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1:Introduction 
 

Since their discovery in 1985 the cuprates superconductors have attracted a huge attention from 

the community in the field of solid state physics, and a tremendous amount of work has been put 

into clarifying the mechanism that gives to these superconductors such a high critical temperature, 

however some of the fundamental questions still remain unanswered. The first of these is surely 

the pairing mechanism, and therefore the driving force of superconductivity. Nevertheless the 

joint work of the community took us much closer to understanding the rich physics of these 

materials. However while new experimental observation take us closer to understanding the 

cuprates, they also bring forth new questions that are sometimes are not easily solved. 

A perfect example of these long standing issues in the research of cuprates superconductors is the 

doping dependence of the superconducting gap. While in the overdoped regime the gap size is 

proportional to the critical temperature TC, in the underdoped region the antinodal and nodal gaps 

show different doping dependence, with the antinodal gap increasing monotonically[1] and the 

nodal gap staying constant or decreasing with lower doping, and this is accompanied by a 

deviation of the gap function from the simple d-wave symmetry.[2]–[4] Therefore in the 

underdoped regime we have the highly unusual situation where neither the nodal nor the 

antinodal gap seem to be proportional to the critical temperature. 

This behaviour is likely connected to the poorly understood pseudogap state, which dominates the 

phase diagram in the underdoped region. Even though from recent experiments results it seems 

likely that the pseudogap state originates from a different order parameter than superconductivity, 

the fundamental nature of the pseudogap state is still unclear. Additionally the relationship of the 

pseudogap with superconductivity is not fully understood. While it is true that these two states do 

seem to compete for the area of the Fermi surface close to the antinode, on the other hand they 

coexist and it is not clear how superconductivity is influenced. 

A further unclear point is that the different nodal and antinodal energy scale in the underdoped 

side is picked up in a different way by different momentum sensitive techniques such as Angle 

Resolved Photoemission Spectroscopy ARPES and Raman. This apparent inconsistency needs to be 

addressed to improve our understanding of the doping dependence of the pseudogap and 

superconductivity. 

Another interesting topic of the field is the study of multilayer cuprates. The main reason for the 

interest in these is that the Tc of the cuprates strongly depends on the number of Cu-O2 planes per 

unit cell n. Tc increases when n increases from n=1 to n=3, where it reaches its maximum, and then 

decreases for n≥4. [5] Up to date the cause of this Tc enhancement is not clear, with several 

possible factor being proposed, such as the tunnelling of Cooper pairs between different layers[6], 

the increased next-nearest neighbour hopping parameter t’[7] and the disorder protection of the 

inner Cu-O2 plane IP by the outer Cu-O2 planes OP.[8] Additionally for n≥3 an interesting situation 

arises, namely that Cu-O2 planes with different doping level coexist in the same sample, and the 
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OP is more doped than the IP due to its proximity to the charge reservoir layer CRL.[9] How these 

layers interact with each other, and how this affects TC is an open problem that should be solved 

to understand the source of the high TC of the triple layer cuprates. Unfortunately the difficulty of 

growing high quality single crystal is higher in the case of triple layer cuprates, and this held back 

the research for long. However the recent improvement in sample quality now allows to carry out 

new observations on these materials. 

In this work we focused on Bi2Sr2Ca2Cu3O10 Bi2223 the triple layer member of the BSCCO family 

(Bi2Sr2Can-1CunO2n+4) of cuprates superconductors. Using Electronic Raman Scattering ERS, which is 

a powerful energy and momentum resolved technique, we investigated this triple layer cuprate. 

We were able to observe a signature of the double superconducting gap of this material, 

originating from the two inequivalent kind of Cu-O2 plane (IP and OP), which has never been 

observed previously by Raman. The temperature and doping dependence of this double peak 

structure was investigated, and a higher energy scale for this triple layer material, with respect 

with other single and double layer cuprates, was observed. These results have been explained by a 

combination of multilayer effects and the complex relationship between superconductivity and 

the pseudogap. This could be a step forward in understanding the non-trivial physics of multilayer 

cuprates. 

Additionally in order to try to solve the apparent inconsistencies between Raman and ARPES, and 

to improve our understanding of the Raman spectra, we performed calculations of the Raman 

spectra, starting from the ARPES data, using the Kubo formalism. This was done for the double 

layer component Bi2Sr2Ca1Cu2O8 Bi2212 samples of three different dopings and for an optimally 

doped Bi2223 sample. The doping dependent Bi2212 study allowed us to show how the 

inconsistencies between Raman and ARPES are likely to be only due to a difference in how these 

two techniques pick up the effect of the coexistence between superconductivity and the 

pseudogap, and how the relationship between these two states affects the Raman spectra. The 

Bi2223 calculation was successful, and constitutes a strong proof that the origin of the 

experimental double peak structure, observed in this work, is truly the double superconducting 

gap of this material originating from the two inequivalent Cu-O2 planes, the IP and the OP. 
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2:Background 

2.1 High temperature superconductivity 
 

The history of superconductivity begins in the early years of the 20th century, when scientists were 

wondering how the resistivity of metals would have been close to the absolute zero. Thanks to the 

newly discovered Hampson–Linde cycle for the liquefaction of gases, investigation of the low 

temperature resistivity of materials had just became possible. Driven by this interest the Dutch 

physicist Heike Kamerlingh Onnes was able in 1908 to produce liquid helium for the first time. 

With this newly achieved technology Onnes and Jacob Clay started measuring the low 

temperature resistivity of platinum and gold. They later moved to mercury and in 1911 they 

observed an abrupt drop in the resistivity at 4.19 K. They observed that at this temperature the 

resistivity of mercury became almost zero. This observation marked the discovery of 

superconductivity. Onnes was also able to show the persistence of the current in superconducting 

rings without an applied voltage, and in 1913 he received the Nobel Prize for the discovery of 

Superconductivity. In the following decades several other superconductors were discovered, but 

these had low critical temperature Tc (<20K). 

A turning point in the history of superconductivity is when in 1957 John Bardeen, Leon N. Cooper, 

and Robert Schrieffer formulated their theory of superconductivity, the BCS theory[10], for which 

they earned the Nobel Prize in Physics in 1987.The BCS theory gave for the first time a successful 

microscopic picture of the phenomenon. The fundamental idea is that electrons bind themselves 

in Cooper pairs. Here a weak positive attraction between two electrons mediated by the coupling 

with the lattice (phonon) can cause them to form pairs, despite the strong Coulomb repulsion 

between the electrons. The so formed pairs could condense in the same way bosons condense in a 

superfluid state. Prediction based on the BCS theory suggested that the pairing energy had to be 

smaller than the typical phonon energy, and therefore it was believed that Tc could not exceed 

30K[11]. 

However in 1985 a new superconductor was discovered that exceeded this limit. In that year 

Bednorz and Müller discovered the copper oxide perovskite La2-xBaxCuO4 which had a Tc of 

35K.[12] This was the first of a new family of superconductors, which re-sparked interest in the 

field, the cuprates. These had as common feature a layered structure and CuO2 planes separated 

by different ionic layers named charge reservoir layers CRL. The cuprates were of great interest 

not only because the maximum Tc at ambient pressure was quickly raised to 133K-138K in 

HgBa2Ca2Cu3O8+δ [13], [14], but also because the BCS theory could not predict many of their 

fundamental characteristics.  

For some time the cuprates remained the only High Temperature Superconductors HTS, but this 

changed in 2006, when Iron Based Superconductors IBS where discovered[15], [16]. These 

materials contain a common structural unit of iron - pnictide conductive layers separated by an 

insulating blocking layer. The discovery of IBS was surprising since iron, having a large magnetic 

momentum, was believed to be harmful to superconductivity. IBS were believed to be the new 
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high temperature superconductor, and showing such a good promise, they re-sparked a huge 

interest in the field of superconductivity.  

Surprisingly though the record Tc held by cuprates was not broken by IBS. Instead in 2015 

superconductivity was discovered in H2S with a Tc of 203 K at extremely high pressures (around 

150 gigapascals)[17]. Even though actually the phase responsible for such high Tc is likely to be H3S, 

formed from H2S by decomposition under pressure. What is even more surprising is that unlike the 

cuprates or the IBS which show exotic properties and cannot be simply explained by the BCS 

theory, the newly discovered H2S can be explained by the BCS theory and in fact numerous 

calculation have predicted high transition temperatures for many hydrides.[18] 

Even though more than one century of research on superconductivity has been carried out, a 

great part of its rich physics remains poorly understood, and many surprising results keep on being 

uncovered. Although much work is still needed, the huge effort of many researchers got us closer 

to understanding this fascinating phenomenon and allowed us to increase the Tc enormously. As it 

can be seen form Fig. 2.1 we went from the few kelvin of mercury to the 203K reached recently, 

getting us closer to the dream of room temperature superconductivity.  

 

Fig 2.1 Superconductors Tc plotted against the year of discovery. Taken from Ref [19]. Axes are not 

in scale for easier visualization.  

 

 

 



5 

2.2 Cuprates general concepts 
 

Following the discovery of La2-xBaxCuO4 other copper oxide based superconductors where 

discovered. These all have in common one or multiple CuO2 layers separated by different ionic, 

electronically inert, buffer layers. The buffer layers can contain different ions such as lanthanum, 

barium, strontium, or other atoms. These ions act as a stabilizer of the crystal structure and the 

doping can be controlled by changing the chemical composition of this buffer layer, which is 

therefore usually referred as charge reservoir layer CRL.  

 

Fig. 2.2 Crystal structure of some example cuprates superconductors. Taken from Ref [20]. All 

cuprates have one or multiple CuO2 layers in common (bottom left) separated by different ionic 

buffer layers. 

The layered structure of cuprates, with weak interaction between the layers, makes cuprates 

quasi-2D materials, and therefore gives them a quasi 2D electronic structure. Nevertheless for 

realistic band dispersion calculations, and to introduce the material variability interaction out of 

plane should be considered. [7], [21] A single band crosses the Fermi level in cuprates which 

comes mainly from the hybridization of Cu dx2-y2 and O px py states (shown in the bottom left of Fig. 

2.2) and forms a large hole like fermi surface as it can be seen in Fig2.3 (e). 
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Fig2.3 Taken form Ref[1]. a Superconducting gap anisotropy in cuprates, first observed in 1993 in 

Bi2212 (Ref[22]) the A and N are the nodal and antinodal spectra respectively. b Schematic of a d-

wave superconducting order parameter. The gap is zero at the node A where it changes sign and 

reaches the maximum at the antinode B. c Bi2212 gap measured by synchrotron ARPES. d Bi2212 

Gap measured by laser ARPES. e Three-dimensional ARPES data set, showing the quasi-particle 

dispersions both perpendicular and parallel to the Fermi surface near the node, reproduced from 

Ref [23]. 

As it will be discussed more in detail later on, the cuprates are antiferromagnetic Mott insulators 

at zero doping. By doping electrons or holes superconductivity appears, and the superconducting 

gap opens in the above mentioned band. In this work the discussion will be limited to hole doped 

cuprates for simplicity. In contrast with the isotropic s-wave gap of conventional BCS 

superconductors the gap in cuprates, was shown to possess d-wave symmetry [1] as it can be seen 

in Fig.2.3. The superconducting order parameter changes sign at the (0,0)-(π,π) axes of the 

momentum space. These zones where the gap becomes zero are named nodes, while the zones 

where the gap is maximum, along the (0,0)-(π,0) axes, are referred as antinodes. A schematic 

representation of the d-wave (dx2-y2) order parameter can be seen in Fig.2.3 (b). 

One feature of the conventional BCS superconductor, where phonon is the pairing interaction, is 

the isotope effects. This is the dependence of Tc on the isotope mass M. Changing the isotope 

mass changes the energy of the phonon and therefore Tc according to the empirical relations Tc 
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∝M-α. The isotope coefficient α predicted form the BCS theory is 0.5. On the other hand as it can 

be seen in Fig2.4 the cuprates show a non-trivial α which depend on the doping p and on the 

number of CuO2 planes per unit cell n. From the early days of the research on cuprates similar 

observations on the isotope coefficient α suggested that the phonons had to be ruled out from the 

possible pairing interactions. [24] 

 

Fig2.4 a Doping dependence of the isotope coefficient α. Taken from Ref.[25] b Dependence on 

the number of layer per unit cell of the isotope coefficient α. Taken from Ref.[26] 

Cuprates are all type II superconductors, meaning that due to their short coherence length ξ with 

respect to the penetration length λ, if a strong enough magnetic field is applied, the filed will not 

be completely expelled from the superconductor. Instead some lines of magnetic flux will pass 

through the material, turning a region of the superconductor normal, these region are known as 

vortex, or an Abrikosov vortex. The existence of type II superconductor had been predicted by the 

Ginzburg-Landau theory[27], which predicted a negative energy of the interface between 

superconducting and normal phases. Experimentally type II superconductors have two critical 

fields, which separate the 3 regions of complete Meissner effect, vortex state and suppression of 

superconductivity. 

The hole doped cuprates feature a rich and complex phase diagram which can be seen in Fig2.5 

and that will be treated more in detail later on. Different competing orders appear at low 

temperature. Among these the pseudogap PG attracted a strong interest from the community. 

This appears as a suppression of the density of states, in the underdoped and optimally doped 

cuprates, at temperature much larger than Tc. The nature of the pseudogap was and still is a 

controversial topic. Two main theories existed, one attributing the pseudogap to a precursor state 

of superconductivity and the other attributing the pseudogap to a different competing order. 
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Recent experiments point to the latter as correct answer, but some issues still remain to be 

clarified. 

One of the perquisite to achieve high Tc according to the BCS theory is a high density of states at 

the Fermi level NF [28], however the cuprates, at room temperature above the superconducting 

region, are such poor conductors that they can hardly be classified as metals. Additionally the 

conductivity in this region exhibits frequency and temperature dependence which are 

incompatible with the conventional theory of metals. This led to this region of the phase diagram 

to be referred as “strange metal” which can be seen in Fig 2.5. This phase and the Mott insulator 

phase are a consequence of the strong correlation between electrons. Similar behaviour has been 

observed numerous non superconducting materials [29] The cuprates and these non-

superconducting materials, in which the interaction between the electrons is strong, are therefore 

a new class of materials called “highly correlated electron systems” which cannot be well 

described by the conventional quantum theory of solids. 

The cuprates showed numerous inconsistencies with the conventional BCS superconductors, and 

therefore earned the name of unconventional superconductors. The most prominent of these 

differences is, most likely, the pairing interaction, and therefore the nature of the superconducting 

mechanism. As stated before the phonons have been ruled out from the possible pairing 

interactions and several other candidates have been proposed. These include charge or spin 

mediated pairing. However no clear solution has been found and this fundamental point is still 

under debate. 

 

2.3 Phase diagram of cuprates 
 

The phase diagram of cuprates is packed with different phases, most of which have a rich physics 

behind. An example of phase diagram of the cuprates can be seen in Fig.2.5. As stated before in 

the underdoped side the strong correlation effects make the cuprates Mott insulators, and below 

TN, antiferromagnetism kicks in (blue area in Fig.2.5). With increasing doping after the first critical 

doping pmin superconductivity appears at low temperature. The superconducting phase is present 

in a dome like area of the phase diagram (green area in Fig.2.5), where the maximum Tc is reached 

at the optimal doping popt=0.16, and it disappears at the second critical doping pmax in the 

overdoped side. In the underdoped side below T* the pseudogap phase is visible (yellow area in 

Fig.2.5). As it can be seen in Fig.2.5 the pseudogap phase coexists with superconductivity at low 

temperature, and this is indicated by the lighter green area. Above T* and above Tc at 

intermediate doping, the previously mentioned strange metal phase appears, which is indicated 

with the magenta area in Fig.2.5. At higher doping the anomalies of the strange metal phase 

disappear, and are substituted by a Fermi liquid-like behaviour (white area in Fig.2.5). Additionally 

to these phases a variety of different competing order are seen in the phase diagram, competing 

with superconductivity. These include spin-density-wave SDW or stripe order, charge-density –

wave CDW, electron-nematic phase and others. Some interesting aspects of these orders remain 
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yet to be explained, but their existence and many of their main features were explained and 

anticipated by theory.[30] 

In the following sections the most relevant phases will be examined more in detail. 

 

Fig.2.5 Phase diagram of cuprates taken from Ref.[31]  

 

2.3.1 Mott insulating phase and anti-ferromagnetism. 

 

The zero doping curates accommodate an even number of electrons per unit cell, therefore the 

conventional band theory would predict them to be metallic. However strong correlation between 

the electrons, and in particular strong Coulomb repulsion between the electrons, makes the 

underdoped cuprates Mott insulators. Defining U as the on-site Coulomb repulsion and t as the 

transfer integral between neighbouring atoms, in the case of half-filled band, when t > U a metallic 

behaviour can be expected, but if on the other hand U > t a Mott insulator is expected. In this case 

the lower energy state will be achieved by localized electrons around their respective ions, that 

minimize the Coulomb repulsions energy term. These localized electrons cannot occupy the same 

site unless they are given the on-site repulsion energy U, and therefore the material will be a Mott 

insulator, with an energy gap of U (Hubbard gap). 

The localized electrons spins interact between each other. If the spins of the two neighbouring 

electrons are antiparallel they could penetrate in each other site without violating the Pauli 

exclusion principle, even if this is prevented by the strong U. Therefore if the spins are antiparallel 

there will be a gain in energy given by the exchange constant J, on the other hand if the spins are 
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parallel there will be no gain in energy since the Pauli exclusion principle prohibits the process. 

Following these considerations there can be two possibilities. One is AFM long range order, which 

is indeed observed as seen in the phase diagram in Fig.2.5. The other possibility is that the 

electrons form paired singlet without requiring long range order. In this case even if the electrons 

are localized the spins can move freely. This second possibility is the so called resonating valence 

bond or quantum spin fluid.[32] 

With increasing doping the AFM and Mott insulating phase disappears as it can be seen in the 

phase diagram in Fig.2.5. The Neel temperature TN decreases and the sample starts showing 

metallic behaviour entering the strange metal phase, while at low temperature superconductivity 

appears. 

 

Fig.2.6 Taken from Ref.[33] a Crystal-field splitting and hybridization giving rise to the Cu-O bands. 

b Crystal structure of La2CuO2 LCO 

To understand the electronic structure of the underdoped cuprates the single layer La2-xSrxCuO2 

LSCO can be discussed for simplicity. In particular, to examine the underdoped regime, the un-

doped La2CuO2 LCO can be used whose crystal structure is shawn in Fig.2.6 (b). The outer 3d shell 

of the Cu2+ atoms contains nine electrons, while the O2- ions have an outer 2p shell which is fully 

filled with 6 electrons. Forming an octahedron with the 6 neighbouring O atoms splits the Cu 3d 

levels in t2g and eg levels. The octahedron in LCO is distorted, with a longer Cu-O bonding direction 

in the c direction than in the ab planes. This is the so called Jahn-Teller distortion which splits 

furtherly the 3d orbitals in dyx, dzx, dxy, dz2-r2 and dx2-y2. All of these are fully occupied except for the 

dx2-y2 orbital which is the highest in energy and accommodates only a single electron. The oxygen p 

orbitals separate in pσ pπ┴ and pπ║. Of these pσ is parallel to the Cu-O bonding directions while pπ┴ 

and pπ are perpendicular to the Cu-O bonding directions, with pπ║ being in plane and pπ┴ being out 

of plane. The oxygen pσ strongly hybridize with the copper dx2-y2 orbitals. The above described 

splitting and hybridization can me seen in Fig.2.6 (a). With these considerations one of the 

simplest way to treat the problem is to write a Hamiltonian for non-interacting electrons, 
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considering only the Cu dx2-y2 orbital and the O pσ orbitals (px or py) and considering only the 

nearest neighbour hopping in the form: 

𝐻0 = 𝜖𝑑 ∑ 𝑛𝑑𝜎(𝑖)

𝑖𝜎

+ 𝜖𝑝 ∑ 𝑛𝑝𝜎(𝑗)

𝑗𝜎

+ ∑ 𝑉𝑖𝑗(𝑑𝑖𝜎
† 𝑝𝑗𝜎 + 𝑝𝑗𝜎

† 𝑑𝑖𝜎)         (2.1)

<𝑖𝑗>𝜎

 

Here 𝑑𝑖𝜎
†  creates a hole in the Cu dx2-y2 orbital, 𝑝𝑗𝜎

†  creates a hole in the O px (or py), < 𝑖𝑗 > 

indicates the summation on nearest neighbour and 𝑉𝑖𝑗 = (−1)𝛼𝑖𝑗𝑡𝑝𝑑 where 𝑡𝑝𝑑 is the hopping 

integral between oxygen and copper orbitals and 𝛼𝑖𝑗 changes sign according to the relative 

position of the O and Cu atoms. However this simple Hamiltonian will give metallic solutions, since 

the conventional band theory always predict metallic band structure for half filled bands. To 

improve the calculation, the correlation between the electrons must be considered. Adding the 

Coulomb repulsion between electrons U and considering also the nest-nearest neighbour hopping 

𝑡𝑝𝑝 we can write the Hamiltonian:[34] 

𝐻 =    𝜖𝑑 ∑ 𝑛𝑑𝜎(𝑖)

𝑖𝜎

+ 𝜖𝑝 ∑ 𝑛𝑝𝜎(𝑗)

𝑗𝜎

+ 𝑡𝑝𝑑 ∑ (𝑑𝑖𝜎
† 𝑝𝑗𝜎 + ℎ. 𝑐. )

<𝑖𝑗>𝜎

+ 𝑡𝑝𝑝 ∑ (𝑝𝑗𝜎
† 𝑝𝑗′𝜎 + ℎ. 𝑐. )

<𝑗𝑗′>𝜎

+ 𝑈𝑑 ∑ 𝑛𝑖↑
𝑑 𝑛𝑖↓

𝑑

𝑖

+ 𝑈𝑝 ∑ 𝑛𝑗↑
𝑝 𝑛𝑗↓

𝑝

𝑗

+ 𝑈𝑝𝑑 ∑ 𝑛𝑖𝜎
𝑑 𝑛𝑖−𝜎

𝑝           (2.2)

<𝑖𝑗>,𝜎

 

Here the terms 𝑈𝑑 , 𝑈𝑝 and 𝑈𝑝𝑑 are the on site Coulomb repulsion between holes on the copper 

site, on the oxygen site and the coulomb repulsion between holes on nearest neighbour site 

respectively. This triple band Hubbard Hamiltonian can give a correct but approximate description 

of the underdoped cuprates electronic structure. In cuprates since U>W (where W=8t is the typical 

width of the band) from the metallic solution of the Hamiltonian in (2.1) where 3 bands are 

present (bonding non-bonding and anti-bonding), shown in Fig.2.7 (a), a Mott Hubbard gap opens 

on the antibonding band, in the solution of the Hamiltonian in (2.2). Here there are 2 possibilities 

depending on the values of Ud and Δpd, where Δpd = 𝜖𝑑 − 𝜖𝑝 is the anion cation charge transfer.In 

case W<Ud< Δpd we have a Mott Hubbard insulator, shown in Fig.2.7 (b). The other possibility, 

which is the case for cuprates, arises when W< Δpd <Ud , in this case the material is a charge 

transfer insulator, shown in Fig.2.7 (c). 

 

 

Fig.2.7 a Density of states for a calculation not considering the Coulomb repulsion U using a 

Hamiltonian similar to Eq.2.2. Three bands appear, bonding non-bonding and antibonding band. 

