariate clone shape data from genetic experiments with the vertex
model simulations in the PCA space constructed from the experimental data (Fig. 3.1A), the simulation
clones (see Section “Cell Vertex Model” for induction of clones) were quantified by an identical set
of quantitative criteria with experiments (Fig. 3.1D-J). Subsequently, 1 subtracted the clone shape
dataset for each criterion in simulations from the mean of that in the four genotypes and divided the
subtracted values by the standard deviation of that in the genotypes. | calculated the first PC scores
(Y1) of the scaled simulation data (X1, Xz, ...., Xn) by Y1 = anXi + aioXo + ... + ainXn, Where ai, aiz,
..., a1n are the weights (Table S3.1 in Supporting Materials) of four genotypes with n = 6 (hnumber of
criteria; Fig. 3.1D-J). The weights are given by the first column of the PC matrix, which contains
variable loadings whose values are returned by “rotation” in the prcomp function in R. The second PC
scores are given in the same way by using the second column of the matrix. I projected the calculated
first and second PC scores onto the experimental PCA space using the “ggplot2” function in R
(Wickham 2009). The PC scores in simulation were averaged over the clones categorized by the
number of consisting cells (every 5 cells) since the clone size was varied due to fragmentation of a

single clone caused by T1 transitions in a simulation.

3.3.9. Estimation of the mechanical parameters of the genetic experiments in the PCA space

| determined the estimated mechanical parameters by simulation plots inside a confidence ellipse,
which | drew by assuming that the experimental plots of each genotype followed the multivariate
normal distribution. | selected the best representative parameters for each genotype by identifying the

shortest Mahalanobis distance from the center of the confidence ellipse.

3.4. Results

3.4.1. Clone shape quantification

| adopted several geometrical indicators (Fig. 3.1B-J, S3.1, S3.2) to quantitatively evaluate the shape
of mosaic clones of distinct genotypes induced in the wing discs (Fig. 3.1K-0). First, | calculated the
circularity of each clone (Section “Clone Shape Quantificatio”; Fig. 3.1C, 3.2, and S3.1). The average
circularity of the trn-overexpression clones, which exhibited a round shape with a smooth border (Fig.
3.1M), was significantly greater than that of the wild-type clones, as reported previously (Fig. 3.3A;
(Milan et al. 2002)). In the other genotype, hbs-overexpression clones, circularity was distinct from
that of the wild-type clones (Fig. 3.3A). The cells overexpressing hbs, however, scattered into many
single-cell clones (Fig. 3.10 and S3.3), so the circularity of the single-cell clones represented merely

the shape of cells, and not that of clones. Moreover, circularity cannot be applied to open clones located

70



at the edges of the images, because the perimeter length and area of those clones cannot be precisely
determined (Fig. 3.2, uppermost panels and white-colored clone in Circularity panels). Circularity can
be applied only for clones with closed circumference and is therefore measurable only for those clones
with a relatively small number of cells located in the middle of the tissue, and the entire clone should
lie within the image frame (Fig. 3.2, uppermost panels). In the Drosophila wing discs, which are
frequently used for mosaic clone analysis, approximately half of the clones were open clones (46.4%
for wild-type clones). Therefore, a cell-based analysis to quantify the clone shape was needed.

In order to quantify clone shape at the single-cell level, the individual cell shapes were precisely
traced (segmented) and labeled using Tissue Analyzer [(Aigouy et al. 2016); Section “Clone Shape
Quantificatio”; Fig. 3.1P-S], which has a sufficiently low error rate of image segmentation (Fig. S3.4).
For the segmented images, | measured the cell mixing index, which has been used to quantitatively
evaluate how much a single cell shares junctions with a neighboring population (Levayer et al. 2015;
Umetsu, Aigouy, et al. 2014)(Fig. 3.1G-J, 3.2, and S3.1; MT, BDMT, and BDWT). Remarkably, the
MT and BDMT of the hbs-overexpression clones were significantly higher than those of the wild-type
clones (Fig. 3.3E-F). In order to test whether the cell mixing index is sensitive enough to distinguish
clone shapes with different smoothness, | compared Eph-RNAi clones (Fig. 3.1N, R) with trn-
overexpression clones (Fig. 3.1M, Q); however, none of the indices (MT, BDMT, and BDWT) was
able to distinguish between the Eph-RNA. clones and the trn-overexpression clones (Fig. 3.3E-G).
The boundary angle (Fig. 3.1F) was also unable to separate the Eph-RNAI and trn-overexpression
clones, although it could distinguish the Eph-RNA. or trn-overexpression clones from the wild-type
clones (Fig. 3.2 and 3.3D). The edge length (Fig. 3.1E) was not able to distinguish between any pair
of genotypes (Fig. 3.2 and 3.3B). The cell area (Fig. 3.1D) could uniquely distinguish the Eph-RNA.
clones from the trn-overexpression clones but not from the wild-type clones (Fig. 3.3C). In summary,
there was no single cell-based criterion that could separate the four genotypes. The combinatory use
of multiple criteria may provide a better resolution to distinguish the clone shapes of the genotypes,

which could ultimately infer mechanical parameters of each genotype (Fig. 3.1A).

