<table>
<thead>
<tr>
<th>Title</th>
<th>Existence of pencils with prescribed scrollar invariants of some general type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Coppens, Marc</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 36(4) P.1049-P.1057</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7071</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7071</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
EXISTENCE OF PENCILS WITH PRESCRIBED SCROLLAR INVARIANTS OF SOME GENERAL TYPE

MARC COPPENS

(Received January 12, 1998)

0. Introduction

Let C be an irreducible smooth projective non-hyperelliptic curve of genus g defined over the field C of complex numbers. Let g_k^1 be a complete base-point free special linear system on C. The scrollar invariants of g_k^1 are defined as follows. Let C be canonically embedded in P^{g-1} and let X be the union of the linear spans $\langle D \rangle$ with $D \in g_k^1$. This defines a set of integers $e_1 \geq \ldots \geq e_{k-1} \geq 0$ such that X is the image of the projective bundle $P(e_1; \ldots; e_{k-1}) = P(\mathcal{O}_P(1) \oplus \ldots \oplus \mathcal{O}_P(e_{k-1}))$ using the tautological bundle (see e.g. [2]; [7]). Those integers $e_1; e_2; \ldots; e_{k-1}$ are called the scrollar invariants of g_k^1.

Those scrollar invariants determine (and are determined by) the complete linear systems associated to multiples of the linear system g_k^1. For $1 \leq i \leq k-1$ the invariant e_i is one less than the number of non-negative integers j satisfying $\dim(\langle K_C - jg_k^1 \rangle) - \dim(\langle K_C - (j+1)g_k^1 \rangle) \geq i$. Here K_C denotes a canonical divisor on C. Let $m = e_{k-1} + 2$. Then m is defined by the following conditions: $\dim(\langle (m-1)g_k^1 \rangle) = m-1$ and $\dim(\langle mg_k^1 \rangle) > m$. In case mg_k^1 is birationally very ample then the scrollar invariants satisfy the inequalities $e_i \leq e_{i+1} + m$ for $1 \leq i \leq k-2$ (see [3]). In case $k = 3$ this number $m = e_2$ determines also the other scrollar invariant e_1. It is the starting point for so-called Maroni-theory for linear systems on trigonal curves (see [4]; [5]). Scrollar invariants for 4-gonal curves are intensively studied in [1]; [3] and for 5-gonal curves in [6].

For $(j-1)m - 1 < x \leq jm - 1$ with j satisfying the scrollar invariants imply $\dim(\langle xg_k^1 \rangle) \geq \frac{j(j-1)}{2}m - 1 + (x - (j-1)m + 1)j$. Equality (if not in conflict with the Riemann-Roch Theorem) can be expected being the most general case for a fixed value of m. The inequalities also imply $\dim(\langle (k-1)mg_k^1 \rangle) = \dim(\langle ((k-1)m-1)g_k^1 \rangle) + k$. This implies that $\langle ((k-1)m-1)g_k^1 \rangle$ is not special. Using the dimension bound one obtains $g \leq [(k^2 - k)m - 2k + 2]/2$. (This easy but interesting consequence from the inequalities is not mentioned by Kato and Ohbuchi.) In this paper we prove the following theorem.

Theorem. For all nonnegative integers k; m and g satisfying $k \geq 3$; $m \geq 2$ and $k-1 \leq g \leq [(k^2 - k)m - 2k + 2]/2$ there exists a smooth curve C of genus g possessing
a complete base point free linear system \(g_k \) satisfying the following property. For each nonnegative integer \(x \) with \(x \leq (k-1)m - 1 \) define the nonnegative integer \(j \) such that
\[(j - 1)m - 1 < x \leq jm - 1.\]
Then \(\dim([xg_k]) = \max\left\{ \left\lfloor \frac{j(j-1)}{2} m - 1 + (x - (j - 1)m + 1)j; kx - g \right\rfloor \right\} \). Also \(|mg_k| \) is birationally very ample.

The curves \(C \) are obtained using special plane curves degenerating to special types of rational curves. First we construct those rational curves \(\Gamma_0 \) using some linear system \(g_k \) on \(P^1 \). In order to prove the theorem we study canonical adjoint curves of \(\Gamma_0 \) containing all points belonging to a given number of divisors from \(g_k \).