The result of this calculation is metallic. b Mott Hubbard insulator density of state. c Charge 

transfer insulator density of state. 
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2.3.2 Superconductivity 

 

As previously mentioned, doping hole in the material, anti-ferromagnetism is suppressed and 

superconductivity appears at low temperature. The superconducting phase has a dome-like shape 

in the phase diagram, starting at pmin in the underdoped side and ending and pmax in the 

overdoped side. The maximal Tc is reached at the optimal doping popt=0.16. A widely used 

approximate formula to describe the shape of the superconducting dome in the phase diagram is: 

Tc/Tc,max=1—82.6 (p-0.16)2 [35], [36]. However this is a rough approximation. For example, as it can 

be seen in Fig.2.5 at p=0.12 there is a suppression of Tc. This doping is where the charge density 

wave is strongest (maximum TCDW), and its competition with the superconductivity causes the 

suppression of Tc.[37] 

The superconducting gap is anisotropic in the momentum space, and as stated earlier it was 

shown to possess d-wave (dx2-y2) symmetry. This was understood in early studies using different 

techniques including ERS[38], [39], ARPES[22], [40], penetration depth[41] and phase sensitive 

measurements.[42] The gap can therefore be described by the d-wave (dx2-y2) function, where the 

amplitude of the gap in the momentum space is given by: ∆(𝒌) = ∆0|cos 𝑘𝑥𝑎 − cos 𝑘𝑦𝑎|/2 

However this function is a good representation of the superconducting gap only in the overdoped 

side of the superconducting dome. In the underdoped samples towards the antinode a deviation 

from the d-wave function was identified by ARPES. [43], [44] As it can be seen from Fig.2.8 in the 

antinodal side there is a deviation from the d-wave gap profile extrapolated from the nodal gap,  

 

Fig.2.8 Deviation of the gap from the d-wave function in Bi2201 taken from Ref.[44]. In the upper 

panels the gap value is shown below and above Tc. In the lower panes the spectral weight 

associated with the superconducting gap WCP is compared to the one associated with the 

pseudogap WPG. 
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and this deviation becomes stronger in the underdoped samples. This deviation is commonly 

associated with the pseudogap, which coexists with the superconducting gap, and is usually 

referred as two gap behaviour. However the source of this deviation is controversial. There have 

been works reporting absence of any deviation in a wide range of doping, suggesting that the 

deviation may be due to cation substitution that it is sample specific.[45] 

One of the problems that come with the two gap behaviour is the doping dependence of the 

superconducting gap. In the framework of the BCS theory there should be a simple proportionality 

relationship between the critical temperature and the gap value Tc∝Δ. However while this relation 

could hold in the overdoped side, it is not true in the underdoped side. In the underdoped side the 

antinodal gap increases with lower doping while the Tc decreases and this can be seen in Fig.2.9. In 

the strongly underdoped side showed in Fig.2.9 the antinodal gap increases with lower doping, 

while the nodal gap decreases. This opposite doping dependence is sometimes referred as two 

energy scale, and it also observed by other techniques such as Raman. [46]–[49] One may think 

that in the underdoped side the Tc is determined not by the antinodal, but by the nodal gap. 

However ARPES reported that in a wide range of doping the nodal gap is in fact constant. [2] As it 

can be seen from Fig.2.10 (d) the nodal gap is almost constant between p = 0.076 and p = 0.19, 

and it only decreases outside of this interval in the strongly underdoped and overdoped side. This 

furtherly complicates the problem, since in this region it seems that neither the nodal nor the 

antinodal gap follow the doping dependence of Tc, and it is therefore unclear what determines the 

critical temperature.  

 

Fig.2.9 Doping dependence of the nodal and antinodal gaps in Bi2212 taken from Ref.[43] 

Another antinodal effect in underdoped samples that is associated with the pseudogap is the 

confinement of Cooper pairs in the antinodal region with underdoping.[50] Here the idea is that 

due to the competition between superconductivity and the pseudogap, with decreasing doping 

the Cooper pairs are suppressed and then expelled from the antinode and this is consistent with 

the tunnelling[51], [52] and the ARPES data[53]–[55]. In this case, in the underdoped side the 

superconductivity is confined in the nodal and intermediate region. 
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Fig.2.10 Taken from Ref.[2]. a-c Bi2212 ARPES gap profiles for samples of doping ranging from 

strongly underdoped to strongly overdoped. d Doping dependence of the nodal gap. 

An important parameter for superconductivity is the superfluid density ρS. The ability of the 

superconductor to expel magnetic fields and the rigidity of the phase of the superconducting order 

parameter are determined by the superfluid density. The temperature over which the phase starts 

fluctuating is given by Tϑ = ρS/m*. Where m* is the effective mass. In BCS superconductors ρS is 

equal to the density of electrons and therefore Tϑ>>TC, meaning that as soon as the Cooper pair 

form the phase is stable, and that the fluctuation of the phase are irrelevant. On the other hand in 

cuprates it was soon understood that the superfluid density is low. Additionally in the underdoped 

side it was shown to scale with Tc in the so called Uemura plot. [56] Since ρS is not so high, in 

cuprates the phase stability temperature Tϑ and the pair formation temperature are comparable 

and therefore phase fluctuation should be relevant.[57] Indeed superconducting fluctuations are 

observed above TC, as it will be discussed in section 2.3.5, but it is not established if these are 

driven by fluctuation of the phase or of the amplitude of the superconducting order parameter. 

As it was previously mentioned the nature of the pairing interaction in cuprates is currently 

unknown and object of debate. The previously mentioned observations regarding the isotope 

coefficient α (Fig.2.4, Ref[24]–[26]) seem to suggest that the phonon mediated coupling should be 

ruled out. However there are evidence that both ARPES and STS (Scanning Tunnelling 

Spectroscopy) spectra are affected by phonons[58] and strong anomalies are observed in the 

phonon spectra,[59] therefore electron phonon interaction cannot be completely ruled out. 

A purely repulsive interaction could also lead to pairing, though this is not trivial. This can be seen 

in the framework of the Hubbard model in the unrealistic weak coupling limit (U<<W=8t, where U 

is the on-site electron repulsion W is the band width and t is the hopping parameter) as shown in 

Ref [60].Here a renormalized two particles vertex function Γ(k) is used as interaction. In the case of 

purely repulsive interaction if Γ(k) is sufficiently momentum dependant, a sign changing 

superconducting order parameter (where Δ(k) and Δ(k+Q) have opposite sign) results. In this, 

interactions with small momentum transfer are pair breaking, but the one with large momentum 
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transfer (near Q) promote pairing. Interestingly in the case of antiferromagnetism a peak in Γ at 

the antiferromagnetic ordering vector Q = QAF is expected, [61] and this vector is also the perfect 

vector for scattering between the antinodal regions where the gap is the largest. This is striking 

even if the antiferromagnetic order disappears with doping. The reason being that even if the 

superconducting order disappears with doping it does survive in the form of dynamical magnetic 

fluctuations, as it was shown by inelastic neutron scattering and resonant X ray scattering.[62]–

[65] However as stated earlier the source of pairing is still controversial. 

 

2.3.3 Pseudogap 

 

The pseudogap was firstly discovered by nuclear magnetic resonance as a reduction of the low 

frequency spin excitations, and was therefore initially thought to be a spin gap.[66], [67] It was 

subsequently observed by multiple techniques including c-axis optical conductivity[68], STS[69] 

and ARPES.[40], [70] Since its discovery the pseudogap was object of intense debate.[71] Two 

main kind of opposite theories existed at the center of the discussion, one attributing the 

pseudogap to a precursor state of superconductivity, where pairs are formed but lack long range 

coherence,[57] and the other attributing the pseudogap to a different order parameter than 

superconductivity.[72]–[74]  

  

Fig.2.11 Pseudogap as seen by ARPES. Taken from Ref[75] and Ref. [44] 
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The pseudogap as seen by ARPES is shown in Fig.2.8 and Fig.2.11. Above TC a gap persists in the 

antinodal region. The first particular feature of the pseudogap is that the Fermi surface is not 

completely gapped: only the antinodal region is gaped. The ungapped nodal region was named 

Fermi arc. [70] The concept of Fermi arc is highly unusual in classical physics, where the Fermi 

surface were considered to be a closed contour, that, no matter how complicated, could not 

terminate abruptly. 

The pseudogap is an antinodal phenomenon and is stronger in the underdoped side. As seen in 

Fig.2.5 the pseudogap onset temperature T* increases with lower doping. Additionally with lower 

doping the maximum value of the pseudogap gap increases and the pseudogap expands towards 

the node, making the Fermi arc shrink,[2] and this can be seen in Fig.2.8 and Fig.2.11  

More recent experimental ARPES studies seem to suggest that the pseudogap origin is to be 

attributed to a different order than superconductivity,[1], [76] and not to the formation of pairs, 

even though it is still unknown exactly what kind of order can be associated to the pseudogap. 

These experimental observations include the previously mentioned deviation from the d-wave gap 

[43], [44] or more generally the so called nodal-antinodal dichotomy [1], the non-monotonic 

temperature dependence of the size of the antinodal gap[76] and the breaking of particle hole 

symmetry.[77], [78] However this controversial issue is not yet resolved since contrasting and 

opposite results have also been reported. These include absence of deviation from the d-wave gap 

[45], [79] (which, as said before, is attributed to cation substitution, and regarded as material 

dependent), a smooth evolution of the pseudogap into the superconducting gap[69] and particle-

hole symmetry.[80]–[82] In Fig.2.12 (d) the particle-hole symmetry breaking in Bi2201 is shown. 

Here the band dispersion is extracted above T* and below TC and the back-bending momenta kG 

below TC is shown to be different from the Fermi vector kF above T* indicating that the particle-

hole symmetry is broken. Additionally, from this figure the coexistence of superconductivity with 

the pseudogap can be seen. The multiple features observed in the antinode below TC (green and 

blue dots in Fig.2.10 (a) and (c)) cannot be explained by a superconducting gap alone. Instead the 

authors were able to reproduce these multiple features in calculations assuming coexistence of d-

wave superconductivity and checkboard density wave, as shown in Fig.2.12 (e). 

The relationship between the pseudogap (considered as a different order than SC) and the 

superconducting gap is commonly believed to be of competitive nature.[44], [83] In this picture 

superconductivity and the pseudogap coexist below TC[84] and with decreasing doping the 

pseudogap becomes stronger in the antinode confining the Cooper pairs in the intermediate and 

nodal region. 

 

2.3.4 Competing orders. 

 

Several different competing orders have been observed in the phase diagram of cuprates, which 

break the symmetry of the crystal. The first of these that was discovered was the stripe order in 
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Fig.2.12 Taken from Ref.[78] a, b Antinodal and nodal Bi2201 ARPES spectra divided by the Fermi 

Dirac function. c Energy of the observed features. d Dispersion of the observed antinodal features. 

e Calculated band dispersion assuming coexistence of d-wave superconductivity and checkboard 

density wave 

 

the La2-xSrxCuO4 LSCO family.[85] Doping the AFM Mott insulator produces holes on the Cu sites 

that can move through different Cu sites, but, doing so, they produce frustration of the spins of 

the electrons. To avoid this, the stripe order shown in Fig.2.13 (b) is formed. Here both charge and 

spin are modulated. The stripes are local AFM domains in which the order is reversed from stripe 

to stripe. The holes accumulate at the boundaries between stripes to reduce the spin frustration. 

Due to the reversal of the AFM order between stripes the spin modulation has double the 

periodicity of the charge modulation. The stripe order was shown to be stabilized by the Low 

Temperature Tetragonal LTT phase.[85] 

The stripe order competes with superconductivity and this can be seen from the right panel in 

Fig.2.13 showing the phase diagram of LSCO. Here the maximum onset temperature Tm of the 

stripe order corresponds to the drop of TC observed at x=1/8, indicating competition between the 

two orders. 
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Fig.2.13 Taken from Ref. [85] and from Ref.[86] Representation of the stripe order in: a the parent 

compound La2NiO4 and in b LSCO. Only the Cu sites are shown and the holes are represented with 

filled circles. left panel The phase diagram of LSCO. 

A highly unusual feature of the stipes is that, even if they involve crystallization of the electrons, 

they stay metallic and even superconduct at low temperature. The material can be therefore 

viewed as a highly unusual crystallized superconductor.[87], [88] 

For years the stripe order seemed to be confined in the LSCO family, until charge ordering was 

discovered in YBCO,[89] bismuth and mercury based cuprates.[90]–[92] Using X-ray scattering a 

short range incommensurate charge modulation was found, and it was shown to appear gradually 

between 200K and 100K. [93], [94] Unlike LSCO, here only charge is modulated, and there is no 

sign of spin modulation. This charge density wave was shown to compete with superconductivity, 

as the stripe order does, and, as in LSCO case, the dip where TC is suppressed at p=0.12 

corresponds to the maximum onset temperature of the CDW, as it can be seen in Fig.2.5. The 

modulation appears along two perpendicular directions along a* and b* axis. STM measurements 

showed that the CDW organizes in disordered domains where the modulation along a* or b* 

direction prevails.[95]. 

Another interesting and fundamental difference between the stripe order in LSCO and the CDW in 

other cuprates is that the modulation wavevector has an opposite doping dependence of the.[96] 

In LSCO the wavevector increases with doping, as it would in a real space driven behaviour, while 

in YBCO and Bi-based cuprates it decreases with doping, as expected in a reciprocal space picture 

involving vectors on the Fermi surface. 

Theoretically a CDW with modulation in 2 directions is expected to cause reconstruction of the 

Fermi surface, where the Fermi arc could be half of the electron pockets that would form from the 

reconstruction. This has never been observed. However In YBCO with p=0.1, with magnetic field, 

quantum oscillation in Hall signal, with period 1/B were observed.[97] These point to a defined 

Fermi surface, and are not consistent with truncated Fermi arc. It is possible that this signal could 
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originate from a reconstruction of the Fermi surface caused by a biaxial CDW, though this was not 

confirmed. 

The so called “quantum nematic liquid crystal” is yet another order that was reported in cuprates. 

Unlike the stripe order and the CDW order, nematicity does not break the translational symmetry, 

but breaks only the four-fold rotational symmetry. This nematic order was shown by transport 

measurements[98], [99] and by inelastic neutron scattering measurements.[100] 

Interestingly some STS studies were also able to pick up nematicity. Here the O site STS sub-image 

shows, alongside the charge modulation, a d-wave form factor dFF-DW.[95], [101] Here according 

to the author, nematicity causes the oxygen sites along x and y directions to be inequivalent, and 

this gives a phase difference of π between the modulation on the Ox and Oy sites giving the dFF-

DW. The obtained O site STS sub-image and the schematic of the dFF-DW are shown in Fig.2.14. 

 

Fig.2.14 Taken from Ref.[101] e O site STS sub-image showing the dFF-DW in BSCCO and NaCCOC. 

f Schematic of the dFF-DW, the colour of the oxygen orbital represents the phase of the 

modulation. A phase difference of π exists between the modulation on the Ox and Oy sites. 

Lastly a new exotic order may be present in cuprates. This would be the magnetic analogue of the 

charge nematicity, involving magnetic moments on the oxygen sites. Like nematicity this novel 

order would break rotational but not translational symmetry.[102] 

 

2.3.5 Superconducting fluctuation 

 

Signatures of pairing above TC have been observed by many different techniques including 

transport and thermodynamical studies[103]–[106] and more recently by spectroscopic 

studies.[76], [107], [108] As discussed before, it is commonly believed that due to the low 

superfluid density of cuprates, pairing appears at a higher temperature than Tc, but that pairs lack 

long range phase coherence. Therefore these superconducting fluctuations are believed to be 

different than the normal BCS superconducting fluctuations, where the amplitude of the 
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superconducting order becomes zero at TC causing the fluctuations. Instead in cuprates the 

amplitude of the pairing order would be non-zero above Tc and the phase disorder would be 

responsible of the absence of macroscopic superconductivity.[109] However it is still controversial 

whether the fluctuations in cuprates differ from the conventional fluctuations or not. Perhaps the 

most convincing evidence phase disorder scenario comes from the upper critical field deduced 

from Nernst effect[109] and torque magnetometry.[104] The upper critical field is supposed to 

become zero at Tc in case of vanishing pairing amplitude, but in these studies it was shown that 

the upper critical field remains large at Tc and above Tc, and this hints to the phase disorder 

scenario. 

As previously mentioned, the pseudogap was interpreted as a state of performed pairs by some 

groups, and these studies showing pairing above Tc were thought to be supporting this idea. 

However the onset temperature of pairing was found to be smaller than T* and in some cases a 

different doping dependence (decreasing in the underdoped side) was shown, and this can be 

seen in the phase diagram of LSCO and Bi2Sr2-yLayCuO6 obtained from torque magnetometry and 

Nernst effect measurements in Fig.2.16. 

 

 

Fig.2.16 Taken from Ref.[104] Doping dependence of the onset temperature of superconductivity 

in LSCO and Bi2Sr2-yLayCuO6 where Tν comes from Nernst effect and TM from torque magnetometry 

measurements. 

Pairing above TC is inconsistent with the Fermi arc: if pairing exists a d-wave gap should be 

observed. However early studies showed a linear dependence of the Fermi arc length with 

temperature[110] and this was interpreted as effect of the strong scattering that exist above Tc 

hiding the d-wave gap.[111] If the scattering rate exceeds the value of the gap, the ARPES spectra 

appear ungapped, hiding therefore the d-wave gap at the nodes where it is smaller, and creating a 

false Fermi arc. Quantitative analysis of ARPES data proved instrumental in solving this issue,[76], 
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[107] showing that below the pair formation temperature Tpair there is indeed a fully opened d-

wave gap while at Tpair<T<T* only the antinodal region is gapped and real ungapped Fermi arc are 

present. 

An exceptional case of pairing at extremely high temperature is constituted by the pump and 

probe experiments in YBCO shown in Ref.[112] Here using laser pulses, superconductivity was 

induced far above Tc, and up until room temperature. Here the doping dependence of the onset 

temperature of this induced superconductivity is increasing with lower doping, and follows the 

pseudogap T*doping dependence. This study may constitute a case in favour of theories that 

suggest pairing as the origin of the pseudogap, or could point to some kind of connection between 

the pseudogap and superconductivity, though this is controversial. 

 

2.3.6 Strange metal 

 

The strange metal phase appears at intermediate doping in the “normal” state of the cuprates, as 

indicated by the violet area in the phase diagram in Fig.2.5. Because of strong correlation effects, 

even though metallic behaviour is observed, the quasiparticles are absent, and this was shown 

with in-plane resistivity[113] and Hall resistivity measurements.[114] In normal metals the 

resistivity saturates at high temperature since the mean free path l of the electron, determined by 

electron phonon coupling, can decrease as low as the atomic spacing. However in cuprates the in-

plane resistivity remains linear up until as high temperature as measured (800K) [113]. At such 

high temperature the calculated l would be smaller than the de Broglie electron wavelength λ and 

this would violate the Heisenberg uncertainty principle. 

A theory that was partially successful in describing these experimental anomalies is the “marginal 

Fermi liquid” theory.[115] The idea is that the electron in the Fermi gas are coupled to a 

continuum of excitation. This continuum of excitation is assumed as spatially featureless and has a 

spectral density that is constant for ω>T but proportional to T for ω<T. This was indeed confirmed 

by ARPES measurements but only in the nodal region, while the antinodal region behaves 

incoherently.[116] 

Another idea that was proposed to explain the strange metal is that the strange metal phase 

originates from a quantum critical wedge associated with a quantum critical point QCP under the 

superconducting dome and this is shown in the phase diagram in Fig.2.5. The QCP is associated 

with a phase transition between an ordered state and a disordered phase, as a function of a tuning 

parameter (doping pressure etc.). In the phase diagram with the tuning parameter and 

temperature, above the QCP a wedge should open, and the strange metal phase was proposed to 

be originating from this wedge. One problem of this idea is that the quantum critical wedge should 

disappear at high temperature but the strange metal phase is observed up to extremely high 

temperature.  
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2.3.7 Overdoped regime 

 

Increasing the doping until the overdoped regime, signatures of a real Fermi liquid, consistent with 

the one electron band theory, start to appear. This is shown in the phase diagram in Fig.2.5 by the 

white area. In this region quantum oscillations are consistent with a large Fermi surface.[117] 

ARPES shows that a coherent peak is present on the whole fermi surface, including in the 

antinodes which are incoherent at lower doping, supporting the recovery of a real Fermi 

liquid.[118], [119] 

Interestingly in this regime inelastic neutron scattering indicates that the spin fluctuation 

disappear gradually. The intensity of the spin excitation peak was shown to decrease linearly with 

Tc with increasing doping,[120] indicating that superconductivity and spin fluctuations may have a 

cooperative relationship and this could be a point in favour to the idea of spin fluctuation as 

pairing glue. 

 

2.4 Multilayer cuprates 
 

The multilayer cuprates are another fascinating aspect of the field. The main reason for this is that 

the Tc of the cuprates strongly depends on the number of Cu-O plane per unit cell n. In Fig.2.16 the 

crystal structure of some example families of multilayer cuprates is shown. Going from the left n is 

increased from one, in the single layer member of the family, to five. Here the difference in crystal 

structure with increasing number of layers can be seen. In the single layer component the copper 

atom forms an octahedron with the neighbouring oxygen atoms. The double layer component has 

two identical CuO2 layers in which the copper atoms are in pyramidal configuration with the 

neighbouring oxygens. Finally for n ≥3 the interesting situation where unequal CuO2 layers are 

present arises. The layers next to the charge reservoir layer have coper atoms in the pyramidal 

configuration, as in the double layer component, and these layers are named Outer Planes OP. On 

the other hand the layers that are not adjacent to the CRL are called inner planes IP, and these 

have the copper atoms in planar configuration with no apical oxygen. The two kinds of planes are 

chemically inequivalent. The fact that the inner planes are not directly adjacent to the CRL makes 

it more difficult for carrier coming from the dopant atoms in the CRL to reach them. As a result the 

inner planes are less doped than the outer planes which are adjacent to the CRL. Therefore for n 

≥3 the interesting situation where layers with different doping coexist in the same samples arises. 

In this situation one difficulty is to determinate the layer doping of the two kind of planes OP and 

IP, which is different from the average sample doping. One way to measure this layer doping 

comes from the Cu NMR Knight shift peaks, which is sensible to the carrier concentration in the 

surrounding of the copper atom. A linear empirical relation between the hole concentration p and 

the temperature dependent spin part of the Knight shift Ks was proposed.[9] 
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Fig.2.16 Taken from Ref.[9] Examples of crystal structure of families of cuprates with different 

number of copper plane n per unit cell. a MBa2Can−1CunO2n+2+δ (M=Hg, Tl, and Cu) M12(n-1)n crystal 

structure. b Ba2Can−1CunO2n(FyO1−y)2 02(n-1)n crystal structure. 

Multilayer band splitting is another effect that is expected to arise with increasing number of CuO2 

layers. According to t−t′−t''−J model calculations, the bands of different layers should hybridize 

forming a number of bands equal to the number of copper layers.[121] Therefore in the double 

layer cuprates, two bands should appear: a bonding and an antibonding band, and this was indeed 

observed by ARPES. [122] In the case of n ≥3 the doping imbalance between the OP and IP is the 

main source of band splitting. In the case of the triple layer for example a large splitting exists 

between the OP and IP bands.[123] Here only two band were observed, but the OP band was 

shown to be much broader than the IP band, and therefore two OP bands could be overlapping 

and not resolved. 

The critical temperature of the cuprates strongly depends on the number of CuO2 layers per unit 

cell. Tc increases when n increases from n=1 to n=3, where it reaches its maximum, and then 

decreases for n≥4 [5] and this trend is shown in Fig.2.17. Up to date the cause of this Tc 

enhancement is not clear, with several possible factors being proposed. Firstly the tunnelling of 

Cooper pairs between different layers could enhance TC.[6] The next-nearest neighbour hopping 

parameter t’ was also shown to correlate with TC. This correlation is valid both considering only 

single layers cuprates and considering cuprates with different number of layers, since t’ increases 

with the number of layers.[7] Finally another factor that could greatly enhance TC is the disorder 

protection that the OP offers to the IP.[8] Disorder next to the apical oxygen was shown to be a 

drastic cause of TC suppression, causing buckling of the OP. Disorder coming from the dopant 

could appear in principle anywhere in the unit cell, however the absence of any apical oxygen in 

the IP makes disorder next to this layer much less severe than disorder next to the apical oxygen 

of the OP layer. In n≥4 cuprates with increasing n the AFM order becomes stronger[9] and this 

could be the reason why TC decreases after n=3. 
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Since the doping level of the OP and IP is different it is possible that two different TC may be 

associated with the two kinds of layers. It is therefore unclear if superconductivity appears at the 

same temperature on the IP and on the OP or not. It is possible that the superconductivity 

originates on one of the two kind of layers and then propagates in the other layer or drives it to be 

superconductive by proximity effects.[9], [124] 

 

Fig.2.17 Taken from Ref.[9] Relationship between TC and n for different families of multilayer 

cuprates. 

 

2.5 BSCCO 

 

The bismuth strontium calcium copper oxide, or BSCCO (pronounced "bisko"), are a family of high-

TC cuprate superconductors. They share a common chemical formula Bi2Sr2Can-1CunO2n+4 where n 

is the number of CuO2 layers per unit cell. n can go from 1 to 3, from the single to the triple layer 

component. The three component of the family are summarized in Table 2.1 and their crystal 

structure can be seen in Fig.2.18. 

 

Chemical formula Notation  Max. TC (K) n Crystal structure 

Bi2Sr2CuO6 Bi-2201 20 1 Tetragonal 

Bi2Sr2CaCu2O8 Bi-2212 95 2 Tetragonal 

Bi2Sr2Ca2Cu3O10 Bi-2223 110 3 Tetragonal 
 

Table 2.1 Summary of the BSCCO 

In the present work we focused on the double layer Bi2212 and on the triple layer Bi2223. 
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The BSCCO are hole doped cuprates and their hole content can be modified by adding excess 

oxygen. In this case the chemical formula becomes Bi2Sr2Can−1CunO2n+4+δ where δ is the excess 

oxygen content. One advantage of the BSCCO is that their oxygen content is stable at room 

temperature and ambient pressure. As other cuprates the BSCCO are almost 2D materials, and 

their layers are only weakly bound to each other by Van der Waals forces. This makes these 

samples extremely easy to cleave, and therefore they have the advantage that it is easy to obtain 

a clean surface. As described in the previous section, going from the single to the triple layer 

material the configuration of the copper atoms with the neighbouring oxygen changes, and this 

can be seen in Fig.2.18. The copper atom form octahedron with the neighbouring oxygen in the 

single layer Bi2201, are in pyramidal configuration in the double layer Bi2212 and are in pyramidal 

configuration or in planar configuration, on the OP and IP respectively, in the triple layer Bi2223. 

