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Abstract

In this thesis, I take a particle theory approach for studying topological related Weyl
semimetals, especially for the study of energy dispersion relations and of edge states: based
on basic assumptions such as symmetry, topology, and dimension, write down Lagrangian;
solve equation of motion and boundary conditions; get energy dispersion relations; and give
explanation to relation between physical quantities. I call it boundary condition analysis.
Fruitful results come out: the bulk and edge states are shown to be determined by conserved
momenta and boundary condition parameters, new exotic states localized at the intersection
of boundaries are predicted, and dispersions determined.
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Chapter 1

Introduction

1.1 Backgrounds: Weyl fermions in condensed matter

physics

In 1929, Professor Hermann Weyl [1] proposed his theory to describe solutions of the massless
Dirac equation in which fermions are separated into two independent representations of
Lorentz group and called left/right-handed or chiral fermions. Later they have been called
Weyl fermions. Weyl fermion became a very important concept in particle physics after the
discovery of violation of parity in weak process. It successfully describes neutrinos to be
left-handed and antineutrinos to be right-handed and it was verified in pion decay [2]. Since
then it became a fundamental building block for theory of weak interaction in the standard
model.

In condensed matter systems Weyl fermions are realized as quasiparticles with definite
energy dispersions. Instead of observing the cross-sections as in high energy experiments,
condensed matter physicists start to observe the energy spectra in a crystal. Weyl fermions
in crystal are discovered through theoretical prediction [3][4][5][6] followed by experimental
verification [7][8][9]. It is possible that two-band Hamiltonians in three dimensions to own
band-crossing points where Weyl fermions can emerge. When the band-crossing point are
exactly at Fermi level, we get semimetal. This can be assured by some symmetries. As
far as the band-crossing points are separated, they are topologically protected/conserved as
a monopole charge. That is how it got the name topological Weyl semimetal. In Ref. [3],
time-reversal symmetry is used to place band-crossing points and do the separation and Weyl
semimetals are predicted to exist in between three dimensional topological insulator phase
and normal insulator phase. In Ref. [4], the team of X. Wan predicted Weyl semimetal in a
material — pyrochlore iridates (such as Y2Ir2O7), and it is the inversion symmetry that did
the job1. In Ref. [7][8] the energy dispersion of Weyl semimetal bulk states and Fermi-arc
edge states are detected in material tantalum arsenide (TaAs), which respect time-reversal
symmetry, by photoemission spectroscopy. In Ref. [9] the spin-orbit coupling is shown to be a

1If both time-reversal and inversion are present, the Kramers degeneracy makes the crossing points into
a four-band degeneracy and a mass term is not avoidable, see Ref. [3].
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10 CHAPTER 1. INTRODUCTION

parameter that can tune the distance of two Weyl points, also by photoemission spectroscopy.
In Weyl semimetals, the concept of handedness or chirality still plays an important role.

However, the physical picture has been dramatically changed2: the spin degrees of freedom is
replace by energy band structure so the handedness is no longer related with helicity and, in-
stead it is reinterpreted as monopole charge in the Brillouin zone; because of periodicity of the
lattice, Weyl fermion never appear alone but always in pairs with both chirality [10][11]; with
a spacial boundary, there is a boundary-localized state protected by the chirality — Fermi
arc, connecting left-handed and right-handed Weyl fermions in the Brillouin zone [4][6][7].
As a result, the research focus about Weyl fermions has been changed.

Fermi arcs can be regarded as an outcome from the another type of interplay between
particle physics and condensed matter physics: relations between fermions in different dimen-
sions where one is formulated on the boundary of another. These have been developed almost
simultaneously in particle physics and in condensed matter physics, for instance domain wall
formulation of 3+1 D massless chiral fermions in 4+1 D massive bulk fermion theory [12][13]
and the gapless edge states in various kinds of gapped bulk topological phases [14][15]. In
both cases, the topological number of bulk fermions protect boundary states. The boundary-
localized states or edge states are regarded as a key feature of topological phases since it can
be used diagnose different topological phases. Fermi arcs/edge states gives Weyl semimetal
version of bulk-edge correspondence since their existence is due to bulk monopole charge.
Two (spacial) dimensional topological insulators and Weyl semimetals are interconnected
with each other, by dimensional reduction [4]. As a result, we can glimpse one from another.
However, what is unique in Fermi arcs is that it connects Weyl cones of both chirality due
to the doubling of fermions.

As we have seen above, at such an age of communications between particle physics and
condensed matter physics, old ideas in relativistic quantum theories obtain new meanings.
What is more, an good point of condensed matter systems is the freedom to realize all kinds
of terms in the Lagrangian as an effective description in the real material, so this allows us
to check our theory in the experiment, which helps us understand our theoretical tools in
particle physics much better than before. This is the feedback to particle physics.

1.2 Motivation, questions and methodology

Usually, edge states are realized as a solution where the bulk Hamiltonian has sign change
of mass term in/out of the material [16]. This can be regarded as a specific boundary con-
dition. We inevitably wonder that maybe the edge state solution is due to the construction
of boundary condition. We know from classical electromagnetism that from the surface of a
metal, the electromagnetic field exponentially decay into the metal, which can be regarded
as an edge solution, but this obviously is not generic and depend on the metallic boundary
condition, for instance it should have finite conductivity3. However, the bulk-edge correspon-

2Chiral anomaly, transport properties, etc are also very important in Weyl semimetals, however, they are
not directly related with the discuss of the rest part of this thesis, so I will not explain them here.

3See Sect. 8.1 in [17].
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dence states that edge states are protected by bulk topological number, so they should exist
regardless of boundary conditions. The works about edge states in the literature certainly
not show this aspect clearly. Moreover, how the Fermi arc edge states behave under the
change of boundary conditions is also not well studied in the literature4. As a resolution,
this thesis attempts to understand the relation between bulk topological number and edge
states through the study of generic boundary conditions.

After realizing the close and simple relation among boundary conditions, topological
number and edge states, we believe that similar things may happen in more complicated
situations, when we go from two-band Hamiltonian to four-band Hamiltonians. Inspired by
the work in lattice gauge theory [20] in which regularized chiral gauge field theories of 3+1
dimension are realized at intersection of two boundaries which are 4+1 dimensions of 5+1
dimensional bulk spacetime, we wondered whether similar relations among states in three
different dimensions can happen in topological material, more specifically whether a new
exotic state can exist at the intersection of two boundaries in some topological phases as well.
The general existence of such exotic state is based on a generalized argument of bulk-edge
correspondence: edge state of 4D topological insulators have topological number, too [21], so
it can also protect some states localized at the boundary of this edge. This bulk-edge-edge-
of-edge correspondence becomes the second question that this thesis try understanding.

To study fermionoic states in condensed matter physics, the most obvious observable
is the energy dispersion since it contains the most basic quantum numbers of a state —
energy and momenta. In this thesis, I take a particle physics theory approach for studying
topological Weyl semimetals, especially for the study of boundary conditions and energy
dispersion relations of edge states: based on basic assumption such as symmetry, topology
and dimension, write down Lagrangian, solve equation of motion, get energy dispersion
relations and give explanation to relation between physical quantities. I show that this
method can be used to study phenomena on the spacial boundary such as edge states and so
on. I call it boundary condition analysis, which make things clear by analyzing, as oppose
to synthesis, which constructs results by components.

1.3 The content and organization of the thesis

I will start from reviewing the facts of band topology in chapter 2, showing that some gapped
and gapless band structure are topologically distinctive and that the study of band topology
can be simplified from generic band Hamiltonians to Hamiltonians of free fermions in the
low energy limit. This is the foundation for the validity and generality of simple Lagrangian
formalism approach.

After that, in chapter 3, I will write down the continuum version of two-band Lagrangian
plus a generic surface term and derive equation of motion and boundary condition. By
analyzing these two equations we can get information of bulk states, edge states and bound-
ary condition parameters: The bulk and edge states are complete determined by conserved
momenta and one boundary condition parameter. Then with tight-biding lattice model, I

4For generic boundary conditions in topological insulators see [18][19].
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will show that the boundary conditions obtained in the continuum theory appear as a low
energy effective description and that all the results from the lattice model are parallel with
the ones from continuum theory so that our continuum argument is valid. In the last section,
I will give the interpretation of bulk-edge correspondence from the viewpoint of boundary
condition parameters. Thus the boundary condition analysis on topological phases is formed.

In chapter 4, I will go to four band-systems to study more delicate structure of boundaries,
including intersections of boundaries. The prediction of edge-of-edge states is the result
from the boundary condition analysis. Basic methodology is the same as in chapter 3. The
Hamiltonian considered plus generic boundary conditions are still completed solved. We will
see that the boundary parameters give more mixed rotations between momenta. Based on
the argument of bulk-edge correspondence and the result that edge states can also possess
topological number, there is a guess that at the intersection of boundaries there may exist
localized states, which is named as edge-of-edge states. And this is verified in the later
sections of chapter 4 with the dispersion relation solved and the existence condition fixed
by boundary condition parameters and momenta. Since the results become very clear, an
experimental realizable model is introduced.

In the last chapter I will give a summary of the thesis with some discussions and future
direction of this approach.



Chapter 2

Topological facts in energy bands

In this chapter, I am going to review the fact that energy bands can have topological structure
and see that relativistic free fermions can be used as representative of topology. Moreover,
topological phases support exotic states localized on the boundary — the edge states. The
discussion will be started from chiral fermions appearing at band-crossing points. The global
topological structure in Brillouin zone give constraints on low energy effective descriptions of
electrons in crystal. The chiral fermions on the lattice are constraint by the Nielsen-Ninomiya
theorem[10][11], which states that in odd dimensions on the lattice, chiral fermions always
come in pair, with both chirality. In this section, I will explain how chiral fermions appear
at band-crossing points, give a simple proof of the Nielsen-Ninomiya theorem and show the
relation with edge states/Fermi arcs, which is called the bulk-edge correspondence. The
discussion is a review of [22].