SOME NOTATIONS. On a smooth surface \(X \); if \(\Gamma_1 \) and \(\Gamma_2 \) are two effective divisors intersecting at \(x \in X \) (no common component containing \(x \)) then we write \(i(\Gamma_1, \Gamma_2; x) \) for the intersection multiplicity of \(\Gamma_1 \) and \(\Gamma_2 \) at \(x \). We write \((\Gamma_1, \Gamma_2) \) for the intersection number of \(\Gamma_1 \) and \(\Gamma_2 \). We also write \(K_X \) for a canonical divisor on \(X \).

1. **Construction of the plane rational curve**

Choose a general linear system \(g_k \) on \(P^1 \) and a general divisor \(F \in g_k \). Choose a general effective divisor \(E \) of degree \(mk \) on \(P^1 \). Consider the linear system \(g^2_{mk} \) containing \((m-1)F + g_k \) and \(E \).

Claim 1.1. \(g^2_{mk} \) is a simple base point free linear system on \(P^1 \).

Proof. The linear system \(g^2_{mk} \) has no base points: \(mF \in (m-1)F + g_k \subset g^2_{mk} \) and \(E \cap F = \emptyset \). For \(P \in E \) and \(D_P \in g_k \) containing \(P \) one has \(E \cap D_P = \{P\} \) (the intersection as schemes is reduced), therefore also \(E \cap ((m-1)F + D_P) = \{P\} \). Since \((m-1)F + D_P \in g^2_{mk} \) this implies that \(g^2_{mk} \) is simple.

Claim 1.2. The space parametrizing such linear systems \(g^2_{mk} \) on \(P^1 \) is irreducible of dimension \(mk + 2k - 3 \).

Proof. Effective divisors of degree \(d \) on \(P^1 \) are parametrized by a projective space \(P^d \). Linear systems \(g^1_k \) (resp. \(g^2_{mk} \)) on \(P^1 \) are parametrized by a grassmannian \(G(1;k) \) (resp. \(G(2; mk) \)) of lines in \(P^k \) (resp. planes in \(P^{mk} \)). On \(G(1;k) \times P^k \) we have the incidence subvariety \(\mathcal{I} \) defined as \((g^1_k; F) \in \mathcal{I} \) if and only if \(F \in g^1_k \). Clearly \(\mathcal{I} \) is irreducible of dimension \(\dim(G(1;k)) + 1 = 2k - 1 \). The linear systems \(g^2_{mk} \) constructed above belong to the image of the rational map \(\tau : \mathcal{I} \times P^{mk} \to G(2; mk) \) defined by \(\tau((g^1_k; F); E) = ((m-1)F + g^1_k; E) \).

Suppose for \((g^1_k; F); E) \in I \times P^{mk} \) general, there exists another element \((h^1_k; G); E') \in I \times P^{mk} \) with \(\tau((g^1_k; F); E) = \tau((h^1_k; G); E') \) but \((g^1_k; F) \neq (h^1_k; G) \). Because
(m - 1)F + g^1_k and (m - 1)G + h^1_k are both lines in g^2_{mk}, one has [(m - 1)F + g^1_k] \cap [(m - 1)G + h^1_k] \neq \emptyset. Assume (m - 1)F + g^1_k = (m - 1)G + h^1_k. Because g^1_k has no fixed points, this implies F = G and so g^1_k = h^1_k; a contradiction. Choose D \in h^1_k with (m - 1)G + D \notin (m - 1)F + g^1_k. Then g^2_{mk} = \langle(m - 1)F + g^1_k; (m - 1)G + D\rangle. Because g^2_{mk} is base point free (Claim 1.1) we find F \cap G = \emptyset. But then [(m - 1)F + g^1_k] \cap [(m - 1)G + h^1_k] \neq \emptyset implies m = 2; F \in h^1_k; G \in g^1_k and so g^1_k = h^1_k = (F; G). For D \in g^1_k one finds F + D; G + D \in g^2_{2k} so g^1_k + D \subset g^2_{2k}. It follows that g^2_{2k} = \{D_1 + D_2 : D_1; D_2 \in g^1_k\}. This contradicts g^2_{2k} being simple (Claim 1.1). So we find for a general \langle(g^1_k; F); E\rangle \in I \times P^{mk} one has \tau((g^1_k; F); E) = \tau((h^1_k; G); E') if and only if \langle(g^1_k; F) = (h^1_k; G) and E' \in \langle(m - 1)F + g^1_k; E\rangle. Therefore the general non-empty fiber of \tau has dimension 2. So, the image of \tau has dimension mk + 2k - 3.

Associated to g^2_{mk} there exist morphisms \phi : P^1 \to P^2. Fix such a morphism and let \Gamma be the image.