The crystal structure of the BSCCO is tetragonal, and they belong to the D4h group (I4/mmm). The 

BSCCO unlike other cuprates do not undergo structural transitions at low temperature. The a and 

b axis have the same length 5.4Å, which is also common for all the BSSCO from the single to the 

triple layer. The c-axis on the other hand increases with n and is 30.8 Å and 37.1 Å in Bi2212 and 

Bi2223 respectively.[125]–[127] The BSCCO are rather inhomogeneous materials as compared for 

example to YBCO. The BiO layer are buckled and periodically modulated along the b axis, with an 

incommensurate period of 4.8b. [128] This modulation causes ghost images of the bands to 

appear in the ARPES spectra of BSCCO.[129] 

ARPES and Raman share the requirement of a good sample surface and therefore the BSCCO, 

being extremely easy to cleave, are suitable samples for these techniques. The surface in these 

samples is non-polar which is a requirement for ARPES. The inhomogeneity of these samples  

 

Fig.2.18 Crystal structure of a the double layer BSCCO Bi2212 and b the triple layer BSCCO Bi2223 
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however, is a disadvantage and may broaden the spectral features. The modulation of the BiO 

layer is also a disadvantage.  

Bi2212 and Bi2223 are multilayer cuprates and, as discussed in the previous section, multilayer 

band splitting is expected to occur. In the double layer Bi2212 the two identical layer bands 

hybridize, forming a bonding and an antibonding band.[122] The triple layer Bi2223 has 

unidentical CuO2 layers, two OP and one IP, who do not contain the same amount of carrier. The 

doping imbalance between the two kind of layer has been investigated by NMR and the layer 

doping has been extracted (p(OP)≈0.203 and p(IP)≈0.127).[130] Here the doping imbalance 

between the layers was found to be much larger than the one in other triple layer cuprates like 

Hg1223. The band splitting in Bi2223 was observed by ARPES,[123] and a large splitting was 

revealed between the IP and OP bands, however only a single OP band was found, which was very 

broad and was therefore suggested to be composed of 2 unresolved OP bands. More importantly 

the superconducting gaps of the two bands were found to have two distinct values, and this is 

shown in Fig.2.19. The difference in the value of the superconducting gaps is reasonable 

considering the different doping in the two layers. 

 

Fig.2.19 Taken from Ref. [123] a,b ARPES cuts at 10K going from the node (1) to the antinode (2), 

in a and b a different photon energy is used. c OP and IP extracted gap value momentum 

dependence. 

The gap is larger in the underdoped IP than in the OP, additionally the IP gap shows a larger 

deviation from the d-wave function extrapolated from the nodal gap (dashed line leading to Δ0 in 

Fig.2.19.) The greater gap deviation in the IP is consistent with the one found in the underdoped 

double layer components, that was discussed in section 2.3.2. 

One particularity of Bi2223 is that TC does not decrease in the overdoped side. This was uncovered 

by determining the c-axis of samples with various doping by X-ray diffraction XRD.[131] Since the 

c-axis of the BSCCO decreases with increasing oxygen content this parameter is a good indicator of 

the sample doping. Here it can be seen that with decreasing c-axis (increasing doping) the TC of 

Bi2223 does not decrease from the optimally doped sample, unlike the TC of Bi2212. The TC 

reaches the maximum value at the optimally doped sample and then saturates. Up to date it is 

unclear what causes the constant TC in the overdoped side of Bi2223, however this is most likely a 

multilayer effect. Unfortunately many factors may come into play in the determination of the 

triple layer cuprates TC, like the protection of the IP from disorder, the tunneling of Cooper pairs 
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between layers etc., and additionally it is not certain that the triple layer gaps have the same 

doping dependence shown by the double layer. Therefore this problem cannot probably be solved 

until more clarity is made regarding the triple layer cuprates.  

 

Fig.2.20 Taken from Ref. [131] Renormalized TC potted against the c-axis variation from the 

optimally doped sample for Bi2212 and Bi2223 samples with various doping.  

 

2.6 Previous Raman Experiments 
 

The cuprates have been extensively studied by Raman spectroscopy. Raman was one of the 

techniques that were instrumental in determining the d-wave gap function in the early days of the  

 

Fig.2.21 Taken from Ref.[132] Temperature dependence of the Raman spectra. a and b Raman 

spectra, of Bi-2212 single crystals for several doping levels in B1g (antinodal) and B2g (nodal) 

geometries.  
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cuprates. [38], [39] In these early studies it was shown that if the gap has a d-wave symmetry, the 

intensity of the B2g nodal probe has a linear dependence in ω, while the antinodal B1g probe has a 

cubic dependence in ω. 

In Fig.2.21 the B1g and B2g Bi2212 Raman spectra are shown for samples of various doping. By 

cooling the sample below TC a gap appears at low frequency and a peak at higher frequency, and 

these are the Raman signatures of superconductivity. The loss of spectral weight at low frequency 

is caused by the opening of the superconducting gap, while the peak is a pair breaking peak, 

associated with the breaking of a Cooper pair and a transition across the superconducting gap. 

The nodal B2g and antinodal B1g superconducting pair breaking peaks in Raman have a different 

doping dependence that can be seen in Fig.2.22. This different doping dependence is also 

observed in other techniques like ARPES, and is commonly known as two energy scale[46]–[49]. 

However there are differences in the two energy scale seen by ARPES and Raman. The antinodal 

B1g Raman peak monotonically increases going towards lower doping. This same doping 

dependence is found in the antinodal ARPES gap Δ* as seen in Fig.2.9. However the antinodal 

ARPES gap is not commonly associated with superconductivity, since it is in fact a deviation from 

the d-wave function normally associated with the pseudogap, in the two gap pictures discussed 

previously. The nodal ARPES gap Δ0 , which is associated with superconductivity, stays constant for 

a wide range of dopings. Therefore an interesting question is why the pair breaking antinodal B1g 

Raman peak energy increases with lower doping while the nodal ARPES gap Δ0 remains constant? 

One possibility is that the energy of the superconducting gap is partially enhanced by the 

pseudogap, however this is just a speculation at this point. One way in which the pseudogap 

certainly influences the B1g Raman peak is by suppressing its intensity in the underdoped region, as 

it can be seen in Fig.2.22 (b). This is due to the fact that the pseudogap confines the Cooper pairs 

in the nodal region at low doping[50] and this causes the gradual disappearance of the B1g peak. 

The nodal B2g peak intensity on the other hand stays constant. The B2g Raman peak energy doping 

dependence follows the superconducting dome, as shown in Fig.2.22. However the nodal ARPES 

gap Δ0 does not follow precisely the dome, since, as said before, it is constant in a wide range of 

dopings, and decreases only in the strongly overdoped or underdoped side, as seen in Fig.2.10. 

This is therefore another discrepancy between the nodal Raman and ARPES probes, and one may 

wonder why the former follows the superconducting dome even if the gap is constant. In the 

underdoped side this may also be due to the confinement of Cooper pairs in the nodal region 

caused by the pseudogap. If superconductivity is confined more and more towards the node the 

effective gap that must be considered for the Raman B2g peak may decrease, even if the gap slope 

Δ0 does not change. 

Bi2212 [48], [49], [133]–[135] and the other double or single layered cuprates [46], [47], [136] 

have been studied extensively by Raman, however this is not the case for the triple layer cuprates. 

Previous works on the triple layered cuprates are mostly quite old [137]–[141], but most 

importantly, no signature of the double superconducting gap due to the two inequivalent layer IP 

and OP has been found so far. The difference in energy between the IP and OP reported by ARPES 

in Bi2223 is quite large, [123] and therefore a signature of the double gap should be observed in  
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Fig.2.22 Taken from Ref. [47], [142] a Renormalized nodal B2g and antinodal B1g energy of the 

superconducting pair breaking peak seen by Raman, for various single and double layer cuprates. b 

Doping dependence of the intensity of the B1g and B2g Raman pair breaking peak. 

principle, however no such signature has been previously found. This may be due to sample 

quality and instrumental resolution limits. 

In Ref. [47] it was shown that dividing the peak energy by the maximum sample Tc causes the 

doping dependence of many single and double layer cuprates B1g and B2g peak energies to collapse 

on a universal doping dependence, which is shown in Fig.2.22 (a). In this plot no triple layer 

cuprates have been inserted. A signature of the double gap of the triple layer cuprates has not yet 

been shown by Raman, therefore even if the triple layer were added in this plot, it would be of 

little significance to plot an energy that is a mixed contribution of two gaps of different values 

coming from two layers with different doping. However if a signature of the double gap was to be 

observed by Raman and if the correct layer doping was to be used, it would be interesting to know 

if the triple layer Raman energy does scale or not on this universal doping dependence. 

 

2.7 Previous Raman calculations 
 

Previous Raman calculations are mostly base on the kinetic theory, and were quite successful in 

reproducing the ERS spectra of cuprates. The early calculations showed that the B1g peak appears 

at 2Δ, where Δ is the maximum gap. Additionally, as mentioned before, these calculation proved 

instrumental in showing the d-wave gap anisotropy, and showing how this gap function gives a B2g 

intensity linear in ω and a B1g cubic in ω.[38], [39] 
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One challenge for the following calculations was to reproduce the two energy scale that was 

discussed in the previous section. Sacuto group was quite successful in this. [47], [49], [142], [143] 

In these calculations the Raman susceptibility was calculated as: 

𝜒𝐵1𝑔𝐵2𝑔

′′ (Ω) =
2𝜋𝑁𝐹

Ω
〈𝛾𝐵1𝑔𝐵2𝑔

2 (𝜙)(𝑍Λ)2(𝜙)
Δ2(𝜙)

√Ω2 − Δ2(𝜙)
〉          (2.3) 

Where 𝑁𝐹 is the sensity of states at the Fermi level, 𝛾 is the B1g or B2g Raman vertex, 𝜙 is the angle 

in the momentum space, and the braket describes the integration on the Fermi surface. Here the 

gap shown in Fig.2.23 was assumed. In these calculations the assumptions on the quasiparticle 

spectral weight 𝑍Λ are fundamental to obtain the two energy scale correctly. Following the 

consideration of the confinement of the Cooper pairs in the nodal region with lower doping the 

𝑍Λ profile shown in Fig.2.23 bottom left panel is assumed. This assumed profile gives more 

intensity to the nodal area and suppresses the antinodal intensity. This assumption gives the two 

energy scale as it can be seen in the results in Fig.2.23 right panels. Here the energy doping 

dependence is opposite for B1g and B2g and the B1g intensity decreases with lower doping, as in the 

experimental spectra. However additional assumptions on the gap doping dependence must be 

made. In this work in Ref.[142] a simple d-wave gap, increasing with lower doping was assumed. 

The increasing antinodal gap is a requirement to obtain an increasing B1g energy, and this is 

connected to the problem of the ARPES antinodal gap discussed in the previous section: if Δ* is 

connected with the pseudogap, why is it necessary to assume its doping dependence (increasing  

 

 

Fig.2.23 Taken from Ref.[142] On the left the assumed gap function and quasiparticle spectral 

weight is shown. On the right the calculated B1g and B2g Raman spectra.  
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with lower doping) to calculate correctly the pair breaking (superconducting) peak position in B1g 

Raman configuration? As discussed before a possible explanation is that the pseudogap may 

influence the superconducting energy, though this is just a speculation at this point. 

Previous calculation were performed to reproduce mainly single or double layer cuprates, So far 

no Raman experimental evidence of the double superconducting gap of triple layer cuprates has 

been presented, and therefore there was no need to calculate the Raman spectra of a triple layer 

cuprates with a double superconducting gap. It would be therefore interesting to calculate a triple 

layer cuprate Raman spectra originating from a double superconducting gap.  

 

2.8 Purpose of this work 
 

Since, as discussed in the previous section, the double superconducting gap of Bi2223 was 

observed by ARPES,[123] but not by Raman. Therefore the center of this work is the Raman 

measurement of Bi2223 samples, with the main goal of finding a Raman signature of this double 

gap. This would be the first observation of a Raman signature of the double gap, not only in Bi2223, 

but also in cuprates. Such a observation could help clarify the complex situation of the multilayer 

cuprates, and give us hints on how the layers interact with each other, or which parameter 

enhances the TC, or how the pseudogap modifies in the case of multiple layer cuprates and how it 

affects superconductivity. Since it is possible to study easely the temperature dependence of the 

Raman spectra, it would be interesting to observe if one of the two gaps opens at a higher 

temperature due to the different doping of the layer, or if some intereaction between the two 

layers occurs, giving superconductivity at the same temperature. An added bonus in exploring 

such a triple layer cuprate is that we have the additional advantage that we can study multiple 

doping levels in one sample. 

The second goal of this work is to reproduce Bi2212 and Bi2223 samples Raman spectra using the 

experimental ARPES data as an input. Starting from experimental ARPES data could help giving a 

better reproduction of the Raman spectra whose experimental shape are not well reproduced by 

previous calculations using the kinetic theory. In addition this could help to clarify the differences 

in how Raman and ARPES wiew the two energy scale and understand if there are inconsistencies 

between the two probes. Finally, studying multiple Bi2212 samples allows us to establish the 

calculation method, and verify its validity, so that we may apply it on the triple layer Bi2223, which 

is the main focus of the experimental part of this study. 

For the Bi2223 calculation case, since a double superconducting gap is observed by ARPES on the 

IP and OP bands, we are interested, not only in reproducing the experimental spectra, but also in 

calculating the separate contribution of these two bands, and investigate if these two band should 

give a different contribution to the calculated Raman spectra or not, and therefore understand 

better the origin of each part of the Raman spectra. 
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3:Methods 

3.1 Sample growth & annealing 
 

The double layer Bi2212 can be grown with different methods, like self-flux or KCl flux method. 

However the method that gave the best sample quality and allowed to grow successfully large 

Bi2223 sample is the Travelling Solvent Floating Zone method. This method advantage consists in 

the high temperature spatial gradient that can be reached. This allows growing the crystal in a 

fixed point in the temperature-composition phase diagram, making it possible to grow materials 

with a narrow crystallization field like Bi2223.[126] An additional advantage of the TSFZ method is 

that it does not use a crucible, and this allows to avoid contaminations of the sample and the 

delicate procedure of removing the grown sample from the crucible without breaking it. 

 

Fig.3.1 Taken from Ref.[144] On the left schematic of the TSFZ principle. On the right picture of the 

rods during the growth process. 

In Fig.3.1 a schematic of the TSFZ set-up is shown. The method is based on the use of halogen 

lamps that emit IR radiation. This IR light is focused by ellipsoidal mirrors on the feed rod which 

melts and the crystal grows on the seed rod. The mirrors or the rod is moved slowly so that the 

focusing point of the mirrors, and therefore the molten zone, scans the entire length of the rod. To 

maintain the temperature uniform the feed and seed rods are rotated in opposite directions. 

The first step in the growth process of BSCCO samples is the preparation of oxide powders of Bi2O3, 

SrCO3, CaCO3 and CuO of high purity (99.99%). These must be weighted and added in the right 

proportions to obtain Bi2212 and Bi2223 samples. The desired chemical reactions are:  

𝐵𝑖2𝑂3 + 2𝑆𝑟𝐶𝑂3 + 𝐶𝑎𝐶𝑂3 + 2𝐶𝑢𝑂 + 𝑂2 →  𝐵𝑖2𝑆𝑟2𝐶𝑎𝐶𝑢2𝑂8+𝛿 + 𝑂2     (3.1) 

𝐵𝑖2𝑂3 + 2𝑆𝑟𝐶𝑂3 + 2𝐶𝑎𝐶𝑂3 + 3𝐶𝑢𝑂 + 𝑂2 →  𝐵𝑖2𝑆𝑟2𝐶𝑎2𝐶𝑢3𝑂10+𝛿 + 𝑂2     (3.2) 
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for Bi2212 and Bi2223 respectively. In the above chemical relationship oxygen is not balanced, a 

controlled mixed gas flow (for example in Ref.[126] for Bi2223: 80% Ar, 20% O2) is set to supply 

oxygen during the growth process. The BSCCO are stable in a non-stoichiometric, slightly Bi rich 

composition, therefore a slightly Bi rich ratio for the oxide powders is used. Usually Bi2O3 and 

SrCO3 are weighted to obtain a Bi/Sr ratio of 2.1/1.9. The obtained mixture is then grinded and 

calcinated at high temperature (≈800°C) for 12-24 hours. After the first calcination the compound 

is reground and calcinated again. The obtained mixture is grinded again and then hydrostatically 

pressed to form a rod. This rod is then sintered at ≈850°C for 48 hours. The obtained sintered rod 

is polycrystalline. This polycrystalline rod is fed to the TSFZ system. First the rod is pre-melted at a 

higher speed of 20-70 mm/hour. After the first fast scan a much slower scan is performed at 

speeds ranging from 0.05 to 0.2 mm/hours, and the single crystal is grown in the seed rod. Here a 

controlled flow of oxygen controls the initial sample doping. The Bi2212 samples were grown in 

Tajima group at Osaka University while the Bi2223 samples where grown by our collaborators in 

Watanabe group at Hirosaki University. The readers interested in further details about the sample 

growth may consult Ref.[127], [145], [146] for the Bi2212 samples and Ref.[125], [126] for the 

Bi2223.  

To change the sample doping, by tuning the oxygen content, the annealing procedure can be 

performed. This is done by heating the sample in a furnace, and using a controlled atmosphere, 

usually of oxygen in our case. The temperature, the annealing time and the content of the 

controlled atmosphere are the parameters that control the final sample doping. The time of 

cooling after the annealing is finished should be kept as short as possible in order to avoid 

modifying the oxygen content desired and broadening the sample superconducting transition. To 

avoid this, quenching can be performed, by immersion in liquid nitrogen or by contact with a 

copper plate. For further details about the annealing conditions we suggest Ref.[147], [148] for 

Bi2212 samples and Ref.[125], [131] for Bi2223.  

 

3.2 Raman 
 

The name Raman comes from the Indian physicist C.V. Raman (Nobel Prize 1930) who first showed 

the Raman effect experimentally. The Raman effect is an inelastic scattering of light, in which the 

incident photon excites an electron to a higher (often virtual) state, and the scattered photon is 

emitted by the electron decaying back to a lower state. Here the final state can be a vibrational 

state at a higher, lower or at the same energy as the initial one giving rise to Stokes anti-Stokes or 

Rayleigh lines. In the first two cases a vibrational mode is excited to a higher or lower vibrational 

level. Therefore Raman is a photon in photon out technique, unlike for example ARPES which is a 

photon in electron out technique. Due to its sensibility to phonon states Raman spectroscopy was 

widely used to investigate phonon vibration in all sorts of materials. 
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Fig.3.2 Taken from Ref.[149] Characteristic Raman scattering spectrum YBCO. Light scattering 

contributions from phonons, magnons, and electrons are plotted in blue, green, and red, 

respectively. 

However the Raman effect may occur with excitation different from the phononic ones, as seen in 

Fig.3.2, excitation of electronic states and of magnons are also possible and these different 

contribution overlap in cuprates. In contrast to phonon excitations, which originate from distinct 

vibrational levels that give sharp peaks, the electronic contribution is broad, since a continuum of 

state is available for the excitation, as it can be seen in Fig.3.2. 

Electronic Raman scattering ERS has multiple advantages such as being sensible to both occupied 

and unoccupied states, being momentum resolved and sensible to the bulk of the sample. For 

these reasons it is a powerful technique to study the electronic states in cuprates superconductors. 

As in the case of phononic excitation, ERS involves a transition to a higher level caused by the 

incident light and the emission of a scattered photon when the electron decays to a lower level,  

 

 

Fig.3.3 Taken from Ref.[143] Electronic Raman scattering process (Stokes process): a crystal is 

irradiated by a monochromatic wavelength of a laser beam and the scattered light is collected. 

The difference in frequency between the laser and scattered frequencies (ΩL and ΩS respectively) 

is called the Raman shift, ΩR and corresponds to the energy of an electron-hole pair excitation 

around the Fermi level. 
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and this is shown in Fig.3.3 in the case of a Stokes process. The difference between the incident 

and scattered light frequencies (ΩL and ΩS respectively) is called the Raman shift, ΩR. In the 

superconducting state the final and initial state can be states across the superconducting gap and 

this can cause the breaking of a Cooper pair, with the creation of Bogoliubov quasi-particles. This 

gives a contribution to the Raman spectra at the energy of the superconducting gap. 

Being a two photon process ERS is a second order process in the electromagnetic field. This means 

that in the interaction Hamiltonian between electron and the radiation originates both from the 

second order term and from the first order term perturbation up to the second order. It was 

shown[150] that both these terms can be gathered in a single effective second order Hamiltonian 

in the form: 

𝐻𝑅 =
𝑒2

𝑚
〈𝐴𝑆𝐴𝐿〉𝑒−𝑖Ω𝑡�̂�𝑞       (3.3) 

Where 𝐴𝑆 and 𝐴𝐿 are the scattered and laser (incident) light vector potentials and the bracket 

indicates the proper matrix element over the photon states. Ω indicates the Raman shift (= ΩL - ΩS) 

and q the difference between the photon momenta is q = kL−kS. The operator �̂�𝑞 is given by: 

�̂�𝑞 = ∑ 𝛾𝑛𝑓,𝑛𝑖,𝑘𝑐𝑛𝑓,𝑘+𝑞
+

𝑛𝑓,𝑛𝑖,𝑘

𝑐𝑛𝑖,𝑘       (3.4) 

Here k is the initial electronic momentum, and 𝑛𝑓 and , 𝑛𝑖  indicate the final and initial electronic 

states respectively. 𝛾𝑛𝑓,𝑛𝑖,𝑘 is the Raman vertex and is given by: 

𝛾𝑛𝑓,𝑛𝑖,𝑘 = 𝑒𝑆
∗ ∙ 𝑒𝐿𝛿𝑛𝑓,𝑛𝑖

       

+   
1

ħ𝑚
     ∑

⟨𝑛𝑓 , 𝑘 + 𝑞|𝑒−𝑖𝑘𝑆∙𝑟𝑒𝑆
∗ ∙ 𝑝|𝑛𝑚, 𝑘 + 𝑘𝐿⟩⟨𝑛𝑚, 𝑘 + 𝑘𝐿|𝑒−𝑖𝑘𝐿∙𝑟𝑒𝐿 ∙ 𝑝|𝑛𝑖 , 𝑘⟩

𝜀𝑛𝑖,𝑘 − 𝜀𝑛𝑚,𝑘+𝑘𝑙
+ Ω𝐿 + 𝑖𝜂

 𝑛𝑚

+ (𝐿 ↔ 𝑆)                                                                                                 (3.5) 

𝑒𝐿 and 𝑒𝑆 are respectively the incident and scattered field polarization and 𝜀𝑛,𝑘  are the electronic 

states energies. 