2.1 Weyl fermions exist at band-crossing points

First let’s take a look at the band-crossing points. A generic two-band Hamiltonian, since
it’s Hermitian, can be parametrized by four real parameters as:

H = a12 + biσi , i = 1, 2, 3 , (2.1)

where the parameters can be functions of momenta, etc. Then the energy eigenvalues are:

ε± = a±
√
b2i . (2.2)

So we can see that a describes the overall energy while bis describe the splitting of energy
and when all bis are equal to zero two bands cross each other. When we are only interested
in the behavior between two bands namely transition between them, we can define a new
Hamiltonian with a subtracted:

H′ = biσi , (2.3)

13



14 CHAPTER 2. TOPOLOGICAL FACTS IN ENERGY BANDS

which has the form of a Weyl fermion/chiral fermion except that these bis are not momenta
and σis are not related with spin degrees of freedom. Yet we can still talk something about
the topological property.

We can make a imitation with the chiral fermions. In relativistic quantum field theory,
chiral fermions/Weyl fermions in 3+1 dimensions, which is in the chiral eigenstate of Dirac
fermions, are in the irreducible representations of Lorentz group, parametrized by three
momenta. Two fermions with opposite chirality are orthogonal to each other. Let’s review
this fact. In 3+1 dimension, massless fermions are generically describe by massless Dirac
equation:

iγµ∂µψ = 0 , µ = 0, 1, 2, 3 , (2.4)

where γµs are 4 × 4 matrices satisfying {γµ, γν} = 2ηµν . The corresponding Schrodinger
equation is

i∂0ψ = Hψ = γ0γi(−i∂i)ψ . (2.5)

This Hamiltonian commutes with the chiral operator γ5 = iγ0γ1γ2γ3. Since γ25 = 1, it has
two eigenvalues ±1. As a result, Hamiltonian matrix can be decomposed into two block
forms whose eigenstate have γ5 = ±1. Meanwhile, since

{γ0γi, γ0γj} = 2δij ⊗ 12 = {σi, σj} ⊗ 12 , (2.6)

and

[γ0γi, γ0γj] = 2εijkγ0γkγ5 , (2.7)

1we can use σis to expand the Hamiltonian:

H = ±piσi , (2.8)

Now we get two types of chiral fermions, each in an irreducible representation of Lorentz
group. They can not be deformed into each other except through flip of signs of the pis. In
this sense, we can say that the Hamiltonian 2.3 is chiral in parameter space of bi. However,
this is not the end of the story. bis are functions of pis. Let’s see the topological structure
in the momentum space.

Near the crossing point p∗, we can expand bi

bi(pj) =
∂bi
∂pj

(p− p∗)j +O(p2i ) , (2.9)

and the Hamiltonian to the lowest order is written as

H′|p=p∗ = σibijδpj , bij =
∂bi
∂pj

∣∣∣
p=p∗

, δpj = (p− p∗)j . (2.10)

1γ0γiγ0γj = −γiγj = iγ0γkεijkγ5 + δij
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This Hamiltonian basically is the same as (2.8), with pi replaced by bijpj. It has the chirality
determined by the sign of determinant of bij:

sign det(bij) . (2.11)

We can see that the chirality defined in this way is stable against any change of parameter
nearby the crossing point and it’s only related with the way how bi is wrapped on sphere on
pi.

2.2 Brillouin zone constraints on Weyl fermions

The discussion in the previous subsection does not involve the periodicity of the Brillouin
zone. In this subsection I will discuss the outcome of this periodicity: chiral fermions always
come in pair, with both chirality. Let’s prove this theorem in three steps:

(1) Assign to each band-crossing point pα an integer – winding number.
(2) Show that this winding number is the chirality.
(3) Prove that the sum of all winding number is zero and thus the chirality is even.
First step: To consider band-crossing points, we only need to use Hamiltonian (2.3):

H′ =
−→
b · −→σ . (2.12)

At the crossing points pα of two bands we have

b2i (pα) = 0 . (2.13)

For a small sphere Sα around pα, we can define a vector field −→n as a normal vector field of
another sphere S−→n in the coordinate system of bi:

−→n =

−→
b

|
−→
b |
. (2.14)

The mapping Sα → S−→n defines a unique winding number and the formula is given by

ω(Sα) =
1

8π

∫

Sα

d2p εµν−→n · ∂µ−→n × ∂ν−→n . (2.15)

Second step: From the previous discussion we see that the winding number for a given
Hamiltonian is unique. Now let’s calculate the winding number of Hamiltonian (2.8). Define

−→n ± = ±
−→p
p
, (2.16)

the winding number is

ω(Sα) = ± 1

8π

∫

Sα=∂Mα

d2p εµνεabc
pa
p
∂µ
pb
p
∂ν
pc
p

= ± 1

8π

∫

Mα

d3p ∂λ(ε
λµνεabc

pa
p
∂µ
pb
p
∂ν
pc
p

) . (2.17)
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Figure 2.1: Band-crossing points in Brillouin zone

The integrant is zero except in the origin of Mα. Using

∂µ
pb
p

=
δµb
p
− pµpb

p3
, (2.18)

(2.17) becomes

ω(Sα) = ± 1

8π

∫

Mα

d3p ∂λ(ε
λbcεabc

pa
p3

) = ±1 . (2.19)

As a result. the winding number ±1 corresponds to ± chirality.

Third step: Since the Brillouin zone is periodic, the boundary is only at the singular
points, so that the sum of the winding numbers can be written as integrations in the Brillouin
zone.

∑

α

ω(Sα) =
∑

α

1

4π

∫

Sα

d2p εµν−→n · ∂µ−→n × ∂ν−→n

=
∑

α

1

4π

∫

B
d3p ∂λ(ε

λµν−→n · ∂µ−→n × ∂ν−→n )

=
∑

α

1

4π

∫

B
d3p ελµν∂λ

−→n · ∂µ−→n × ∂ν−→n , (2.20)

But ∂λ
−→n s are tangent vectors of the small sphere Sα, so ελµν∂λ

−→n · ∂µ−→n × ∂ν−→n is zero. As
a result,

∑

α

ω(Sα) = 0 . (2.21)
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2.3 States localized on the boundary – edge states

In this subsection, I will talk about the outcome of the band-crossing points and the Nielsen-
Ninomiya theorem. At the boundary of a material, we can solve the Schrodinger equation
with appropriate boundary condition. In addition to plane wave solution permeates the
bulk, we can also get boundary-localized solution. Let’s do it for a simple Weyl fermion with
Hamiltonian:

H = −iσi
∂

∂xi
. (2.22)

An appropriate boundary condition is such that it keeps the Hamiltonian Hermitian:

〈Hψ1|ψ2〉 = 〈ψ1|Hψ2〉 . (2.23)

If boundary is chosen to be x1 = 0,

(σ2 − 1)ψ|x1=0 = 0 (2.24)

is an appropriate boundary condition. Now the momentum p1 is not conserved at the

Figure 2.2: Fermi arc

boundary, but p2 and p3 are still good quantum number. To get an boundary-localized edge
states, let’s set

ψ ∝ exp(−αx1) , (2.25)

with some real number α and solve the Hamiltonian eigen equation with the boundary
condition {

(iασ1 + p2σ2 + p3σ3)ψ = εψ

(σ2 + 1)ψ|x1=0 = 0 . (2.26)

The result is

α = p2 , ε = p3 , (2.27)
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and the edge state obtained is

ψ = exp(−p2x1 + ip2x
2 + ip3x

3)ψ(p) , (2.28)

in which the normalization factor is put into ψ(p).
Next let’s discuss the effects of the Nielsen-Ninomiya theorem on the edge state. In the

low energy ε = 0 limit, p3 goes to zero, so the dispersion of the edge state becomes a one
dimensional line parametrized by p2 . From (2.28), the edge state is only normalizable when
p2 > 0, and at p2 = 0 it becomes indistinguishable from a plane wave – bulk state. In a lattice
model, there are two ends of this curve corresponding to opposite chiral fermions bulk states.
This comes from the requirement of periodicity of the momenta. Consider the subspace of
Brillouin zone supporting edge states, the boundaries of the subspace are at band-crossing
points. Because of the periodicity, the sum of the winding number of the crossing point has
to be zero. As a result, the two ending point have to have opposite chirality. In general, at
the boundary momentum space parametrized by p2 and p3, the energy ε depends both on
p2 and p3 and also the boundary condition. In such a case, consider the space spanned by
p2, p3, ε, In the low energy ε = 0 limit, there is some constraint on p2, p3. As a result, the
dispersion still becomes a one dimensional curve connecting two opposite chiral bulk states.
In Sec. 3.4 in the next chapter, I will show the explicit derivation and figures of edge states
and bulk states.



Chapter 3

Analysis in 3D Weyl semimetals

As discussed in previous sections, in the continuum limit in 3+1D, two-band systems with
finite numbers of band touching points can be described by Weyl fermions In this chapter,
I will show the how to derive boundary conditions from the Lagrangian/Hamiltonian with
fundamental requirements and how the boundary condition parameters enter the description
of electron states. With the benefit of boundary condition parameters, we can see topological
structure and relation of bulk states and edge states clearly. This chapter is a review of [23],
with some modification.

3.1 Lagrangian formalism of 3D Weyl semimetals and

boundary conditions

Let us describe a generic and consistent boundary condition of a Weyl semimetal in 3+1
spacetime dimensions. Metric convention is chosen as ηµν = diag(+,−,−,−)µν .