3.4.2. PCA separated sources of phenotypic heterogeneity

The combinatorial use of multivariate (6-dimensional) dataset increases information of data sets
required for the complete separation, while the multi-dimensional information is too complex for us
to intuitively extract some important criteria for the efficient separation. Therefore, multi-dimensional
analysis generally has a trade-off between the merits and demerits. The principal component analysis
(PCA) can optimize the trade-off: It can provide criteria to maximize the variance of the data and
compresses multi-dimensional information into lower dimensions while retaining most of the original
information. PCA has been extensively developed in the field of morphometrics of individual cells
(Lacayo et al. 2007; Pincus and Theriot 2007), organs (Iwata 2002; Klingenberg 2011), and individual
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bodies (Zelditch, Swiderski, and Sheets 2012), but not of clones in multicellular tissue. | applied PCA
to the data set of the six criteria for the four genotypes (n = 84 clones from six discs for wild-type, n
= 61 clones from five discs for Eph RNAI, n = 53 clones from five discs for trn overexpression, n =
215 clones from six discs for hbs overexpression; Fig. 3.3H-K, S3.5 and S3.6). | averaged over the
set of clones in each wing disc before applying PCA to analyze genetic variation separately from non-
genetic variation. | found that more than 80% of the information was compressed into only two
principal components (PC1 = 49.4%, PC2 = 31.9%, PC3 = 12.7%; Fig. 3.3H-J). Each genotype was
separated mainly in PC1 without overlap (Fig. 3.3H), while the Eph-RNAI and trn-overexpression
clones were also efficiently separated in PC2 and PC3 (Fig. 3.3H-J). The major criteria with higher
factor loading on PC1 (> 0.85; see “Principal Component Analysis (PCA)” for the definition of factor
loading) were MT, BDMT, and boundary angle, while some other criteria such as cell area and edge
length showed a high contribution on PC2, and BDWT contributed relatively on PC1 and PC3 (Fig.
3.3K and S3.5; Table S3.1 for exact weight of each criterion on PCs). Both the separation of genotypes
mainly in PC1 and the contribution of each criterion on PC1-PC2 were nearly the same “with
averaging” or “without averaging” within the discs (Fig. 3.3H-K and S3.6).

Note that PCA without averaging within the discs showed that the variation within a genotype
was mainly distributed in PC2, while each genotype was separated in parallel with PC1 (Fig. S3.6A).
Since the variation occurred in an identical combination of clone (e.g, Eph RNAI) and non-clone
genotypes (wild-type), hereafter | call it “non-genetic” heterogeneity (Fig. S3.1 and S3.7A, middle
panels). Interestingly, PC2 had a positive correlation with the distance from the center of the disc (Fig.
S3.7B), indicating that the non-genetic heterogeneity in PC2 encoded the positional information of
each clone. That might be caused by spatial gradients of the expression of several genes in the
Drosophila wing pouch (e.g, spalt, optomotor-blind, Distalless, and vestigial; (Affolter and Basler
2007; Milan et al. 2002; Swarup and \Verheyen 2012). Therefore, genetic as well as non-genetic
heterogeneities were efficiently segregated in lower dimensions in the PC space, allowing us to

estimate the mechanical basis of the genetic heterogeneity using PCA.

3.4.3.  Vertex model simulations with differential line tension

| analyzed how the mechanical cell-cell interactions contribute to the characteristic clone shapes (Fig.
3.1L-S) by comparing Drosophila experiments to computer simulations (Fig. 3.1A). | utilized the cell
vertex model, which quantitatively accounts for the packing geometry of epithelial cells (Section “Cell
Vertex Model”, Eg. 3.1). Clone shape has been shown to be modulated mainly by the combination of
line tension parameters at three types of edges: y (default tension in Eq. 3.1), y» (clone boundary
tension), and yc (inner clonal tension; Fig. 3.4A, right bottom panel for the classification of edges)
(Brodland 2002; Graner 1993; Graner and Sawada 1993). Therefore, as a pilot study for the

multivariate inference of mechanical parameters for each genotype, | presupposed that y, and vy
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relative to y are the main causes of clone formation, although other parameters such as the rate of cell
proliferation might potentially influence the clone boundary shape (see Fig. S3.3 for detailed data on
the numbers of cells and clones). | numerically explored the role of the different combinations of line
tension parameters yp and y¢ in the formation of clones. As the tension parameter for clone boundary
vb increased relative to the control tension parameter vy, cells were sorted out so that the clone boundary
became smoothly rounded (Box1 in Fig. 3.4C), as seen previously (Aliee et al. 2012; Bosveld, Guirao,
etal. 2016; Landsberg et al. 2009; Monier et al. 2010; Rudolf et al. 2015). | observed a similar tendency
to generate smooth clones by decreasing the inner clonal tension parameter yc relative to y, which is
equivalent to increasing adhesion between the inner clonal cells (Box2 in Fig. 3.4C). Conversely, cell
mixing occurred to form convoluted clones as yp decreased or y¢ increased relative to y (Fig. 3.4C).
Those results indicate the differences between the default tension (y) and the one at the clone boundary
and inside the clone (yp and yc) reflect cell sorting and cell mixing. As a measure to distinguish between
cell sorting and mixing, | examined the dimensionless clone tension, which is represented by v, yb, and
ve (o in Section “Clone Tension”) (Bosveld, Guirao, et al. 2016). | confirmed that negative and
positive values of the clone tension (Fig. 3.4B, grey and light-grey, respectively) mainly distinguished

convoluted and rounded clone morphologies, respectively (Fig. 3.4C).

3.4.4. Inference of tension parameters by comparison between experiments and simulations in
the PC space

| quantitatively compared the clone shapes generated by vertex model simulations using the control
parameters [y = yb = V¢, Fig. 3.4A(iv)] to those of Drosophila wild-type clones by projecting the
simulated clones onto the PC1 and PC2 space of the experimental data (Fig. 3.3H). The simulated
control clones (Fig. 3.5A, black octagonal asterisk at PC1 ~ 1.07, PC2 ~ 0.56) were consistently similar
to the wild-type clones in the PC space (Fig. 3.5A red confidence ellipse). | inferred the wild-type
tension parameters from the simulations plotted inside the 68% confidence ellipse of the wild-type
clones (Section “Estimation of the Mechanical Parameters of the Genetic Experiments in the PCA
Space”). The estimated parameters of the wild-type clones were distributed around the control
parameters of the simulation (Fig. 3.5B, red), where the clone tension was nearly zero (Fig. 3.5B, solid
line, and 5C, red), indicating that the vertex model could closely coordinate with the PCA of static
tissue images to non-invasively estimate the mechanical parameters of the wild-type clone based only
on the clone morphology.