The Raman vertex in (3.5) depends on the band structure of the material and is difficult to 

calculate explicitly. However some simplifications can be made. The photon momentum transfer 𝑞 

in the visible range is much smaller than the electronic momentum and it can therefore usually 

neglected. Under this approximation the Raman vertex can be decomposed using the group 

theory. This is extremely useful to highlight the momentum dependence of ERS and to show how 

this depends on the chosen incident and scattered light polarization. In the case of cuprates, since 

they have a slightly distorted tetragonal phase they belong to the D4h space group and the Raman 

vertex can be decomposed on the irreducible representation of this group: 

�̃�(𝑞 → 0) =  ∑ 𝛾𝜇Φ𝜇

𝜇

        (3.6) 
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Geometry 𝒆𝑳 𝒆𝑺 R Basis Function 𝚽𝝁 (k) 

xx, yy x,̂ŷ x,̂ŷ 𝑅𝐴1𝑔
+ 𝑅𝐵1𝑔

 0.5[cos (𝑘𝑥𝑎) − cos (𝑘𝑦𝑎)] ± 0.5[cos (𝑘𝑥𝑎) − cos (𝑘𝑦𝑎)] 

x’x’ (x+̂ŷ) / √2 (x+̂ŷ) / √2 𝑅𝐴1𝑔
+ 𝑅𝐵2𝑔

 0.5[cos(𝑘𝑥𝑎) + cos (𝑘𝑦𝑎)]  +  sin (𝑘𝑥𝑎)sin (𝑘𝑦𝑎) 

x’y’ (x+̂ŷ) / √2 (x-̂ŷ) / √2 𝑅𝐵1𝑔
+ 𝑅𝐴2𝑔

 0.5[cos (𝑘𝑥𝑎) − cos (𝑘𝑦𝑎)] [1 + sin (𝑘𝑥𝑎)sin (𝑘𝑦𝑎)] 

xy x ̂ ŷ 𝑅𝐵2𝑔
+ 𝑅𝐴2𝑔

 sin (𝑘𝑥𝑎)sin (𝑘𝑦𝑎){1 + 0.5[cos (𝑘𝑥𝑎) − cos (𝑘𝑦𝑎)]} 

LR (x+̂iŷ) / √2 (x+̂iŷ) / √2 𝑅𝐵1𝑔
+ 𝑅𝐵2𝑔

 0.5[cos(𝑘𝑥𝑎) + cos (𝑘𝑦𝑎)]  +  sin (𝑘𝑥𝑎)sin (𝑘𝑦𝑎) 

LL (x+̂iŷ) / √2 (x-̂iŷ) / √2 𝑅𝐴1𝑔
+ 𝑅𝐴2𝑔

 0.5{cos(𝑘𝑥𝑎) + cos(𝑘𝑦𝑎) + [cos(𝑘𝑥𝑎) − cos (𝑘𝑦𝑎)]sin (𝑘𝑥𝑎)sin (𝑘𝑦𝑎)} 

xz x ̂ ẑ 𝑅𝐸1𝑔
 sin (𝑘𝑥𝑎)sin (𝑘𝑧𝑐) 

yz ŷ ẑ 𝑅𝐸1𝑔
 sin (𝑘𝑦𝑎)sin (𝑘𝑧𝑐) 

zz ẑ ẑ 𝑅
𝐴1𝑔

(2) cos (𝑘𝑧𝑐) 

 

Table 3.1 Taken from Ref.[149] Elements of the transition rate R for experimentally useful 

configurations of polarization orientations 𝑒𝐿 and 𝑒𝑆 (given in Porto notation) along with the 

symmetry projections for the D4h point group relevant for the cuprates. Here we use notations in 

which x and y point in directions along the Cu-O bonds in tetragonal cuprates, while x’ and y’ are 

directions rotated by 45°. L and R denote left and right circularly polarized light, respectively. 

Where 𝜇 represents the irreducible representation of the point group of the crystal and Φ𝜇 are 

the basis functions of said irreducible point group of the crystal. This means that the contraction of 

the Raman vertex tensor 𝑒𝑆
∗ ∙ �̃� ∙ 𝑒𝐿 will depend only on the terms in the summation in (3.6) that 

are selected by the scattered and incident light polarization vector. Table 3.1 summarizes the most 

commonly used incident and scattered light configurations in cuprates. Here the x and y are along 

the Cu-O bonds, while x’ and y’ are directions rotated by 45°. Additionally here the basis function 

Φ𝜇 relative to each scattering configuration is shown. The configurations mainly used in this study 

are 𝑧̅(𝑥’𝑦’)𝑧 and 𝑧̅ (xy)z in the Porto notation. In this notation A(BC)D, A and D indicate the 

direction of the incident and scattered light wavevector respectively and B and C indicate the 

incident and scattered light polarization direction. These two configurations mainly probe the B1g 

and B2g modes respectively, with a small A2g contamination, and are for simplicity referred as B1g 

and B2g configurations in Raman studies. As it can be seen from Table 3.1 and Fig.3.4 these two 

configurations probe mainly the antinodal and nodal region respectively. 

 

 

Fig.3.4 Taken from Ref.[149] Schematic weighting of the light-scattering transition for polarization 

orientations probing B1g and B2g for a D4h crystal. High-symmetry points are indicated. Here a 
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typical Fermi surface for optimally doped cuprates is represented by the solid line, and the 

orientations of the incident and scattered polarization light vectors are shown with respect to 

copper-oxygen bond directions. 

 

Raman probes directly the Fourier transform of the density-density correlation function called the 

“dynamical structure factor” which is given by: [151] 

𝑆(𝑞, Ω, 𝑇) = ∫
𝑑𝑡

2𝜋
𝑒𝑖Ω𝑡〈�̂�†(𝑞, 𝑡)�̂�(𝑞, 0)〉𝑇       (3.7) 

where the bracket denotes the thermal average. According to the fluctuation dissipation 

theorem,[152] 𝑆(𝑞, Ω, 𝑇) is related to the imaginary part 𝜒′′(𝑞, Ω, 𝑇) of the response function 

𝜒(𝑞, Ω, 𝑇) as follows 

𝑆(𝑞, Ω, 𝑇) =
ħ

𝜋
(1 + 𝑛(Ω, 𝑇))𝜒′′(𝑞, Ω, 𝑇)       (3.8) 

Here 𝑛(Ω, 𝑇) is the Bose Einstein factor given by 𝑛(Ω, 𝑇) = (𝑒
−

ħΩ

𝑘𝐵𝑡 − 1)
−1

. The imaginary part of 

the response function is related to the electronic density fluctuations induced by the electric field 

of the incident light into the crystal, and is therefore the wanted signal. For this reason the 

experimental spectra is usually divided by (1 + 𝑛(Ω, 𝑇)). 

In Fig.3.5 a schematic of a typical experimental electronic Raman scattering set-up is shown. The 

incident Radiation is produced by a laser, in our case an Ar+-Kr+ gas laser is used. This laser can 

emit light at different frequency, and for the present work the emission line that produces green 

radiation with a wavelength of λ = 514.5 nm was selected. Different choices of incident light 

energy influence the intensity of the phonons in the spectra, and in general light energies that 

strongly enhance the phonon peaks should be avoided when interested in the electronic 

contribution. The emitted light is reflected and passes through different optical components on its 

way to the sample space. These include pinholes to decrease the radial dimension of the laser 

beam and polarizers to select the incident radiation polarization direction. The sample space is 

equipped, in our case, with an oil pump and a turbomolecular pump that allows to obtain a 

vacuum in the sample space, with pressures as low as 𝑃 = 5 ∗ 10−6 𝑡𝑜𝑟𝑟. The vacuum is not 

needed for Raman spectroscopy, since the emitted photons can travel through air, unlike for 

example ARPES where the emitted electrons need vacuum to propagate. The vacuum is needed 

for cooling the sample at low temperature, as low as 5K, to avoid the deposition of all sort of 

particle and the formation of ice. The lower the sample space pressure, the longer the sample 

surface will maintain clean even at low temperature, allowing the experiment to last longer 

without the need to cleave the sample. Cooling of the sample is done with a cryostat connected to 

a helium compressor. The PID controller of the cryostat stabilizes the sample temperature to the 

desired value. Even though we ideally desire to measure in the back-scattered configuration, this 

should be avoided, since the reflected laser light would enter the spectrometer directly and this  
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Fig.3.5 Taken from Ref.[149] Schematic of the light path in a typical ERS spectrometer. 

could cause damage to the detector. Instead quasi-back scattered geometry is used with the 

incident radiation at about 30-45° with the c-axis of the sample. The sample is mounted with the c-

axis along the Z direction in Fig.3.5, and the a and b axis (which correspond to x’ and y’ in Table 

3.1) are oriented along the X or Y direction when measuring the B1g configuration and at 45° 

degrees with the X and Y axis when measuring the B2g configuration. The first polarizer sets the 

incident light polarization to be along the Y direction and therefore the second polarized must be 

set to collect the scattered light with a polarization along the X direction in order to measure the 

B1g and B2g configurations. However the sensitivity of the grating is highest in the Y direction, 

therefore a λ/2 wave plate is used to rotate the collected scattered light polarization from the X 

direction to the Y direction. As mentioned before ERS is a bulk technique. The penetration length 

in cuprates is of the order of 100 nm, spanning therefore numerous unit cells of the sample, unlike 

other techniques such as ARPES where the electron penetration length can span only few atomic 

layers. The laser spot size on the sample has a diameter of approximately 50-100 μm. To avoid 

local heating of the sample the power of the incident laser was kept as low as P=3mW. Local 

heating of the sample can, not only foul the measurement by changing the local temperature, but 

it can also damage the sample surface, and therefore it must be avoided. 

The spectrometer used for the present study is a Jobin-Yvon T64000 located at the Graduate 

school of Science at Osaka University. This spectrometer is equipped with a triple monochromator 

system with a grating density of 1800 gr/mm. The first two grating of the system can be coupled in 

two different ways in the additive or subtractive mode shown in Fig.3.6. In the additive mode all of 

the gratings separate the different wavelengths, and this allows reaching extremely high energy 

resolution, as good as 0.1 cm-1, however this will allow measuring only a small spectral window. In  
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Fig.3.6 Taken from Ref.[153] Schematic sketch of the additive and subtractive mode for triple 

monochromators 

the subtractive mode the first grating splits the different wavelengths, which are filtered in the 

first intermediate slit, and then the second grating recomposes the different frequencies. This 

allows having a very efficient rejection of the frequency outside the window selected by the first 

intermediate slit and therefore a very good rejection of the Rayleigh scattering is obtained. The 

resolution of the subtractive mode can be as good as 0.3 cm-1. In this study, since a good rejection 

of the elastically scattered light is needed, but high resolution is not, the subtractive mode is used. 

The electronic features are extremely broad as seen in Fig.3.2, therefore the highest resolution of 

the subtractive mode is also not needed. Opening the entrance slit and the second intermediate 

slit can increase the signal at the cost of losing resolution. In our study these slits were set to 500 

μm which is a good trade off between signal intensity and resolution, giving a resolution of 

approximately 5 cm-1. This may seem large, but it is not as compared to the scale of the electronic 

features.  

After passing through the monochromator the light enters the detector, a Charge Coupled Device 

CCD, which is cooled by liquid nitrogen. The CCD can be damaged if exposed to the strong Rayleigh 

scattering radiation and therefore rejection of this strong contribution is extremely important. This 

is achieved, as said before, by the subtractive mode of the triple monochromator, but, additionally, 

a good sample surface is also needed. If the sample surface is degraded strong scattering 

originates from the surface defects preventing the measurement. In those cases it is necessary to 

cleave the sample and obtain a good surface with few defects. 
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3.3 Kubo calculations 
 

To calculate the Raman spectra an equation much simpler than the one presented in the previous 

section can be used, and this is the Kubo formula given by: [149] 

𝜒𝛾Γ
′′ =

2

𝜋𝑉
∑ 𝛾𝒌𝛤𝒌 ∙ ∫ (𝑓𝜔 − 𝑓𝜔+𝛺)

∞

−∞𝒌

𝐺𝒌,𝜔
′′ 𝐺𝒌,𝜔+𝛺

′′ (1 −
Δ𝒌

2  

(𝜔 + 𝜉𝒌)(𝜔 + 𝛺 + 𝜉𝒌)
)       (3.9) 

that gives the Raman susceptibility 𝜒𝛾Γ
′′ . In this equation 𝑓𝜔 is the Fermi Dirac function, 𝐺𝒌,𝜔

′′  is the 

Green function, Δ𝒌 is the superconducting gap, 𝜉𝒌 is the bare band in the normal state and 𝛾𝒌 and 

𝛤𝒌 are the bare and renormalized Raman vertices. The goal of the calculation performed in this 

work is to obtain more realistic calculated spectra by using the experimental ARPES intensity as an 

input. Therefore, we want to obtain the Green function from the ARPES intensity. This can be done 

using the formulas: 

𝐼𝒌,𝜔 = 𝐼0 ∙ 𝑀𝒌 ∙ 𝑓𝜔 ∙ 𝐴𝒌,𝜔       (3.10) 

𝐺𝒌,𝜔
′′ = −𝜋𝐴𝒌,𝜔       (3.11) 

The equation (3.10) gives the ARPES intensity where 𝐴𝒌,𝜔 is the spectral function and 𝑀𝒌 is the 

matrix element. The equation (3.11) gives the relationship between the Green function and the 

spectral function. Here to directly obtain the Green function from the ARPES intensity we make 

the approximation that the matrix element does not depend on the momentum k. Calculation of 

the ARPES matrix element is complicated, however it was shown that it has often a weak 

momentum dependence, and therefore the approximation can be justified 

As it will be discussed more in detail in the next section the ARPES spectra have a background that 

originates from the inelastically scattered electrons during their propagation through the sample, 

and this contribution must be subtracted. One way to do so is to use the empirical Shirley 

background which is given by: 

𝑏𝑔𝑆ℎ𝑖𝑟𝑙𝑒𝑦(𝜔) = 𝑐 ∫ 𝑃(𝜔′)
∞

𝜔

𝑑𝜔′      (3.12) 

Here 𝑃(𝜔′) is the spectrum after the background subtraction. The calculation of the Shirley 

background is done in an iterative way assuming that the signal at 𝜔 = ∞ is completely 

background and using an initially small 𝑐, this Shirley constant is gradually increased until the 

spectrum at the highest binding energy is all composed by background, and this iterative 

procedure is shown in Fig.3.7 

In the case of band splitting, to calculate separately the contribution of each band to the Raman 

spectra the ARPES intensity of these bands must be separated. This can be done by fitting the 

Energy Distribution Curves (EDC) with multiple Gaussian functions. This is done using 3 Gaussian 

peaks: one for each band and an additional one for the incoherent part at higher binding energy. 
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Fig.3.7 Example of iterative Shirley background subtraction on an EDC in optimally doped Bi2223 

The bare-band can be obtained from tight binding fitting using the equation:  

𝜉𝒌 = −2𝑡(cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎) + 4𝑡′ cos 𝑘𝑥𝑎 cos 𝑘𝑦𝑎 − 2𝑡′′(cos 2𝑘𝑥𝑎 + cos 2𝑘𝑦𝑎) − 𝜇     (3.13) 

Here 𝑡, 𝑡′ and 𝑡′′ are the nearest, the next nearest and the next-next nearest hopping integral and 

𝜇 is the chemical potential. Here we are interested in the normal state band dispersion, but to 

perform the fit it is still possible to extract the fitting points from the superconducting low 

temperature data. This is done by using as fitting points the Fermi vector kF at zero energy. The kF 

position does not change in the case of a superconducting gap opening, which is particle-hole 

symmetric. An additional fitting point used in the fit is the experimental band bottom at Γ. For 

simplicity and in order not to add too many free parameters 𝑡′′ is fixed to be half of 𝑡′. Therefore 

the fitting free paramethers are 𝑡, 𝑡′ and 𝜇. In the case of multilayer band splitting multiple bands 

must be fitted. In the case of Bi2223 the OP and IP bands have been fitted separately but in the 

case of Bi2212 a multilalyer splitting term was added to (3.13) to fit simultaneously the anti-

bonding band AB and the bonding band BB: 

𝐸𝑏𝑖 = −
𝑡⊥

4
(cos 𝑘𝑥𝑎 − cos 𝑘𝑦𝑎)

2
       (3.14) 

This is the simplest form of bilayer splitting term, and is not ideal for realistic calculations,[21] 

however it can be used in this case, since we are simply interested in a small momentum region 

where the superconducting gap opens. This tight binding fitting is not only used in (3.9) but is also 

used to calculate the gap size Δ𝒌 in the ARPES cut between kF and the momentum where the gap 

starts opening. 

As shown in the previous section, explicit calculations of the Raman vertex is not trivial, and the 

calculation of the renormalized Raman vertex is not trivial either, with several possible correlation 

terms contributing. For simplicity, in the present work we use the Raman vertices calculated from 
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the assumption of single band given by the tight binding formula in a tetragonal lattice. These are 

used both for the bare and renormalized Raman vertex and are given by: 

𝛾𝐵1𝑔,𝒌 = 𝜞𝐵1𝑔,𝒌 = 𝑚𝑎2𝑡(cos 𝑘𝑥𝑎 − cos 𝑘𝑦𝑎)       (3.15) 

𝛾𝐵2𝑔,𝒌 = 𝜞𝐵2𝑔,𝒌 = 4𝑚𝑎2𝑡′ sin 𝑘𝑥𝑎 sin 𝑘𝑦𝑎        (3.16) 

for B1g and B2g, respectively. The assumption of identical bare and renormalized Raman vertex is 

likely a poor approximation for strongly correlated cuprates, but we expect it to be sufficient for 

the present study. 

 

3.4 ARPES 
 

Angle Resolved Photoemission Spectroscopy (ARPES) is the best technique to experimentally 

observe the band dispersion, since it can directly image the occupied electron band with 

momentum and energy resolution. ARPES is a photon-in and electron-out technique and since the 

electron must diffuse out of the sample in order to be detected, the probed area is limited by the 

electrons mean free path to a few atomic layers making ARPES surface sensitive. ARPES, unlike 

Raman, can only probe occupied electronic states. Regardless these two limitations, the direct 

momentum and energy resolved image of the electron bands makes it an extremely valuable 

technique. 

The ARPES process can be described in the framework of the three step model where the steps 

are: 

1. An incident photon is absorbed by an electron in the sample which is excited to the final 

free electronic state. 

2. The excited electron travels without losing energy nor changing momentum to the surface 

of the sample. 

3. The electron escapes from the sample by overcoming the work function 𝜙 and enters the 

vacuum states.  

However, this is an approximation since the excited electrons do interact sometimes with the 

lattice and other electrons, losing energy. Nonetheless, a good amount of electrons will not 

interact with anything as postulated by the three steps process and in that case conservation of 

energy applies and is given by: 

𝐸𝑘𝑖𝑛 = ℎ𝜈 − 𝜙 − |𝐸𝐵|       (3.17) 

where ℎ𝜈 is the incident photon energy and 𝐸𝐵 is the emitted electron former binding energy, and 

this is shown in the schematic in Fig.3.8 (b). From this conservation of energy comes the energy 

resolution of ARPES, while the momentum resolution comes from the momentum conservation.  
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Fig.3.8 Taken from Ref.[33] a diagram of the ARPES process. b Schematic the conservation of 

energy in the ARPES process. c  

Normally the electron momentum is much larger than the photon momentum which can be 

therefore neglected. The momentum along the sample plane is conserved according to: 

𝑘∥ =
√2𝑚𝐸𝑘𝑖𝑛sin (𝜗)

ℏ
       (3.18) 

Where 𝜗 is the angle between the vector normal to the sample surface and the electron trajectory. 

However the momentum normal to the sample surface is modified by the sample surface 

potential step, called inner potential 𝑉0. Therefore the momentum of the electron in the direction 

normal to the plane surface is given by: 

𝑘⊥ =
√2𝑚𝐸𝑘𝑖𝑛𝑐𝑜𝑠2(𝜗) + 𝑉0 

ℏ
       (3.19) 

Using the hemispherical analyser in the configuration in Fig.3.8 (a), 𝐸𝑘𝑖𝑛, can me measured and the 

electron emission angles are known. Therefore considering the equation from (3.17) to (3.19) we 

can obtain the original binding energy and the momentum of the electron in the sample, and this 

makes ARPES a extremely viable momentum and energy resolved technique. 

In the sudden approximation, where the emitted electron does not interact with the sample, the 

ARPES intensity can be written as: 

𝐼𝒌,𝜔 = 𝐼0(𝒌, 𝜈, 𝑨) ∙ 𝐴𝒌,𝜔 ∙ 𝑓𝜔       (3.20) 

where 𝑨 is the vector potential, 𝐴𝒌,𝜔 is the spectral function and 𝑓𝜔 is the Fermi-Dirac distribution. 

This shows how ARPES is sensible only to occupied states. Here the intensity 𝐼0(𝒌, 𝜈, 𝑨) is 

proportional to: 
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𝐼0(𝒌, 𝜈, 𝑨) ∝ |𝑀f,i
𝒌 |

2
∝ |⟨𝜙

𝑓
𝒌|𝑒 ∙ 𝑟|𝜙

𝑖
𝒌⟩|

2

      (3.21) 

where |𝑀f,i
𝒌 |

2
 is the squared module of the matrix element, 𝜙𝑓

𝒌 and 𝜙𝑖
𝒌 are the the initial and final 

electronic state and 𝑒 is the unit vector of the incident light polarization. Here it can be seen, by discussion 

of parity of these functions, how ARPES sensibility is influenced by the parity of the initial state 𝜙𝑖
𝒌 orbitals  

 

Fig.3.9 Taken from Ref.[33] the mirror plane in the ARPES experiment. The parity with respect of 

this plane can be considered to make prediction on the matrix element intensity. 

and this is the orbital selectivity of ARPES. The parity with respect to the mirror plane, which is 

defined by the incident light and the scattered electron trajectories as seen in Fig.3.9, can be 

considered to evaluate quickly the intensity of the matrix element. Here the final state 𝜙𝑓
𝒌 can be 

approximated with the wavefunction of a free electron in vacuum 𝑒𝑖𝒌⋅𝒓 and will always be even 

with respect to the mirror plane since 𝒌 is in plane. The parity of 𝜙𝑖
𝒌 depends on the orbital 

character of the band the electron is in, and the parity of 𝑒 ∙ 𝑟 can be selected by choosing the 

incident photon polarization, where with in-plane polarization the term will be even and with out 

of plane polarization it will be odd. Therefore by observing the dependence of the ARPES intensity 

on the polarization of the incident light one can guess the parity of the initial state of the electron, 

and make guesses on the main character of the electron band. 

In order to obtain the precise energy value of the Fermi level EF the sample is usually connected 

electronically to a metal, often gold, and the ARPES spectrum of this metal is measured. The 

spectrum of this reference metal is dictated by the Fermi Dirac function near the Fermi level, 

whose value can be therefore extracted.  

There are various possible source of the exiting radiation. In the field of cuprates, recently the 

most popular choices are synchrotron radiation and laser radiation. The latter has the advantage 

that high momentum resolution can be obtained. Since the electrons cannot propagate in air, the 

whole electron path from the sample to the detector must be in vacuum. Usually the sample can 

be cleaved in vacuum in order to obtain the best possible sample surface, free from 

contaminations. The emitted electrons pass through electrostatic lenses and are collected by a 

hemispherical analyser usually equipped with a CCD detector. The hemispherical analyser can 
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collect electron with different momentum direction, which are allowed through a slit elongated 

along one direction, the analyser separates the electrons according to their energy in the 

perpendicular direction. Therefore the CCD collects a 2D image in which one direction is 

proportional to the energy and the other to the angle of emission, which is related to the 

momentum. Therefore the ARPES data are usually 3D, the dimension being momentum, energy 

and intensity, and represent cuts along a certain curve in the momentum space of the 5D space  

 

Fig.3.10 Example of ARPES cut for the Bi2212 overdoped sample OD85K. An ARPES cut can be 

viewed as a 2D image where the colour scale is associated with intensity and one axis (vertical 

here) is associated with binding energy and the other with momentum (angle of emission of the 

electron). These images can be furtherly cut at a certain momentum, obtaining the EDC on the left, 

or at a certain energy, obtaining the MDC in the bottom of the figure. 

constituted by momentum, energy and spectral function. These cuts can be viewed by 2D images 

where the colour is associated to the intensity, or can be furtherly cut restricting to a specified 

energy or momentum and viewed as spectra, and these are called Momentum Distribution Curves 

MDC and Energy Distribution Curves EDC respectively. The EDC are generally used to extract the 

energy value of a certain band or the value of an energy gap and the MDC are generally used to 

establish the momentum position of a certain band or spectral feature. 

The ARPES Bi2212 data for the samples UD75K and OP92K, used as an input in the Kubo 

calculations in this study, have been carried out at Stanford Synchrotron Radiation Lightsource 

beamline 5-4 using 22.7 eV photons with an energy resolution of 5 meV and an angular resolution 

of 0.1° degrees, with polarization along the Cu-O directions (out of the mirror plane). The ARPES 

Bi2212 data for the sample OD85K were measured at Institute for Solid State Physics at Tokyo 

University, using a He lamp with a photon energy of 21.2 eV without polarization. For these the 
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energy resolution was 10 meV and the angular resolution was 0.1° degrees. These experiments 

have been carried out by a colleague of my same laboratory. (Tajima Lab. Osaka University) 

Bi2223 ARPES data where obtained on a slightly underdoped (but almost optimal doped) sample 

(TC=108K) grown by Uchida group in Tokyo University. The experiment was performed at UVSOR 

facility beamline number 7 in the National Institute for Molecular Science in Japan. Radiation with 

energy of hν=8eV was used. The data were taken at a sample temperature of T=12K. The 

polarization of the incident radiation was outside of the mirror plane (S polarization) and the 

energy resolution was ΔE=7meV. These experiment have been carried out by S.Ideta (National 

Institute for Molecular Science) 

 

3.5 Others: SQUID & XRD 
 

To evaluate the sample critical temperature the susceptibility of the sample can be measured. This 

was done using a Quantum Design Magnetic Property Measurement System (MPMS) located at 

Tajima group at Osaka University. This is a SQUID (Superconducting QUantum Interference Device) 

magnetometer. The SQUID magnetomer employs a superconducting ring with two Josephson 

junctions and detects the variations in magnetic flux through this ring. This can be used to 

measure the magnetic susceptibility of the sample, and the onset of the diamagnetic signal due to 

the Meissner effect marks the onset of superconductivity. A magnetic field of 10 Oe was applied 

along the c-axis of the sample and the temperature dependence of the susceptibility was 

measured. Here both Field Cooling FC and Zero Field Cooling ZFC susceptibility was measured, 

where in ZFC the sample is cooled and then the magnetic field is applied, and in FC the opposite 

order is used, by cooling with an already applied magnetic field. Here the TC of the sample was 

defined by the onset temperature of the Meissner effect, additionally the sharpness of the 

superconducting transition was defined as the difference between the onset temperature and the 

temperature where the 90% value of the low temperature FC susceptibility was reached. Good 

samples where the oxygen content is homogeneous are expected to have sharp superconducting 

transitions. 