Claim 1.3. \(\Gamma\) is a plane curve of degree mk. The divisor F induces a singular point s on \(\Gamma\) of multiplicity \((m - 1)k\). The other singular points of \(\Gamma\) are ordinary nodes.

Proof. Since g^2_{mk} is simple and base point free (Claim 1.1) the plane curve \(\Gamma\) has degree mk. There is a 1-dimensional subsystem of g^2_{mk} containing \((m - 1)F\). This 1-dimensional subsystem corresponds to a pencil of lines on P^2 containing some fixed point s. For a general line L containing s there are k intersections each one of multiplicity 1 with \(\Gamma\) outside s. This implies \(i(\Gamma; L; s) = (m - 1)k\), hence \(\Gamma\) has multiplicity \((m - 1)k\) at s. Assume s' is another singular point of \(\Gamma\).

First assume s' has multiplicity \(\mu \geq 3\). The pencil of lines on P^2 containing s' induces a linear subsystem F' \in g^{1}_{mk-\mu} \subset g^2_{mk}. From s \neq s' it follows that \(F \cap F' \neq \emptyset\). The line \langle ss'\rangle on P^2 gives rise to \((m - 1)F + D \in g^2_{mk} \cap D \in g^1_k\). We find D = F' + D' for some effective divisor D'. Let E' be the divisor corresponding to a general line through s', then E' = F' + E'' for some E'' \in g^1_{mk-\mu}. Since g^2_{mk} = \langle(m - 1)F + g^1_k; E'\rangle we find that g^2_{mk} belongs to the image of the morphism \(\tau' : I' \times P^{mk-\mu} \to G(2; mk)\) defined by \(\tau'((g^1_k; F'; E')); E'') = \langle(m - 1)F + g^1_k; E' + E''\rangle\) with \(I' \subset I \times P^\mu\) defined by \(\langle(g^1_k; F; F'); E'\rangle\) if and only if \(D \geq F'\) for some \(D \in g^1_k\) (here I is as in the proof of Claim 1.2). The choice of E'' implies that \(\tau'\) has non-empty fibers of dimension at least 1. Since \(\dim(I' \times P^{mk-\mu} = 2k + mk - \mu \leq (m + 2)k - 3\). This contradicts \(\mu \geq 3\). It follows that s' has multiplicity 2.

Using the same notations we have \(\mu = 2; \deg(F') = 2\). Assume F' = 2P_0. Then P_0 is a ramification point of \(g^1_k\).

This implies that g^2_{mk} belongs to the image of the morphism \(\tau^u : I'' \times P^{mk-2} \to G(2; mk)\) defined by \(\tau^u((g^1_k; F; P_0); E'') = \langle(m - 1)F + g^1_k; 2P_0 + E''\rangle\), with \(I'' \subset I \times P^1\) defined by \(\langle(g^1_k; F; P_0) \in I''\) if and only if \(P_0\) is a ramification point of \(g^1_k\). Again, the non-empty fibers have dimension at least 1. Since \(\dim(I'' \times P^{mk-2}) = 2k - 1 + mk - 2\), we find a contradiction to \(\dim(imr) = (m + 2)k - 3\).
We obtain $F' = P_0 + Q_0$ with $P_0 \neq Q_0$. Assume L_0 is a line through s' such that L_0 induces $2(P_0 + Q_0) + E'''$ for some effective divisor E''' of degree $mk-4$. Hence, we assume that s' is a tacnode. This implies g_{mk}^2 belongs to the image of the rational map $\tau'' : I'' \times P^{mk-4} \to G(2; mk)$ defined by $\tau''((g_1^k, F; F'); E'') = ((m-1)F + g_1^k; 2F' + E'')$ with $I'' \subset I \times P^2$ defined by $(g_1^k; F; F') \in I''$ if and only if $D \geq F'$ for some $D \in g_1^k$. Because $\dim(I'' \times P^{mk-4}) = (m + 2)k - 4 < (m + 2)k - 3$, once more we obtain a contradiction. This implies that s' is an ordinary node.

Because $mF \in g_{mk}^2$, there exists a line Γ on P^2 through s inducing mF. This line T intersects Γ only at s, hence $i(T, \Gamma; s) = mk$. We can consider the singularity of Γ at s as follows. It consists of exactly k locally irreducible branches (we use $F \in P^k$ is general), each one having multiplicity $m - 1$ at s and having T as "tangent line" intersecting the branch with multiplicity m at s. From now on we fix s and T.

Claim 1.4. We obtain a family of plane curves of dimension $(m + 2)k - 1$.