Likewise, when | simultaneously projected simulation data from a wide range of tension
parameter sets (all marks in Fig. 3.4B) onto the PC space, | found that the two-dimensionality of the
parameter space of the line tension (yc/y and yp/y; Fig. 3.4B) was maintained in the PC1-PC2 space
(Fig. 3.5A), indicating a quantitative link between the tension parameters at the cell-cell interface and

the clone boundary geometry of heterogeneous populations. Therefore, following the methods applied
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to the wild-type clone, | estimated the mechanical parameters of the other three genotypes (Eph RNAI,
trn overexpression, and hbs overexpression). | found that the estimated regions of the mechanical
parameters for each genotype (plotted inside the 68% confidence ellipses in Fig. 3.5A) were
distributed in parallel to the contour lines of the clone tension (Fig. 3.5B). For the Eph-RNAI and trn-
overexpression clones, which had a rounded morphology (Fig. 3.1M, N), the tension of both clones
was higher than that of the wild-type clone (Fig. 3.5C). The hbs-overexpression clones had a negative
value for clone tension (Fig. 3.5C), which was consistent with their convoluted morphology (Fig.
3.10). The ascending order of clone tension (hbs overexpression < wild-type < Eph RNAI < trn
overexpression; Fig. 3.5C) perfectly agreed with that of PC1 (Fig. 3.3H), indicating that the value of
PC1 reflects the difference in clone tension. To more directly relate the clone tension to the PCA, |
projected the PC scores onto the parameter space of the vertex model simulations (Fig. 3.5D). The
contour of the PC1 scores was almost parallel to that of the clone tension (Fig. 3.5D, red solid line),
whereas that of the PC2 scores was rather perpendicular to that of the clone tension (Fig. 3.5D, dark
grey solid line), indicating that the clone tension was the mechanical basis of PC1.

To better estimate the tension parameters yp and e, | defined the simulation plots closest to the
centers of the confidence ellipses (Fig. 3.5A) as the best representative combinations of line tension
parameters for each genotype (pentagonal asterisks in Fig. 3.5B; Fig. 3.6). | confirmed that the
representative parameters yp and yc in simulations quantitatively reproduced experiments of each
genotype according to all clone shape criteria used in PCA (Fig. S3.8A and S3.9A, left most panels).
The representative parameters indicated that the cause of the higher clone tension was different
between the Eph-RNAI clones and the trn-overexpression clones. The difference was mainly caused
by dominantly reduced y. relative to y for the Eph-RNAI genotype and both reduced yc and increased
vb relative to y for the trn-overexpression genotype (Fig. 3.5B). The lower clone tension of the hbs-
overexpression clones was caused by dominantly increased vy relative to y (pentagonal asterisk in Fig.
3.5B).

At a constant clone tension for each genotype estimated by PC1, PC2 is sensitive to the
combination of yp and y¢ (€.9., -4 = PC2 = 2 at clone tension =-0.2 in Fig. 3.5D), so that the dominant
change of yp or yc relative to y was determined according to PC2 value of each genotype. The
underlying mechanics how PC2 distinguished the dominance can be understood from the mechanical
equilibrium of vertex model; edge length at clone boundary and cell area inside clones, which had
higher contribution to PC2 (Fig. 3.3K), become smaller as line tension strength yp and y. at constant
clone tension increase in simulations (Fig. S3.10). Thus, the mutual projection of the mechanical
parameter space and the PC space could efficiently and quantitatively estimate the distinct mechanics

of the various clone morphologies.

3.5. Discussion
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3.5.1. Multivariate analysis of clone shapes

First a PCA of clone shapes in heterogeneous cell populations was developed, which efficiently
segregated clones of each genotype in the PC space. No single cell-based criterion of clone shape was
able to perfectly segregate all four genotypes (Fig. 3.3). In addition, because most of the conventional
ways to quantify clone shape used in previous studies can only apply to closed clones (e.g., circularity,
Fig. 3.1C), much information regarding open clones (e.g., white clones in Fig. 3.2) was previously lost
during the quantification process. Open clones are frequently observed, however, in tissue specimens.
The cell-based criteria that 1 used (Fig. 3.1D-J) can apply to not only closed clones but also open
clones, so they can be used widely and independently on the clone shapes and its location in the tissue.
Furthermore, the average pixel size for each cell junction was only 8.4 (Fig. S3.11), suggesting the
relatively low resolution imaging data is sufficient to distinguish clones of different genotypes with a
minimal manual correction (1.12%, Section “Clone Shape Quantificatio” and Fig. S3.4). Therefore,
this cell-based quantification provides a robust method for the clone shape quantification.

Both genetic and non-genetic heterogeneities influence tumorigenesis (Cortina et al. 2007,
Porazinski et al. 2016), cell competition, and other events. Elimination of loser cells at the clone
boundary during cell competition has been shown to be driven by genetic heterogeneity (Amoyel and
Bach 2014; Morata and Ballesteros-Arias 2015; Vincent et al. 2013), while not all of loser cells are
eliminated indicating the non-genetic heterogeneity due to local cell-cell contacts and gene expression
levels in tissues might affect the elimination (e.g, Fig. 3.1 in (Levayer et al. 2015); (Chen et al. 2012;
Froldi et al. 2010; Kajita et al. 2014)). The PCA applied to individual clones efficiently separated the
genetic heterogeneity mainly in PC1, while the non-genetic heterogeneity was distributed in PC2 (Fig.
S3.6 and S3.7), indicating that PC1 and PC2 encode genetic and non-genetic heterogeneities,
respectively. That in turn indicates that the criteria with high contributions on PC1 (BDMT, MT, and
boundary angle) and PC2 (BDWT, cell area, and edge length; Fig. S3.6D) optimally indicate the
genetic and non-genetic heterogeneity, respectively, for the four genotypes in this study. The
determination of whether those criteria commonly distinguish between genetic and non-genetic
heterogeneity in other genotypes in the future will give clues as to how to separately evaluate genetic

and non-genetic contributions to physiological functions of heterogeneous tissue.