The bulk Lagrangian (for a right-handed Weyl fermion) required by Hermiticity is written
as

L =
i

2
ψ†σµ(

−→
∂ µ −

←−
∂ µ)ψ (3.1)

where σµ = (12, σ1, σ2, σ3). The Dirac equation is

σµ∂µψ = 0 (3.2)

which can be rewritten as

[i∂0 + iσi∂i]ψ = 0 (3.3)

where i = 1, 2, 3. So the Hamiltonian is i∂0 = Hbulk,

Hbulk = p1σ1 + p2σ2 + p3σ3 . (3.4)

19
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In order to study physics on the boundary of the material, let us introduce a surface
term in the Lagrangian. This is a generic term which is one dimension lower than bulk. The
action of Weyl fermion with a surface term is given by

S =

∫

x3≥0
d3x

i

2
ψ†σµ(

−→
∂ µ −

←−
∂ µ)ψ +

1

2

∫

x3=0

d2x ψ†Nψ . (3.5)

A variation ψ → ψ + δψ and ψ† → ψ† + δψ† provides equations at the surface x3 = 0 as

[
−iψ†σ3 + ψ†N

]
δψ
∣∣∣
x3=0

= 0, δψ† [iσ3ψ +Nψ]
∣∣∣
x3=0

= 0. (3.6)

The equations above become

ψ† [−iσ3 +N ] δψ
∣∣∣
x3=0

= 0, δψ† [iσ3 +N ]ψ
∣∣∣
x3=0

= 0. (3.7)

Let’s study it with assuming N is hermitian. The two equations of (3.7) are Hermitian
conjugate of each other. 1

Since half of the modes on the boundary needs to be killed by the boundary condition.
We can write generic boundary condition as

( α β )ψ
∣∣∣
x3=0

= 0 , (3.8)

where α and β are constants. So ψ
∣∣∣
x3=0

should have the form

ψ
∣∣∣
x3=0

=

(
β
−α

)
ξ , (3.9)

and ξ is a Grassmann number. In the same manner,

δψ
∣∣∣
x3=0

=

(
β
−α

)
δξ . (3.10)

1The boundary condition obtained from assuming arbitrary δψ and δψ† to be arbitrary is too restricted.
In such a case second equation in (3.7) becomes

(iσ3 +N)ψ
∣∣∣
x3=0

= 0.

Now the δψ satisfying above equation will lead to inconsistency: Combining

(iσ3 +N)δψ
∣∣∣
x3=0

= 0,

with the first equation of (3.7), we get

−iψ†σ3δψ
∣∣∣
x3=0

= 0 = ψ†Nδψ
∣∣∣
x3=0

.

Then N has to be proportional to σ3, otherwise there’s no solution. In either case, the boundary conditions
obtained do not depend on matrix N .
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Parametrizing

N =

(
n0 + n3 n1 − in2

n1 − in2 n0 − n3

)
, (3.11)

together with (3.29) and (3.10) submitting into second equation of (3.7), we have

(
β∗ −α∗

)( n0 + n3 + i n1 − in2

n1 − in2 n0 − n3 − i

)(
β
α

)
ξ†δξ = 0 . (3.12)

This becomes

|β|2(n0 + n3 + i)− β∗α(n1 − in2)− α∗β(n1 + in2) + |α|2(n0 − n3 − i) = 0 . (3.13)

Now writing α and β explicitly as: {
α = ρ1e

−iθ1

β = ρ2e
iθ2 ,

(3.13) becomes

(ρ21 + ρ22)n0 + (ρ21 − ρ22)(n3 + i)− 2ρ1ρ2(n1 cos(θ1 + θ2) + n2 sin(θ1 + θ2)) = 0 . (3.14)

Submitting (3.29) and (3.10) into the first equation of (3.7), and following the same procedure
we have

(ρ21 + ρ22)n0 + (ρ21 − ρ22)(n3 − i)− 2ρ1ρ2(n1 cos(θ1 + θ2)− n2 sin(θ1 + θ2)) = 0 . (3.15)

Both (3.14) and (3.15) are solved by

{
ρ21 = ρ22
n0 − n1 cos(θ1 + θ2) + n2 sin(θ1 + θ2) = 0 , (3.16)

these two equations tell us that the magnitudes of two components should be the same and
phase of two components is different by e−i(θ1+θ2) as a function of n0, n1 and n2. And we
can write (3.8) as

(
1 ei(θ1+θ2)

)
ψ
∣∣∣
x3=0

= 0 . (3.17)

Let’s determine this function. From the second equation of (3.16)we get

cos(θ1 + θ2) =
n0n1

n2
1 + n2

2

∓ n2

n2
1 + n2

2

√
n2
1 + n2

2 − n2
0 (3.18)

and

sin(θ1 + θ2) = − n0n2

n2
1 + n2

2

± n1

n2
1 + n2

2

√
n2
1 + n2

2 − n2
0 , (3.19)
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if

n2
1 + n2

2 − n2
0 ≥ 0 . (3.20)

This means that the phase difference of two component is

e−i(θ1+θ2) = cos(θ1 + θ2)− i sin(θ1 + θ2)

= − n0

n1 + in2

∓ i
√
n2
1 + n2

2 − n2
0

n1 + in2

. (3.21)

As a result the boundary conditions become

(
1 n0

n1+in2
± i
√
n2
1+n

2
2−n2

0

n1+in2

)
ψ
∣∣∣
x3=0

= 0 . (3.22)

In this case the boundary condition parameter completely depend on the surface parametriza-
tion.

3.2 Hamiltonian formalism and boundary conditions

In this section, I will derive generic boundary conditions in Hamiltonian formalism so the
result will not be limited to classical level.

The Hermiticity condition of Hamiltonian is

〈Hψ1|ψ2〉 = 〈ψ1|Hψ2〉, (3.23)

for arbitrary normalizable ψ1 and ψ2. The Hamiltonian is

H = Hbulk +Hboundary , (3.24)

where

Hbulk = −iσi∂i (3.25)

Hboundary = Kδ(x3) , (3.26)

where K is a 2-by-2 Hermitian matrix. When we explicitly write the two inner product
above as an integration, we find a surface difference between the right hand side and the left
hand side, which must vanish, while the boundary Hamiltonian does not contribute:

[ψ†1σ3ψ2]
∣∣∣
x3=0

= 0 . (3.27)

We can again write generic boundary condition as

( α β )ψ
∣∣∣
x3=0

= 0 , (3.28)
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ψi

∣∣∣
x3=0

, i = 1, 2 should have the form

ψi

∣∣∣
x3=0

=

(
β
−α

)
ξi , (3.29)

and ξi are Grassmann numbers.

Substituting (3.29) into (3.27)

(
β∗ −α∗

)
σ3

(
β
α

)
ξ†1ξ2 = 0 , (3.30)

The above equation gives

|α|2 = |β|2 , (3.31)

which means that α and β can only differ by a phase, from which we conclude that2

(
1 e−iθ

)
ψ
∣∣∣
x3=0

= 0. (3.32)

2We can use the same argument to derive boundary conditions of graphene with Hamiltonian

Hbulk = p1σ1 + p2σ2 ,

with boundary at for instance x2 = 0. With the same argument of Hermiticity, then we have on the boundary

[ψ†1σ2ψ2]
∣∣∣
x3=0

= 0 ,

Using the parametrization which write generic boundary condition as

( α β )ψ
∣∣∣
x3=0

= 0 ,

we get

β∗α− α∗β = 0 .

If α = ρ1e
iθ1 and β = ρ2e

iθ2 ,we have that

sin(θ1 − θ2) = 0

the components have same phase but different magnitude. So again the boundary condition of graphene
depends on one parameter:

( ρ1 ρ2 )ψ
∣∣∣
x3=0

= 0 .
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3.3 Bulk and edge states

3.3.1 Generic edge modes and dispersions

Solving eigenstate equation

From previous section we see that Schrodinger equation and boundary condition for Weyl
semimetal are 



− iσi∂iψ = εψ
(

1 e−iθ
)
ψ
∣∣∣
x3=0

= 0 ,

(3.33)

(3.34)

Now we look for edge mode solution to eigenvalue equation (3.33). With an explicit
two-component notation

ψ =

(
ξ
η

)
, (3.35)

the eigenstate equation (3.33) can be written as

(
−i∂3 − ε p1 − ip2
p1 + ip2 i∂3 − ε

)(
ξ
η

)
= 0. (3.36)

This equation can be reorganized into two independent second-order differential equations:

(
p21 + p22 − ε2 − ∂23

)(ξ
η

)
= 0 . (3.37)

We look for the modes localized at the boundary. For the edge modes, we need

α2 ≡ p21 + p22 − ε2 > 0, (3.38)

then the corresponding solutions required by the normalizability are
(
ξ
η

)
= e−α(ε)x

3

(
ξ0
η0

)
, (3.39)

where ξ0 and η0 have no dependence on x3. These are the edge modes, and in the following
we determine the dispersion ε(p1, p2) and the relation between the components ξ0 and η0.

Dispersion relation

We combine the results from eigenvalue equation (3.33) and boundary condition (3.34) for
edge eigen modes. Using the boundary condition (3.32), the edge state wave function is
written as

(
ξ
η

)
= e−α(ε)x

3

(
1
eiθ

)
, (3.40)
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up to a normalization factor and a phase. Substituting this to the Hamiltonian eigen equation
(3.36), we obtain

(iα− ε) + (p1 − ip2)eiθ = 0 . (3.41)

Substituting equations (3.38) and (3.39) into equation (3.36), we get one independent
equation:

(iα− ε)ξ0 + (p1 − ip2)η0 = 0. (3.42)

Looking at the real and the imaginary parts of this equation, we easily find

ε = −p1 cos θ − p2 sin θ , (3.43)

α = p1 sin θ − p2 cos θ . (3.44)

We can rewrite the above two equations in a compact way:
(
ε
α

)
= −

(
cos θ sin θ
− sin θ cos θ

)(
p1
p2

)
. (3.45)

Interestingly, (3.45) shows that what the boundary parameter does is only rotating the mo-
menta (p1, p2) into (ε, α), the energy and the inverse of edge mode decay width (penetration
depth). Plotting the dispersion relation, we actually see in Fig. 3.1 that the edge dispersion
is rotated against the (p1, p2) axes by the change of the boundary parameter θ.