Proof. This follows from Claim 1.2 taking into account that $\dim(\text{Aut}(P^1)) = 3$; $\dim(\text{Aut}(P^2)) = 8$ and fixing s and T imposes 3 independent conditions on Γ. \qed

2. **Blowing up the projective plane**

Let $\pi_1 : X_1 \to P^2$ be the blowing-up of P^2 at s; let E_1 be the exceptional divisor. Let T_1 (resp. Γ_1) be the strict transform of T (resp. Γ) on X_1. Let L be the inverse image of a line on P^2. Then $T_1 \subset |L - E_1|; \Gamma_1 \subset |kmL - k(m - 1)E_1|$. Let $s_1 = E_1 \cap T_1$.

The linear system $|L - E_1|$ induces g_1^k on P^1 and T_1 induces F. Since the images of points of F under the morphism $P^1 \to \Gamma_1$ are contained in E_1, it follows that $i(T_1, \Gamma_1; s_1) = k$. Hence the k different points of F correspond to k different irreducible branches of Γ_1 at s_1. Hence Γ_1 has a singular point of multiplicity k at s_1. Also $E_1 \cap \Gamma_1 = \{s_1\}$ and since $(E_1, \Gamma_1) = k(m - 1)$ it follows that $i(E_1, \Gamma_1; s_1) = (m - 1)k$. Because $T_1 + E_1$ induces mF on P^1, it follows that E_1 intersects each branch of Γ_1 at s_1 with multiplicity $m - 1$ at s_1.

Let $\pi_2 : X_2 \to X_1$ be the blowing-up of X_1 at s_1. Let E_2 be the exceptional divisor. We continue to write L for the inverse image of a general line on P^2. Let E_{12} (resp. $T_2; \Gamma_2$) be the strict transforms of E_1 (resp. $T; \Gamma$) on X_2. We also write E_1 to denote the inverse image of E_1 on X_2. Then $E_{12} \subset |E_1 - E_2|; T_2 \subset |L - E_1 - E_2|; \Gamma_2 \subset |kmL - k(m - 1)E_1 - kE_2|$. Let $s_2 = E_2 \cap E_{12}$. One has $(T_2, \Gamma_2) = 0$ hence $T_2 \cap \Gamma_2 = \emptyset$. In case $m = 2$ we find $(T_2, E_{12}) = 0$ hence $\Gamma_2 \cap E_{12} = \emptyset$.

Assume $m > 2$. From $(T_2, E_2) = k$ it follows that each branch of Γ_2 corresponding to a point of F is smooth and intersects E_2 transversally at one point. Because $E_2 + E_{12}$ induces $(m - 1)F$ on P^1 it follows that those points of F map to s_2 and E_{12} intersects each branch with multiplicity $m - 2$ at s_2. It follows that Γ_2 has multiplicity k at s_2.

We continue to make blowings-up. For each \(i \leq m \) we obtain the blowing-up \(\pi_i : X_i \to X_{i-1} \) with exceptional divisor \(E_i \). On \(X_i \) we continue to write \(L \) to denote the inverse image of a general line on \(P^2 \). We write \(\Gamma_i \) (resp. \(E_{i-1,i} ; T_i \)) to denote the strict transform of \(\Gamma \) (resp. \(E_{i-1} ; T \)) on \(X_i \). Also, for \(j \leq i - 2 \) we write \(E_{j,i} \) for the strict transform of \(E_{j,i-1} \). Let \(s_i = E_i \cap E_{i-1,i} \). In case \(i < m \) the multiplicity of \(\Gamma_i \) at \(s_i \) is \(k_i \). At \(s_i \) the curve \(\Gamma_i \) has \(k_i \) smooth locally irreducible branches. Also, for \(j < i - 2 \) we write \(E_{j,i} \) for the strict transform of \(E_{j,i-1} \).

Let \(s_i^* = E_i \cap E_{i-1,i}^* \). In case \(i < m \) the multiplicity of \(\Gamma_i \) at \(s_i^* \) is \(k_i \). At \(s_i^* \) the curve \(\Gamma_i \) has \(k_i \) smooth locally irreducible branches. Also, for \(j < i - 2 \) we write \(E_{j,i} \) for the strict transform of \(E_{j,i-1} \).

Let \(s_i^* = E_i \cap E_{i-1,i}^* \). In case \(i < m \) the multiplicity of \(\Gamma_i \) at \(s_i^* \) is \(k_i \). At \(s_i^* \) the curve \(\Gamma_i \) has \(k_i \) smooth locally irreducible branches. Also, for \(j < i - 2 \) we write \(E_{j,i} \) for the strict transform of \(E_{j,i-1} \).