3.5.2. Non-invasive estimation of cell mechanics

I non-invasively estimated the mechanical parameters (i.e., clone tension and line tensions) of each
genotype by integrating in a PC space the results of vertex model simulations and the quantified clone
shapes in static images of cells (Fig. 3.5A and S3.12). As a case study for rounded clones, | revealed
that trn-overexpression clones have greater clone tension than Eph-RNA. clones (Fig. 3.5C). Despite
the patterned expression and the known, spatially graded function of trn in the wing pouch (Milan et

al. 2002), this method successfully captured the characteristic features of trn overexpression, which
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are significantly distinct from those of Eph knockdown (Fig. 3.3H-K). That suggests that this method
can be applied to the coarse classification of clones with distinct genotypes even in the presence of
non-genetic variation derived from a spatial gradient.

I also confirmed that the clone tension of the wild-type was nearly zero (Fig. 3.5C). In addition,
the range of clone tension for the other genotypes was also close to that measured previously (0 <o <
0.6) (Bosveld, Guirao, et al. 2016), despite the fact that different genotypes was used (Fig. 3.5C). In
addition, difference of the estimated clone tension (asterisk of Fig. 3.5C) among genotypes was larger
than the variation within each genotype (box height of each plot in Fig. 3.5C), which was also
confirmed by the estimation precision of clone tension [+0.15 (wild-type), under £0.1 (Eph), £0.1
(hbs), £0.2 (trn) calculated from estimation precision of yp and y¢ in Fig. S3.8 and S3.9 using Equation
2]. The results indicate that the estimated values were roughly correct and that this method works well
to estimate the mechanics. Moreover, this study first showed in vivo that negative clone tension causes
a convoluted morphology by inducing hbs-overexpression clones (Fig. 3.5C).

Our study revealed the cell mechanics, relative contributions of yp or yc to the increase or
decrease in clone tension. By examining the underlying cell mechanics, | found that the relative
contributions of the line tension parameters yp and yc were different among genotypes, even when the
sign of the clone tension was the same. Estimation precision of yu/y for each genotype was evaluated
by a limit to how much shift of yu/y from the best representative (pentagonal asterisks in Fig. 3.5B)
simulation could reproduce experimental data; It was at most £0.2 [under £0.1 (Eph, hbs), +0.1 (wild-
type), and +0.2 (trn)] (Fig. S3.8), whereas estimation precision of y¢/y was at most 0.3 [=0.1 (Eph),
0.2 (hbs, trn), and +0.3 (wild-type)] (Fig. S3.9). The estimated parameter variation of yn/y and yc/y
for each genotype (68% confidence, dark and light colors in Fig. 3.5B) was consistently smaller than
difference of the best representative parameters between genotypes (pentagonal asterisks in Fig. 3.5B).
The Eph-RNAI clone had decreased bulk line tension, whereas the trn-overexpression clone had both
increased boundary tension yp and decreased yc (pentagonal asterisks in Fig. 3.5B), resulting in positive
clone tension. The hbs-overexpression clone, which showed cell mixing due to negative clone tension,
mainly had increased vy. (pentagonal asterisk in Fig. 3.5B). Cell mixing caused by increased yc was
reported previously in myc-induced cell competition (Levayer et al. 2015). The inference on the
dominance of y, or . for each genotype should be verified by estimation of the mechanical tension by
physical perturbation in the future (e.g., laser cutting of the three types of edges in Fig. 3.4A, right

bottom panel).

3.5.3. Molecular mechanisms of cell sorting and mixing mechanics
The present estimation provides mechanical insights of the previously reported molecular functions in
cell sorting (Fig. 3.5B): Drosophila trn and its paralogue capricious (caps) encode leucine rich repeat

containing transmembrane proteins that have a function in controlling cell affinity and the regulation

76



of cell communication for cell survival (Milan, Cell, 2001; Milan, Dev. Cell, 2002; Sakurai, Dev. Biol.,
2007). The mammalian homologue, Lrrnl is required for the formation of the midbrain-hindbrain
boundary by regulating cell affinity (Tossell, Dev. Biol., 2011). Eph kinases comprise a large protein
family of receptor protein tyrosine kinases. Eph receptors are activated by binding to ephrins, their
membrane-anchored ligands, to transduce signals that play diverse roles in axon guidance, neural
crest-cell migration, and boundary formation of rhombomeres through their function in repulsive cell-
cell interactions (Fagotto, Winklbauer, and Rohani 2014; Sela-Donenfeld and Wilkinson 2005). In
addition, mammalian EphB signaling plays a tumor-suppressive role by compartmentalizing cancer
cells, potentially through cell-repulsive activity by means of actin cytoskeleton reorganization (Cortina
etal. 2007). The result showing decreased line tension at homotypic cell junctions (yc) within the Eph-
RNAI clones (Fig. 3.5B) is consistent with the previously proposed repulsive functions of Eph
receptors. Therefore, this method was consistent with the previously reported cell functions. Given the
common and uncommon biological functions between trn and Eph, it would be interesting to
investigate how the difference in cell mechanics between the trn-overexpression clone and Eph-RNA.
clone contributes to biological functions of those genes.