X-ray diffraction is a powerful technique for determining the structure of a crystal. By illuminating 

the sample with a monochromatic beam of X-rays, the photons will be scattered by the atoms of 

the sample and will produce a diffraction pattern. This diffraction pattern is named Laue image 

and since it originates from the spatial Fourier transform of the scattering centers is a way to 

image the reciprocal lattice of the crystal. In this study a four-axis X-ray diffractometer located in 

Osaka University was used. The Laue image can be used to locate the orientation of the crystal axis. 

The BSCCO sample break more easily along crystallographic axis, therefore the sample borders are 

usually crystallographic axis, however these can be both the a and b axis or the axis rotated 45° 

(along the Cu-O bonds). Measuring the Laue image gives a more precise esteem of the axis 

orientation and solves this uncertainty. Additionally the X-ray diffraction pattern can be used to 

determine the crystal parameters. Since a decrease in oxygen content increases the c-axis, the c-
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axis length is a measure of the sample doping.[131] Therefore in this study X-ray diffraction was 

used to obtain the c-axis length of the Bi2223 samples, using the formula of the d-spacing formula 

for a tetragonal crystal given by: 

1

𝑑2
=

ℎ2 + 𝑘2

𝑎2
+

𝑙2

𝑐2
       (3.22) 

Where h k and l are the Miller indices, a and c are the a and c-axis length respectively. Using the 

(00l) peaks, knowing the l indices and given the Bragg law that connects the scattering angle to the 

𝑑 spacing, the value of the c-axis can be determined. This was done, in this work, for the Bi2223 

samples, in order to estimate the average sample doping of the overdoped Bi2223 sample. Since, 

as discussed before, the TC of Bi2223 does not decrease in the overdoped side, and therefore the 

relationship between the hole doping and TC, valid for most cuprates, cannot be used in this case. 
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4:Experimental Results and Discussion 

4.1 Sample Preparation 
 

The Bi2223 sample received from our collaborators in Hirosaki University were multiple samples of 

two different doping levels: optimally doped and underdoped samples with TC of ≈109K and ≈88K, 

respectively. However, to study the doping dependence of the Raman spectra, having more than 

two sample doping is preferred. Therefore, we performed annealing to obtain samples with 

different doping levels. The annealing conditions for the samples we received from our 

collaborators were: 40 hours under O2 flow at 600 ˚C[131] for the optimally doped sample and 1-3 

hours under PO2≈2Pa at 600°C[125] for the underdoped sample. 

Since the underdoped sample was quite strongly underdoped, our first goal was to produce a 

slightly underdoped crystal with a doping intermediate to the doping levels of the samples 

received. Since there was no previous laboratory expertise in doping Bi2223 sample, few steps 

with trial and error where involved. Annealing in a mixed argon and oxygen flow is a possible way 

to change the oxygen content of the samples. However, annealing in air can also be used.[154] 

Therefore, for simplicity, starting from one of the underdoped samples received from the sample 

grower, we firstly annealed in air, at 400°C for 40 hours. The TC increased to 97 K, however the 

superconducting transition was found to be broad (37K). As discussed in the previous section, the 

TC was obtained from the onset of the Meissner effect, while the broadness was obtained by the  

 

Fig.4.1 Magnetic susceptibility of the slightly underdoped sample after each of the annealing steps. 
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difference between TC and the temperature where the 90% value of the low temperature 

susceptibility was reached. 

To try improving the sharpness and slightly increase TC we annealed again in air, for longer time, 3 

days, at a lower temperature, 370°C. However the TC increased by just one degree and the 

sharpness got just slightly better. We therefore decided to anneal in oxygen atmosphere, at 700°C, 

for 5 days, and quenched by immersing the sample in liquid nitrogen at the end of the process. 

After this anneal we obtained a TC of 105K and a quite sharp transition (13K). A slightly 

underdoped sample was therefore obtained, whose susceptibility can be seen in Fig.4.1. 

To investigate also the overdoped side of Bi2223, we attempted to obtain an overdoped sample. 

Firstly an optimally doped sample was obtained from the underdoped sample received from the 

sample grower, by annealing in O2 atmosphere at 500 ˚C for 40 hours. Then the annealing was 

done in two other steps, always in O2 atmosphere, but at lower temperature to increase the 

oxygen content: firstly at 450°C for 3 days and lastly at 400°C for 5 days. In this case, since the 

annealing temperature was lower to begin with, and the needed time to modify the oxygen 

content is long at lower temperature, the quenching process is not strictly needed, and was 

therefore skipped. In Fig.4.2 the magnetic susceptibility after these 2 annealing steps is shown 

together with the one of an optimally doped sample obtained from the sample grower. As it can 

be seen the TC of the 3 is almost identical, and this is expected, since as said before, the TC of 

Bi2223 does not decrease in the overdoped side.[131] The superconducting transition (values in 

Fig.4.2) is sharp in both cases, indicating that the sample quality is preserved and that the oxygen  

 

Fig.4.2 Magnetic susceptibility of the overdoped sample after each annealing step, compared with 

the one of an optimally doped sample received from the sample grower in Hirosaki University. 



51 

content is homogeneous enough. However, since the TC does not change from the optimally 

doped sample, to make sure that the doping level is changed, a separate measurement with a 

different technique is needed, and this will be confirmed later with the XRD and Raman results. 

With this, Bi2223 samples with four different doping levels were obtained, ranging from the 

overdoped to the underdoped side. The magnetic susceptibility of all the samples is shown in 

Fig.4.3, and the TC and the final annealing condition are summarized in Table 4.1. The TC was 

determined from the onset temperature of the Meissner signal as 109K for the slightly overdoped 

and optimally doped samples, 105K for the slightly underdoped sample and 88K for the strongly 

underdoped sample.  

These samples will be referred as OvD109, OpD109, UnD105 and UnD88, respectively, from now  

 

Fig.4.3 Magnetic susceptibility of all the Bi2223 samples measured. The susceptibility values have 

been normalized by the low temperature ZFC value. In the legend the chosen nomenclature for 

the samples is used. 

 

Sample Name TC (K) ΔTc (K) TANNEALING (°C) O2 Ann. Time 

OvD109 109 8 400 100% 5 days 

OpD109 109 9 500 100% 50 hours 

UnD105 105 13 700 100% 5 days 

UnD88 88 18 600 PO2≈2Pa 1-3 hours 

 

Table 4.1 Summary of the Bi2223 samples measured. The assigned sample names together with TC, 

broadness of the transition and annealing condition are shown.  
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on. The superconducting transition is sharp for the OvD109, OpD109 and UnD105 samples, but it is 

a little broader in the more strongly underdoped sample UnD88, and this can be seen in Table 4.1. 

The broadness increases monotonically from the overdoped to the more underdoped sample and 

this may be due to the difficulty in obtaining homogeneous underdoped sample.[125] 

Fig.4.4 Shows the XRD pattern for all the samples examined. The visible peaks correspond to the 

Bi2223 peak previously reported in the literature [125], [126] and are all assigned to (0 0 l) peaks. 

The more intense peaks are labelled on the optimally doped sample XRD spectrum in the second 

panel of Fig.4.4. From these spectra using the formula (3.22) the c-axis length can be extracted. 

The value was extracted from the 4 most intense peaks: (0 0 10), (0 0 12), (0 0 14) and (0 0 24) 

peak. These give slightly different values of the c-axis length; therefore the value was averaged 

between them. The obtained c-axis length for each peak and the averaged value for each sample 

are summarized in Table 4.2. As it can be seen, the value monotonically increases in the four 

samples for all of the examined peaks and therefore also in the average value. Since the c-axis 

length increases with decreasing oxygen content,[131] these values testify that the doping level  

 

Fig.4.4 XRD diffraction pattern for all the Bi2223 samples examined, going from the overdoped 

sample above to the most underdoped one on the bottom. 
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Sample Name (0 0 10) (Å) (0 0 12) (Å) (0 0 14) (Å) (0 0 24) (Å) Mean c-axis (Å) 

OvD109 37.236 37.154 37.127 37.092 37.152 

OpD109 37.251 37.168 37.143 37.102 37.166 

UnD105 37.313 37.230 37.201 37.157 37.225 

UnD88 37.340 37.237 37.222 37.202 37.250 

 

Table 4.2 Extracted c-axis values, for all the samples, from the different peaks and average c-axis 

value obtained. 

truly decreases as expected from the annealing condition and the magnetic susceptibility 

measurement. In particular, the overdoped sample c-axis is shorter than the optimally doped 

sample one. Therefore, even though the TC of these two samples is the same, the oxygen content 

and the doping level is different. The obtained mean c-axis length range from 37.152 Å in the 

overdoped sample to 37.250 Å in the underdoped sample and these values are roughly consistent 

with the previous reports for Bi2223. [125], [126], [131] A more detailed analysis of the XRD 

pattern is outside of the goal of this work and has already been done by the sample grower, [125], 

[126] therefore we will not discuss a more precisely peak assignment and the width of the peaks. 

 

4.2 Raman Results 
 

The ERS spectra for the optimally doped sample are shown in Fig.4.5 (a,b). Here as explained 

before, the electronic and phononic contributions overlap, with sharp peaks being due to phonons 

and the electronic contribution giving the background. In the following discussion, the phonon 

peaks observed are of little interest. Phononic peaks are observed in both configurations. In B1g we 

have the phonon peaks at ≈110 cm-1, 255 cm-1 (which is the most intense) and 590 cm-1, while in 

B2g we have the phonon peaks at ≈115 cm-1, 380 cm-1, 460 cm-1and 580 cm-1. The lower frequency 

ones are associated with the heavier Sr or Ca ions vibrations, while the higher frequency ones are 

associated with the oxygen vibrations.[155] 

Moving on to the electronic contribution, for the antinodal B1g configuration in Fig.4.5 (a), going 

from room temperature (RT) to lower temperature there are two ways the spectrum modifies. The 

first is a suppression of spectral weight at low frequency below ≈600 cm-1, and the second is the 

appearance of the two peaks at higher frequency (≈560 cm-1 and ≈800 cm-1). As to the former, 

going from RT to 115K, we have the loss of spectral weight between 200 and 600cm-1 that is 

caused by the pseudogap opening.[134], [143], [156], [157] The pseudogap manifests itself in this 

manner in the Raman spectra, which is a subtle suppression of the spectral weight in the antinodal 

B1g configuration starting from the pseudogap energy value ωPG. Since this suppression is so 

minute, in this study we cannot draw strong conclusions on the value of the pseudogap energy. 

The suppression is evident at ≈600 cm-1, but it could start at higher energy such as 800 cm-1. For a 

better discussion on the pseudogap value by Raman, spectra with better signal to noise ratio must 

be taken at temperatures above and below T*, but this is outside the scope of this work. 
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Fig.4.5 Bi2223 Raman spectra for the OpD109 sample with TC=109K. a Antinodal B1g spectra. At 

low temperature a double pair breaking peak is visible. b Nodal B1g spectra. At low temperature a 

single pair breaking peak is visible. 

At T<Tc(=109K), a more dramatic suppression is observed below 500cm-1, which is due to the 

superconducting gap opening.  

The second change in the spectra is the appearance of the two peaks at ≈560 cm-1 and ≈800 cm-1 

below TC. As discussed before this kind of peaks are associated with the Cooper pair-breaking into 

two Bogoliubov quasiparticles with a transition across the superconducting gap, and are therefore 

associated with superconductivity. The new observation in this work is that, not one but, two pair 

breaking peaks are visible, and we attribute this to the double superconducting gap of Bi2223. 

Basing on the other techniques that found a signature of the double gap in Bi2223, which are 

ARPES[123] and NMR[130], the peak at lower energy is assigned to the pair-breaking peak in the 
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outer plane (OP) and the one at higher energy is assigned to that of the inner plane (IP). Such a 

double peak structure has never been reported so far in Raman spectra, and is in clear contrast 

with the single peak shown by the double layered Bi2Sr2CaCu2O8 Bi2212, [48], [49], [133]–[135] 

and the other double or single layered compounds[46], [47], [136]. As discussed in section 2.6, 

triple layer cuprates have been examined before by Raman,[137]–[141] but no signature of a 

double gap has been reported. Most of these work are quite old, therefore this may be due to 

sample quality issues or instruments limitations. However we note that in some recent data on the 

triple layer Hg1223 a double pair braking peak could be visible, although it was not identified by 

the authors[138].  

Unfortunately the oxygen phonon present at ≈590cm-1 is quite close to the OP superconducting 

peak at ≈560 cm-1 and this may create some confusion. For example it may mislead to think that 

the OP pair-breaking peak does not disappear above TC, even though this is not the case. Also it 

could lead to the idea that the double peak is an artefact, and that the lover peak is in fact just a 

phonon peak. However we strongly believe that this is not the case for multiple reasons. Firstly, 

the difference in frequency between the phonon peak above TC and the peak at low temperature 

is quite large, too large to be a simple phonon shift induced by temperature. Secondly, the peak at 

low temperature is too broad (≈100 cm-1) to be a phonon peak. In general, phonons become 

sharper, not broader with lower temperature. Finally the intensity of this peak is too big with 

respect to the small phonon peak above TC and this is even more evident in the overdoped sample, 

which is discussed later and shown in Fig.4.6 (a). 

We have carefully measured the temperature dependence of the spectra to check whether the 

two peaks start to develop at different temperatures or not (see Fig.4.5 (a)). However, within our 

measurement resolution, no clear difference was observed in the onset temperature for the peak 

development. The density of Cooper pairs at temperature just below TC is low, making the signal 

weak, and therefore no peak is visible at 100K, and at 80K the two peak are both visible even if 

extremely weak. This assessment is furtherly complicated by the oxygen phonon at ≈590cm-1 

which may conceal the appearance of the OP peak. Therefore the simultaneous appearance of 

these two peaks may be an artefact created by experimental limitation; however it may also be 

the real behaviour of the sample. In that case it indicates that the two superconducting gaps open 

simultaneously, although the doping is different in the IP and in the OP. In NMR data on different 

multilayer samples it seems that even though the TC of the two layer is different, the layer with 

higher TC drives the other layer to superconductivity.[9] However, since these data are on powder 

samples, and not single crystal, it is still an open problem to understand if superconductivity 

appears at the same temperature on the two layers. 

On Fig.4.5 (a) the peak position is marked with red and blue dashed lines for the OP and IP 

respectively. These peak positions have been extracted from the subtracted intensity plot, which 

will be discussed later on, in Fig.4.7. These energy values found for the B1g peak positions in the 

optimally doped sample are roughly in good agreement with the ARPES data from Ref. [123]. 

The nodal B2g spectrum for the optimally doped sample is shown in Fig.4.5 (b). Here at 10K a 

double pair–breaking peak is not visible. Instead a single, very broad peak appears. It is expected 
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Fig.4.6 B1g and B2g Raman spectra of Bi2223 for OvD109 (a,b), OpD109 (c,d), UnD105 (e,f) and 

UnD88 (g,h) samples. The OP and IP peak positions are indicated by blue and red dashed lines, 

respectively in panels a, c and e. The single peak observed in the B2g configuration is indicated by a 

green dashed line in panels b, d, f and h. The precise peak positions have been extracted by the 

subtracted intensity plot in Fig.4.7 

that due to the smaller values of the superconducting gaps in the nodal region and the originally 

broad feature for B2g, the two peaks, even if they exist, overlap with each other, forming a single 

broad peak. 

In Fig.4.6 the B1g and B2g Raman spectra for all the samples examined are shown, going from the 

overdoped sample (OvD109) on the left to the strongly underdoped one (UnD88) on the right. In 

Fig.4.6 (a) the antinodal B1g spectra for the OvD109 sample is shown. Here the double pair 

breaking peak structure is observed and is even more intense and clearer than the one in the 

optimally doped sample. When the doping level slightly increases, the double B1g peaks are 

observed at slightly lower energies than the ones of the optimally doped sample (see Fig.4.6 (a) 

dashed lines compared with Fig.4.6 (c) dashed lines). The pseudogap opening is still visible in the 

overdoped sample going from RT to 115K, as a small suppression of the low energy spectral 

weight. In B2g configuration also in the overdoped sample a single pair breaking peak appears, and 

this is visible in Fig.4.6 (b). In contrast with the B1g peaks, the B2g peak appears at almost the same 

energy or a slightly lower energy than in OpD109, as shown in Fig. 4.6 (b). The differences 
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between the spectra of OpD109 and OvD109 proves, together with the differences in the c-axis 

length extracted from XRD, that the doping levels of these two samples are different although the 

Tc values are almost the same. 

Next, in Fig. 4.6 (e) and (f), the spectra for the slightly underdoped sample (UnD105) are shown. In 

the low temperature B1g spectrum in Fig. 4.6 (e), the double peak feature is still visible, even 

though not as clearly as in the optimally and overdoped sample. Again the pseudogap opening is 

visible as a suppression of spectral weight between 200 and 500cm-1, going from RT to 115K. In 

the B2g configuration in Fig. 4.6 (f), a strong but broad single peak is visible at 10K. 

Figures 4.6 (g) and (h) show the spectra for the strongly underdoped sample (UnD88). Here in the 

B1g configuration in Fig.4.6 (g) no pair breaking peak seems visible. This is likely to be due to the 

suppression of the B1g Raman intensity in the underdoped region which was reported in the other 

cuprates and particularly in the previous reports for Bi2212[47]–[49], [135]. It can be explained 

with the confinement of Cooper pairs in the nodal region with underdoping[50] which, as 

discussed previously is likely to be caused by the pseudogap. This is consistent with the 

tunnelling[51], [52] and the ARPES data[53]–[55]. Here the pseudogap opening is clearly visible 

when the temperature decreases. Contrary to B1g, the pair-breaking peak in nodal B2g 

configuration is clear and intense, as it can be seen in Fig.4.6 (h), and this was also shown by 

previous reports for the other single and double layer cuprates, and is visible in the right panel of 

Fig.2.22. Since the pseudogap is an antinodal phenomenon it is expected that the suppression with 

underdoping influences mainly the antinodal B1g peak but little the nodal B2g Raman pair breaking 

peak. 

To better view the redistribution of spectral weight due to superconductivity, we subtract the 

spectra just above Tc from the 10K spectra. This is shown in Fig.4.7(a) and (b) for the B1g and B2g 

configuration, respectively. In Fig.4.7 (a) for the B1g spectra the double peak structure can be seen 

more clearly for most of the samples. For the slightly underdoped sample the double peak 

structure, which was not so clear from the raw spectra in Fig.4.6 (e), becomes evident. For the 

strongly underdoped sample although a peak was too weak to be seen in the raw data, it becomes 

visible in Fig.4.7 (a). On close inspection this peak is visible also in Fig.4.6 (g) even though it is 

extremely weak. We attribute this to the pair-breaking peak of the outer plane OP. Considering 

that the inner plane IP should be more underdoped than the OP and therefore suppressed more, 

it is reasonable that the IP pair-breaking peak does not appear, and only the OP peak is visible. 

From this figure we can extract the peak positions more precisely, since we are cancelling the 

phonon contribution, almost entirely, with the exception of their modifications due to the change 

in temperature, and we are eliminating the electronic contribution not caused by 

superconductivity. The extracted peaks positions are indicated by the dashed lines. For the B1g 

configuration the maximum of the subtracted spectra was taken as the peak position, whereas for 

B2g configuration this approach would lead to big uncertainty due to the broad peak. Therefore for 

B2g configuration we defined the peak position as the middle point between the two frequencies 

where the intensity is half the maximum value. From this figure we also defined error bars for the  
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Fig.4.7. Low temperature Raman spectra of all samples after the subtraction of the spectra just 

above TC. The peaks positions are extracted from this figure and indicated by the dashed lines. a 

Antinodal B1g high-T subtracted spectra. The double peak structure becomes clear for the OvD109 

sample, OpD109 sample and the UnD105 sample. The peak of the OP becomes visible for the 

UnD88 sample. b Nodal B2g high-T subtracted spectra.  

peaks positions, as the frequency where the 50% and 75% of the maximum intensity value of the 

peak is reached, for B1g and B2g respectively. While the B1g peak monotonically shifts to higher 

energy and loses intensity with lower doping, both for IP and OP, the B2g peak shifts to lower 

energy when going from the optimal to the underdoped samples. This opposite doping 

dependence of the peak position in the underdoped regime is consistent with the previous reports 

for the double and single layer cuprates and is commonly referred as two energy scale 

behaviour,[46]–[49] which was discussed in the previous sections. However, to better discuss the 

doping dependence, we need to determine the actual layer doping for each of the IP and OP, and 

this will be discussed in the next section. 
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4.3 Average and Layer doping determination 
 

As discussed in the previous sections, in multilayer cuprates with 3 or more Cu-O layers the IP and 

OP layers doping levels are different and do not correspond to the average sample doping. In 

order to visualize the doping dependence of the two energy gaps, we need to estimate the doping 

level of the IP and OP for all the samples. For the optimally doped sample the available NMR 

data[130] provide an estimate of the IP and OP doping levels, basing on the Cu Knight shift, which 

depends on the carrier concentration around the Cu atoms. A linear relationship between doping 

and Cu Knight shift was observed and calibrated for the other cuprates of known doping.[9] This 

relationship was used to calculate the layer doping of the IP and OP in the optimally doped Bi2223, 

finding the values of p(OP)=0.203 and p(IP)=0.127, respectively. Therefore for the optimally doped 

sample these two experimental values can be used. 

For the other samples, since such measurements are not available, a way to evaluate the layer 

doping is needed. For this we start by estimating the average sample doping. For the underdoped 

samples this can be done from the decrease of TC. The parabolic relationship between TC and the 

average sample doping p, was used since the early days of the research on cuprates and is 

expected to be valid, even if it could be a rough approximation, especially for triple layer cuprates. 

This is given by: Tc/Tc,max=1—82.6 (p-0.16)2 [35], [36]. From this formula, assuming that the 

optimally doped sample average doping is pAVERAGE,OpD=0.16 we can obtain the average sample 

doping for the two underdoped samples pAVERAGE,UnD. To obtain the layer doping, we assume that 

the doping shift of each layer from the average doping of the sample does not change with the 

sample. Therefore we can calculate this shift for the optimally doped sample as: 𝛥𝑝𝑂𝑝𝐷(𝑂𝑃) =

0.203 − 0.16 = 0.043 and 𝛥𝑝𝑂𝑝𝐷(𝐼𝑃) = 0.16 − 0.127 = 0.033. Assuming that 𝛥𝑝(𝑂𝑃 ) and 

𝛥𝑝(𝐼𝑃) are constant, we can calculate the layers dopings as: 

𝑝𝑈𝑛𝐷(𝑂𝑃) =  𝑝𝐴𝑉𝐸𝑅𝐴𝐺𝐸,𝑈𝑛𝐷 + 𝛥𝑝𝑂𝑝𝐷(𝑂𝑃 )      (4.1) 

𝑝𝑈𝑛𝐷(𝐼𝑃) =  𝑝𝐴𝑉𝐸𝑅𝐴𝐺𝐸,𝑈𝑛𝐷 − 𝛥𝑝𝑂𝑝𝐷(𝐼𝑃)      (4.2) 

This may be a rough way to determine the layer doping, but we expect it to be valid as a first 

approximation. 

For the slightly overdoped sample, since the Tc is the same as the optimum value, we cannot use 

this method to estimate the doping level. As an alternative way, we can use the c-axis lattice 

parameter determined by XRD. Assuming that the c-axis length is linearly proportional to the 

doping level (oxygen content), we can determine the average doping also for the overdoped 

sample. We firstly plot the pAverage value versus the c-axis length for the optimally doped sample 

and the two underdoped sample, and this is shown in Fig.4.8 (blue dots). By fitting these known 

points with a linear function (red line in Fig.4.8), we can extrapolate the obtained function to the 

c-axis length of the overdoped sample, obtaining the average doping of the overdoped sample 

(red dot in Fig.4.8). With this estimated value (pAverage,OvD ≈ 0.1697) we can calculate the layers  
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Fig.4.8 Average doping of the samples versus the c-axis length. The 3 blue point represent the 

optimally doped and underdoped samples where the average doping was obtained from the 

parabolic relationship between TC and p. The red line is the linear fit of these 3 points. The red dot 

is the average doping of the overdoped sample obtained assuming the linear fit. 