Let \(s_i^* = E_i \cap E_{i-1,i}^* \). In case \(i < m \) the multiplicity of \(\Gamma_i \) at \(s_i^* \) is \(k_i \). At \(s_i^* \) the curve \(\Gamma_i \) has \(k_i \) smooth locally irreducible branches. Also, for \(j < i - 2 \) we write \(E_{j,i} \) for the strict transform of \(E_{j,i-1} \).

Let \(s_i^* = E_i \cap E_{i-1,i}^* \). In case \(i < m \) the multiplicity of \(\Gamma_i \) at \(s_i^* \) is \(k_i \). At \(s_i^* \) the curve \(\Gamma_i \) has \(k_i \) smooth locally irreducible branches. Also, for \(j < i - 2 \) we write \(E_{j,i} \) for the strict transform of \(E_{j,i-1} \).

Claim 2.1. \(\Gamma_m \) has ordinary nodes as its only singularities. The intersection points of \(\Gamma_m \) and \(E_m \) are smooth points on \(\Gamma_m \).

Proof. Because of Claim 1.3 it is enough to prove that the intersection points of \(\Gamma_m \) and \(E_m \) are smooth points on \(\Gamma_m \). The inverse image on \(P^1 \) of the intersection as schemes of \(\Gamma_m \) and \(E_m \) is the divisor \(F \), hence a general divisor of degree \(k \) on \(P^1 \). If that intersection would not be smooth then 2 different points in \(F \) would have the same image on \(\Gamma_m \). Because of monodromy on \(P^1 \), in that case all \(k \) points on \(F \) need to have the same image on \(\Gamma_m \), hence \(\Gamma_m \cap E_m \) is a single multiple point \(s_m \) of \(\Gamma_m \). Since \((\Gamma_m \cdot E_m) = 0 \) and \((\Gamma_m \cdot E_{m-1,m}) = 0 \) it follows that \(s_m \notin \{ E_{1,m} \cap E_m; E_{m-1,m} \cap E_m \} \). Let \(\pi_{m+1} : X_{m+1} \to X_m \) be the blowing-up of \(X_m \) at \(s_m \). Let \(E_{m+1} \) be the exceptional divisor of \(\pi_{m+1} \) and let \(\Gamma_{m+1} \) be the strict transform of \(\Gamma_m \).

We find \(\Gamma_{m+1} \in P_{m+1} := [kmL - k(m-1)E_1 - kE_2 - \ldots - kE_{m+1}] \). If \(\Gamma_{m+1} \) is not smooth at each point of \(\Gamma_{m+1} \cap E_{m+1} \) then as before we find \(s_{m+1} \in \Gamma_{m+1} \) such that \(\Gamma_{m+1} \) has multiplicity \(k \) at \(s_{m+1} \). In that case we blow-up \(\Gamma_{m+1} \) at \(s_{m+1} \) and so on.

For some \(m' \geq 1 \) we obtain \(X_{m+m'} \) and \(\Gamma_{m+m'} \in P_{m+m'} := [kmL - k(m-1)E_1 - kE_2 - \ldots - kE_{m+m'}] \) such that \(\Gamma_{m+m'} \) has ordinary nodes as its only singularities. The arithmetic genus of \(\Gamma_{m+m'} \) is equal to \(\frac{(km-1)(km-2) - (km-1)(km-m'-1)(km-m'-1)(k-1)k}{2} \). This has to be at least \(0 \), hence \((m-m')k^2 + (m'-m)k-2k+2) \geq 0 \). This condition implies \(m' \leq m \).

In \(P_{m+m'} \) we find that the locus of irreducible rational nodal curves has a component of dimension at least \(mk + 2k - 1 - m' \). (This follows from Claim 1.4 taking into account the choice of \(s_{m+i} \) on \(E_{m+i} \) for \(0 \leq i \leq m' \).) The number of nodes of \(\Gamma_{m+m'} \) is equal to the arithmetic genus of \(\Gamma_{m+m'} \) being \(\delta = \frac{(m-m')(k^2 - k) - 2k + 2}{2} \). Because \(m' \leq m \) we find \((K_{X_{m+m'}}, \Gamma_{m+m'}) = -3km + k(m-1) + k(m+m'-1) = (m'-m-2)k < 0 \). From Lemma 2.2 in [8] it follows that \(\dim(P_{m+m'}) \geq mk + 2k - 1 - m' + \delta \). Also from the end of the proof of Lemma 2.2 in [8] we also obtain \(\dim(P_{m+m'}) = \delta = (K_{X_{m+m'}}, \Gamma_{m+m'}) - 1 = \delta + (m+2-2m')k - 1 \). This would imply \((m+2-m')k - 1 - m'y \geq mk+2k-1-m' \geq m'y \geq k \geq 2 \) this is a contradiction. This completes the proof of the claim.