Our analysis showed that the overexpression of hbs alone can result in negative clone tension
(Fig. 3.5C), which leads to convoluted clonal morphology and cell scattering. The main contribution
to the negative clone tension was the increase of yc (Fig. 3.5B), which would be a reflection of either
an increase in cortical contractility or a decrease in adhesion at homotypic cell junctions within the
clone (Eqg. 3.1). That suggests that the scattered morphology of the hbs-overexpression clones was
derived from increased cell bond tension at the hbs—hbs cell interface, which is independent of the
interaction between heterotypic cell junctions at the wild-type—hbs interface. The mechanical basis of
hbs function has been poorly understood, except for its heterophilic interaction with the other nephrin
family proteins Roughest and Kirre. This result therefore provides a new mechanical insight into the

cell mixing mechanisms mediated by those proteins.

3.5.4. Future problems

In addition to line tension parameters, the clone boundary shape could be affected by inter-clonal
differences in other parameters such as the cell proliferation rate, apoptosis rate, and cell division
orientation, which I will incorporate into the vertex model in the future. For example, the proliferation
rate appeared to be increased more often in Eph-RNAI cells than in wild-type cells (Fig. S3.3B).
Differential proliferation rates induced by such mutants are known to cause not only clone boundary
smoothing [e.g., RasV'2-expressing (constitutively active form) cells (Prober and Edgar 2000) and
tkv@253P-expressing (activated form of Dpp receptor) cells (Nellen et al. 1996)] but also the mechanical
elongation of slower-dividing cells at the clone boundary and the compaction of faster-dividing cells

[e.g., Hippo mutant clones in wild-type tissue (Legoff et al. 2013; Mao et al. 2013; Pan et al. 2016)],
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so that cell shape anisotropy, which is a new criterion for cell elongation (Legoff et al. 2013; Mao et
al. 2013), as well as BDWT, clonal cell area, and other parameters might be reliable criteria for
differential proliferation. The regulation of cell division orientation depends on the pathway of planar
cell polarity, morphogen gradient, and mechanical cell stretching (Gillies and Cabernard 2011; di
Pietro, Echard, and Morin 2016; Stooke-Vaughan, Davidson, and Woolner 2017). Specifically,
misoriented or directionally oriented cell division inside or at the periphery of the clone results in a
rounded or convoluted shape of the clone boundary (Kale et al. 2016; Li et al. 2009; Mao et al. 2011).
Taken together, the incorporation of additional criteria is required (e.g., cell shape anisotropy) in order
to precisely infer the most responsive parameters of genotypes.

According to the increasing dimensions of the parameter space, parameter estimation should be
performed in the higher dimensions of the PC space. While | used the PC1-PC2 space containing 80%
of the information for the current estimation (Fig. 3.5A), PC3 contained about 10% of the information,
which segregated Eph-RNA. clones from trn-overexpression clones (Fig. 3.3, J). Additionally, | could
narrow down the estimated parameter region by combining this current analysis with other analyses,
such as a distribution of several criteria as in the parameter estimation of homogeneous epithelial tissue
(Aegerter-Wilmsen et al. 2010; Farhadifar et al. 2007). For example, hbs-overexpression clones
showed an anomalous distribution of cell numbers within clones due to an increasing fraction of clones
with smaller numbers of cells (Fig. S3.3A and S3.3C), while wild-type clones show coherent
morphologies (Fig. 3.1L) due to the remarkable lack of cell rearrangement in imaginal discs (Gibson
et al. 2006). That indicates that the combinatorial use of the clone size distribution (Fig. S3.13B) with
PCA could estimate the parameters for hbs-overexpression clones in a narrower range (Fig. S3.13A,
parameters covered by both blue and grey oblique lines). Future studies should also clarify the limits
and applicability of the multivariate inference of cell mechanics by exploring more complex systems
as well as a wider variety of genotypes.

The pipeline based on cell shape quantification developed in this study may be extended to an
image-based cancer diagnosis. High-throughput microscopy image-based cancer prognosis has been
developed and is expected to provide useful prognostic information for precision medicine (Yu et al.
2016). In addition to the potential contribution to such a classification of the cancer subtype or grade,
this method has a potential to provide the mechanistic understanding of tumor development.
Elucidation of mechanistic ground of tumor morphology may help cancer treatment planning.
Moreover, manipulation of the clone tension at the interface between normal cells and cancer cells (vo)
as well as of that between cancer cells (yc) can be an alternative clinical approach to suppress cancer

progression either by limiting tumor invasion or by promoting cell competition.
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Fig. 3.1. The multivariate estimation pipeline using quantitative evaluation of clone shape.

(A) Schematic summary of the inference procedure. (B-J) Criteria used for the evaluation of clone
shape (Provided by D. Umetsu). Circularity (C) was measured only for closed clones, while the other
six cell-based criteria (D-J) were measured for both closed clones and open clones. The cell-based
criteria (D-J) were calculated for each edge, tri-cellular junction, or cell, and the values were averaged
over each clone. (B) Scheme for a clone. Orange lines represent adherens junctions, and cells within
a clone are shaded. (C) Circularity calculated as 41 A/(L2), where “A” represents the area of the clone,