 

Sample Name pAVERAGE p(OP) p(IP) 

OvD109 0.1697 0.213 0.137 

OpD109 0.16 0.203 0.127 

UnD105 0.1389 0.182 0.106 

UnD88 0.1117 0.155 0.079 

 

Table 4.3 Summary of all the assumed or calculated dopings for all the samples, including the 

average doping, the OP and IP layers dopings. 

dopings for the overdoped sample using the same formulas (4.1) and (4.2) for the OP and IP, 

respectively. The doping levels determined for all samples, both the average and the layer dopings, 

are summarized in Table 4.3. As it can be seen, according to our doping estimation, the outer 

plane is overdoped in all samples, except for the strongly underdoped one, where it becomes 

slightly underdoped. The inner plane is underdoped in all samples. In the strongly underdoped one 

the doping value p(IP)= 0.0787 is close to the minimal doping where superconductivity disappears 

pmin=0.05, therefore, it is reasonable that superconductivity is confined in the nodal region and no 

superconducting IP peak is observed in the antinodal B1g Raman spectra of this sample. 
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Using these layer doping values we can discuss properly the doping dependence of the double 

superconducting peak structure observed in the Raman spectra. 

 

4.4 Doping dependence of the Raman peaks 
 

We use the layer doping values determined in the previous section (and summarized in Table 4.3) 

to plot the B1g pair-breaking peak energy as a function of the Cu-O layer doping in Fig.4.9. Since 

the double peak structure is not observed in B2g, we can only plot the energy value of the single 

B2g peak as a function of the average sample doping and not of the layer one. 

Both IP and OP B1g peak energies increase with decreasing doping, as expected from the previous 

reports on different cuprates. [46]–[49] However, here the striking result is that, when the 

difference in doping between the two layers is taken into account, the B1g peak energies of the IP 

and OP align on a single line. This is surprising since the two layers are chemically inequivalent, but 

the peak energy does not seem to be affected by these differences basing on this result. In other 

words it seems that the doping level is the only parameter determining the peak energy. However 

this conclusion is based only on the doping values examined here, and a more solid evidence 

would come if overlapping doping levels for the two layers were available. Nonetheless this 

unifying picture of the behaviour of both layers is surprising and may not be incidental. 

The B2g peak energy seems to be following the superconducting dome, which is the expected 

behaviour of the single and double layer compounds as discussed in section 2.6. However, this 

could be an artifact and not the real behaviour for multiple reasons. Firstly, since the double peak 

structure is not resolved, we cannot separate the IP and OP peaks energies. The different doping 

levels of these two layers mean that two different doping dependences could be overlapping, 

giving an artifact doping dependence. Additionally the originally broad B2g peak gives strong 

uncertainty on the peak position determination, and this can be seen in the large error bars in 

Fig.4.9. Finally it must be considered that we did not examine a large doping window with our four 

samples, which is necessary to reveal a clear dome shape in the case of other single and double 

layer cuprates. For all the above reasons we believe that we cannot draw strong conclusions on 

the B2g doping dependence. 

The present result is, to our knowledge, the first doping dependent spectroscopic study on the 

triple layer Bi2223. The doping dependence found here is qualitatively consistent with the reports 

on the single and double layer cuprates [46]–[49]. Namely, the two energy scale behavior 

discussed in section 2.6 has been confirmed also in the triple layer compound. As discussed in 

section 2.6, the continuous increase of the superconducting B1g peak energy with decreasing 

doping is strange, if we consider that the nodal ARPES gap, which is commonly associated with 

superconductivity, was found to be constant over a broad range of doping[2] (see Fig.2.10). This 

problem is common for the triple layer and the single and double layer cuprates, since the same 

doping dependence has been found. A possible explanation for this inconsistency is to assume a  
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FIG. 4.9 Doping dependence of the pair breaking peak energy. The antinodal B1g energy is plotted 

using the estimated OP and IP doping. The B2g peak energy is plotted as a function of the 

estimated average doping. The dashed line and curve are the doping dependence curves taken 

from Fig.2.22 taken from Ref. [47] where the peak energy of single and double layer cuprates 

collapse when divided by Tc,max . 

certain degree of positive interaction between superconductivity and the pseudogap or strong 

correlation called “Mottness”. The deviation from d-wave gap in the antinodal region is normally 

associated with the pseudogap and, as discussed previously, this deviation and therefore the 

antinodal gap increases with lower doping, as indicated by ARPES[43], [44]. However, since this 

deviation is assumed to be due to the pseudogap, it should not influence the superconducting 

Raman peak energy, and this is supported by the fact that with decreasing doping the B1g peak 

disappears gradually, due to the competitive relationship with the pseudogap. If, on the other 

hand, we assume some degree of interaction between superconductivity and the pseudogap, even 

though superconductivity is suppressed, the superconducting gap value could be enhanced by the 

increasing pseudogap in the antinodal region, and this could explain the increasing B1g peak energy 

with lower doping. In this picture superconductivity and the pseudogap do compete with each 

other, explaining the loss of the B1g peak intensity, but at the same time they have some degree of 

positive interaction, explaining the increasing B1g peak energy. 

Here we also introduce another scale in the right axis of Fig.4.9, the peak energy (PE) divided by 

kB*Tc,max , which should be close to 3.5 in a BCS superconductor if the PE corresponds to a double 

of the gap energy Δ. In Ref. [47], it was demonstrated that this ratio of various single and double 

layer compounds collapse on a universal doping dependence, and this plot is shown in Fig.2.22. 

This universal doping dependence is plotted with dashed lines in Fig.4.9 both for B1g and B2g 

configurations. It is clear from this figure that for both B1g and B2g the PE/kB*Tc,max ratios are larger 
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in Bi2223 than the ones for the other single or double layered cuprates. This suggests a larger 

energy scale of the pair-breaking peak, compared with Tc in Bi2223. 

The characteristic feature of Bi2223 with respect to the other single and double layer cuprates of 

Fig.2.22 is the coexistence of different doping layers in a unit cell, where the lower doping CuO-

layer (IP) is sandwitched by the higher doping CuO-layers (OP) as discussed in the previous 

sections.  

The high Tc value and the large gap energy could be attributed to this feature, and are therefore 

likely to be multilayer effects. Experimentally we observe only a single superconducting transition, 

but not a double step transition, with the two Raman peaks appearing at the same temperature. It 

means that the IP and OP are not completely independent but interact with each other, although 

the result in Fig.4.9 seems to suggest that each layer behaves independently, showing no 

difference in their doping dependence which seemingly collapse on a single line.  

Both of the high Tc (as previously discussed in section 2.4) and the large pair-breaking energy of 

Bi2223 can be discussed in terms of the multilayer effect. Firstly a high Tc value could be achieved 

on the IP due to the protection from the blocking layer disorders[8] or due to the appropriate 

next-nearest-neighbor hopping parameter t’[7], which originally gives a large gap value of the IP in 

a whole doping range. The IP gap might be further enhanced due to the previously proposed 

positive interaction with pseudogap, which should be strong on the IP due to the low doping level 

of this layer. In addition the OP gap could be also enhanced through the interlayer tunneling of 

Cooper pairs.[158] This effect may increase the OP gap value and decrease the IP gap value which 

is enhanced by the effects discussed above, and this would average out the two gaps value, giving 

two enhanced IP and OP gaps that align on a single doping dependence as seen in Fig.4.9. Another 

effect of this interlayer coupling may be the enhancement of the superfluid density of the 

underdoped IP, and the combination of these effects may lead to the high Tc of Bi2223, and other 

triple layer cuprates. 

In doing these considerations on the TC, in addition to these positive effects, we need to consider a 

negative effect of the pseudogap on superconductivity. Since the TC is suppressed by the 

pseudogap in general, it is likely that the bulk TC of Bi2223 is lowered by the pseudogap which 

should be strong in the underdoped IP. The combination of these two kind of effects, namely the 

enhanced gap energy together with the suppressed TC can explain why the ratio of PE/kB*Tc,max 

observed in Fig.4.9 is much larger in Bi2223 than in the other single and double layer cuprates of 

Fig.2.22. 
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5: Analysis based on ARPES 

5.1 Bi2212 Analysis 

5.1.1: Calculation Input preparation 

 

To calculate the Raman spectra starting from the ARPES data using the Kubo formalism, described 

in section 3.3, the first step is the treatment of the ARPES raw data. The samples that were 

analysed, both by ARPES and Raman, are one overdoped (TC=85K), one optimally (TC=92K) and one 

underdoped (TC=75K) sample named OD85K, OP92K and UD75K, respectively. The ARPES data are 

obtained by synchrotron radiation ARPES for the optimally doped and underdoped samples and by 

He lamp ARPES for the overdoped sample. The ARPES and Raman experiments for the Bi2212 

samples were performed by my colleagues from my same laboratory (Tajima Lab. Osaka 

University). The experimental details of said ARPES experiments have been reported in section 3.4 

and will not be repeated here. 

Firstly the Fermi vector kF must be identified, and this was done by inspection of the momentum 

distribution curves MDC for as many ARPES cuts as possible. This procedure can be successfully 

performed only in the nodal and intermediate region, since the band is dispersive in these areas of 

the momentum space. On the other hand this cannot be done in the antinodal ARPES cuts, since 

the band becomes flat and non-dispersive in these areas of the momentum space due to strong 

correlation effects, and this can be seen clearly for all the samples ARPES cuts in Fig.5.2, Fig.5.4 

and Fig.5.6. For these antinodal cuts the kF position was obtained later through the tight binding 

fits. The experimental ARPES angles of acquisition, which determine the positon of the data in the 

momentum space, are subject to experimental errors, therefore these must be corrected, through 

the procedure of ARPES mapping. For this procedure a large fast scan over the one whole Brillouin 

zone was taken, and the angles were corrected by ensuring the correct symmetry of the kF 

positions. The higher resolution data which are used for the calculation are corrected to be 

consistent with the kF positions of the faster scan. 

The result of our ARPES Fermi surface mapping can be seen in Fig.5.1, Fig.5.3 and Fig.5.5 for the 

optimally doped, underdoped and overdoped samples, respectively. Thanks to the symmetry of 

the cuprates, only half of a Brillouin zone quadrant must be measured for the calculation, and the 

present data span this area almost entirely, with only a small area missing close to the nodal 

region and the Γ point in the dataset for the optimally and underdoped sample. 

In Fig.5.2, Fig.5.4 and Fig.5.6 we show all of the ARPES cuts for the optimally, underdoped and 

overdoped sample, respectively. Here the profile of the bands along the cut, starting from the Γ-M 

line can be seen, and the evolution of the band from the nodal to the antinodal region is visible. 

The opening of the superconducting gap can be clearly seen going from the ungapped nodal cuts 

to the antinodal cuts where the gap is the largest. As discussed earlier, ghost bands which are 

created by the modulation of the Bi-O layers are present in the ARPES data of Bi2212,[129] and are 

also observed here. The ghost band intensity must be avoided, and this is easily done by the  



 

66 

 

Fig 5.1 ARPES data mapping for the optimally doped sample, the extracted Fermi vectors are 

represented by the purple diamonds. 

 

Fig.5.2 ARPES cuts for the optimally doped Bi2212 sample, going from the node in C1 to the 

antinode in C8 
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Fig.5.3 ARPES data mapping for the underdoped sample, the extracted Fermi vectors are 

represented by the purple diamonds. 

 

Fig.5.4 ARPES cuts for the underdoped Bi2212 sample, going from the node in C1 to the antinode 

in C9 
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Fig.5.5 ARPES data mapping for the underdoped sample, the extracted Fermi vectors are 

represented by the purple diamonds for the antibonding band AB and by the red diamonds for the 

bonding band BB. 

 

Fig.5.6 ARPES cuts for the overdoped Bi2212 sample, going from the node in C1 to the antinode in 

C10. Two bands are present due to the multilayer band splitting: the bonding BB and antibonding 

AB bands.  
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correct choice of BZ quadrant. Additionally, some of the well-known anomalies of the bands are 

observed here, like the kinks in the band dispersions and higher energy features below the main 

band in the antinodal region.[159]–[161] These anomalies are likely to be due to strong correlation 

effects, and, in the case of the kinks, to electron phonon interaction. These present an obstacle for 

the calculation since: firstly the tight binding cannot model them, and second since the high 

energy intensity in the antinodal region will be a mixture of ARPES background and real signal that 

should contribute to the Raman spectra and these two must be separated for the calculation. 

In the overdoped sample the previously discussed band splitting is visible, as it can be seen in 

Fig.5.5 and Fig.5.6. The lower energy band is the bonding band (BB) while the higher energy band 

is the antibonding band (AB). Both bands should contribute to the Raman spectra, therefore in this 

work their contribution to the spectra was calculated separately and then summed up. 

Using the kF determined experimentally from the MCD inspection, we performed a tight binding 

fitting of the bands. The tight binding function can be used as a rough approximation of the bare 

band of the superconductor in the normal state above TC. As previously discussed, the anomalies 

of the bands caused by strong correlations, like the kinks and the flat dispersionless bands in the 

antinodal region, cannot be modelled by the tight binding function. However, we expect it to be 

valid as a first approximation. Recalling here the formula used for the tight binding fit: 

𝜉𝒌 = −2𝑡(cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎) + 4𝑡′ cos 𝑘𝑥𝑎 cos 𝑘𝑦𝑎 − 2𝑡′′(cos 2𝑘𝑥𝑎 + cos 2𝑘𝑦𝑎) − 𝜇   (5.1) 

Here the free parameters are 𝑡, 𝑡′ and 𝜇 while the next-next nearest neighbor hopping parameter 

𝑡′′ was fixed for simplicity to be half of the next nearest neighbor hopping parameter𝑡′. To fit both 

band in the overdoped sample the simpliest band splitting term was used: 

𝐸𝑏𝑖 = −
𝑡⊥

4
(cos 𝑘𝑥𝑎 − cos 𝑘𝑦𝑎)

2
       (5.2) 

The points used for the fitting are the experimentally determined kF and a band bottom value at Γ 

taken from literature. The resulting fit parameters are summarized in Table 5.1. 

The obtained band functions are shown along the ARPES cuts in Fig.5.7, and the obtained Fermi 

surface are shown together with the experimental kF in Fig.5.8. The obtained fitting parameters 

are roughly consistent with the previous reports.[21] The bilayer splitting term is quite large 

compared to the values found in literature. The experimental kF position is quite well reproduced  

 t (eV) t’ (eV) t’/t u (eV) t’’ (eV) t ┴ (meV) 

UD fit02 0.27860 0.07535 0.27046 -0.25528 t’/2 n.a. 

OP fit08 0.29328 0.073758 0.25150 -0.32714 t’/2 n.a. 

OD fit02 0.27551 0.06905 0.25062 -0.29590 t’/2 88.773 

 

Table 5.1 Summary of all the resulting fit parameters for all the Bi2212 samples. t’’ is fixed to be 

half of t’. The bilayer splitting term was applied only to the overdoped sample, where the band 

splitting is observed. 
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a 

 

b 

 

c 

 

Fig.5.7 Tight binding fit results along the ARPES cuts for a the optimally doped, b the underdoped c 

the overdoped samples. The kF displayed are determined experimentally until cut 5, 6 and 9 for 

the AB and 10 for the BB in the 3 samples. After these cuts the kF displayed are determined from 

the tight binding function in the antinodal region. 
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as it can be seen in Fig.5.7 and Fig.5.8. In Fig.5.7 both the experimental kF position, in the nodal 

and intermediate region, and the kF position determined from the tight binding, in the antinodal 

region, are shown. The kF determined experimentally are from the first cut to cut 5, 6 and 9 for the 

AB and 10 for the BB in the optimally underdoped and overdoped samples, respectively. From this 

figure it can be seen how the tight binding fails to model the anomalies of the band. In particular, 

the kink in the band around -0.05 eV and the flat dispersionless band in the antinode cannot be 

modelled. However this is sufficient for the present calculation. 

In Fig.5.8 we can see how the Fermi surface shifts towards the origin of the Brillouin zone with 

increasing doping, even if there is only a small shift going from the optimally doped to the 

overdoped sample. In doing this consideration, for the overdoped sample the band with no bilayer 

splitting term can be considered, since this term shifts the AB band towards Γ and the BB band 

away from it. This shift of the Fermi surface towards the origin of the BZ with increasing doping is 

the expected trend and shows that the mapping and the tight binding have a consistent doping 

behaviour. If we recall the Kubo formula: 

𝜒𝛾Γ
′′ =

2

𝜋𝑉
∑ 𝛾𝒌𝛤𝒌 ∙ ∫ (𝑓𝜔 − 𝑓𝜔+𝛺)

∞

−∞𝒌

𝐺𝒌,𝜔
′′ 𝐺𝒌,𝜔+𝛺

′′ (1 −
Δ𝒌

2  

(𝜔 + 𝜉𝒌)(𝜔 + 𝛺 + 𝜉𝒌)
)       (5.3) 

we see how the tight binding has multiple uses in this calculation. Not only the calculated function 

enters directly as the bare band function 𝜉𝒌, but it is also used to obtain the kF positions in the 

antinodal region. Additionally the tight binding function is also used to determine the 

superconducting gap value along the cut ∆𝒌. This is done by obtaining the position of the band at 

low temperature and calculating ∆𝒌 as the quadratic difference between the tight binding and the 

low temperature band. This is seen in Fig.5.9 where the calculated ∆𝒌 is shown along the ARPES 

cut by the green curve, together with the tight binding function and the experimental low 

temperature band. Here it is again evident how the tight binding fails to model the flat dispersion 

towards the antinode. However this is not problematic for the calculation, since the tight binding 

enters in the Kubo formula (5.3) only when ∆𝒌≠ 0 as the bare band 𝜉𝒌. Therefore by using a ∆𝒌 

function as the one shown in Fig.5.9, which is non-zero only between kF and the point where the 

superconducting experimental band and the tight binding band have the same value, the 

limitations of the tight binding will not influence the calculation. The tight binding function enters 

in the equation only in a limited region of the momentum space, where the superconducting gap 

opens, therefore even if the tight binding is not a good model the real band, we can expect it to be 

a valid first approximation of the bare band in this limited momentum region. 

The calculation is done for each ARPES cut between the Fermi vector and the point where the cut 

reaches the (0,0)-(π,π) line in the momentum space. This calculation interval is shown in Fig.5.9 by 

the two vertical white lines. The weight of the band quickly becomes zero after kF, therefore as a 

first approximation it was not considered. The background was subtracted from these EDCs inside 

the calculation interval, using the Shirley background shown in the equation (3.12) in an iterative 

matter, as seen in Fig.3.7, and assuming that the intensity at the highest binding energy is 

completely composed by background. As mentioned early, a difficulty comes from the fact that  
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Fig.5.8 Resulting tight binding fit Fermi surface together with the experimentally obtained Fermi 

vectors for all the samples. For the overdoped sample the AB and BB bands are shown together 

with the band with no bilayer splitting term (red dotted line) 

 

Fig.5.9 Example of superconducting gap ∆𝒌 calculation along the cut (green line), and other inputs 

for the calculation. The tight binding function is shown by the red curve, the low temperature 

experimental band by the green cross marks and their interpolating function. The calculation 

interval is between the two vertical white lines. 
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the high energy anomalies in the antinodal region introduce some uncertainty. For example, how 

much the high energy intensity is composed by background, and how much by the anomalies that 

should contribute to the Raman signal. This could cause some uncertainty on the intensity of the 

high energy side of the calculated Raman spectra, with respect to the intensity of the peaks that 

are given by the band at the lower energy. The Green function 𝐺𝒌,𝜔
′′  is obtained from the ARPES 

intensity with the equation (3.10) and (3.11), assuming the matrix element to be constant. Since 

the Green function of the unoccupied states is needed for the calculation, a symmetric behavior of 

the band with respect to the Fermi level was assumed. This should be valid in the case of a 

particle-hole symmetric superconducting band. Therefore the EDCs were symmetrized with 

respect to the zero energy. The intensities of the all ARPES cuts were normalized by the maximum 

intensity value of the EDC at the Fermi vector kF. This together with the assumed constant matrix 

element, means we are assuming initially a constant intensity profile along the Fermi surface. 

The intensities of the two bands of the overdoped sample were separated to calculate their 

contribution to the Raman spectra separately. This was done by fitting the EDCs with 3 Gaussian 

peaks. Two peaks were used to fit one band each, while the remaining peak was used to fit the 

high energy features. An example of a similar EDC fit is shown in Fig.5.19 in the similar case of the 

inner plane and outer plane bands of Bi2223. The fit was done initially with completely free 

parameters; however this leads to good results only for the EDCs where both bands are clearly 

observed. For the EDCs where one of the two bands intensities is weak a different approach is 

needed. In this case the band position was fixed by examining the ARPES cuts and the peak 

position extracted by the fit in the EDCs where the intensity was strong enough. The width of the 

bands was also fixed by assuming a linear relationship between the width and the binding energy, 

and the slope of this relationship was assumed by observing the results of the fit where both band 

were intense enough. At low binding energy this linear relationship is not valid, therefore an 

appropriate width had to be assumed for the more nodal cuts at low binding energy, and this was 

again done by observing the results of the fit where the intensity was appropriately high. The 

results of these EDC fits are shown in Fig.5.10. As it can be seen from these obtained intensity 

images, the bonding and anti-bonding bands have been successfully separated in the region where 

they overlap. The abrupt change of intensity where the fit ends could not be avoided 

unfortunately. This is due to the intensity of one of the bands becoming too small to be fitted at 

that point. This residual may introduce some unwanted intensity in the calculation, but the effect 

should be small compared to the intensity given by the rest of the band. The high energy 

incoherent contribution was also fitted, and was inserted either in the BB or in the AB intensity, 

with attention not to double count this contribution in the momentum position where both bands 

contribution to the Raman spectra was calculated. 

The ratio of the intensity of the two bands is an additional parameter in the case of multiple bands. 

The ARPES intensity can change heavily between two different bands because of the matrix 

element and the previously discussed orbital selectivity. Therefore this ratio is heavily influenced 

by experimental conditions such as photon energy and photon polarization. In this calculation, in 

order not to add too many different free parameters, we normalized the ARPES intensity of the  
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Fig.5.10 ARPES cuts after the subtraction of the fitted BB intensity (first row) and after the 

subtraction of the fitted AB band intensity. These intensities were used for the AB and BB 

calculations respectively. 

two bands and sumed them up, therefore we performed the calculation assuming a band ratio 

equal to 1 for simplicity. 

 

5.1.2: Calculation Results and Discussion 

 

The results of the Bi2212 calculations assuming constant intensity profile along the Fermi surface, 

for all the samples, both in B1g and B2g configuration, are show in Fig.5.11 together with the 

experimental Raman spectra for these same samples. 

Starting from the optimally doped sample, it can be seen in Fig.5.11 (c,d) that we obtain a good 

reproduction of the experimental Raman spectra. For the B1g configuration in Fig.5.11 (c) we 

obtain a good reproduction of the peak position, which is only slightly overestimated. Regarding 

the shape of the calculated spectra we have only a small underestimation of the intensity at low 

frequency (below 350 cm-1) and a small overestimation at higher frequency than the peak (at 650 

cm-1), therefore we have an overall really good reproduction of the shape of the experimental 

peak. The same can be said for the B2g configuration spectra shown in Fig.5.11 (b). The overall 

shape is well reproduced, with only a small underestimation at low frequency (below 250 cm-1) 

and a small overestimation at higher frequency (above 650 cm-1). The peak position seems to be 

well reproduced, even though the peaks, both the experimental one and the calculated one, are 

really broad, and therefore there is a big error margin.  
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For the overdoped sample, the calculated and experimental Raman spectra are shown in Fig.5.11 

(a) and (b) for the B1g and B2g configuration, respectively. Here both the AB and BB contribution is 

shown, with magenta and green dashed lines, respectively. Their contribution summed up with 

band ratio equal to 1, as discussed earlier, is shown by the red curve. In B1g configuration in 

Fig.5.11 (a) the calculated AB and BB contribution are not so different between each other and  

 

Fig.5.11 Experimental Bi2212 spectra together with the calculated spectra using the Kubo formula 

and assuming constant profile along the Fermi surface, for the overdoped sample in a B1g and b B2g 

configuration the optimally doped sample in c B1g and d B2g configuration and for the underdoped 

sample in e B1g and f B2g configuration. In the overdoped sample panels a and b both the AB and 

BB bands calculated contributions are shown by magenta and green dashed lines respectively. 