\(\square \)
3. Canonically adjoint curves

In order to study canonically adjoint curves for curves belonging to \(P \) we consider the linear system \(P'_0 = |(km - 3)L - (k(m - 1) - 1)E_1 - (k - 1)E_2 - \ldots - (k - 1)E_m|. \)

Claim 3.1. \(P'_0 = P_0 + \text{(fixed components)} \) with \(P_0 = |(km - 2 - m)L - (k(m - 1) - m)E_1 - (k - 2)E_2 - \ldots - (k - 2)E_m| \).

Proof. From \(T_m P'_0 = -1 \) it follows that \(T_m \) is a fixed component of \(P'_0 \). Deleting \(T_m \) from \(P_0 \) we obtain \(|(km - 4)L - (k(m - 1) - 2)E_1 - (k - 2)E_2 - (k - 1)E_3 - \ldots - (k - 1)E_m| \). Continuing in this way one finds fixed components \(E_3m, \ldots, E_{m-1,m} \). Deleting them, one obtains \(|(km - 4)L - (k(m - 1) - 2)E_1 - (k - 1)E_2 - \ldots - (k - 1)E_m| \). Now \(T_m \) is a fixed component. Deleting \(T_m \) one obtains \(|(km - 5)L - (k(m - 1) - 3)E_1 - (k - 2)E_2 - (k - 1)E_3 - \ldots - (k - 1)E_{m-1} - (k - 2)E_m| \). In case \(m = 3 \) this proves the claim. In case \(m > 3 \) one has \(E_2m, \ldots, E_{m-2,m}, T_m \) again as fixed components. Deleting them this proves the claim for \(m = 4 \); in case \(m > 4 \) one continues.

For curves \(\Gamma' \) of \(P \) we need to investigate canonical adjoint curves containing intersections of \(\Gamma' \) with elements from \(|L - E_1| \) (in terms of linear systems : containing a sum of divisors from \(q^1 \)). For a general element \(R \) of \(|L - E_1| \) the intersection of \(R \) with an element \(\Gamma_m \) of \(P \) not containing \(E_1m \) are \(k \) different points. The intersection multiplicity with an element of \(P_0 \) is \(k-2<k \). Therefore an element of \(P_0 \) containing this intersection of \(\Gamma_m \) and \(R \) contains \(R \) as a component. Taking one general elements \(R_1, \ldots, R_x \) in \(|L - E_1| \), the elements of \(P_0 \) containing \((R_1 \cup \ldots \cup R_x) \cap \Gamma_m \) have \(R_1, \ldots, R_x \) as components. Deleting \(R_1, \ldots, R_x \) we obtain \(P'_x = |(km - 2 - m - x)L - (k(m - 1) - m - x)E_1 - (k - 2)E_2 - \ldots - (k - 2)E_m| \).

Claim 3.2. Write \(x = \ell m + y \) with \(-1 \leq y \leq m - 2 \). Then \(P'_x = P_x + \text{(fixed components)} \) with \(P_x = |(km - (\ell + 1)m - y - 2)L - (k(m - 1) - (\ell + 1)m + l - y)E_1 - (k - l - 2)E_2 - \ldots - (k - l - 2)E_m| \). (We do not claim that \(P_x \) has no more fixed components.)

Proof. First, take \(0 \leq x \leq m - 2 \), hence \(x = y \) and \(l = 0 \). Then \(P'_x = P_x \) and there is nothing to prove.

Next, take \(x = m - 1 \), hence \(l = 1; y = -1 \). Then \((E_{1m}P'_{m-1}) = -1 \) (the intersection number of \(E_{1m} \) with elements of \(P'_{m-1} \)), therefore \(E_{1m} \) is a fixed component of \(P'_{m-1} \). Deleting \(E_{1m} \) we obtain \(P_{m-1} \).
More general, for any \(x \geq m \) the curve \(E_{1m} \) is a fixed component of \(P'_x \). Deleting \(E_{1m} \) we obtain \(|P - (L - E) - E_{1m}| \). In case \(m \leq x < 2m - 1 \) this is \(P_x \). For \(x = 2m - 1 \) (hence \(l = 2; \ y = -1 \)) the intersection number of \(E_{1m} \) with that linear system is \(-1 \), hence \(E_{1m} \) is a fixed component. Deleting \(E_{1m} \) one obtains \(P_{2m-1} \). Continuing in this way one proves the claim.