Figure 3.1: Figures a, b c, d, e respectively represent the energy dispersions of the bulk states
and the edges states, for θ = π/2, π/4, 0,−π/4,−π/2.
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3.3.2 Wave function

Most of the information is used up and normalization condition is left only, from which the
wave function is determined completely. Substituting (3.39) to the normalization condition

∫ ∞

0

dx3 ψ†ψ = 1, (3.46)

we obtain a constraint

|ξ0|2 + |η0|2 = 2α. (3.47)

From the boundary condition (3.32), we can see that the two components should have the
same magnitude with a difference of their phases. Combined with (3.47), they are determined
up to an irrelevant overall phase:

(
ξ0
η0

)
=
√
α

(
e−iθ

−1

)
. (3.48)

So the general edge mode wave function is

ψ(x3) =
√
α exp(−αx3)

(
e−iθ

−1

)
, (3.49)

α = p1 sin θ − p2 cos θ.

Note that the edge modes exist only in a limited region of the momentum space, since we
need to require α > 0. The linear inequality α > 0 specifies a half of the momentum space,
only in which the dispersion exists, see Fig. 3.1.

In the limit α = 0, that is, on the line p1 sin θ − p2 cos θ = 0 in the momentum space,
the edge mode approaches a non-normalizable mode, which is a constant wave function in
the x3 space. It corresponds to p3 = 0 bulk mode, whose dispersion is ε = ±

√
p21 + p22, and

ε cos θ = −p1; ε sin θ = −p2. So in fact, the edge dispersion (3.43) is identical to that under
the condition α = 0. Therefore we have a consistent picture for any value of θ: when the
edge mode approaches a non-normalizable state in the momentum space, it is consistently
and continuously absorbed into the bulk modes. In Fig. 3.1, we find explicitly that the edge
dispersion surface has its boundary on the bulk dispersion surface.

In summary, we find that the dispersion of the edge state is attached to the bulk Weyl
cone in such a way that (i) the edge dispersion is tangential to the Weyl cone, and (ii) the
edge dispersion ends at the touching line on the Weyl cone.

3.4 Lattice models

3.4.1 Bulk lattice Hamiltonian

In this section we are going to consider lattice models of Weyl semimetals. The continuum
model is regarded as an low energy effective description of lattice models. Yet, from the dis-
cussion below we will find that the same results like one-parameter dependence of boundary
conditions, etc.
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Our lattice version of Weyl semimetal can be written as

H(p) = σ1(cos p1 − cos p2 + c) + σ2 sin p2 + σ3 sin p3 , (3.50)

because of the periodicity of momentum. This can be obtained from continuum model (3.4)
by replacing pi with sin pi, and as for p1, we shift it into p1 + π/2 such that two Weyl points
will be symmetric with respect to the origin in the Brillouin zone. cos p2 is introduced to
reduce the numbers of Weyl point. c is a free parameter and later we will see that by tuning
c Weyl semimetal can be continuously deformed into gapped phase.

As a result, our tight-binding Hamiltonian is written as

H =
∑

n

ψ†nHψn (3.51)

where n is a three-dimensional vector n = (n1, n2, n3) ∈ Z3, and the operator H is given by

H =
1

2
σ1

(
∇1 +∇†1 −∇2 −∇†2 + 2c

)

− i

2
σ2

(
∇2 −∇†2

)
− i

2
σ3

(
∇3 −∇†3

)
, (3.52)

with difference operator defined by

∇iψn = ψn+i − ψn , (3.53)

∇†iψn = ψn−i − ψn . (3.54)

At Weyl points
√

(cos p1 − cos p2 + c)2 + (sin p2)2 + (sin p3)2

= −
√

(cos p1 − cos p2 + c)2 + (sin p2)2 + (sin p3)2 (3.55)

and the solutions are

(pW1 , p
W
2 , p

W
3 ) =





(cos−1(1− c), 0, 0 & π) (0 ≤ c ≤ 2)

(cos−1(−1− c), π, 0 & π) (−2 ≤ c ≤ 0)

n/a (|c| > 2)

. (3.56)

Expanding the Hamiltonian around (pW1 , p
W
2 , p

W
3 ) we can get Weyl fermions:

H ≈ −σ1 sin pW1 δp1 + σ2 cos pW2 δp2 + σ3 cos pW3 δp3 . (3.57)

At c = 1, pW3 = 0, we can get two Weyl fermions:

H ≈ ∓σ1δp1 + σ2δp2 + σ3δp3 (3.58)

as a verification of continuum Hamiltonian.
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p1

ε
p2

Figure 3.2: The energy band spectrum of the bulk Hamiltonian (3.50) with p3 = 0 and c = 1.
The Weyl points are at (p1, p2) = (±π/2, 0).

3.4.2 Boundary conditions in lattice models

Now we introduce a boundary to this model and derive the boundary conditions. Hamiltoni-
ans including terms like i∇†ψn+1 = −i∇ψn is locally Hermitian. But just like the continuum
Hamiltonian, the discrete Dirac Hamiltonians are also Hermitian up to the boundary term

N∑

n=1

ψ†n (−iσ∇ψn) + ψ†N(iσ)ψN+1 =
N∑

n=1

(
iσ∇†ψn

)†
ψn − (iσψ0)

†ψ1 (3.59)

where we introduced auxiliary fields ψ0 and ψN+1. So we have the following condition:

ψ†0(iσ)ψ1 − ψ†N(iσ)ψN+1 = 0 . (3.60)

We have two possibilities to solve this condition. The first is the periodic boundary condition
ψn = ψn+N for ∀n ∈ {1, . . . , N}.Then these two terms cancel each other. The second is the
situation that the both two terms vanish independently, which corresponds to the open
boundary condition. Since we are interested in boundary effects, let’s study open boundary
conditions. Let us focus on the first term ψ†0(iσ)ψ1. Suppose the lattice is defined on the
region n3 ≥ 1, the open boundary condition become ψ†0(iσ3)ψ1 = 0. This is nothing but
(3.27). We impose the boundary condition

(M + 1)ψ
∣∣∣
n3=1

= 0 (3.61)

then we immediately get

M †σ3 + σ3M = 0 . (3.62)
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Figure 3.3: The dispersion relations of the bulk (orange and blue) and the edge (green) states
with respect to the (p1, p2)-plane (horizontal) for positive β and θ = 0, π/3, 2π/3, π.

Then the situation is completely parallel with the continuum theory studied in the previous
section. Following the same procedure, we get boundary condition

(
1 e−iθ

)
ψ
∣∣∣
n3=1

= 0 , (3.63)

which is equivalent to

ψn3=1 ∝
(

1
−eiθ

)
. (3.64)

Thus it depends only on the parameter θ in the end.

3.4.3 The dispersion and wave functions in lattice models

We consider the dispersion and wave function of the edge state with the boundary condition
(3.64). For the eigenvalue equation

Hψ = ε(p)ψ , (3.65)

the Hamiltonian has a matrix form in the partial Fourier basis,

H =

(
0 ∆(p)†

∆(p) 0

)
− i

2
σ3

(
∇3 −∇†3

)
(3.66)
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where the off-diagonal element is given by

∆(p) = cos p1 − cos p2 + c+ i sin p2 , (3.67)

which behaves as ∆(p) ∼ ∓p1 + ip2 in the vicinity of the Weyl points. The sign ∓ depends
on the chirality of the Weyl points.

Assuming that the wavefunction is given by

ψn3 = βn3−1ψ1 (3.68)

in which the real parameter |β| ≤ 1 plays as the role of e−α in continuum theory, the
eigenvalue equation (3.65) is equivalent to

Dψn3 = 0 (3.69)

where

D = − i
2

(
β2 − 2iε(p)β − 1 2i∆(p)†β
−2i∆(p)β β2 + 2iε(p)β − 1

)
. (3.70)

To obtain a non-trivial solution to this zero mode equation, we asign the condition detD = 0
which yields

β2 = 1 + 2(|∆(p)|2 − ε(p)2)
− 2
√

(|∆(p)|2 − ε(p)2)(|∆(p)|2 − ε(p)2 + 1) . (3.71)

There are two solutions for β ≥ 0 and β ≤ 0. We remark that these two possibilities
correspond to the doublers at p3 = 0 and π in the momentum space.

Then, together with the boundary condition (3.64), the edge state equation (3.69) gives

D

(
1
−e2iθ

)
= 0 . (3.72)

Since β ∈ R, we obtain

ε(p) = − cos θRe ∆(p)− sin θ Im ∆(p) , (3.73)

α̃(p) = sin θRe ∆(p)− cos θ Im ∆(p) , (3.74)

which is rewritten as a matrix form
(
ε(p)
α̃(p)

)
= −

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)(
Re ∆(p)
Im ∆(p)

)
, (3.75)

where we define

α̃(p) :=
1

2

(
β−1 − β

)
, (3.76)
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and from (3.67), the real and imaginary parts of ∆(p) are given by

Re ∆(p) = cos p1 − cos p2 + c , (3.77)

Im ∆(p) = sin p2 . (3.78)

Comparing with the continuum theory (3.45), now the situation is parallel under the re-
placement

(p1, p2, α(p)) −→ (Re ∆(p), Im ∆(p), α̃(p)) . (3.79)

With (3.76) we can solve out β

β = − sin θRe ∆(p) + cos θ Im ∆(p) +
√

(sin θRe ∆(p)− cos θ Im ∆(p))2 + 1 (3.80)

since |β| ≤ 1. and hence

ψn3 = βn3−1ψ1 (3.81)

Fig. 3.3 shows the boundary parameter dependence of the bulk and edge state dispersions.
The edge state spectrum has a support only where the normalizability conditioin is satisfied
|β| ≤ 1. As mentioned before, there are two solutions corresponding to positive and negative
β. We focus on the positive solution in the following. When we change the parameter θ, the
edge state spectrum rotates around the Weyl points. The orientation, that is, how the edge
state spectrum winds, depends on the chirality of the Weyl nodes. This result is consistent
with the continuum theory analysis in particular in the vicinity of the Weyl points.