Here the red solid line represents the total contribution of both bands summed up with 

normalized intensity and band ratio equal to one. 
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quite similar to the experimental spectra. In both cases the peak position is slightly overestimated; 

therefore the summed calculated spectrum also overestimates the peak position. The intensity at 

high frequency is slightly overestimated in the AB band calculated spectra, and underestimated in 

the BB calculated spectra, but the total calculated spectra estimates quite well the ratio between 

intensity of the peak and high energy intensity. In B2g configuration in Fig. 5.11 (b) the AB and BB 

bands show quite different calculated spectra. The BB peak position is quite good, with only a 

small overestimation of the peak position, while the AB calculated spectra shows a broad feature 

at high frequency in place of the peak. As in B1g the high energy intensity is overestimated for the 

AB band but underestimated by the BB band. The total spectrum on the other hand, reproduces 

quite well the experimental B2g spectra, overestimating only slightly the peak position and 

reproducing well the shape of the experimental spectra. Overall we can conclude that the 

experimental spectra of the overdoped sample are quite well reproduced, with only a small 

overestimation of the peak position, in both B1g and B2g configurations.  

In Fig.5.11 (e,f) the underdoped calculated spectra are shown, and as it can be seen, we cannot 

reproduce well the shape of this sample spectra. For the B1g spectrum in Fig.5.11 (e) we can see 

how the peak position is significantly overestimated, and this leads to a strong underestimation of 

the intensity at frequency lower than the peak frequency. It follows that the overall shape is not 

well reproduced. A similar situation presents itself in the B2g configuration in Fig.5.11 (f). Again the 

peak position is overestimated and this lead to an underestimation of the intensity at frequency 

lower than the calculated peak. Also in this case the overall shape is not well reproduced. 

Altogether we can conclude that a good reproduction of the experimental Raman peak was 

obtained, with the exception of the underdoped sample. The advantage of using the Kubo formula 

to calculate the Raman spectra starting from experimental ARPES data can be clearly seen when 

comparing these spectra to Kinetic theory calculation that use as input some assumed band profile. 

[38], [39] The overall shape is more realistic and the peaks are naturally broad as compared to the 

sharp peaks of the previous calculations. [47], [49], [142], [143] In the present work there is no 

need to introduce a scattering rate, which comes naturally from the experimental ARPES data. 

Another clear advantage of this approach is that here the anomalies of the band, such as the flat 

band dispersion in the antinodal region, are accounted for, unlike in the case of a calculation 

starting from an assumed tight binding dispersion. 

Our calculation fails to correctly describe the underdoped sample and the doping dependence of 

the peak position, since the energy of the peak is constantly increasing with decreasing doping for 

both B1g and B2g configurations. However this is likely to be an effect of the pseudogap. As 

previously discussed in section 2.7 to correctly describe the underdoped sample peak position, a 

special profile of the quasiparticle spectral weight ZΛ must be assumed.[47], [49], [142], [143] 

Here a decreasing weight is given to the antinodal region with decreasing doping, and this can give 

the correct B2g peak positions and therefore the correct doping dependence. This decreasing 

quasiparticle spectral weight in the antinodal region with lower doping is justified by the effect of 

the pseudogap, which suppresses superconductivity and confines the Cooper pairs in the nodal 

region with decreasing doping.[50]–[55] In our calculation the ARPES cuts were normalized.  
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Fig.5.12 Experimental and calculated Raman spectra with different linear intensity profiles for the 

overdoped sample in a B1g configuration and b B2g configuration. These spectra are given by the 

sums of the AB and BB contributions, which are summed up with a band ratio equal to one as in 

the previous calculation. 

Therefore, we considered a constant intensity profile along the Fermi surface. Additionally the 

matrix element was considered to be constant in the momentum, which is likely to be a rough 

approximation. 

To try to model these two effects we change the intensity along the Fermi surface and repeat the 

calculation. For simplicity, linear intensity profiles are assumed, where the kF positions are plotted 

against their d-wave positions |cos 𝑘𝐹,𝑥𝑎 − cos 𝑘𝐹,𝑦𝑎| and the intensity profile is assumed to be 

linear along this coordinate. In Fig.5.12 the calculation with different linear profiles for the 

overdoped sample, together with the experimental spectra are shown. These spectra are again 

obtained as a summation of the AB and BB bands contributions with a band ratio equal to one, as 

in the previous calculation for the overdoped sample. Here the nomenclature adopted for the 

intensity profile is N1ANx which means that the nodal value of the intensity profile is 1 while the 

antinodal value is x. x can be greater or smaller than one, enhancing or suppressing the antinodal  
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Fig.5.13 Experimental and calculated Raman spectra with different linear intensity profiles for the 

optimally doped sample in a B1g configuration and b B2g configuration. 

region. In the case x<1 the notation 0px is used which indicates an antinodal intensity of 0.x. In 

Fig.5.12 (a) the B1g calculated spectra for different linear profiles is shown. Here it can be seen that 

neither enhancing (magenta curve) nor suppressing (yellow curve) the antinodal region produces 

significant changes in the calculated spectra, with the only significant difference being the slightly 

enhanced high frequency intensity when the antinodal region is suppressed. The peak position is 

robust against modification of the intensity profile and there is no significant improvement in 

changing it. In Fig.5.12 (b) the B2g calculated spectra for the same linear profiles is shown. Here the 

modifications are more substantial when the profile is changed. The peak position does not seem 

to change, while the width of the peak increases when the antinodal region is suppressed (or vice 

versa decreases when it is enhanced). However this does not seem to produce significant 

improvement of the calculated spectrum, since, when suppressing the antinode, the low 

frequency intensity increases, improving the calculated spectra, but so does the high frequency 

intensity, decreasing the quality of the calculated spectra. Therefore also in B2g configuration there 

is no significant improvement in changing the profile. Considering that there is no improvement 

neither in B1g configuration nor in B2g configuration, and that the calculated spectra with linear  
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Fig.5.14 Experimental and calculated Raman spectra with different linear intensity profiles for the 

underdoped sample in a B1g configuration and b B2g configuration.  

profile already reproduces well the experimental one , we can simply consider the constant profile 

calculated spectra as the best one and as our final pick. 

In Fig.5.13 for the optimally doped sample the experimental and calculated with different linear 

profile spectra are shown. As it can be seen from Fig.5.13 (a) for the B1g configuration, the peak 

position is again robust against changes of the profile, with only a modification of the broadness of 

the peak. The suppression of the antinodal region causes the peak to become much broader, and 

this is accompanied by an overall worsening of the calculated spectra with respect to the 

experimental one. In B2g configuration in Fig.5.13 (b), the situation is similar to the overdoped B2g 

configuration case. Again the peak position does not seem to shift and we have a small broadening 

of the peak with decreasing antinodal spectral weight, accompanied by a small enhancement at 

lower and higher frequencies. As in the case of the overdoped sample, this is a small improvement 

for the lower frequencies but a worsening for the higher frequencies, and in total there is no 

significant improvement by changing the profile in the B2g configuration. Considering both 

configurations there is no improvement of the calculated spectra by changing the profile we can 
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pick the constant profile calculated spectra as our best fit also in the case of the optimally doped 

sample.  

For the underdoped sample the calculated spectra with different linear profiles are shown Fig.5.14 

together with the experimental Raman peak. In Fig.5.14 (a) the B1g configuration spectra are 

shown, and here a significant improvement can be seen. By suppressing the antinodal spectral 

weight the calculated peak position shifts to lower energy, getting closer to the experimental peak 

position. Additionally the intensity at lower frequency increases, and this is also an improvement 

of the calculated spectra, since the calculated spectra with constant profile underestimates the 

intensity at lower frequency. For the B2g configuration in Fig.5.14 (b) the improvement is minute. 

As in the cases of the other samples the B2g peak broadens, even if only slightly. This is again an 

improvement in the lower frequencies region and a worsening in the higher frequency region. 

However in this case of the underdoped sample this is a small improvement since the low 

frequency region, below the peak, is much larger and more significant than the one at high 

frequency above the peak. Therefore suppressing the antinodal region constitutes a minor 

improvement in the calculated B2g configuration spectrum. Altogether we obtain a major 

improvement in the B1g configuration spectrum and a minor improvement in the B2g configuration 

spectrum, therefore the antinodal suppressed profile N1AN0p1 can be taken as our pick of the 

profile that gives the best reproduction of the experimental spectra so far. The N1AN0p1 profile 

suppresses heavily the antinodal region, giving it an intensity of 0.1 as compared to the nodal 

region whose intensity is 1. 

This profile however, does not decrease the peak energy of the B2g configuration enough to  

 

Fig.5.15 Intensity profiles for all of the calculated spectra for the underdoped sample, the cyan and 

yellow profiles are the ones where the nodal intensity was suppressed. 
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Fig.5.16 Experimental and calculated Raman spectra with different intensity profiles for the 

underdoped sample in a B1g configuration and b B2g configuration. Nod. Sup. Stands for nodal 

suppressed, and these are the profiles shown in Fig.5.15 where the intensity of the most nodal cut 

was suppressed. 

reproduce the experimental observation, since the peak energy of this configuration 

monotonically increase with lower doping in the three samples. One possibility to try to improve 

the B2g configuration calculated spectra is, to suppress only the most nodal cut. The reason for this 

is that the most nodal cut gives a broad spectra which sometimes shows no peak, depending on 

the intensity profile of the band in the cut, and if the contribution of this cut is overestimated it 

could hide the peak feature of the B2g configuration in the calculated spectra and prevent us from 

improving the spectra with a change of the profile. Therefore we calculated the spectra with the 

suppression of the most nodal cut and with different linear intensity profile for the other cuts. The 

intensity profiles for all of the calculated spectra for the underdoped sample can be seen in 

Fig.5.15. The result of the calculation with these nodal suppressed profiles can be seen in Fig.5.16. 

From this figure we can see that the suppression of the nodal cut does not change neither the B1g 

nor the B2g calculated spectra drastically if we compare the normal constant profile in the red 

curve, with the constant profile where only the most nodal cut was suppressed in the cyan curve. 
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The B1g configuration is not affected since the Raman vertex makes this probe insensible to the 

nodal cuts. The B2g calculated spectra peak positon does not shift, but the peak becomes sharper, 

which is a small improvement. If we now apply a decreasing linear profile to the remaining cuts, 

therefore we use the N1AN0p1 profile, which improved the spectra, for all of the cuts, except for 

the most nodal one (which we keep suppressed) a great improvement of the spectra can be seen, 

and this is shown in Fig.5.16 by the yellow curve. The B1g configuration peak shift as the case of the 

N1AN0p1 profile, since this configuration is not affected by the nodal cut. However, in this case, 

also the B2g spectra is shifted to lower frequency, and this is a clear improvement, even if the peak 

position is still overestimated, and the low frequency intensity is still underestimated. The 

improvement is particularly significant because now the calculated B2g peak energy is lower than 

the optimally doped one, and therefore we are reproducing the correct doping dependence that 

was discussed in the previous chapters, and that is shown in Fig5.18. Comparing the nodal 

suppressed constant profile and the nodal suppressed N1AN0p1 profile (cyan and yellow curve in 

Fig5.16 and Fig5.15) we can see that the shift to lower frequency of both of the B1g and of the B2g 

calculated spectra peak is not due to the nodal cut suppression, but to the gradual decrease of the 

antinodal spectral weight with the N1AN0p1 profile. It is likely that in this dataset an excessive 

intensity of the nodal cut was hiding the shift of the B2g calculated spectra peak caused by the 

modification of the profile. Therefore the improvement of the peak and the reproduction of the 

correct doping dependence are due to the antinodal intensity decreasing profile. 

This result is analogous to the previous calculation results that use the kinetic theory[47], [49], 

[142], [143] in which the antinodal intensity must be suppressed in the underdoped sample to 

obtain a good reproduction of the B2g peak position and of the B1g peak intensity. Our result is 

slightly different in the sense that also the B1g peak position is particularly improved by this 

suppression, but this is most likely due to the different nature of our calculation, that takes as 

input experimental ARPES data. In these previous works this improvement with decreasing 

antinodal spectral weight was justified by the competition with the pseudogap, that suppresses 

superconductivity in the antinode with decreasing doping.[50]–[55] We believe that the present 

result can be explained in the same manner. In particular if the large antinodal gap in the ARPES 

data in the underdoped sample is to be attributed mostly to the pseudogap, it makes sense that 

the calculated Raman spectra using these ARPES data, will have a peak at a higher energy 

determined by the pseudogap, which will be much larger than the real superconducting energy. 

Therefore by suppressing the intensity at the antinodal region we are suppressing the contribution 

from pseudogap dominated states, and enhancing the contribution from lower energy 

intermediate momentum region states, which have a stronger superconducting character, and we 

are therefore decreasing the energy of the peak, taking it closer to the experimental value. 

Considering that in the overdoped and optimally doped samples the effect of the pseudogap is 

much less than in the underdoped sample, it is reasonable that we can reach a good reproduction 

of these two higher doping samples Raman spectra with a simple constant profile along the Fermi 

surface, unlike the pseudogap dominated underdoped sample, where the antinodal spectral 

weight must be suppressed. 
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The calculated spectra who give the best reproduction of the experimental Raman spectra are 

summarized in Fig.5.17, here the constant profile spectra are used for the optimally doped and 

overdoped samples while the nodal suppressed N1AN0p1 profile is used for the underdoped  

 

Fig.5.17 Experimental Bi2212 spectra together with the calculated spectra using the Kubo formula 

and assuming constant profile along the Fermi surface, for the overdoped sample in a B1g and b B2g 

configuration and for the optimally doped sample in c B1g and d B2g configuration. Experimental 

Bi2212 spectra together with the calculated spectra assuming decreasing intensity profile towards 

the antinode but with the nodal cut supressed (nodal suppressed N1AN0p1) for the underdoped 

sample in e B1g and f B2g configuration. In the overdoped sample panels a and b both the AB and 

BB bands calculated contributions are shown by magenta and green dashed lines respectively. 

Here the red solid line represents the total contribution of both bands summed up with 

normalized intensity and band ratio equal to one. 
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Fig.5.18 Experimental Bi2212 peak positions together with the calculated spectra preak positions 

using the Kubo formula 

sample. Here it can be seen how we were able to reach a good reproduction of all the 

experimental Raman spectra, with the exception of the underdoped sample, which is not 

optimally reproduced, but has been improved by our choice of intensity profile suppressing the 

antinodal region.  

In Fig5.18 the calculated and experimental Bi2212 preak positions are summarized. As it can be 

seen here, the calculated peak positions in all samples and in all of the configurations are higher 

than the experimental ones. One possible reason for this overestimation is that the effect of the 

pseudogap is different in ARPES and Raman. The pseudogap dominates the antinodal region in 

ARPES, but is only weekely observed in Raman as a small suppression of spectral weight. If Raman 

is not so sensitive to the pseudogap but ARPES is, it is reasonable that the calculated spectra 

starting from ARPES data overestimates the gap size and therefore the peak position. The different 

doping dependence in the underdoped side of the B1g and the B2g peak position, namely the two 

energy scale, was correctly reproduce by our calculation, even if it is not as evident as the 

experimental one. In particular the B2g doping dependence was reproduced starting from ARPES 

data where the nodal gap slope is constant, using an appropriate intensity profile that suppressed 

the antinodal region. This shows how the decreasing B2g peak energy in the underdoped side can 

be explained, without considering a decreasing gap value, but considering a decreasing antinodal 

spectral weight caused by the competition of the pseudogap with superconductivity. 
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5.2: Bi2223 Analysis 

5.2.1: Calculation Input preparation 

 

The Bi2223 Kubo calculation has been performed in a similar manner to the Bi2212 Kubo 

calculation. The ARPES experiment was performed by S.Ideta (National Institute for Molecular 

Science) on a slightly underdoped, but almost optimally doped sample (TC=108K) grown by Uchida 

Group in Tokyo University. The details of the experiment were reported in section 3.4, and will not 

be repeated here. The only parameter that will be repeated is the photon energy hν=8eV. This 

parameter is of high interest here, since, as discussed previously, the ARPES sensitivity to a certain 

band can change dramatically when the photon energy is changed, due to the modification of the 

matrix element. It was shown in Ref.[123] that the relative intensity of the IP and OP strongly 

varies with the incident photon energy.With the photon energy used here, the IP band is 

suppressed with respect to the OP band. This can be seen clearly in Fig.5.19, where all of the 

ARPES cuts are shown, zooming on the two bands. The IP band is extremely weak in the nodal 

region in the present dataset. By moving away from the node the band becomes gradually more 

intense in the intermediate momentum region, but it starts disappearing again towards the 

antinode and is observed only until cut 13 in which it is extremely weak (panel C13 in Fig 5.19). 

After the cut 13 the IP band is undistinguishable from the high energy incoherent intensity. On the 

other hand the OP band remains intense in all the present ARPES cuts. The fact that the IP band is 

extremely weak in the nodal and antinodal region in the present dataset poses a challenge to the 

calculation, since these 2 momentum regions are the most important for calculating the B2g and 

B1g configuration respectively due to the momentum dependence of the Raman vertex of these 2 

configurations shown in equations (3.16) and (3.15). However, since in this dataset both the IP and 

OP bands are observed, we attempt to use it to calculate the contribution to the Raman spectra of 

each of these 2 bands, as it was done for the overdoped sample.  

There is a certain amount of interaction between the 2 bands in the intermediate and antinodal 

region as it can be seen in Fig 5.19. It is not clear if this intensity should contribute to the Raman 

spectra, therefore we tried to avoid this contribution in the calculation for the IP band by 

removing it through the EDC fit. 

As in the case of Bi2212 calculation the kF positions have been extracted by inspection of the 

MDCs. Unlike in the case of Bi2212, this operation could be done also in the most antinodal cuts, 

since also in these cuts the band is dispersive enough, and not completely flat. This may be due to 

the fact that these cuts are in fact not so close to the border of the Brillouin zone as the ones of 

Bi2212, and this can be seen in Fig.5.20. The mapping was done by ensuring that the position of 

the band along the nodal line was consistent with the previous reports,[123] and the result of this 

mapping can be seen in Fig.5.20. The fact that the measured ARPES cuts do not reach the antinode 

may also be a limitation when using these data for the calculation, since this region may be quite 

necessary for a better reproduction of the B1g configuration. However the underdoped IP band 

peak disappears even more far from the antinode, so the IP calculated contribution should be  
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Fig.5.19 ARPES cuts for the slightly underdoped (but almost optimally doped) Bi2223 sample, 

going from the node in C2 to the most antinodal cut in C16 

 

Fig.5.20 ARPES data mapping for the slightly underdoped (but almost optimally doped) Bi2223 

sample The extracted Fermi vectors are represented by the purple crosses for the inner plane 

band, and by red crosses for the outer plane band. A ghost image of one of the bands is also 

observed closer to the (π,π) point of the momentum space. 

 



87 

unaffected by this limitation. The same is not true unfortunately for the OP band, therefore the 

peak position in the B1g configuration may be slightly changed. 

The tight binding fit was performed in this case using two separate tight binding equations, one for 

each band, unlike the Bi2212 overdoped sample case where a bilayer splitting term was used. The 

doping imbalance between the IP and OP layer gives a large band splitting, therefore in the Bi2223 

case we can simply fit the two bands separately using the equation (5.1). The tight binding 

parameters are summarized in Table 5.2, and are found to be roughly consistent with the previous 

reports.[123] The ratio of the nearest and the next nearest neighbour hopping parameter t’/t is 

found to be increasing from the OP to the IP band which is the expected behaviour. From Fig.5.21 

and Fig.5.22 the good quality of the fit can be assessed. In Fig.5.21 the experimental kF together 

with the Fermi surface calculated from the tight binding fitting are shown for both the OP and IP 

bands. Here it can be seen how the calculated Fermi surface follows well the experimental kF for 

both bands. In Fig.5.22 the fitted tight binding function along the ARPES cuts, together with the 

experimental kF are shown. Also from this figure we can see how the fitted function follows well 

the kF positions, but we can also see how the tight binding fails to describe well the experimental 

bands. This is analogous to the Bi2212 case, where again the tight binding fails to describe the 

anomalies of the bands, such as the kinks and the flat band dispersion. However, as we previously 

discussed for the Bi2212 case, since we have only a limited use for the tight binding function in our 

calculation, that is to give a first approximation of the gap opening along the ARPES cuts, we 

proceed with the calculation with confidence that the tight binding result is sufficient as a first 

approximation, despite its limitations. 

Since, as said previously, all of the Fermi vector positions could be experimentally determined 

from the MDCs, also the most antinodal ones, in the Bi2223 case there was no need to use the 

tight binding fit to determine these antinodal kF. The tight binding is only used to determine the 

size of the superconducting gap along the ARPES cuts, and is inserted in the Kubo equation (5.3), 

and plays a role in the calculation only for the small interval of momenta where ∆𝒌≠ 0.  

The raw ARPES intensity was treated in a similar manner to the Bi2212 case. Firstly we removed 

the Shirley background in the iterative manner previously described, and assuming that the 

intensity at the highest binding energy was composed only by background. An example of Shirley 

background subtraction for an EDC of Bi2223 can be seen in Fig.5.23. After the background  

 

 
t (eV) t’/t t’’ μ (eV) 

OP 0.734 0.251 t'/2 -0.773 

IP 0.633 0.275 t'/2 -0.386 

 

Table 5.2 Summary of all the resulting fit parameters for the 2 bands of the Bi2223 sample. t’’ is 

fixed to be half of t’. 
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Fig.5.21 Resulting tight binding fit Fermi surface together with the experimentally obtained Fermi 

vectors for both the inner and outer plane bands.  

 

Fig.5.22 Tight binding fit results along the ARPES cuts for both the inner and outer plane band 

(green and red dashed lines respectively) going from the node in C3 to the most antinodal cut in 

C12, together with the experimental kF (green and red stars for the IP and OP respectively) 
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subtraction, the inner and outer plane bands must be separated. This was done in a similar 

manner to the overdoped Bi2212 sample, by fitting the EDCs with 3 different Gaussian peaks after 

the background subtraction. This procedure is clearly shown in Fig.5.23. Also in this case 2 

Gaussian peaks are used to fit the IP and OP bands (one for each), and an additional peak is used 

for the high energy incoherent intensity. 

The EDC fit had to be done in multiple steps. Firstly the fit was done with fully free parameter, 

which gives good results only in the momenta where both bands are strong. This is not the case 

for the nodal and antinodal regions where the IP band is extremely weak, and for case of the 

antinodal region is also mixed with other strong contribution, such as the high energy incoherent 

intensity and the back-bending of the OP band. Since the IP band was so weak in the nodal region 

(see cut C3 and C4 in Fig.5.19) it had to be fitted on its whole length, also for the momenta where 

the OP band was not observed, otherwise the calculated Raman spectra would have been 

submerged by noise. In this step the peak position was fixed and the width was calculated with an 

appropriate relationship with the binding energy (peak position), therefore the only free 

parameter was the intensity. This fit with less free parameters was also done for the intermediate 

and antinodal cuts at the momenta where the free parameter fit was not successful. For the last 3 

antinodal cuts before the IP band disappears, where the band was extremely weak, and mixed 

with other contribution, this had to be taken a step further, by assuming also an appropriate 

intensity profile along the band, and leaving therefore only a multiplication constant for the whole 

band as free parameter. Since the IP band was so weak on the whole Fermi surface, we opted to 

calculate the Raman contribution only from the fitted IP band function for the whole Fermi surface. 

This had to be done to avoid the strong contribution that noise has on a low intensity band in the  

 

Fig.5.23 Example of treatment of the raw ARPES EDCs, the Shirley background is subtracted from 

the raw spectra, which is subsequently fitted with 3 Gaussian peaks, one for each band and one 

for the high energy incoherent intensity. 
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Raman calculation with the Kubo formula. 

The result of our EDC fitting and the input of our calculation can be seen in Fig.5.24. In the upper 

row, the intensity used as an input for the outer plane calculation is shown. Since this calculation is 

done until the OP kF and not past this momentum point, it is not necessary to subtract properly 

the IP intensity past this point and an intermediate fit result, which subtracts appropriately the IP 

intensity before the OP kF could be used. For this reason the residual IP intensity seen in the figure 

is not a reason of concern. In the lower row of Fig.5.24 the input intensity for the IP can be seen. 

Here, as said before, we take as input only the fitted IP intensity to avoid contributions from the 

background intensity. From this figure we can see that, even if the fit result is kind of crude, we 

were able to successfully separate the OP and IP intensity, and we could therefore proceed to 

calculate their contribution to the Raman spectra separately. 