Remark 3.3. Taking \(x = (k - 2)m + m - 2 \) (hence \(l = k - 2; \ y = m - 2 \)) one finds \(P_{(k-2)m+m-2} = 0 \). For \(x \geq (k - 2)m + m - 1 \) one finds \(P_x = \emptyset \).

Given \(0 \leq x \leq (k - 2)m + m - 2 \) define the integer \(j \) by means of the inequalities \((j - 1)m - 1 < x \leq jm - 1 \) with \(j \leq k - 1 \). **Claim 3.4.** \(\dim(P_x) = \frac{j(j-1)}{2}m-1 + (x-(j-1)m+1)j-kx+\frac{(k-1)mk-2k+2}{2} - 1 \).

Proof. In case \(x = (k - 1)m - 2 \) we have to prove \(\dim(P_{(k-1)m-2}) = 0 \). This follows from Remark 3.3.

Now, fix some \(x < (k - 1)m - 2 \) and assume the claim is proved for \(x+1 \) instead of \(x \). Writing \(x = lm+y \) with \(-1 \leq y \leq m-2 \), from the description in Claim 3.2 we find \(\dim(P_x) \geq \frac{1}{2}[(km-(l+1)m-y+1)(km-(l+1)m-y-2)]/2 - [(k(m-1)-(l+1)m+l-y+1)(k(m-1)-(l+1)m+l-y)]/2 - [(m-1)(k-l-1)(k-l-2)]/2 \). A computation shows us that we need to prove equality. Assume for \(x \) we have strict inequality. For \(R \in |L - E_1| \) we have \((R, P_x) = k-l-2 \), hence \(R \) imposes at most \(k-l-1 \) conditions on \(P_x \). This implies \(\dim(|P_x - (L - E_1)|) \geq \dim(P_x) - (k-l-1) \). In case \(y = m-2 \) one finds \((|P_x - (L - E_1)|)E_{1m}) < 0 \), hence \(\dim(|P_x - (L - E_1) - E_{1m}|) \geq \dim(P_x) - (k-l-1) \). But \(|P_x - (L - E_1) - E_{1m}| = P_{x+1} \). One more computation shows that \(\dim(P_{x+1}) \geq \dim(P_x) - (k-l-1) \) gives a contradiction to the assumption that the claim holds for \(P_{x+1} \). In case \(y < m-2 \) then \(|P_x - (L - E_1)| = P_{x+1} \) and again, a computation shows a contradiction.

On \(X_m \) we constructed the rational irreducible curve \(\Gamma_m \) belonging to \(P \). From Claim 2.1 we know that \(\Gamma_m \) is a nodal curve, so it has \(g_0 = [(k^2 - k)m - 2k + 2]/2 \) ordinary nodes. We write \(s \) to denote a node of \(\Gamma_m \).

Claim 3.5. We can arrange the nodes \(s_1; \ldots; s_{g_0} \) is such a way that the following property holds. First we introduce some notation: for \(0 \leq \delta \leq g_0 \) let \(P_x(s_1; \ldots; s_\delta) = \{ \Gamma \in P_x : s_i \in \Gamma \ for \ 1 \leq i \leq \delta \} \). Then \(P_x(s_1; \ldots; s_\delta) = \emptyset \) for \(\delta > \dim(P_x) \) and \(\dim(P_x(s_1; \ldots; s_\delta)) = \dim(P_x) - \delta \) if \(\delta \leq \dim(P_x) \).

Proof. For \(\delta = 0 \) there is nothing to prove.