and “L” is the perimeter length of the clonal interface. The circularity of a perfect circle should be 1.
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(D-G) Magnified images of the box in (B). (D) Area of a cell within a clone normalized by that of all
wild-type cells surrounding the clone in a disc. | Length of edges (cell junctions between neighboring
vertices) at the clone boundary normalized by that of edges between wild-type cells. (F) Boundary
angle, which is the smaller angle (<180°) between neighboring junctions along the clone boundary at
every tri-cellular junction (three-way vertices). (G) Cell mixing index, which is the fraction of the
perimeter of a cell that is shared with cells from the other side of the clone boundary. (H-J) The cells
used to calculate the average cell mixing index for MT, BDMT, and BDWT are marked by red dots in
(H, all cells within the clone) (I, clonal cells beside the clone boundary) and blue dots in (J, wild-type
cells beside the clone boundary), respectively. (K) Scheme for genetic manipulation used to generate
the clones (Provided by D. Umetsu). GAL4 is expressed only when the CD2 cassette, which includes
a transcription termination sequence and is flanked by FRT sites, is excised upon Flippase (Flp)
induction by heat shock. Once expressed, GAL4 binds to the UAS sequence and drives expression of
the downstream gene. (L-O) Clones expressing a marker for wild-type (L), trn (M), double-strand
RNA against Eph (N), and hbs (O). The samples were prepared by D. Umetsu. (P-S) Segmentation of
the cell junctions in (L—O) (Provided by D. Umetsu).
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Fig. 3.2. Clone shape quantifications in wing discs.

Uppermost panels: Definition of clone type. “Closed” clone is completely enclosed by wild-type cells
(left), while “Open” clone contains an invisible portion due to its location at the distal region of the
tissue (middle) or image frame (right). Visualization of individual criteria (Fig. 3.1C-J) for the
examined clones of four genotypes (Fig. 3.1L—-O). For open clones, circularity was not measurable, so

they were filled by a white color.
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Fig. 3.3. Principal component analysis of clone shape indicators for four genotypes.
(A-G) Plots for circularity (A), edge length (B), cell area (C), boundary angle (D) and cell mixing
index of MT cells (E), BDMT cells (F), and BDWT cells (G) of clones of four genotypes including

wild-type (red), Eph RNAI (green), trn overexpression (yellow), and hbs overexpression (blue). The
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plotted data were obtained from clones with averaging within a disc. Black solid lines and gray broken
lines represent the average and median values, respectively. Wilcoxon rank sum test, n = 6 for control
and hbs overexpression; n = 5 for Eph RNAI and trn overexpression. **P < 0.01, *P < 0.05 and P >
0.05 (N.S., Not Significant). (H-J) Results of principal component analysis using six criteria (edge
length, cell area, boundary angle, and cell mixing index of MT cells, BDMT cells, and BDWT cells)
are plotted for PC1 vs. PC2 (H), PC1 vs. PC3 (I), and PC2 vs. PC3 (J). (K) Quantified contribution
(factor loadings; Section “Principal Component Analysis (PCA)” for definition) of each criterion on
PC1 and PC2. The arrow length represents the sum of the squared correlation coefficient of PC1 and

PC2, noting that the sum of all PCs is equal to 1.
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Fig. 3.4. Cell vertex model simulations.

(A) Right bottom: The classification of line tension parameters: vy [default tension at edges between
non-clonal cells (white)], yb (clone boundary tension at edges on the clone boundary), and y¢ [inner
clonal tension at edges between clonal cells (green)]. (i—vii) Snapshots of simulated clones when the
total number of green cells is 40. (B) Parameter space of normalized line tension (yu/y and yc/y) with
contour lines of clone tension ¢ (See Section “Clone Tension for definition”). Each symbol denotes
different combinations of parameters (yo/y, v¢/y). (C) Representative form of the clones for all
simulation parameters in (B), noting that the model did not work at the three parameter points indicated

by “ND.” Clones enclosed within black dashed boxes are the same as those in (i-Vii).
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Fig. 3.5. Inference of tension parameter and clone tension of four genotypes.

(A) Projection of simulated clones onto the PC space of Drosophila experiments (See Section
“Projection of the Simulation Data onto the PCA Space of the Experimental Data” for Projection;
Symbols denote parameter values given in Fig. 3.4B). A limited set of simulation points are plotted
for visibility (see Supplementary Fig. S3.12 for the projection of the entire simulated dataset). The
experimental confidence ellipses were identical to those in Fig. 3.3H. The averaged PC scores were
plotted with symbol size proportional to the number of cells within a clone and error bar representing
standard deviation. (B) Estimated mechanical parameters of four genotypes. Mechanical parameters
within the 38 and 68% confidence ellipses in (A) are shown by dark and light colors, respectively.
Pentagon asterisks (*) mark the best representative parameters, which are the closest to the center of
each confidence ellipse. (C) Estimated clone tension of four genotypes calculated by the estimated
mechanical parameters within the 68% confidence ellipse [dark and light colors in (B)]. The
upper/lower hinge and thick middle line represent the 251/75™ and 50™ percentiles, respectively. Gray
squares show the averaged clone tension. Octagonal asterisks are the clone tension of the best
representative parameters [pentagonal asterisks in (B)]. (D) Projection of the contour lines of PC1 and
PC2 scores onto the parameter space of vertex model simulations.
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Fig. 3.6. Simulation clones corresponding to the experimental clones.

Visualization of individual criteria for the four simulated clones, which correspond to the best
representative combination of line tension parameters for the four genotypes (pentagon asterisks in
Fig. 3.5B)
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3.7. Supporting figures
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Fig. S3.1.
Histograms of individual criteria for the examined clones of the four genotypes shown in Fig. 3.3A—
G. The values for each criterion was calculated by me and plotted by D. Umetsu.
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(A-G) Box plots of circularity (A), edge length (B), cell area (C), boundary angle (D), and cell mixing
index of MT cells (E), BDMT cells (F), and BDWT cells (G) for the examined clones of four
genotypes: control (red), Eph RNAI (green), trn overexpression (yellow), and hbs overexpression
(blue). Plotted data were obtained from individual clones without averaging within a disc (see Fig. 3.3
for “with averaging”). | used only closed clones for circularity and both open and closed clones for
the other criteria. The upper/lower hinge and thick middle line represent the 25th/75th and 50th
percentiles, respectively, whereas colored dots denote outliers. | note that a few outliers with extremely
high values of cell mixing index (MT, BDMT) in Eph denote clones containing only one or two cells

inside of them. The criteria values was calculated by me and plotted by D. Umetsu.
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Fig. S3.4.