To see the parameter dependence more explicitly, let us take the constant energy section of
the spectrum, which yields the Fermi arc, shown in Figs. 3.4. This shows that the parameter
characterizing the boundary condition θ plays a role of the rotation angle of the Fermi arc,
as studied in continuum theory. In the present case of the lattice models, the Fermi arc ends
on the Weyl points and have a finite support in the momentum space. Such a behavior of the
Fermi arc has been experimentally observed, for example, in the transition metal pnictide
family [9].

3.5 The bulk-edge correspondence

In this section, we study the relation between the bulk and the edge states, and check the
bulk-edge correspondence under the change of boundary condition parameter. The bulk-
edge correspondence [16, 14] for topological insulators is well-known, while that for 3D Weyl
semimetals has been understood in a way through a dimensional reduction to 2D. Since the
bulk-edge correspondence is a statement based on topology, we should expect that under the
continuous change of parameters, the topological number do not change. Moreover, we may
expect that boundary condition parameter can be used to interpret the topological number,
and that is the case for Weyl semimetals. In the following subsections, we are going to
explain the bulk-edge correspondence for the 3D Weyl semimetal, showing the topological
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Figure 3.4: The parameter dependence of the Fermi arc which is the finite energy slice
ε(p) = 0.3 of the edge state energy spectrum with θ = 0, 2π/5, 4π/5, 6π/5, 8π/5 for positive
β. The horizontal and vertical axes are for p1 and p2. The shaded region shows the bulk
spectrum. The last panel shows Fermi arcs with various parameter θ ∈ [0, π).

number is related with the rotation direction of Fermi-arc under the increasing of boundary
parameter.

In three dimensions, the topological number K is defined by the wrapping number of a
map bi(pj) which shows up in the Hamiltonian

H = bi(pj)σi. (3.82)

Our Hamiltonian (3.4) is given by bi = pi and the Weyl node is at pi = 0. Considering a
two-sphere surrounding the Weyl node, we obtain

K = 1 ∈ π2(S2). (3.83)

We claim the bulk-edge correspondence for the 3D Weyl semimetal is given by

K = N − Ñ (3.84)
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where K is the topological number defined above. We define N and Ñ to count the numbers
of edge states with independent orientations with respect to the orientation of the bulk
dispersion cone, as we will see below.

To discuss the orientation, we have to view the bulk dispersion in the subspace (p1, p2)
since the edge dispersion lives in that space. First, in the (p1, p2, ε) space, we notice that
all constant p3 slices of the bulk states have the same orientation. Let us make further a
slice at a constant positive energy ε. The cross-section of the bulk dispersion is a circle (see
Fig. 4.1). The orientation of the circle is definite due to the topological number (assuming
b3 = p3).

The constant energy slice of the edge dispersions defines the Fermi arcs. Since generically
the edge state dispersions are planes tangent to the bulk dispersions, the Fermi arcs share
the same property. The number N counts the number of Fermi arcs which are tangential
to the bulk dispersion circle and emanates in a counter-clockwise orientation. On the other
hand, the number Ñ counts that in a clockwise orientation. Our claim for the bulk-edge
correspondence is that this orientation of the bulk circle remains the same for the edge (the
Fermi arcs).

Figure 3.5: How to count the number of edge states from the orientation of the Fermi arcs.
Top: a Fermi arc emanates from the Weyl node with a positive chirality K = 1, which is a
counter-clockwise. Bottom: the case of the opposite chirality, K = −1.

Let us check this explicitly for two typical examples. In Fig. 4.1 we show the Hamiltonian
(3.4) with θ = 0, and the case of the Hamiltonian H = −p1σ1 + p2σ2 + p3σ3 with θ = 0. The
former case has K = 1 as explained before, while the latter case has K = −1. As we can see
in Fig. 4.1, it is obvious that we have (N, Ñ) = (1, 0) for the former case, and (N, Ñ) = (0, 1)
for the latter case. So, they are consistent with our claim of the bulk-edge correspondence
(3.84).

All the edge states in Fig. 3.1 have the same N and Ñ according to our definition:
(N, Ñ) = (1, 0). So they are consistent again with (3.84). The examples in the lattice
models we considered are shown to be consistent with the bulk-edge correspondence. Note
that Fermi arcs join Weyl nodes, and our counting works for each Weyl node. To be more
precise, each Fermi arc has two end points, and one end has (N, Ñ) = (1, 0) while the other
end has (N, Ñ) = (0, 1). So the numbers are assigned to each end point of the Fermi arc.
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Chapter 4

Analysis in 5D Weyl semimetals

In general, band-crossing happens between two bands, so even if there are many bands, we
can always focus on the two band in which band-crossing occurs while ignoring other bands.
So the bulk picture of topological phases in multi-band systems is essentially the same as
in two-band system. However, the boundary picture is so much different as the boundary
parameter increases in number. In this chapter, we will see even with a very simple four-
band Hamiltonian — 5D Weyl semimetal, an enriched boundary parameter space and a new
exotic state — edge-of-edge state come out. This chapter is mainly based on [24] but I add
more examples of edge state and edge of edge state dispersions. The relation between gapped
bulk, gapped edge, and gapless edge-of-edge states is also appearing in [25], where explicit
experimental realization is proposed.

4.1 5D Weyl semimetals, Hamiltonian, Lagrangian

To consider topological phases with four bands, the easiest way is to generalize Hamiltonians
from lower dimensions to higher dimensions. The straight forward generalization is from 3+1
dimensional Weyl semimetal into 5+1 dimensional Weyl semimetal. Since they are chiral,
automatically they have topological property and by dimensional reduction, they are related
with topological insulators in lower dimensions. 5D Weyl semimetals have the Hamiltonian
of form

H =
5∑

M=1

ΓMpM (4.1)

as in the same manner as the standard Weyl semimetal Hamiltonian H = p1σ1 + p2σ2 + p3σ3
in 1+3 spacetime dimensions. Here ΓM (M = 1, · · · , 5) is the 4×4 Gamma matrix satisfying
the 5-dimensional Euclidean Clifford algebra

{ΓM ,ΓN} = 2δMN (M,N = 1, 2, 3, 4, 5) . (4.2)

This kind of band Hamiltonian has topological property in the bulk since it’s chiral in 5+1
dimensions. Let’s check it. It is parallel to the calculation done in 3 dimensions.

35
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The winding number is given by the formula

ω(Sα) =
1∫

Sα
dΩ

∫

Sα=∂Mα

d4p ε1234εabcde
pa
p
∂1
pb
p
∂2
pc
p
∂3
pd
p
∂4
pe
p

=
1

4!
∫
Sα
dΩ

∫

Mα

d5p ∂λ(ε
λµναβεabc

pa
p
∂µ
pb
p
∂ν
pc
p
∂3
pd
p
∂4
pe
p

) . (4.3)

Again by using

∂µ
pb
p

=
δµb
p
− pµpb

p3
, (4.4)

(4.3) becomes

ω(Sα) =
1

4!
∫
Sα
dΩ

∫

Mα

d5p ∂λ(ε
λ
bcdeε

abcdepa
p3

) = 1 . (4.5)

Upon a dimensional reduction to 4+1 dimensions by replacing p5 by a constant m, the
system reduces to the class A topological insulator in 4 dimensions with the Hamiltonian

H = piΓ
i +mΓ5 . (4.6)

Let’s have a look at Lagrangian formalism formulation. The bulk Lagrangian is written
in the same manner as the 1+3-dimensional case. Now with the gamma matrices in 4+1
dimensions,

L = −ψ†iγ0(γµ∂µ − i∂5)ψ (4.7)

with ψ̄ ≡ ψ†iγ0. Here µ = 0, 1, 2, 3, 4 and the 4× 4 gamma matrices are a representation of
the Clifford algebra {γµ, γν} = 2ηµν (µ, ν = 0, 1, 2, 3, 4). Note that the Gamma matrices γµ

are a part of 8× 8 Gamma matrices in 1 + 5 dimensions. The Dirac equation is

(γµ∂µ − i∂5)ψ = 0 (4.8)

which can be rewritten as

[
i∂0 − iγ0(γi∂i − i∂5)

]
ψ = 0 (4.9)

where i = 1, 2, 3, 4. So the Hamiltonian is i∂0 = H,

H ≡ −γ0γipi + iγ0p5 . (4.10)

We have used pi = −i∂i and p5 = −i∂5. If we use a redefined Gamma matrices

Γ5 ≡ iγ0, Γi ≡ −γ0γi (4.11)
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then they satisfy (4.2). And the Hamiltonian is conveniently written as (4.1). Meanwhile,
we can define another set of Gamma matrices, such that

Γ′5 ≡ −iγ0, Γ′i ≡ γ0γi (4.12)

and they also satisfy the same algebra as (4.2), however, the Hamiltonian will then be written
as

H =
5∑

M=1

Γ′M(−pM) . (4.13)

These two kinds of Hamiltonians describe fermions with two opposite chirality in 5+1 di-
mensions, therefore they are called Weyl fermions. If formula (4.3) is used, winding number
ω = −1 is obtained.

