

Title	Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus
Author(s)	加藤, 保宏
Citation	大阪大学, 2018, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/70727
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文審査の結果の要旨及び担当者

(申請者氏名) 加藤 保宏		
論文審査担当者	主 査	(職) 氏 名 大阪大学教授 熊御淳
	副 査	特任 大阪大学教授 豊福利彦
	副 査	大阪大学教授 下河内洋一郎
論文審査の結果の要旨		
<p>原因不明の自己免疫性疾患であるSLEの病態形成にはtype I IFN(IFN-I)が重要であることが知られている。核酸がDNAセンサーにより認識されるとIFN-Iが産生されるが、細胞内DNAセンサーであるcGAS-STING pathwayのSLEへの関与についてはほとんど分かっていない。本論文ではIFN-I転写誘導領域 (ISRE) の下流でレポーター分子を発現する細胞を用いて、SLE患者血清がIFN-I誘導活性を有することを示し、このIFN-I誘導因子が血清中のApoptosis derived membrane vesicles (AdMVs) であることを示している。また、STING欠損レポーター細胞、cGAS欠損レポーター細胞を用いて、AdMVsがcGAS-STING pathwayを介してIFN-Iを誘導していることを明らかにした。以上より、本論文は学位の授与に値するものと考えられる。</p>		

論文内容の要旨
Synopsis of Thesis

氏名 Name	加藤保宏
論文題名 Title	Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus (全身性エリテマトーデス患者血清中のアポトーシス由来膜小胞はcGAS-STING経路を介してタイプIインターフェロンを誘導する)
論文内容の要旨	
〔Objective〕	
<p>Despite the importance of type I interferon (IFN-I) in SLE pathogenesis, the mechanisms of IFN-I production have not been fully elucidated. Recognition of nucleic acids by DNA sensors induces IFN-I and interferon-stimulated genes (ISGs), but the involvement of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) in SLE remains unclear. We studied the role of the cGAS-STING pathway in the IFN-I-producing cascade driven by SLE serum.</p>	
〔Methods〕	
<p>We collected sera from patients with SLE (n=64), patients with other autoimmune diseases (n=31), and healthy controls (n=35), and assayed them using a cell-based reporter system that enables highly sensitive detection of IFN-I and ISG-inducing activity. We used TLR-specific reporter cells and reporter cells harboring knockouts of cGAS, STING, and IFNAR2 to evaluate signaling pathway-dependent ISG induction.</p>	
〔Results〕	
<p>IFN-I bioactivity and ISG-inducing activities of serum were higher in patients with SLE than in patients with other autoimmune diseases or healthy controls. ISG-inducing activity of SLE sera was significantly reduced in STING-knockout reporter cells, and STING-dependent ISG-inducing activity correlated with disease activity. dsDNA levels were elevated in SLE. Apoptosis-derived membrane vesicles (AdMVs) from SLE sera had high ISG-inducing activity, which was diminished in cGAS-knockout or STING-knockout reporter cells.</p>	
〔Conclusions〕	
<p>AdMVs in SLE serum induce IFN-I production through activation of the cGAS-STING pathway. Thus, blockade of the cGAS-STING axis represents a promising therapeutic target for SLE. Moreover, our cell-based reporter system may be useful for stratifying SLE patients with high ISG-inducing activity.</p>	