Fix \(\delta > 0 \) and assume the claim holds for \(\delta - 1 \) instead of \(\delta \). So, we assume a suited arrangement \(s_1; \ldots; s_{\delta - 1} \) for a suitable part of the set of the nodes. We have to prove that the set of the remaining nodes of \(\Gamma_m \) contains a suited one to be numbered \(s_\delta \).
Numbers x satisfying $\delta - 1 > \dim(P_x)$ impose no conditions on s_δ. Let x_0 be the minimal number such that $\delta - 1 \leq \dim(P_x)$. We know that $\dim(P_{x_0}(s_1; \ldots ; s_{\delta-1})) = \dim(P_{x_0}) - (\delta - 1) \geq 0$. If each element of $P_{x_0}(s_1; \ldots ; s_{\delta-1})$ would contain all the nodes of Γ_m then Γ_m possesses a canonically adjoint curve. Since Γ_m is a rational curve this is impossible. Hence, there exists a node s_0 such that $\dim(P_{x_0}(s_1; \ldots ; s_{\delta-1}; s_0)) = \dim(P_{x_0}) - \delta$ (with $P_{x_0}(s_1; \ldots ; s_{\delta-1}; s_0) = \emptyset$ if $\delta - 1 = \dim(P_{x_0})$). In case for all $x \leq x_0$ we find $\dim(P_x(s_1; \ldots ; s_{\delta-1}; s_0)) = \dim(P_x) - \delta$ then we can take $s_0 = s_\delta$.

Assume $x' < x_0$ such that $\dim(P_{x'}(s_1; \ldots ; s_{\delta-1}; s_0)) = \dim(P_{x'}) - \delta + 1$ while $\dim(P_{x'+1}(s_1; \ldots ; s_{\delta-1}; s_0)) = \dim(P_{x'+1}) - \delta$. Using a general $R \in |L - E_1|$ and using the arguments from the proof of Claim 3.4 one finds a contradiction.

4. Proof of the theorem

Now, we finish the proof of the theorem in the introduction. We start with the rational irreducible nodal curve Γ_m on X_m. We make an arrangement of the nodes as in Claim 3.5. The main result in Section 2 of [8] implies that there exists a 1-dimensional flat family $Y \rightarrow T$ of curves on X_m belonging to P such that the fiber over a special point t_0 of T is the curve Γ_m and a general fiber is a nodal curve Γ with exactly $g_0 - g$ nodes such that those nodes specialize to the nodes $s_1; \ldots ; s_{g_0 - g}$ on Γ_m. Define $P_{x, \Gamma} = \{D \in P_x : D$ contains the nodes of $\Gamma\}$. Clearly $\dim(P_{x, \Gamma}) \geq \dim(P_x) - (g_0 - g)$. For the special fiber Γ_m we have $P_x(s_1; \ldots ; s_{g_0 - g}) = \emptyset$ if $g_0 - g > \dim(P_x)$ and $\dim(P_x(s_1; \ldots ; s_{g_0 - g})) = \dim(P_x) - (g_0 - g)$ if $g_0 - g \leq \dim(P_x)$. Semicontinuity implies $P_{x, \Gamma} = \emptyset$ if $g_0 - g > \dim(P_x)$ and $\dim(P_{x, \Gamma}) = \dim(P_x) - (g_0 - g)$ if $g_0 - g \leq \dim(P_x)$. Let C be the normalization of Γ. It is a smooth curve of genus g. The linear system $|L - E_1|$ induces a linear system g^1_k on C without base points. Taking x general elements $R_1; \ldots ; R_x$ in $|L - E_1|$ corresponds to taking x general divisors in g^1_k. From the description of P_x in 3.2 we find that $\dim(P_{x, \Gamma})$ is equal to the dimension of canonically adjoint curves Γ containing the intersection of Γ with $R_1 \cup \ldots \cup R_x$, hence it is equal to $\dim(|K_C - xg^1_k|)$. In particular, if $P_{x, \Gamma} = \emptyset$ then $|K_C - xg^1_k| = \emptyset$. So, we find $|K_C - xg^1_k| = \emptyset$ if $g_0 - g > \dim(P_x);$ $\dim(|K_C - xg^1_k|) = \dim(P_x) - (g_0 - g)$ if $g_0 - g \leq \dim(P_x)$. Using 3.4 and the Riemann-Roch Theorem one finds $\dim(|xg^1_k|) = \max(\frac{j(j-1)}{2}m - 1 + (x - (j - 1)m + 1)j; kx - g)$. In particular $\dim(|(m - 1)g^1_k|) = m - 1$ and $\dim(|mg^1_k|) = m + 1$. Since Γ is obtained from C using a linear subsystem of $|mg^1_k|$, one also finds $|mg^1_k|$ is birationally very ample. This finishes the proof of the theorem.

References

Katholieke Hogeschool Kempen
Departement Industrieel Ingenieur en Biotechniek
Campus H.I.Kempen
Kleinhoufstraat 4
B 2440 Geel Belgium
e-mail: marc.coppens@khk.be

The author is affiliated with the University of Leuven as a research fellow.