4.2 Generic boundary conditions and edge states

4.2.1 Boundary conditions

The boundary condition is imposed at x5 = 0,

Aψ = 0 . (4.14)

Again defining A = M + 14, we have

Mψ = −ψ . (4.15)

One of the eigen value of A is vanishing.
The boundary condition receive another constraint from the Hermiticity of Hamiltonian

just as the discussion in Sect. 3.1.
The Hermiticity condition of Hamiltonian is

〈Hψ1|ψ2〉 = 〈ψ1|Hψ2〉, (4.16)

for arbitrary normalizable ψ1 and ψ2. The Hamiltonian is

H = Hbulk +Hboundary , (4.17)

where

Hbulk = −iΓM∂M (4.18)

Hboundary = Nδ(x5) . (4.19)

Then the Hermiticity requires a surface term to vanish

ψ†1Γ
5ψ2 = 0 , (4.20)
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just like (3.27).
We use the following representation of the Clifford algebra,

Γi =

(
0 −iσi
iσi 0

)
, (4.21a)

Γ4 =

(
0 12

12 0

)
, Γ5 =

(
12 0
0 −12

)
. (4.21b)

Then, decomposing ψ1 = (ξ1, η1)
T and ψ2 = (ξ2, η2)

T , (4.20) is equivalent to

ξ†1ξ2 − η
†
1η2 = 0 . (4.22)

This equation is satisfied only if

η1 = U5ξ1 , η2 = U5ξ2 , (4.23)

for an arbitrary U(2) matrix U5. So, we conclude that the consistent generic solution of the
boundary condition (4.20) is

ψ ∝
(

12

U5

)
ξ (4.24)

for a normalized two-spinor ξ. We remark that it can be reparametrized using U(2) rotation,
ξ → V ξ with V ∈ U(2). In other words, the boundary condition is rephrased to

(
12 −U †5

)
ψ
∣∣∣
x5=0

= 0 . (4.25)

This condition is analogous to the 1+3-dimensional case (3.32). We notice that the previous
eiθ is replaced by the U(2) unitary matrix −U †5 . We have four real parameters to parametrize
the generic boundary condition and this fact does not depend on the basis we choose.

The condition (4.25) can be written in an alternative manner. Notice that it is equivalent
to

(
12 −U †5
U5 −12

)
ψ
∣∣∣
x5=0

= 0 . (4.26)

There may be other expressions for N which reproduces (4.25), as in the case of the 3D Weyl
semimetals.

4.2.2 Edge state

IN this section I will derive the dispersion relations. The bulk Hamiltonian eigen equation
for ψ = (ξ, η)T is

(−i∂5 − ε)ξ + (−iσipi + p4) η = 0 (4.27)

(iσipi + p4) ξ − (−i∂5 + ε)η = 0 (4.28)
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with i = 1, 2, 3. The edge state solution to the bulk Hamiltonian eigen equation is

ψ =

(
ξ(pi, p4)
η(pi, p4)

)
exp[−α5x

5] , α5 ≡
√
−ε2 + p2i + p24 . (4.29)

Let us substitute the boundary condition (4.24). Then the equations (4.27) and (4.28) are
written as

[(iα5 − ε) + (−iσipi + p4)U5] ξ = 0 , (4.30)

[−(iα5 + ε)U5 + (iσipi + p4)] ξ = 0 . (4.31)

Noting that the unitary matrix U5 determining the boundary condition can be decomposed
as

U5 = eiθ5U ′5 (4.32)

where U ′5 is an SU(2) matrix, and this acts as a rotation in the 4-dimensional momentum
space,

(−iσipi + p4)U
′
5 = −iσip̃i + p̃4 (4.33)

with

p2i + p24 = p̃2i + p̃24 . (4.34)

Expanding (4.33) explicitly with

U ′5 = a012 + iaiσ
i, a20 + a2i = 1, i = 1, 2, 3 , (4.35)

we get
{
p̃4 = a0p4 + aipi ,

p̃i = a0pi − aip4 + εijkajpk ,

(4.36)

(4.37)

so this U ′5 indeed acts as a rotation between four momenta. Then the two equations (4.30)
and (4.31) in terms of rotated momenta are

[
e−iθ5(iα5 − ε) + p̃4 − iσip̃i

]
ξ = 0 , (4.38)[

−eiθ5(iα5 + ε) + p̃4 + iσip̃i
]
ξ = 0 . (4.39)

Equivalently,

[α5 sin θ5 − ε cos θ5 + p̃4] ξ = 0 , (4.40)

[α5 cos θ5 + ε sin θ5 − σip̃i] ξ = 0 . (4.41)

This has a solution only when

α5 sin θ5 − ε cos θ5 + p̃4 = 0 , (4.42)

det [α5 cos θ5 + ε sin θ5 − σip̃i] = 0 . (4.43)
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The second equation implies

α5 cos θ5 + ε sin θ5 = ±
√
p̃2i . (4.44)

So we finally obtain the dispersion relation of the edge state,

ε = p̃4 cos θ5 ±
√
p̃2i sin θ5 , (4.45)

α5 = −p̃4 sin θ5 ±
√
p̃2i cos θ5 . (4.46)

The normalizability condition is α5 > 0 which constrains the momentum region for the
existence of the edge state.

4.2.3 Some examples

Example 1

There is a similarity to the 1+3-dimensional case of the standard Weyl semimetals, (3.43)
and (3.44). In fact, identifying θ = θ5 + π and putting p2 = p3 = 0 with U ′5 = 12 means a
consistent reduction from 1+5 dimensions to 1+3 dimensions, reproducing all the results of
the three-dimensional Weyl semimetals. This is the U(1) part of the U(2).

Example 2

Next let’s have a look at the SU(2) rotation. In U5 if we choose

a0 = cosα , a1 = sinα , a2 = a3 = 0 , (4.47)

we get an explicit form of dispersion:

ε = (p4 cosα + p1 sinα) cos θ5 ±
√

(p1 cosα− p4 sinα)2 + p22 + p23 sin θ5 . (4.48)

We can see from this dispersion that p1 and p4 get rotated and that p2 and p3 are unchanged.
If we choose

a2 = cosα , a3 = sinα , a1 = a0 = 0 , (4.49)

we get another explicit form of dispersion:

ε = (p2 cosα + p3 sinα) cos θ5 ±
√

(p2 sinα− p3 cosα)2 + p21 + p24 sin θ5 . (4.50)

p2, p3 and p4 get rotated and p1 is unchanged. It’s clear from (4.36) and (4.37) that p4 always
gets rotated unless there’s no rotation at all. These two cases are interesting for topological
insulators related through dimensional reduction. By tuning θ, we can clearly get gapped or
gapless edge states.
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Example 3

If we choose

θ5 =
π

2
or

3π

2
(4.51)

we get

ε = ±
√
p̃2i = ±

√
(a0pi − aip4 + εijkajpk)2 . (4.52)

They are edge states that can be gapped if some of the momenta are chosen to be constant.
And if we choose

θ5 = 0 (4.53)

we get linear gapless edge states:

ε = a0p4 + aipi (4.54)

.

4.3 Intersection of boundaries: edge-of-edge states

The advantage of the four band Hamiltonian is the rich structure of the boundary condition
parameter space such that the intersection of two boundary still have nontrivial parameter
space and this provides the environment for the existence of edge-of-edge states. Further-
more, as we will argue soon that the edge states of the 5D Weyl semimetal have topological
charges, at the edge of these edge states, it’s natural that edge-of-edge states will appear. In
this section, we will work out the edge-of-edge states explicitly.

4.3.1 Topological charge in the momentum space

In [21], a certain edge state appearing in a class A topological insulator in 1+4 dimensions
was shown to possess a topological charge. As argued earlier, we note here that the 5D Weyl
semimetal Hamiltonian reduces to a 4d class A topological insulator by a trivial dimensional
reduction. So, it is natural that our generic edge state explored in the previous section has
the same topological charge that was argued in [21].

In fact, it is easy to see the topological charge of the edge state. The topological charge
is defined by a Berry connection of the wave function of the edge state. Recall that the
edge state wave function is subject to the two equations (4.40) and (4.41). In particular the
second equation (4.41) is recast to the form

σip̃iξ = ±
√
p̃2i ξ . (4.55)
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This has the same form as Hamiltonian of the 3D Weyl semimetal, (3.33). Therefore, the
Berry connection of the edge state has a topological charge. It is identical to the chirality of
the corresponding Weyl semimetal, in the rotated momentum frame spanned by p̃1,2,3.

The topological charge in the momentum space for the edge state immediately means
that there should appear an edge-of-edge state once a boundary of the edge is introduced
properly.

4.3.2 Generic edge-of-edge states

Let us study the intersection of boundary x4 = 0 and x5 = 0 as the edge-of-edge of the
material. The expected wave function should be of the form

ψ =

(
12

U5

)
χ(pi) exp[−α4x

4 − α5x
5] , (4.56)

but at the same time satisfying boundary condition on x4 = 0 (see Appendix A.1 for deriva-
tion)

(
12 + U †4 12 − U †4

)
ψ
∣∣∣
x4=0

= 0 . (4.57)

Therefore we demand

[U5(12 − U4)− (12 + U4)]χ = 0 . (4.58)

The is is the compatibility condition with boundary condition (4.57). For that to have a
nontrivial solution, we need

det [12 + U4 − U5 + U5U4] = 0 . (4.59)

This is a necessary condition for the existence of the edge-of-edge state. 1 Let’s solve the
existence condition (4.59) for the boundary conditions. We define

U5 = eiθ5(a012 + iaiσ
i) = A012 + Aiσ

i , (4.61a)

U4 = eiθ4(b012 + ibiσ
i) = B012 +Biσ

i . (4.61b)

The unitarity of U4 and U5 means

a20 + a2i = b20 + b2i = 1 . (4.61c)

1We remark that the condition (4.58) is covariant under the rotation

(U4, U5, χ) −→ (WU4W
†,WU5W

†,Wχ) (4.60)

with W ∈ U(2). So there is an equivalence class of the edge-of-edge states related by this W .
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After some computations, (4.59) becomes (see Appendix A.2)

a0 = b0 = 0 , a2i = b2i = 1 ,

aibi = − cos θ4 cos θ5 . (4.62)

This defines the parameter space of the edge-of-edge state.
Next let’s solve the Hamiltonian eigen equation and obtain the dispersion of edge-of-edge

states. The Hamiltonian eigen equation leads to

[(iα4 − ε) + (−iσipi − iα5)U4]χ = 0 , (4.63)

[−(iα4 + ε)U4 + (iσipi − iα5)]χ = 0 . (4.64)

Together with

ε2 = p2i − α2
4 − α2

5 , (4.65)

we have three equations with three unknowns (ε, α4, α5) so they are solved and determine
the edge-of-edge state dispersion. Together with (4.62), we get a consistency relation for the
dispersion ε(p) of the generic edge-of-edge state to satisfy,

Aε2 − 2Bε+ C = 0 , (4.66)

where the coefficients are defined as

A ≡ 1− cosθ4 cosθ5 , (4.67a)

B ≡ aipi cos θ5 sinθ4 +bipi cos θ4 sinθ5 , (4.67b)

C ≡ (aipi)
2 sinθ4 +(bipi)

2 sinθ5−p2i sinθ5 sinθ4 . (4.67c)

See Appendix A.2 for details of the derivation.