Estimation of segmentation error (Provided by D. Umetsu). (A) and (E) Overlay of a segmentation
mask on its original image after auto-segmentation. Two magnified regions of an image sample from
the Eph RNAI experiment. (B) Only the original image in (A) is shown. (C) Only the segmentation
mask in (A) is shown. (D) Overlay of a hand-corrected segmentation mask on the auto-segmentation
mask. Removed bonds from the auto-segmentation mask are shown in green and newly added bonds
are shown in magenta. (F) Only the original image in (E) is shown. (G) Only the segmentation mask
in (E) is shown. (H) Overlay of hand-corrected masks by different individuals. Note that while one
bond was corrected in both masks (magenta and green bonds are aligned side by side) the other one
exhibited discrepancy. Only one person considered it as a bond (magenta bond). Arrowheads point
unrecognized cell bonds (false negative) and an arrow indicates a divisive cell bond. (I) Mean
correction rate made by 5 individuals. Hand-corrections were performed 2 rounds by different persons
for each round. The mean rate of hand-correction made by 1st and 2nd round in total was 1.12 % of
all cell junctions (The sum of mean false negative and positive in 1st and 2nd round of hand-correction).
Mean final discrepancy rate between 2 individuals was 0.23 % (max. 0.44 %).
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(A-B) Factor loadings of each criterion on PC1, PC2, and PC3 corresponding to the PCA with

averaging within discs shown in Fig. 3.3H-J.

91



control
Eph
hbs
25-
tn
g g
=1 =1
[ [
c c
g ©
o o
5:: § 0.0
3 3
B @
o =2
N vl
Oo- O
a a
25-
0 2 4 0 2 4
PC1 (37.9%explainedvar.) PC1 (37.9%explainedvar.)
1.0 —Edge length
Cell are} N 9
25-
0.5

00- : B
Boundary angle, ' i

PC2 (32.6%)
°
g

PC3 (18.0%explainedvar.)
|
°
By

-25

-1.0

0.0 10
PC1 (37.9%)

0 5
PC2 (32.6%explainedvar.)

Fig. S3.6.
(A-C) PCA using the same six criteria shown in Fig. 3.3H-J without averaging of individual clones

within each wing disc. (D) The quantified contribution (factor loading) of each criterion on PC1 and

PC2 in (A) was similar to that in Fig. 3.3K.
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(A) Visualization of the scores of PC1, PC2, and PC3 for the examined clones of the four genotypes

shown in Fig. S3.6A-C. (B) The PC2 score has a positive correlation with the distance from the center

of the disc (middle panel), while the PC1 and PC3 scores do not (left and right panels). The center

position was determined manually by referring to the position of the highest E-cad intensity. Pearson

correlation coefficient R and test for the association between paired samples were calculated using the

R environment with the “cor” and “cor.test” functions.
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Evaluating precision of estimated line tension parameter yp. (A) Left most panels: Validation of the
best representative parameters (yp and y. indicated by pentagon asterisks in Fig. 3.5B) in simulation
by comparing clone shape criteria with those in experiment. Wild-type (red), Eph-RNAI (green), hbs-
overexpression (blue), trn-overexpression (yellow). Error bars of experiment were SD (standard
deviations) of all clones which were identical datasets plotted in Fig. S3.2, whereas that of simulation
were SD of all clones at the estimated parameters (asterisks in Fig. 3.5B). Distance between the plots
and y = x (dashed line) were less than SDs, indicating experiment was reproduced by the estimated
parameters. Right panels (box plots) evaluated the parameter precision of vy, for each genotype
(horizontal direction) regarding six clone shape criteria (vertical direction). Box plot of each genotype

was shown at the left most side for each panel indexed by “wild-type”, “Eph”, “hbs” and “trn”, whose
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datasets were identical with left most panels. Black dashed lines denote 25" and 75™ percentiles of the
experimental plots. Box plots at the right side of black solid line show simulated clones as a function
of parameter shift Ayp/y from the best representative parameter (Ayp/y = 0). (B) Grey filled region
denotes box plots in simulation overlapped with that of experiment bounded between black dashed
lines in A. Colored region at the lowest row indexed by “reproducible parameters” summarizes the
parameter shift which reproduced experiments in all criteria. The maxima of absolute value of the
reproducible parameters (colored Ayp/y) [£0.1 (wild-type), under £0.1 (Eph, hbs), and £0.2 (trn)] were
defined as the estimation precision of yu/y. The estimated precision of yu/y are equal to that of clone

tension regarding vy, based on Equation 2 in Main text.

95



>

e
F= a - 1.2
) ) ’ 5
c 5, . g
9 = d g 1,0RRLIR S SROL G N SO RN SO VN s
2 =)
P ———
T :
S E g ool N S BN B N
 Eaperitient " WEOPE04-03:02°000, 81 62 03 04
1 20
g s. . Bus
S = 13 5
S 3. —— 3
° 3
o s 3
“Experiment
s
2
=) " S e
c ¥ e
S 5 S 5
> £, g
S e Y 2
s é. R
g o 2
E . 10 -
] . 1
T Bperiment T T vietmenatosioziois 0162 03 6
08+
< g
3 .
2 < L 06
o~ 8 e j{ =
s E 3 - b I R |
= = E: . o4
2 <5 [ .
£ s B ) ?
g 0.2 =
xperime - wild-type-0.4-0.3-0.2-0,10 0.1 0.2 0.3 0.4
Experiment P ey
08
c 5 -
£ ~ 5.
o &° o g
S S 3
X 05 =
= m 12 o
[SRE = -
o
o Lol
Experiment wild'type'0.4-0.3°0.2°0,10 6.1 0.2 0.3 0.4
Ayely
0.40
x
2 s 03
£ ~§,
o - . 5
258" | e
= E : = @
X g [ 3
e .
= 0.5
©
]

" Experiment Widtype 0.4-0.3202-0.10 6.1 6.2 0.3 0.4
Ayely

wild-type

Fig. S3.9.