The ARPES cuts intensity was again normalized by the maximum intensity value at the Fermi 

momentum kF for each cut, and both the inner and outer plane cuts where normalized to the 

same value. Therefore this calculation will consider constant intensity profile along the Fermi 

surface, as the initial Bi2212 calculation, and considering the same intensity for the inner and 

outer plane bands. Since there is a strong dependence of the relative intensity of the two bands on 

the ARPES photon energy, it is difficult to predict what should be the real relative intensity of the 

bands (of the spectral function) after the elimination of the matrix element effect. Therefore 

considering it equal may be a rough approximation. One quick consideration is that there is a  

 

Fig.5.24 Results of the EDC fitting and input intensity for the Kubo calculation for the outer plane 

(upper row) and for the inner plane (lower row). For the outer plane the total cut intensity after 

the subtraction of the fitted IP intensity was used as an input for the calculation. For the IP 

calculation only the IP fitted intensity was used. 
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double number of OP than the number of IP in a unit cell, therefore the OP intensity might be 

larger. 

The calculated intensity of Fig.5.24 was symmetrized and the calculation was performed on an 

appropriate momentum range. For the OP band this range is constituted by the momentum 

interval between the point of the cut on the (0,0)-(π, π) line and the OP Fermi vector. For the IP 

this was done from the momentum where the fit of Fig.5.24 begins to the IP kF. 

 

5.2.2: Calculation Results and Discussion 

 

The result of the Bi2223 Kubo calculation using this separated IP and OP intensity is shown in 

Fig.5.25. In Fig.5.25 (a) the calculated B1g contribution can be seen. The first observation from this 

panel is that the OP and IP calculated Raman spectra shown with red and green lines respectively, 

give a peak at a significantly different energy position. Additionally the energy positions of these 

calculated IP and OP Raman peaks are close to those of the two experimental pair breaking peaks 

that were found in this study and discussed in section 4.2. The calculated peak positions together 

with the experimental peak positions are summarized in Table 5.3. As it can be seen, these values 

are close, with a difference of only 65 cm-1 for the OP and 23 cm-1 for the IP. In both cases the 

calculated peak position is slightly lower than the experimental one. This result is a strong 

evidence that our peak assignment was correct and more importantly it constitutes a strong proof 

that the origin of the experimental double pair breaking peak is indeed the double 

superconducting gap of Bi2223 which originates from the two chemically inequivalent inner and 

outer Cu-O2 layers.  

By summing up the calculated B1g IP and OP contribution with a band ratio of 1.7 (enhancing the IP 

contribution) we can obtain the magenta line in Fig.5.25 (a) which is a good fit of the low 

temperature experimental B1g Raman spectrum. Unlike the case of the overdoped Bi2212 sample, 

here we had to use a band ratio greater than one, enhancing the IP band contribution, to obtain a 

good fit. This will be discussed more in detail later on. This obtained total calculated spectrum 

reproduces well the shape of the experimental B1g Raman spectrum, with only a small 

overestimation of the intensity between 250 cm-1 and 500 cm-1 which originates from the small 

underestimation of the OP peak positon. One possible reason for this underestimation is that the  

 

B
1g

 peak Exp  cm
-1

 Calc cm
-1

 

OP 565 500 

IP 805 782 

 

Table 5.3 comparison between the calculated and experimental peak energies in cm-1. A good 

correspondence between the two is found. 
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Fig.5.25 Experimental and calculated Raman spectra for the optimally doped Bi2223 sample in a 

B1g configuration and b B2g configuration. The red and green curves are respectively the OP and IP 

calculated contribution to the Raman spectra. The magenta curve is the summation of the OP and 

IP peak contribution with a band ratio of 1.7 enhancing the inner plane band intensity. 

starting ARPES data does not reach the antinodal region as discussed before and as shown in the 

mapping in Fig.5.20. The fact that we are missing out the contribution from these most antinodal 

cuts may reduce the total calculated peak position with respect to the experimental one and 

generate this discrepancy. On the other hand the IP peak is well reproduced by the calculated 

contribution, in both of the peak position and the overall shape. This may signify that even if some 

residual of the IP band remains, at more antinodal cuts than the one where the ARPES intensity of 

the IP band disappears in our dataset, this does not contribute significantly to the Raman 

spectrum. 
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In Fig.5.25 (b) the B2g calculated contribution for the two bands is shown together with the 

experimental B2g low temperature Raman spectrum. Here we can see that even if the IP calculated 

spectrum is quite strange, the IP and OP calculated peaks have an overall similar shape, which is 

similar in both cases to the experimental spectrum. Both of these two bands calculated spectra 

seem to reproduce quite well the broad peak and the shape of the experimental spectrum. Here 

the IP calculated contribution shows a peculiar shape with three humps. This behaviour is most 

likely not intrinsic, and it is probably due to limitations of the ARPES data and of our fit. As 

discussed earlier the nodal IP band is extremely weak, and in the most nodal cut the band intensity 

is just above the noise intensity. It follows that even a good fit of such a low intensity band cannot 

be of high quality, and modifications in the band profile may occur. Unfortunately the most 

antinodal cut is the one that, due to the Raman vertex, contribute the most to the B2g calculated 

contribution. For these reasons the quality of the fit is not so high, and this is reflected in the 

unrealistic humps of the IP B2g calculated contribution. Nevertheless this calculated spectra overall 

shape is not so far from the experimental B2g Raman spectrum, and not so different from the OP 

calculated spectrum, which does not share the IP problem of low intensity. Therefore we believe 

that even with these limitations the IP B2g calculated contribution is not completely unrealistic. 

The OP B2g peak overall shape is quite good, with a peak that only slightly underestimates the 

experimental peak positons, and is only slightly too sharp. Summing up the calculated contribution 

from the two bands, with the same band ratio that was used for the B1g calculated spectrum (band 

ratio of 1.7), we obtain the total B2g calculated spectrum, shown with the magenta line in Fig.5.25 

(b). This total calculated spectrum also reproduces quite well the shape of the experimental peak, 

with a good reproduction of the peak position and of the peak broadness. 

Altogether we were able to reach a good reproduction of the experimental Raman spectra both in 

B1g and B2g configurations, using the Kubo formula with ARPES data as input, and calculating the 

separated contribution of the two bands. We believe that the fact that we were able to reproduce 

the double peak structure separately with the OP and IP ARPES intensities constitutes a strong 

proof that the origin of this double peak structure is to be attributed to the double 

superconducting gap of Bi2223 and to the two inequivalent kind of copper oxygen layers.  

As stated before the present result was obtained with an enhancement of the IP band intensity 

with respect to the OP one, more specifically a band ratio of 1.7. The IP and OP ARPES cuts have 

been normalized, in the manner described previously, and following this normalization the IP band 

had to be enhanced by a factor of 1.7. The reason we had to give this enhancement to the IP 

intensity can be seen in Fig.5.26 (a). Here the summated Raman contribution with many different 

band ratios is shown for B1g in Fig.5.26 (a) and for B2g in Fig.5.26 (b). It is evident that the 

summation with band ratio equal to one, which is same intensity along the Fermi surface for both 

bands, shown in Fig.5.26 (a) by the yellow curve, is dominated by the OP contribution and the IP 

peak is only slightly visible. To obtain the correct relative intensity of the B1g peaks the IP ARPES 

intensity must be enhanced up to a band ratio of 1.75, which is shown by the green dashed curve, 

and which gives the best fit of the experimental spectra. For the B2g configuration in Fig.5.26 (b) 

we see how the band ratio does not play a big role in the overall shape of the calculated peak. This 

is due to the fact that the OP and IP calculated contributions are not so different between each  
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Fig.5.26 Experimental and calculated Raman spectra with different band ratios for the optimally 

doped Bi2223 sample in a B1g configuration and b B2g configuration. The green dashed curve is the 

summation of the OP and IP peak contribution with a band ratio of 1.7, enhancing the inner plane 

band intensity, which gives the best fit reproducing correctly the relative intensity of the Raman 

peaks. 

other, and therefore the band ratio does not change much the total spectra. Since this parameter 

does not influence so much the B2g configuration spectrum but gives a clear improvement of the 

B1g configuration spectrum for a band ratio of 1.75, this value was taken as the final one for the 

best fit. 

We have to note however that it is unlikely that this value of the band ratio represent the real 

relative intensity of the band, but that it is probably better to view this parameter as mere fitting 

parameter with little physical meaning. There are multiple reasons for this. Firstly there is the 

consideration that the double number of OP layer per unit cell may signify that the OP intensity 
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should be intrinsically stronger. Then, the ARPES photon energy must be considered and in this 

case it is supposed to furtherly enhance the OP band intensity. However in this calculation the 

ARPES intensity of the two bands was normalized to the same value, therefore it seems strange, 

given the previous considerations that we need to furtherly enhance the IP band with a band ratio 

of 1.75, and this value may be unrealistic. One possible source of this anomaly may be that since 

the IP band was so weak in the nodal and antinodal region we had to assume several parameters 

including the width and, in the antinodal region, the intensity profile. Since the Kubo calculation is 

a convolution of the peaks of the symmetrized EDCs with themselves, not only the intensity profile 

of the band, but also the width of the EDC may strongly influence the intensity. Overall too many 

factors may influence this parameter, and therefore it is better to view it as a mere fit parameter 

with little physical meaning. An additional reason that may cause us to have given an excessive 

weight to the IP may in fact come from the OP calculated spectrum. The B1g calculated spectrum 

shows a dip structure above its peak at approximately the same frequency of the IP peak. If this 

dip structure was overestimated in the OP spectrum, this may happen for example with an 

excessive background subtraction, the needed IP peak intensity to correctly reproduce the 

experimental B1g spectrum would increase. 

In this calculation we were able to obtain a good fit of the experimental Raman spectra using a 

linear intensity profile along the Fermi surface, but there are multiple reasons to consider a 

different profile. Firstly the real intensity profile (or quasiparticle spectral weight) may change with 

the momentum, or the ARPES intensity may be influenced by the matrix element. Additionally if 

we consider the result on Bi2212 discussed in the previous section, in which we were able to 

improve on the spectrum calculated for the underdoped sample by using a profile suppressing the 

antinodal region, it is certainly better to try different profiles also in the Bi2223 case for 

completeness. This has been done in Fig.5.27 and Fig.5.28 for the outer and inner plane calculated 

contribution respectively. Here the same notation used in the previous section is adopted, where 

the name of the profile indicates the intensity value in the node and in the antinode. 

In Fig.5.27 (a) the OP calculated contribution with different linear profiles for the B1g configuration 

is shown. Here it is obvious that the spectrum is extremely robust against modifications of the 

intensity profile, since the spectrum is almost unchanged. The only modification may be a minute 

shift of the peak at higher energy, accompanied by a minute sharpening of the peak, with 

increasing antinodal weight. However these modifications are so small that they can be 

considered irrelevant. This may be due to the strong similarities between the cuts in the antinodal 

region for the OP band, that collectively give extremely similar contributions, and make this 

spectral shape robust. In Fig.5.27 (b) the OP calculated contribution with different linear profiles 

for the B2g configuration is shown is also shown. Here the effect of enhancing the antinodal region 

is to make the peak shaper, while suppressing it has the opposite effect, and the peak position 

does not seem to shift by a significant amount. However since the constant profile calculated OP 

contribution has an appropriately broad peak, that reproduces quite well the experimental shape, 

it seems that there is no improvement in the fit by neither suppressing nor enhancing the 

antinodal spectral weight. The N1AN2 spectra (that doubles the antinodal weight) gives a small 

improvement in the lower frequencies, however the sharpening of the peak is not an  
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Fig.5.27 Experimental Raman spectra and calculated OP contribution to the Raman spectra with 

different linear profiles for the optimally doped Bi2223 sample in a B1g configuration and b B2g 

configuration.  

improvement since the experimental spectra is broader, and also causes an underestimation of 

the intensity at the higher frequencies. Overall it seems that no improvement is obtained by 

changing the intensity profile and a since the result seems to be worsening in the B2g configuration, 

we believe that the best reproduction of the peak was already reached with the constant profile 

calculated spectra and we therefore pick it as our best result for the OP contribution calculation. 

The same procedure of calculating the Raman spectra with different linear profiles is repeated for 

the IP in Fig.5.28. The calculations with different profiles for the B1g configuration are shown in 

Fig.5.28 (a), and as in the case of the OP calculation the peak positon is found to be very robust 

against changes of the intensity profile. The tail of the peak at high frequency is suppressed  
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Fig.5.28 Experimental Raman spectra and calculated IP contribution to the Raman spectra with 

different linear profiles for the optimally doped Bi2223 sample in a B1g configuration and b B2g 

configuration.  

together with suppression of the antinodal region, however the peak is almost unchanged. The 

only minute changes that are visible are a tiny shift at a higher frequency and a minute sharpening 

of the peak when the antinodal intensity is suppressed. The shift at higher frequency would be an 

improvement, since as discussed earlier, the peak position is slightly underestimated. However, 

the shift is so tiny that it can hardly be considered a significant improvement. In Fig.5.28 (b) the B2g 

calculated intensity for the IP with different linear profiles is also shown. These calculated spectra 

suffer greatly from the previously discussed limitations of the nodal IP band fit, and the three 

artefact humps are visible. Apart from those, no significant improvement is observed when the 

profile is changed. Suppressing the antinodal region makes the peak shift at lower frequency, 
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while enhancing it shifts the peak at higher frequency, additionally the overall shape seems to be 

modified in both cases. However since the starting peak position and the overall shape of the 

calculated spectrum with constant profile are already quite good, these modifications of the 

spectral profile seem to lead only to a worsening of the calculated spectrum. Therefore, 

considering both configurations, also in the case of the inner plane our choice of profile that gives 

the calculated spectrum better representing the experimental one is again the constant profile. 

However, we do feel that these data do not exclude the possibility of an improvement with 

different profiles if a different ARPES dataset was to be used, especially for the underdoped inner 

plane, since this failure of the different profiles to give a better reproduction of the Raman spectra 

may be simply due to the previously discussed limitations of this ARPES data. More specifically the 

IP band is extremely weak in the nodal and antinodal region, and while this may be sufficient to 

roughly reproduce the peak position under the right assumptions, it may not be sufficient to 

reproduce a consistent evolution of the contribution along the Fermi surface, preventing therefore 

relevant observations when the profile is changed. Since the IP is underdoped, it is especially on 

this layer contribution that we expected a decreasing antinodal weight to be beneficial, since this 

has been shown in the previous kinetic calculation for single and double layer components, [47], 

[49], [142], [143] and we also were able to show it in this work in the case of underdoped Bi2212. 

In conclusion, even if the IP intensity is extremely weak, we were able to separate the IP and OP 

band intensity in the ARPES input data and reproduce well the experimental Raman spectra of 

Bi2223. The fact that we can reproduce the energies of the two experimental peaks observed in 

this work in the B1g spectra, using the separated OP and IP intensities, constitutes a strong 

evidence that our assignment of the peaks is correct, and that the double peak structure truly 

originates from the two superconducting gaps on the OP and IP bands. Unfortunately the 

limitations of the ARPES data forced us to perform some assumptions on the IP band in the nodal 

and antinodal region. These assumptions, while being sufficient to reproduce the B1g peaks energy, 

are likely to prevent us from drawing further conclusions on the bands ratio and on the intensity 

profile along the Fermi surface. For this reason, the enhancement of the IP intensity, and 

therefore the obtained band ratio of 1.7, that was used to reproduce the Raman spectra, is likely 

to carry little physical meaning, and should be viewed as a mere fitting parameter. Since 

suppressing the antinodal region gave an improvement of the calculated spectra in the case of 

underdoped Bi2212 samples, both in the present work and in previous calculation, we expected 

the same improvement in the underdoped IP contribution to the Raman spectra, however this was 

not observed. The reason for this is again likely to be the weakness of the IP band in the input 

ARPES data, which forced some assumptions on the IP band. 
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6: Conclusions 

6.1: Bi2223 experimental Raman results 
 

In this work we obtained Bi2223 samples of four different doping levels, spanning from a slightly 

overdoped sample to a strongly underdoped one, through annealing in oxygen atmosphere. The 

samples were characterized by SQUID magnetometry and by X-ray diffraction to evaluate the 

critical temperature and the average sample doping level. 

Raman scattering measurement revealed a double pair-breaking peak structure in the low 

temperature B1g spectra, which was never observed before in the Raman spectra of Cuprates. We 

interpret this double peak structure as a Raman direct signature of the double superconducting 

gap of the triple layer cuprate Bi2223, originating from the two inequivalent Cu-O2 layers, the 

inner and the outer plane. The two peaks energies values for the optimally doped sample were 

found to be consisted with the gap energies values found by ARPES in the literature. 

Within our experimental resolution the two peaks were found to be appearing at the same 

temperature. The different hole concentration in these two layers could lead to two different 

critical temperatures for the two kinds of layers, however since the two peaks were found to 

appear simultaneously at the same temperature, this points to an interaction between the two 

layers. In this picture, through tunneling of Cooper pairs between the layers, the layer with the 

highest critical temperature drives the layer with lower critical temperature to superconduct at 

higher temperatures.  

Under the assumption that the doping imbalance between the two different Cu-O2 layers of 

Bi2223 does not change when the average doping of the sample is changed, we were able to 

estimate the layer doping level, starting from the layer doping level found by NMR for the 

optimally doped sample, also for the remaining samples. 

Going from the optimally doped sample to the lower doping sample, the energy of the B1g peaks 

increased, both for the inner and outer plane peak, while that of the B2g peak decreases, meaning 

that the two energy scale that was observed in the other single and double layer cuprates, has 

been found also in the triple layer Bi2223. The present result constitutes, to our knowledge, the 

first doping dependent spectroscopic study on the triple layer cuprates where the OP and the IP 

signals were resolved.  

Considering that the superconducting gap was found to be constant in a broad range of doping by 

ARPES, the increase in the B1g pair breaking peaks energy with lower doping is strange. Since the 

antinodal gap, which is associated with the pseudogap is increasing with lower doping, one 

possible explanation is to assume that, despite the competition between the pseudogap state and 

superconductivity, some positive interaction also exists between the two and that this enhances 

the pair-breaking energy in the antinodal region with lower doping. However even if the antinodal 

superconducting energy is enhanced, the two state still competes, and superconductivity gets 
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gradually expelled from the antinode when the hole content decreases. This could explain why the 

B1g pair breaking peaks energy increases with lower doping but the same time it loses intensity 

and TC is suppressed. 

Additionally, when the layer doping estimated was used to plot the B1g peaks energy, we found 

that the inner and outer plane energies seem to align on a single line, and this unifying picture is 

surprising. This seems to imply that despite the chemical and structural differences between the 

two layers, the peak energy is not different, and is only influenced by the layer doping. This is likely 

to be due to proximity effects, where the interaction between the two layers averages out the 

value of the two gaps. 

Finally after the division of the peak energy, by the maximum sample critical temperature, we 

found that this ratio PE/kBTC,MAX is much higher in Bi2223 than in the other single and double layer 

cuprates, meaning that Bi2223 has a low TC relative to its large gap value. This is likely to be a 

multilayer effect. There are several possible explanations for the increased IP gap, that could 

include: protection from the blocking layer disorders[8], high next-nearest neighbor hoping value 

t’,[7] or the strong pseudogap in this underdoped layer if we assume some degree of positive 

interaction with superconductivity as discussed above. The tunneling of Cooper pairs could 

average the IP and OP gaps out, giving large values for both of the two, and increasing the 

superfluid density of the underdoped IP.[158] All of these effects could contribute to increase the 

peak energy PE value, while the TC could be reduced by the competition of the strong pseudogap 

state, originating from the underdoped IP, with superconductivity, confining the Cooper pairs 

towards the antinode. The combination of these effect could explain the large ratio PE/kBTC,MAX 

found here. 

All of these considerations point to a complex situation in the triple layer components, where the 

combination of multilayer effects, and the non-trivial relationship between superconductivity and 

the pseudogap, could give the right condition for the high TC of these materials.  

 

6.2: Bi2212 Raman results analysis based on ARPES 
 

In this work we were able to reproduce the Bi2212 Raman spectra starting from the ARPES 

experimental data for samples of three different dopings using the Kubo formalism. 

The more realistic Raman spectra obtained, with respect to the previous calculations using the 

kinetic theory, show the advantage of this method. Using the experimental ARPES data as an input 

we can introduce naturally the scattering rates in the calculation, and correctly account for the 

experimental band anomalies, which are ignored in calculations using assumed tight binding-like 

bands as input.  

Assuming constant intensity profiles along the Fermi surface we could reproduce correctly the 

overdoped and optimally doped Raman spectra, with good reproduction of the overall shape and 
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only a small overestimation of the peak positions. However we could not reproduce correctly the 

underdoped sample spectra. To improve the fit of this sample we had to assume a particular 

intensity profile along the band, suppressing the antinodal intensity (and also the most nodal cut). 

With this suppression of the antinodal weight, both the B1g and B2g configuration spectra were 

improved, and we were able to obtain the correct doping dependence, namely the two energy 

scale. This result is analogous to the result of previous kinetic theory calculations, [47], [49], [142], 

[143] where the antinodal intensity is suppressed to improve the calculation results. This can be 

explained by the competition between superconductivity and the pseudogap state, where in the 

underdoped samples the Cooper pairs are confined in the nodal region, and therefore it is 

necessary to suppress the contribution of the pseudogap dominated antinodal states for the 

correct calculation of the pair breaking Raman peak behavior. The fact that we can reproduce the 

doping dependence of the nodal B2g Raman peak in the underdoped side, starting from the doping 

independent ARPES nodal gap, shows that there is no inconsistency between the two techniques, 

but that this is an effect of the different way the two techniques pick up the confinement of the 

Cooper pairs in the nodal region caused by the competition of the pseudogap with 

superconductivity. 

In all of our calculation both the B1g and B2g configuration peak positions are overestimated. This 

could be also caused by a difference in the effect of the pseudogap in the two techniques ARPES 

and Raman. The pseudogap state is only weakly visible in Raman as a suppression of spectral 

weight, but it has a strong effect in ARPES dominating the antinodal spectra. This could mean that 

ARPES is more sensible to the pseudogap. Therefore it is plausible that in the calculation of the 

Raman spectra starting from the ARPES data, the pseudogap dominated spectra increase the 

calculated Raman peak energy, leading to an overestimation of the peak position. 

In conclusion these calculations proved the viability of the Kubo calculation of the Raman spectra 

starting from the experimental ARPES data and show that the apparent inconsistency between the 

two techniques may be due only to a difference in how the two pick up the pseudogap effect. 

 

6.3: Bi2223 Raman results analysis based on ARPES 
 

In this work we were also able to reproduce the optimally doped Bi2223 Raman spectra, starting 

from the ARPES experimental data, using the Kubo formalism. 

This calculation is challenged by the fact that the signal from the inner plane band is extremely 

weak in the nodal and antinodal region. Despite this difficulty we were able to separate the inner 

and outer plane ARPES intensity by fitting the EDCs with Gaussian peaks, and fixing different fit 

parameters to solve the problem of the weakness of the IP band. 

This allowed us to calculate separately the IP and OP band contribution to the Raman spectra, and 

the striking result was that these two gave a peak in the B1g Raman spectra at distinct energy 

positions, which correspond to the energy positions of the two experimental Raman peaks found 
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in this work. This finding is a strong proof supporting our assignment of the two peaks to double 

superconducting gap of Bi2223 originating from the inner and outer plane gaps respectively. 

Contrary to the Bi2212 case, here the peak positions in the B1g configuration were underestimated 

slightly. In the case of the OP this difference may be due to the fact that the ARPES data used as an 

input do not reach the end of the first Brillouin zone, but stop at a slightly less antinodal 

momentum. 

We were able to correctly reproduce the shape of both the B1g and the B2g configurations, even 

though the IP intensity had to be enhanced even after the two band intensity was normalized 

along the Fermi surface. The fact that the IP intensity had to be enhanced may not have any 

physical meaning, but it may only be due to the limitations of the ARPES data, where the IP 

intensity is extremely weak, and forces us to assume some parameters for the EDC peaks, that 

may lead to the underestimation of the IP contribution to the Raman spectrum. 

The dependence of the OP and IP contribution on the intensity profile of the bands along the 

Fermi surface was investigated, as in the case of Bi2212. However no clear improvement of the 

spectra was found, even for the underdoped IP contribution which was expected to show some 

improvement of the calculated spectra with a decreasing antinodal intensity, basing on the 

previous Bi2212 results. This may be again due to the weakness of the IP band, which may prevent 

us from seeing the dependence on the band intensity profile for the same reason that we just 

discussed. 

In conclusion, even if this calculation is hindered by the weakness of the IP band in the input 

ARPES data, we were able to give a solid evidence that the assignment of the experimental double 

peak structure is correct. Unfortunately the limitation of the ARPES data prevents us to draw 

ulterior conclusions on the intensity profile of the band along the Fermi surface or on the ratio of 

the two bands intensity. 

 

6.4: Closing remarks 
 

The present results hint to a complex situation in the multilayer cuprates, where the combination 

of multilayer effects and the non-trivial relationship between superconductivity and the 

pseudogap may give the high TC of these samples. Since the complex physics of these materials is 

still poorly understood, these new experimental findings may help to lay the foundation of future 

experimental and theoretical works. 
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