4.3.3 Examples of edge-of-edge states

Let’s now study some solutions of (4.66), as they are very interesting.

Example 1

As in Sec. 4.2.3, we can choose

θ4 = θ5 =
π

2
or

3π

2
, (4.68)

and easily get edge states that is gappable for dimensional reduced models. Now let’s see
what the edge-of-edge states dispersion look like. In such a case,

A = 1 , B = 0 ,

C = (aipi)
2 + (bipi)

2 − p2i ≤ 0 , (4.69)
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(thanks to (4.62)), so we have dispersion:

εe-o-e = ±
√
p2i − (aipi)2 − (bipi)2 = cipi , (4.70)

where

c2i = 1, ciai = cibi = 0 . (4.71)

The lesson from above is that edge-of-edge states are always linearly dependent on pi , so
they are always gapless, even after dimensional reduction to three or four spacial dimensions.
This conclusion is very important for the discussion in the next subsection.

Example 2

If we set instead

θ5 = 0 , (4.72)

we get

A = 1− cosθ4 , B = aipi sin
θ
4 ,

C = (aipi)
2 sinθ4 , (4.73)

so the edge-of-edge state dispersion is

εe-o-e = aipi , (4.74)

but this is exactly the same as edge states at x5 = 0 (4.54): Since now a0 = 0

εx5=0 = aipi , (4.75)

one merge with another. The same result happen for boundary x4 = 0 if we set

θ4 = 0 . (4.76)

4.3.4 Reduction to 3d chiral topological insulator (class AIII)

Based the examples with gapless edge-of-edge states in the previous subsection, I’ll discuss
the dimensionally reduced model, which is a three-dimensional chiral topological insulator
(class AIII) towards an experimental realization of the edge-of-edge state. See, for example,
[26] for a setup of the class AIII system using ultracold atoms.
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4d edge:

4d edge:

 †�4 
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= 0
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= 0

5d bulk Weyl: (x1, x2, x3, x4, x5)

3d edge-of-edge: (x1, x2, x3)
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 †�3 
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3d bulk chiral TI: (x1, x2, x3)

1d edge-of-edge: (x1)

x3

x1

x2

1

Figure 4.1: Edge-of-edge at 5D and dimensional reduced one 3D

Edge-of-edge state at x2,3 = 0

In order to study the edge-of-edge state in the 3d model, let me first show the edge states of
the 5d Weyl fermion (4.1) at the boundaries x2 = 0 and x3 = 0. Later the fourth and fifth
momenta will be set to constants. The boundary condition is imposed as

ψ†Γaψ
∣∣∣
xa=0

= 0 (a = 2, 3) . (4.77)

The edge state and the corresponding spectrum for this boundary condition is discussed in
Appendix A.1 in details. The edge-of-edge state localized at the corner x2 = x3 = 0 is

ψ = e−α2x2−α3x3
(

12 + iσ3U3

iσ3 (12 − iσ3U3)

)
ξ (4.78)

with the compatibility condition

det
(
12 + iU †2σ2 + iσ3U3 − U †2(iσ1)U3

+ iσ1 − iσ2U3 − iU †2σ3 − U
†
2U3

)
= 0 (4.79)

since the boundary conditions (4.77) are rephrased as (A.7).
A solution to the compatibility condition (4.79) is

U2 = σ2 , U3 = i12 , (4.80)

which leads to

(p̃
(a)
1 , p̃

(a)
2 , p̃

(a)
3 , p̃

(a)
4 ) =

{
(−p3, p4, p1, p5) (a = 2)

(p1, p2,−p5, p4) (a = 3)
(4.81)

with θ2 = θ3 = π/2. Thus the edge state spectrum is given by

ε2(p) = ±
√
p21 + p23 + p24 , (4.82a)

ε3(p) = ±
√
p21 + p22 + p25 , (4.82b)

and the corresponding edge-of-edge state spectrum is gapless and also chiral,

ε = −p1 . (4.83)
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3d class AIII topological insulator

The Hamiltonian for the class AIII topological insulator has the following form

H(~p) = ~p · ~Γ +mΓ4 , (4.84)

which is obtained from the 5d Weyl Hamiltonian (4.1) through the dimensional reduction
(p4, p5)→ (m, 0). The Γ-matrices (4.21) are expressed as

Γi = τ2 ⊗ σi , Γ4 = τ1 ⊗ 12 , Γ5 = τ3 ⊗ 12 (4.85)

where the Pauli matrices σ’s and τ ’s act on the spin (↑, ↓) and sublattice (A,B) degrees of
freedom. Since the Hamiltonian anticommutes with Γ5 as

{H(~p),Γ5} = 0 , (4.86)

for each eigenstate ψn of H, in which

Hψn = Enψn , (4.87)

there is a state with same energy of opposite sign

HΓ5ψn = −Γ5Hψn = −EnΓ5ψn (4.88)

and this is called the chiral (sublattice) symmetry.
We can apply the same boundary analysis to the dimensionally reduced model. Given a

two-spinor denoted by |ξ〉, and choosing the boundary condition (4.80), we obtain

ψ(x2 = 0) ∝
(
12

σ2

)
|ξ〉 , ψ(x3 = 0) ∝

(
12 − σ3
i(12 + σ3)

)
|ξ〉 . (4.89)

Since the operator 12 ± σ3 is a projector onto ↑ and ↓ spin state, we obtain the edge state
ψ(x3 = 0) by applying ↓-spin projection to A sites, and ↑-spin projection to B sites at the
x3 = 0 plane. On the other hand, another edge state ψ(x2 = 0) is obtained by applying
the spin rotation generated by σ2 only to B site (nothing for A site) at the x2 = 0 plane.
The spectra of these boundary conditions are immediately obtained from (4.82) with the
reduction

ε2(p) = ±
√
p21 + p23 +m2 , ε3(p) = ±

√
p21 + p22 , (4.90)

and the gapless edge-of-edge spectrum (4.83). We now have the edge-of-edge state, but it
seems difficult to detect its spectrum at this moment, because the spectrum ε3(p) is also
gapless in addition to the edge-of-edge state. In order to distinguish the edge-of-edge state
from the edge states, we need to consider the situation such that only the edge-of-edge state
is gapless, while the other edge states are gapped.

Before studying such a situation, let us discuss the reason why either of the edge spectra
(4.90) is gapless, while the other is gapped. For the class AIII topological insulator, the
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gapless edge state is protected by the chiral symmetry (4.86), which is indeed the sublattice
symmetry. However, if the boundary condition is not compatible with the symmetry which
protects the topological property, the edge state cannot be gapless any longer. This is
essentially similar to the (class AII) topological insulator/ferromagnet junction [27]. The
class AII topological insulator is protected by the time-reversal symmetry, but this symmetry
can be weakly broken at the surface due to the junction with the ferromagnet. The role of
ferromagnet can be replaced by the chiral superconductor, which breaks the time-reversal
symmetry [28].

From this point of view, the edge state at x2 = 0 shown in (4.89) breaks the sublattice
symmetry because the σ2-rotation acts only on the B-site, while the spin-projection applied
to the edge state at x3 = 0 could be consistent with the sublattice symmetry. Thus, to gap
out the spectrum ε3(p), we need to explicitly break the chiral (sublattice) symmetry for the
edge state at x3 = 0. For this purpose, we apply a rotated configuration

U2 = σ2 cosφ+ i12 sinφ , U3 = i12 cosφ− σ3 sinφ , (4.91)

which satisfies the compatibility condition (4.79). Then we obtain the gapped edge spectra

ε2(p) = ±
√
p21 + p23 + (m cosφ)2 , (4.92)

ε3(p) = ±
√
p21 + p22 + (m sinφ)2 , (4.93)

with the edge-of-edge state (4.83). Now only the edge-of-edge state is gapless, while the two
edge states are gapped. This could be a suitable situation for experimental detection of the
edge-of-edge state.
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Chapter 5

Conclusion and discussions

5.1 Summary

In this thesis, I developed a methodology to study edge states in topological phases – bound-
ary condition analysis. The basis procedure is as following: Starting from a model La-
grangian, by adding a generic surface term, we derive the equation of motion/Hamiltonian
equation plus equation of boundary condition; by solving these equations we get edge states
dispersion depending on momenta and boundary condition parameters.

I showed the validity and effectiveness of boundary condition analysis in three steps,
the foundation, the development and the prediction, corresponding to three chapters in the
thesis: Firstly, in the low energy limit, a simple Weyl fermion Hamiltonian is enough to char-
acterize the topological structure of band-crossing points; secondly, the boundary condition
analysis procedure gives explicit edge dispersions for three dimensional Weyl semimetals and
its dimensional reduced case – topological insulator in two dimensions, in both continuum
limit and on the lattice, covering the known results; thirdly, the boundary condition analysis
gives prediction to a striking new exotic state – edge-of-edge state by its energy dispersion,
in five dimensional Weyl semimetals and its dimensional reduced model – three dimensional
topological insulator which can be realized in the experiments.