Evaluating precision of estimated line tension parameter yc. (A-B) The definition and layout of plots
were the same with Supplementary Fig. 3.8, except for evaluating the parameter precision of y¢ in right
panels. | note that simulation parameter shifting +0.3 and +0.4 (Ayc/y = 0.3, 0.4) for hbs was absent,
because the parameters were out of range. Following the evaluation of estimation precision of yp in
Fig. S3.8, precision estimation of yc was evaluated as +0.1 (Eph), £0.2 (hbs, trn), and 0.3 (wild-type),
while Ayc/y = 0.4 in trn was unlikely because simulation with Ayc/y = 0.3 already failed to reproduce
experiment. These values are twice of the estimation precision of clone tension regarding yc, calculated
from Equation 2 in Main text. The estimation precision of clone tension was totally given by larger
value between that regarding yp (Fig. S3.8) and vy¢; £0.15 (wild-type), under +0.1 (Eph), 0.1 (hbs),

0.2 (trn).
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Role of mechanical parameters y, and yc on clone shape under constant clone tension ¢ in simulations

(0 =-0.4 and 0.4; see Fig. 3.4C for corresponding clone shape). Box plot of (A) Edge length, (B) cell
area, (C) boundary angle, (D) MT, (E) BDMT and (F) BDWT (see Fig. 3.1D-J for definition) for all

clones at 40 cells in clones in total. Edge length and cell area were significantly smaller as y, and vy

got larger at constant ¢ (6 =-0.4 and 0.4; A-B) while the other indicators showed mostly not significant

difference (C-F). The physical reason of this difference is that larger line tension parameter vy

contributes to shorten edge length so as to decrease cell area inside of the clone bulk. In addition,

larger line tension parameter yp contributes to shorten edge length at the clone boundary. Wilcoxon

rank sum test. n = 5 independent simulations for each parameter. P < 0.001 (***), P < 0.01 (**), P <
0.05 (*) and P > 0.05 (N.S., Not Significant).
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L mean bond size = 8.405
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Fig. S3.11.

The mean bond size in pixel for each experiment (Provided by D. Umetsu). The mean bond size was
calculated for all bonds including inside and outside of clones in all experiments. The data was plotted
for each genotype separately. The mean bond size for all cell bonds of all experiments was 8.4

pixels/bond.
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Fig S3.2.
Projection of all simulated clones onto the PC space of Drosophila experiments, which is a complete

version of Fig. 3.5A.
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(A) The parameter region of hbs was limited to a more narrow range by combining it with another
observation criterion, the distribution of cell number within a clone (B). In the regions containing grey
oblique lines, the empirical cumulative distribution of the cell number within clones was similar to
that of hbs-overexpression clones (KS test, P > 0.05 or P > 0.01). The blue-colored regions showing
the estimated mechanical parameters of hbs-overexpression clones generated by projection onto the
PC space were the same as those in Fig. 3.5B. The ranges of the grey-oblique and both blue-colored
regions were partially overlapped each other. (B) The empirical cumulative distribution of cell number
within clones was compared between hbs-overexpression clones and simulated clones [(i) yn/y = 0.7,
vely = 1.2, (i) yo/y = 1.1, ye/y = 1.6, (iii) yo/y = 1.0, y¢/y = 0.6].
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Edge length | Cellarea | Boundary angle MT BDMT | BDWT
Weight (PC1) 0.153 0.205 -0.519 0.525 0.505 0.366
Weight (PC2) 0.630 0.635 0.122 -0.248 -0.247 0.251
Weight (PC3) 0.367 0.134 0.259 0.258 0.380 -0.754

Table 3.1.

Weights for each criteria to calculate PC scores in Fig. 3.3H-K, which correspond to all, al2, ..., al6
in Section “Projection of the Simulation Data onto the PCA Space of the Experimental Data” in Main

Text.
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4. General conclusion

A wide variety of living organisms in the earth interact with each other and form a society (ecological
system). Such situation in which different kinds of organisms coexist leads to cooperative and/or
competitive interactions between each animal. For example, when different organisms exist in the
same territory, they share or outcompete weaker animals by comparing their relative fitness. Recently,
it has been gradually apparent that cells in a multicellular society also compete for their territory
through a phenomenon called cell competition. In chapter 2, | analyzed spatio-temporal evolution of
cell turnover during cell competition between normal host-tissue cells and oncogenic cells. The main
discovery is that oncogenic mutant cells compensate for the space of normal cells’ apoptosis by rapid
cell expansion through re-connection of local cellular connectivity. This finding links the cell-level
topological dynamics and tissue-scale mutant expansion, and may help to understand the pathological
development initiated from an oncogenic mutation. In chapter 3, | analyzed how tissue occupancy of
mutant clones is regulated by cell mechanical properties. | developed non-invasive methods for
inferring cell mechanics and showed the mechanical basis contributed to distinct tissue occupancy
under different genetic mutation. In summary, these two studies bridges gaps between cell-level
behavior and tissue-level dynamics by using theoretical model, which can evaluate how individual
cellular parameters influence cell population dynamics, respectively. Additionally, the validity of
model predictions is verified by genetic experiment in Drosophila and quantitative image analysis.
Such combinatorial way of research enables us to capture the phenomenon from a wide view, and
would potentially create a research paradigm to understand complicated phenomena due to

combination of variety of factors.
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