This thesis is a communication between particle physics and condensed matter physics.
It is based on methodologies and techniques in either one or both of two subjects. On the
level of methodology, I used topological facts of bands in condensed matter, lattice model
relativistic dispersion of free fermions, dimensional reduction, etc. On the level of techniques,
I intensively used algebras of gamma matrices and sigma matrices during the calculation of
eigenvalue equations.

However, despite the similarities and things in common, in applying knowledges and
experiences in particle theory to condensed matter physics, there are lots of gaps to fill in.
Although both subjects uses relativistic quantum field theory, especially Dirac equation in
cases of free fermions, the ways of using it are different. In condensed matter theory, the
model Lagrangians are treated as effective description in which terms and coefficients can be
modified depending on crystals, while in particle theory, there is only one model framework

49
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determined by scattering experiments. During the study, I have realized that there are lots
of practical issues to concern in writing down a appropriate Lagrangian/Hamiltonian for
some bands.

With the validity of the Lagrangian, this thesis developed distinctive methodology: derive
boundary condition by the surface term, giving rise to boundary dependent edge states. This
also gives a message that unlike bulk states, edge states dispersion also depend on boundary
parameters. With the benefit of the boundary condition parameter, bulk topological number
and bulk-edge correspondence can be reinterpreted in our framework.

In this sense, as a student studying particle theory, I learned much from condensed matter
physics.

5.2 Future direction

My previous researches of topological materials are based on topological numbers that can
be defined by single particle wave function. This means the theory can only be applied
to free fermions. In more generic situations when interactions are present, such kind of
definition is not available. On the other hand, from particle physics theory we know that
correlation functions in quantum field theories are related with observables — cross-section,
for instance, and they are of vital importance. So can the correlation functions be used to
define the topological number, how are the correlation functions are related with observables?
These questions interest me very much and understanding them will be the near future goal
of my research.

On the field theory side, there is a formula to compute topological number by free fermion
propagator by K. Ishikawa and T. Matsuyama[29]. An advantage of the field theory approach
is that it is possible to generalized to cases including electron-electron interactions. Field the-
ory description, Chern-Simons effective theory approach by K. Ishikawa and T. Matsuyama
is shown to be equivalent with Thouless-Kohmoto-Nightingale-den Nijss formalism for con-
ductivity in integer quantum Hall effect[30] and possible to be generalized into interacting
systems[31]. I want to investigate in this direction and see how topological numbers defined
by fermion propagators can describe different topological phases.

Moreover correlation function/Green’s function describes dynamical properties of excita-
tions and has been a very successful method in most of areas in modern theoretical physics,
such as scattering process in particle physics, phonon electron interaction in condensed mat-
ter physics, etc. Green’s function gives many observables besides energy dispersion, such as
thermodynamical quantities, density of states, etc. The systematic understanding of inter-
acting topological phase phenomena requires a detailed study by applying Greens functions
method. I want to understand the relation between correlation functions and all kinds of
observables in topological materials.



Appendix A

A.1 Boundary conditions and Edge state at xa = 0

(a 6= 5)

We look for a generic solution to the equation at the boundary

ψ†1Γ
4ψ2

∣∣∣
x4=0

= 0 (A.1)

which is analogous to (4.20). Its component expression is

ξ†1η2 + η†1ξ2 = 0 . (A.2)

A generic solution of this equation is obtained by a rotation in the 4-5 space from the previous
one at x5 = 0,

ψ =

(
12 − U4

12 + U4

)
χ(pi, p5) exp[−α4x

4] (A.3)

with an arbitrary two-spinor η and a U(2) matrix U4. This U4 parametrizes the boundary
condition at x4 = 0.

The boundary condition at x4 = 0 can be written also as
(

1
2
(U †4 − U4) 12 − 1

2
(U †4 + U4)

12 + 1
2
(U †4 + U4) −1

2
(U †4 − U4)

)
ψ
∣∣∣
x4=0

= 0 . (A.4)

In this Appendix, we discuss the boundary conditions imposed to the 5d Weyl fermion (4.1)
at the boundary xa = 0 for a = 1, 2, 3, 4 in details. The boundary condition which we
consider is

ψ†Γaψ
∣∣∣
xa=0

= 0 (a = 1, 2, 3, 4) . (A.5)

We use the notation of the Γ-matrices shown in (4.21). Applying the same argument dis-
cussed in Sec. 4.1, we obtain the corresponding localized edge state

(a = 1, 2, 3) : ψ = e−αax
a

(
12 + iσaUa

iσa (12 − iσaUa)

)
ξa ,

(a = 4) : ψ = e−α4x4
(
12 − U4

12 + U4

)
ξ4 , (A.6)
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with Ua ∈ U(2) and a two-spinor ξa. We remark that the boundary conditions (A.5) are
rephrased as

(
12 + iU †aσa

(
12 − iU †aσa

)
(−iσa)

)
ψ
∣∣∣
xa=0

= 0 (A.7)

for a = 1, 2, 3, and

(
12 + U †4 12 − U †4

)
ψ
∣∣∣
x4=0

= 0 (A.8)

for a = 4.

Let us then solve the spectrum of the edge state localized at xa = 0. The eigen equation
Hψ = εψ for the Hamiltonian (4.1) with the boundary condition (A.5) for a = 1 leads to

(
(iα1 − ε) + (ip5σ1 − ip2σ2 − ip3σ3 + p4)U1

)
ξ1 = 0 , (A.9a)

(
− (iα1 + ε)U1 + (−ip5σ1 + ip2σ2 + ip3σ3 + p4)

)
ξ1 = 0 . (A.9b)

We can similarly discuss the edge state localized at x2 = 0, x3 = 0, and also for x4 = 0,
which lead to the condition identical to that studied in Sec. 4.1 if we replace

(αa, p5) −→ (α5,−pa) (a = 1, 2, 3, 4) . (A.10)

Thus we obtain

εa(p) = p
(a)
4 cos θa ±

√
|p(a)i |2 sin θa , (A.11)

αa(p) = −p(a)4 sin θa ±
√
|p(a)i |2 cos θa (A.12)

where we decompose Ua = eiθaU ′a with U ′a ∈ SU(2), and define

(p
(a)
1 , p

(a)
2 , p

(a)
3 , p

(a)
4 ) =





(−p5, p2, p3, p4) (a = 1)

(p1,−p5, p3, p4) (a = 2)

(p1, p2,−p5, p4) (a = 3)

(p1, p2, p3,−p5) (a = 4)

(A.13)

with the SU(2)-rotated momentum for a = 1, 2, 3, 4,

(−ip(a)i σi + p
(a)
4 )U ′a = −ip̃(a)i σi + p̃

(a)
4 . (A.14)

The normalization condition of the edge state is αa > 0.
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A.2 Derivation of generic edge-of-edge dispersion rela-

tion

We show the derivation of the dispersion relation of generic edge-of-edge state localized at
x4 = x5 = 0. Parametrizing the boundary condition matrices (4.61), the compatibility
condition (4.59) becomes

det
[
12 +B0 − A0 + AµB

µ+

(Bi − Ai + AiB0 + A0Bi + iεijkAjBk)σ
i
]

= 0 , (A.15)

which can be further written as:

12 + 2(B0 − A0) + A2
0 − A2

i +B2
0 −B2

i + 2A0(B
2
0 −B2

i )

−2B0(A
2
0 − A2

i ) + (A2
0 − A2

i )(B
2
0 −B2

i ) + 4AiBi = 0. (A.16)

Using the fact that A2
0 − A2

i = e2iθ5 and B2
0 −B2

i = e2iθ4 , this is shown to be equivalent to

aibi = − cos θ4 cos θ5 − ia0 sin θ4 + ib0 sin θ5 , (A.17)

and we arrive at the following two equations:

{
aibi = − cos θ4 cos θ5 ,

a0 sin θ4 = b0 sin θ5 .

(A.18)

(A.19)

This is the generic constraint for the two boundary conditions, for the existence of the
edge-of-edge states.

Next let us solve the energy eigen equations, (4.63) and (4.64). Denoting

p5 := iα5 (A.20)

and also

(iσjpj + p5)(b0 + ibiσi) = iσi ˜̃pi + ˜̃p5 , (A.21)

we have {
˜̃p5 = b0p5 − bipi
˜̃pi = b0pi + bip5 + εijkbjpk .

(A.22)

(A.23)

Then equations (4.63) and (4.64) become

{
ε cos θ4 − α4 sin θ4 + ˜̃p5 = 0 ,

(ε sin θ4 + α4 cos θ4)
2 − ˜̃p2i = 0 .

(A.24)

(A.25)
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These two equations are related by ε2 = ˜̃p2i + ˜̃p25 − α2
4, so instead, we shall use the following

equivalent set of equations,

{
ε cos θ4 − α4 sin θ4 = bipi − b0p5 ,
ε2 = p2i − α2

4 − α2
5

(A.26)

(A.27)

for convenience. Since (A.20) means that p5 is pure imaginary, above two equations are
actually three real equations including b0p5 = 0, which means

b0 = 0 , (A.28)

and

ε cos θ4 − α4 sin θ4 = bipi. (A.29)

Similarly, consider the boundary condition on the x5 direction. Substitute equation (4.24)
into the energy eigen equation and repeat the procedures starting from equations (4.63) and
(4.64). Then we obtain

{
ε cos θ5 − α5 sin θ5 = aipi ,

a0 = 0 .

(A.30)

(A.31)

Combining equations (A.29) (A.30) and (A.27) to eliminate α4 and α5, we obtain

Aε2 − 2Bε+ C = 0 , (A.32)

which is (4.66) with the coefficients defined in (4.67).
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